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PREFACE 

The work published in this report builds on the research of Ralph Otten in the area of 
layout design performed at Eindhoven University and IBM Yorktown during the early 
eighties. Together we presented the philosophy of his approach at the ICCD 84 
conference in a paper called "Stepwise Layout Refinement" [3]. 

Stepwise refinement is a technique that has been shown to be effective in the 
development of computer programs. Niklaus Wirth formulated it explicitly in a now 
famous paper [9]. In this paper he viewed the design of a structured program as a 
sequence of refinement steps. Starting with clear problem statement, specifying the 
relation between the input and the output data, the task is progressively refined, by 
decomposing it into subtasks, each having an equally clear specification. 

The principles of stepwise refinement obviously apply to any complex design task 
following a top down strategy rather than a process of combining independently 
developed subdesigns. Stepwise refinement can also be viewed as postponing 
implementation decisions. Each decision should leave enough freedom to following 
stages to satisfy the constraints it created, and at the same time rearrange the available 
data such that further meaningful decisions can be taken. 

Presently I'm working towards an integrated floor planning and cell generation system 
according to these ideas. This routing program would be the last program in the sequence 
of designing programs. Some of this work was published before in [4] and some of it 
will be published in [10] at the ICCAD conference in Santa Clara. 

I would especially like to thank Ralph Otten, whose ideas I found to be very valuable and 
inspiring, for introducing me into this area. Also I would like to thank Reinier van den 
Born for his patience in helping me formatting this manuscript. This work was supported 
by ESPRIT project 991, and by the Foundation F.O.M. under project nr. EEL 33.0417 

Lukas van Ginneken 

Eindhoven, 21 August 1987 
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1. LAYOUT DESIGN IN A SILICON COMPILER 

Modern Integrated Circuit technology permits the design and production of increasingly 
complex circuits at low cost Large designs typically contain hundreds of thousands of 
transistors, and designs of more than one million devices are already possible. This 
enormous increase in scale creates a design problem: design cost and design time exceed 
production cost and time. 

To cope with these problems silicon compilers are being developed. A silicon compiler 
is a program that translates a functional specification of an integrated circuit into a layout 
design. Fig.1 gives a schematic flow diagram of a silicon compiler. 

The silicon compiler accepts a functional description of the chip in formulated as an 
algorithm. The data flow optimization makes a mapping of this algorithm to the 
necessary hardware. This hardware can be optimized by logic optimization tools. Then 
cells are then generated and placed. The router has to connect the various cells together. 

Since it is not possible to fit all designs into a single methodology it necessary to use an 
open system concept. This means that certain programs can be used independently, and 
that a reconfiguration of programs must be possible. 

1.1 The output: a layout 

The ultimate task of a layout design system is to produce a layout, a set of data that 
uniquely and completely specifies the geometry of the circuit. The term mask will be 
used for each plane with a pattern. A layout is translated into a sequence of processes that 
selectively change the characteristics of the silicon according to those patterns, thus 
realizing the functional specification available as input to the layout design procedures. 
For present day technologies the geometrical specification of eight to fifteen masks 
suffices to specify the layout. 

Lithographic techniques have their limitations. Quite often only orthogonal artwork is 
acceptable. This leads to regions that are unions of iso-oriented rectangles. Rarely is a 
restriction to rectangles and combinations thereof detrimental, whereas the cell design 
algorithms profit from such a restriction. 

The rectangle constraint is also accepted for the cells, and for the entire chip. 
Consequently, the floor plan will be a rectangle dissection, i.e. a rectangle subdivided 
into nonoverlapping rectangles. Choosing rectangles as the only constructs in the 
repertoire simplifies the formulation of design decisions, and lowers the complexity of 
deriving these decisions. 
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Figure 1. Schematic flow chart of a silicon compiler 

1.2 Design rules 

To improve chances for successful integration of the circuit, and increase yield when the 
circuit goes into production, patterns are required to satisfy cenain rules, the design rules. 
Two classes of rules can be distinguished: numeric rules quantifying extensions of, and 
spacings between patterns in a mask and in combinations of masks, and structural rules, 
enforcing and prohibiting cenain combinations. The numeric rules are almost 
exclusively specifications of lower bounds, because it is assumed that the layout design 
techniques will try to keep the total chip small. The router has been designed to take 
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maximum advantage of these rules by compaction. 

1.3 Data representation 

The single most important consideration in designing complex systems is conceptual 
integrity. An important aspect of this integrity is how to store the data of a design 
between the various stages. It is, for instance for simulation purposes, necessary that the 
results of the router are stored in way compatible with previous design stages. 

The use of an open system concept means that a good routing program should be usable 
for almost any routing task. The input should be formulated in general terms, devoid of 
any irrelevant data. The open system concept makes flexible and extendable program 
interface standards necessary. For the net list the lCD standard [14] was adopted, while 
for the specification of masks the LDM standard [12] was used. 
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2. THE ROUTING SYSTEM 

2.1 Design goals 

One of the most time consuming tasks in manual layout design is the design of wiring. 
The router is probably in any automatic layout design system the most time saving 
program. The single most important design goal for this router was flexibility. The router 
has to be able to deal with the following conditions: 

- Building cells with arbitrary rectangular shapes, and with terminal positions 
anywhere at the boundary. 

- Routing on two layers, say poly and metal, with different design rules. 

- Planar power and ground routing with variable width. 

- 100% completion, under mild restrictions. 
Of course the resulting layout is required to be correct by construction. The system is 
allowed to move the cells to adapt the wiring space. 

22 An overview 

The system accepts a net list, a set of design rules and a layout file as input. The layout 
file contains the layout of the chip without wiring. This enables the user to modify the 
floor plan with an interactive layout editor. Also the positions of the terminals of the 
cells are specified in the layout file. To complete the description of the chip, the output 
of the wiring program is simply appended to this layout file. 

