CrossMark 2.0.0
Appendix User Manual

The program CrossMark is designed to estimate transition probabilities
using data from repeated cross sections. Given a dichotomous Y variable,
CrossMark estimates the effects of predictor variables X on the entry and
exit probabilities using aMarkov model.

CrossMark is available for Windows 95, 98, 2000 an XP. The program
needs not be installed: simply place file CrossMark.exe in a directory of
your choice and double-click on this file (in Windows Explorer) to start
CrossMark. The Main Menu then appears on the screen. This menu looks
like the one in Figure 1, except that all fields are still empty.

1 Standard analysis

We shall describe how a standard analysis with CrossMark proceeds using
a fictitious example on vote intention. To highlight al the options of the
program, we use bold face characters for buttons that must be clicked and
fields or menu's that have to befilled in.

Suppose the data to be analyzed are from 5 cross-sections, gathered in
consecutive years, i.e., from 1996 to 2000. The dependent variable is the
'intention to vote for political party A" (code 1 ="'votefor', 0 = 'not vote for')
and the independent variable is the respondent’ s age (ranging from 18 to 70
years). The file containing the data is named 'c:\crossmark\vote.dat'. This
filename has to be entered on the Main Menu in the field Data file (t-x-n-
f1). The datafile can be inspected by clicking the Edit button, which opens
the data file in WordPad. The total number of cross-sections (5) has to be
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4. loglikelihood= -404.5641100540
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9, loglikelihood= 335 8456770100
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11, loglikelihood= -335.831 2772325
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13, loglikelhood= -395 8303272392
14, laglikelhood= -395 8302776046
15, loglikelihood= -335.8302648504
16, loglikelihood= -335 8302615623

entered in the fiedld Number of cross-sections. The abbreviation 't-x-n-f1'

behind

'‘Data file' stands for t=time index, x=X or predictor variables,

n=number of cases and fl=number of cases in category Y =1,
respectively, and reflects the order in which the data must appear in the
datafile. The first three lines of the example data of each cross-section are

shown below:
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The first data column is the time index t. As there are five cross-sections
the time index has to have the values 1, 2, 3, 4, and 5 denoting the years
1996, 1997, 1998, 1999, 2000, respectively. CrossMark expects the data to
be ordered in time, with the data of the first cross section located at the top
of the file, those of the second cross-section following underneath and so
on until the data of the last cross-section which must be located at the end
of thefile.

The next 8 data columns of the data file in this example, i..e., column 2
through 9, contain the values of the predictor variables X . There are 4
predictor variables here:

1. An intercept, having the value 1 for each case. It is located in column 2
of the datafile. In the sequel we will refer to it as ‘intercept 1'.

2. The respondents age in 1996, located in column 3. For the respondents
of the cross sections 1997 and following, the age in 1996 has been
computed by ‘backcasting’ their age to the year 1996. We shall explain
below why we use ‘age in 1996’ as a separate predictor, which we call
‘age 1996’.

. A second intercept in column 4, which iscalled ‘intercept 2'.

4. The respondents age in each of the five years, located in columns 5

through 9. These five age values together constitute a single predictor
variable, the values of which change over time. We call this predictor

‘age.

w

We will return to the characteristics of the 4 predictors and the way they
affect the transition probabilities in more detail below. The last two
columns, 10 and 11, of the data file concern the total number of cases and
the number of casesin Y category 1, respectively. For example, the first
record of the cross section at ¢ =5, i.e., the record

5 1 18 1 18 19 20 21 22 7 5
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gpecifies that there are 7 cases in this cross section who were 18 years old
In 1996, 19 years old in 1997 etc., and that 5 of them arein Y category 1
(at t =5) while the other 2 are in category O. If each row in the datafile
would contain data for just a single case, then the last but one column (here
column 10) would be 1 for all cases while the last column would be either 1
or 0. There is no need to aggregate over t, X and Y. However,
aggregating the data, as is done in this example, can speed up the
estimation process considerably.

We now return to the predictor variables X. The predictors numbered 1, 2
and 3 above are constant over time, while predictor 4 takes a different
value in each of the five years. Time constant predictors occupy a single
column in the data file, while time varying predictors occupy as many
columns as there are cross-sections, i.e. five in the example. The names and
types (constant or varying) of the predictors have to be specified in the
submenu Predictor names and types, which shows up after clicking the
X-names button of the Main Menu and is shown in Figure 2. The left field
of the submenu Predictor names and types contains the predictor’s name
and the right field the predictor’s type. For a time constant predictor enter
the character ¢, and for a time varying predictor enter v. Having done so,
click OK to return to the Main Menu.

