
Gridless Routing for
Generalized Cell Assemblies:
Report and User Manual
by

L.P.P.P. van Ginneken

EUT Report 87-E-180
ISBN 90-6144-180-3

September 1987

ISSN 0167- 9708

Eindhoven University of Technology Research Reports

EINDHOVEN UNIVERSITY OF TECHNOLOGY

Faculty of Electl'ical Engineering

Eindhoven The Netherlands

Coden: TEUEOE

GRID LESS ROUTING FOR GENERALIZED CELL ASSEMBLIES

Report and User Manual

by

L.P PP. van Ginneken

EUT Report 87-E-180
ISBN 90-6144-180-3

Eindhoven
September 1987

COOPERATIVE DEVELOPMENT OF AN INTEGRA TED. HIERARCHICAL

AND MULTIVIEW VLSI DESIGN SYSTEM WITH DISTRIBUTED

MANAGEMENT ON WORK STA TlONS.

(Multiview VLSI-design System ICO)

code: 991

DEliVERABLE

Repon on activities: 5.3.C: Develop place- and route concept for logic family, and 5.3.0:
Implement totally integrated cell generator and place- and route scheme.

Abstract: A new routing system for the general custom celliayoul style is presented. The
main features of the system are: construction of a floor plan topology by slicing. global
routing by means of a Steiner tree heuristic and gridless channel routing with rigorous
contour compaction, which allows variable width wires and easy adaptation to the design
rules. The router handles arbitrarily sized cells and takes advantage of irregular channel
boundaries. Power and ground lines are routed planarly with variable width. An O(nlogn)
algorithm for making contours irredundant is given. Benchmarks of the channel router
and application to a small chip are included.

deliverable code: WP 5, task: 5.3, acrivities C and D.

date: 21-08-1987

panner: Eindhoven University of Technology

aurhor: L.P.P.P. van Ginneken

CIP-GEGEVENS KONINKLIJKE BIBLIOTHEEK, DEN HAAG

Ginneken, L.P.P.P. van

Gridless routing for generalized cell assemblies: report and user manual /
by L.P.P.P. van Ginneken. - Eindhoven: University of Technology. - Fig. ~
(Eindhoven University of Technology research reports / Faculty of Electrlcal
Engineering, ISSN 0167-9708; 87-E-180)
Met lit. opg., reg.
ISBN 90-6144-180-3
5150664.3 UDC 621.382:681.3.06 NUGI 832
Trefw.: elektronische schakelingen; computer aided design.

- iii -

PREFACE

The work published in this report builds on the research of Ralph Otten in the area of
layout design performed at Eindhoven University and IBM Yorktown during the early
eighties. Together we presented the philosophy of his approach at the ICCD 84
conference in a paper called "Stepwise Layout Refinement" [3].

Stepwise refinement is a technique that has been shown to be effective in the
development of computer programs. Niklaus Wirth formulated it explicitly in a now
famous paper [9]. In this paper he viewed the design of a structured program as a
sequence of refinement steps. Starting with clear problem statement, specifying the
relation between the input and the output data, the task is progressively refined, by
decomposing it into subtasks, each having an equally clear specification.

The principles of stepwise refinement obviously apply to any complex design task
following a top down strategy rather than a process of combining independently
developed subdesigns. Stepwise refinement can also be viewed as postponing
implementation decisions. Each decision should leave enough freedom to following
stages to satisfy the constraints it created, and at the same time rearrange the available
data such that further meaningful decisions can be taken.

Presently I'm working towards an integrated floor planning and cell generation system
according to these ideas. This routing program would be the last program in the sequence
of designing programs. Some of this work was published before in [4] and some of it
will be published in [10] at the ICCAD conference in Santa Clara.

I would especially like to thank Ralph Otten, whose ideas I found to be very valuable and
inspiring, for introducing me into this area. Also I would like to thank Reinier van den
Born for his patience in helping me formatting this manuscript. This work was supported
by ESPRIT project 991, and by the Foundation F.O.M. under project nr. EEL 33.0417

Lukas van Ginneken

Eindhoven, 21 August 1987

- iv -

CONTENTS

1. LAYOUT DESIGN IN A SILICON COMPILER
1.1 The output: a layout
1.2 Design rules • • •
1.3 Data representation .

2. THE ROUTING SYSTEM
2.1 Design goals
2.2 An overview

3. SLICING

4. CHANNEL ASSIGNMENT
4.1 Routing model • • •
4.2 Heuristic for finding the Steiner tree.
4.3 Power and ground net routing

5. LOCAL ROUTING
5.1 Classification • •
5.2 Compaction
5.3 Wire Straightening

6. EXPERIMENTAL RESULTS

7. CONCLUSIONS

REFERENCES

SUPPLEMENT: ROCOCO USER MANUAL

.'

1
1
2
3

4
4
4

6

9
9

11
12

13
13
14
15

18

21

22

23

- v -

LIST OF FIGURES

Figure 1. Schematic flow chart of a silicon compiler

Figure 2. Overview of the routing system • • •

Figure 3. Floor plan scaled by the largest shrink value.

Figure 4. Slicing tree. • • •

Figure 5. Shrink value algorithm

Figure 6. Graph used as global routing model.

Figure 7. The channel incidence matrix Tjunc

Figure 8. Different classes of two terminal segments.

Figure 9. Routing after compaction phase. ..
Figure 10. Straightening algorithm. • •

Figure 11. Routing after straightening phase.

Figure 12. Audio delay line chip • • • •

Figure 13. nMOS Pluri cell style random logic macro

2

5

6

7

7

10

10

13

15

16

17

19

20

- I -

1. LAYOUT DESIGN IN A SILICON COMPILER

Modern Integrated Circuit technology permits the design and production of increasingly
complex circuits at low cost Large designs typically contain hundreds of thousands of
transistors, and designs of more than one million devices are already possible. This
enormous increase in scale creates a design problem: design cost and design time exceed
production cost and time.

To cope with these problems silicon compilers are being developed. A silicon compiler
is a program that translates a functional specification of an integrated circuit into a layout
design. Fig.1 gives a schematic flow diagram of a silicon compiler.

The silicon compiler accepts a functional description of the chip in formulated as an
algorithm. The data flow optimization makes a mapping of this algorithm to the
necessary hardware. This hardware can be optimized by logic optimization tools. Then
cells are then generated and placed. The router has to connect the various cells together.

Since it is not possible to fit all designs into a single methodology it necessary to use an
open system concept. This means that certain programs can be used independently, and
that a reconfiguration of programs must be possible.

1.1 The output: a layout

The ultimate task of a layout design system is to produce a layout, a set of data that
uniquely and completely specifies the geometry of the circuit. The term mask will be
used for each plane with a pattern. A layout is translated into a sequence of processes that
selectively change the characteristics of the silicon according to those patterns, thus
realizing the functional specification available as input to the layout design procedures.
For present day technologies the geometrical specification of eight to fifteen masks
suffices to specify the layout.

Lithographic techniques have their limitations. Quite often only orthogonal artwork is
acceptable. This leads to regions that are unions of iso-oriented rectangles. Rarely is a
restriction to rectangles and combinations thereof detrimental, whereas the cell design
algorithms profit from such a restriction.

The rectangle constraint is also accepted for the cells, and for the entire chip.
Consequently, the floor plan will be a rectangle dissection, i.e. a rectangle subdivided
into nonoverlapping rectangles. Choosing rectangles as the only constructs in the
repertoire simplifies the formulation of design decisions, and lowers the complexity of
deriving these decisions.