As can be seen in Fig.2 the routing system consists of 3 programs named "entry", 
"global" and "local". The programs are written in portable Pascal, and communicate 
through files. 

"Entry" parses the two input files, containing the layout description, and the net list. 
Then a slicing structure is (re )constructed from the layout geometry by a shrink factor 
technique. It writes two files: "florplan" contains the information about the floor plan 
topology and geometry, "m0d2net" contains a list of terminals to be connected. 

"Global" reads those files, and constructs a routing model of the floor plan. It finds for 
each net the Steiner tree. The nets are decomposed into two terminal segments and 
assigned to channels. These two terminal segments are stored in the file "channels". 
Extra pins are introduced where the segments are connected together. These pins are 
stored in the file "m0d2net.app". 

"local" processes the channels in a bottom up order. The wires in each channel are 
compacted before the next channel is routed. In contrast to [5] we used a more rigorous 
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Figure 2. Overview of the routing system 

compaction and a method of constructing the slicing structure. The layout of the channels 
is stored in the file "layout.ldm". 
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3. SLICING 

To avoid channel routing order conflicts the topology of the floor plan is restricted to a 
slicing structure [3]. A slicing structure is a rectangle dissected by a parallel slicing lines 
into smaller rectangles. Each rectangle may in tum be dissected in the perpendicular 
direction into still smaller rectangles. A slicing structure can be represented by a slicing 
tree in which the leaves are the cells. The slicing structure can thus be seen as a 
hierarchical structure of the design. 

0.18 
: 0.43 1.00 
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Figure 3. Floor plan scaled by the argest shrink value. 

The slicing structure is constructed from the floor plan topology by subdividing the floor 
plan repetitively by orthogonal straight slicing lines. The selection of the slicing lines is 
determined by shrink factors. Let (Xi, Yi) be the center of cell i, with dimensions Wi, hi· 
The shrink/actor ~ is a function of a pair of cells, and the slicing direction. 

21x.n-xnl 21Yrn-Yn l 
~x(m, n) = ~y(m, n) = h+hn 

wrn+wn Urn 

This shrink factor can be interpreted as a scale factor: when two cells are scaled by their 
shrink factor, they will touch exactly if they are close enough in the other direction. 

A vertical slicing line thaI subdivides a slice into two sets of cells M, N has a shrink 
value Z. 
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Zx(M, N) = min ~x(m, n) Zy(M, N) = min ~y(m, n) 
mEM, neN meM, neN 

This is the maximum scale factor allowed to be able to draw the slicing line as a straight 
line separating the two sets. The slicing line with the highest shrink value is selected for 
the next subdivision. Mter the slicing line has been selected the process is repeated for 
the subslices on each side. Notice that the set of possible slicing lines changes, and their 
shrink values have to be recomputed. 

In fig.3 a floor plan is drawn together with all possible first slicing lines. The 
corresponding slicing tree is given in the figure below. The levels in the slicing tree 
represent the alternating slicing directions. 

Figure 4. Slicing tree. 

Computing the shrink value of a slicing line separating n/2 from n/2 other modules would 
cost n2/4 operations. Using the following algorithm it is possible to compute all shrink 
values in only n2-3n+2 comparisons. The shrink values Z(1) to Z(n-l) belong to the 
respective slicing lines. The cells are ordered by coordinate. 

for i = 1 to n-1 do { Z (i) := 00 ; } 

for i = 1 to n-1 do 
{ 

} 

for j := i+ 1 to n do ( ZO) := min (Z(j), ~ (i, j)); } 
Z(i) := 00; 
for j := i+ 1 to n do ( Z(i) := min (Z(i), ZQ)); } 

Figure 5. Shrink value algorithm 

Since the size of the cells is free, the cells will not fit exactly into the floor plan. The 
surplus area may be used for wiring since the channel router can handle irregular 
boundaries. After the channel assignment the channels are routed in a bottom up 
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sequence such that the the boundaries of the channel to be routed are known. A depth 
first search through the slicing hierarchy routes the channels in the correct order. The 
boundaries of the channel are detennined by collecting the bounding boxes of all 
adjacent cells and channels. After the channel routing has been done, the width of the 
channel is adjusted by shifting some cells. The program updates the coordinates of all 
tenninals, cells and channels that are in the slicing hierarchy to one side of this channel. 
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4. CHANNEL ASSIGNMENT 

For the channel assignment or global routing the method of [4] is used. The objective of 
the channel assignment is to determine roughly the routes for the wires in a floor plan. 
The main criterion for the wiring is the length of the wires: all wires are to be ~pt as 
short as possible. The use of a slicing structure makes it easy to adapt the width of the 
channels to match any requirement. Controlling the congestion is therefore not a very 
important issue. 

Channels are areas between the modules that can be used for wiring. The channels 
correspond one to one to the slicing lines of the slicing structure. The global wiring 
determines the channels that the wire uses. For each channel the wiring pattern is 
recorded. Multi terminal wires in the channel will be decomposed into several two 
terminal segments. Nets can be routed through porous modules to avoid detours. 

The problem can be formulated as the problem of finding the shortest Steiner tree in a 
graph, which is NP-hard. Therefore the channel assignment is done by a Steiner tree 
heuristic. A new heuristic for solving the Steiner tree problem is presented, based on a 
spanning tree algorithm and an algorithm for finding an optimal Steiner point for the 3 
point case. This heuristic first determines the topology of the Steiner points, by using a 
shortest spanning tree algorithm. Then it computes the optimal Steiner tree with this 
topology. 

4.1 Routing model 

Because of the insignificance of channel density the global routing runs with a 
background of constant data structures. The distances in the routing model are not 
changed after a net has been routed. The sequence in which the net are routed is 
irrelevant. 

The incidences between the horizontal and vertical channels are the T-junctions. The 
routing model that is used is a graph Gev, E) of which the vertices V correspond to the 
T-junctions. Nodes that are adjacent in the channel are connected by an edge. The 
length of the edges is derived from the input information containing the shapes of the 
modules. 