To understand why we use two intercepts and two age predictors (instead
of just one intercept and one age predictor, which would be possible too)

Figure 2 Predictor names and types

Crossmark  Predictor names and types E

Enter predictor names in left window. Names may
be up to 20 characters long. In the right window
enter behind each name the predictor type © (time
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we take a closer look at the model equations for p,, p,, p,, p, and p, or,
In words, the probabilities to vote for political party A in each of the five

years. In generdl, the basic equations CrossMark uses are, with five cross-
sections:

b=

p=p 1=X)+0-p)
P; = Dy (1_)‘)+(1 p)
po=py (1—A) +(1— pg)
ps = p (1=X) +(1=p,)

In the example, the transition probabilities 1 and A depend on the
respondents ages as follows:

10Git(11,) = B+ B, Age,m,

logit(w,) = B+ B, Age,y,, logit(l —\,) = B, + 8, Agey,,
logit(w,) = B+ 5, Age g logit(1 —\,) = B, + 3, Age g
logit(w,) = B+ 8, Age,g logit(1—\,) = 8, + 3, Ageg
logit(,) = B3+ 8, Agesy  100It(L = X) = B8]+, Ageyy,

Ageigys refers to the respondent’s age in 1996, Ageiqo; to the age in 1997,
etcetera. The symbol A indicates the exit probability: A, is the probability
not to vote for party A in 1998 given a ‘vote for A’ in 1997. For the
complement of A\, or the probability to stay in state Y =1, the term
‘1-exit’ probability is used in the sequel. The symbol 1 indicates the entry
probability: p, isthe probability to vote for A in 1998 given a ‘not vote for
A’ in 1997.

Speaking of 1, = p, as an entry probability can be problematic. Generally
spoken, p, isthe probability to beinstate Y =1 at ¢ = 1 and this need not
to be the same as the probability to be in state Y =1 given that the
previous state was Y = 0. Only if one knows that each respondent's
previous state was Y = 0, one may truly consider p, an entry probability.
Thiswould e.g. be the case if political party A did not exist before 1996. In
many applications, of course, the Y =1 state does exist prior to t = 1 and
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respondents could have been in that state. In such situations, one may
prefer to model p, as a state probability, rather than an entry probability.
This is accomplished by estimating different sets of parameters for x, and
for p, and following, as is done in the model above, where the parameters

B, and 3, only apply to p, .

In CrossMark the model equations can be specified in the Design mu and
Design lambda fields of the Main Menu. In Design mu we indicate which
predictor variable acts upon which entry probability x. For the example
thisisdone asfollows:

s wN R
cooor
cooor
H R R R o
B R R R o

The first column isthe timeindex ¢ and the other four columns correspond
to the four predictor variables in the model. The second column
corresponds to ‘intercept 1, and the value 1 for ¢ =1 indicates that
‘intercept 1' has an effect on p,; the O scores in the second column for
t=2,3,4 and 5 indicate that ‘intercept 1’ does not have an effect on , ,
ty, ,and p.. The rightmost column is related to the time varying
predictor ‘age’; the O value for ¢ = 1 indicates that ‘age’ does not occur in
the equation for p, while the 1 values for ¢t =2, 3, 4 and 5 indicate that
‘age’ does occur in the equations for i, , ., w,and g, .

In general, the Design mu matrix must have as many rows as there are
cross-sections. Each row starts with thetime index ¢ and isfollowed by al
or 0 value for each predictor variable indicating whether (1) or not (0) the
predictor acts upon entry probability p, . In the same way a Design lambda
matrix has to be specified indicating which predictor acts upon which exit
probability \. For the present example the lambda matrix is specified as:

ad wn R
ocoooo
ocoooo
H R R RO
H R R ROo
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Note that the first row of the Design lambda matrix contains the value 1
for thetimeindex ¢ =1 and else only O values to indicate that none of the
four predictor variables has an effect on )\ . Thisis just to specify that
does not play a part in the model equations.

We proceed by clicking the Estimation button of the Main menu to invoke
the Estimation Menu as shown in Figure 3. The upper two fields in this
Estimation Menu specify the starting values for the iterative Fisher
scoring scheme. The default valuesare O for al 5 and 3° parameters of the
entry and 1-exit probabilities respectively. Good starting values, i.e., values
close to the final ML estimates, speed up the estimation process. Starting
values far removed from the final estimates slow down this process or may
cause the estimates to be caught in a loca maximum or not to reach
convergence at al. When convergence has been reached, it is advisable to
choose other starting values and let CrossMark run again to check whether
the same parameter estimates are found. If this turns out to be the case, one
can be more confident that the estimates are indeed the true global ML
estimates instead of estimates associated with alocal maximum.

Figure 3 Estimation Menu
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When analyzing complex models, in the sense of having many predictors,
starting values become more of an issue. The final estimates of a previous,
relatively simple model can be used as starting values for a new model
having additional predictors. To this end the button read starting values
can be helpful. After clicking, the fina estimates of the previous model are
filled in as starting values in both fields. The starting values for the
additional predictors in the second model are defined to be zero and
automatically added to the list. If a predictor that was present in the
previous model does not appear in the second, the user has to remove the
relevant starting values from both lines.

