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Preface

\_ /

This is the 2011 edition of the manual that describes the ifeeGPACAR package in a1AT-
LAB/SIMULINK environment. This software is being developed at the Laboyaf Mechani-
cal Automation of the Faculty of Engineering Technologyjugnsity of Twente, and is partly
based on work carried out at the Laboratory for Engineerireghénics, Delft University of
Technology.

This manual accompanies the 2011 UT-releassrafCAR With respect to the previous edi-
tions of this manual new keywords have been included refigathanges in the software. In
particular, the screw and tube elements are included.sPagISUAL manual is separated from
this manual and reflects the extensive revision of this Vizsa@on program. Some examples
have been added to show the use of the new elements.

The references to sections and examples in the lecture [i$t® updated for the 2005 edition
of these lecture notes. They may be only approximate for @titions.

The visualisation toosPAVISUAL has been implemented by Jan Bennik and later extended by
Tjeerd van der Poel and Steven Boer, who also provided theaepaanual for this tool.
Corrections of errors, suggestions for improvements aner@bmments are welcome.

March 21, 2011, dr.ir. R.G.K.M. Aarts (EmaiR.G.K.M.Aarts@utwente.nl ), dr.ir.
J. P. Meijaard and prof. dr.ir. J. B. Jonker.
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The SPACAR program

\_ /

1.1 Introduction

The computer programPACARIs based on the non-linear finite element theory for mulgrde

of freedom mechanisms as described in Jonker’s lectures motehe Dynamics of Machines
and Mechanisms [1]. The program is capable of analysing yhamics of planar and spatial
mechanisms and manipulators with flexible links and trdatsgeneral case of coupled large
displacement motion and small elastic deformation. Theanaan be simulated by solving the
complete set of non-linear equations of motion or by usirggsi-called perturbation method.
The computational efficiency of the latter method can be owgd further by applying modal
techniques.

In this chapter, an outline of trePACARpackage for use witlATLAB andSIMULINK is given

in the next sections. For instance, for the design of mechasistems involving automatic
controls (such as robotic manipulators), interfaces witTLAB [2] are provided for open-
loop system analyses, Sectionl1.2. Open-loop and closgrdimnulations can be carried out
with blocks from asIMULINK library, Section 14. A special visualization toSRAVISUAL, is
described in Sectiofn_1.3. Additional tools are availableuging the perturbation method and
the modal techniques isIMULINK (Section_Lb). Installation notes feiPACAR are given in
AppendiXA.

A graphical user interface (GUI) for generating input files $patial systems is available and
will be further developed. People interested in rigid plam&chanisms may consider the use
of the commercially available packagem by ARTAS [4]. It has a nice graphical interface for
the definition of mechanisms and it provides more elemeais3RACAR

1.2 SPACAR and MATLAB

ThesPACARprogram system for use in theaTLAB environment contains five modules, which
obtain their input from format-free user-supplied datatHe following a short description of
every module will be given. The functional connections kewthe modules are illustrated in
Fig.[1.1.



2 Chapter 1. The SPACAR program

mechanism

connectivity  dynamic

configuration| properties trajectory path

DOFs q = forces velocity profile

(wm’ em) (f"L, O'm) (wg’ wg)
mode 1 .

KIN —» DYN vr » DOFs (q,9)
mode 2 joint variables (ef)’, €™, o
FH» INVDYN nominal inputs (ug)
reference outputs (y)
mode 3 .
State space matrices

mode 4

LINEAR ——» Linearized equation

****** mode 7 . .
——— > Eigen frequencies

> STATIO [ LINEAR | _Mode8,
mode 9

Buckling loads

State space matrices

Figure 1.1. Functional relations between modulesSraCAR The indicated modes are
available in thewATLAB environment.

KIN is the kinematics module that analyses the configuratioheofrtechanism. The kinematic
properties of the motion are specified by the geometric tearisnctions. The following
steps are provided by then-module:

1. Definition of the mechanism connectivity, the configuratand the degrees of free-
dom (DOFs)g = (™), e™).

2. System preparation.
3. Calculation of the geometric transfer functions.

DYN is the dynamics module that generates the equations of matid performs numerical
integration in the forward dynamic analysis (in the soe@dihode=1 of SPACAR). Fur-
thermore, it generates and solves the equations for théositadic analysis.

INVDYN is the inverse manipulator dynamics module that perforragriierse kinematics and
dynamics fnode=2) and generates the setpoints for the simulation of mantiufaction
with closed-loop control isIMULINK (see Secf.114). The system inputs, represented by
the nominal input vecton,, are to be varied by the control system actuators. The system
outputs, represented by the reference output vagipronsist of the coordinates to be
monitored by control sensors. Coordinates that are not megisoay be added to check
the performance of the manipulator in the simulation.

STATIO computes stationary solutions of autonomous systemsioSaay solutions are solu-
tions in which the vector of dynamic degrees of freedgithas a constant value. This
can represent a static equilibrium configuration or a sthsteady motion.

LINEAR is a forward dynamics stage for the generation of linearempehtions and state space
matrices. It can be used in different modes as describedvbelo
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In mode=4 the LINEAR module is an extension of the forward dynamic analysiede=1)
where coefficient matrices of the linearized equations ateutated as functions of the set of
degrees of freedom. If there are only holonomic deformations in a system, thedrized
equations are generated in the form:

Mo6q + [Co + Do) 6G + [Ko + No + Go) 6q = DFTs f — DF I se,, (1.1)

where M is the reduced mass matri&, the velocity sensitivity matrixD, the damping ma-
trix, K, the structural stiffness matrix, amld, andG, are the dynamic and geometric stiffness
matrices respectively. External and internal driving &x@re represented by the vectoys
andoio,, respectively. In addition, if input and output vectors anddy are defined also the
linearized state equations and output equations are ceohfstenode=9).

In mode=3 locally linearized models are generated about a predefioetial trajectory where
the output data (setpoints) from the inverse dynamics neo@id. a previousnode=2 run) are
used. In addition to the coefficient matrices, a completee tpace system is generated and
written to a so-calledtv file (see Sec{._1l5). In the case of a flexible mechanism additi
degrees of freedom describing the elastic behaviour of thehamism have to be included in
the dynamic models (botmode=2 and3). At this stage in the so-called “rigidified” model,
these flexibilities are prescribed zero, Eg. = 0.

In mode=7 eigenvalues (frequencies) and corresponding eigengofdhe state space ma-
trix A are computed for a static equilibrium configuration or aestdt steady motion. The
associated frequency equation of the undamped systemeis Qiv

det (—w?My' + K{* + N§* + Gi*) = 0, (1.2)

where the quantities; are the natural frequencies of the system.

In mode=8 a linear buckling analysis is carried out for a static etpuilim configuration or a
state of steady motion. Critical load parametgrsare determined by solving the eigenvalue
problem:

det(K§* + NG = 0, (1.3)
where the load multipliers satisfy
fi = )\ifo' (1-4)

Here, K4 is the structural stiffness matrix a@’® is the geometric stiffness matrix due to the
reference loadf, giving rise to the reference stresses f, represents the bucking load that
corresponds with;. In addition, directional nodal compliances are computed.

In mode=9 linearized equations for control system analysis are cdetpfor a static equilib-
rium configuration or a state of steady motion and are geaétatthe form

My'5¢" + [C4" + D] 6" + [K' + N§' + GiY) 6q” = Boou, (1.5)
where

By = [DuF"| - DuFT| - M| - (CF + D) | — (K§ + N + Gi')] (1.6)
is the input matrix and

Su = [5f(c,m)T’5o,l(lm,c)T’ 5qu’5qu7é‘qu}T (17)
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is the input vector. The vectotsy’”, §¢", 6q"" represent the prescribed (input) accelerations,
velocities and displacements respectively. The linedrempations can be transformed into the
linearized state space form:

5% = Adz + Bou,

1.8
0y = Coz + Dou, (1.8)
where A is the state matrixB the input matrix,C the output matrix and) the feed through
matrix. The state vectoiz is defined bydz = [§¢?",6¢™ ", wheredq? is the vector of
dynamic degrees of freedom. The matrid@sC' and D depend on the chosen input veciar
and the output vectary. Details of the linearization are discussed in Chapter 1Betécture
notes.

Systems with non-holonomic deformations

For systems with non-holonomic deformations arising froneel elements, the above descrip-
tion has to be modified in several respects. Onlyde=0, mode=1, mode=4, mode=7 and
mode=9 are supported. The state vector consists of the coordidatsibing the configura-
tion, ¢*, and the velocity coordinateg?. The configuration coordinates are split in coordinates
whose derivatives are velocity coordinates and coordathiE have no corresponding velocity
coordinates; the latter are called kinematic coordinaf&ée dynamic equations consist of two
parts, the kinematic differential equations defining thevagives of the configuration coordi-
nates and the equations of motion defining the time derwatf the velocity coordinates.

The linearized equations have the form

1 0)[sd"] [ ~Bu —Aw | [dg"] _ 0 (1.9)
O M| |6¢°| " | Ko+ No+ Gy Co+Dy| | 5¢°| ~ |DFPITsf - DF O s0,|

where A,y and By are kinematic matrices. For ordinary systerik, is a zero matrix and
Ay is an identity matrix. Fomode=7, a stationary solution is first obtained with the module
STATIO and the eigenvalues are obtained by solving the charaatertgiation

(1.10)

ot | I e |0

Ko+ No+ Gy My\+ C, + D,

Formode=9, the linearized state equations are obtained as in equ@i®) with the difference
that the variations in the states are néw= [5g*”, §¢*|".

Definition of a mechanism model

A model of a mechanism must be defined in an input file of file fgeile name extension)
dat . This input file consists of a number of keywords with essgr@nd optional parameters.
The input file can be generated with any text editor.

In Chaptef 2 the meaning of the keywords and their parametatiscussed in detail. In the
examples in Chaptéi 3 complete input files are presented.
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Running SPACAR in the MATLAB environment

Once the mechanism is defined and this information is savedi&éd input file, SPACARcan
be activated with th&ATLAB command

>> spacar(mode,’filename’)

Here,mode indicates the type of computation as shown in Eigl filename is the name

of the input file, without the extensiadat . Thefilename s limited to 20 characters from
the set “0"-"9”, “a’-"z", “A’=“Z" and “ _”, so it can not include drive or path specifications.
The linearization witrmode=3 needs data from a previous inverse dynamics computation. To
that end the specifieflename is truncated with at least one character at the right until a

valid output data file is found. So e.gpacar(3,'testlin’) can use data from an earlier
spacar(2,'test’) computation. If no data file can be found in this way the liiestion
is aborted.

During the computation a plot of the mechanism is shown inpaisge window. While the
simulation is running a\bort button is activated in the plot area. Pressing this buttdh wi
terminate the simulation (possibly after some delay). Tesjup the computation, the plot can
be disabled by specifying the mode with a minus sign, ewgde=-2 for an inverse dynamics
computation without a continually updated plot. The plajtutility spadraw can also be used
after the simulation to visualize the results, see page 10.
During the computations the results are stored in one or whatefiles and IMATLAB arrays.
A log file is always created whesPACAR starts processing the inpdat file. Thislog file
contains an analysis of the input and possible errors andimgs. It is described in more detail
on paged B. Some errors in the input file do not lead to an eamtyination of thesPACAR
computation, but nevertheless give unusable results.efdrerit is advisable to check tteg
file for unexpected messages.
All other data files are so-callesPACAR binary data files (SBF), which implies that these are
in a binary format and cannot be easily read by a user. Thereftilities are provided to read
and modify data in these files, see page 9. Depending omtt up to three binary output
files may be created.
For all modes asPACAR binary data file with filename identical to the input file andession
sbd is written. The contents of this file are also storediRTLAB arrays, that are of course
immediately available in th&ATLAB workspace e.g. to be visualized with the standard-
LAB graphics commands, suchplet (see e.g. Chaptéi 3 and Appendix C). The following
variables are created or overwritten:

mode  SPACARMode number

ndof number of DOFs including rheonomic ones

nddof  number of dynamic DOFs

nkdof  number of configuration coordinates including rheonomieson

nkddof number of configuration coordinates

nx number of coordinates

ne number of deformation parameters

nxp number of fixed, calculable, input, dynamic and
kinematic coordinates

nep number of fixed, calculable, input, dynamic and

kinematic deformation parameters
Inp location matrix for the nodes *1
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le location matrix for the elements *1
In connection matrix for the nodes in the elements *2
it list of element types *2
kdform information about quadratic terms in strains for elements 2 *
rxyz initial orientations of elements *2
rxyzq initial orientations of elements at second node *2
drO geometric data of elements *2

estiff stiffness parameters of elements
edamp damping parameters of elements

em mass per unit of length of elements
einit initial deformations of elements
esig initial stresses of elements

ri0 undeformed length of elements
time time column vector

X coordinates (nodal displacements)
xd nodal velocities

xdd nodal accelerations

fx prescribed nodal forces/moments

fxgrav  gravity nodal forces/moments
fxtot reaction forces/moments

e generalized deformations

ed velocities of generalized deformations

edd accelerations of generalized deformations

sig generalized stress resultants

dec first order geometric transfer function for the deformagiBF<(© *3

dxc first order geometric transfer function for the coordinddes<®) *3

de first order geometric transfer function for the deformasioF () *3

dx first order geometric transfer function for the coordindds® *3

d2e second order geometric transfer function for the deforomsD?F©  *3

d2x second order geometric transfer function for the cooreés@t F  *3

xcompl location vector for directional nodal compliances *4
Notes:

x1 The two location matrices provide information to find thedtian of a specific quantity in
the data matrices:

Inp location matrix for the nodes. The matrix elemée(i,j) denotes
the location of the " coordinate j(=1..4) of nodei .
le location matrix for the elements. The matrix elemiexi,)) denotes

the location of the " generalized deformation €1..6) of element .

The locations of undefined or unused coordinates and defmnseequal zero.

For example, the:- andy-coordinates of node 7 can be shown as function of time in a
graph by typing

>> plot(time,x(:,Inp(7,1:2)))
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and the first generalized stresses in elements 1, 2 and 3 gaatte= by typing
>> plot(time,sig(:,le(1:3,1)))

Obviously, storage in the, xd, xdd , fx , e, ed, edd andsig matrices is likex(t,k)
wheret is the time step anll ranges from 1 tox for x, xd, xdd andfx , fxtot and
from 1 tone for e, ed, edd andsig , respectively.

x2 The variables$n ,it ,rxyz andrxyzq are mainly intended for internal use in the drawing
tool spadraw . More user-friendly information is available in thag file, pagée 8.

x3 The (large) variabledec, dxc, de, dx, d2e andd2x are only created if the parameters
of the LEVELLOGare set accordingly, Se€t. 2.2.

x4 After a linearization runrfiode=8) directional nodal compliances (inverse stiffnesses) are
computed. Using the location matrix¢ompl(Inp(i,j)) gives this quantity for the
j " coordinate j(=1..4) of nodei .