The tenninals to be connected are added to the graph as temporary nodes during the 
processing of one net. In fig.6 their temporary edges are indicated by dashed lines. Pins 
occur only at one side of the module and only get the edges that lead to the closest T
junctions on that side. The length of these edges represents as closely as possible the 
actual Minkowski-l distance. 

The modules may have multiple terminals on their periphery that connect to the same 
net. In that case a node is added to the graph for every terminal. If the names of those 
pins compare equal it is assumed that those terminals are internally connected and that 
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Figure 6. Graph used as global routing model. 

only one of them actually needs to be reached. When the names are unequal both 
terminals will be reached. 

10 the routing model the nodes corresponding to those terminals are connected by an 
extra edge of minimum length. The global routing algorithm may use such a connection 
as a feed thru. This can be controlled by manipulating the length of the edges of the 
terminal nodes. 

The T-junctions are stored in the matrix "Tjunc" of horizontal channels versus vertical 
channels. If two channels meet in a T-junction the number of this T-junction is stored 
there, otherwise O. The channels in this array are ordered by coordinate, giving a 
symbolic picture of the floor plan. Unordered this array is only dependent on the 
topology of the floor plan. From this matrix information such as which T -junctions 
belong to the same channel, neighbor relations between T-junctions, etc. can be derived. 

1 2 3 0 4 
0 0 5 6 7 
8 9 0 0 0 
0 0 11 12 13 
14 0 15 0 16 

Figure 7. The channel incidence matrix Tjunc 
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For algorithmic efficiency it is necessary that the neighbors of a node can be found 
easily. Therefore the graph is represented as a node list, with each node having 
references to neighboring nodes. This means that each edge is present twice in the data 
structure. The distances between neighboring nodes or T -junctions are derived from the 
matrix Tjunc and the floor plan. To make the translation from this model back to the 
floor plan possible each node can represent a terminal in the net list. The pins 
corresponding with the T -junctions are created when they are needed. 

This node list is the data structure that the Steiner tree heuristic runs on. In this way the 
algorithm for finding a Steiner tree is disconnected from the original problem. 

The result of the global wiring is represented as a set of two terminal nets assigned to the 
channels that contain them. A nice property of these two terminal nets is are immune to 
changes in the geometry of the floor plan. Any changes in the sizes of the floor plan 
would not lead to disconnected nets. 

42 Heuristic/or finding the Steiner tree. 

Two polynomial time algorithms exist that are commonly used in Steiner tree algorithms. 
They are the shortest spanning tree algorithm and the algorithm for the three point 
Steiner tree problem. Most existing methods for finding Steiner trees, exact and 
heuristic, are based on one of these algorithms. The presented heuristic use& both 
algorithms in two stages. First it determines the topology of the wire and then the 
optimal Steiner points for this topology. Even if the topology is not optimal then the 
shortest wire with this topology may still be close to the optimum. 

An algorithm that finds the spanning tree determines the topology. From the spanning 
tree a binary tree is constructed that "matches" the spanning tree. The optimal spanning 
tree is found in O(n2) time. The shortest spanning tree cannot be longer then twice the 
length of the shortest Steiner tree. 

The topology is represented as a binary tree. The leaves and the root of the tree represent 
the modules connected by the wire. The tree has (n-2) internal nodes corresponding to 
the possible Steiner points. The Steiner points can in the final result coincide with 
another node, giving a tree with fewer Steiner points. 

For the second stage it is immaterial how this topology was found. The algorithm finds 
the optimum Steiner points for this topology in O(n2 s) time, where n is the number of 
nodes in the graph and s is the number of modules to be connected. If the topology found 
in the first stage is the right topology then the result is the optimum Steiner tree. If it is 
not then still the shortest tree with this topology is found, which is usually not much 
longer than the optimum. 

The second stage consists of two recursive depth first search procedures that follow the 
tree. The first one determines the length of all subtrees connecting to any node. From 
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the infonnation provided by this procedure the length of the tree is detennined. It takes 
advantage of the planarity of the routing graph to improve the computational efficiency. 
The second procedure traces back the shortest result in this tree, while choosing the 
Steiner points. During this phase the wire is split in several two terminal segments. 

4.3 Power and ground net routing 

The power and ground nets are routed planarly by following the slicing structure. The 
power nets stay to the upper/left side of the channels, and must have a bonding pad in the 
lower right corner of the chip. The ground nets stay to the lower/right side, and must 
have a pad in the upper left corner. The width of the power and ground wires is 
determined automatically. 
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5. LOCAL ROUTING 

Each two terminal segment is realized by a horizontal piece called trunk and two vertical 
pieces called the branches. The vertical branches bring the wire into the channel. The 
horizontal trunk connects the branches together. 

Because the terminals are not restricted to grid positions, a branch may have more than 
one opposite branch. Therefore gridless channel routing introduces more vertical 
constraints. A problem is that there may be cycles in the vertical constraint graph. In [6] a 
simple but less conventional approach was used, which guarantees that there will be no 
cycles. 

5.1 Classification 

In the approach of [6] the two terminal segments are divided into five classes, indicated 
by the letters A through E. Branches and trunks are realized in both layers. Fig.8 
illustrates the different classes. The bottom layer is realized in polysilicon, the top layer 
is realized in metal. 

I ....... ... ~ I 
Ground iii 

II d""A 

c"", D 

cl E 

C1=B 

Powe' 

--'!I! 

I •••• I 

Figure 8. Different classes of two terminal segments. 

Class C segments, that have terminals in exactly opposite positions of the channel, are 
handled as class E or D segments. The power and ground lines are routed at the top and 
bottom of the channel. In [6] the branches at the top of the channel use another layer than . 
the branches at the bottom. However, to be able to connect to power and ground on the 
metal layer it is unavoidable that the branches connect to the sides of the cells on the 
polysilicon layer. Therefore the classes D and E use an extra via hole to change layer. 