If, for some reason, one would like to fix the parameters of one or more
predictors to certain predefined values instead of having them estimated by
CrossMark, one can be proceed as follows. In the field named Fixed entry
parameters enter avalue O or 1 for each predictor parameter that has to be
estimated (enter 0) or not (enter 1). Be sure to enter a value O or 1 for all
predictors and to use the same order for the predictors as was used in the
menu Predictor names and types. For predictors that have a value O
gpecified, CrossMark will estimate a parameter starting from the starting
value. For predictors that have a value 1 specified, CrossMark will not
estimate a parameter but substitutes the given starting value as the
parameter value to be used for this predictor's effect on the entry
probability. In CrossMark's output, fixed parameters are denoted by the
character 'f' and have a Wald Significance and Std. error of 1.0. In the same
manner, one can fix parameters for the 1-exit probability.

The Step size field in the Estimation Window refers to the step size ¢ of
the Fisher scoring algorithm employed for iteratively updating the
parameter estimates. The algorithm IS given by
0,,=0,+¢c I, (6LL/66),, where §, and 6, , are the parameter
estimates at the iterations k& and k+1, I, is the inverse of the Fisher
information matrix evaluated a 0 =6,, and (6LL/&6), are the
derivatives of the log likelihood with respect to the parameters, evaluated at
0 = 6,. By default, the value of the step size ¢ is0.5. If the log likelihood
function has a single mode, the optimal value for the step size would be 1.
It is not unusual, however, for the log likelihood function to have multiple

modes in which case a step size of 1 could easily cause the algorithm to
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jump over the parameter region with the highest mode. For this reason, a
default step size of 0.5 is chosen. A much smaller step size value may slow
down the algorithm too much. There is no rule of thumb given here as to
the choice of the most efficient step size value.

The Step size shrinkage (s) also deals with the problem of the step size
being too large. If the log likelihood based on 6, ., is lower than the one
based on «9}, , the current step size has apparently been too large. In that case
CrossMark produces the message "Not converging, back to parameter
estimates of previous iteration" and takes as the new step size the product
s -¢. If this smaller step size also leads to 6, ,, estimates with a lower log
likelihood than the one based on 4, , the step size s - s - ¢ istried. In short,
the step size is multiplied by s as many times as needed to produce an

increase in log likelihood.

The iterative estimation process ends if either the percentage change in log
likelihood is less than the Minimal % LogLikelihood Change specified,
which by default is 0.000001%, or the Maximum number of iterations
has been reached, which by default is 1000. Also by default, CrossMark
only shows the parameter estimates of the final iteration and not those of
previous iterations. To force CrossMark showing the estimates of each
iteration, check the Show iteration history option.

By default CrossMark applies caseweights resulting in the same weighted
number of cases for each cross section. The sum of al caseweightsis equa
to the total number of casesin all cross sections. To prevent this weighting
procedure uncheck the option Weight cross sections equally.

CrossMark produces an output file, the name of which can be specified in
the field Outputfile for t-mu-lambda-p-fre. By default it is labeled
‘tmulapfre’ and placed in the directory where the 'crossmark.exe' resides.
The output file contains one line for each case in the data file. For case ¢,
thisline has the following information from left to right:

- the time index of the cross-section case ¢ belongsto,

- the predicted values of p,, to ,,,
- the predicted valuesof )\, to \ .,
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- the predicted values of p,, to p,,,
- the frequency of case i, equal to the frequency specified in the rightmost
column of the datafile.

Predicted 1, A and p values that do not apply to a particular case (e.g., w,
for a case of cross-section 2, or A, for al cases) are assigned the ‘missing
value' 9.

By default, in CrossMark's output no (co)variances of parameter estimates
are shown. They will be, if the option Show covariances of parametersis
checked before running the model.

The options for Unobserved heter ogeneity and Metropolis sampling will
be discussed below in separate sections.

After clicking the OK button of the Estimation Menu the Main Menu
reappears. To save al the specifications entered, click the Save button and
specify afile name, e.g. 'vote.crm' which then appears in the top line of the
Main Menu. Using the Save as button enables saving the job under a
different name. The most recently saved job can be opened by clicking on
the button L ast job while older jobs may be opened with Other job.

To start the analysis the data have to be read first. This is done by clicking
on Read data. When finished reading, CrossMark presents the total
number of cases aswell asthe number of cases for each cross-section in the
rightmost window of the Main Menu. After reading the data, the estimation
can be carried out by clicking on Go. The initial log likelihood, based on
the starting values of the parameters, appears on the screen after a few
moments, as does the log likelihood of each subsequent iteration. When the
last iteration is finished, a 'Ready’ message is delivered. The estimation
may take some time, especially when many cases and/or predictor variables
are involved. In the mean time the user may want to look at intermediate
results by clicking the Show Out button or pressing Ctrl+Tab on the
keyboard. The Output window then appears, with the parameter estimates
of each iteration scrolling over the screen, accompanied by the log
likelihood and, possibly, messages concerning corrective actions
undertaken by the estimation algorithm. Pressing Ctrl+Tab again (or
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clicking the cross X in the upper right corner of the screen) closes the
Output window.

Back in the Main Menu the estimation process - if still running - can be
stopped by using the Stop button. This may be useful if e.g. the log
likelihood does not change substantially anymore. Another reason to stop
the iterations is that the algorithm does not converge, which may happen if
the model contains too many (i.e., not uniquely identified) parameters.