-2-

Figure 1. Schematic flow chart of a silicon compiler

1.2 Design rules

To improve chances for successful integration of the circuit, and increase yield when the
circuit goes into production, patterns are required to satisfy cenain rules, the design rules.
Two classes of rules can be distinguished: numeric rules quantifying extensions of, and
spacings between patterns in a mask and in combinations of masks, and structural rules,
enforcing and prohibiting cenain combinations. The numeric rules are almost
exclusively specifications of lower bounds, because it is assumed that the layout design
techniques will try to keep the total chip small. The router has been designed to take

- 3 -

maximum advantage of these rules by compaction.

1.3 Data representation

The single most important consideration in designing complex systems is conceptual
integrity. An important aspect of this integrity is how to store the data of a design
between the various stages. It is, for instance for simulation purposes, necessary that the
results of the router are stored in way compatible with previous design stages.

The use of an open system concept means that a good routing program should be usable
for almost any routing task. The input should be formulated in general terms, devoid of
any irrelevant data. The open system concept makes flexible and extendable program
interface standards necessary. For the net list the lCD standard [14] was adopted, while
for the specification of masks the LDM standard [12] was used.

- 4 -

2. THE ROUTING SYSTEM

2.1 Design goals

One of the most time consuming tasks in manual layout design is the design of wiring.
The router is probably in any automatic layout design system the most time saving
program. The single most important design goal for this router was flexibility. The router
has to be able to deal with the following conditions:

- Building cells with arbitrary rectangular shapes, and with terminal positions
anywhere at the boundary.

- Routing on two layers, say poly and metal, with different design rules.

- Planar power and ground routing with variable width.

- 100% completion, under mild restrictions.
Of course the resulting layout is required to be correct by construction. The system is
allowed to move the cells to adapt the wiring space.

22 An overview

The system accepts a net list, a set of design rules and a layout file as input. The layout
file contains the layout of the chip without wiring. This enables the user to modify the
floor plan with an interactive layout editor. Also the positions of the terminals of the
cells are specified in the layout file. To complete the description of the chip, the output
of the wiring program is simply appended to this layout file.

As can be seen in Fig.2 the routing system consists of 3 programs named "entry",
"global" and "local". The programs are written in portable Pascal, and communicate
through files.

"Entry" parses the two input files, containing the layout description, and the net list.
Then a slicing structure is (re)constructed from the layout geometry by a shrink factor
technique. It writes two files: "florplan" contains the information about the floor plan
topology and geometry, "m0d2net" contains a list of terminals to be connected.

"Global" reads those files, and constructs a routing model of the floor plan. It finds for
each net the Steiner tree. The nets are decomposed into two terminal segments and
assigned to channels. These two terminal segments are stored in the file "channels".
Extra pins are introduced where the segments are connected together. These pins are
stored in the file "m0d2net.app".

"local" processes the channels in a bottom up order. The wires in each channel are
compacted before the next channel is routed. In contrast to [5] we used a more rigorous

- 5-

Figure 2. Overview of the routing system

compaction and a method of constructing the slicing structure. The layout of the channels
is stored in the file "layout.ldm".

- 6-

3. SLICING

To avoid channel routing order conflicts the topology of the floor plan is restricted to a
slicing structure [3]. A slicing structure is a rectangle dissected by a parallel slicing lines
into smaller rectangles. Each rectangle may in tum be dissected in the perpendicular
direction into still smaller rectangles. A slicing structure can be represented by a slicing
tree in which the leaves are the cells. The slicing structure can thus be seen as a
hierarchical structure of the design.

0.18
: 0.43 1.00

0.05
0.38 :0.30 , , , , , , , , , ,

B: C
- - - - -.f""1 - - t. - - - --___ c ___ , _ _ _ _ _ _ _ --~O-~-- __ 9~04 0.11

--T- -,-----------

- _____ - __ 1 0.68
'I-........ +-r-""=--'

1b-:::-::::-~-~-:f==f-~-.- - --! ... -:-~-, ,
0.06

, ,
- - - - - - -,- - + - -, , , ,

:A: ,+ ,
- - - -1- - + --

, , , ,
0.65 , , ,

--~----+-
, , , , , ,

, , , 0.15
--{)+- ----------

+ '

Figure 3. Floor plan scaled by the argest shrink value.

The slicing structure is constructed from the floor plan topology by subdividing the floor
plan repetitively by orthogonal straight slicing lines. The selection of the slicing lines is
determined by shrink factors. Let (Xi, Yi) be the center of cell i, with dimensions Wi, hi·
The shrink/actor ~ is a function of a pair of cells, and the slicing direction.

21x.n-xnl 21Yrn-Yn l
~x(m, n) = ~y(m, n) = h+hn

wrn+wn Urn

This shrink factor can be interpreted as a scale factor: when two cells are scaled by their
shrink factor, they will touch exactly if they are close enough in the other direction.

A vertical slicing line thaI subdivides a slice into two sets of cells M, N has a shrink
value Z.

- 7 -

Zx(M, N) = min ~x(m, n) Zy(M, N) = min ~y(m, n)
mEM, neN meM, neN

This is the maximum scale factor allowed to be able to draw the slicing line as a straight
line separating the two sets. The slicing line with the highest shrink value is selected for
the next subdivision. Mter the slicing line has been selected the process is repeated for
the subslices on each side. Notice that the set of possible slicing lines changes, and their
shrink values have to be recomputed.

In fig.3 a floor plan is drawn together with all possible first slicing lines. The
corresponding slicing tree is given in the figure below. The levels in the slicing tree
represent the alternating slicing directions.

Figure 4. Slicing tree.

Computing the shrink value of a slicing line separating n/2 from n/2 other modules would
cost n2/4 operations. Using the following algorithm it is possible to compute all shrink
values in only n2-3n+2 comparisons. The shrink values Z(1) to Z(n-l) belong to the
respective slicing lines. The cells are ordered by coordinate.

for i = 1 to n-1 do { Z (i) := 00 ; }

for i = 1 to n-1 do
{

}

for j := i+ 1 to n do (ZO) := min (Z(j), ~ (i, j)); }
Z(i) := 00;
for j := i+ 1 to n do (Z(i) := min (Z(i), ZQ)); }

Figure 5. Shrink value algorithm

Since the size of the cells is free, the cells will not fit exactly into the floor plan. The
surplus area may be used for wiring since the channel router can handle irregular
boundaries. After the channel assignment the channels are routed in a bottom up

- 8 -

sequence such that the the boundaries of the channel to be routed are known. A depth
first search through the slicing hierarchy routes the channels in the correct order. The
boundaries of the channel are detennined by collecting the bounding boxes of all
adjacent cells and channels. After the channel routing has been done, the width of the
channel is adjusted by shifting some cells. The program updates the coordinates of all
tenninals, cells and channels that are in the slicing hierarchy to one side of this channel.

-9-

4. CHANNEL ASSIGNMENT

For the channel assignment or global routing the method of [4] is used. The objective of
the channel assignment is to determine roughly the routes for the wires in a floor plan.
The main criterion for the wiring is the length of the wires: all wires are to be ~pt as
short as possible. The use of a slicing structure makes it easy to adapt the width of the
channels to match any requirement. Controlling the congestion is therefore not a very
important issue.

Channels are areas between the modules that can be used for wiring. The channels
correspond one to one to the slicing lines of the slicing structure. The global wiring
determines the channels that the wire uses. For each channel the wiring pattern is
recorded. Multi terminal wires in the channel will be decomposed into several two
terminal segments. Nets can be routed through porous modules to avoid detours.