After a linearization runrfode=3, 4, 7, 8 or 9) the coefficient matrices are stored iSRACAR
binary matrix file with extensiosbm. Besidesinom (see infra) andime , the accompanying
MATLAB matrices are:

mO reduced mass matrix{ *5
b0 input matrix B *5, *6
cO velocity sensitivity matrixC| *5
do damping matrixD, *5
kO structural stiffness matri¥, *5
no geometric stiffness matritv *5
g0 geometric stiffness matri& *5
ako kinematic matrixAyg *5
bkO kinematic matrixB *5
Notes:

x5 Storage of the time-varying matrices is in a row for each tateg, so irmO(t,k)  indext
is the time step ankl ranges from 1 toxdof xndof . To restore the matrix structure at
some time step type e.geshape(mO(t,:),ndof,ndof)’

x6 Only available fomode=4 andmode=9.

In mode=2, 3, 4 and9 a so-calledtv file is created. The contents of this file varies and is
not automatically imported to theATLAB workspace. From emode=2 run the following data
are available (the names identitify the data used in thedd¢a marked with “*” are available
at each time step):

NNOM number of (actuator) inputs

NY number of outputs
T time *
0]0] nominal input for the desired motion *

YO reference output of the desired motion *
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In the addition the linearization runs yield additionalp®hts, state space matrices and other
data in thdtv file (not all data are always present):
NNOM number of (actuator) inputs

NX number of states (ndof )
NU number of inputs (length dii0)
NY number of outputs (length of0)

NRBM number of rigid body DOFs

NYS number of outputs with'® order expression
NYSI index array for outputs with™@ order expression
DFT direct feedthrough flagx#0)

X0 initial state vector
T time *
A state space system matrix *
B state space input matrix *
C state space output matrix *
D state space direct feedthrough matrix *
G second order output tensor *
MO mass matrix\{ *
CcoB combined damping matri€'y + D, *
KOB combined stiffness matrik, + Ny + G *
*

SIGO  generalized stress resultants
Thegetss tool can be used to read the state space matrices frortvthefile, see pagél9.
Other utilities are available to use parts of these datasmaLINK environment, e.g. to read
setpoints or to simulate a linear time-varyingy) system (see Se¢t. 1.4).

Thelog file

Thelog file contains an analysis of the input and possible errorsaardings that are encoun-
tered. The error and warning messages are explained in retai ith AppendiX B. The other
output can be separated into a number of blocks.

The first lines indicate the version and release date of thieaee and a copyright note.

Next the lines from the input file read by tlkeN module are shown (not showing comments
present in the input file), see also Séct] 2.2. From the aisabyaritten:

e The elements used in this model. The deformations of all efgmare shown with the
internal numbers according to tie array and the classification of each deformation:
O=fixed, C = calculable and= DOF.

e The nodal point information with the internal numbers of tberdinates according to the
Inp array and the classification as above.

e A list showing the degrees of freedom, in which dynamic degref freedom are indi-
cated.

e The condition number of the part of the difference matrix thes to be inverted, which
shows how well the degrees of freedom have been chosen.

The bYN module reads the next data block and processed input limeshewn. From the
analysis we get
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e The number&NEQ NEMMNEMandNECindicating the numbers of deformations in each
class as explained in the lecture notés [1].

e The numberdNXQ NXCG NXMMndNXMindicating the numbers of position coordinates
in each class as explained in the lecture nates [1].

e The stiffness, damping and mass of the elements.
e The nodal point forces, mass and gyroscopic terms.
e The total mass of the system.

The zeroth, first, second and third order transfer functasesshown next, each for the position
parameters and deformation parameters, respectivelyaifiloeint of output can be controlled
by the keywordOUTLEVELn the input file.

Next for a forward analysisnjode=1 andmode=4) the name of the integrator and accuracy
settings are shown. Finally a list with all time steps andrtbeber of internal iterations are
given. For an inverse dynamics analysis the trajectorigsigput/output definitions (see also
Sect[2.4) are read and analysed. In casmade=3 the name of the data file of the previous
mode=2 is shown. In case ahode=7 the eigenvalues (frequencies) and normalized eigenvec-
tors of the state system matrix are shown. In caseaife=8 load multipliers and normalized
buckling modes are presented. In addition the vector ottdoeal nodal compliances is shown.

SPACAR binary data files

Some utilities are available to show, check, load or replaealata irsPACARbinary data files
(SBF). These are files with extensicstzd , sbm andltv

checksbf checks and shows the contents (fraCARbinary data file. The output for each
variable is the name (“Id”), the type (1 for integer, 2 forIlrez for text) and the size
(number of rows and columns). First the “header” variablesshown with their values.
Long vectors may be truncated. BetweEDEF and TDAT the time-varying data are
given. The number of time steps is equal to the number of rpssiBed forTDEF

getfrsbf extracts a variable from&PACARDinary data file. The “Id” must be specified and
for time-varying data the time step as well.

repinsbf  replaces the value of a variable inseACAR binary data file. The “Id” must be
specified and for time-varying data the time step as well.

loadsbd loads all data from gaPACARDbinary datagbd ) file into MATLAB ’s workspace.

loadsbm loads all data from g&PACARDbinary matrix datagbm) file into MATLAB's
workspace.

getss loads the state space matrices at one time instant frempaARrItvy file into a state
space system IMATLAB s workspace.

combsbd combines data from two or mosPACARDbinary datagbd ) files into a single output
file. The specified output file is overwritten without a waignin
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spadraw is the plotting utility used internally bgPACAR It can also be used to visualize
results after a simulation has been completed.

For all utilities additional online help is available by tyg help command at themMATLAB
prompt.

Limitations

The sPACAR package has some built-in limitations on the size of the pudators that can be
analysed. Table 1.1 shows the limits for the so-called “Stadersion” that can be downloaded
as describes in Appendix] A. In case your requirements agefdayou need to contact the
authors. The licence for the freely downloadable softwaitéene limited.

Maximum number of coordinates/deformations 175

Maximum number of DOFs 20
Maximum number of elements/nodal points 50
Maximum number of inputs 12
Maximum number of outputs 25

Table 1.1.Built-in limitations of the “Student version” of thePACAR package.

1.3 SPAVISUAL

SPAVISUAL is the visualization tool fosPACAR It can visualize deformation, vibration and
buckling modes. sPAVISUAL shows beams, trusses and hinges in 2-D as well as in 3-D. It
works with default settings which can be adjusted by the.uSke only input ofsSPAVISUAL

is a filename. This file has to be.dat file which has been analysed wifPACAR This is
necessary becaus®AvISUAL needs thesbd files for the deformation modes and also the
.sbm files for the vibration and the buckling modes. There are skeygords that can adjust
the default settings. Alternatively, the settings can lexg@d as command line options. These
keywords are listed in a separate manualdeavISUAL.

SPAVISUAL is a stand-alone function iIMATLAB . To runSPAVISUAL the user has to type the
command

>> spavisual(’filename”)
or
>> gpavisual(‘filename’,;mode)

Herefilename refers to thedat -file that has been executed BpACAR andmode is the
mode of thesPACARanalysis.
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1.4 SPASIM and SIMULINK

The behaviour of a manipulator mechanism with e.g. closeg-Ilcontrol can be simulated
usingsSIMULINK . The closed-loop simulation is defined as the problem of agmg the actual
trajectory of e.g. the manipulator tip with controlled aation of the motion. Tracking errors

with respect to a nominal prescribed trajectory can be Gatied.

Rigid or rigidified link model
igid or rigidified link mo eprescribed

trajectory

Flexible link model

actual
trajectory
______ - Uo ]
INVDYN | _ set[?)%(ijnts Yo simulation
Y [
: read coeff| Mo,Co,Ko| control
LINEAR  ------ matrices parameters

MATLAB analyses SIMULINK simulation

+— =

Figure 1.2. Typical overview withmATLAB analyses and aIMULINK simulation.

Figure[1.2 shows an overview of a typical simulation scheffee simulation is characterized
by the inverse dynamics stage, based on a rigid link modelkaiodward dynamic stage. At
the forward dynamics stage the tracking behaviour of theipodettor system is studied. In
the case of flexible manipulators additional generalizeatadinates £;*) describing the elastic
behaviour of the manipulator links can be used in the dynaystem.
The block diagram in Fid. 113 shows a typical closed-loopusation in more detail. Blocks are

used from thesSPACAR SIMULINK library spacar_lib

that is part of thesPACAR package.

These blocks are front-ends to so-called S-functionsiimuLINK [3]. The following blocks

are provided:

1. SPASIM the non-linear open-loop model of the manipulator witheicsuators and sen-
sors. It operates in a way comparable to the forward dynamade insPACAR as dis-
cussed for themATLAB interface in Seci. 112. The mechanism is defined in an inpiat da

file of file type dat . The filename

of the input file must be specified. An output

log file is written. Note that in aIMULINK simulation the integration is determined
by thesIMULINK environment, e.g. the kind of solver, the step size anddales. The
degrees of freedom of the mechanism and their first time a@ras are the “states” of
the SPACAR S-function. The dimensions of the input and output vectoesdetermined
from the input file and should match the requirements of ther@iMULINK blocks they

are connected to.
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Read Uo T Tmmmsmmmmmmeee |
| SPASIM !
Unom +l ! o |
Read Yo + | control _5>U:u actuator| ¢©" |mechanisnt—__—>| sensor| Y
Yref system | model model |-¢ model
read setpoints B | i : I
coeff. matrices : S-function |
Read control | ~ |  TTTTTTTTooooooooooo-oo-o-o-
ea parameters
MO

e.g. M-function

Figure 1.3. Block diagram of a typical closed-loop simulation $nsMULINK. The left
blocks read setpoints and coefficient matrices stored in data files dugrppPsSPACAR

analyses (Fid.111).

2. LTV: simulation of a linear time-varying system as defined ifitan file, see Secf. 115.

3. Setpoint U0 : reads the nominal input from dtv file with setpoints generated e.g.
with mode=2 or mode=3. Thefilename must be specified. The setpoints are inter-
polated between the specified time steps. The interpolatigthod can be chosen from:
Stepwise, Linear (default) and Spline. The block has notiapa the dimension of the
output vector equals the number of nominal inputs found énfille.

4. Setpoint Sigma0 : readso, from anltv file generated with e.gnode=3, see
Sect[1.b.

5. Reference YO : reads the reference output fromlan data file with setpoints. The
flename must be specified. Interpolation is as above. This block basput and the
dimension of the output vector equals the number of referemtputs found in the file.

6. Times MO: reads the square reduced mass maufy from anltv file generated with
e.g.mode=3. The output of the block equals the input of the block is nplikd with the
mass matrix. Thdilename must be specified. In the case not the full dimension of
M, intheltv is used, the reduced dimension has to be specified. All elesnoéd 1,
are interpolated linearly (default) or stepwise. The disien of the output vector equals
the dimension of the input vector.

In the block diagram in Fid. 1.3 the output vectpof the SPASIM block is compared with
the reference output vectet,. The difference of these vectors is the input of the contyst s
tem. The state matrices can be used to develop and tune altemaf any type (e.g. lin-
ear, non-linear, discrete, continuous) by means of thdablaisoftware tools imATLAB and
SIMULINK . The output of the controlleru is added to the nominal input vectoy to actuate
the mechanism. An example is discussed in 3.11.

When using blocks from thePACAR SIMULINK library spacar_lib  note the following:

e Using any of theLTV, Setpoint U0 , Setpoint Sigma0 , Reference YO and
Times MO blocks at times beyond the last time step found in the datafédg lead to
unexpected results.
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e In the current version of the software alpasim blocks in a block diagram should
refer to the same inpditename . Analogously, alLTV, Setpoint U0 , Setpoint
Sigma0, Reference YO andTimes MO must use the sanity file.

1.5 Perturbation method and modal techniques

For systems with a larger number of degrees of freedom theireztjcomputer time for a
SPASIM simulation may be unacceptable, in particular when higkerEiggquencies play a role.
Then theperturbation methodnay provide a numerically efficient solution strategy.
Consider e.g. the motion of the flexible manipulator depidteBig.[1.2. In the case the flex-
ibility is taken into account, the generalized coordinaieslegrees of freedom can be written
as

q= EZ] , (1.11)

wheree™ represent the large relative displacements and rotatiodg'a are the flexible de-
formation parameters. Due to the flexibility the actualgcapry motion will deviate from the
prescribed motion. If the deviations are small compared i€ large scale motion, then the
(small) vibrational motion of the manipulator can be moelélas a first-order perturbatiog

of the nominal rigid link motiong, by writing for the degrees of freedom

qg=q,+9q. (1.12)
The perturbation method involves two steps:

1. Compute nominal rigid link motiog, from the non-linear equations of motion with all
flexible deformation parametees” = 0. This analysis will also provide the nominal
input u, of the manipulator necessary to carry out the nominal madiath the general-
ized stress resultants (Langrange multiplier§y of therigidified deformations, i.e. the
flexible deformations that are prescribed as zero.

2. Compute the vibrational motiaiy from linearized equations of motion

where M is the reduced mass matri&), includes the velocity sensitivity and damping
matrices and all stiffness matrices are combined &t The right-hand side equals

o0 = [ ou ] , (1.14)

whereju = u — uyg is the actual control action minus the nominal input,. The pre-
viously computed generalized stress resultarits are now applied as internal excitation
forces.

To solve the linearized equations of motign (1.13) theseegpeessed as a linear time varying
(LTv) system. ASPACARMode=3 run generates time-varying state space matrices that dire we
suited for this purpose. Then a typic#ACARanalysis and linearized simulation procedure is
as follows:
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e Use e.g. aninverse dynamics rundde=2) to define the nominal motion for the rigidified

manipulator. Inputs and outputs of the system may be spécifie

Next the system is linearized withraode=3 call. The system is analysed along the
nominal path computed previously. The elastic deformatiare defined withNPUTE
commands. Inputs and outputs must be specified.

+ u + y
U —=0—= Yo =0O—=
+T +
ou
O—=| controller oy
- LTV
agy"

Figure 1.4. Block diagram of a typical closed-loop simulation$muLINK based on the
perturbation method.