To leave CrossMark click Exit or the cross X in the upper right corner of
the screen.

2 Nonbackcastable variables

It may be that the respondent's value on a predictor variable at time ¢ is
known, but the values at ¢t —1, ¢t —2 and so on are not. Take e.g. the
variable ‘monthly income’. Given the income of a respondent of cross-
section ¢, usualy little, if anything, is know about his or her income at
earlier pointsin time. To put it another way: the variable income cannot be
'backcasted'. Such a nonbackcastable variable can be used as a predictor for
the entry and exit probability only at the time the respondent was observed
but not at preceding points in time. We will show using a ssmple example
how such variables can be handled in CrossMark.

Suppose that we have three cross-sections and the nonbackcastable
predictor we would like to use is named Inc, representing the monthly
personal income of a respondent at the time of observation. Also, we have
the backcastable predictor age specified as Age(t), where the ¢ between
brackets denotes that there are three age vectors, one for each of the three
points in time. For simplicity, we omit the intercept in the equations for p
below. For any respondent of the second and subsequent cross-sections, the
following two equations apply to logit (4, ), depending on whether ¢ relates
to the time the respondent is actually observed or to a preceding point in
time:
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observed: logit(w,) = 6,- Age(t) + 35 Inc (1)
preceding:  logit(y,) = 8, - Age(t) )

In equation (1) we can use Inc as apredictor, whereas in equation (2) this
Is not possible. Of course the Age effects 3, and (3, need not necessarily
be the same. In order to estimate 3,, 5, and 3, with CrossMark a single
equation for logit(x,) must be specified that applies to all points in time.
To achieve this we construct three ancillary time varying predictors, which
we shall cal Age obs(t), Age_pre(t) and Inc_obs(t) to be discussed
below. The construction of these predictors must precede the analysis with
CrossMark and the user must add the predictors to the data file and treat
them like any normal predictor variable: their names and types (v) have to
be entered (using the X-names button in the Main Menu) and also, three
columns, one for each predictor, have to be added to the Design mu and
Design lambda matrices.

The predictor Age obs(t) has to be constructed such that
Age_obs(t) = Age(t) for cases observed a time point ¢ and
Age_obs(t) = 0 for al other cases. For predictor Age_pre(t) it must hold
that Age_pre(t) = Age(t) for cases observed after time point ¢ and
Age_pre(t) = 0 for al other cases.

For 6 randomly chosen cases, two of each cross-section, the vaues of
Age(t), Age_obs(t) and Age_pre(t) might be those shown in the upper
part of Table 1. Note that, put next to one another, the three Age_ 0bs(t)
vectors form a block-diagonal matrix and the Age pre(t) vectors a 'sub-
block diagonal' one. For Inc and Inc_obs(t) the values of the 6 cases
might be the ones in the lower part of Table 1, with now the Inc_obs(t)
vectors forming a block-diagonal matrix. Instead of the two separate
equations (1) and (2), we can write a single equation, holding for time
observed as well as preceding pointsin time:

logit(p,) = B, - Age_ obs(t) + 55 - Age_pre(t) + B - Inc_obs (t) 3

Why (1) and (2) are equivaent to (3) becomes clear when equation (3) is
worked out for the observed and preceding time points separately:
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Tablel Ancillary predictorsfor Age

Age(t) Age_ obs(t) Age_pre(t)
(1) (2) (3) (1) (2) (3) (1) (2) (3)
t=1 19 0 0 19 0 0 0 0 0
45 0 0 45 0 0 0 0 0
t=2 37 38 0 0 38 0 37 0 0
21 22 0 0 22 0 21 0 0
t=3 42 43 77 0 0 44 42 43 0
66 67 68 0 0 68 66 67 0
Inc Inc_obs(t)
(1) (2) (3)
t=1 1500 1500 0 0
7300 7300 0 0
t =2 3500 0 3500 0
9400 0 9400 0
t=3 1200 0 0 1200
2200 0 0 2200

observed: logit(y,) = B, - Age_obs(t) + B; - Age_pre(t) + B - Inc_obs (t)
= B, - Age(t) + ;-0 + B - Inc
= 3, - Age(t) + B - Inc (39)

preceding: logit(y,) = B, - Age_ obs(t) + B; - Age_pre(t) + 55 - Inc_obs (t)
=03,-0 + Bs - Age(t) + 55 -0
= Bs - Age(t) (3b)

Thus, equations (3a) and (3b) appear to be equivalent to (1) and (2),
respectively. Since CrossMark uses a single equation for p we employ the
generic equation (3). Parameter 3, can be interpreted as 3, i.e., the effect
of age controlled for income, at observation time; 3. isinterpreted like 3,
as the effect of age at preceding points in time not controlled for income;
Bs has the same interpretation as 3,, i.e., the effect of income controlled
for age at the time of observation.