The problem can be formulated as the problem of finding the shortest Steiner tree in a
graph, which is NP-hard. Therefore the channel assignment is done by a Steiner tree
heuristic. A new heuristic for solving the Steiner tree problem is presented, based on a
spanning tree algorithm and an algorithm for finding an optimal Steiner point for the 3
point case. This heuristic first determines the topology of the Steiner points, by using a
shortest spanning tree algorithm. Then it computes the optimal Steiner tree with this
topology.

4.1 Routing model

Because of the insignificance of channel density the global routing runs with a
background of constant data structures. The distances in the routing model are not
changed after a net has been routed. The sequence in which the net are routed is
irrelevant.

The incidences between the horizontal and vertical channels are the T-junctions. The
routing model that is used is a graph Gev, E) of which the vertices V correspond to the
T-junctions. Nodes that are adjacent in the channel are connected by an edge. The
length of the edges is derived from the input information containing the shapes of the
modules.

The tenninals to be connected are added to the graph as temporary nodes during the
processing of one net. In fig.6 their temporary edges are indicated by dashed lines. Pins
occur only at one side of the module and only get the edges that lead to the closest T
junctions on that side. The length of these edges represents as closely as possible the
actual Minkowski-l distance.

The modules may have multiple terminals on their periphery that connect to the same
net. In that case a node is added to the graph for every terminal. If the names of those
pins compare equal it is assumed that those terminals are internally connected and that

o , , , , , , , ,
" " , , , ,

- 10-

" " .. , ,

Figure 6. Graph used as global routing model.

only one of them actually needs to be reached. When the names are unequal both
terminals will be reached.

10 the routing model the nodes corresponding to those terminals are connected by an
extra edge of minimum length. The global routing algorithm may use such a connection
as a feed thru. This can be controlled by manipulating the length of the edges of the
terminal nodes.

The T-junctions are stored in the matrix "Tjunc" of horizontal channels versus vertical
channels. If two channels meet in a T-junction the number of this T-junction is stored
there, otherwise O. The channels in this array are ordered by coordinate, giving a
symbolic picture of the floor plan. Unordered this array is only dependent on the
topology of the floor plan. From this matrix information such as which T -junctions
belong to the same channel, neighbor relations between T-junctions, etc. can be derived.

1 2 3 0 4
0 0 5 6 7
8 9 0 0 0
0 0 11 12 13
14 0 15 0 16

Figure 7. The channel incidence matrix Tjunc

- 11 -

For algorithmic efficiency it is necessary that the neighbors of a node can be found
easily. Therefore the graph is represented as a node list, with each node having
references to neighboring nodes. This means that each edge is present twice in the data
structure. The distances between neighboring nodes or T -junctions are derived from the
matrix Tjunc and the floor plan. To make the translation from this model back to the
floor plan possible each node can represent a terminal in the net list. The pins
corresponding with the T -junctions are created when they are needed.

This node list is the data structure that the Steiner tree heuristic runs on. In this way the
algorithm for finding a Steiner tree is disconnected from the original problem.

The result of the global wiring is represented as a set of two terminal nets assigned to the
channels that contain them. A nice property of these two terminal nets is are immune to
changes in the geometry of the floor plan. Any changes in the sizes of the floor plan
would not lead to disconnected nets.

42 Heuristic/or finding the Steiner tree.

Two polynomial time algorithms exist that are commonly used in Steiner tree algorithms.
They are the shortest spanning tree algorithm and the algorithm for the three point
Steiner tree problem. Most existing methods for finding Steiner trees, exact and
heuristic, are based on one of these algorithms. The presented heuristic use& both
algorithms in two stages. First it determines the topology of the wire and then the
optimal Steiner points for this topology. Even if the topology is not optimal then the
shortest wire with this topology may still be close to the optimum.

An algorithm that finds the spanning tree determines the topology. From the spanning
tree a binary tree is constructed that "matches" the spanning tree. The optimal spanning
tree is found in O(n2) time. The shortest spanning tree cannot be longer then twice the
length of the shortest Steiner tree.

The topology is represented as a binary tree. The leaves and the root of the tree represent
the modules connected by the wire. The tree has (n-2) internal nodes corresponding to
the possible Steiner points. The Steiner points can in the final result coincide with
another node, giving a tree with fewer Steiner points.

For the second stage it is immaterial how this topology was found. The algorithm finds
the optimum Steiner points for this topology in O(n2 s) time, where n is the number of
nodes in the graph and s is the number of modules to be connected. If the topology found
in the first stage is the right topology then the result is the optimum Steiner tree. If it is
not then still the shortest tree with this topology is found, which is usually not much
longer than the optimum.

The second stage consists of two recursive depth first search procedures that follow the
tree. The first one determines the length of all subtrees connecting to any node. From

- 12-

the infonnation provided by this procedure the length of the tree is detennined. It takes
advantage of the planarity of the routing graph to improve the computational efficiency.
The second procedure traces back the shortest result in this tree, while choosing the
Steiner points. During this phase the wire is split in several two terminal segments.

4.3 Power and ground net routing

The power and ground nets are routed planarly by following the slicing structure. The
power nets stay to the upper/left side of the channels, and must have a bonding pad in the
lower right corner of the chip. The ground nets stay to the lower/right side, and must
have a pad in the upper left corner. The width of the power and ground wires is
determined automatically.

- 13-

5. LOCAL ROUTING

Each two terminal segment is realized by a horizontal piece called trunk and two vertical
pieces called the branches. The vertical branches bring the wire into the channel. The
horizontal trunk connects the branches together.

Because the terminals are not restricted to grid positions, a branch may have more than
one opposite branch. Therefore gridless channel routing introduces more vertical
constraints. A problem is that there may be cycles in the vertical constraint graph. In [6] a
simple but less conventional approach was used, which guarantees that there will be no
cycles.

5.1 Classification

In the approach of [6] the two terminal segments are divided into five classes, indicated
by the letters A through E. Branches and trunks are realized in both layers. Fig.8
illustrates the different classes. The bottom layer is realized in polysilicon, the top layer
is realized in metal.

I ~ I
Ground iii

II d""A

c"", D

cl E

C1=B

Powe'

--'!I!

I •••• I

Figure 8. Different classes of two terminal segments.

Class C segments, that have terminals in exactly opposite positions of the channel, are
handled as class E or D segments. The power and ground lines are routed at the top and
bottom of the channel. In [6] the branches at the top of the channel use another layer than .
the branches at the bottom. However, to be able to connect to power and ground on the
metal layer it is unavoidable that the branches connect to the sides of the cells on the
polysilicon layer. Therefore the classes D and E use an extra via hole to change layer.

The segments will be ordered from the bottom of the channel to the top of the channel.
The classes can be ordered in the sequence B - E - D - A. Within the classes A and B
there are no vertical constraints, and any order is possible. Within class D the segments
can always be ordered on the position of the bottom terminal from right to left. The

- 14-

segments of class E can be ordered from left to right on the position of the top terminal.
This always constitutes a valid order, in which the vertical constraints are satisfied.

A practical problem turns out to be that the vertical constraints in the classes E and D
tend to form very long chains. This causes trunk ordering algorithms similar to [1] to
become ineffective. It is necessary to use jogs to reduce the channel width. The number
of vias is reduced by changing some branches or trunks to the other layer.

52 Compaction

The rigorous compaction method used introduces jogs anywhere where this is
advantageous (see [2]). It also takes maximum advantage of the design rules. It uses
different rules on different layers, in stead of deriving a track pitch.