Finally the linearized simulation can be run wittsamuLINK model of which a typical
example is shown in Fig. 1.4. In comparison with the nondim@mulation of Fig, 1.3 the
spasim block is replaced by abhTV block that uses the linearized equations of motion.
Note that now only the differences compared to the nomindlan@re computed. Only
the difference)u of the manipulator’s input compared to the nominal inputasahed. In
addition, the generalized stress resultarfs are part of the input of theTV block.

In addition to the above outlined standard implementatanesfurther extensions are provided.
It is possible to include the effect of proportional conlgolgain, i.e. a proportional control
matrix K ,, into the stiffness matrixK,. Of course, in that case this part of the control action
should no longer be included in the controller in the blodkesue.

This approach offers advantages when subsequently a modigisss is applied to the linear
time varying state space system. Such an analysis dis@iesrmquasi-static behaviour of the
system, low-frequency vibrational modes and high-fregyenbrational modes. Mostly the
latter do not significantly affect the output of the systemilavthey can have a detrimental
effect on the computational efficiency, even for a lineatiggstem. With a modal analysis it is
possible to eliminate these high-frequency modes.

A more profound description of the latter two techniquesusently outside the scope of this
manual.
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2.1 Introduction

In this chapter the user is informed about the creation ofecbrinput data for the software
packagesPACAR The input must have a specific form. Behind a number of pegthkeywords
the user supplies a list of arguments. The arguments behieghvaord are well defined. Each
module of SPACAR, exceptmode=4 of LINEAR, has its own list of available keywords. They
form blocks that are separated by the following pair of kegdgo

END
HALT

The final closure of the input is effected by:

END
END

The first block contains the kinematic data. The input of thecih@nism model (by means of
keywords) is treated in the “Kinematics” sectlon|2.2. A setblock of input is reserved for the
dynamics module. The keywords for this block are presemntdtie “Dynamics” section 2 3.
The solution of inverse dynamics problems demands additioput for the trajectory descrip-
tion and for the definition of the input and output vectagsandy,. Trajectory keywords and
system keywords are treated in the “Inverse dynamics” aei@i4. The keywords for the lin-
earization ofmode=3, mode=4 andmode=9 are given in the “Linearization” sectidn 2.5. At
the end of the file custom settings f®PAVISUAL can be added. The visualization t&HAVI-
SUAL is described in a separate manual. The simulation of meshmsnuSINgSIMULINK IS
controlled by the keywords described in the “Simulationétsmn[2.6.

Some general remarks:

e Keywords and arguments can be separated by one or more stadusesr line breaks.

e Lines must not contain more than 160 characters.

15
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e Any text in a line following a#, %or ; is treated as a comment.

All input is case insensitive.

Data read from the input file are echoed in thg file, after the comments have been
removed and all text is transformed into upper case (capital

Angles are always specified in radians.

For some commands, suchXB andSTARTDE not all arguments have to be specified.
Default values are zero unless otherwise specified.

2.2 Kinematics

A kinematic mechanism model can be built up with finite eletaday letting them have nodal
points in common. The nodal coordinates of the finite elesiard described by position and
orientation coordinates. Therefore, two types of nodesdastnguished: positionor trans-
lational nodesdenoted byp for nodep, and orientationor rotational nodesienoted byp.
The nodes, nodal coordinates, and deformation parametetisef truss, beam, planar bearing,
hinge, pinbody (rigid beam) planar belt (gear) element ahdetelements are summarized in
Table[2.1.

Usually, the convention is made that ngdef an element is assigned to the lower number of
the element nodes, and that nads assigned to the higher node number. The interconnections
between the elements are accomplished by indicating commodas between the elements.
For instance, with a pin-joint connection only the transkal nodes are shared. In case of a
hinge-joint connection only the rotational nodes are sthavkereas translational coordinates
can either be shared or unshared. When elements are rigidhected to each other, both the
translational and rotational nodes are shared, seéd Fig.l2chn be observed from Taldle 2.1
that a truss element and a hinge element do not have commantgpds and therefore cannot
be connected to each other.

E—— E—— E——

§OY A~

pin-joint hinge-joint rigid-joint
Figure 2.1. Joint connections between finite elements.

In the first block of the kinematics module either two-dimensl (planar) or three-dimensional
(spatial) elements can be specified. In the second blochnttial iconfiguration of the mecha-
nism is specified. In the third block the coordinates and gdized deformations are divided
into four groups, depending on the boundary conditions:

1. fixed prescribed coordinates (supports)
2. dependent, calculable deformations

3. prescribed, time-dependent coordinates
4. dynamic degrees of freedom
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For the keywords in the third block it is important to remankttthere are no keywords to fix
a deformation or to release a coordinate. These are theldsédtings. So a deformation is
fixed unless &LSE INPUTE or DYNEkeyword specifies otherwise. Similarly, a coordinate is
calculable unless BIX , INPUTX or DYNXkeyword specifies otherwise.

For systems with non-holonomic deformations, dependenrttdioates or deformations can be
specified as generalized configuration coordinates by thedesKINX andKINE; these are
called the kinematic generalized coordinates and the sporaling velocities are not dynamic
degrees of freedom.

With the keywords of the fourth optional block, the calcidatof some non-linear terms in the
expressions for the deformations of planar or spatial bezansbe suppressed and geometric
properties foPINBODYelements and their cognates (rigid beam, planar pinbodpaplrigid
beam) can be specified.

The keyword in the fifth section is not really a kinematic keyd/as it sets the level of output
from the program.
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keyword type end nodey | end nodey | generalized

- 2 - 2 deformation modes
PLBEAM planar beam | x? ¢ | x¢ o1 | e1,6€9, €3
PLTRUSS planar truss x? - | a1 - |e
PLTOR planar hinge - or - o1 | e
PLBEAR planar bearing | 7 ¢? | x? ¢ | 1,69, 63
PLPINBOD| planarpinbody | xf  ¢? | a9 - |enée
PLRBEAM | planar rigid beam| ¥  ¢? | a9 - lene
PLWHEEL planar wheel | x? ¢ - o1 | €1, 69
PLBELT planar belt (gear)| «? ¢ | x? ¢? | e
PLTUBE planar tube xl P | xt o1 | e1,6E9, €3
BEAM spatialbeam | x? A | x? AT | ey, 69,63, 64 €5, 66
TRUSS spatial truss | x? - | xf - |e
HINGE spatial hinge - AP - A | ey, 9,63
PINBODY spatial pinbody | & AP | x¢ — | e1,69,63
RBEAM spatial rigid beam| «? A’ | - €1, €9, €3
WHEEL spatial disk wheel «? A’ | ¢ - €1, €9, €3, €4, €5, €6
TWHEEL | spatial torus wheel ? A’ | ¢ - €1, €2, €3, €4, €5, £6
TUBE spatial tube P AP |zt A | ey, 69, €3, €4, €5, €6
SCREW screw xP XN | x? AT | eq,69, 63,84, €5, 6

Table 2.1. Nodes, nodal coordinates and deformation parameters for the plahapatal
truss, beam, bearing, hinge, pinbody, belt (gear), wheel and tubeeets and the screw

element.
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] KEYWORDS KINEMATICS \

PLBEAM Planar beam element

PLTRUSS Planar truss element

PLTOR Planar hinge element

PLBEAR Planar bearing element (not supported !!)

PLPINBOD Planar pinbody element

PLRBEAM Planar rigid beam element

PLWHEEL Planar wheel element

PLBELT Planar belt (gear) element

PLTUBE Planar tube element

BEAM Beam element

TRUSS Truss element

HINGE Hinge element

PINBODY Spatial pinbody element

RBEAM Spatial rigid beam element

WHEEL Spatial disk wheel element

TWHEEL Spatial torus wheel element

TUBE Spatial tube element

SCREW Screw element (only spatial)

| X | Specification of the initial Cartesian nodal positions

FIX Support coordinates’

RLSE Calculable deformations*

INPUTX Prescribed DOE&™

INPUTE Prescribed DOF™

DYNX Dynamic DOFx™

DYNE Dynamic DOFe™

KINX Configuration coordinate”

KINE Configuration coordinate”

LDEFORM Suppresses the calculation of non-linear elastic strains
of a beam element, due to possibly large curvatures
and twists of the elastic line.

ORPINBOD | Defines the orientations of the generalized deforma-
tions for thePINBODYelements and cognates.

DRPINBOD | Defines the undeformed reference distances for| the
PINBODYelements and cognates.

ORTUBE Defines the initial orientations of the spatial tube at its
end points.
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OUTLEVEL | Sets the level of output generated in thg file and
in the SPACARDbinary data ¢bd) file.

The parameters for these keywords are listed be{ew}. refers to note listed at the end of the
keywords.

element number
first position node
first orientation node
second position node
second orientation node
element number
first position node
second position node
element number
first orientation node
second orientation node
element number
first position node
first orientation node
second position node
element number
first position node
first orientation node
second position node
element number
position node
first orientation node, yaw angle
second orientation node, spin angle
wheel radius
—7 initial direction of the spin axis, i.e. thé-axis
element number
first position node
first orientation node
second position node
second orientation node
first pulley/base circle radius
second pulley/base circle radius
element number
first position node
first orientation node
second position node
second orientation node
initial rotation of nodep from pg-axis
initial rotation of nodey from pg-axis ]

PLBEAM

PLTRUSS

PLTOR

PLPINBOD

PLRBEAM

PLWHEEL

PLBELT

PLTUBE

NO OB WNRPNOOUOPRWNRERPOODMWNRERPPARWONREPPRARWONPEPWONPRPWOWNROMWDNLPRE
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element number
first position node
first orientation node
second position node
second orientation node
initial direction of the principal/-axis of the beam cross
section {1}
[ 6/9 torsion—elongation coupling paramefen {1}
element number
first position node
second position node
element number
first orientation node
second orientation node
—6 initial direction of ther’-axis of rotation{ 2}
element number
first position node
first orientation node
second position node
initial direction of the principal/-axis of the beam cross
section [{*3}
element number
first position node
first orientation node
second position node
initial direction of the principal/-axis of the beam cross
section ]J{x1}
element number
first position node
first orientation node
second position node
initial direction of the spin axis, i.e. thé-axis
element number
first position node
first orientation node
second position node
wheel radius in equatorial plane
transverse wheel radius
initial direction of the spin axis, i.e. thé-axis

BEAM

a b~ wbhNPEk

7
o

TRUSS

HINGE

PINBODY

AP WNEPRPPRRWONRFERPWDNPE

7
\‘

RBEAM

A OWN P

7
\]

WHEEL

[
~

TWHEEL

~NOoO O~ OWNRFROMWDNLE

|
©
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TUBE 1 element number
2 first position node
3 first orientation node
4 second position node
5 second orientation node
6-8 initial direction of the principal/-axis of the beam cross-
section {1}
6/9 torsion—elongation coupling paramefen {1}
SCREW 1 element number
2 first position node
3 first orientation node
4 second position node
5 second orientation node
6-8 initial direction of ther’-screw axis{*2}
9 pitch expressed in displacement per radian (not per furd) tu
X 1 position node number
2 xr1-coordinate
3 xTo-coordinate
4 zs-coordinate K4}
FIX 1 node number
2— coordinate number (1, 2, 3 or 4)}5}
RLSE 1 element number
2— deformation mode coordinate number (1, 2, 3, 4, 5 or
{+6}
INPUTX 1 node number
2— coordinate number (1, 2, 3 or 4)}5}
INPUTE 1 element number
2— deformation mode coordinate number (1, 2, 3, 4, 5 or
{x6}
DYNX 1 node number
2— coordinate number (1, 2, 3 or 4)}5}
DYNE 1 element number
2— deformation mode coordinate number (1, 2, 3, 4, 5 or
{+6}
KINX 1 node number
2— coordinate number (1, 2, 3 or 4] 5}
KINE 1 element number
2— deformation mode coordinate number (1, 2, 3, 4, 5 or
{+6}
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LDEFORM

BEAMelement number

ORPINBOD

PINBODY, RBEAM PLPINBOD or PLRBEAMelement
number
direction vector$«7}

DRPINBOD

PINBODY, RBEAM PLPINBOD or PLRBEAMelement
number

undeformed projection a#? — x? on the first direction vect
tor

undeformed projection aé? — x” on the second directio
vector

undeformed projection ok? — x? on the third direction
vector for spatial elements ]

ORTUBE

ganN -

(o]

TUBEelement number

tangent vector in point, local 2’-axis
tangent vector in point, local z’'-axis
direction of local/-axis in pointq ]

OUTLEVEL

level of output inog file {8}
level of output in thesPACARbinary data ¢bd ) file] {+8}

NOTES:

x1 The direction vector lies in the localy’-plane of the beam element. If no direction is
specified, the local direction vector is chosen as the stdruksis vector that makes the
largest angle with axis of the beam; in case of a draw, theovedth the highest index is

chosen.

The torsion—elongation coupling parameter takes into@atcine shortening of the beam

due to torsion, such that for a twisted, axially unloadediéze axial strain i&%ftcﬂ,

where« is the specific twist of the beam. For thin-walled open cremsstions, f;

(I, + 1.-)/A, but it may have a different value, or even be negative, fdid swoss-

sections.

x2 The localy’ andz’ unit vectors are chosen as follows. First, the standard basitor with

the largest angle with the hinge axis is chosen; in case oawa,dhe vector with the
highest index is chosen. Then the logals chosen in the direction of the cross product
of the localz’-direction with this basis vector. The locdtdirection is chosen so as to

complete an orthogonal right-handed coordinate system.

x3 If no direction is specified, directions initially alignedttvthe global coordinate axes are

chosen; otherwise the line connecting the translationdesaas chosen as the locelt

direction and the specified vector is in the loga)’-plane. The directions used are made

orthonormal. The directions can also be specified with tlyevked ORPINBOD.
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x4 The specification of the initial positions with the keywoxds only required for non-zero
position-coordinates. The initial orientations cannothesen freely.

x5 If the keywordsINPUTX, DYNX FIX andKINX are used without an explicit specification
of the coordinate, all (independent) coordinates will beked as degrees of freedom or
supports. This means that, =, (andx3) are marked for position nodes apdr A, \,
and )3 for orientation nodes. If more than one coordinate is spEtiach of the speci-
fied coordinates is chosen as a degree of freedom or a support.

x6 If the keyworddNPUTE, DYNE RLSEandKINE are used without an explicit specification
of the deformation mode coordinate, all deformation modedimates will be marked as
degrees of freedom or released. If more than one deformatame coordinate is speci-
fied, each of the specified coordinates is chosen as a degireeddbm or as released.