183



Instead of (3) way may also use another generic equation in CrossMark:
logit(p,) = B; - Age(t) + B+ Age_obs(t) + B, Inc_obs(t) (4)
Working out (4) for observation time and preceding timepoints results in:

observed: logit(u,) = 5; - Age(t) + G- Age_obs(t) + B, - Inc_obs(t)
= 0;-Age(t) + Bs-Age(t) + B, - Inc

= (ﬂ? + 6@) - Age (t) + By - Inc (49)
preceding: logit(u,) = B, - Age(t) + [s-Age_obs(t) + [, - Inc_obs(t)
IOgit(ﬂt) =03 - Age(t) + 50 + B3,-0
logit(u,) = B; - Age(t) (4b)

As can be seen (44) is equivalent to (3a) and (1), while (4b) is equivalent to
(3b) and (2). Therefore, both equation (3) and (4) can be used to model
logit(y, ). They differ only in parameterization. The sum (3. + 3, has the
same interpretation as 5, (or 5,); B, isinterpreted in the same way as 3,
(or 3,). Findly, the interpretation of 3,is similar to the one of 3, (or G,).
A minor advantage of using (4) instead of (3), is that (4) needs on
construction of the Age_pre(t) vectors.

2.1 Testing the null-hypothesis H, : 3, = 3,

Looking at the equations (1) and (2) the question arises as to the equality of
thetwo Age effects 3, and 3,. When applying equation (4) the above null
hypothesis trandlates into H,: 3. + 3, =3, or, more simply, to
H,: B, = 0. This test is automatically performed by CrossMark and the
significance level of the related Wald statistic is reported in the Output
window. When, on the other hand, equation (3) is applied, the above
hypothesis trandates into H, : 5, — 3, = 0. Given the hypothesis is true,
the sample outcome of the statistic (8, —03,)*/var(8,—83,), with
var(B, — 3,) being the estimated sample variance of 3, — 3., follows a
x> distribution with 1 degree of freedom. The value of 3, — 3. can of
course be derived from the ML estimates produced by CrossMark in the
fina iteration. To derive var(G, —(3,) the formula var(8, —3.) =

2

var(@) + var(BS)— 2COV(B4,B_5) can be applied with Var(B4), var(ﬁs)
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Table 2 Ancillary intercept predictors

Intercept Intercept_obs(t)  Intercept_pre(t)

(1)  (2)  (3) (1) (2) (3)

t=1 1 1 0 0 0 0 0
1 1 0 0 0 0 0

t=2 1 0 1 0 1 0 0
1 0 1 0 1 0 0

t=3 1 0 0 1 1 1 0
1 0 0 1 1 1 0

and cov(3,,3,) representing the estimated variances of 3, and 3, and
their estimated covariance respectively. These variances and covariance are
given by CrossMark by checking the option Show covariances of
parametersin the Estimation M enu.

If the test outcome leads to not rejecting the null hypothesis, the ancillary
variables for the predictor in question are no longer needed and the original
predictor, Age(t) in the example, can be used, possibly aong with
ancillary variables of other predictors for which the hypothesis does not
hold.

The equations above did not include an intercept, for smplicity. Of course,
In most applications an intercept will be present and we will have to decide
which type of intercept vector(s) to employ. If we have no nonbackcastable
predictors, the intercept is ssimply a single vector containing the value 1 for
all cases of al cross-sections. If, however, nonbackcastable predictors are
utilized, we may want to estimate one intercept for time observed and
another one for preceding time, just as was done for Age(t) in equations
(1) and (2). In that case we would have to construct two ancillary (time
varying) intercept predictors, according to the schemein Table 2.
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3 Fixed 1 and A values

CrossMark has the option of entering fixed . and/or fixed \ vaues for
some (or all) cases on some (or all) pointsin time. We start with discussing
three situations in which this option can be utilized to adjust the basic
equations for the state probabilities p. We also explain how the option has
to be specified in CrossMark.

In some applications, the values for p and/or A may be considered fixed
and hence need not be estimated. This would e.g. be the case when the
(backcasted) age of a respondent is 17 or younger in a study on voting
behavior, given that the voting age is 18. Suppose, in the example given
earlier, arespondent is 18 years old at the time that the third cross-section
was observed (i.e., on ¢t = 3). For this respondent we would like p, and p,
to be zero; also, since p, is an entry probability (the respondent could not
have voted for party A at ¢t =2) we would like p, to equal the entry
probability p,. To implement these restrictions in the model equations, we
fix p, = p, = 0 for this respondent, which implies the following adjusted
equationsfor p, to p,:

p=pm=0

p,=p(1=X)+A=-p)p, =0(1-X)+1-0 =0
p3:p2(1 >\3)+(1—p2),&3:0(1—)\3)4—1-”3:MS
P, =p,(1=A) + (1—py)

Py =p(1=X) + (1—py)

The equations for p, and p. have the usual Markov form, while those for
p,, p, and p, are adjusted in the sense specified above. We shall explain
below how the fixed Ovaues for the n probabilities in question for
respondents younger than 18 have to be entered in CrossMark.

