
Universiteit Leiden and TU Delft: 15 February, 2012
Joint MSc Programme: Industrial Ecology
Interdisciplinary Project Group: 4413INTPGY

User Manual

Universiteit Leiden and TU Delft: 15 February, 2012
Joint MSc Programme: Industrial Ecology
Interdisciplinary Project Group: 4413INTPGY

Course Coordinator: Dr. ir. Gijsbert Korevaar
Primary Supervisor: Drs. ing. René Kleijn
Secondary Supervisor: PhD Researcher Christopher Davis

MSc Researchers: Boudewijn Boon, Eric Johnson, Melanie Studer,
George Tsalidis, Jeroen van Houten, Carmen Vercauteren

Cover Map Image: Adapted from Gringer (2010).

1

Contents
1. 	 Introduction 		 2

2. 	 General Preparations		 3

3. 	 Introducing RStudio		 4

4. 	 Data Collection & Processing		 5

5. 	 Google Earth		 12

6. 	 Google Motion Chart 	 17

7. 	 JFlowMap 	 19

8. 	 Chord Diagrams		 25

2

This user manual serves to provide the reader with a quick
way to reproduce the interactive visualizations presented
on our website:

	 http://resourceatlas.tudelft.nl/

These visualizations are based upon different pieces of
software and applications. In this context of our work we
will refer to the different visualizations as ‘visualization
tools’ The manual will offer guidelines for the following
visualization tools:

•	 Chord Diagram

•	 Google Earth

•	 Google Motion Charts

•	 JFlowMap

We are not by any means experts on any of these visual-
ization tools as we do not have backgrounds in computer
programming. This manual simply serves to provide
people with the steps we took to create the results we have
presented on our web page.

Before going through the guidelines, some preliminary
steps are necessary. For most of the visualization tools
some data had to be processed and manipulated to create
the correct input formats. These steps will be explained in
section 4. For these steps and other data manipulation we
used “R”, a language used for statistical computing and
graphics. We made use of a development environment
called “RStudio” which works together with “R”. We will
shortly introduce some basics of RStudio in section 3 that
might be useful for the subsequent sections. Section 2 will
first explain some necessary preparations to be able to fol-
low the steps in this manual.

1. Introduction

3

In this user manual we will make use of a basic set of files
which will be often referred to. These files can be databases,
R codes or other file types of which some will be modified
throughout the course of following the guidelines.

You will need these files for the guidelines in the sections
5-8. The files can be downloaded at the following URL:

http://resourceatlas.tudelft.nl/downloads/UM_files.zip

Unzip the “UM_files.zip” file to a desired location on your
computer from which you will be working thoughout the
entire manual. The unzipped folder is called the “UM_files”
folder (as in User Manual files) and we will refer to this
folder multiple times while going through the guidelines.
The “UM_files” folder contains subfolders named after the
visualization tools, each with its own set of files that will be
used in the associated guidelines.

2. General Preparations

4

3. Introducing RStudio
RStudio is a development environment compatible with the
R language. The interface provides an easier way to work
with R due to several of its functions and components.

You can download the software at the following URLs:

•	 http://www.r-project.org/ (R)

•	 http://rstudio.org/ (RStudio)

First download and install R. After this download, install
and run RStudio. You will get to see a window similar to
that in Figure 1.

The interface shows four frames of which the top-left
frame, called the source editor, is the only one that will be
used in the manual. It will contain the source codes in which
you will be making several modifications.

The “Run” button, which you will use often, is indicated by
the red arrow.

These are the only basic instructions required to continue to
the guidelines of the visualization tools.

Figure 3.1: The RStudio interface

5

4. Data Collection & Processing
In this section a step-by-step description of the data col-
lection and processing steps is given. The overall aim is to
find appropriate and interesting data and to convert it into
a format usable by our visualization tools.

Step 1: Define your aim and scope
The first step is to define the aim and scope of the project; This can be done by formulat-
ing research questions or hypotheses. By defining the aim and scope it will be easier to
know what kind of data one should search for and what kind of data are important for the
project. It provides the basis for the data search.

Step 2: Gain some background information
Aim Choosing a resource of your interest and identifying what data you need

How 1.	 Gain background knowledge on the resources of interest. For instance inves-
tigate on the resources life cycle in order to understand the types of resource
flows (unrefined, refined, scrap, etc.) at stake and to understand whether the
resources of interest is interconnected to other resources.

Tip By gaining knowledge on the resources of interest, it will be easier to know what kind
of data one should collect and what kind of data are important for the project.

Step 2: Gain some background information
Aim Choosing a resource of your interest and identifying what data you need

How 1.	 Gain background knowledge on the resources of interest. For instance inves-
tigate on the resources life cycle in order to understand the types of resource
flows (unrefined, refined, scrap, etc.) at stake and to understand whether the
resources of interest is interconnected to other resources.

Tip By gaining knowledge on the resources of interest, it will be easier to know what kind
of data one should collect and what kind of data are important for the project.

4.1 Data Collection

6

Step 3: Data collection
Aim Find a reliable data source and download datasets of interest

How 1.	 Search online for global statistical databases such as the United Nations Com-
modity Trade Database. One could also try to contact these via other ways than
online.

2.	 If statistical databases do not provide the data sought, look at specific resources
international groups and national geological surveys’ publications and reports.
To find such databases sources, you can make an Internet search but you also
can look at the sources of figures and graphs found in papers about resources.