The compaction is done by maintaining two contours, one for each layer, that indicate
the area occupied by previous trunks. A contour C is defined as a set of intervals [I,r]
with an associated value t: Cc ((I, r, t)e R3 I l<r). The functional value of a contour C
is defined as

fC<x) = max (t I (I, r, t)e C 1\ 1~5I)

All points (x, y) for which fC<x»y are occupied and not available for routing.

Only the trunks and their vias are considered during the compaction; the branches are
added once the layout for the trunks is determined. Trunks are processed one by one in
the order that is determined by their class. The next trunk, with its associated vias, is
placed against this contour, thereby using a minimum of space. The space used by this
trunk and its vias is determined by the width ro of the trunk and the design rules, and is
represented by the contour D. The set D has an interval for each new rectimgle,
representing the area occupied by that rectangle, plus its minimum separation design
rule. The contour C is initialized with the shape of the channel boundary. When
processing the next trunk, the area occupied by the present and previous trunks is
described by C:=CuD.

An irredundant contour I is a contour with non-overlapping intervals. Also, the intervals
of an irredundant contour are ordered: Ie {(Ii, ri, ti) e R3 I li<ri" riSli+! }. A trunk
can be generated straightforwardly from an irredundant contour: within the span of the
trunk a rectangle is placed against each interval, and at each vertical slope between the
subsequent intervals. Of course, the intervals in I should cover the whole span of the
trunk. The vias are also placed against the contour.

After the new intervals D have been added to the contour C, it is no longer irredundant.
To create a new irredundant contour an O(n log n) recursive algorithm, similar to
mergesort, is used. It is based on a linear time algorithm to merge two irredundant
contours J and K Merging is defined as determining an irredundant contour I with the
same functional value as the union of J and 1(;

- 15 -

fr(x) = max (fJ(x), fK(X)) = fJvK(X)

Because each interval can cut another interval in two, the number of intervals in I is
maximally 2(#Jt#K)-1. Each interval in I can be covered by at most one interval in J
and one interval in K Since the intervals of J and K are ordered, the intervals of I can be
generated by linearly traversing J and K A redundant contour C containing n intervals
is split up in n single interval contours. Obviously a contour containing only one interval
is irredundant. At each stage contours are merged pairwise, so there are O(log n) stages.
Since the result of merging contours J and K may be a contour with 2#(.A.JK)-1
intervals it seems that the number of intervals doubles in each stage. However, it is clear
that there cannot be more than 2n-1 intervals in 1. Therefore at each stage the amount of
work is O(n) and the algorithm is O(n log n). A more straightforward implementation,
that first determines the intervals of I, and then for each interval its value t, may need up
to n2 comparisons.

Figure 9. Routing after compaction phase.

53 Wire Straightening

As can be seen in fig.9 not all jogs that are generated this way are necessary to reduce the
channel width. Each jog is a small reliability hazard due to electro migration. Also many
jogs mean many rectangles in the layout. Wire straightening therefore increases the
reliability of the chip and decreases the amount of disk space needed to store the result.

Two passes are needed to get rid of unnecessary jogs. The first compaction phase is
described in the previous section. In this pass the width of the channel and the space
available for each trunk is determined. All irredundant contours are saved, such that it is
known exactly what area can be used for each trunk. In the second pass the actual mask
generation is done. The trunks are processed in reverse order and the saved contours are
mirrored. Each time the mask data for a trunk is generated there are two contours. The

- 16-

bottom contour C indicates the area that is occupied by previous trunks. The contour U,
which was saved during the first phase, indicates the area that is needed for the following
trunks. The present trunk will be realized between those contours. To generate a trunk
with a minimum number of jogs, the contour C will be replaced by a new straightened
contour S, with a minimum number of intervals:

fc(x) ~ fs(x) ~ fU<x) /\ #S is minimum

--Ill___ L~ _____ _

(
span of trunk

)

Figure 10. Straightening algorithm.

The contours C and U are irredundant The straightening algorithm starts at the left side
of the span, and works its way to the right. While going to the right, it generates
intervals, trying to make each interval (I, r, t) as long as possible. For this purpose two
bounds are maintained: /3 ~ t ~ 'to

/3 = max {y I (Xl ,x2,y)e C /\ Xl <r /\ X2>/)

't = min {y-Ol I (Xl ,X2,y)e U /\ XI-Ol<r /\ X2-Ol>I/\ <Xl, X2> II span '" 0)

The interval is extended by selecting the largest r for which /3 ~ 'to The interval is added
to S:= S u { (I, r, /3) }, and a new interval, with I:=r, is started. The resulting contour S
is irredundant. It is easy to see that this process will give us the minimum number of
intervals. The only possibility would be to begin the next interval earlier. But, when
passing the old breakpoint, the freedom in choosing t, limited by /3 and 't, cannot be
larger. Therefore the next interval may have to be shorter than it could have been.

- 17 -

Figure 11. Routing after straightening phase.

- 18 -

6. EXPERIMENTAL RESULTS

A small number of experiments have been done using this router on two randomly
generated channels and Deutsch's difficult example. We used Mead & Conway design
rules for this experiment. Since our router does not have the concept of tracks it is only
possible to compare the width of the channel in larnbda's. The terminal positions were on
a grid and the channel sides were straight. The pitch of the terminals is indicated over the·
columns, also in larnbda's. For comparison the last column is added which gives the
density of the channel times 6. This could be the performance of a good track based
router.

Performance for three Channels

gridless router track router
example terminal pitch track pitch

5 6 7 8 10 6

random 1 128 120 118 108 106 132
randorn2 82 68 68 68 68 84
Deutsch 144 116 110 110 104 114

It can be seen that the width of the channel decreases as the pitch of the terminals
increases. The results for Deutsch's Difficult Exarnple are almost as good as those of a
good track based router, and for random exarnples even better. In most practical floor
plans the terminal density is much lower, and compaction is more rewarding than track
assignment techniques.

The result of the routing system applied to a small chip is shown in fig.12. The chip
contains 35 cells, including bonding pads, and 75 nets, including power and ground nets.
The prograrn required 37 seconds on an IBM PC! AT to perform the global wiring, and 72
seconds for channel routing. 15 seconds were used for parsing input files and
constructing the slicing structure. The result contains 899 rectangles and 308 vias in 38
channels of which 16 are empty.

The routing system also has been applied to standard cell designs. In fig.13 a nMOS
pluri cell macro is shown. It can clearly be seen that the power line width is adapted to
the needs of the circuit.

- 19-

Figure 12. Audio delay line chip

- 20-

Figure 13. nMOS Pluri cell style random logic macro

- 21 -

7. CONCLUSIONS

It can be guaranteed that the system generates a valid layout provided that the terminals
have sufficient spacing (it must be possible to place a via on each terminal). The use of
slicing structures and the classification of the trunks help to overcome two well known
problems. Many other systems that do not use these concepts cannot guarantee
completion. The compaction proves to be a very powerful tool, responsible for a number
of important features. It makes the router, as well as the wires (literally) more flexible.
The power of the compaction was used also to simplify the channel routing. The
concepts introduced make compact implementation of the routing system possible. It was
coded in Pascal and needs about 5000 lines.

In combination with more advanced channel routing algorithms the results may still be
better, although in real layout the terminals may be too sparse to be a significant
nuisance. Possible future enhancements of the system may include the use of an extra
routing layer. This would also mean that a more sophisticated way of determining the
topology of the wiring in the channel would be needed.

- 22 -
REFERENCES

[1]

[2]

Chen, H.H. and E.S. Kuh
~RIABLE-WIDTH GRIDIESS CHANNEL ROUTER.
In: Digest of Technical Papers 3rd IEEE Int. Conf. on Computer-Aided Design
(ICCAD-8S), Santa Clara, Cal., 18-21 Nov. 1985.
New York: IEEE, 1985. P. 304-306.