The segments will be ordered from the bottom of the channel to the top of the channel. 
The classes can be ordered in the sequence B - E - D - A. Within the classes A and B 
there are no vertical constraints, and any order is possible. Within class D the segments 
can always be ordered on the position of the bottom terminal from right to left. The 
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segments of class E can be ordered from left to right on the position of the top terminal. 
This always constitutes a valid order, in which the vertical constraints are satisfied. 

A practical problem turns out to be that the vertical constraints in the classes E and D 
tend to form very long chains. This causes trunk ordering algorithms similar to [1] to 
become ineffective. It is necessary to use jogs to reduce the channel width. The number 
of vias is reduced by changing some branches or trunks to the other layer. 

52 Compaction 

The rigorous compaction method used introduces jogs anywhere where this is 
advantageous (see [2]). It also takes maximum advantage of the design rules. It uses 
different rules on different layers, in stead of deriving a track pitch. 

The compaction is done by maintaining two contours, one for each layer, that indicate 
the area occupied by previous trunks. A contour C is defined as a set of intervals [I,r] 
with an associated value t: Cc ((I, r, t)e R3 I l<r ). The functional value of a contour C 
is defined as 

fC<x) = max ( t I (I, r, t)e C 1\ 1~5I ) 

All points (x, y) for which fC<x»y are occupied and not available for routing. 

Only the trunks and their vias are considered during the compaction; the branches are 
added once the layout for the trunks is determined. Trunks are processed one by one in 
the order that is determined by their class. The next trunk, with its associated vias, is 
placed against this contour, thereby using a minimum of space. The space used by this 
trunk and its vias is determined by the width ro of the trunk and the design rules, and is 
represented by the contour D. The set D has an interval for each new rectimgle, 
representing the area occupied by that rectangle, plus its minimum separation design 
rule. The contour C is initialized with the shape of the channel boundary. When 
processing the next trunk, the area occupied by the present and previous trunks is 
described by C:=CuD. 

An irredundant contour I is a contour with non-overlapping intervals. Also, the intervals 
of an irredundant contour are ordered: Ie {(Ii, ri, ti) e R3 I li<ri" riSli+! }. A trunk 
can be generated straightforwardly from an irredundant contour: within the span of the 
trunk a rectangle is placed against each interval, and at each vertical slope between the 
subsequent intervals. Of course, the intervals in I should cover the whole span of the 
trunk. The vias are also placed against the contour. 

After the new intervals D have been added to the contour C, it is no longer irredundant. 
To create a new irredundant contour an O(n log n) recursive algorithm, similar to 
mergesort, is used. It is based on a linear time algorithm to merge two irredundant 
contours J and K Merging is defined as determining an irredundant contour I with the 
same functional value as the union of J and 1(; 
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fr(x) = max (fJ(x), fK(X)) = fJvK(X) 

Because each interval can cut another interval in two, the number of intervals in I is 
maximally 2(#Jt#K)-1. Each interval in I can be covered by at most one interval in J 
and one interval in K Since the intervals of J and K are ordered, the intervals of I can be 
generated by linearly traversing J and K A redundant contour C containing n intervals 
is split up in n single interval contours. Obviously a contour containing only one interval 
is irredundant. At each stage contours are merged pairwise, so there are O(log n) stages. 
Since the result of merging contours J and K may be a contour with 2#(.A.JK)-1 
intervals it seems that the number of intervals doubles in each stage. However, it is clear 
that there cannot be more than 2n-1 intervals in 1. Therefore at each stage the amount of 
work is O(n) and the algorithm is O(n log n). A more straightforward implementation, 
that first determines the intervals of I, and then for each interval its value t, may need up 
to n2 comparisons. 

Figure 9. Routing after compaction phase. 

53 Wire Straightening 

As can be seen in fig.9 not all jogs that are generated this way are necessary to reduce the 
channel width. Each jog is a small reliability hazard due to electro migration. Also many 
jogs mean many rectangles in the layout. Wire straightening therefore increases the 
reliability of the chip and decreases the amount of disk space needed to store the result. 

Two passes are needed to get rid of unnecessary jogs. The first compaction phase is 
described in the previous section. In this pass the width of the channel and the space 
available for each trunk is determined. All irredundant contours are saved, such that it is 
known exactly what area can be used for each trunk. In the second pass the actual mask 
generation is done. The trunks are processed in reverse order and the saved contours are 
mirrored. Each time the mask data for a trunk is generated there are two contours. The 



- 16-

bottom contour C indicates the area that is occupied by previous trunks. The contour U, 
which was saved during the first phase, indicates the area that is needed for the following 
trunks. The present trunk will be realized between those contours. To generate a trunk 
with a minimum number of jogs, the contour C will be replaced by a new straightened 
contour S, with a minimum number of intervals: 

fc(x) ~ fs(x) ~ fU<x) /\ #S is minimum 

--Ill___ L~ _____ _ 

( 
span of trunk 

) 

Figure 10. Straightening algorithm. 

The contours C and U are irredundant The straightening algorithm starts at the left side 
of the span, and works its way to the right. While going to the right, it generates 
intervals, trying to make each interval (I, r, t) as long as possible. For this purpose two 
bounds are maintained: /3 ~ t ~ 'to 

/3 = max {y I (Xl ,x2,y)e C /\ Xl <r /\ X2>/) 

't = min {y-Ol I (Xl ,X2,y)e U /\ XI-Ol<r /\ X2-Ol>I/\ <Xl, X2> II span '" 0 ) 

The interval is extended by selecting the largest r for which /3 ~ 'to The interval is added 
to S:= S u { (I, r, /3) }, and a new interval, with I:=r, is started. The resulting contour S 
is irredundant. It is easy to see that this process will give us the minimum number of 
intervals. The only possibility would be to begin the next interval earlier. But, when 
passing the old breakpoint, the freedom in choosing t, limited by /3 and 't, cannot be 
larger. Therefore the next interval may have to be shorter than it could have been. 
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Figure 11. Routing after straightening phase. 
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6. EXPERIMENTAL RESULTS 

A small number of experiments have been done using this router on two randomly 
generated channels and Deutsch's difficult example. We used Mead & Conway design 
rules for this experiment. Since our router does not have the concept of tracks it is only 
possible to compare the width of the channel in larnbda's. The terminal positions were on 
a grid and the channel sides were straight. The pitch of the terminals is indicated over the· 
columns, also in larnbda's. For comparison the last column is added which gives the 
density of the channel times 6. This could be the performance of a good track based 
router. 