«x7 There are four distinct cases, two for the planar elemerddwa for the spatial elements.
For the planar elements, if two numbers are specified, thiseslirection of the local
x'-axis and an orthogongl-direction is found by rotating by a right angle in the posti
direction and the directions are normalized; if four nunsteme specified, these are taken
as the direction vectors in the local- and y/-directions as they are. For the spatial
elements, if six numbers are specified, these are taken aéréotion of ther'-axis and
a direction in the locat’y’-plane, which are made orthonormal and completed by a local
Z'-axis; if nine numbers are specified, these are taken asrine direction vectors as they
are.

«x8 Both parameters for the output level are integers of whichviiees are the sum of the
desired outputs. A value of O implies the least output; apuiievel of—1 means maxi-
mum output; to obtain multiple outputs, the specified vafoeshe parameters should be
added.

For the first parameter for tHeg file are defined:
0 Default: All “normal” output.
1 Additional output of the first order geometric transferdtions inde anddx.
2 Additional output of the second order geometric transfieictions ind2e and
d2x for mode=4, 7, 8 and9.
4  Additional output of the third order geometric transfemdtions ind3e andd3x
for mode=4, 7, 8 and9.
8 Additional output of the derivative of the global deformoat function for
mode=4, 7, 8 and9.
For the second parameteyFACARbinary data ¢bd ) file) are defined:
O Default for all modes excephtode=7, 8 and9: All “normal” output.
1 Default formode=7, 8 and9: Additional output of the first order geometric
transfer functions ime anddx.
2 Additional output of the second order geometric transfieictions ind2e and
d2x.
3 Additional output of the first and second order geometaadfer functions (a
combination of 1 and 2).
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2.3 Dynamics

With the keywords of the dynamics module the following bleckinformation can be supplied.
Blocks 1 and 2 are optional. If deformable elements have beéneatdl in the kinematics,
block 3 has to be filled, lest the stiffness and damping are. 2éthe motion is not prescribed
by trajectories, block 4 has to be used to define the inputanotiinally with the keywords
from the 5" block miscellaneous settings can be adjusted.

| KEYWORDS DYNAMICS |

XM Inertia specification of lumped masses

EM Inertia specification of distributed element masses

XGYRO Inertia specification of gyrostat

MEE User-defined mass put infef ¢

XF External force specification of the mechanism in
nodes

USERSIG Specification ofMATLAB M-file for user functiong
with input for forces and stresses

ESTIFF Specification of elastic constants

ESIG Specification of preloaded state

EDAMP Specification of viscous damping coefficients

TIMESTEP Duration and number of time steps

INPUTX Specification of simple time functions for the

INPUTE prescribed degrees of freedom

STARTDX Specification of initial values for the dynamic degrees

STARTDE of freedom

USERINP Specification ofMATLAB M-file for user functiong
with input for the degrees of freedom

GRAVITY Specification of the gravitational acceleration vectpr

INTEGRAT Selection of integrator

ERROR Specification of error tolerances for the integrator

ITERSTEP Specification of number of iterations and steps and
error tolerance for static calculations in modes 7, 8
and 9
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DELXF
DELGRAV
DELQMF
DELESIG
DELINPX
DELINPE

Increment in the external forces in nodes
Increment in the gravitational acceleration
Increment of the mass flow rate of tube elements
Increment in the initial stresses of elements
Increment in the input displacement for nodes
Increment in the input deformation for elements

The parameters required with these keywords are listecvbéla } refers to note listed at the
end of the keywords.

XM

 —

~No o hkhw

node number

concentrated mass for position nodes;

rotational inertial for planar orientation nodes;

for spatial orientation nodes, the inertia components
Joy {*1}

sz {*1}

Jyy {*1}

Jyz {*1}
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EM

N -

element number

mass per unit of length

rotational inertia/,.,» per unit of length for spatial bean
{x2}

rotational inertiaJ per unit of length for planar bearfix2}
angle over which the belt is initially wound over the fir
pulley for a planar belt

fluid mass per unit of length for tube elements |
rotational inertiaJ,,, per unit of length for spatial bean
{x2}

angle over which the belt is initially wound over the seca
pulley for a planar belt

mass flow rate for tube elements |

rotational inertia.J..., per unit of length for spatial bear
{x2}

flow shape factor for tube elements (default is 1.0) ]
rotational inertia.J,.., per unit of length for spatial bear
{x2}

inflow and outflow condition at ends of tube elements (0
2 or 3){*3}]

rotational inertia/ per unit of length for planar tube elg
ments

rotational inertia/,,. for spatial tube elements |
rotational inertiaJ,,, for spatial tube elements ]
rotational inertia/..., for spatial tube elements ]
rotational inertia product,, ., for spatial tube elements ]

XGYRO

N WNRPEOO®

node number

2, 1| components of absolute angular rotor velocity (fre

(2, » rotor motion) or components of constant angular

Q23 | velocity relative to the carrier body (prescribed rot
motion)

rotor inertia./

type of rotor motion (O: free, 1: prescribed)

MEE

A WN RO O

3/5

first element number

deformation coordinate of first element
second element number

deformation coordinate of second element ]
entry in the mass matridZ ) {x4}

XF

node number
forces dual with the®1 nodal coordinate
forces dual with the™®, 3'Y and 4" nodal coordinate ]

USERSIG

Name of theuaTLAB M-file with user functions with forces
and stresseg«b}

-

St

-

nd

3

e
otor
olg
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ESTIFF 1 element number
2 E A for beam, truss and belt elements
S; = S, for hinge elements
Sy, first stiffness coefficient for pinbody and cognates
3 G I for spatial beam
ET for planar beam
Sy, second stiffness coefficient for pinbody and cognat
{+6}
4 E1I,, for spatial beam
EI/(GAFk) for planar beam
Ss, third stiffness coefficient for pinbody and cognate
{x6}
5 E1, for spatial beam {6}
6 EI,/(GAk,) for spatial beam ]+6}
7 El. /(GAk,) for spatial beam [ +6}
ESIG 1 element number
2 preloaded generalized stres§es}
EDAMP 1 element number
2 E4A, longitudinal damping for beam, truss and belt ele-
ments
Sa1, torsional damping for hinge elements
Sa1, first damping coefficient for pinbody and cognates
3 Gql;, torsional damping for beam elements
Eq1, bending damping for planar beams
Sq2, Second damping coefficient for pinbody and cognat
{6}
4 E41,,, bending damping ip’-direction for spatial beams
Sas, third damping coefficient for pinbody and cognates ]
{46}
5 Eq41.,, bending damping in’-direction for spatial beam |

{+6}
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TIMESTEP 1 length of time period
2 number of time steps
INPUTX 1 node number (position or orientation nodey }
2 coordinate number (1, 2, 3 or 4)
3 start value{*8}
4 start rate
5 acceleration (constant)
INPUTE 1 element numbef=9}
2 deformation mode coordinate number (1, 2, 3, 4, 5 of 6)
{10}
3 start value{*11}
4 start rate
5 acceleration (constant)
STARTDX 1 node number
2 coordinate number (1, 2, 3 or 4)
3 start value{*8}
4 start rate
STARTDE 1 element number
2 deformation mode coordinate number (1, 2,3,4,50r 6
3 start value{*11}
4 start rate
USERINP 1 Name of themATLAB M-file with user defined input funcr
tions{x12}
GRAVITY 1 x-component of the acceleration of gravity
2 y-component of the acceleration of gravity
[ 3 z-component of the acceleration of gravity |
INTEGRAT 1 Specify integrator typé=13}
2 Step size or initial step size
ERROR 1 Absolute error for the integrator
2 Relative error for the integratdr14}
ITERSTEP 1 maximal number of iterations in calculating a stationary|s
lution (default value 10)
2 number of load steps (default value 4)
3 error tolerance (default value 5.0E-7)
[ 4 number of steps between output steps
5 type of analysig«15}
6 number of load steps used in the calculation of the injtial
solution ]




30 Chapter 2. Keywords

DELXF 1 node number
2 incremental forces dual with thé' hodal coordinate
[ 35 incremental forces dual with the’® ' 3™ and 4" nodal
coordinate ]
DELGRAV 1 x-component of the incremental acceleration of gravity
2 y-component of the incremental acceleration of gravity
[ 3 z-component of the incremental acceleration of gravity |
DELQMF 1 element number
2 incremental mass flow rate for tube elements
DELESIG 1 element number
2— additional preloaded generalized streqdség
DELINPX 1 node number (position or orientation nodey }
2 coordinate number (1, 2, 3 or 4)
3 increment in the start value8}
DELINPE 1 element numbef«9}
2 deformation mode coordinate number (1, 2, 3, 4, 5 of 6)
{10}
3 increment in the start value<11}
NOTES:

«x1 The inertia components are related to the global coordisggeem(z, v, z) in the initial
configuration. The tensor components are needed, sa@tc., represent the negative of
the products of inertia.

x2 The distributed moments of inertia are lumped to the origanodes of the beam elements.
They represent the mass moments of inertia of the crosmseaitthe beam, sd,,, and
Jy o are zero.

x3 The different flow conditions at the entry and exit of the taloe O: spherical flow at node
p and nodey; 1: jet flow at nodep and spherical flow at nodg 2: spherical flow at node
p and jet flow at node; 3: jets flows at node and nodey. In the usual situation all tube
elements have flow condition 0, except the tube element athwthe flow exits the tube,
which has flow condition 2.

x4 The keywordMEEis used to add a fixed mass coupled to deformation mode c@bedin
If all five numbers are specified, the mass is placed as a cmupktween the two de-
formation mode coordinates; if three numbers are speciffemass is placed on the
diagonal.

x5 The (required) parameter of tlESERSIGkeyword is the name of @aATLAB M-file without
the extensionm and with a maximum filename length of 8 characters. The cadlimtax
of the M-script is

function [time,sig,f][=pushsig(t,ne,le,e,ep,nx,Inp,x,xp);
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The input parameters are the tirheand a list of variables that store the instantaneous
values of the same quantities as are represented by thesjgonding variables in the
SPACARDbinary data, see the overview on page 5. The script shouldrnréagain) time

t , user defined stresssg and user defined nodal forces. Eithersig orfx or both
may be empty in the case no stresses and/or forces are pegkdDtherwise each row in
sig and/orfx should define one stress value or force component at thefigpktomet .
Three columns should be provided with

1. The element numbee] or the node numbek(.
2. The deformation mode numbex)(or the coordinate numbex).
3. The current value of the stress or force component.

Two more columns can be provided, which specify the diagelethents of the stiffness
and damping matrices, respectively, coresponding to tlkesbr force component.

x6 Unspecified values for the stiffness and damping are asstioned zero by default. The
meaning of the variables ist, elasticity modulus (Young’s modulus{y = E/(2 +
2v), shear modulusy, Poisson’s ratio;Ey, damping modulus in Kelvin—Voigt model;
G4, shear damping modulus in Kelvin—Voigt modél; cross-sectional ared;(Z,, I./),
second area moment (aba(Haxis and:’-axis); I;, Saint-Venant's torsion constat(k,,
andk./), shear correction factor (if-direction andz’-direction). The shear correction
factors are about 0.85; a table of values for various cresiesis can be found in|[5].

The generalized stresses are calculated according to thenK¥oigt model as follows.
All first stresses are calculated as = Sie; + Sa1€1 + 0o, WhereS; = EFA/l, and
Sa1 = EqA/l, for the truss and beam elements, whirés the undeformed length of
the element, and the first stiffness and damping coefficiaatdefined in the input for
the other types of elementsy is the preload defined by the keywd&SIG. For hinge
and pinbody elements, the other stresses are calculatadhimedogous way. For a planar
beam element, the bending stresses are calculated as

€9

€z |’

[@] Sy l4+®—2+¢

o3|  1+®|-2+® 4+

€2
€3
whereS, = ET1/I3, ® = 12E1/(GAkI?) andSy, = EqI/13. For a spatial beam element,

the torsional stress is calculated@s= S.eq + Saaco, WhereS; = GI, /I3 and Sy, =
Gal,/l;. For bending along the local- and z’-axes, the stresses are, analogous to the

Sa2 44+O -2+ d
1+® | —2+d 4+

planar case,

o3| 53 440, 2+, | |eg Saz 440, 2+, | |25

o 14+®, | 24D, 44D, ||y 140, |—24+P, 44D, |éy
and

o5 | _  Sa 4+, 2+, |&5 Saa 4+0, 2+, | &5

O¢ 1—|—(I)y —2+<I)y 4+(I)y €6 1—|—(I)y —2+(I)y 4—|—(1)y 86 ’

Wher933 = E]y//lg, P, = 12Efy//(GAl€Z/l(2)), Sa3 = Edfy//l3, Sy = E]Z//lg, (I)y =
12E1,/(GAk,13), and Sqy = Eql./I3. To all stress components, a preload can be
added by the key worBSIG.
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7 In amode=7, 8 or 9 run a (deformed) mechanism configuration is computed whicree
sponds with the specified nodal position.

*8 The default position start value for INPUTX and STARTDX i®ttalue specified by the
kinematic keyword X, which has a default zero.

x9 Stiffness and damping properties of the correspondingetiare not used for the dynamic
computations.
In a mode=7, 8 or 9 run a (deformed) mechanism configuration is computed which
corresponds with the specified element deformation.

%10 Rotational deformations are defined in radians.

x11 Note that the keywordX defines an initial configuration in which the deformatiors zero.
(An exception is an element for which the keyword DRPINBOD hesrbused.) A start
value defined withNPUTE or STARTDHlefines a deformation with respect to the initial
configuration.

x12 The (required) parameter of tliSERINPkeyword is the name of @ATLAB M-file with-
out the extensionm and with a maximum filename length of 8 characters. The callin
syntax of the M-script is

function [t,e,x]=mymotion(t,is);

The input parameters are the timend time step humbes . The script should return
(again) timet , prescribed deformatiors and prescribed coordinates Eithere or x
may be empty in the case no deformations or coordinates asefnived. Otherwise each
row in e and/orx should define one deformation or coordinate at the specifieeltt.
Five columns should be provided with

. The element numbee) or the node numbexy.

. The deformation mode numbex)(or the coordinate numbex).

1
2
3. The current value of the deformatiaf) or coordinate ).
4. The current rate of the deformatiot) r velocity ().

5

. The current acceleration of the deformatiéphdr coordinate ).

The user has to assure the correctness of the derivagPes AR does not carry out any
checks, but the results depend heavily on these derivatives

x13 Available integrator types are:
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0
130
135
140
155
220

225

310
320
330
410

420
430

Default: Shampine—Gordon.

Explicit third-order Runge—Kutta, fixed step size.

Explicit third-order Runge—Kutta, variable step size.

Explicit fourth-order Runge—Kautta, fixed step size.