Deutsch, D. N.
COMPAcTED CHANNEL ROUTING.
In: Digest of Technical Papers 3rd IEEE Int. Conf. on Computer-Aided Design
(!CCAD-aS), Santa Clara, Cal., 18-21 Nov. 1985.
New York: IEEE, 1985. P. 223-225.

[3] Ginneken, L.P.P.? van and R.H.J.M. Otten
STEPW I SE LAYOUT REF I NEMENT. --
In: Proc. IEEE Int. Conf. on Computer Design: VLSI in Computers, Port Chester, N.Y.,
8-11 Oct. 1984.
New York: IEEE, 1984. P. 30-36.

[4] Ginneken, L.P.?P. van and R.H.J.M. Otten
GLOBAL WIRING FOR CUSTOM LAYOUT DESI~
In: Proc. 18th Int. Symp. on Circuits and Systems, Kyoto, 5-7 June 1985.
New York: IEEE, 1985. P. 207-208.

[5] Lauther, U.
CHANNEL ROUTING IN A GENERAL CELL ENVIRONMENT.

[6]

In: VLSI 85: VlSI Design of Digital Systems. Proc. IFIP Te 10/WG 10.5 Int. Conf.
on Very Large Scale Integration, Tokyo, 26-28 Aug. 1985. Ed. by E. ~.
Amsterdam: North-Holland, 1986. P. 393-403.

M. and E.S. Kuh
CHANNEL ROUiTNG.

In: Proc. 15th Int. Symp. on Circuits and Systems, Rome, 10-12 May 1982.
New York: IEEE, 1982. P. 764-767.

[7] Otten, R.H.J.M.
AIrDDMATIC FLOOR PLAN DESIGN.

[8]

[9]

In: Proc. 19th ACM IEEE Design Automation Conf., Las Vegas, Nev., 14-16 June 1982.
New York: IEEE, 1982. P. 261-267.

Rabbie, H. and J. Jacobson
~SS CHANNEL ROUTiNG AND COMPACTION FOR CELL-BASED CUSTOM IC LAYOUT.
In: Proc. 8th IEEE Custom Integrated Circuits Conf., Rochester, N.Y., 12-15 May 1986.
New York: IEEE, 1986. P. 297-299.

Wirth, N.
~AM DEVELOPMENT BY STEP-WISE REFINEMENT.
Commun. ACM, Vol. 14(1971), p. 221-227.

[10J Cinneken, L.P.P.P. van and J.A.C. Jess
GRiOLESS ROUTING FOR GENERAL FLOOR PLAN.

[11]

IEEE Int. Conf. on Computer-Aided Design (ICCAD-87), Santa Clara, Cal.,
9-12 Nov. 1987.

Uedorg' J. and S. de Graaf
HEr Ie SYSTEEM: Beginnershandleiding.
Internal Report. Laboratory of Network Theory, Faculty of Electrical Engineering,
Delft University of Technology, 14 Jan. 1983.

[12] Annevelink, J.
LDM: Syntax and semantic description.
Internal Report. Laboratory of Network Theory, Faculty of Electrical Engineering,
Delft University of Technology, 1983.

[13] Lodder, A. and M.T. van Stiphout, J.T.J. van Eijndhoven
~: Eindhoven SCHematic EdltoR reference manual.
Department of Electrical Engineering, Eindhoven University of Technology, 1986.
EUT Report 86-E-157

[14] Craaf, A.C. de and C.L. Janssen
~SAL FOR A NETWORK DESCRiPTION FORMAT IN THE lCD-SYSTEM.
In: The Integrated Circuit Design Book: Papers on VLSI Design Methodology from
the ICD-NELSIS Project. Ed. by P. Dewilde.
Delft University Press, 1986. P. 1.49-1.60.

- 23-

SUPPLEMENT: ROCOCO USER MANUAL

EINDHOVEN UNIVERSITY OF TECHNOLOGY
DEPT. OF ELECTRICAL ENGINEERING
AUTOMATIC SYSTEM DESIGN GROUP

9(OCOCO
ruser :Manua{

6y

L.P.P.P. van (jinne~n

P.O.Box 513, 5600MB Eindhoven, The Netherlands
tel: 31-40-473352

Eindhoven
September 1987

1. INVOCATION

2. INPUT FILES •
2.1 Technology File
2.2 LDM files • •
2.3 Network File •

3. INTERMEDIATE FILES
3.1 Florplan
3.2 M0d2Net •
3.3 Channels •

4. DIAGNOSTICS
4.1 Warnings
4.2 Errors • •
4.3 Bugs

5. IMPLEMENTATION NOTES

CONTENTS

LIST OF FIGURES

Figure 1. Example technology file in use at Eindhoven.

Figure 2. Example of LDM file •

Figure 3. Syntax diagrams of LDM

1

2
2
3

.7

8
8
8
9

10
10
10
13

16

3

5

6

- 1 -

1. INVOCATION

On a UNIX system the router can be invoked with

rococo [-vd -t<technology -o<output> 1 <layout> <net list>

The options are:

- v verbose: gives the full output listing of all phases. When This option is turned off
only the error messages are printed.

- d database: only the cells that are generated by the router are put into the output file.
This is useful when working with the leo data base. When this option is turned of
the program includes the standard library and the input file to generate a complete
chip layout.

- t technology: you can specify the technology file to be used. If omitted the default is
used. (Presently 6u nMOS)

- 0 output: the output file can be renamed using this option. When omitted the output
file will be output.ldm

To run the program you have to prepare a LDM file containing the whole chip design,
except for the wiring. Notice that also the bonding pads must be included. The power and
ground lines must have bonding pads in the upper right, and lower left comer. The
terminals of these bonding pads must be facing outward, up and down. The bonding pads
are modules in any other respect.

The net list file must contain all connections that you want to make. That is also clock
lines, power and ground lines, reset etc. must be explicitly present in the net list. The
input files must be files in the current directory!

-2-

2. INPUT FILES

2.1 TechMlogy File

The technology file controls the operation of the router. Tags may be specified in any
order, with exception of the LIBRARY tag, which must be last in the file. Unrecognized
tags are skipped as comments. The following tags are recognized:
FLEX

LmRARY

This tag specifies that the router is allowed to shift the block in the floor plan
to reduce the wasted space. If FLEX was not specified and router has to
create routing space, a warning message is generated.

This tag is followed by an LDM description of the standard components of
this technology. The router generates calls to the standard model rcontact,
which represents the contact between the two routing layers. Notice that the
origin of this model must be the lower left comer.

NAMES <floor plan> <chip> <ground> <power>
Specify the special names to be recognized. The <floor plan> name is the
name of the top model which contains the layout of the placement. The
resulting layout is put into a new top model with the name <chip>. <ground>
and <power> are the names of the special nets that are to be routed planarly.
Notice that these nets must have bonding pads in the upper right, and lower
left comer. They must have terminals that are facing outward, respectively up
and down. This tag is compUlsory.

NEED <real>
This is the power need in rnA per mm2 for the modules. It is used by the
global routing to determine the width of the power lines.

POLY <integer>

THRU

When the program has a choice of layers, the poly silicon layer is prefered if
the section is shorter than the specified value, and two via's can be
eliminated.

When specified, the program uses equivalent pins as feedthru's. Otherwise a
choice is made between the equivalent pins. Pins are equivalent if their
names are equal, or if they differ only in the last character, which must be a
capital.

