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Appendix 
 
 
 
The program CrossMark is designed to estimate transition probabilities 
using data from repeated cross sections. Given a dichotomous Y variable, 
CrossMark estimates the effects of predictor variables X on the entry and 
exit probabilities using a Markov model.  
 
CrossMark is available for Windows 95, 98, 2000 an XP. The program 
needs not be installed: simply place file CrossMark.exe in a directory of 
your choice and double-click on this file (in Windows Explorer) to start 
CrossMark. The Main Menu then appears on the screen. This menu looks 
like the one in Figure 1, except that all fields are still empty. 
 
 
 

1  Standard analysis 
 
 
We shall describe how a standard analysis with CrossMark proceeds using 
a fictitious example on vote intention. To highlight all the options of the 
program, we use bold face characters for buttons that must be clicked and 
fields or menu's that have to be filled in. 
 
Suppose the data to be analyzed are from 5 cross-sections, gathered in 
consecutive years, i.e., from 1996 to 2000. The dependent variable is the 
'intention to vote for political party A' (code 1 = 'vote for', 0 = 'not vote for') 
and the independent variable is the respondent’s age (ranging from 18 to 70 
years). The file containing the data is named 'c:\crossmark\vote.dat'. This 
filename has to be entered on the Main Menu in the field Data file (t-x-n-
f1). The data file can be inspected by clicking the Edit button, which opens 
the data file in WordPad. The total number of cross-sections (5) has to be 
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entered in the field Number of cross-sections. The abbreviation 't-x-n-f1' 
behind 'Data file' stands for t=time index, x=X  or predictor variables, 
n=number of cases and f1=number of cases in category Y =1, 
respectively, and reflects the order in which the data must appear in the 
data file. The first three lines of the example data of each cross-section are 
shown below: 
 

1   1 18      1  18 19 20 21 22       9     2 
1   1 19      1  19 20 21 22 23       5     0 
1   1 20      1  20 21 22 23 24       3     0 
2   1 18      1  18 19 20 21 22       4     1 
2   1 19      1  19 20 21 22 23      13     5 
2   1 20      1  20 21 22 23 24       8     0 
3   1 18      1  18 19 20 21 22       4     2 
3   1 19      1  19 20 21 22 23       5     1 
3   1 20      1  20 21 22 23 24       8     3 
4   1 18      1  18 19 20 21 22       4     2 

 Figure 1   Main Menu 
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4   1 19      1  19 20 21 22 23      12    11 
4   1 20      1  20 21 22 23 24       8     5 
5   1 18      1  18 19 20 21 22       7     5 
5   1 19      1  19 20 21 22 23       4     1 
5   1 20      1  20 21 22 23 24       2     1 

 
The first data column is the time index t. As there are five cross-sections 
the time index has to have the values 1, 2, 3, 4, and 5 denoting the years 
1996, 1997, 1998, 1999, 2000, respectively. CrossMark expects the data to 
be ordered in time, with the data of the first cross section located at the top 
of the file, those of the second cross-section following underneath and so 
on until the data of the last cross-section which must be located at the end 
of the file. 
 
The next 8 data columns of the data file in this example, i..e., column 2 
through 9, contain the values of the predictor variables X . There are 4 
predictor variables here: 
 
1. An intercept, having the value 1 for each case. It is located in column 2 

of the data file. In the sequel we will refer to it as ‘intercept 1’. 
2. The respondents age in 1996, located in column 3. For the respondents 

of the cross sections 1997 and following, the age in 1996 has been 
computed by ‘backcasting’ their age to the year 1996. We shall explain 
below why we use ‘age in 1996’ as a separate predictor, which we call 
‘age 1996’. 

3. A second intercept in column 4, which is called ‘intercept 2’. 
4. The respondents age in each of the five years, located in columns 5 

through 9. These five age values together constitute a single predictor 
variable, the values of which change over time. We call this predictor 
'age'. 

 
We will return to the characteristics of the 4 predictors and the way they 
affect the transition probabilities in more detail below. The last two 
columns, 10 and 11, of the data file concern the total number of cases and 
the number of cases in Y  category 1, respectively. For example, the first 
record of the cross section at t =5, i.e., the record 
 
5   1 18      1  18 19 20 21 22       7     5 
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specifies that there are 7 cases in this cross section who were 18 years old 
in 1996, 19 years old in 1997 etc., and that 5 of them are in Y  category 1 
(at t =5) while the other 2 are in category 0. If each row in the datafile 
would contain data for just a single case, then the last but one column (here 
column 10) would be 1 for all cases while the last column would be either 1 
or 0. There is no need to aggregate over t , X  and Y . However, 
aggregating the data, as is done in this example, can speed up the 
estimation process considerably. 
 
We now return to the predictor variables .X  The predictors numbered 1, 2 
and 3 above are constant over time, while predictor 4 takes a different 
value in each of the five years. Time constant predictors occupy a single 
column in the data file, while time varying predictors occupy as many 
columns as there are cross-sections, i.e. five in the example. The names and 
types (constant or varying) of the predictors have to be specified in the 
submenu Predictor names and types, which shows up after clicking the 
X-names button of the Main Menu and is shown in Figure 2. The left field 
of the submenu Predictor names and types contains the predictor’s name 
and the right field the predictor’s type. For a time constant predictor enter 
the character c, and for a time varying predictor enter v. Having done so, 
click OK to return to the Main Menu. 
 