Explicit fifth-order Runge—Kutta, variable step size.

Explicit Runge-Kutta for second-order systems, secodd+ accurate, fixed
step size.

Explicit Runge—Kutta for second-order systems, se@vddr accurate, variable
step size.

Semi-implicit Runge—Kutta—Rosenberg, first-order aateifixed step size.
Semi-implicit Runge—Kutta—Rosenberg, second-orderrate, fixed step size.
Semi-implicit Runge—Kutta—Rosenberg, third-order eatey fixed step size.
Singly diagonally implicit Runge—Kutta (implicit Eu)erfirst-order accurate,
fixed step size.

Singly diagonally implicit Runge—Kutta, second-ordecwaate, fixed step size.
Singly diagonally implicit Runge—Kutta, third-ordercacate, fixed step size.

Change this only if you know what you are doing.

x14 The error tolerances are used for integration methods witiriable step size in the inte-
grators of type 0, 135, 155 and 255. Defaults@f®001 for the absolute error tolerance
and0.0001 for the relative error tolerance. For the integrators oetyd 0, 420 and 430,
the absolute tolerance is used as the tolerance for the madtlBwton—Raphson iteration.

x15 The following types of analysis are available:
0 Default: only initial loading
1 Only initial loading withIN taken equal to zero in the Newton—Raphson itera-
tion
2 Initial and additional loading
3 Initial and additional loading with’V, taken equal to zero in the Newton—
Raphson iteration
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2.4 Inverse dynamics (setpoint generation)

For clarity the keywords for the inverse dynamics including generation of setpoints are dis-
cussed in two subsections. In the input file keywords fronh Isobsections must be combined
into one part, so there should he ENDHALT pair in between.

2.4.1 Trajectory generation

There are three essential keyword blocks:

| KEYWORDS TRAJECTORY GENERATION |

1
TRAJECT Trajectory header; the given trajectory number is
valid for all keywords before the neXtRAJECT
2 — :
TROT Definition of the actual trajectory:
TRANS the number and type of DOFs determine which key-
words and
TRCIRL how many of them have to be specified:
TRE TROT TRANS andTRCIRL for nodes and
TREfor elements (maximum of 6).
USERTRAJ | Trajectory defined by a user function.
3

TRTIME Definition of trajectory time and number of time
steps.

and there are two blocks of optional keywords:

! TREPMAX Specification of velocity profile: rise time
TRVMAX and maximum velocity.
TRFRONT Specification of acceleration front for each velodity
profile.
2
TRM Specification of extra masses and

TRF forces on the end-effector.




Section 2.4. Inverse dynamics (setpoint generation) 35

The trajectories can be constructed in two ways: with a ussetion or with built-in profiles.
The latter are defined below and are of course limited to (¢oations of) the built-in profiles.
On the other hand, practically any input can be generateld wger functions. This feature
is activated by defining exactly oneRAJECTwith the USERTRAXeyword. The (required)
parameter is the name of amTLAB M-script that is to be called. WitAiRTIME the total
trajectory time and the number of time steps must be specifibé calling syntax of the M-
script is exactly equal to that of the M-script for ttiSERINPkeyword, see pade B2.
Alternatively, one can use the built-in trajectory profile¥he next scheme shows in more
detail the combination possibilities of the setpoint gatien keywords. Essential keywords
are accompanied by a number of optional keywords placeddsstwrackets. Other optional
keywords than those mentioned are not allowed for that 8pessential keyword.

TRAJECT
TRE TROT
[TREPMAX TRFRONT] [TRVMAX TRM TRFRONT]
TRANS TRCIRL
[TRVMAX TRM TRF TRFRONT] [TRVMAX TRM TRF TRFRONT]
TRTIME

The way to follow through the scheme is almost fully dictdtgdhe number and type of degrees
of freedom. Each trajectory is defined for the same DOF anetbee runs through the same
branch of the scheme. ONFRANSandTRCIRL may be changed into one another after each
trajectory.
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At this stage it is useful to mention the way in which degrefefseedom are declared:

Position and orientation coordinates are declared as DORpoy-command
INPUTX node-number component-number

Deformation mode coordinates are declared as DOF by inputitand
INPUTE element-number component-number

(INPUTX andINPUTE are “kinematic keywords”, Sedt. 2.2).

So, degrees of freedom are declared separately. For gemeddtsetpoints in relative coor-
dinates (such as joint angles), edbPUTE in the kinematics input prepares om&Ein the
setpoint generation input (only the first relative coortinper element is allowed as input for
the setpoint generation). For the positions and orientattbe situation is more complex be-
cause a trajectory in two or three dimensions is defined oe texl, not on coordinate level.
The keywordsSTROT, TRANSandTRCIRL prescribe the motion of one node:

keyword description node type and type number DOF
TROT rotation abouta | 2-D orientation 11| ¢
fixed axis in space| 3-D orientation 4 | ¢,hy, ho, h3
translation along & 2-D position 2 | 1,9
TRANS straight line 3-D position 3 | x1,T9, 23
TRCIRL tr_anslatlon alonga 2-D pos!t!on 2 | 1,9
circle segment 3-D position 3 | x1,T9,x3

For the administration of trajectories two numbers are ofnmaportance: the trajectory
number and the node or element number. The trajectory nuivdseto be given once after
TRAJECT, node numbers or element numbers follow immediately aftetlaer keywords. In
this way information about the path, the velocity profile auttlitional loads can be grouped
and worked up by node/element number. Taking as starting gwe type of DOF the picture
becomes:

DOF | PATH VELOCITY PROFILE LOADS
ELEMENT e; | TRE TREPMAX  TRFRONT
TROT TRVMAX TRFRONTTRM
NODE z; | TRANS | TRVMAX TRFRONTTRM TRH
TRCIRL | TRVMAX TRFRONTTRM TRH
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The parameters required with these keywords are listesvbéla } refers to note listed at the
end of the keywords.

| TRAJECT | 1 trajectory number |
TROT 1 node number (orientation node)
2 total angle in rad
[ 3 h,-coordinate of fixed rotation axis
4 ho-coordinate
5 hsz-coordinate ]
TRANS 1 node number (position node)
2 x1-coordinate of end position
3 To-coordinate
[ 4 x3-coordinate |
TRCIRL 1 node number (position node)
2-3 2D:¢; andc, coordinates of circle centre poifik1}
4-5 2D:b; andb, coordinates of circle end poikit1}
2-4 3D: ¢4, ¢ andes coordinates of circle centre poifil }
5-7 3D:by, by andb; coordinates of circle end poikit1}
TRE 1 element number
2 total displacement (relative angle or elongation)
USERTRAJ 1 name of M-scrip{ 2}
TRTIME 1 total time for the trajectory
2 number of time steps
[ 3 number of intermediate time step$+3}
TREPMAX 1 element number
2 rise time (period of acceleration)
[ 3 extreme velocity {4}
TRVMAX 1 node number (position or orientation node)
2 rise time (period of acceleration)
[ 3 extreme value of the velocity{}«4}
TRFRONT 1 node or element number
2 acceleration front typéx5}
TRM 1 node number (position or orientation node)
2 extra massit, 1 or J,,)
[ 3 Ty
4 Tz
5 Jyy
6 Jyz
7 J.. ] {x6}
TRF 1 node number (position node)
2 fi1-coordinate of external force
3 fao-coordinate
[ 4 f3-coordinate ]
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NOTES:

x1 The positions of the parameters of keywdidCIRL are different in 2-D and in 3-D cases.
Places 2-5 are used for 2-D, places 2—7 for 3-D. Note thatehdgoint” of the circle
cannot be taken literally, as it is over-determined. Th@sd@oint defines a line through
the centre on which the circle ends.

x2 See the note for thd SERINPkeyword on page 32.

x3 The keywordTRTIME has an optional third argument that influences the meaninbeof
second argument:

2 arguments

3 arguments

1
2
3

total trajectory time
number of time step

total trajectory time
5 number of time steps for an extended analy
number of time steps within the previous st

SIS
ep

For three arguments the total number of time steps is a nioétwn of the last two
arguments. In intermediate points a standard analysisis.do

x4 The keywordsTRVMAXand TREPMAMave an optional third argument to express the ex-
treme velocity (creation of a zero-acceleration perioind extreme is given it can be
calculated from the total time and path length. The secogdmaent contains the rise-
time. The period of deceleration is calculated from the ¢&lttime, (b) rise time, (c)
total path length, (d) extreme velocity. In this way the a#tpprofile is fully determined.
For asymmetrical velocity profiles the rise time can be daled too. To indicate the
symmetry of the profile the second argument is given a dumignyraent: a non-positive
value.
The default velocity profile is: symmetrical without condta&elocity period.

x5 The keywordTRFRONhas a second argument for the type of acceleration and datete
function of time. There are three types of fronts:
0 — constant acceleration
1 — sine function (half period)
2 — quadratic sine function (half period)
The default velocity front has a constant accelerationg@)p

x6 The keywordTRMhas only for 3-D orientation nodes a real list of parametéist 2-D
orientation and position nodes one mass parameter is saffidn the 3-D case six values
determine the symmetric rotational inertia matrix:

Jow oy Joe 123

Jyy Iy 45
J. 6
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2.4.2 Nominal inputs () and reference outputs ¢,)

The nominal input vector, and the reference output vectgg are defined in the following
blocks. These blocks are optional, but omitting one or baédkcks means that no input and/or
output vectors are defined and hence no setpoints for that &mul/or output vector are gener-
ated and written to thitv  file.

] KEYWORDS NOMINAL INPUT VECTOR wuy (mode=2) \

! NOMS Specification of actuator elements.
NOMF Specification of actuated nodes.
| KEYWORDS REFERENCE OUTPUT VECTOR y, (mode=2) |
. REFE Specification of the deformation parameters to|be
sensed.
REFEP The same, first time derivative.
REFEDP The same, second time derivative.
REFX Specification of the nodal coordinates to be sensed.
REFXP The same, first time derivative.
REFXDP The same, second time derivative.

The parameters for these keywords are listed befewk refers to note listed at the end of the
keywords.

NOMS 1 nominal input numbefx1}
2 element number
3 deformation parameter number (1, 2, 3, 4, 5 or 6)
NOMF 1 nominal input numbefx1}
2 node number
3 coordinate number (1, 2, 3, or 4)
REFE 1 reference output numbéx1, 2}
REFEP 2 element number
REFEDP 3 deformation parameter number (1, 2, 3, 4, 5 or 6)
REFX 1 reference output numbé«1, 2}
REFXP 2 node number
REFXDP 3 coordinate number (1, 2, 3, or 4)
NOTES:

x1 The nominal input numbers and reference output numbersanedsitions of the specified
input or output in the input and output vectors, respedfivel
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x2 The keywordsREFESandREFXSthat are defined for the linearization module (Sect. 2.5)
are accepted as well and do not give errors. Their meaningisage is identical to the
normal keywordsREFEandREFX respectively.
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2.5 Linearization

As mentioned in Sedt. 1.2 the modulelEAR is a forward dynamics stage for the generation of
linearized equations of motion and state space matricésdhnée used in two different modes.

mode=4 is basically an extension of the forward dynamic analysisnofle=1. No further
keywords are required to obtain the coefficient matricebelinearized equations as functions
of the set of dynamic degrees of freedagfh These matrices are stored irBRACAR binary
matrix data file with extensiosbm. This file can be loaded with the utilitpadsbm . If

input and output vectorsu anddy are defined, also the linearized state equations and output
equations are computed (s@e@de=9).

Linearization inmode=3 is around a predefined nominal trajectory and takes plaee difat
trajectory has been generated in an inverse dynamicsmodd€=2). The set of DOFs used
in the inverse dynamics computation represent the acty@tdrcoordinates™. In case of a
flexible manipulator mechanism additional DO#$ = 0 describing the elastic behaviour of
the mechanism links should be included in the dynamic mdaeh(inmode=2 andmode=3).
Clearly, the mechanisms used in both runs have to be clodatgde If the manipulation task is
prescribed in terms of relative DOFSRE) the list of keywords is identical with those used in
the inverse dynamics rumpde=2). If the manipulation task is prescribed as a motion of some
nodal points (triads)TROT TRANS TRCIRL) then the correspondinrgLSEcommand of the
actuators should be replaced WPUTE commands in the kinematic block. In the software
some checks are carried out to verify that data from the gevdynamics run can be reasonably
used during the linearization.

The nominal input vector, and the reference output vectgg are again defined in the fol-
lowing blocks. These blocks are optional, but as before tarmgitone or both blocks means
that no input and/or output vectors are defined and henceat® gpace matrices can be gen-
erated and written to thiev  file. The keywords are similar to the input and output keywsord
in Sect[2.4.2. In the outpltv file of a mode=3 run the setpoints of the input and output
vector are stored in the same way as fanade=2 run. In addition the state space matrices
for the linearized equations of motion (Sdct.]1.5) are gateer Obviously, the input matrix
B and output matrixC depend on the chosen input and output vectors. In a usualsgiate
system the output vector is computed from a linear exprassiothe case a larger accuracy is
required,SPACAR can be instructed to use a second order expression. Thigddatavailable
for all deformation parameters and coordinates (not fotithe derivatives) with the keywords
REFESandREFXS The use of these keywords will generate elements in theubuterence
vector that are the same as the elements RiEREandREFX respectively. Also the associated
row in the output matrixC' is the same, but in addition a tensor deno&uh theltv file is
computed with the second order geometric transfer function

Linearization inmode=7, 8 and9 is around a pre-computed static equilibrium configuration,
or a state of steady motion. In additionnrode=9 the state space matri4, the input matrices
B, and B, the output matrixC and the feedthrough matrik are calculated. Obviously, the
matricesB,, B, C and D depend on the chosen input and output veciarsanddy respec-
tively. These vectors are again defined in the blocks on pdgé&Hese blocks are optional, but
as before omitting one or both blocks means that no inpuamdtput vectors are defined and
hence no state space matrices can be generated and writtenltefile.
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] KEYWORDS NOMINAL INPUT VECTOR u, (mode=3) \

NOMS
NOMF

Specification of actuator elements.
Specification of actuated nodes.

’ KEYWORDS REFERENCE OUTPUT VECTOR y, (mode=3) ‘

REFE Specification of the deformation parameters to
sensed.

REFES The same, with second order expression.

REFEP The same, first time derivative.

REFEDP The same, second time derivative (see note).

REFX Specification of the nodal coordinates to be sensed.

REFXS The same, with second order expression.

REFXP The same, first time derivative.