WIRE <sep> <width> <hole> <bbx_sep> <name>
This tag should occur twice. It specifies the design rules and the names for
the routing layers. The first layer is the top, metal layer, the second the
polysilicon layer. The planar power and ground nets are placed in the first
layer. The design rules are:

- 3 -

<sep> is the minimum separation between unconnected rectangles in the
same layer.
<:width> is the minimum width of the boxes.
<hole> is the size of the contact hole in that layer.
<bblLsep> is the minimum separation to the bounding box.
<name> is the layer name used.

1* Technology for standard 6u nMOS process *f
WIRE 6 612 6 nm
WIRE 6 612 6 np
NAMES floor chip vdd vss
POLY 200
FLEX
THRU
NEEDS
/* library contains the standard components for this technology *f
LIBRARY
ms rcontact
box nm 0 12 0 12
box np 0 12 0 12
box nc 4 848
me
Figure 1. Example technology file in use at Eindhoven.

2.2 WMfiles

LDM is is simple layout description language that originates from Delft University [11, (*)
12]. It features hierarchy, module names, terminals with names and names for masks.
The layout is described by rectangles. Module instances can be rotated or mirrored.
Every new element is written on a separate line. This document describes an Eindhoven
local version. Additions are: instance names, surrounding boxes and names for
rectangles. Omissions are: wire and continuation statements, and array compound caIls.
All additions are indicated as being optionai. The additions can be used to describe the
interfaces of cells to programs. Furthermore, to facilitate upward compatibility with
possible future versions, lines that start with an unknown keyword are comments. For the
same reason also any text added to the end of a syntactically correct line is ignored. The
syntax is given in SBNF. Notice that { .. }+ means one or more times.

<layout> ::= { <module> }+ •
A layout consists of a set of modules. A module is declared before it can be

(*) The numbers in the braakets refer to referenaes on page 22 of the
preaeding main text of this report.

- 4 -

instantiated. Also recursion is not allowed.

<module> ::= <header> { <element> }+ <tail> <eol> .
Each module has a header, a non empty sequence of layout elements, and a
tail.

<header> ::= 'ms' <name> <eol> .
The name of the module is the template name.

<tail> ::= 'me' [<rectangle>] .
The tail contains optionally a specification of the surrounding box. The
surrounding box encloses all layout elements in the module.

<element> ::= <box> I <module-call> I <terminal> .
There are three kinds of layout elements:

<box> ::= 'box' <layer> <rectangle> [<name>] <eol> .
Boxes are the layout primitives. The boxes have an optional name. This name
may be used to indicate descendance.

<module-call> ::= 'me' <name> ['ms' I 'my'] ['r3' I 'r6' I 'r9']
<integer> <integer> [<name>] <eol> •
A module call is used to instantiate a template. The first name is the template
name. Then the coordinate at which the module is instantiated. The module
can be transformed on instantiation. Transformations are relative to the
coordinate specified. This coordinate is the origin (0, 0) of the module, not
the center! The transformations are:

mx = mirror in X axis
my = mirror in Y axis
r3 = rotate 90 degrees anti clock wise
r6 = rotate 180 degrees
r9 = rotate 90 degrees clock wise
The optional name is the instance name, which may be required to identify

the module uniquely.

<terminal> ::= 'term' <layer> <rectangle> <name> <eol> .
Terminals are used for outside connections, and will usually be on the edge
of the bounding box. Terminals are not layout, so they must overlap with
boxes. A wire that connects to two sides should have two separate terminals.

<rectangle> ::= <integer> <integer> <integer> <integer> .
The integers are respectively the left, right, lower and upper bound of the

-5-

rectangle.

<layer> :: = <name> •
Layer names are defined by the process. The layer names are not part of the
definition of LDM and depend on the technology.

<integer> ::= ['-'] { <digit}+.
Integers are as read by any decent program.

<name> ::= <letter> { '_' I <letter> I <digit> } •
Names follow the rules of normal identifiers. Case sensitive, but use only
lower case, please. Names may have a maximum of 8 characters.

<eo1> ::= { { <character> } '\n' }+
Lines are significant in this language, every line that does not start with a
known keyword is a comment. The lexical elements of LDM consist of .
sequences of characters that are separated by spaces or new-lines.

ms mosfet1
box ps 0 14 4 10
boxod4100 14
term psO 6 410 gate
term cd 4 10 0 2 source
term od 4101214 drain
me

ms usefets
me mosfet1 15 10 r3
me mosfet1 29 10 mx r9 fet2
me

Figure 2. Example of LDM file

Compatibility problems may arise because of omissions of the language, use of non
standard layer names, too long identifiers or identifiers with funny characters, and a
different interpretation of coordinate transformations. For coordinate transformations use
the -0 option when using c1dm.

-6-

Figure 3. Syntax diagrams of LDM

layout :

-d mOd~le 1))

module:

4 header)

Yelement

»~eoline~

header :

~ name H eoline ~

tail :

~ rectangle 1 f)1 eoline ~
)

element :

box

module-call

box:

~ layer H rectangle 1 1)1 name
.)

module-call

name integer

name

eoline

- 6a -

terminal :

~ layer H rectangle H name H eoline ~

rectangle :

4 integer H integer H integer H integer ~

layer

4 name ~

integer :

name

letter

f() I digit
(

))

eoline :

r. > ~()o/J
Y~haracter ~

-7 -

2.3 Network File

This is a description of the net work file used by the routing program. It is a simplified
version of the ICD network data base [14], as generated by escher [13]. The file defined
by the network description format is a sequential ASCIl-file containing only printable
characters, tabs and new-lines. The file consists of one or more records, which are
variable length lines.

<network-file> ::= <record> (<NEWLINE> <record> 1 .

Each record consists of 3 fields. Fields are separated by white space.

<record> ::= <field> (<separator> <field>) .
<separator> ::= (<BLANK> I <TAB» (<BLANK> I <TAB>) .

The network file gives the specification of the interconnection of the terminals of the
. instances. One record is meant to specify one terminal. All terminals with the same net

name are connected to each other. The names of the terminals and the instances must
occur in the layout file.

A record contains the fields:
<net> <instance> <terminal>
<net> ::= <String> . net description consisting of a nemame.
<instance> ::= <String> . origin name of the terminal.
<terminal> ::= <String> . terminal name.

- 8 -

3. INTERMEDIATE FILES

The router consists of three passes that communicate with each other by means of files.
This is a description of the format of these intermediate files.

3.1 Flarplan

This file is written by the entry pass, and read by the global and local pass. It contains a
record for each module, each channel and each slice (all nodes in the slicing tree). Each
record has the following format:

<linenr> number of the slice, increases from 1 by 1

<primogenitive> structure of the slicing tree, link to first subslice
<nextsibling> link to the next slice.

These field contain the neighbor relations For modules the references are absolute in the
coordinate system, but for channels they are relative. For channels only the topjc and
botjc are filled in.
<topjc> Points to channel to the top of this module (higher y)
<botjc> Points to channel to the bottom of this module (lower y)
<leftjc> Points to channel to the left (lower x)
<rightjc> Points to channel to the right (higher x)

Geometry of the floor plan.
<coordx> X coordinate of lower left corner of bounding box.
<coordy> Y coordinate of 11 " II " II "

<sizex> Width of bounding box.
<sizey> Height of bounding box.
<offsetx> offset of bounding box relative to origin of LDM desc .
<offsety>

<orient>
<level>
<name>

32 Mad2Net

..

orientation 0 .. 7
level in slicing tree, negative means channel.
name of the module or channel.