3.	 	Download the dataset found in a format that is easily editable and convertable.
For instance prefer .xls or .csv format to .pdf format.

Tips 1.	 The United Nations Commodity Trade Database (UNComtrade) is a good place
to start searching for datasets as it includes freely available datasets over a long
period of time and both in mass and in monetary value for an extensive list of
commodities. The database is accessible at

http://comtrade.un.org/db/default.aspx

As we experienced difficulties to navigate the UNComtrade database and extract
relevant datasets, we provide here below detailed guidelines on this process.

a.	 Go to http://comtrade.un.org/

b.	 Select Database. On this page you can already search in the database, but
you are not able to download any datasets from here.

c.	 Go to Data Query > Basic Selection.

d.	 There is a lot on this page. What is most important is the field: Step 2, Enter
Selection Items > Step 2 Select Items. Here you can either search on the
basis of terms such as copper and nickel, but you can also use the commod-
ity code numbers. A list on these commodities can be downloaded. Go to the
top tab Fast Tracks> Commodity List.

e.	 When you have searched for an item (on the page Data query>Basic Selec-
tion), try to unfold the founded commodities. If you choose items given a four
digit code (i.e. the next category under the main groups) you will be able to
get much more detailed datasets (i.e. also in mass units).

f.	 There are multiple tabs in the field Step 2. Enter Selection Items. You will not
always be able to fill in or make selection in all these. Still it is advised to filter
the database as much as possible as you will only be able to download your
dataset if it contains less then 50.000 records.

http://comtrade.un.org/db/default.aspx
http://comtrade.un.org/

7

Step 3: ... continued
Tips g.	 Because you need less than 50.000 records, you might have to repeat the

filtering process or selecting in general a couple of times before you have all
the datasets you want.

h.	 When you have made your selection, Submit your query and be very patient;
it takes some time.

i.	 On the next page you will be able to download the query (if there are less
than 50.000 records).

2.	 Specific resources international (study) groups and national geological surveys
cooperate with national statistical office and often possess large databases.
The US geoglogical survey (USGS) and the British geoglogical survey (BGS)
have large databases for mineral resources accessible at www.usgs.gov/ and
bgs.ac.uk/. However these types of databases are in general not freely avail-
able. You can always try to approach them though to discuss about a possible
collaboration.

3.	 National and/or continental statistical office, such as Eurostat, can also be rich in
resources data flows. However collecting datasets from such offices makes the
data processing more difficult since compiling data from different sources is not
straightforward. Indeed, the reporting standards and norms (e.g. country names,
units, resoruces categorization, etc.) might differ from one national/contienental
statisical office to another.

Step 4: Data quality control
Aim 1.	 Check that the dataset collected is sufficient, relevant, valid and reliable1,2. The

datasets should be:
-	 Sufficient enough to support the final results.
-	 Relevant, i.e. in a logical relation with the aim of the project.
-	 Valid in terms of arithmetical units, classification etc.
-	 Reliable in terms of its source and the way it was manipulated (unit transfor-

mation, calculations, etc.)

How 1.	 Check whether the database/data set contains all the information you need to
answer your research questions. If not you need to make a judgment on whether
it will be possible to get this from another source without this compromising in
compatibility, or that you will need to look for a new database or data set.

1.	 Morgen, S.L. (2004). Guidance on Testing Data Reliability. Austin, Texas.
2.	 Crispieri, G. (2008). Data Quality Evaluation Methods. International SEMATECH Manufacturing Initiative.

8

Step 4: ... continued
How 2.	 Check whether the dataset collected is consistent and coherent. For instance

check :

a.	 	Whether the units are consistent

b.	 Whether the number annotation is consistent (for instance the decimal sepa-
rator should be the same everywhere)

c.	 Whether the country names are are consistent

d.	 	Whether the classification/categorization is consistent (this applies only in
the case of the use of different data sources)

e.	 	Whether the imports and exports match more or less.

f.	 	How non available data is reported (for instance, sometimes database use
zero to report both non available data and data which are really equally to
zero)

3.	 Check whether the data source is transparent about how the dataset was col-
lected and calculated and check whether this has been done in a coherent and
consistent way.

Tip A more in dept (but more time consuming as well) quality check can be done by compar-
ing several databases with each other and/or by comparing datasets in mass with data in
economic value.

Note Often in import-export datasets, the imports and exports do not match perfectly. This
happens because of different ways of reporting or because of slight miscalculations.

Warning Data collection via the several national statistical offices might cause misunder-
standings with the material categories that the statistical offices use when they
are developing their databases. Sometimes it might be possible to overcome this
if it is just a different naming of the categories, or if these are aggregated of other
categories. For this a better understanding of the resource (as in life-cycle knowl-
edge and processing of the resource at stake) is needed.

Step 5: Data terms of use and copyright control!
Aim Ensure you are allowed to use and publish the data collected!

How Search for the terms of use and copyrights of the data collected and ensure you comply
with them.

9

4.2 Data Processing

The processing and composing of data files described in
this section form a good basis to start using data in visual-
ization tools. However for some visualization tools further
processing is needed and will be described in later sections.