REFXDP The same, second time derivative (see note).

be

Note: Specifying second derivatives in the output vect@lies an algebraic coupling between
input and output, i.e. a non-zero state space mdixThis is currentlynotimplemented and
the keywordeREFEDPandREFXDPare ignored for the linearization.

The parameters for these keywords are listed be{ew. refers to note listed at the end of the

keywords.
NOMS 1 nominal input numbefx1}
2 element number
3 deformation parameter number (1, 2, 3, 4, 5 or 6)
NOMF 1 nominal input numbe{x1}
2 node number
3 coordinate number (1, 2, 3, or 4)
REFE 1 reference output numbéx1}
REFES 2 element number
REFEP 3 deformation parameter number (1, 2, 3, 4, 5 or 6)
REFEDP
REFX 1 reference output numbéx1}
REFXS 2 node number
REFXP 3 coordinate number (1, 2, 3, or 4)
REFXDP
NOTES:

«x1 The nominal input numbers and output numbers are the posibbthe specified input or
output in the input and output vectors, respectively.
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] KEYWORDS INPUT VECTOR ju (mode=4,9) \

INPUTS Specification of input stresses.
INPUTF Specification of input forces.
INE Specification of input deformation parameters.
INEP The same, first time derivative.
INEDP The same, second time derivative.
INX Specification of input nodal coordinates.
INXP The same, first time derivative.
INXDP The same, second time derivative.
] KEYWORDS OUTPUT VECTOR 4y (mode=4,9) \
5 OuUTS Specification of output stresses.
OUTF Specification of output forces.
OUTE Specification of output deformation parameters.
OUTEP The same, first time derivative.
OUTEDP The same, second time derivative.
OUTX Specification of output nodal coordinates.
OUTXP The same, first time derivative.
OUTXDP The same, second time derivative (see note).

The parameters for these keywords are listed be{ew}. refers to note listed at the end of the
keywords.

INPUTS {x2} 1 input number 1}

INE 2 element number

INEP 3{x3} 3 deformation parameter number
INEDP (1,2,3,4,50r6)

INPUTF {*4} 1 input number 1}

INX 2 node number

INXP 3 {5} 3 coordinate number (1, 2, 3, or 4)
INXDP

OUTS{x6} 1 output numbef =1}

OUTE 2 element number

OUTEP ;{xT7} 3 deformation parameter number
OUTED (1,2,3,4,50r6)

OUTF{«8} 1 output numbef 1}

OUTX 2 node number

OUTXP 3 {x9} 3 coordinate number (1, 2, 3, or 4)
OUTXD
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NOTES:

x1 The input numbers and output numbers are the positions afgbeified inputs or outputs
in the input and output vectors, respectively.

+2 Associated with dynamic DOFRs™% or dependent coordinate&.

+3 Associated with prescribed deformaticgi&-"). For INE, only holonomic deformations are
allowed.

x4 Associated with calculable coordinate$) or dynamic DOFse (™%,
+5 Associated with prescribed nodal coordinaté").

«6 Can be associated with prescribed deformatietisor e "), but can also be associated
with the free types, in which case the output stress is catledlfrom the constitutive
equations and, possibly, from the input stress.

«7 Associated with calculable deformatioa&’ or dynamic DOFs"% or prescibed defor-
mationse (™",

x8 Associated with prescribed nodal coordinaté® or (™).

+9 Associated with calculable coordinate¥) or dynamic DOFsc(™4 or prescribed coordi-
natese (™",
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2.6 Non-linear simulation of manipulator control

To simulate the behaviour of a manipulator with a controterysthesPACAR program is also
accessible as an “S-function” blosleAsIMfrom SIMULINK . SIMULINK treats this block like a
non-linear state-space system which has a state vectorinput vectow and an output vector
y. Each of these vectors has a well-defined meaning istae ARblock: the states correspond
to the degrees of freedom and their first time derivativese ifiput and output are coupled to
actuators and coordinates as specified by keywords istheAR input data file (see below).
In theSIMULINK graphical user interface the input and output vectors meisblipled to other
blocks, e.g. the control system. The states are used itlienmaIMULINK and are usually not
available to the user. That implies that any coordinate fordeation parameter that is used for
control purposes or is monitored in a graph must be includelea output vectoy (block 2).

[KEYWORDS INPUT VECTOR u_(SPASIM |

! INPUTS Specification of actuator elements.
INPUTF Specification of actuated nodes.
] KEYWORDS OUTPUT VECTOR y (SPASIM \
2 OUTE Specification of the deformation parameters to|be
sensed.
OUTEP The same, first time derivative.
OUTEDP The same, second time derivative.
OUTX Specification of the nodal coordinates to be sensed.
OUTXP The same, first time derivative.
OUTXDP The same, second time derivative.
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The parameters for these keywords are listed be{ew}. refers to note listed at the end of the
keywords.

INPUTS 1 input number x1}
2 element number
3 deformation parameter number (1, 2, 3, 4, 5 or 6)
INPUTF 1 input number 1}
2 node number
3 coordinate number (1, 2, 3, or 4)
OUTE 1 output numbef*1}
OUTEP 2 element number
OUTEDP 3 deformation parameter number (1, 2, 3, 4, 5 or 6)
OuUTX 1 output numbef 1}
OUTXP 2 node number
OUTXDP 3 coordinate number (1, 2, 3, or 4)
NOTES:

x1 The input numbers and output numbers are the positions oégheified input or output
in the input and output vectors, respectively. They needoedtientical to the nominal
input vector and reference output vector specified durieggémeration of setpoints (see
Sect[2.4.P and/or Se¢t. 2.5), but for a quite straightfodveamparison it is convenient
to use, at least partially, the same numbering scheme.
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\_ /

The data files used to run the examples in this chapter canweloladed from thesPACAR
web site, see Appendix A.

3.1 Planar sliding bar

In example 4.3.1 of the lecture notés [1] the sliding bar of Bi] is described. A rigid bary
of length 2 m is suspended from two sliders. The bar is drivethb conditiona? — vt = 0,
wherev =| v | is the constant horizontal velocity component of pgintThusi? = v and
# = 0. We want to computg? andij for 0 < ¢ < 2v/3 s andv = 1 m/s.

The positiony? can be computed easily from the symbolic expresgios \/4 — (V3 —2p)2,
SO

y' =4 - (V31
Y
'@q
5| 8= 30°
b
p v
Her > z

V3

Figure 3.1. Sliding bar.

47
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Differentiating once and twice with respect to the titngelds

—V3+t - 4

T ievme (~1-2vBt+2) 1 +2V3t -2

The mechanism has one degree of freedom and there is onlylemerd. This is the planar
truss element denoted by 1 that connects nodal points 1 amdh2 ifollowing SPACAR input
file (slider.dat ):

y‘q

PLTRUSS 1 1 2

X 1 0. 0.
X 2 1.7321 1.
FIX 1 2
FIX 2 1

INPUTX 1 1

END
HALT

INPUTX 1 1 0. 1. 0.
TIMESTEP 3.4641 100

END
END

Both symbolic and numeric results are shown in Higd. 3.2 aBavBh the Matlab commands

>> t=time;

(dldt) y(2) [ms]
°
(drdt? y(2) [mis?]
)

-0.51

_15F

Figure 3.2. Vertical velocityy? of the sliding bar. Figure 3.3. Accelerationjj? of the sliding bar.
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>> plot(t,[xd(:,Inp(2,2)) ...

-(-3°(1/2)+t)./(1+2 *37(1/2) *t-t.72).7(1/2)])
>> grid

>> xlabel('time [s])

>> ylabel('(d/dt) y(2) [m/s]’)

>> figure

>> plot(t,[xdd(;,Inp(2,2)) ...

4./(-1-2 *3(1/2) *t+t.72)./(1+2 *3°(1/2) *t-t.72).7°(1/2)])
>> grid

>> xlabel('time [s])

>> ylabel('(d/dt)"2 y(2) [m/s"2])

VvV Vv

\

Obviously, in both graphs the symbolic and numeric resuléspactically identical, which
illustrates the good agreement between both solutions.
Note that in this example no masses are defined. There arenamy degrees of freedom
either, so effectively only a kinematic problem is solved.

3.2 Planar slider—crank mechanism

The slider—crank mechanism is frequently applied as a stésyin the design of a mechanism.
It finds its applications in combustion engines, compresaad regulators. Figure 3.4 presents
a slider—crank mechanism for which three dynamics comjmusithave to be carried out. In
the first problem (case 1, see also example 5.7.2 in the &ectotes|[1]), the crank and the
connecting rod are assumed to be rigid. In the second cotmpu{aase 2), the connecting rod
is shorter but still somewhat longer than the crank. In cagbeflexibility of the connecting
rod with the dimensions of case 1 is taken into account; seeedample 8.3.1 in the lecture
notes|[[1].

Case 1l

First of all, the nodal coordinates must be specified. In titéal configuration, the crank and
the connecting rod are horizontal. The crank length i§ m, the length of the connecting rod

Y

5.4.5

Figure 3.4. Planar slider—crank mechanism.
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is 0.30m. For the dynamic analysis the following parameters arel@geThe connecting rod
has a circular cross-section with diamefer 6 mm. The mass density js= 7.87 - 10> kg/m®
and the Young’s modulus i& = 2.1 - 10'' N/m*. Consequently, the mass per unit length is
0.2225kg/m and its total mass:; = 0.06675kg. The mass of the sliding block or plungér

is given bym¢s = %ms = 0.033375kg. The crank is driven at a constant angular velocity
wo = 150rad/s. The total simulation should comprise two crank rotst NodeB must be
defined as a single translational node and a double rotatmake, since the rotations of the
slider and the crank are not the same. The mass of the craakeis as zero.

An input file (crank.dat ) describing this case is:

PLBEAM 1 1 2 3 4
PLBEAM 2 3 5 6 7
X 1 0.00 0.
X 3 0.15 0.
X 6 0.45 0.
FIX 1

FIX 6 2

INPUTX 2 1

END

HALT

XM 6 0.033375
EM 2 0.2225
INPUTX 2 1 O. 150. 0.
TIMESTEP 0.1 100
END

END

The initial configuration of case 1 is depicted in Fig.]3.5eTorizontal position, velocity and
acceleration of the sliding block as function of time areegivn Figs[3.6=318. The driving
moment in node 2 versus time is shown in Hig.] 3.9 and the stipgdiorces acting on the
sliding block are presented in FIg. 3110.

TheMATLAB commands used to plot these results are:

>> plot(time,x(:,Inp(6,1)))
>> grid

>> xlabel('time [s])

>> ylabel(’x(6) [m])

>>

>> plot(time,xd(:,Inp(6,1)))
>> grid

>> xlabel('time [s])

>> ylabel(’(d/dt) x(6) [m/s])
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0.2

0.1f

-0.1r-

I
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Figure 3.5. Case 1: Initial configuration of the
slider—crank mechanism.

30

(didt) x(6) [ms]

1 1 1 1 1 1 1
0 0.01 0.02 0.05 0.06 0.07 0.08 0.09
time [s]

L L
0.03 0.04

Figure 3.7. Case 1: Horizontal velocity
sliding block.

of the

1 1 1 1 1
0.05 0.06 0.07 0.08 0.09
time [s]

L L L L
0 0.01 0.02 0.03 0.04 0.1

Figure 3.9. Case 1: Driving moment in rotational
node 2.

X(6) [m]

L L L L L
0.05 0.06 0.07 0.08 0.09

time [s]

L L L L
0 0.01 0.02 0.03 0.04 0.1

Figure 3.6. Case 1: Horizontal position
sliding block.
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Figure 3.8. Case 1: Horizontal acceleration of the
sliding block.
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Figure 3.10. Case 1. Supporting forces on the
sliding block.
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>>
>> plot(time,xdd(:,Inp(6,1)))

>> grid

>> xlabel('time [s])

>> ylabel(’(d/dt)"2 x(6) [m/s"2])
>>

>> plot(time,fxtot(:,Inp(2,1)))

>> grid

>> xlabel('time [s])

>> ylabel('M(2) [Nm])

>>

>> plot(time,fxtot(:,Inp(6,1:2)))
>> grid

>> xlabel(time [s])

>> ylabel(Fx(6), Fy(6) [N])

Case 2

The input file of case 1 (pagel50) is modified to account for Huetened connecting rod. Only
the initial position of node 6 in the second block of the kirdimdefinition has to be changed:

X 6 0.35 0.

The initial configuration of case 2 is depicted in Fig. 3.1heThorizontal position, velocity and
acceleration of the sliding block as a function of time areegiin Figs[3.12=3.14. The driving
moment in node 2 versus time is shown in Fig. B.15 and the stipgdorces acting on the
sliding block are presented in FIg. 3116.

TheMATLAB commands used to plot these results are the same as in casglop).

Case 3

To take the flexibility of the connecting rod into accountiwét reasonable accuracy the planar
beam element used for this rod (see FEig] 3.4) is split into paxds. One translational node
and one rotational node are inserted and the numbers of ttesno the sliding bloclC' are
changed. The bending stiffness of the connecting rod is cbedpusing the moment of inertia
I = wd*/64. The input file ¢rankfl.dat ) is now:
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0.4
01sf
01
0051
E
ok 1 1 3 6 g
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0 0.05 0.1 015 02 025 03 035 time [s]

Figure 3.11. Case 2: Initial configuration of the Figure 3.12. Case 2: Horizontal position of the

slider—crank mechanism. sliding block.
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Figure 3.13. Case 2: Horizontal velocity of the Figure 3.14. Case 2: Horizontal acceleration of
sliding block. the sliding block.
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Figure 3.16. Case 2. Supporting forces on the

Figure 3.15. Case 2: Driving moment in rota-
sliding block.

tional node 2.
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PLBEAM 1 1 2 3 4

PLBEAM 2 3 5 6 7

PLBEAM 3 6 7 8 9

X 1 0.000 0.000

X 3 0.150 0.000

X 6 0.300 0.000

X 8 0.450 0.000

FIX 1

FIX 8 2

INPUTX 2 1

DYNE 2 2 3

DYNE 3 2 3

END

HALT

XM 8 0.033375

EM 2 0.2225

EM 3 0.2225

ESTIFF 2 0.000000 13.359623

ESTIFF 3 0.000000 13.359623

INPUTX 2 1 0.000000 150.000000 0.000000
TIMESTEP 0.100000 100

STARTDE 2 2 0.000000 0.000000
STARTDE 2 3 0.000000 0.000000
STARTDE 3 2 0.000000 0.000000
STARTDE 3 3 0.000000 0.000000
END

END

The second-order contributions of the bending deformatmmthe elongation (Eg. (6.4.22) in
the lecture notes) are taken into account.