To understand why we use two intercepts and two age predictors (instead 
of just one intercept and one age predictor, which would be possible too) 

  Figure 2  Predictor names and types 
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we take a closer look at the model equations for 
1
p , 

2
p , 

3
p , 

4
p  and 

5
p  or, 

in words, the probabilities to vote for political party A in each of the five 
years. In general, the basic equations CrossMark uses are, with five cross-
sections: 
 

1 1

2 1 2 1 2

3 2 3 2 3

4 3 4 3 4

5 4 5 4 5

(1 ) (1 )

(1 ) (1 )
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In the example, the transition probabilities μ  and λ  depend on the 
respondents ages as follows:  
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= + − =
* *

1 2 2000
Ageβ β+

 

 
Age1996 refers to the respondent’s age in 1996, Age1997 to the age in 1997, 
etcetera. The symbol λ  indicates the exit probability: 

3
λ  is the probability 

not to vote for party A in 1998 given a ‘vote for A’ in 1997. For the 
complement of λ , or the probability to stay in state 1Y = , the term 
‘1-exit’ probability is used in the sequel. The symbol μ  indicates the entry 
probability: 

3
µ  is the probability to vote for A in 1998 given a ‘not vote for 

A’ in 1997.  
 
Speaking of 

1 1
pµ =  as an entry probability can be problematic. Generally 

spoken, 
1
p  is the probability to be in state 1Y =  at 1t =  and this need not 

to be the same as the probability to be in state 1Y =  given that the 
previous state was 0Y = . Only if one knows that each respondent's 
previous state was 0Y = , one may truly consider 

1
p  an entry probability. 

This would e.g. be the case if political party A did not exist before 1996. In 
many applications, of course, the 1Y =  state does exist prior to 1t =  and 
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respondents could have been in that state. In such situations, one may 
prefer to model 

1
p  as a state probability, rather than an entry probability. 

This is accomplished by estimating different sets of parameters for 
1

μ  and 
for 

2
µ  and following, as is done in the model above, where the parameters 

1
β  and 

2
β  only apply to 

1
μ . 

 
In CrossMark the model equations can be specified in the Design mu and 
Design lambda fields of the Main Menu. In Design mu we indicate which 
predictor variable acts upon which entry probability μ . For the example 
this is done as follows: 
 
 1  1 1  0 0 
 2  0 0  1 1 
 3  0 0  1 1 
 4  0 0  1 1 
 5  0 0  1 1 

 
The first column is the time index t  and the other four columns correspond 
to the four predictor variables in the model. The second column 
corresponds to 'intercept 1', and the value 1 for 1t =  indicates that 
‘intercept 1’ has an effect on 

1
μ ; the 0 scores in the second column for 

2, 3, 4t =  and 5  indicate that ‘intercept 1’ does not have an effect on 
2

µ , 

3
µ , 

4
µ and 

5
µ . The rightmost column is related to the time varying 

predictor ‘age’; the 0 value for 1t =  indicates that 'age' does not occur in 
the equation for 

1
μ  while the 1 values for 2, 3, 4t =  and 5  indicate that 

'age' does occur in the equations for 
2

µ , 
3

µ , 
4

µ and 
5

µ . 
 
In general, the Design mu matrix must have as many rows as there are 
cross-sections. Each row starts with the time index t  and is followed by a 1 
or 0 value for each predictor variable indicating whether (1) or not (0) the 
predictor acts upon entry probability 

t
μ . In the same way a Design lambda 

matrix has to be specified indicating which predictor acts upon which exit 
probability λ . For the present example the lambda matrix is specified as: 
 
 1  0 0  0 0 
 2  0 0  1 1 
 3  0 0  1 1 
 4  0 0  1 1 
 5  0 0  1 1 
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Note that the first row of the Design lambda matrix contains the value 1 
for the time index 1t =  and else only 0 values to indicate that none of the 
four predictor variables has an effect on 

1
λ . This is just to specify that 

1
λ  

does not play a part in the model equations. 
 
We proceed by clicking the Estimation button of the Main menu to invoke 
the Estimation Menu as shown in Figure 3. The upper two fields in this 
Estimation Menu specify the starting values for the iterative Fisher 
scoring scheme. The default values are 0 for all β  and *β  parameters of the 
entry and 1-exit probabilities respectively. Good starting values, i.e., values 
close to the final ML estimates, speed up the estimation process. Starting 
values far removed from the final estimates slow down this process or may 
cause the estimates to be caught in a local maximum or not to reach 
convergence at all. When convergence has been reached, it is advisable to 
choose other starting values and let CrossMark run again to check whether 
the same parameter estimates are found. If this turns out to be the case, one 
can be more confident that the estimates are indeed the true global ML 
estimates instead of estimates associated with a local maximum. 
 

 Figure 3   Estimation Menu 
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When analyzing complex models, in the sense of having many predictors, 
starting values become more of an issue. The final estimates of a previous, 
relatively simple model can be used as starting values for a new model 
having additional predictors. To this end the button read starting values 
can be helpful. After clicking, the final estimates of the previous model are 
filled in as starting values in both fields. The starting values for the 
additional predictors in the second model are defined to be zero and 
automatically added to the list. If a predictor that was present in the 
previous model does not appear in the second, the user has to remove the 
relevant starting values from both lines. 
 
If, for some reason, one would like to fix the parameters of one or more 
predictors to certain predefined values instead of having them estimated by 
CrossMark, one can be proceed as follows. In the field named Fixed entry 
parameters enter a value 0 or 1 for each predictor parameter that has to be 
estimated (enter 0) or not (enter 1). Be sure to enter a value 0 or 1 for all 
predictors and to use the same order for the predictors as was used in the 
menu Predictor names and types. For predictors that have a value 0 
specified, CrossMark will estimate a parameter starting from the starting 
value. For predictors that have a value 1 specified, CrossMark will not 
estimate a parameter but substitutes the given starting value as the 
parameter value to be used for this predictor's effect on the entry 
probability. In CrossMark's output, fixed parameters are denoted by the 
character 'f' and have a Wald Significance and Std. error of 1.0. In the same 
manner, one can fix parameters for the 1-exit probability. 
 