A second example of adjusting the basic equations for p is the following.
Suppose all predictor variables we would like to use are constant over time,
but only for a short time period. To be more specific, we assume that the
predictor values for acase observed at time ¢t asoapplyto ¢t —1 and ¢ — 2,
but not further back in time. Therefore, we let the Markov chain for each
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case start two time points preceding to the one the case was observed,
instead of starting at time point ¢t =1 as we would have done, had the
predictors been perfectly stable. This implies that the first state probability
estimated for the cases of the cross-section a ¢t =5 will be p,. For the
cases of the cross-section at ¢t =4, p, will be the first estimated state
probability, and for those of the cross-sectionat t =3, t=2 and t =1,
p, Will be the first estimated state probability. This is different from the
more general situation where, for all cases of all cross-sections, p, is the
first estimated state probability. Remember that for p, we used a logistic
equation, p, = p,, with specific 3 parameters, different from the ones of
., through . . Here, we would like the same to hold for p, and p,, asfar
as the cases of the cross-sections at t =4 and ¢t =5 respectively are
involved. To achieve this, we shall again use the equation p, = u, to
estimate p, asthe first estimated state probability for all cases of all cross-
sections and then (i) let p, have the same value as p, for the cases of the
cross-section a ¢ =4 and (ii) let p, have the same value as p, for the
cases of the cross-section a ¢ = 5. By doing so, we estimate three first
state probabilities, p,, p, and p,, using the logistic equations p, = ,,
p, = p, and p, = p, . At the same time p, and p, are aso estimated by a
Markov equation for the cases of the cross-sectionsat ¢t =3 and ¢t =4
respectively.

To specify the model we exploit fixed ¢ and A values. Let us take a
look at a case of the cross-section at ¢ = 5 for which we want to estimate
p, using the equation p, = p,. We let A\, =X, =0 and p, =y, =0,
which resultsin:

b=

p=p0=X)+1=p)u = (1-0) +(1—p) 0=p,
Py =p(1=N) + (1 —po) iy = (1=0) +1—pw) 0=y

p4:p5( =)+ A=py)n,

ps = p(1=X) + (= pi) i

As can be seen, the equations for p. and p, are the usual Markov
equations, while for p, we have p, = pu,. For cases of cross-section at
t =4 we proceed in a ssimilar way by fixing A, =0 and px, =0 which
leads to p, = p,. For the cases of the cross-sections at ¢t =3, ¢t =2 and
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t =1, we automatically have p, = p,, so for these cases we do not need to
fixany p or \.

The last example of using fixed © and )\ vaues concerns the analysis of
discrete panel data. Consider a situation in which we have at our disposal a
five wave pand data set without any inflow or outflow. The Markov model
for discrete panel data reads as

pt:ytfl(]‘_)\f) + =y s t=2,...,95,

while for cross-sections, it reads as

p=p,0=X) + Q=p ), t=2...5,

the difference being the use of y,_, in the case of panel dataand p,_, when
using cross-sectional data. As stated earlier, CrossMark uses the second
equation since it was designed for the analysis of cross-sectional data
However, the program can simply be tricked to analyze panel data as well
and thus to apply the first equation.

To do so, we first have to construct the data file in the way
CrossMark expects it to be, i.e., according to the t-y-x-fre format. Each
‘cross-section' in this data file corresponds to a particular wave of the panel
data. The data for the first wave have to be placed at the top of the datafile,
followed by the data for the second wave, the third wave and so on. The
order in which the respondents appear within the data for each wave is
irrelevant and need not be the same for each wave.

Second, we need to define p,_, =y, , for t =2,....5 or, to put it
smply, p, =y, for t =1,...,4. To do so we use fixed p and fixed A
values. To make sure that p, = y,, we simply let p, = y,, resulting in
p, = i, =y,. For p, through p, we proceed as follows. If for a certain
cae y, =0 (t=2,...,4), we let \, =1 and p, =0, which results in
pp=p.,1=-XN)+Q=-p )y, =p,1-1)+A=p_)0=0; thus
p, =y, = 0, aswas meant to be the case. If, on the other hand, y, =1, we
let A, =0 and u, =1, so that p,=p, ,(1-0)+ (1—p, ,)=1; thus
P, =y, =1

The third and final point concerns the fact that in models for panel
data the likelihood is commonly computed for the data of ¢ > 2, whilein
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CrossMark, the likelihood for ¢t =1 is used as well. To delete the
likelihood contribution of the cases for ¢ =1 in CrossMark, we assign a
very small frequency to the cases of the first wave (i.e.,, 0.0000000001) in
the (t-y-x-fre) data file. We can also delete all cases of the first wave from
the data file except one case, and assign the small frequency value to this
single case. This single remaining case for ¢ =1 may have any values on
the Y and X variables since it only acts as a dummy case, having
(virtually) no influence on the parameter estimates.