The initial configuration of case 3 is depicted in Hig. 3.1 heThorizontal acceleration of the
sliding block as function of time is given in Fig._3]18. Thendéng of the slider, given by
v = %(5&2) + 5&3)), as function of the crank angl#, is presented in Fid. 3.19.

TheMATLAB commands used to plot these results are:

>> plot(time,xdd(:,Inp(8,1)))

>> grid

>> xlabel('time [s])

>> ylabel(’(d/dt)"2 x(8) [m/s"2]’)
>>

\

VvV Vv
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Figure 3.17. Case 3: Initial configuration of the
slider—crank mechanism.

v=(eps(2,3)+eps(3,2))/2 [m]
\

L L L
10 12 14 16

8
phi(2) [rad)

Figure 3.19. Case 3: Bending of the flexible con-

necting rod (elements 2 and 3).

>
>>
>
>

\

grid
xlabel('phi(2) [rad])

VvV Vv
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Figure 3.18. Case 3: Horizontal acceleration of
the sliding block.
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Figure 3.20. Case 3: Difference in the horizontal
position of the sliding block compared to case 1.

plot(x(:,Inp(2,1)),(e(:,1e(2,3))+e(:,1e(3,2)))/2)

ylabel('v=(eps(2,3)+eps(3,2))/2 [m])

Figure[3.20 shows the (small) vibration of the sliding blatle to the bending by comparing
its position with the rigid simulation of case 1 (Fig.13.6).
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Nodal points for the planar slider-crank mechanism \

nodel node2 node3 node4,5,7 nod

node type
x-coordinate
y-coordinate
BC-typex
BC-typey
BC-typeo

g

wo = ¢

w

mass/inertia

forces/moment

T R T R T
0 0.15 0.45
0 0 0
1 2 2
1 2 1
3 2
0
150
0
0 0 0 0 0
0 0 0 0 0.033

erbde 8 node 9
T R
0.30
0
2
2
2
0 0
0 0

T=translational, R=rotational, BC=boundary condition

The numbers of the BC-type refers to the numbers of the groupsioned on page_16.

|

Elements for the planar slider-crank mechanism

element1l element 2element 2a, 3
element type beam beam beam
T-nodes 1,3 3,6 3,8/8,6
R-nodes 2,4 57 59/9,7
typee; 1 1 1
typee, 1 1 4
(62)0 0
(€2)o 0
typees 1 1 4
mass per length 0.2225 0.2225 0.2225
EA 5.65-10% 5.65-10° 5.65 - 10°
El 13.4 13.4 13.4
damping 0 0 0

T=translational, R=rotational
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3.3 Cardan-joint mechanism

In section 11.1 of the lecture notes [1] a cardan joint is deed. Cardan joints, also known
as Hooke’s joints, have been used as a shaft coupling in a maiulge of machinery, which

includes locomotive as well as automotive drive lines. Argltine connected by a Cardan joint
may exhibit torsional oscillations due to fluctuating argwelocity ratios inherent in such

systems. @
egl,)\ y
Y S~ 6(3)
(2) !
€1
(@ (b)

Figure 3.21. Schematic of Cardan joint system.

Figure[3.Zlla shows a one-degree of freedom shaft systenpmmeding a Cardan joint. The
Cardan joint is modelled by four spatial hinge elements asvehia Figure[3.2lLb. The ro-
tating shaft axes having an angular misalignmentof 45° is driven at a constant angular
speed) = Q,,. The quantities) ande® represent the input and output angles of the hinge

elements(1) and (4), respectively.
The essential behaviour of the joint can be simulated wighfoliowing input file
(cardansimp.dat  ):

HINGE 1 1 2 -1. 0. 0.
HINGE 2 2 3 0. -1. 0.
HINGE 3 3 4 0. 0. -1.
HINGE 4 4 5 0.707 -0.707 O.
FIX 1

FIX 5

INPUTE 1 1

RLSE 2 1

RLSE 3 1

RLSE 4 1

END HALT

INPUTE 1 1 O 6.28 0.
TIMESTEP 1.0 100

END END
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Note that in the initial configuration, the input shaft isatstd by a right angle with respect to
the configuration in Figure 3.21.

However, the visualization of this simulation is quite podihis can be improved by adding
some beams to the input and output rotational nodes numlserd 2, respectively. The com-
plete input file ¢ardan.dat ) becomes:

HINGE 1 1 2 -1. 0. 0.
HINGE 2 2 3 0. -1. 0.
HINGE 3 3 4 0. 0. -1.
HINGE 4 4 5 0.707 -0.707 O.
BEAM 5 6 2 7 8 0. 1. 0.
BEAM 6 7 8 9 10 0. 1. 0.
BEAM 7 6 4 11 12 0.707 0.707 O.
BEAM 8 11 12 13 14 0.707 0.707 O.
FIX 1

FIX 5

FIX 6

X 6 0. 0. 0.

X 7 1. 0. 0.

X 9 1. 0. 0.15

X 11 -0.707 0.707 O.

X 13 -0.707 0.707 0.15

INPUTE 1 1

RLSE 2 1
RLSE 3 1
RLSE 4 1
END

HALT

INPUTE 1 1 0. 6.28 0.
TIMESTEP 1.0 100

END
END

The initial configuration of this mechanism is shown in FIiZB Figure$ 3.23, 3.24 and 3125
show the zeroth, first and second order geometric transfatiins from inputegl) to output
654), respectively. ThmATLAB commands to plot these data are:

>> plot(e(;,le(1,1)),e(;,le(1,1)), e(:,le(1,1)),e(:,le(4,1)))
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Figure 3.22. Initial configuration of the cardan

joint.

(1)
e [rad]

e frad]

Figure 3.23. Zeroth order geometric transfer

function for the cardan joint.

D?F(e’)

1)
ey [rad]

Figure 3.24. First order geometric transfer func- Figure 3.25. Second order geometric transfer
tion for the cardan joint.

>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>

grid
xlabel(’e_1%(1)} [rad])
ylabel(e_47{(1)} [rad])

function for the cardan joint.

plot(e(:,le(1,1)),ed(:,le(4,1))./ed(;,le(1,1)))

grid
xlabel('e_1%(1)} [rad])
ylabel('DF(e_17{(1)}))

plot(e(:,le(1,1)),edd(:,le(4,1))./(ed(:,le(1,1))."2))

grid
xlabel('e_1%(1)} [rad])
ylabel('D"2F(e_17{(1)}))
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3.4 Planar four-bar mechanism

In examples 5.7.1 and 12.4.1 of the lecture nates [1] thegplfur-bar mechanism of Fig._3]126
is analysed analytically. The mechanism has one degreeefidm. The mechanism is mod-
elled by four rigid truss elements, denoted by 1, 2, 4 and 5¢hwvare joined together at their
nodal points to form a rhombus. As Flg. 3.26 implies, these fuars are set at right angles

Y

Figure 3.26. Four-bar mechanism.

to one another. The diagonal element 3 represents a sprthgstifinessk = FA/l,. A con-
centrated mass: is attached to node 4. The deformation parametdras been chosen as the
generalized coordinate. The equation of motion is

més + vV2m(és)? + ke = mg . (3.1)
Using the coefficient matrices from the lecture notes, thedrized equation of motion is
moés + 2v/2meésdés + (k — \/§mg + 2v2més + 5m(és)?)des =0 . (3.2

These results can also be obtained numerically frospACAR analysis. E.g. with numerical
values form = 1, ¢ = 10 andk = 1 and initial conditions; = 0 andés = 1 the acceleration
is according to Eq[(3113; = 10 — v/2 = 8.59. A sPACARinput file fourbar.dat ) for this
case is:

PLTRUSS 1 1
PLTRUSS 2 1
PLTRUSS 3 2
PLTRUSS 4 2
PLTRUSS 5 3

ArbhWwwWwdN

X 1 0. 0.
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X 2 -0.7071 0.7071
X 3 0.7071 0.7071
X 4 0. 1.4142
FIX 1

FIX 4 1

DYNE 3 1

END
HALT

XM 4 1.

XF 4 0. -10.
ESTIFF 3 1.4142
STARTDE 3 1 O. 1.

END
END

In aMATLAB session we get (the literal text of the session is modifiedesdmat to get a more
compact presentation):

>> spacar(l1, fourbar’)
>> e(le(3,1))
ans = 0

>> ed(le(3,1))
ans = 1

>> edd(le(3,1))
ans = 8.5858

Substituting the numerical values of the parameters inéolithearized equation of motion
Eq. (3.2) gives

083 +2v/20¢é3 + (1 — 10v/2 + 2v/2(10 — v/2) + 5)de3 = 0, (3.3)
or

565 + 2.83 0é5 + 16.14 des =0 . (3.4)
The stiffness term is a combination of

Ky=k=1

Go=V2ke; =0 (3.5)

No=+2g+¢é3)? —k/mes=15.14
where the solution of EQ. 3.1
Es =g —V2(és)" —k/m ey (3.6)

has been used. INNaATLAB session we get:
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>> spacar(4, fourbar’)
>> m0
mO = 1.0000

>> ¢c0
cO = 2.8285

>> kO
kO = 1

>> n0
n0 = 15.1423

>> g0
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3.5 Rotating mass—spring system

k, iy Ky g
Fawwww—O—wwww—Q)
7! i :
— Tg
d e
=

7
Figure 3.27. Rotating mass—spring system.

Consider the system shown in F[g. 3.27. A smooth horizonta¢ tcontaining masses;
and m, connected with springé; = EA;/l; andk, = EA,/l, is mounted on a rotating
shaft. The shaft rotates at constant angular speéthe unstretched lengths of the springs are
denoted by/; and [,. The equations of motion in terms of the generalized coatdsr; and

ro are

0 mo| |72 m2$27‘2 — kay(re —r1 — lp)

mi 0 ‘| lT1‘| _ [ml&rl —]{71<T1 —l1)+k2(T2—T1 _l2)] (3 7)

The stationary solutiofv;, ro2) is obtained by substitutingg = 7, = 7 = 7, = 0

7”01] _ [/ﬁh - k2l21 ’ (3.8)

T02 kaly

ki + ko — mléz —ky .
—ky ko — m2¢2

from which the stationary configuratidny, , ro2) is obtained analytically as

—(mokily — m2k2l2)¢2 + kikoly

. . 3.9
m1m2¢4 — (kaQ + lfgml + k1m2)¢2 + k’lk’g ( )

Tor =

roy = . —m1¢2k2l2 + kle(Zl + lg) (310)
m1m2¢4 - <k2m2 + k2m1 + k1m2)¢2 + k'lk’g

This result can also be obtained numerically from a SPACARyai® E.g. with the following
numerical values

L, = 0.10m ki = 1.3kN/m
l, = 0.15m ks = 0.7 kN/m
m; = 0.80kg ¢ = 10radls
ms = 0.50kg

A SPACAR input file (nassspring.dat ) describing this case is
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PLBEAM 1
PLBEAM 2
PLTRUSS 3

P oW

X X X
g1 w =
coo

N
&
oo

FIX 1
INPUTX 2 1
DYNE 11
DYNE 31
RLSE 2 1

END
HALT

XM 2 1.
XM 3 0.8
XM 5 0.5

ESTIFF 1 130.
ESTIFF 2 105.

INPUTX 2 1 0.0 10.0

END
END

In a MATLAB session we find for the stationary configuratien, ) and(r(,) in agreement with

Egs. [3.9) and(3.10):

>> spacar(7,’massspring’)
>> x(Inp(3,1))

ans = 0.1184
>> X(Inp(5,1))
ans = 0.2891

The linearized equations of motion in terms of the dynamgreles of freedom are

myp 0O o011 ki + ko —m1$2 ey sm] [0
[ 0 mQ] [57‘2] + [ —ko krg—m%@p} [57,2] = [O] (3.11)
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The associated frequency equation is given by

om0 ke —mid? —ky _
det( w; l 0 mQ] + [ ey by —mad? | ) = 0, (3.12)

where the quantities; are the natural frequencies of the system. In a MATLAB se&sgio
obtain

>> spacar(7,’massspring’)

>> mO0
mo =
0.8000 0 0 0.5000
>> kO
kO =
2000 -700 -700 700
>> n0
no =
-80.0000 0 -0.0000 -50.0000

The complex eigenvalues and associated eigenvectors danrmkin the log file:

Complex eigenvalues and normalised eigenvectors of the sta te-space
system matrix

Notation (real : imaginary)

Eigenvalue numbers 1 to 4

( 0.00000E+00 : +/-5.55511E+01) ( 0.00000E+00 : +/-2.47806 E+01)
Eigenvector numbers 1 to 4

(  0.0141650 : 0.0000000) (  0.0177403 : 0.0000000)

( -0.0111041 : 0.0000000) ( 0.0362089 : 0.0000000)

( 0.0000000 :  +/-0.7868804) (  0.0000000 :  +/-0.4396164)

(  0.0000000 : -/+0.6168430) (  0.0000000 :  +/-0.8972801)

From the eigenvalues numbers in this table we find= 24.78 rad/s andv; = 55.55 rad/s.
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3.6 Cantilever beam in Euler buckling

F
A
6

oAk

Figure 3.28. Cantilever beam loaded axially by a foréeat the free end.

Consider a slender cantilever beam or column, with suppdessation of the free end, loaded
axially by a forceF'. The smallest load that produces buckling is called thecatior Euler load
F... For a load equal to or greater than the critical load, therbisaunstable. The bent shape
shown represents the buckling mode. Euler’s theoreticeklmg load for the above beam end
conditions isFy, = m2EI/I?, whereET is the flexural rigidity and the length of the beam.
This result can also be obtained numerically from a SPACARyaig e.g. with the following
numerical values, = 1, EI = 1, Fy, = 1. The beam is modelled by two equal planar beam
elements as shown in Figure 3.28. A SPACAR input filel¢mn2.dat ) for this case is:

EM 1 1.
EM 2 1.
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ESTIFF 1 0. 1.
ESTIFF 2 0. 1.
XF 5 -1.0 0.0

END
END

In a MATLAB session we obtain

>> spacar(8,’column2’)
>> edit column2.log
Load multipliers and normalized buckling modes
Load multiplier no 1 to 3
9.94384680E+00  4.00000000E+01  1.28722820E+02
Buckling mode nro 1 to 3

0.2596610869 -1.0000000000 -0.0519056301
0.8141747968 0.0000000000 0.9932416764
0.5193221738 0.0000000000 -0.1038112603

Hence, we find a load multiplie\;, = F.,./Fy = 9.944. SinceF, = 1 we have F.,/F,, =

9.944 /72 = 1.0075.
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3.7 Cantilever beam subject to concentrated end force

Figure 3.29. Cantilever beam loaded by a concentrated force at the free end.