The Step size field in the Estimation Window refers to the step size ε  of 
the Fisher scoring algorithm employed for iteratively updating the 
parameter estimates. The algorithm is given by 

1

1

ˆ ˆ ˆ ( / )
k k k k

I LLθ θ ε δ δ θ
−

+
= + , where ˆ

k
θ  and 

1

ˆ

k
θ
+

 are the parameter 
estimates at the iterations k  and 1k + , 1

ˆ

k
I
−  is the inverse of the Fisher 

information matrix evaluated at ˆ

k
θ θ= , and ( / )

k
LLδ δ θ  are the 

derivatives of the log likelihood with respect to the parameters, evaluated at 
ˆ

k
θ θ= . By default, the value of the step size ε  is 0.5. If the log likelihood 
function has a single mode, the optimal value for the step size would be 1. 
It is not unusual, however, for the log likelihood function to have multiple 
modes in which case a step size of 1 could easily cause the algorithm to 
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jump over the parameter region with the highest mode. For this reason, a 
default step size of 0.5 is chosen. A much smaller step size value may slow 
down the algorithm too much. There is no rule of thumb given here as to 
the choice of the most efficient step size value. 
 
The Step size shrinkage (s ) also deals with the problem of the step size 
being too large. If the log likelihood based on 

1

ˆ

k
θ
+

 is lower than the one 
based on ˆ

k
θ , the current step size has apparently been too large. In that case 

CrossMark produces the message "Not converging, back to parameter 
estimates of previous iteration" and takes as the new step size the product 
s ε⋅ . If this smaller step size also leads to 

1

ˆ

k
θ
+

 estimates with a lower log 
likelihood than the one based on ˆ

k
θ , the step size s s ε⋅ ⋅  is tried. In short, 

the step size is multiplied by s  as many times as needed to produce an 
increase in log likelihood. 
 
The iterative estimation process ends if either the percentage change in log 
likelihood is less than the Minimal % LogLikelihood Change specified, 
which by default is 0.000001%, or the Maximum number of iterations 
has been reached, which by default is 1000. Also by default, CrossMark 
only shows the parameter estimates of the final iteration and not those of 
previous iterations. To force CrossMark showing the estimates of each 
iteration, check the Show iteration history option. 
 
By default CrossMark applies caseweights resulting in the same weighted 
number of cases for each cross section. The sum of all caseweights is equal 
to the total number of cases in all cross sections. To prevent this weighting 
procedure uncheck the option Weight cross sections equally. 
 
CrossMark produces an output file, the name of which can be specified in 
the field Outputfile for t-mu-lambda-p-fre. By default it is labeled 
'tmulapfre' and placed in the directory where the 'crossmark.exe' resides. 
The output file contains one line for each case in the data file. For case i , 
this line has the following information from left to right: 
 
- the time index of the cross-section case i  belongs to,  
- the predicted values of 

1i
µ  to 

iT
µ ,  

- the predicted values of 
1i

λ  to 
iT

λ , 
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- the predicted values of 
1i

p  to 
iT
p ,  

- the frequency of case i , equal to the frequency specified in the rightmost 
column of the data file. 

 
Predicted μ , λ  and p  values that do not apply to a particular case (e.g., 

3
µ  

for a case of cross-section 2, or 
1

λ  for all cases) are assigned the ‘missing 
value’ 9. 
 
By default, in CrossMark's output no (co)variances of parameter estimates 
are shown. They will be, if the option Show covariances of parameters is 
checked before running the model. 
 
The options for Unobserved heterogeneity and Metropolis sampling will 
be discussed below in separate sections. 
 
After clicking the OK button of the Estimation Menu the Main Menu 
reappears. To save all the specifications entered, click the Save button and 
specify a file name, e.g. 'vote.crm' which then appears in the top line of the 
Main Menu. Using the Save as button enables saving the job under a 
different name. The most recently saved job can be opened by clicking on 
the button Last job while older jobs may be opened with Other job.  
 
To start the analysis the data have to be read first. This is done by clicking 
on Read data. When finished reading, CrossMark presents the total 
number of cases as well as the number of cases for each cross-section in the 
rightmost window of the Main Menu. After reading the data, the estimation 
can be carried out by clicking on Go. The initial log likelihood, based on 
the starting values of the parameters, appears on the screen after a few 
moments, as does the log likelihood of each subsequent iteration. When the 
last iteration is finished, a 'Ready' message is delivered. The estimation 
may take some time, especially when many cases and/or predictor variables 
are involved. In the mean time the user may want to look at intermediate 
results by clicking the Show Out button or pressing Ctrl+Tab on the 
keyboard. The Output window then appears, with the parameter estimates 
of each iteration scrolling over the screen, accompanied by the log 
likelihood and, possibly, messages concerning corrective actions 
undertaken by the estimation algorithm. Pressing Ctrl+Tab again (or 
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clicking the cross X in the upper right corner of the screen) closes the 
Output window.  
 
Back in the Main Menu the estimation process - if still running - can be 
stopped by using the Stop button. This may be useful if e.g. the log 
likelihood does not change substantially anymore. Another reason to stop 
the iterations is that the algorithm does not converge, which may happen if 
the model contains too many (i.e., not uniquely identified) parameters. 
 
To leave CrossMark click Exit or the cross X in the upper right corner of 
the screen.  
 
 

2  Nonbackcastable variables 
 
It may be that the respondent's value on a predictor variable at time t  is 
known, but the values at 1t − , 2t −  and so on are not. Take e.g. the 
variable ‘monthly income’. Given the income of a respondent of cross-
section t , usually little, if anything, is know about his or her income at 
earlier points in time. To put it another way: the variable income cannot be 
'backcasted'. Such a nonbackcastable variable can be used as a predictor for 
the entry and exit probability only at the time the respondent was observed 
but not at preceding points in time. We will show using a simple example 
how such variables can be handled in CrossMark. 
 