3.1 Specifying fixed 1 and A valuesin CrossMark

The fields File with fixed mu-values and File with fixed lambda-values
in the Main Menu can be used to enter the names of the data files
containing fixed . and A\ values for some or all cases of some or all cross-
sections. The ‘file with fixed mu-values must contain one line for each
case to which fixed p vaues are assigned. Each line starts with the
sequence number the case has in the (t-y-x-fre) data file and is followed by
as many values 0, 1 or 9 as there are cross-sections. In the first example
given above, where the age of a respondent (say the 316th respondent in
the data file) was 18 years at the time point of the third cross-section, the
line to enter in the ‘file with fixed-mu values’' for this respondent is the first
of the two following lines:

316 0 O 9 9 9

925 0 O 0 09

Value 316 in the first line refers to the sequence number of the respondent;
the two O values that follow are assigned to p, and w, and the three 9
values indicate that 1., 1, and p, are not fixed, but have to be estimated.
The second line refers to another respondent with sequence number 925 in
the data file, who was 18 years old a ¢t = 5. In this example a ‘file with
fixed lambda values need not be specified, since only values of p are
fixed.

The ‘file with fixed lambda-values must contain one line for each case to
which fixed )\ values are assigned. Each line starts with the sequence
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number of the case in the data file and is followed by as many values O, 1
or 9 as there are cross-sections minus 1, since these values relate to A,
through X, T' being the total number of cross-sections. The third example
given above concerned the analysis of five-wave panel data without inflow
and outflow. If we assume there are 500 respondents then the data file
consists of 2500 lines, 500 lines for each wave. Suppose a particular
respondent has the Y pattern 01100 for ¢t = 1,...,5. If the sequence number
of the respondent in the first wave is 29, then the other four sequence
numbers are 529, 1029, 1529 and 2029. In the 'file with fixed mu-values
and the 'File with fixed lambda-values we have to enter the lines given in
the box below.

File with fixed mu-values File with fixed lambda-values Wave
SEANr iy Hy My fy s segqnr A, A A A

529 0 9 9 9 9 2
1029 9 1 9 9 9 1029 0 9 9 9 3
1529 9 9 1 9 9 1529 9 0 9 9 4
2029 9 9 9 0 9 2029 9 9 1 9 5

As can be seen, for the data of wave ¢ we specify afixed p, , valuein the
file with fixed mu-values equal to value of Y, ; e.g. for wave 3 we
specify u, =y, = 1. The fixed \,_, value that has to be specified in the
'File with fixed lambda-values for the data of wave ¢ is equa to the
complement of Y, .

4 Unobserved heter ogeneity

CrossMark offers the possibility to account for the influence of unobserved
variables on the entry and exit probabilities. In doing so the assumption is
made that the overall contribution of these variables to the logits of the
transition probabilities is constant for the time period considered. The logit
equations for p and 1— X including the contributions of unobserved
variabels can be written as follows:
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logit (1,) = 6 + 6,
logit (1—\,) =28 +56,,

where z is a row vector with the values of the observed (potentially
backcasted) predictors, 5 and §° are the column vectors with the
parameters associated with z, and finaly 6, and ¢, represent the total
contribution of the unobserved variables. The values of 6, and ¢, for all
respondents (or cases) are considered to be drawn from a normal
distribution with zero mean and variances +” en ~.. The above equations
therefore can also be written as:

logit (1,) = 8 + 7,2
logit (1—\) = 28" + 7,2,

with z ~ N(0,1) being the standardized contribution of the unobserved
variables and ~, and ~, the parameters associated with the ‘predictor’ z.
Since the z values for al cases are unknown the parameters 3, 5, 4, en
v, cannot be estimated. However, given a set of parameter values and the
value of z, itisof course easy to determine the log likelihood contribution
(¢ of that case. Also, for a given set of parameter values, the expected (or
marginal) log likelihood contribution E({¢) of a case can be determined,
where the expectation is taken over al possible values of > taken from
N(0,1). For acase of e.g. the cross-section at ¢t = 2 it holds that:

E(ll) = [ pQ=XN)+A=p)p, | f(2)dz ify, =1, and

E(t)= | [ A=p)d—m)+p X |f(z)dz ify,=0

J
J
Here, 1, and )\, are defined as above (i.e., including z), p, is defined as
usual (i.e., p, = p,) without z (in CrossMark, controlling for unobserved
variables is only possibly for the transitions probabilities at ¢ > 2.), and
f(2) isthe height of the standard normal pdf at z. The integrals cannot be

derived analytically, but are approximated by CrossMark using Gaussian
quadrature with 20 mass points. Utilizing the E(((¢) values of all cases of
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all cross-sections it is possible to estimate those values 3, 5*, 4, en 3,
that, averaged over all valuesthat > can take, have the highest expected (or
marginal) log likelihood. The criterion to maximize in this estimation is the
sum of the E(¢¢) values of all cases of al cross-sections. The resulting
estimates 5 en 3 * can be interpreted as the effects of the predictors z,
corrected for the average influence of the unobserved variables. Using the
above equations and estimation procedure has consequences for the
standard errors of 3 and 3 *, which can be quite different from the ones
estimated without taking into account unobserved heterogeneity. The
values of 4, and 4, are the estimates of the standard errors of 6, and 6,
respectively, i.e., of the contributions of the unobserved variables to the
logits of the entry and exit transition probabilities.