Performance for three Channels 

gridless router track router 
example terminal pitch track pitch 

5 6 7 8 10 6 

random 1 128 120 118 108 106 132 
randorn2 82 68 68 68 68 84 
Deutsch 144 116 110 110 104 114 

It can be seen that the width of the channel decreases as the pitch of the terminals 
increases. The results for Deutsch's Difficult Exarnple are almost as good as those of a 
good track based router, and for random exarnples even better. In most practical floor 
plans the terminal density is much lower, and compaction is more rewarding than track 
assignment techniques. 

The result of the routing system applied to a small chip is shown in fig.12. The chip 
contains 35 cells, including bonding pads, and 75 nets, including power and ground nets. 
The prograrn required 37 seconds on an IBM PC! AT to perform the global wiring, and 72 
seconds for channel routing. 15 seconds were used for parsing input files and 
constructing the slicing structure. The result contains 899 rectangles and 308 vias in 38 
channels of which 16 are empty. 

The routing system also has been applied to standard cell designs. In fig.13 a nMOS 
pluri cell macro is shown. It can clearly be seen that the power line width is adapted to 
the needs of the circuit. 
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Figure 12. Audio delay line chip 
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Figure 13. nMOS Pluri cell style random logic macro 
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7. CONCLUSIONS 

It can be guaranteed that the system generates a valid layout provided that the terminals 
have sufficient spacing (it must be possible to place a via on each terminal). The use of 
slicing structures and the classification of the trunks help to overcome two well known 
problems. Many other systems that do not use these concepts cannot guarantee 
completion. The compaction proves to be a very powerful tool, responsible for a number 
of important features. It makes the router, as well as the wires (literally) more flexible. 
The power of the compaction was used also to simplify the channel routing. The 
concepts introduced make compact implementation of the routing system possible. It was 
coded in Pascal and needs about 5000 lines. 

In combination with more advanced channel routing algorithms the results may still be 
better, although in real layout the terminals may be too sparse to be a significant 
nuisance. Possible future enhancements of the system may include the use of an extra 
routing layer. This would also mean that a more sophisticated way of determining the 
topology of the wiring in the channel would be needed. 
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1. INVOCATION 

On a UNIX system the router can be invoked with 

rococo [ -vd -t<technology -o<output> 1 <layout> <net list> 

The options are: 

- v verbose: gives the full output listing of all phases. When This option is turned off 
only the error messages are printed. 

- d database: only the cells that are generated by the router are put into the output file. 
This is useful when working with the leo data base. When this option is turned of 
the program includes the standard library and the input file to generate a complete 
chip layout. 

- t technology: you can specify the technology file to be used. If omitted the default is 
used. (Presently 6u nMOS) 

- 0 output: the output file can be renamed using this option. When omitted the output 
file will be output.ldm 

To run the program you have to prepare a LDM file containing the whole chip design, 
except for the wiring. Notice that also the bonding pads must be included. The power and 
ground lines must have bonding pads in the upper right, and lower left comer. The 
terminals of these bonding pads must be facing outward, up and down. The bonding pads 
are modules in any other respect. 

The net list file must contain all connections that you want to make. That is also clock 
lines, power and ground lines, reset etc. must be explicitly present in the net list. The 
input files must be files in the current directory! 
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2. INPUT FILES 

2.1 TechMlogy File 

The technology file controls the operation of the router. Tags may be specified in any 
order, with exception of the LIBRARY tag, which must be last in the file. Unrecognized 
tags are skipped as comments. The following tags are recognized: 
FLEX 

LmRARY 

This tag specifies that the router is allowed to shift the block in the floor plan 
to reduce the wasted space. If FLEX was not specified and router has to 
create routing space, a warning message is generated. 

This tag is followed by an LDM description of the standard components of 
this technology. The router generates calls to the standard model rcontact, 
which represents the contact between the two routing layers. Notice that the 
origin of this model must be the lower left comer. 

NAMES <floor plan> <chip> <ground> <power> 
Specify the special names to be recognized. The <floor plan> name is the 
name of the top model which contains the layout of the placement. The 
resulting layout is put into a new top model with the name <chip>. <ground> 
and <power> are the names of the special nets that are to be routed planarly. 
Notice that these nets must have bonding pads in the upper right, and lower 
left comer. They must have terminals that are facing outward, respectively up 
and down. This tag is compUlsory. 

NEED <real> 
This is the power need in rnA per mm2 for the modules. It is used by the 
global routing to determine the width of the power lines. 

POLY <integer> 

THRU 

When the program has a choice of layers, the poly silicon layer is prefered if 
the section is shorter than the specified value, and two via's can be 
eliminated. 

When specified, the program uses equivalent pins as feedthru's. Otherwise a 
choice is made between the equivalent pins. Pins are equivalent if their 
names are equal, or if they differ only in the last character, which must be a 
capital. 

WIRE <sep> <width> <hole> <bbx_sep> <name> 
This tag should occur twice. It specifies the design rules and the names for 
the routing layers. The first layer is the top, metal layer, the second the 
polysilicon layer. The planar power and ground nets are placed in the first 
layer. The design rules are: 
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<sep> is the minimum separation between unconnected rectangles in the 
same layer. 
<:width> is the minimum width of the boxes. 
<hole> is the size of the contact hole in that layer. 
<bblLsep> is the minimum separation to the bounding box. 
<name> is the layer name used. 