Suppose that we have three cross-sections and the nonbackcastable 
predictor we would like to use is named Inc , representing the monthly 
personal income of a respondent at the time of observation. Also, we have 
the backcastable predictor age specified as ( )Age t , where the t  between 
brackets denotes that there are three age vectors, one for each of the three 
points in time. For simplicity, we omit the intercept in the equations for μ  
below. For any respondent of the second and subsequent cross-sections, the 
following two equations apply to logit ( )

t
µ , depending on whether t  relates 

to the time the respondent is actually observed or to a preceding point in 
time: 
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observed: 1 3logit( ) = ( ) + Inc  
t

Age tμ β β⋅ ⋅  (1) 
preceding: logit( ) = ( )

2t
Age tμ β ⋅  (2) 

 
In equation (1) we can use Inc  as a predictor, whereas in equation (2) this 
is not possible. Of course the Age  effects 

1
β  and 

2
β  need not necessarily 

be the same. In order to estimate 
1

β , 
2

β  and 
3

β  with CrossMark a single 
equation for logit( )

t
μ  must be specified that applies to all points in time. 

To achieve this we construct three ancillary time varying predictors, which 
we shall call _ ( )Age obs t , _ ( )Age pre t  and _ ( )Inc obs t  to be discussed 
below. The construction of these predictors must precede the analysis with 
CrossMark and the user must add the predictors to the data file and treat 
them like any normal predictor variable: their names and types (v) have to 
be entered (using the X-names button in the Main Menu) and also, three 
columns, one for each predictor, have to be added to the Design mu and 
Design lambda matrices. 
 
The predictor _ ( )Age obs t  has to be constructed such that 

_ ( ) ( )Age obs t Age t=  for cases observed at time point t  and 
_ ( ) 0Age obs t =  for all other cases. For predictor _ ( )Age pre t  it must hold 

that _ ( ) ( )Age pre t Age t=  for cases observed after time point t  and 
_ ( ) 0Age pre t =  for all other cases.  

 
For 6 randomly chosen cases, two of each cross-section, the values of 

( )Age t , _ ( )Age obs t  and _ ( )Age pre t  might be those shown in the upper 
part of Table 1. Note that, put next to one another, the three _ ( )Age obs t  
vectors form a block-diagonal matrix and the _ ( )Age pre t  vectors a 'sub-
block diagonal' one. For Inc  and _ ( )Inc obs t  the values of the 6 cases 
might be the ones in the lower part of Table 1, with now the _ ( )Inc obs t  
vectors forming a block-diagonal matrix. Instead of the two separate 
equations (1) and (2), we can write a single equation, holding for time 
observed as well as preceding points in time: 
 
 _ _ _

5 64
logit( ) ( ) + ( ) + ( )t Age obs t Age pre t Inc obs tμ β β β= ⋅ ⋅ ⋅  (3) 

 
Why (1) and (2) are equivalent to (3) becomes clear when equation (3) is 
worked out for the observed and preceding time points separately: 
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observed: _ _ _

5 64
logit( ) ( ) + ( ) + ( )t Age obs t Age pre t Inc obs tμ β β β= ⋅ ⋅ ⋅  

 5 64
= ( ) 0Age t Incβ β β⋅ + ⋅ + ⋅  

 
64

( )Age t Incβ β= ⋅ + ⋅  (3a) 

 

preceding:  _ _ _

5 64
logit( ) ( ) + ( ) + ( )t Age obs t Age pre t Inc obs tμ β β β= ⋅ ⋅ ⋅  

 5 64
0 + ( ) + 0Age tβ β β= ⋅ ⋅ ⋅  

 
5

( )Age tβ= ⋅  (3b) 

 
Thus, equations (3a) and (3b) appear to be equivalent to (1) and (2), 
respectively. Since CrossMark uses a single equation for μ  we employ the 
generic equation (3). Parameter 

4
β  can be interpreted as 

1
β , i.e., the effect 

of age controlled for income, at observation time; 
5

β  is interpreted like 
2

β  
as the effect of age at preceding points in time not controlled for income; 

6
β  has the same interpretation as 

3
β , i.e., the effect of income controlled 

for age at the time of observation. 
 

Table 1   Ancillary predictors for Age 
 

 

 ( )Age t  

_ ( )Age obs t  

_ ( )Age pre t  

 (1) (2) (3) (1) (2) (3) (1) (2) (3) 
 
 1t =  19  0  0 19  0  0  0  0  0 
  45  0  0 45  0  0  0  0  0 
 2t =  37 38  0  0 38  0 37  0  0 
 21 22  0  0 22  0 21  0  0 
 3t =  42 43 77  0   0 44 42 43  0 
 66 67 68  0  0 68 66 67  0 
 
 

 Inc  _ ( )Inc obs t  

  (1)     (2)      (3) 

 1t =  1500 1500    0    0 

       7300 7300    0    0 

 2t =  3500    0 3500    0 

        9400    0 9400    0 

 3t =  1200    0        0 1200 

      2200    0        0 2200 
 



 184

Instead of (3) way may also use another generic equation in CrossMark: 
 
 _ _

7 8 9
logit( ) ( ) + ( )  ( )t Age t Age obs t Inc obs tμ β β β= ⋅ ⋅ + ⋅  (4) 

 
Working out (4) for observation time and preceding timepoints results in: 
 
observed: _ _

7 8 9
logit( ) ( ) + ( )  ( )t Age t Age obs t Inc obs tμ β β β= ⋅ ⋅ + ⋅   

 
7 8 9

( ) + ( )  Age t Age t Incβ β β= ⋅ ⋅ + ⋅  
 

7 8 9
( ) ( )  Age t Incβ β β= + ⋅ + ⋅  (4a) 

 
preceding: _ _

7 8 9
logit( ) ( ) + ( )  ( )t Age t Age obs t Inc obs tμ β β β= ⋅ ⋅ + ⋅  

 
7 8 9

logit( ) ( ) + 0  0t Age tμ β β β= ⋅ ⋅ + ⋅  
 

7
logit( ) ( )t Age tμ β= ⋅   (4b) 

 
As can be seen (4a) is equivalent to (3a) and (1), while (4b) is equivalent to 
(3b) and (2). Therefore, both equation (3) and (4) can be used to model 
logit( )

t
µ . They differ only in parameterization. The sum 

7 8
β β+  has the 

same interpretation as 
4

β  (or 
1

β ); 
7

β  is interpreted in the same way as 
5

β  
(or 

2
β ). Finally, the interpretation of 

9
β is similar to the one of 

5
β  (or 

3
β ). 