4.1 Testing the hypothesis H,: v, =, =0

To test this hypothesis we may use a test-procedure described by Snijders
and Bosker (1999). We first calculate the value of A = —2 - loglikelihood
for the model including ~,z and ~,2. Then we compute
B = —2-loglikelihood for the model without ~,2 and -,z and obtain the
difference D = B — A. Finally we test the difference D to be significant
using a x” distribution with 2 degrees of freedom, but halve the right tail
probability associated with the value of D .

The standard estimation procedure in CrossMark does not take into account
the possible influence of unobserved heterogeneity. If we wish to perform
an analysis as described above, including the v,z and ~,z terms in the
equations for the transition probabilities, we have to go the Estimation
Menu and click on the option caled Extra Bernoulli variance. After
running the model we will find the estimates 4, en <, in the Output
window.
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5 Metropolis sampling

In the Estimation window an MCMC procedure can be performed that
uses pure Meropolis sampling. To do so, check the option Metropolis
sampling and specify a filename after Outputfile posterior parameter
values for the file that the sampled parameter-points are written to. We
only implemented this option in a very basic sense. There is e.g. no prior
distribution that can be specified for the parameters. the implicit prior used
for all parameters is the uniform distribution. After Length of chain
gpecify the number of samples that has to be drawn from the posterior
distributions of all parameters. Note that no burn-in period can be provided
and, hence, the length of the chain must be large enough to also contain the
desired burn-in period.

After pushing button OK CrossMark first performs the usual maximum
likelihood (ML) estimation process. Once this is finished, the metropolis
sampler is started. Consequently, metropolis sampling begins by default at
the ML point. To start metropolis sampling from any other parameter-
point, specify the parameter values for this point as the starting values to be
used and also set the maximum number of iterationsto O.

It is possible to let CrossMark, for each sampled parameter-point, calculate
the mean values of p,, p, and )\, over al cases : for each timepoint ¢. To
this end, a filename must be entered after Outputfile posterior mean p,
mu, lambda.

The value to be entered on the Estimation window in the sentence

Covariance matrix of the jumping distribution equals ...
times estimated covariance matrix of parameters

refers to what is discussed by Gelman, Stern and Rubin in 'Bayesian data
anaysis, 1995, on page 334 at the bottom where ¢ = 2.4/sgrt(d). Value 2.4
for cisthe default CrossMark uses if you don't specify another value in the
above sentence. After the metropolis sampler is finished, inspection of the
chain of sampled parameter-points (in the file specified after Output
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posterior parameter values) is aways recommended, to make sure that the
chain has changed fast enough. If the same parameter-points are resampled
many times, asmaller value for c is probably more appropriate.

The parameter values that are sampled by the metropolis algorithm, are
written out (to the file specified after Outputfile posterior parameter
values) in the following format: sequence number (1,2,3,4,..., 100000, or
more, depending on the length of the chain that was entered) followed by
the values of the parameters of all predictors on the entry probabilities,
followed by those on the 1-exit probabilities, followed finally by the
loglikelihood value associated with these parameter values.

To evauate the output files with posterior parameter values and/or means
of p,, u, and \,, other statistical software must be used. CrossMark itself
does not perform any chain-evaluation, produces no histogram's of
posterior parameter estimates and/or means, nor calculates means or
standard deviations of the samples that were taken from the posterior
distributions.

6 Parametric bootstrap

The Simulate button on the Main Menu opens the Smulate window
where a parametric bootstrapping procedure can be performed. This
window is shown in Figure 4. In the first step of the parametric bootstrap
procedure anumber of Y datasets are simulated, based on the observed X
values in the data file and a set of true parameter values that must be
specified after True values entry parameters and True values 1-exit
parameters. The number Y datasets that have to be ssimulated is specified
after Number of smulations. A name is generated automatically (but can
be modified) for the output file that will contain the smulated Y data. After
clicking the button Sim. data the ssmulation process starts, during which
the Y data are generated and written to the file specified. Once the
simulation has been finished, the next step can be started, during which the
parameters will be estimated for samples that were smulated in the
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Figure4 Simulate window

Crossmark  Simulate El
Output file simulated v data |C:'\Erossmark\vate Y dat
Murnber of simulations a000 read starting values
True values entry parameters | A 01 -2 00e
True values 1-exit parameters | 00 1 003

Dutput file parameter estimates ||::'\Erossmark'wote parms.dat

Output file far results |E:\Erossmark\vote.t:-:t
Sim. data Show parmz |
Go | Show results

Stop

previous step. Estimation is started by pushing button Go. The estimated
parameter values for all simulated Y datasets are written to the file
specified after Output file parameter estimates in the following format:
the sample number, the parameter values of all predictors for the entry
probability, the parameter values of all predictors for the 1-exit probability,
and, finaly, the value of the loglikelihood. The file specified after Output
file for results contains the fina results, for all simulated Y datasets,
similar to the ones that are generally shown in the Output window. As with
the metropolis sampler, here again one will have to evaluate the estimated
parameters with other statistical software. The two buttons Show parms
and Show results show the corresponding files in Wordpad.
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