Step 6: Data processing
Aim Process the data into a file format (csv) and structure that can be used by the visu-

alization tools. More precisely, here we want to convert the data into 2 separate files
(see Figure 4.1 and Figure 4.2)

Figure 4.1:
A first csv file containing the resource flow data (origin, destination, flow magnitude,
flow type and year) in a table structure.

Figure 4.2:
A second csv file containing country information (Country code, country name, longi-
tude, lattitude and possibly also altitude, capital and continent). The country codes and
country names are based here on the ISO2 standards. This file should again be in a
table structure.

Figure 4.1: Table with resource
	 flow data

Figure 4.2: Table with country information

Required software:
•	Spreadsheet software (e.g. Excel)
•	Text editor or WordPad
•	Google Refine
•	RStudio

10

Step 6: ... continued
How N.B.: The data processing depends on the file format (xls, cs, pdf, etc.) and the structure

(list, symetric matrix, non-symetric matrix) of the data sets collected. Here we described
the data processing steps starting form the data format and structure we collected, ie. a
table in .csv format.

Our datasets were gathered from the UNComtrade database. In these datasets, string
variables are coded, eg. country names and commodity (resources flow types) names,
are represented by code numbers (see Figure 4.3). The description of the codes used in
the UNComtrade databases can be found on the website of the UNComtrade.

Figure 4.3: UNComtrade data table

11

Step 6: ... continued
How 1.	 	Convert the country codes and the commodity codes into names (strings) in or-

der to make the dataset more easily understandable. If one is experienced with
R language, one could use a R code to do this. Here, as we were more familiar
with Excel, the VLOOKUP formulas in Excel were used to replace the codes with
the corresponding names (strings). You can use a VLOOKUP formula if you want
to look up a value (in this case a code) in a given array and find the matching
strings/value (in this case the names). For more details on how to use VLOOKUP
formulas, check

http://www.timeatlas.com/5_minute_tips/general/learning_vlookup_in_excel

2.	 For further processing the data you can use Google Refine. Often databases
are too big for spreadsheet software. Therefor Google refine provides an easy
accessible and free tool to further process it, for instance to scan mistakes and
filter out the needed data.

3.	 Because the data processing steps can vary a lot depending on what software
you use and what you want as an outcome yourself, we made a summary of the
conversions and processing we applied to the UNComtrade data:

a.	 	Country codes were defined according to ISO2 standard

b.	 Former countries received the same country code as the current countries
they have become (for instance former East and West Germany and current
Germany)

c.	 Countries (most often small Islands) that are not independent and did not
have there own country code were left out the dataset.

d.	 ‘not else where specified’, special zones, bunkers and free zones were fil-
tered out.

e.	 Also ‘world’ as an entity is left out, this is the aggregation of all the flows from
one country, but could not be visualized in our tools.

f.	 Separate files were created for monetary trades flows and mass trade flows

Note There are several option to convert or transform datasets. One can use software as
different as R, Microsoft Excel, Openoffice Calc or Google Refine. All these softwares
have their own advantages and disadvantages; R has lots of opportunities, but requires
knowledge and experience on coding, Microsoft Excell known and widely used, but is
not freely available, Openoffice then is freely available but is often more limited in func-
tions, Google Refine is a good tool to explore and filter databases however it is not that
straightforward to convert, calculate and transform datasets.

Warning If you have data in a pdf format (e.g. tables of data in a pdf report), a PDF converter soft-
ware can be used to convert it to xls or xlsx format. There are several open source pdf
converters available. For example “Total PDF Converter” (available at
http://www.coolutils.com/TotalPDFConverter) for windows users. For mac users there
is an online PDF converter (available at
http://www.freepdfconvert.com/convert_pdf_to_source.asp), however it is limited in
amount and use.

12

5. Google Earth
Google Earth visualizes the earth in 3D, and provides sat-
ellite imagery, maps, terrain, 3D buildings and other fea-
tures. Google Earth reads .kml files, which use XML syntax.
These files can either be written directly using a text editor,
or created in Google Earth. Although it is possible to create
.kml files using Google Earth, it would be too time consum-
ing to do so for large data sets. During the course of this
process, RStudio was used to automate the production of
.kml files.

These guidelines will lead you through this process. In
short: Data in the form of .csv files will serve as input for
RStudio which will then produce .kml files based on this

data. These .kml files will be opened in Google Earth which
will give a similar view as in Figure 5.

Almost no programming is required to get to these results
with the exception of some minor modifications in the
source code.

Required software:
•	RStudio
•	Google Earth

Step 1: First preparations
Aim Opening the R file and setting the working directory

How 1.	 Open the file “RCode_instr.R” located in the “Google Earth” folder which is a
subfolder of the “UM_files” folder that was downloaded earlier.

2.	 To be able to access .csv datafiles we need to set a working directory. If you look
at the 5th line of the R code in the editor you will see:

setwd(““)

3.	 In between the quotes the path to the working directory has to be placed, which
is the path to “Files for RStudio & Google Earth” on your desktop. Paste the path
in between the quotes similar to:

setwd(“c:/Documents and Settings/Name/UM_files/Google Earth”)

4.	 Now save the file under a different name, “RCode_test.R” in the same work-
ing directory. (File > Save as...).

Warning When you set the working directory make sure to use slashes (/) and not the more
often used backslashes (\)

13

Step 2: Creating the .kml file
Aim Creating the .kml file and opening it with Google Earth

How 1.	 In RStudio select the entire R code and run it by clicking the ‘Run’ button

When RStudio has finished running the code the file “Dummy_Flows.kml” should
now be in your working directory.