A minor advantage of using (4) instead of (3), is that (4) needs on 
construction of the _ ( )Age pre t  vectors. 
 
 
2.1  Testing the null-hypothesis H

0 1 2
:β β=   

 
Looking at the equations (1) and (2) the question arises as to the equality of 
the two Age  effects 

1
β  and 

2
β . When applying equation (4) the above null 

hypothesis translates into H
0 7 8 7
: β β β+ =  or, more simply, to 

0H
8

: 0β = . This test is automatically performed by CrossMark and the 
significance level of the related Wald statistic is reported in the Output 
window. When, on the other hand, equation (3) is applied, the above 
hypothesis translates into H

0 4 5
: 0β β− = . Given the hypothesis is true, 

the sample outcome of the statistic 2

4 5 4 5

ˆ ˆ ˆ ˆ( ) / var( )β β β β− − , with 

4 5

ˆ ˆvar( )β β−  being the estimated sample variance of 
4 5

ˆ ˆβ β− , follows a 
2

χ  distribution with 1 degree of freedom. The value of 
4 5

ˆ ˆβ β−  can of 
course be derived from the ML estimates produced by CrossMark in the 
final iteration. To derive 

4 5

ˆ ˆvar( )β β−  the formula 
4 5

ˆ ˆvar( )β β− =  

4

ˆvar( )β +
5 4 5

ˆ ˆ ˆvar( ) 2 cov( , )β β β−  can be applied with 
4

ˆvar( )β , 
5

ˆvar( )β  
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and 
4 5

ˆ ˆcov( , )β β  representing the estimated variances of 
4

ˆβ  and 
5

ˆβ  and 
their estimated covariance respectively. These variances and covariance are 
given by CrossMark by checking the option Show covariances of 
parameters in the Estimation Menu. 
 
If the test outcome leads to not rejecting the null hypothesis, the ancillary 
variables for the predictor in question are no longer needed and the original 
predictor, ( )Age t  in the example, can be used, possibly along with 
ancillary variables of other predictors for which the hypothesis does not 
hold. 
 
The equations above did not include an intercept, for simplicity. Of course, 
in most applications an intercept will be present and we will have to decide 
which type of intercept vector(s) to employ. If we have no nonbackcastable 
predictors, the intercept is simply a single vector containing the value 1 for 
all cases of all cross-sections. If, however, nonbackcastable predictors are 
utilized, we may want to estimate one intercept for time observed and 
another one for preceding time, just as was done for ( )Age t  in equations 
(1) and (2). In that case we would have to construct two ancillary (time 
varying) intercept predictors, according to the scheme in Table 2. 
 
 

Table 2  Ancillary intercept predictors 
 

 

Intercept  _ ( )Intercept obs t   

_ ( )Intercept pre t  
                      (1)  (2)  (3)      (1)  (2)  (3) 
 
 1t =  1            1    0    0        0    0    0 
       1            1    0    0        0    0    0 
 2t =       1            0    1    0        1    0    0 
           1            0    1    0        1    0    0 
 3t =      1 0    0    1        1    1    0 
           1 0    0    1        1    1    0 
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3  Fixed µ  and λ  values 
 
CrossMark has the option of entering fixed µ  and/or fixed λ  values for 
some (or all) cases on some (or all) points in time. We start with discussing 
three situations in which this option can be utilized to adjust the basic 
equations for the state probabilities p . We also explain how the option has 
to be specified in CrossMark. 
 
In some applications, the values for µ  and/or λ  may be considered fixed 
and hence need not be estimated. This would e.g. be the case when the 
(backcasted) age of a respondent is 17 or younger in a study on voting 
behavior, given that the voting age is 18. Suppose, in the example given 
earlier, a respondent is 18 years old at the time that the third cross-section 
was observed (i.e., on 3t = ). For this respondent we would like 

1
p  and 

2
p  

to be zero; also, since 
3

p  is an entry probability (the respondent could not 
have voted for party A at 2t = ) we would like 

3
p  to equal the entry 

probability 
3

µ . To implement these restrictions in the model equations, we 
fix 

1 2
0µ µ= =  for this respondent, which implies the following adjusted 

equations for 
1
p  to 

5
p : 

 

 

1 1

2 1 2 1 2 2

3 2 3 2 3 3 3 3

4 3 4 3 4

5 4 5 4 5

0

(1 ) (1 ) 0(1 ) 1 0 0

(1 ) (1 ) 0(1 ) 1

(1 ) (1 )

(1 ) (1 )

p

p p p

p p p

p p p

p p p

μ

λ μ λ

λ μ λ μ μ

λ μ

λ μ

= =

= − + − = − + ⋅ =

= − + − = − + ⋅ =

= − + −

= − + −

 

 
The equations for 

4
p  and 

5
p  have the usual Markov form, while those for 

1
p , 

2
p  and 

3
p  are adjusted in the sense specified above. We shall explain 

below how the fixed 0values for the µ  probabilities in question for 
respondents younger than 18 have to be entered in CrossMark.  
 