1* Technology for standard 6u nMOS process *f 
WIRE 6 612 6 nm 
WIRE 6 612 6 np 
NAMES floor chip vdd vss 
POLY 200 
FLEX 
THRU 
NEEDS 
/* library contains the standard components for this technology *f 
LIBRARY 
ms rcontact 
box nm 0 12 0 12 
box np 0 12 0 12 
box nc 4 848 
me 
Figure 1. Example technology file in use at Eindhoven. 

2.2 WMfiles 

LDM is is simple layout description language that originates from Delft University [11, (*) 
12]. It features hierarchy, module names, terminals with names and names for masks. 
The layout is described by rectangles. Module instances can be rotated or mirrored. 
Every new element is written on a separate line. This document describes an Eindhoven 
local version. Additions are: instance names, surrounding boxes and names for 
rectangles. Omissions are: wire and continuation statements, and array compound caIls. 
All additions are indicated as being optionai. The additions can be used to describe the 
interfaces of cells to programs. Furthermore, to facilitate upward compatibility with 
possible future versions, lines that start with an unknown keyword are comments. For the 
same reason also any text added to the end of a syntactically correct line is ignored. The 
syntax is given in SBNF. Notice that { .. }+ means one or more times. 

<layout> ::= { <module> }+ • 
A layout consists of a set of modules. A module is declared before it can be 

(*) The numbers in the braakets refer to referenaes on page 22 of the 
preaeding main text of this report. 
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instantiated. Also recursion is not allowed. 

<module> ::= <header> { <element> }+ <tail> <eol> . 
Each module has a header, a non empty sequence of layout elements, and a 
tail. 

<header> ::= 'ms' <name> <eol> . 
The name of the module is the template name. 

<tail> ::= 'me' [ <rectangle> ] . 
The tail contains optionally a specification of the surrounding box. The 
surrounding box encloses all layout elements in the module. 

<element> ::= <box> I <module-call> I <terminal> . 
There are three kinds of layout elements: 

<box> ::= 'box' <layer> <rectangle> [ <name> ] <eol> . 
Boxes are the layout primitives. The boxes have an optional name. This name 
may be used to indicate descendance. 

<module-call> ::= 'me' <name> [ 'ms' I 'my' ] [ 'r3' I 'r6' I 'r9' ] 
<integer> <integer> [ <name> ] <eol> • 
A module call is used to instantiate a template. The first name is the template 
name. Then the coordinate at which the module is instantiated. The module 
can be transformed on instantiation. Transformations are relative to the 
coordinate specified. This coordinate is the origin (0, 0) of the module, not 
the center! The transformations are: 

mx = mirror in X axis 
my = mirror in Y axis 
r3 = rotate 90 degrees anti clock wise 
r6 = rotate 180 degrees 
r9 = rotate 90 degrees clock wise 
The optional name is the instance name, which may be required to identify 

the module uniquely. 

<terminal> ::= 'term' <layer> <rectangle> <name> <eol> . 
Terminals are used for outside connections, and will usually be on the edge 
of the bounding box. Terminals are not layout, so they must overlap with 
boxes. A wire that connects to two sides should have two separate terminals. 

<rectangle> ::= <integer> <integer> <integer> <integer> . 
The integers are respectively the left, right, lower and upper bound of the 



-5-

rectangle. 

<layer> :: = <name> • 
Layer names are defined by the process. The layer names are not part of the 
definition of LDM and depend on the technology. 

<integer> ::= [ '-' ] { <digit}+. 
Integers are as read by any decent program. 

<name> ::= <letter> { '_' I <letter> I <digit> } • 
Names follow the rules of normal identifiers. Case sensitive, but use only 
lower case, please. Names may have a maximum of 8 characters. 

<eo1> ::= { { <character> } '\n' }+ 
Lines are significant in this language, every line that does not start with a 
known keyword is a comment. The lexical elements of LDM consist of . 
sequences of characters that are separated by spaces or new-lines. 

ms mosfet1 
box ps 0 14 4 10 
boxod4100 14 
term psO 6 410 gate 
term cd 4 10 0 2 source 
term od 4101214 drain 
me 

ms usefets 
me mosfet1 15 10 r3 
me mosfet1 29 10 mx r9 fet2 
me 

Figure 2. Example of LDM file 

Compatibility problems may arise because of omissions of the language, use of non 
standard layer names, too long identifiers or identifiers with funny characters, and a 
different interpretation of coordinate transformations. For coordinate transformations use 
the -0 option when using c1dm. 
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Figure 3. Syntax diagrams of LDM 

layout : 

-d mOd~le 1 )) 

module: 

4 header ) 

Yelement 

»~eoline~ 

header : 

~ name H eoline ~ 

tail : 

~ rectangle 1 f)1 eoline ~ 
) 

element : 

box 

module-call 

box: 

~ layer H rectangle 1 1 )1 name 
. ) 

module-call 

name integer 

name 

---------------

eoline 

--------
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terminal : 

~ layer H rectangle H name H eoline ~ 

rectangle : 

4 integer H integer H integer H integer ~ 

layer 

4 name ~ 

integer : 

name 

letter 

f( ) I digit 
( 

) ) 

eoline : 

r. > ~()o/J 
Y~haracter ~ 

-----
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2.3 Network File 

This is a description of the net work file used by the routing program. It is a simplified 
version of the ICD network data base [14], as generated by escher [13]. The file defined 
by the network description format is a sequential ASCIl-file containing only printable 
characters, tabs and new-lines. The file consists of one or more records, which are 
variable length lines. 

<network-file> ::= <record> ( <NEWLINE> <record> 1 . 

Each record consists of 3 fields. Fields are separated by white space. 

<record> ::= <field> ( <separator> <field> ) . 
<separator> ::= (<BLANK> I <TAB» ( <BLANK> I <TAB> ) . 