2.	 Open “Dummy_Flows.kml” in Google Earth and the result should show you
something similar to Figure 2. below.

Figure 5.1: The RStudio interface

14

Step 3: Using other data
Aim Knowing how to change the R code in order to use other .csv files as input

How 1.	 Go back to RStudio with the file “RCode_test.R” open. The R code refers only
to the following two .csv files which can be seen in line 9 and 10 of the R code:

coordData = read.csv(“Countries.csv”, header=TRUE, strip.white=TRUE, sep=”;”)

data = read.table(“Flows.csv”, header=TRUE, strip.white=TRUE, sep=”;”)

2.	 As we have seen in Step 1 there is a “Flows2.csv” we we will now use. To select
this file for use simply change “Flows.csv” (line 10) into “Flows2.csv” in the R
code

3.	 Before we run the code we will change two things in the R code. First go to line
82 and 83 where you will see the following:

<Document>
 <name>Dummy trade</name>

This piece of code part of the data structure of the KML. Line 83 basically sais
“Dummy trade” will be the name of the KML document.

4.	 Change “Dummy trade” into “Dummy trade2” to be able to distinguish the new
KML from the earlier created KML in Google Earth.

5.	 The second thing to change is at line 270. You will see the following:

write(kmlText, file=”Dummy_Flows.kml”, append=FALSE)

6.	 Change “Dummy_Flows.kml” into “NewData_Flows.kml”

7.	 Run the code again by selecting the entire code and clicking the “Run” button.
In your explorer you will now find “NewData_Flows.kml” in your working directory.

8.	 Open “NewData_Flows.kml” with Google Earth. You will probably see something
similar as Figure 5.2.

As you can see there are not many flows shown in this file compared to the previ-
ous kml (“Dummy_Flows.kml”) that was created, shown in Figure 5.1.

9.	 Go back to RStudio and go to line 25 of R code (“RCode_test.R”). You will see
the following:

data <- data[with(data,which(data$FlowMagnitude >= 1000000)),]

This command tells RStudio not to include flows below the magnitude of 1000000.

10.	 Change the number 1000000 into 1000 and run the code again (Select entire
code and push the “Run” button).

15

Figure 5.2: “NewData_Flows.kml”

Figure 5.3: “NewData_Flows.kml” after lowering the magnitude threshold to 1000

16

Step 3: ...continued
How 11.	 The file “NewData_Flows.kml” will be rewritten. Open it and click “Yes” when a

window asks you if you want to reload the file. The result will be similar to what
can be seen in Figure 5.3.

Note There are more things you could alter within the R code. As you might have noticed
there are comments throughout the file indicated by the ‘#’ symbol. This symbol basi-
cally tells RStudio not to see this piece of text behind it as a command. The comments
in the file can help you indicate where things could be changed. A version of the R
code without the comments is also provided: “RCode_clean.R”

Warning If you want to use your own data make sure it is formated in the same way as “Flows.
csv” and “Countries.csv”. This includes the following aspects

•	 The column names should not defer from the original .csv files. This is because
the R code specifically refers to these columns.

•	 The country- and continent names of both files should be corresponding

•	 Any errors such as “N.A.” in the .csv files could stop the final .kml from working

You have completed the Google Earth guidelines.

17

6. Google Motion Chart
Google motion chart is one of the chart types that Google
Chart Tools offers. It can be freely inserted in Google
Spreadsheet (an online spreadsheet similar to excel) as a
gadget. Motion Charts allow the conversion of data-series
in a dynamic flash-based chart. The motion chart can ex-
plore several indicators over time and be embedded in a
website.
Below the steps to produce a Google motion chart are de-
scribed. First the way the data should be formatted to fit
the Google motion chart requirement is explained. Then we
describe how to produce a motion chart.

Required software:

•	Spreadsheet software (e.g. Excel)
•	Google Spreadsheet
•	Google Earth (http://www.google.com/earth/index.

html)

N.B. A Google account is required for the use of Google
spreadsheet!

Step 1: Getting your data in Google Spreadsheet
Aim Producing a table suitable for Google Motion Chart

How 1.	 	Open your spreadsheet software (e.g. Excel)

2.	 When using your own data structure it in a way similar to:

3.	 You can save your file in one of the following format .xls, .xlsx, .ods, .csv, .txt,
.tsv or .tab.

4.	 We will be using “DummyData_CM.xls”. The file is located in the “Google Motion
Chart” folder which is a subfolder of the “UM_files” folder that was downloaded
earlier.

5.	 Select all data and copy it

6.	 Login to your google account and go to Google Docs

7.	 Click the Create > Spreadsheet

8.	 Paste the copied data in the spreadsheet

Year

1999

Country

Country 1

Mine
production

Numerical
value

Continent

Cont 1

Refined
consumption

N u m e r i c a l
value

Refined
production

Numerical
value

2000Country 2
Numerical

valueCont 1
N u m e r i c a l

value
Numerical

value

.........