A second example of adjusting the basic equations for p  is the following. 
Suppose all predictor variables we would like to use are constant over time, 
but only for a short time period. To be more specific, we assume that the 
predictor values for a case observed at time t  also apply to 1t −  and 2t − , 
but not further back in time. Therefore, we let the Markov chain for each 
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case start two time points preceding to the one the case was observed, 
instead of starting at time point 1t =  as we would have done, had the 
predictors been perfectly stable. This implies that the first state probability 
estimated for the cases of the cross-section at 5t =  will be 

3
p . For the 

cases of the cross-section at 4t = , 
2

p  will be the first estimated state 
probability, and for those of the cross-section at 3t = , 2t =  and 1t = , 

1
p  will be the first estimated state probability. This is different from the 
more general situation where, for all cases of all cross-sections, 

1
p  is the 

first estimated state probability. Remember that for 
1
p  we used a logistic 

equation, 
1 1
p µ= , with specific β  parameters, different from the ones of 

2
µ  through 

5
µ . Here, we would like the same to hold for 

2
p  and 

3
p , as far 

as the cases of the cross-sections at 4t =  and 5t =  respectively are 
involved. To achieve this, we shall again use the equation 

1 1
p µ=  to 

estimate 
1
p  as the first estimated state probability for all cases of all cross-

sections and then (i) let 
2

p  have the same value as 
1
p  for the cases of the 

cross-section at 4t =  and (ii) let 
3

p  have the same value as 
1
p  for the 

cases of the cross-section at 5t = . By doing so, we estimate three first 
state probabilities, 

1
p , 

2
p  and 

3
p , using the logistic equations 

1 1
p µ= , 

2 1
p µ=  and 

3 1
p µ= . At the same time 

2
p  and 

3
p  are also estimated by a 

Markov equation for the cases of the cross-sections at 3t =  and 4t =  
respectively. 

To specify the model we exploit fixed µ  and λ  values. Let us take a 
look at a case of the cross-section at 5t =  for which we want to estimate 

3
p  using the equation 

3 1
p µ= . We let 

2 3
0λ λ= =  and 

2 3
0µ µ= = , 

which results in: 
 

1 1

2 1 2 1 2 1 1 1

3 2 3 2 3 1 1 1

4 3 4 3 4

5 4 5 4 5

(1 ) (1 ) (1 0) (1 ) 0

(1 ) (1 ) (1 0) (1 ) 0

(1 ) (1 )

(1 ) (1 )

p

p p p

p p p

p p p

p p p

μ

λ μ μ μ μ

λ μ μ μ μ

λ μ

λ μ

=

= − + − = − + − ⋅ =

= − + − = − + − ⋅ =

= − + −

= − + −

 

 
As can be seen, the equations for 

5
p  and 

4
p  are the usual Markov 

equations, while for 
3

p  we have 
3 1

p µ= . For cases of cross-section at 
t =4 we proceed in a similar way by fixing 

2
0λ =  and 

2
0µ =  which 

leads to 
2 1

p µ= . For the cases of the cross-sections at 3, 2t t= =  and 
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1t = , we automatically have 
1 1
p µ= , so for these cases we do not need to 

fix any µ  or λ . 
 
The last example of using fixed µ  and λ  values concerns the analysis of 
discrete panel data. Consider a situation in which we have at our disposal a 
five wave panel data set without any inflow or outflow. The Markov model 
for discrete panel data reads as 
 

1 1
(1 ) (1 )

t t t t t
p y yλ μ

− −

= − + − ,      2, ,5t = … , 
 
while for cross-sections, it reads as 
 

1 1
(1 ) (1 )

t t t t t
p p pλ μ

− −

= − + − ,      2, ,5t = … , 
 
the difference being the use of 

1t
y
−

 in the case of panel data and 
1t

p
−

 when 
using cross-sectional data. As stated earlier, CrossMark uses the second 
equation since it was designed for the analysis of cross-sectional data. 
However, the program can simply be tricked to analyze panel data as well 
and thus to apply the first equation. 

To do so, we first have to construct the data file in the way 
CrossMark expects it to be, i.e., according to the t-y-x-fre format. Each 
'cross-section' in this data file corresponds to a particular wave of the panel 
data. The data for the first wave have to be placed at the top of the data file, 
followed by the data for the second wave, the third wave and so on. The 
order in which the respondents appear within the data for each wave is 
irrelevant and need not be the same for each wave.  

Second, we need to define 
1 1t t

p y
− −

=  for 2, ,5t = …  or, to put it 
simply, 

t t
p y=  for 1, ,4t = … . To do so we use fixed μ  and fixed λ  

values. To make sure that 
1 1
p y= , we simply let 

1 1
yμ = , resulting in 

1 1 1
p yμ= = . For 

2
p  through 

4
p  we proceed as follows. If for a certain 

case 0
t
y =  ( 2, ,4t = … ), we let 1

t
λ =  and 0

t
µ = , which results in 

1 1 1 1
(1 ) (1 ) (1 1) (1 ) 0 0

t t t t t t t
p p p p pλ μ

− − − −

= − + − = − + − = ; thus 
0

t t
p y= = , as was meant to be the case. If, on the other hand, 1

t
y = , we 

let 0
t

λ =  and 1
t

μ = , so that 
1 1
(1 0) (1 ) 1

t t t
p p p

− −

= − + − = ; thus 
1

t t
p y= = .  

The third and final point concerns the fact that in models for panel 
data the likelihood is commonly computed for the data of 2t ≥ , while in 
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CrossMark, the likelihood for 1t =  is used as well. To delete the 
likelihood contribution of the cases for 1t =  in CrossMark, we assign a 
very small frequency to the cases of the first wave (i.e., 0.0000000001) in 
the (t-y-x-fre) data file. We can also delete all cases of the first wave from 
the data file except one case, and assign the small frequency value to this 
single case. This single remaining case for 1t =  may have any values on 
the Y  and X  variables since it only acts as a dummy case, having 
(virtually) no influence on the parameter estimates. 
 