The network file gives the specification of the interconnection of the terminals of the 
. instances. One record is meant to specify one terminal. All terminals with the same net 

name are connected to each other. The names of the terminals and the instances must 
occur in the layout file. 

A record contains the fields: 
<net> <instance> <terminal> 
<net> ::= <String> . net description consisting of a nemame. 
<instance> ::= <String> . origin name of the terminal. 
<terminal> ::= <String> . terminal name. 
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3. INTERMEDIATE FILES 

The router consists of three passes that communicate with each other by means of files. 
This is a description of the format of these intermediate files. 

3.1 Flarplan 

This file is written by the entry pass, and read by the global and local pass. It contains a 
record for each module, each channel and each slice (all nodes in the slicing tree). Each 
record has the following format: 

<linenr> number of the slice, increases from 1 by 1 

<primogenitive> structure of the slicing tree, link to first subslice 
<nextsibling> link to the next slice. 

These field contain the neighbor relations For modules the references are absolute in the 
coordinate system, but for channels they are relative. For channels only the topjc and 
botjc are filled in. 
<topjc> Points to channel to the top of this module (higher y) 
<botjc> Points to channel to the bottom of this module (lower y) 
<leftjc> Points to channel to the left (lower x) 
<rightjc> Points to channel to the right (higher x) 

Geometry of the floor plan. 
<coordx> X coordinate of lower left corner of bounding box. 
<coordy> Y coordinate of 11 " II " II " 

<sizex> Width of bounding box. 
<sizey> Height of bounding box. 
<offsetx> offset of bounding box relative to origin of LDM desc . 
<offsety> 

<orient> 
<level> 
<name> 

32 Mad2Net 

.. 

orientation 0 .. 7 
level in slicing tree, negative means channel. 
name of the module or channel. 

This file is for specifying terminals of modules and channels. Two files are generated 
with this format: m0d2ne! and m0d2net.app. The first one is generated by the entry, and 
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read by the sub- sequent passes. It contains the terminals of the modules. The second one 
is generated by the global routing and contains the terminals that interface the channels 
to each other. The format of each record is as follows: 

<netnr> 
<same> 
<cside> 
<alt> 
<left> 
<right> 
<layer> 
<name> 

The number of the net that the pin is connected to. 
Points to the next equivalent pin, (linked in a circular list.) 
Side of the pin, absolute modules, but relative for channels. 
height (y coordinate) of the pin relative to the channel. 
left x coordinate 
right x coordinate 
layer of the pin, 1 or 2. 
name of the pin. 

The records are grouped together. Each group starts with the number of the module or 
slice that they belong to. This number is given on a separate line. Each group is 
terminated by an empty line. 

33 Channels 

This file specifies the two terminal segments in each channel. The records are grouped 
by channel, as in the m0d2net.app file. Each record contains the following fields: 

<frompn> 
<topn> 
<netnr> 
<width> 

the two pins to be connected. 

the netnumber. 
the width of this wire segment; when smaller than 
the minimum design, the design rule is maintained. 
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4. DIAGNOSTICS 

The program prints diagnostic messages in the following fannat: 

{ <name> I ,****, <mesg-Jdnd> [ 'in line' <nnn> ] ':' <message> . 

The <name>s may be names of nets, modules or pins that are refered to in the error 
message. <mesg-kind> can be Warning, Error or Bug. When the program is parsing a file 
while the error occurs, the line number is given. 

4.1 Warnings 

Warnings are intended to warn the user that the results are not necessarily what he or she 
intended, or to make him or her aware of certain peculiarities of the input. 

Channel width extended. 
The width of a channel had to be extended to accommodate the wires, but 
FLEX was not specified in the technology file. 

Net nnn has only one module. 
A net with only one module was encountered. This net will not be routed. 

Empty net. 
An empty net was skipped. 

4.2 Errors 

Errors are usually due to syntactic or semantic errors in the input, or due to memory 
limitations. The user should correct the input, or in the case of memory limitations 
recompile the program with larger array dimensions. 

Invalid integer. 
An integer was expected, but could not be read. The syntax for integers is [ 
'-' ] { <digit> 1+ . Notice that there must be a space or an end-of-line on 
either side of the integer. 

Invalid design rule. 
A zero or negative value was specified in a WIRE tag in the technology file. 
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WIRE tag missing in tech file. 
Two WIRE tags, one for each layer, must be specified in the technology file. 
Each tags should be followed by respectively the width, separation, size of 
the contact, the separation from the modules, and the layer name. 

NAMES tag missing in tech file. 
A names tag must be specified in the technology file. The tag must be 
followed by the floor plan name, the name of the output module and the 
power and ground names. 

Boxes in floor plan layout. 
In the floor plan of the chip only module call may occur. 

Terminals in floor plan. 
In the floor plan of the chip only module calls may occur. It is presently not 
possible to specify terminals to the outside of the floor plan. 

Unknown terminal layer. 
A terminal was specified in an unknown layer. 

Call of an undeclared module. 
Modules must be declared before used. 

Unknown rotation mnemonic. 
Allowed rotation mnemonics are r3, r6 and 19. 

Module name must be unique. 
A module was used twice in the floor plan. If you want to use the same 
module twice, you must make a copy under another name. 

Too many modules in /loorplan. 
The program ran out of memory space to store the modules. Use less modules 
or recompile the program with more space. 

Model start expected. 
An 'ms' was expected but something else was encountered. boxes, calls and 
terminals may only be specified within a module. 

Too many models defined. 
Too many modules were defined, and the program ran out of space to store 
them. Remove unused models, or remove models that do not occur in the 
ftoorplan. 
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Nested models not allowed. 
An 'ms' was encountered before a closing 'me' was encounteted. Model 
definitions cannot be nested, so end the previous definition before starting the 
next. 

Terminal outside bounding box. 
A terminal was found outside the bounding box. 