18

Step 2: Creating a Motion Chart
Aim Inserting the Motion Chart gadget in your Google spreadsheet file

How 1.	 	Go to insert > Gadget

2.	 Click on Charts and scroll down untill you see Motion Chart and click on its as-
sociated picture.

3.	 A window will appear. Click on Apply & close

4.	 Your Motion Chart gadget will appear, looking similar to Figure 6.1.

5.	 To publish the gadget first click on the gadget. A dropdown menu called Gadget
will appear. Use the menu to click Publish gadget...

6.	 A script will be given which can be embedded in a website.

Warning If you use different variable for the x axis, the y axis and the size of the bubbles, be
aware that if the value of any one of the variable equals “0” or “NA”, the country will not
appear on the motion chart. For example, let’s say you have “mine production” as the
size of the bubbles, “copper production” on the x axis and “refined copper consumption”
on the y axis, if a country has zero “mine production”, it will not appear on the motion
chart. A way to get around this is to convert the zeros to a minimum value (e.g. one) so
that the countries still shows up in the graph. If you use this solution though you should
notify it clearly in your visualization.

 You have completed the Google Motion Chart guidelines.

Figure 6.1: Google Spreadsheet with the inserted gadget “Motion Chart”

19

7. JFlowMap
JFlowMap is an open source graphical tool that was
developed at the University of Fribourg in Switzerland. It
offers various visualization techniques for producing and
analyzing flow maps. The tool, a Java application, offers two
separate views: a space-centric view which is a flow map
representing flows for one year (Flowmap) and multiple
years at once (Flownap Small Mulptiple), and a time-centric
view which is an aggregated overview of the whole dataset
represented in the form of a time line (Flowstrates).

The strength of JFlowMap is that it offers many interaction
options, such as selection, zooming, filtering and animations,
and it allows the representation of the temporal dimension.
Moreover it requires little coding and little data processing
and thus visualizations can be fairly quickly created.

To make a JFlowMap, one needs to make a simple .jfmv
file that can be opened by the Java application Jflowmap.jar.
Several files will be connected to each other and therefor we
suggest to keep the folder structure as provided with the
UM_files.zip.

The first two steps will entail data preparation. There are
2 files needed: one with information about the countries
and the location of the anchor points (country capitals or
country’s central point) and one with the (resource) trade
flows. They will get a specific place in the folder structure
as well. Then we will adapt the flowmap files (.jfmv) to our
data, which can than be opened by the java applet (jflowmap.
jar).
Note: You can also use dummydata.csv and nodes.csv
located in the “JFlowMap” folder which is a subfolder of
the “UM_files” folder that was downloaded earlier. You can
also use these files as a reference for structuring your own
data

Required software:
•	RStudio
•	Reshape package (RStudio)
•	Spreadsheet software (e.g. Excel)
•	Text editor or wordpad

Step 1: Structure the resource flow data file
Aim Producing a square wide formatted table with column names: origin, dest, year01,

year02, year03, ..., yearXX, similar to:

How 1.	 If your data is already in this structure you can skip this step. Otherwise we as-
sume you have data in a table with column names: Origin, Dest and year. If there
are more columns, for instance Units, Type, etc, you can remove these or filter
them out by using the r-code in the next step. We also assume it is a csv files with
‘,’ as separator. We refer to this file in the next steps as ‘filename.csv’

2.	 In the folder “...UM_files\JFlowMap” you can find R file ‘reshapeData.R’. Move
this file to the same folder as your dataset ‘filename.csv’

Origin,De
st,1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007
SEN,ESP,,,,1,1,,2,2,3,4,4,3,3,3,3,2,2,2
CHN,PER,,,,,,,,1,,1,1,1,1,1,2,2,2,2,
CHL,MOZ,,,,300,250,190,140,130,130,130,160,160,140,,,,,
ECU,DEU,,,,,,,,,,,,,86,100,98,91,73,160
SRB,ISR,,,,,,,,,,1,,,,,,,,
IRQ,HUN,,,,11,17,,,,,,201,258,700,938,1294,1252,1235,1272
URY,ARG,570,1050,,,,,,,,,,,,,1,1,1,1
...

20

Step 1: ...continued
How 1.	 Open the r-code ‘reshapeData.R’ with RStudio. It should look like this:

2.	 	‘filename.csv’ (in red) should refer to your dataset.

3.	 	‘data.csv’ (in red) refers to the new file you want to produce.

4.	 	Make sure the column names (in green) match the column names of your data
file.

5.	 	The commands in orange refer to the extra columns ‘Unit’ and ‘FlowType’, these
commands filter out these columns.

6.	 	Run the code: Select the whole code and press Run

You do not need RStudio after this

Tip The R Script needs to be in the same folder as your table / data file. You could also
provide the complete document address of your table in ‘filename.csv’ instead of just the
name.

Warning Be careful with the comma separators, make sure they match your data files. If you
change something in the code, please check if you all the “ and ‘ signs are present.

#never ever ever convert strings to factors - we’re not using factors in the data below
options(stringsAsFactors = FALSE)

library(reshape)

data = read.csv(‘filename.csv’, sep=’,’)

data$Unit=NULL
data$FlowType=NULL

#we have the long format, want the wide format
betterData = reshape(data, idvar=c(“Origin”, “Dest”), timevar=”Year”, direction=”wide”)

#http://stackoverflow.com/questions/1296646/how-to-sort-a-dataframe-by-columns-in-r
sortedData = data[with(data, order(Year)),]
betterData = reshape(sortedData, idvar=c(“Origin”, “Dest”), timevar=”Year”,
direction=”wide”)

write.table(betterData, file=”data.csv”, na=””, sep=”;”, row.names=FALSE)

21

Step 2: Create nodes.csv
Aim Create a new dataset with country or city information such as naming, longitude and

latitude. It should look like this:

How 1.	 If you are using Countries as your nodes (destination and origin) and Capitals
as anchor points, then you can use the nodes.csv file in the “JFlowMap” folder
located in the “UM_files” folder. Otherwise you need to structure your country
information as in the example given above.