 
3.1  Specifying fixed µ  and λ  values in CrossMark 
 
The fields File with fixed mu-values and File with fixed lambda-values 
in the Main Menu can be used to enter the names of the data files 
containing fixed μ  and λ  values for some or all cases of some or all cross-
sections. The ‘file with fixed mu-values’ must contain one line for each 
case to which fixed μ  values are assigned. Each line starts with the 
sequence number the case has in the (t-y-x-fre) data file and is followed by 
as many values 0, 1 or 9 as there are cross-sections. In the first example 
given above, where the age of a respondent (say the 316th respondent in 
the data file) was 18 years at the time point of the third cross-section, the 
line to enter in the ‘file with fixed-mu values’ for this respondent is the first 
of the two following lines: 
 
316  0  0  9 9 9 
925  0  0  0 0 9 

 
Value 316 in the first line refers to the sequence number of the respondent; 
the two 0 values that follow are assigned to 

1
μ  and 

2
µ  and the three 9 

values indicate that 
3

µ , 
4

µ  and 
5

µ  are not fixed, but have to be estimated. 
The second line refers to another respondent with sequence number 925 in 
the data file, who was 18 years old at 5t = . In this example a ‘file with 
fixed lambda values' need not be specified, since only values of μ  are 
fixed. 
 
The ‘file with fixed lambda-values’ must contain one line for each case to 
which fixed λ  values are assigned. Each line starts with the sequence 
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number of the case in the data file and is followed by as many values 0, 1 
or 9 as there are cross-sections minus 1, since these values relate to 

2
λ  

through 
T

λ , T  being the total number of cross-sections. The third example 
given above concerned the analysis of five-wave panel data without inflow 
and outflow. If we assume there are 500 respondents then the data file 
consists of 2500 lines, 500 lines for each wave. Suppose a particular 
respondent has the Y pattern 01100 for 1, ,5t = … . If the sequence number 
of the respondent in the first wave is 29, then the other four sequence 
numbers are 529, 1029, 1529 and 2029. In the 'file with fixed mu-values' 
and the 'File with fixed lambda-values' we have to enter the lines given in 
the box below. 
 
File with fixed mu-values File with fixed lambda-values   Wave 
seqnr 

1
μ  

2
µ  

3
µ  

4
µ  

5
µ  seqnr 

2
λ  

3
λ  

4
λ  

5
λ  

 
  529 0 9 9 9 9         2 
 1029 9 1 9 9 9 1029 0 9 9 9    3 
 1529 9 9 1 9 9 1529 9 0 9 9    4 
 2029 9 9 9 0 9 2029 9 9 1 9    5 

 
 
As can be seen, for the data of wave t  we specify a fixed 

1t
μ
−

 value in the 
'file with fixed mu-values' equal to value of 

1t
Y

−

; e.g. for wave 3 we 
specify 

2 2
1yµ = = . The fixed 

1t
λ
−

 value that has to be specified in the 
'File with fixed lambda-values' for the data of wave t  is equal to the 
complement of 

1t
Y

−

.  
 
 

4  Unobserved heterogeneity 
 
CrossMark offers the possibility to account for the influence of unobserved 
variables on the entry and exit probabilities. In doing so the assumption is 
made that the overall contribution of these variables to the logits of the 
transition probabilities is constant for the time period considered. The logit 
equations for μ  and 1 λ−  including the contributions of unobserved 
variabels can be written as follows: 
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logit 

logit 

1

*

2

( )

(1 ) ,

t

t

x

x

μ β δ

λ β δ

= +

− = +
 

 
where x  is a row vector with the values of the observed (potentially 
backcasted) predictors, β  and *β  are the column vectors with the 
parameters associated with x , and finally 

1
δ  and 

2
δ  represent the total 

contribution of the unobserved variables. The values of 
1
δ  and 

2
δ  for all 

respondents (or cases) are considered to be drawn from a normal 
distribution with zero mean and variances 2

1
γ  en 2

2
γ . The above equations 

therefore can also be written as: 
 

logit 

logit 

1

*

2

( )

(1 ) ,

t

t

x z

x z

μ β γ

λ β γ

= +

− = +
 

 
with (0,1)z N∼  being the standardized contribution of the unobserved 
variables and 

1
γ  and 

2
γ  the parameters associated with the ‘predictor’ z . 

Since the z  values for all cases are unknown the parameters β , *β , 
1̂

γ  en 

2̂
γ  cannot be estimated. However, given a set of parameter values and the 
value of z , it is of course easy to determine the log likelihood contribution 
��  of that case. Also, for a given set of parameter values, the expected (or 
marginal) log likelihood contribution ( )E ��  of a case can be determined, 
where the expectation is taken over all possible values of z  taken from 
(0,1)N . For a case of e.g. the cross-section at 2t =  it holds that: 

 

1 2 1 2
( ) [ (1 ) (1 ) ] ( )E p p f z dzλ μ

∞

−∞

= − + −∫��  if 
2

1y = ,  and 

1 2 1 2
( ) [ (1 )(1 ) ] ( )E p p f z dzμ λ

∞

−∞

= − − +∫��  if 
2

0y =  

 
Here, 

2
µ  and 

2
λ  are defined as above (i.e., including z ), 

1
p  is defined as 

usual (i.e., 
1 1
p µ= ) without z  (in CrossMark, controlling for unobserved 

variables is only possibly for the transitions probabilities at 2t ≥ .), and 
( )f z  is the height of the standard normal pdf at z . The integrals cannot be 

derived analytically, but are approximated by CrossMark using Gaussian 
quadrature with 20 mass points. Utilizing the ( )E ��  values of all cases of 
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all cross-sections it is possible to estimate those values ˆβ , ˆ *β , 
1

γ̂  en 
2

γ̂  
that, averaged over all values that z  can take, have the highest expected (or 
marginal) log likelihood. The criterion to maximize in this estimation is the 
sum of the ( )E ��  values of all cases of all cross-sections. The resulting 
estimates ˆβ  en ˆ *β  can be interpreted as the effects of the predictors x , 
corrected for the average influence of the unobserved variables. Using the 
above equations and estimation procedure has consequences for the 
standard errors of ˆβ  and ˆ *β , which can be quite different from the ones 
estimated without taking into account unobserved heterogeneity. The 
values of 

1
γ̂  and 

2
γ̂  are the estimates of the standard errors of 

1
δ  and 

2
δ  

respectively, i.e., of the contributions of the unobserved variables to the 
logits of the entry and exit transition probabilities.  
 