Terminals are too close. 
Two terminals are so close that a valid routing cannot be guaranteed. Move 
the terminals further apan. 

Floor plan must be last. 
The last definition in the input ldm file must be the floor plan. 

Terminal too narrow. 
The terminal is narrower than the design rules in the technology file allow. 

Too many terminals defined • 
. More terminals were defined than the program could store. Use less terminals 

by removing all unused terminals or recompile the program with a larger 
Ldim. 

Unknown module. 
A module is refered to that was not declared. 

Number of nets exceeds limit. 
More different nets were used than the program can handle. Use less nets or 
recompile the program with a larger Ndim. 

Signal pins must be poly. 
Signal pins must be in the second (usually polysilicon) layer. 

Supply terminal at wrong side. 
No power or ground supply terminal was found at the correct side !If the 
module. Only a terminal at the wrong side was found. Power and ground 
terminals can only be reached from one side. 

Terminal not found in layout. 
A terminal name was encountered in the net list, but could not be found in the 
layout. 
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Degree too large. 

4.3 Bugs 

The degree of a node in the routing graph has become too large. This may be 
a bug, or else recompiling with a larger maximum degree should help. 

These messages should never occur, and since they cannot occur in principle, it is hard to 
pin point their cause if they do. In general one can say that the bug need not be where 
the message is generated. A possible cause is that the intermediate files that the several 
programs use are corrupted or inconsistent. Please talk to your system administrator or 
contact 

Negative distance. 

L.P.P.P. van Ginneken 
Vakgroep ES, Dept. of EE 
Eindhoven Univ. of Technology 
P.O.Box 513 
5600 MB Eindhoven 
The Netherlands 

tel: 31·40·473352 
bitnet: elesluka at heithe5 

in NewEdge (global): tries to create edge in routing graph with negative 
distance. 

in buildnodejc. 
in BuildNodejc (global): Nodejc is inconsistent with Index. 

Nodes not in same channel. 
in Connect (global): nodes that are linked with an edge were notin the same 
channel. 

Heap exhausted. 
in GetHeap (global): tries to get a node from the heap, but no node is left. 

Mod2Net ran out of space. 
in CreatePin (global): tried to create a pin, but no space was left in M0d2Net. 
Increasing Lmax may help. 

Not a valid node. 
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in GivePin (global): this node is not in the gtaph. 

while Removing killed pins. 
in RemoveKilled (global): only one pin of this net is left, so to what should· 
this pin be connected? 

while Making set. 
in MakeSet (global): not all two tenninal segments connected to the same 
pin carry the same netnumber. 

internal references <> 1. 
in Checking (global): internal references should be 1 after WireStraight. 

external references are O. 
in Checking (global): externally unreferenced pins should have been killed 
by WireStraight. 

reference to killed pin. 
in Checking (global): two terminal segment refering to killed pin was found. 
This means a bug in WireStraight. 

Quick sort, ermo = n. 
in QuickSort (local): sorting did not work properly. 

Short Circuit. 
in ChangeLayer (local): a short circuit was detected while changing layers. 

Incorrect input data errno=n. 
in chk (local): a pin was found to be on the wrong side of the channel 
boundary. 

Terminal checking, errno=n. 
in TennCheck (local): not all terminals were inside the modules. 

Wrong tside. 
in FixTerminals (local): a channel can only have terminals at the north/south 
ends. 

Routing order conflict. 
in MakeBoundaries (local): levels are inconsistent with neighbors. 

lIIegal transform. 
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in MakeRootBlock (local): transform must have a value in 0 .. 7 

Boundaries in wrong sequence. 
in add (include): x coordinates of interval added to contour are in descending 
order. 

Contour has overlapping block. 
in check (include): contour must be irredundant. This is an error in the 
compaction phase. 

Bug in merge. 
in merge (include): this case cannot occur if all previous conditions are 
correct. 

Bug n in Straight. 
in straight (include): there was no area left to create the wire. This message 
can have many, many different causes. Maybe the error was caused by a 
mistake with design rules, contours, contacthole positions etc. Almost all 
subtle mistakes cause this error to occur. 
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S.IMPLEMENTATIONNOTES 

The program is designed to be as portable as possible. Only standard Pascal features were 
used, and a few extensions that are shared by many implementations. It proved to be 
possible to solve almost all out problems using only standard Pascal. To make this 
possible it was necessary to create an interface for reading files in entry. 

The main thing that could not be done in a uniform way was giving names to files. This is 
done by the procedure NameFiles. For each implementation a separate procedure is 
given. The correct one can be selected by removing the comment brackets (* *). In this 
section also other non standard features can be put, like include files, compiler options, or 
non standard functions. 

It was necessary to abstain from dividing the program into modules that can be linked, 
because this differently solved in various Pascal implementation. To create the advantage 
of separate compilation the system was implemented as three programs. This also has the 
advantage of being able to inspect the data at the interfaces of the programs. Also the 
three programs work like three overlays, thus saving memory usage. 

Each program contains a number of constants, which can be increased, if larger routing 
problems are to be processed. These are the constants that the user may want to change: 

constant 

tokenlen 
Brnax 
Cmax 
Emax 
Fmax 
Jmax 
Kmax 
Lmax 

Mmax 
Nmax 
Omax 
Pmax 
Qmax 
Smax 
Tmax 
Ymax 

maximum number of dependency 

characters in a name >=8 
branches in one channel >= Tmax 
contacts to the sides of one channel. >= Tmax 
edges to a routing node should be > 6 
slices = 3 * Mmax 
junction cells = Mmax + 3 
nodes in routing graph > 2 * Mmax 
terminals » 2 * Nmax 
should in global and local be approx. double 
modules depends on problem size 
nets »Mmax (depends) 
objects > Mmax 
power/ground pins in one channel > 10 
pins in one net 
two term seg in one channel 
trunks in one channel 
layers 

> 10 
-Nmax 

>Smax 
2 
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