Code,Name,Lat,Lon
LCA,Saint Lucia,13.903085,-60.9659
BRN,Brunei Darussalam,4.581283,114.819152
MDG,Madagascar,-18.054455,47.108621
KNA,Saint Kitts and Nevis,17.313103,-62.736679
UZB,Uzbekistan,41.447353,64.79929
LSO,Lesotho,-29.595733,28.244114
SLB,Solomon Islands,-8.910545,159.537743
MDV,Maldives,3.353159,73.260862
...

Step 3: Getting JFlowMap ready
Aim Either using JFlowMap provided in the “UM_files.zip” or downloading the latest JFlow-

Map application from the web.

How 1.	 Either access JFlowMap by going to the folder “…\UM_files\JFlowMap\Dummy
Project”;

2.	 	Or download the latest version of JFlowMap at:

http://code.google.com/p/jflowmap/downloads/list

3.	 If you created the .csv files in Step 1 and Step 2 (data.csv and nodes.csv), place
them in the folder “Data”.

Warning If you downloaded the latest version of JFlowMap, make sure to check if the folder struc-
ture, as it might have changed.

22

Step 4: Create your own flow map
Aim Making a .jfmv file linked to your data which can be run by jflowmap.jar

How 1.	 In the folder “...UM_files\JFlowMap\Dummy Project\viewconf” you can find the
file “flowmap.jfmv”

2.	 	Open “flowmap.jfmv” with a text editor or WordPad

3.	 What is important are the 5th and 6th paragraph which should look similar to:

4.	 	Make sure the separator matches your data files

5.	 Line 5 (in red) refers to your data file, if you created your own (step 1) then you
need to change this to ‘data.csv’.

6.	 The next lines (in green) should match the column names in your data files.

7.	 The last line (in orange) is where you can define the Unit

…
data=csv
data.csv.separator=;
data.csv.charset=utf-8
data.csv.nodes.src=../Data/nodes.csv
data.csv.flows.src=../Data/dummydata.csv

data.attrs.node.id=Code
data.attrs.node.label=Name
data.attrs.node.lat=Lat
data.attrs.node.lon=Lon
data.attrs.flow.origin=Origin
data.attrs.flow.dest=Dest
data.attrs.flow.weight.re=[0-9]{4}
data.attrs.flow.weight.legendCaption=Kg
…

23

Step 5: Launching the .jmfv files
Aim Opening the jmfv files, view your visualization and explore the possibilities

How 1.	 Open the jflowmap.jar file in the folder “…UM_files\JFlowMap\Dummy Project”
This will run the java application

2.	 	In the application open the “flowmap.jfmv” file located at “... UM_files\JFlowMap\
Dummy Project\viewconf. (File > Open View > flowmap.jfmv)

Warning It could be that it gives an error. This could be due to a mistake in your csv files or due to
a mistake in referring to files. Make sure that you used the correct comma separator as
defined in the code, that every row has the same length and that the nodes.csv doesn't
contain N/A's.
A nice thing about JFlowMap is that it tells you where the mistake is: for instance it will
tell you what he can’t find and on which row there is a mistake. You will need to trace
these back in your data files.

Step 6: Changing the settings
Aim Changing default settings and add functions

How 1.	 Re-open “flowmap.jfmv” with a text editor or WordPad

2.	 To change the function: Delete the line “window.settings.showTabs=Edge
bundling,Animation,Filter” so that there is no selection made of
which functions to show.

3.	 	In the application re-open the “flowmap.jfmv” file in JFlowMap (see Step 4). You
will see that there are more functions.

4.	 To make a selection you need to add the line “window.settings.
showTabs=Edge bundling,Animation,Filter” again. After the
equation mark you can add the functions you like to show, leave out those that
you do not want to show.

5.	 To change the default setting: You can play with the default settings by changing
some of the numbers and TRUE/FALSE parts in the first 2 paragraphs.

6.	 More explanation on what each line represents can be found in the “Script with
explanations.rtf” file located in the “...UM_files\JFlowMap” folder.

Warning It could be that it gives an error. This could be due to a mistake in your csv files or due to
a mistake in referring to files. Make sure that you used the correct comma separator as
defined in the code, that every row has the same length and that the nodes.csv doesn't
contain N/A's.
A nice thing about JFlowMap is that it tells you where the mistake is: for instance it will
tell you what he can’t find and on which row there is a mistake. You will need to trace
these back in your data files.

24

(Additional) step 7: Small multiples and Flowstrates
Aim Create Small Multiples and Flowstrates

How 1.	 Repeat Step 4, but open flowmap-sm.jfmv or flowstrates.jfmv instead

2.	 You will find the same paragraphs in these files for which you need to ensure
they match you data files

3.	 Also repeat Step 5 but now open the “flowmap-sm.jfmv” or “flowstrates.jfmv” file.

You have completed the JFlowMap guidelines.