This file is for specifying terminals of modules and channels. Two files are generated
with this format: m0d2ne! and m0d2net.app. The first one is generated by the entry, and

-9-

read by the sub- sequent passes. It contains the terminals of the modules. The second one
is generated by the global routing and contains the terminals that interface the channels
to each other. The format of each record is as follows:

<netnr>
<same>
<cside>
<alt>
<left>
<right>
<layer>
<name>

The number of the net that the pin is connected to.
Points to the next equivalent pin, (linked in a circular list.)
Side of the pin, absolute modules, but relative for channels.
height (y coordinate) of the pin relative to the channel.
left x coordinate
right x coordinate
layer of the pin, 1 or 2.
name of the pin.

The records are grouped together. Each group starts with the number of the module or
slice that they belong to. This number is given on a separate line. Each group is
terminated by an empty line.

33 Channels

This file specifies the two terminal segments in each channel. The records are grouped
by channel, as in the m0d2net.app file. Each record contains the following fields:

<frompn>
<topn>
<netnr>
<width>

the two pins to be connected.

the netnumber.
the width of this wire segment; when smaller than
the minimum design, the design rule is maintained.

- 10-

4. DIAGNOSTICS

The program prints diagnostic messages in the following fannat:

{ <name> I ,****, <mesg-Jdnd> ['in line' <nnn>] ':' <message> .

The <name>s may be names of nets, modules or pins that are refered to in the error
message. <mesg-kind> can be Warning, Error or Bug. When the program is parsing a file
while the error occurs, the line number is given.

4.1 Warnings

Warnings are intended to warn the user that the results are not necessarily what he or she
intended, or to make him or her aware of certain peculiarities of the input.

Channel width extended.
The width of a channel had to be extended to accommodate the wires, but
FLEX was not specified in the technology file.

Net nnn has only one module.
A net with only one module was encountered. This net will not be routed.

Empty net.
An empty net was skipped.

4.2 Errors

Errors are usually due to syntactic or semantic errors in the input, or due to memory
limitations. The user should correct the input, or in the case of memory limitations
recompile the program with larger array dimensions.

Invalid integer.
An integer was expected, but could not be read. The syntax for integers is [
'-'] { <digit> 1+ . Notice that there must be a space or an end-of-line on
either side of the integer.

Invalid design rule.
A zero or negative value was specified in a WIRE tag in the technology file.

-11 -

WIRE tag missing in tech file.
Two WIRE tags, one for each layer, must be specified in the technology file.
Each tags should be followed by respectively the width, separation, size of
the contact, the separation from the modules, and the layer name.

NAMES tag missing in tech file.
A names tag must be specified in the technology file. The tag must be
followed by the floor plan name, the name of the output module and the
power and ground names.

Boxes in floor plan layout.
In the floor plan of the chip only module call may occur.

Terminals in floor plan.
In the floor plan of the chip only module calls may occur. It is presently not
possible to specify terminals to the outside of the floor plan.

Unknown terminal layer.
A terminal was specified in an unknown layer.

Call of an undeclared module.
Modules must be declared before used.

Unknown rotation mnemonic.
Allowed rotation mnemonics are r3, r6 and 19.

Module name must be unique.
A module was used twice in the floor plan. If you want to use the same
module twice, you must make a copy under another name.

Too many modules in /loorplan.
The program ran out of memory space to store the modules. Use less modules
or recompile the program with more space.

Model start expected.
An 'ms' was expected but something else was encountered. boxes, calls and
terminals may only be specified within a module.

Too many models defined.
Too many modules were defined, and the program ran out of space to store
them. Remove unused models, or remove models that do not occur in the
ftoorplan.

- 12-

Nested models not allowed.
An 'ms' was encountered before a closing 'me' was encounteted. Model
definitions cannot be nested, so end the previous definition before starting the
next.

Terminal outside bounding box.
A terminal was found outside the bounding box.

Terminals are too close.
Two terminals are so close that a valid routing cannot be guaranteed. Move
the terminals further apan.

Floor plan must be last.
The last definition in the input ldm file must be the floor plan.

Terminal too narrow.
The terminal is narrower than the design rules in the technology file allow.

Too many terminals defined •
. More terminals were defined than the program could store. Use less terminals

by removing all unused terminals or recompile the program with a larger
Ldim.

Unknown module.
A module is refered to that was not declared.

Number of nets exceeds limit.
More different nets were used than the program can handle. Use less nets or
recompile the program with a larger Ndim.

Signal pins must be poly.
Signal pins must be in the second (usually polysilicon) layer.

Supply terminal at wrong side.
No power or ground supply terminal was found at the correct side !If the
module. Only a terminal at the wrong side was found. Power and ground
terminals can only be reached from one side.

Terminal not found in layout.
A terminal name was encountered in the net list, but could not be found in the
layout.

• 13·

Degree too large.

4.3 Bugs

The degree of a node in the routing graph has become too large. This may be
a bug, or else recompiling with a larger maximum degree should help.

These messages should never occur, and since they cannot occur in principle, it is hard to
pin point their cause if they do. In general one can say that the bug need not be where
the message is generated. A possible cause is that the intermediate files that the several
programs use are corrupted or inconsistent. Please talk to your system administrator or
contact

Negative distance.

L.P.P.P. van Ginneken
Vakgroep ES, Dept. of EE
Eindhoven Univ. of Technology
P.O.Box 513
5600 MB Eindhoven
The Netherlands

tel: 31·40·473352
bitnet: elesluka at heithe5

in NewEdge (global): tries to create edge in routing graph with negative
distance.

in buildnodejc.
in BuildNodejc (global): Nodejc is inconsistent with Index.

Nodes not in same channel.
in Connect (global): nodes that are linked with an edge were notin the same
channel.

Heap exhausted.
in GetHeap (global): tries to get a node from the heap, but no node is left.

Mod2Net ran out of space.
in CreatePin (global): tried to create a pin, but no space was left in M0d2Net.
Increasing Lmax may help.

Not a valid node.

- 14-

in GivePin (global): this node is not in the gtaph.

while Removing killed pins.
in RemoveKilled (global): only one pin of this net is left, so to what should·
this pin be connected?

while Making set.
in MakeSet (global): not all two tenninal segments connected to the same
pin carry the same netnumber.

internal references <> 1.
in Checking (global): internal references should be 1 after WireStraight.

external references are O.
in Checking (global): externally unreferenced pins should have been killed
by WireStraight.

reference to killed pin.
in Checking (global): two terminal segment refering to killed pin was found.
This means a bug in WireStraight.

Quick sort, ermo = n.
in QuickSort (local): sorting did not work properly.

Short Circuit.
in ChangeLayer (local): a short circuit was detected while changing layers.

Incorrect input data errno=n.
in chk (local): a pin was found to be on the wrong side of the channel
boundary.

Terminal checking, errno=n.
in TennCheck (local): not all terminals were inside the modules.

Wrong tside.
in FixTerminals (local): a channel can only have terminals at the north/south
ends.

Routing order conflict.
in MakeBoundaries (local): levels are inconsistent with neighbors.

lIIegal transform.

- 15 -

in MakeRootBlock (local): transform must have a value in 0 .. 7

Boundaries in wrong sequence.
in add (include): x coordinates of interval added to contour are in descending
order.

Contour has overlapping block.
in check (include): contour must be irredundant. This is an error in the
compaction phase.

Bug in merge.
in merge (include): this case cannot occur if all previous conditions are
correct.

Bug n in Straight.
in straight (include): there was no area left to create the wire. This message
can have many, many different causes. Maybe the error was caused by a
mistake with design rules, contours, contacthole positions etc. Almost all
subtle mistakes cause this error to occur.