 
4.1  Testing the hypothesis 

0 1 2
: 0H γ γ= =  

 
To test this hypothesis we may use a test-procedure described by Snijders 
and Bosker (1999). We first calculate the value of loglikelihood2A = − ⋅  
for the model including 

1
zγ  and 

2
zγ . Then we compute 

loglikelihood2B =− ⋅  for the model without 
1
zγ  and 

2
zγ  and obtain the 

difference D B A= − . Finally we test the difference D  to be significant 
using a 2

χ  distribution with 2 degrees of freedom, but halve the right tail 
probability associated with the value of D . 
 
The standard estimation procedure in CrossMark does not take into account 
the possible influence of unobserved heterogeneity. If we wish to perform 
an analysis as described above, including the 

1
zγ  and 

2
zγ  terms in the 

equations for the transition probabilities, we have to go the Estimation 
Menu and click on the option called Extra Bernoulli variance. After 
running the model we will find the estimates 

1
γ̂  en 

2
γ̂  in the Output 

window.  
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5  Metropolis sampling 
 
 
In the Estimation window an MCMC procedure can be performed that 
uses pure Meropolis sampling. To do so, check the option Metropolis 
sampling and specify a filename after Outputfile posterior parameter 
values for the file that the sampled parameter-points are written to. We 
only implemented this option in a very basic sense. There is e.g. no prior 
distribution that can be specified for the parameters: the implicit prior used 
for all parameters is the uniform distribution. After Length of chain 
specify the number of samples that has to be drawn from the posterior 
distributions of all parameters. Note that no burn-in period can be provided 
and, hence, the length of the chain must be large enough to also contain the 
desired burn-in period.  
 
After pushing button OK CrossMark first performs the usual maximum 
likelihood (ML) estimation process. Once this is finished, the metropolis 
sampler is started. Consequently, metropolis sampling begins by default at 
the ML point. To start metropolis sampling from any other parameter-
point, specify the parameter values for this point as the starting values to be 
used and also set the maximum number of iterations to 0. 
 
It is possible to let CrossMark, for each sampled parameter-point, calculate 
the mean values of 

it
p , 

it
µ  and 

it
λ  over all cases i  for each timepoint t . To 

this end, a filename must be entered after Outputfile posterior mean p, 
mu, lambda. 
 
The value to be entered on the Estimation window in the sentence 
 
Covariance matrix of the jumping distribution equals  ...   

times estimated covariance matrix of parameters 
 
refers to what is discussed by Gelman, Stern and Rubin in 'Bayesian data 
analysis', 1995, on page 334 at the bottom where c = 2.4/sqrt(d). Value 2.4 
for c is the default CrossMark uses if you don't specify another value in the 
above sentence. After the metropolis sampler is finished, inspection of the 
chain of sampled parameter-points (in the file specified after Output 
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posterior parameter values) is always recommended, to make sure that the 
chain has changed fast enough. If the same parameter-points are resampled 
many times, a smaller value for c is probably more appropriate. 
 
The parameter values that are sampled by the metropolis algorithm, are 
written out (to the file specified after Outputfile posterior parameter 
values) in the following format: sequence number (1,2,3,4,..., 100000, or 
more, depending on the length of the chain that was entered) followed by 
the values of the parameters of all predictors on the entry probabilities, 
followed by those on the 1-exit probabilities, followed finally by the 
loglikelihood value associated with these parameter values. 
 
To evaluate the output files with posterior parameter values and/or means 
of 

it
p , 

it
µ  and 

it
λ , other statistical software must be used. CrossMark itself 

does not perform any chain-evaluation, produces no histogram's of 
posterior parameter estimates and/or means, nor calculates means or 
standard deviations of the samples that were taken from the posterior 
distributions. 
 
 
 

6  Parametric bootstrap 
 
 
The Simulate button on the Main Menu opens the Simulate window 
where a parametric bootstrapping procedure can be performed. This 
window is shown in Figure 4. In the first step of the parametric bootstrap 
procedure  a number of Y  datasets are simulated, based on the observed X  
values in the data file and a set of true parameter values that must be 
specified after True values entry parameters and True values 1-exit 
parameters. The number Y  datasets that have to be simulated is specified 
after Number of simulations. A name is generated automatically (but can 
be modified) for the output file that will contain the simulated Y data. After 
clicking the button Sim. data the simulation process starts, during which 
the Y  data are generated and written to the file specified. Once the 
simulation has been finished, the next step can be started, during which the 
parameters will be estimated for samples that were simulated in the 
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previous step. Estimation is started by pushing button Go. The estimated 
parameter values for all simulated Y  datasets are written to the file 
specified after Output file parameter estimates in the following format: 
the sample number, the parameter values of all predictors for the entry 
probability, the parameter values of all predictors for the 1-exit probability, 
and, finally, the value of the loglikelihood. The file specified after Output 
file for results contains the final results, for all simulated Y  datasets, 
similar to the ones that are generally shown in the Output window. As with 
the metropolis sampler, here again one will have to evaluate the estimated 
parameters with other statistical software. The two buttons Show parms 
and Show results show the corresponding files in Wordpad. 
 

Figure 4  Simulate window 

 



 

 