25

8. Chord Diagrams
A chord diagram is a type of visualization offered by D3, a
free JavaScript library for the manipulation of documents
based on data. Chord diagrams show directed relationships
within a group of entities.

Chord diagrams are based on 3 different types of files: (1)
a HyperText Markup Language (html) file for webpage
content, (2) a Cascading Style Sheets (css) file for appear-
ance and layout, (3) and a javascript (js) file for interaction.
They require fairly complex coding but as the as the adage
goes “never program what you can steal”. Fortunately,
the code for chord diagrams has already been written and
is shared online. The trick is to “steal” the code and then
adapt it.

Below the steps to produce a chord diagram are described.
In brief, first the input data has to be formatted to fit
with the chord diagram. Then the code to create chord
diagrams has to be adapted to the input data. Finally, the
chord diagram can be opened on a web browser.

Required software:
•	Spreadsheet software (e.g. Excel)
•	Text editor or wordpad
•	Web browser
•	Text editor or wordpad

Step 1: Strucuring the resource flow data
Aim From the data structure created at the data collection and processing step (or from a

dummy file), produce a square matrix of numbers written in a scripting style as below
and representing resources imports and exports per continents.

How 1.	 Open either the resource flow data file you created in section “4.2 Data process-
ing” or open the dummy file “Dummy_data_file_1.xls”. Make sure to only include
three columns such as shown below:

2.	 Produce a symmetric matrix where rows represent OriginContinent and columns
represent DestinationContinent and the number of the matrix represent the Flow
Magnitude like in the figure below. Spreadsheet software > Insert > PivotTable.

These steps might differ per spreadsheet software. The result should be similar to
Figure 8.1.

26

Step 1: ...continued
How 3.	 Export the symmetric matrix in a csv format. Spreadsheet software > save as >

.csv. Open the .csv in a text editor (e.g. WordPad) and it should look similar to:

4.	 Manually remove texts (e.g. the first two lines and all continent names). Then
add squared brackets ([]) so that it will be exactly the same as below. You will
later need to copy this piece of syntax.

Tip The chord diagram crashes when the numbers in the input matrix are too complex. To
overcome this problem, round up your numbers. If you have data in kilograms, divide
them by 1000 to obtain data in Ktons and remove decimals.

Warning Be careful that your input matrix is symmetric and separated by commas (rather than
semi columns for instance).

Note This whole step aims to produce manually a matrix of numbers that can be copy-paste in
the chord javascript code (.js file) that will create the Chord diagram. However in prin-
ciple, it should be possible to make the javascript code read an external csv or a json file
as opposed to inserting directly the matrix of data in the javascript code. Thus in principle
this whole step (ie. the production of a matrix of numbers in the above format) could be
avoided if you have the appropriate javascript code (i.e. a code that reads an external
csv or a json file of data). Unfortunately, due to the restricted amount of time, we use the
supoptimal yet easier solution of copy-pasting the matrix of data in the javascript code.

Figure 8.1: Pivot table format in spreadsheet software

27

Step 2: Prepare the .js file
Aim Preparing the “File_Name_1.js” file

How 1.	 	Access the “Chord Diagram” folder located in the “UM_files” folder.

2.	 	Open the “File_Name_1.js” file with a text editor. It should look similar to Box 8.1
(on the next page). If not, try a different text editor.

3.	 The “File_Name_1.js” file will contain data similar to that in Box 8.1. Replace the
pieces of syntax in “File_Name_1.js” with the corresponding pieces of syntax
indicated in red in Box 8.1 (Note that one of these pieces of syntax is the earlier
created matrix, you can copy paste this now)

4.	 Save and close the file

Note The .css file does not require any change (except if you want to change the appearance
and layout of the chord diagrams).

Step 3: Prepare the .html file
Aim Preparing the “chord.html” file so that it refers to the .js files

How 1.	 	Open the “chord.html” file in the “Chord Diagram” folder with a text editor and
adapt it to your data in way resembling Box 8.2 (page 30).

2.	 Save and close the file

Tip Keep the .js, .css and html files in a single folder as these files refer to one another.

Step 4: Admire the result
Aim Open the chord diagram in explorer

How 1.	 	To view the chord diagram open “chord.html” in a web browser

You have now completed the Chord Diagram guidelines and, thereby, you have completed the
complete User Manual.

28

// From http://mkweb.bcgsc.ca/circos/guide/tables/

// Set the chart dimensions.
// "w" = width
// "h" = height
// "r0" = inner radius
// "r1" = outer radius
var w = 400,
 h = 400,
 r0 = Math.min(w, h) * .30,
 r1 = r0 * 1.1;

// Create the chord.
// "padding" = the space between the variables (for instance the continents) on the
chord arc.
// "matrix" refers to your input data, which must be in a symmetric matrix of numbers.
var chord1 = d3.layout.chord()
 .padding(.05)
 .matrix([
 [1959,248,2225,0,0,0],
 [16,6524,9475,4,1,1],
 [11111,33281,154710,29,11,46],
 [3,48059,2885,33270,138,174],
 [0,0,0,0,0,0],
 [0,67636,139887,80370,58235,0]
]);

// Labels the variables. The order of the variables should follow the order of vari-
ables in the matrix.
var labels = new Array(
 "Africa","Asia","Europe","North America","Oceania","South America"
);

// Set the colors in HEX format (i.e. web color codes). The order of the color corre-
sponds to the order of the labels set above.