- 16-

S.IMPLEMENTATIONNOTES

The program is designed to be as portable as possible. Only standard Pascal features were
used, and a few extensions that are shared by many implementations. It proved to be
possible to solve almost all out problems using only standard Pascal. To make this
possible it was necessary to create an interface for reading files in entry.

The main thing that could not be done in a uniform way was giving names to files. This is
done by the procedure NameFiles. For each implementation a separate procedure is
given. The correct one can be selected by removing the comment brackets (* *). In this
section also other non standard features can be put, like include files, compiler options, or
non standard functions.

It was necessary to abstain from dividing the program into modules that can be linked,
because this differently solved in various Pascal implementation. To create the advantage
of separate compilation the system was implemented as three programs. This also has the
advantage of being able to inspect the data at the interfaces of the programs. Also the
three programs work like three overlays, thus saving memory usage.

Each program contains a number of constants, which can be increased, if larger routing
problems are to be processed. These are the constants that the user may want to change:

constant

tokenlen
Brnax
Cmax
Emax
Fmax
Jmax
Kmax
Lmax

Mmax
Nmax
Omax
Pmax
Qmax
Smax
Tmax
Ymax

maximum number of dependency

characters in a name >=8
branches in one channel >= Tmax
contacts to the sides of one channel. >= Tmax
edges to a routing node should be > 6
slices = 3 * Mmax
junction cells = Mmax + 3
nodes in routing graph > 2 * Mmax
terminals » 2 * Nmax
should in global and local be approx. double
modules depends on problem size
nets »Mmax (depends)
objects > Mmax
power/ground pins in one channel > 10
pins in one net
two term seg in one channel
trunks in one channel
layers

> 10
-Nmax

>Smax
2

Eindhoven Universit of Technolo Research Re arts
aculty of lectrical nglneerlng

(I6:!) Meer, A.C.P. van
TMS32Q10 EVALUAT10N MODULE CON7ROLLER.
EUT Report 86-E-162. 1986. ISBN 90-6144-162-5

(161) Stok, L. and R. van deL Born. G.L.J.~. ~

HIGHER LEVELS OF A SILICON COMPILER.
EUT Report 86-E-163. 1986. ISBN 90-6144-163-3

(164) Enge1shoven, R.J. van and J.F.M. Theeuwen
GENERATING LAYOUTS FOR RANDOM LOGIC: Cell generation schemes.
EUT Report 86-E-164. 1986. ISB~ 90-6144-164-1

(165) Lippens. P.E.R. and A.G.J. Slenter
GAOL: A Gate Array Description Language.
EUT Report 87-E-165. 1987. ISBN 90-6144-165-X

(166) Die1en, M. and J.F.M. Theeuwen
~IMAL CMOS STRUCTURE FOR THE DESIGN OF A CELL LIBRARY.
EUT Report 87-E-166. 1987. ISBN 90-6144-166-8

(167) Oerlemans, C.A.M. and J.F.M. Theeuwen
ESKISS: A program for optimal state assignment.
EUT Report 87-E-167. 1987. ISBN 90-6144-167-6

(l(8) Linnartz, J.P.M.G.
SPATIAL DISTRIBUTION OF TRAFFIC IN A CELLULAR MOBILE DATA NETWORK.
EUT Report 87-E-168. 1987. ISBN 90-6144-168-4

(169) Vinck, A.J. and Pineda de Gyvez, K.A. Post

ISSN 0167-9708
Coden: TEUEDE

IMPLEMENTATION AND EVALUATION OF A COMBINED TEST-ERROR CORRECTION PROCEOURE FOR MEMORIES WITH DEFECTS.
EUT Report 87-E-169. 1987. ISBN 90-6144-169-2

(170) Hou Yibin
DASM: A tool for decomposition and analysis of sequential machines.
EUT Report 87-E-170. 1987. ISBN 90-6144-170-6

(171) Monnee, P. and M.H.-A.J. Herben
MULTIPLE-BEAM GROUNDSTAT~FLECTOR ANTENNA SYSTEM: A preliminary study.
EUT Report 87-E-171. 1987. ISBN 90-6144-171-4

(172) Bastiaans, M.J. and A.H.M. Akkermans
ERROR REDUCTION IN TWO-DIMENSIONAL PULSE-AREA MODULATION, WITH APPLICATION TO COMPUTER-GENERATED
TRANSPARENCIES.
EUT Report 87-E-172. 1987. ISBN 90-6144-172-2

(173) Zhu YU-Cai
~~ BOUND OF THE MODEL~NG ERRORS OF BLACK-BOX TRANSFER FUNCTION ESTIMATES.
EUT Report 87-E-173. 1987. ISBN 90-6144-173-0

(174) 8erkelaar, M.R.C.M. and J.F.M. Theeuwen
TECHNOLOGY MAPPING FROM BOOLEAN EXPRESSIONS TO STANDARD CET .. LS.
1::U.' Rep..>.rt (::-£-174. 1987. ISBN 90-6144-174-9

(175) Janssen, P.R.M.
FURTHER RESULTS ON THE McMILLAN DEGREE AND THE KRONECKER INDICES OF ARMA MODELS.
EUT Report 87-E-175. 1987. ISBN 90-6144-175-7

(176) ~, P.H.M. and P. ~, T. S~derstr5m, P. Eykhoff
MODEL STRUCTURE SELECTION FOR MULTIVARIABLE SYSTEMS BY CROSS-VALIDATION METHODS.
EllT Report 87-E-176. 1987. ISBN 90-6144-176-5

(177) Stp.fanov, B. and A. Veefkind, L. Zarkova
ARCS IN CESIUM SEEDED NOBLE GASES~ING FROM A MAGNETICALLY INDUCED ELECTRIC FIELD.
El)'r Report 87-E-177. 19B7. ISBN 90-6144-177

(178) Janssen, P.H.M. and P. Stoica
~EXPECTATION OF THE PRODUCT OF FOUR MATRIX-VALUED GAUSSIAN RANDOM VARIABLES.
EUT Report 87-E-178. 1987. ISBN 90-6144-178-1

(179) Lieshout, G.J.P. van and L.P.P.P. van Ginneken
GM: A gate matrix layout generator.
EUT Report 87-E-179. 1987. ISBN 90-6144-179-X

(180) Ginneken, L.P.P.p. van

(l81)

GRIDLESS ROUTING FOR GENERALIZED CELL ASSEMBLIES: Report and user manual.
EUT Report 87-E-180. 1987. ISBN 90-6144-180-3

Bollen, M.H.J. and P.T.M. Vaessen
FREQUENCY SPECTRA FOR A[)MI~AND VOLTAGE TRANSFERS
~UT Report 87-E-181. 1987. ISBN 90-6144-181-1

MEASURED ON A THREE-PHASE POWER TRANSFORMER.

	Preface
	Contents
	List of figures
	1. Layout design in a silicon compiler
	1.1 The output: a layout
	1.2 Design rules
	1.3 Data representation
	2. The routing system
	2.1 Design goals
	2.2 An overview
	3. Slicing
	4. Channel assignment
	4.1 Routing model
	4.2 Heuristic for finding the Steiner tree
	4.3 Power and ground net routing
	5. Local routing
	5.1 Classification
	5.2 Compaction
	5.3 Wire straightening
	6. Experimental results
	7. Conclusions
	References
	Rococo : user manual
	Contents
	1. Invocation
	2. Input files
	2.1 Technology files
	2.2 LDM files
	2.3 Network file
	3. Intermediate files
	3.1 Florplan
	3.2 Mod2Net
	3.3 Channels
	4. Diagnostics
	4.1 Warnings
	4.2 Errors
	4.3 Bugs
	5. Implementations