// You need to choose a palette of colors to represent your variables (for instance
the different continents). To find an appropriate color palette, check http://www.col-
orbrewer2.org/

// Here Dark blue (Africa) = #00008b, Light blue (Asia) = #5cacee, Dark green (Europe)
= #006400, Light green (North America) = #7cfc00, Yellow (Oceania) = #ffff00, Orange
(South America) = #ff8f00
var fill = d3.scale.ordinal()
 .range(
 ["#00008b","#5cacee","#006400","#7cfc00","#ffff00","#ff8f00"]
);

// Define the attributes of the chord diagram
var svg = d3.select("#chart1")
 .append("svg:svg")
 .attr("width", w)
 .attr("height", h)
 .append("svg:g")
 .attr("transform", "translate(" + w / 2 + "," + h / 2 + ")");

// Define the style and appearance of the chord arc
// "fade" = function that makes the rest of the chord fade when one variable is se-
lects on the chord arc.
svg.append("svg:g")
 .selectAll("path")
 .data(chord1.groups)

Box 8.1: “File_Name_1.js” (colors added)

29

 .enter().append("svg:path")
 .style("fill", function(d) { return fill(d.index); })
 .style("stroke", function(d) { return fill(d.index); })
 .attr("d", d3.svg.arc().innerRadius(r0).outerRadius(r1))
 .on("mouseover", fade(.1))
 .on("mouseout", fade(1))
 .append("svg:title")
 .text(function(d) {return labels[(d.index)]});
	

// Define the style and appearance of the inside of chord
svg.append("svg:g")
 .attr("class", "chord")
 .selectAll("path")
 .data(chord1.chords)
 .enter().append("svg:path")
 .style("fill", function(d) { return fill(d.target.index); })
 .attr("d", d3.svg.chord().radius(r0))
 .style("opacity", 1);

// Define how the ticks on the chord arc are computed.
var ticks = svg.append("svg:g")
 .selectAll("g")
 .data(chord.groups)
 .enter().append("svg:g")
 .selectAll("g")
 .data(groupTicks)
 .enter().append("svg:g")
 .attr("transform", function(d) {
 return "rotate(" + (d.angle * 180 / Math.PI - 90) + ")"
 + "translate(" + r1 + ",0)";
 });

// Define how the ticks should look like.
// "x1" = distance of the ticks from the chord arc
// "x2" = length of the ticks
ticks.append("svg:line")
 .attr("x1", 1)
 .attr("x2", 6)
 .style("stroke", "#000000");

// Define where the label of the ticks.
ticks.append("svg:text")
 .attr("x", 8)
 .attr("dy", ".35em")
 .attr("text-anchor", function(d) {
 return d.angle > Math.PI ? "end" : null;
 })

 .attr("transform", function(d) {
 return d.angle > Math.PI ? "rotate(180)translate(-16)" : null;
 })
 .text(function(d) { return d.label; });;

// Return an array of tick angles and labels, given a group.
function groupTicks(d) {
 var k = (d.endAngle - d.startAngle) / d.value;
 return d3.range(0, d.value, 25000).map(function(v, i) {
 return {
 angle: v * k + d.startAngle,
 label: i % 2 ? null : v/1000

30

 };
 });
}

// Returns an event handler for fading a given chord group.
function fade(opacity) {
 return function(g, i) {
 svg.selectAll("g.chord path")
 .filter(function(d) {
 return d.source.index != i && d.target.index != i;
 })
 .transition()
 .style("opacity", opacity);
 svg.selectAll("g.chord path")
 .filter(function(d) {
 return d.source.index != i && d.target.index != i;
 })
 .transition()
 .style("opacity", opacity);
 svg2.selectAll("g.chord path")
 .filter(function(d) {
 return d.source.index != i && d.target.index != i;
 })
 .transition()
 .style("opacity", opacity);
 svg3.selectAll("g.chord path")
 .filter(function(d) {
 return d.source.index != i && d.target.index != i;
 })
 .transition()
 .style("opacity", opacity);
 };
}

<!DOCTYPE html>
<html>
 <head>
 <meta http-equiv="Content-type" content="text/html; charset=utf-8">
 <title>Webpage Title </title>
 <script type="text/javascript" src="http://mbostock.github.com/d3/d3.js?2.4.6"></
script>
 <script type="text/javascript" src="http://mbostock.github.com/d3/d3.layout.
js?2.4.6"></script>
 <link type="text/css" rel="stylesheet" href="chord.css"/>
 </head>
 <body>
 <div id="container"><center><h1>Container Title</h1></center>
		
	 <div id="chart1"><center><h3>Chord Title 1 [Unit] </h3></center></div>
	 <script type="text/javascript" src="File_Name_1.js"></script>
		
	 <div id="chart2"><center><h3>Chord Title 2 [Unit]</h3></center></div>
	 <script type="text/javascript" src="File_Name_2.js"></script>
		
	 <div id="chart3"><center><h3>Chord Title 3 [Unit]</h3></center></div>
	 <script type="text/javascript" src="File_Name_3.js"></script></script>
 </body>
</html>

Box 8.2: “chord.html” opened in a text editor (colors added)