Consider a slender cantilever beam with a circular crosseseof diameterd = 1cm and
lengthl = 10m. The material properties for this example &é = 102Nm?. The beam
is subdivided intd> planar finite elements as shown in Hig. 3.29. A point fofcef 14 N is
applied along the vertical axis at the free end of the beamerierates an elastic deformation
as shown in the figure. The deformation is reached in ten stejp®ding. For each step the
residual vector converges inNewton—Raphson iterations with an accuracy equalié — 6.

A SPACAR input file plbeam5.dat

PLBEAM 1 1 2 3
PLBEAM 2 3 4 5
PLBEAM 3 5 6 7
PLBEAM 4 7 8 9
PLBEAM 5 9 10 1

0

X X X
g weE
Wk o

w o
©oo

w o

4
6
8
10

112

) for this case is:
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FIX 1
FIX 2

DYNE
DYNE
DYNE
DYNE
DYNE

a b wdNPF
NDNDNDNDDN
wWwwww

END
HALT

EM 1 1.
EM 2 1.
EM 3 1.
EM 4 1.
EM 5 1.

ESTIFF 1 0.0 102.0
ESTIFF 2 0.0 102.0
ESTIFF 3 0.0 102.0
ESTIFF 4 0.0 102.0
ESTIFF 5 0.0 102.0

XF 11 0.0 -14

END
END

In a MATLAB session we get
>> spacar(8,’plbeam5b’)
>> x(Inp(11,1))
ans =
3.6808 (theoretically, 3.8109)
>> x(Inp(11,2))
ans =

-8.4897 (theoretically, -8.4044)

>> xcompl(lnp(11,1))
ans =
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0.4859

>> xcompl(Inp(11,2))
ans =
0.0633

(undeformed configuration, 0.)

(undeformed configuration, 3.268)

To show the usefulness sPAVISUAL the first three free vibration modes (no external loads)
and buckling modes (axially loaded by an end force) are dysal for the cantilever beam of

this example in figures_3.30 fo 3135.

SOES
OOENO

Figure 3.30. First vibration mode for a cantilever Figure 3.31. First buckling mode for a cantilever
beam with 5 elementd;.,; = 2.516776 N (theo-
retically, 2.516749 N).

beam with 5 elementsy; = 0.355131 rad/s (the-
oretically,0.355100 rad/s).

Figure 3.32. Second vibration mode for a can- Figure 3.33. Second buckling mode for a can-

tilever beam with 5 elements;; = 2.2266 rad/s
(theoretically2.22537 rad/s).

&5 o

tilever beam with 5 elementd;,.» = 22.715N
(theoretically,22.651 N).

Figure 3.34. Third vibration mode for a cantilever Figure 3.35. Third buckling mode for a cantilever

beam with 5 elementsys = 6.25198 rad/s (theo-
retically, 6.23111 rad/s).

beam with 5 elementd;..3 = 64.798 N (theoreti-
cally, 62.919 N).
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3.8 Short beam

Figure 3.36. Short Timoshenko beam loaded in shear.

In this example the influence of shear deformation on the\nehiaof short beams is studied.
A square plate is loaded in shear in its plane as shown in &gud6. The beam has unit height,
h, length,/, and Young’s modulust, and a small unit width;. With Poisson’s ratior = 0.27,
the shear correction value is= 10(1 + v)/(12 + 11v) = 0.8484. The deflection, if shear
deflection is taken into account, is

FI3  2(1+v)FI

= 3.13
YT 12EI T kEth (3:13)
with I = th3/12. So the compliance is
y P 21+ v)l 2(14+v)
F=Tprt g =Lt = 39940, (3.14)

The moment of inertia per unit of length js= pth3/12.
An input file in which the beam is modelled by two planar beafeoial lengthghear2.dat )
in this case is:

PLBEAM 1

1234
PLBEAM 2 3 4 5 6
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DYNX 4
DYNX 5 2

END
HALT

EM 1 1.0 0.0833333333
EM 2 1.0 0.0833333333
ESTIFF 1 1.0 0.0833333333 0.2495
ESTIFF 2 1.0 0.0833333333 0.2495

ITERSTEP 10 1 0.000000000001

END
END

In aMATLAB session, the compliances and eigenfrequencies can be &suntdows

>> spacar(8,’shear2’)
>> xcompl(Inp(5,2))
ans =

3.9940
>> spacar(7,'shear2’)
>> type shear2.log

Eigenvalue numbers 5 to 8
( 0.00000E+00 : +/-2.54107E+00) ( 0.00000E+00 : +/-7.95645E-01)
Eigenvector numbers 5 to 8

( 0.0000000 : 0.0000000) (  0.0000000 : 0.0000000)
( -0.1544078 : 0.0000000) (  0.4065978 : 0.0000000)
(  0.2825588 : 0.0000000) (  0.2566711 : 0.0000000)
( 0.1744141 : 0.0000000) (  0.6173727 : 0.0000000)
(  0.0000000 : 0.0000000) (  0.0000000 : 0.0000000)
( 0.0000000 : -/+0.3923612) (  0.0000000 : +/-0.3235074)
( 0.0000000 : +/-0.7180016) (  0.0000000 : +/-0.2042190)
( 0.0000000 : +/-0.4431985) (  0.0000000 : +/-0.4912094)

The compliance based on thin plate theory.is822 m/N, so the approximation with a short
beam overrates the compliance by about 3%. If the shear ifigkiwere nor included, the
compliance would bé&.0 m/N.

The lowest numerical eigenfrequency, = 0.795645 rad/s, compares well with a value from
plate theoryw, ,; = 0.7987rad/s. If shear flexibility nor rotational inertia is incled, the first
numerical eigenfrequency is6168 rad/s.
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3.9 Lateral buckling of cantilever beam

In this example lateral buckling is considered of a canditdveam with a narrow rectangular
cross-section which is loaded by a transverse fdigg, at its free end in the direction of the
larger flexural rigidity. The theoretical buckling load#%, = 4.013\/(E1S;)/I?, whereET is
the smaller flexural rigiditys; the torsional rigidity and the length of the beam. For numerical
analysis, the beam is divided into four equal spatial beamehts in which the second-order
terms in the bending deformations are included in the arsalys

In aMATLAB session we get:

>>spacar(8,'lateral4’)
>>spavisual(lateral4’)

An input file (ateral4.dat

BEAM 1 1
BEAM 2 3
BEAM 3 5
BEAM 4 7

oo~ DN
O N o1 w
S oo h

X 1 0.00 0.00 0.00
X 3 0.25 0.00 0.00
X 5 0.50 0.00 0.00
X 7 0.75 0.00 0.00
X 9 1.00 0.00 0.00

DYNE
DYNE
DYNE
DYNE

A OWNPRP
NDNDNDN
o1 01 01 O1
o ooOo

FIX 1
FIX 2

OUTLEVEL 0 1

END
HALT

EM 1 1.0 0.0033
EM 2 1.0 0.0033
EM 3 1.0 0.0033
EM 4 1.0 0.0033

ESTIFF 1 0.0 2.0 0.0 1.0
ESTIFF 2 0.0 2.0 0.0 1.0
ESTIFF 3 0.0 2.0 0.0 1.0
ESTIFF 4 0.0 2.0 0.0 1.0

) describing this case is:

0
0.
0
0

Pee e
ococoo
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XF 9 0.0 0.0 -1.0

END
END

VISUALIZATION
BUCKLINGMODE 1
TRANSPERANCY 0.9
BEAMVIS 0.01 0.1
LIGHT 1

STEPLINE 0.01
ENLARGEFACTOR 0.04

The 3D-visualization of this file is presented in figure 3.Bfie buckling load found i8.7619 N,
whereas the theoretical valuei$752 N. If the warping is constrained at the clamped end, the

first element is effectively shorter for torsion by a distabg/(1 + v) /24, whereb is the height
of the beam, heré = 0.2 m, andv is Poisson’s ratio, here = 0. The torsional stiffness of the

first beam element now increases with a fa¢tot — b,/2/3) = 1.19517. The input line for the
stiffness of the first beam element now becomes

ESTIFF 1 0.0 2.39034 0.0 1.0

The critical load is now increased 601694 N.
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0.1
0.05

-0.05
-0.1
-0.15

Figure 3.37.Cantilever beam lateral buckling (buckling mode 1).
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3.10 State-variable and output equations
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Figure 3.38.Lever system.

Find the state-space-variable and output equations faytbtem shown in Fig. 3.88.

The input is the displacemetit” of the left end of spring, = E A, /Il,; it affects the massa,
through springcs = EAs/l; and the lever, which is modelled by the planar beam elentents
and4. The lever has a fixed pivot at nodend is assumed to be massless yet rigid. Its angular
orientation is small so that only horizontal motion need besidered. We will selectz? and

542 as state variables, withz” being the input and reaction forée,” as output. With these
definitions the state variable and output equations are then

Biil - l—kéo/mz _b11/m2‘| [gizl + —(k2/m02)(l4/l3)‘| [ 027 | (3.15)
[37.7) = [R 4 /1) | O] lgiz] + [ —hals/lL(1+15/L) | [627], (3.16)
¢ D

which have the desired form. These results can also be eotaiumerically from a SPACAR
analysis. E.g. with numerical values for, = 1, by = E4A;/l; = 5, ks = ks = 1000 and
l4/l3 = 2. A SPACAR input file (ever.dat ) for this case is

PLTRUSS 1 1 2
PLTRUSS 2 2 3
PLBEAM 3 3 45
PLBEAM 4 56 7
PLTRUSS 5 7 9

X 1 0.0 00
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1
INPUTX 7
RLSE 1 1
RLSE 2 1
RLSE 5 1

END
HALT

XM 2 1.0
ESTIFF 2 1000.
ESTIFF 5 1000.
EDAMP 1 5

END
HALT

INX'1 71
OUTF 1 51

END
END

In a MATLAB session we get

>> spacar(9,’lever’)
>> A=getfrsbf(’lever.ltv’, 'A’, 1)

A =

0 1
-1000 -5

>> B=getfrsbf(’lever.ltv’, 'B’, 1)
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0
-2000

>> C=getfrsbf(lever.ltv’, 'C’, 1)
C =

-3000 0
>> D=getfrsbf(lever.ltv’, 'D’, 1)
D =

-6000

The state-space matrices can also be obtained with the codgetss('lever’) . ABode
diagram (Figuré_3.39) can be made by the command

>> bode(getss(lever’))

Bode Diagram

100 T L | T L | T L |
90 -

80 T

70 b

60 - T

50 b

Magnitude (dB)

40t .

30 -1

20 T

10 b

360 F —————— ——————— ——————— ——————

315

270

Phase (deg)

225

180 & L o L L
10° 10° 10" 10° 10°
Frequency (rad/sec)

Figure 3.39.Bode diagram for the lever system.
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3.11 Rigid spatial manipulator mechanism

Figure[3.40 gives an example of a simplified manipulator. piescribed motion of the end-
effectorC is represented by the coordinates y© andz“ as functions of time.

z (%

1.76 m/s

Figure 3.40. Spatial manipulator mechanism, trajectory and velocity profile of the end-
effector.

The end-effector must follow the straight trajectory frooir | to point Il. Three trajectories
are distinguished: Initially the manipulator is at rest @2 s. Next, during 1.0 s, the mo-
tion is carried out according to the velocity profile in Higd@ with constant acceleration and
deceleration during the first and final 0.2 s. Finally the rpalator is at rest again.

The motion of manipulator is determined by the rotation okéhhinges. Hinge 1 enables
rotations about the-axis, while hinge 2 enables motions perpendicular tathplane. Hinge 3
takes care of motions in the same plane wherein hinge 2 igeaclihe hinges are driven by
internal actuators. For control purposes we assume thabseare available that measure the
rotations and the speed of rotation of the hinges.

The manipulator consists of two beams, elements 4 and 5,hwdre equal in lengthi, =

ls = 0.7m. The distributed mass per lengthpis= 4 kg/m for element 4 angd; = 2 kg/m for
element 5. The concentrated masses in ndglesdC' are 10 kg and30 kg respectively. The
effect of gravity is accounted for by applying external #80:,g in negativez-direction, where
g=10m/s.

Inverse dynamics problem

First the inverse dynamics problem is analysed. Figure 8hvdvs the velocity components of
the end-effector that are computed for the trajectory ddfinghe input file. The position and
acceleration components of the end-effector are showBHE§. and Fig._3.45, respectively.
The following input file (obotinv.dat ) is used §PACARMoOde=2):
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HINGE 1 1 2 0 0 1 TRAJECT 3

HINGE 2 2 3 0-1 O TRANS 8 0. 1.3 0.

BEAM 44356 0 1 O TRTIME 0.2 20

HINGE 3 6 7 0-1 O

BEAM 55789 0 1 O NOMS 111
NOMS 221

X 4 0 0. O NOMS 331

X 5 0.268 0. 0.6467

X 8 0536 0. O. REFE 111
REFE 221

FIX 1 REFE 331

FIX 4 REFEP 4 1 1

INPUTX 8 1 REFEP 5 2 1

INPUTX 8 2 REFEP 6 3 1

INPUTX 8 3 REFEDP 7 1 1

RLSE 11 REFEDP 8 2 1

RLSE 21 REFEDP 9 3 1

RLSE 31 REFX 10 8 1
REFX 11 8 2

END REFX 12 8 3

HALT REFXP 13 8 1
REFXP 14 8 2

XM 5 10. REFXP 15 8 3

XM 8 30.

EM 4 4. END

EM 5 2 END

XF 1 0. 0. -14.

XF 5 0. 0. -121. VISUALIZATION

XF 8 0 0. -307. BEAMVIS 0.01 0.01
HINGEVIS 1 0.01 0.03

END HINGEVIS 2 0.01 0.03

HALT HINGEVIS 3 0.01 0.03
LIGHT 1

TRAJECT 1 TRANSPARENCY 0.6

TRANS 8 0.536 0. 0. TRAJECT 1

TRTIME 0.2 20 TRAJECTNODE 8

TRAJECT 2

TRANS 8 0. 1.3 0.
TRVMAX 8 0.2 1.76
TRFRONT 8 O.

TRTIME 1.0 100

The inverse dynamics analysis yields the stresses thattbhalve applied at the hinges and
the deformations of the hinges. FIg._3.42 shows the stresBegires 3.46 and_3.47 show
the deformations which are the relative rotations of thegés and the first time derivatives,
respectively. Clearly, to accomplish the quite simple ttgey of the end-effector of this non-
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Figure 3.41. SPAVISUAL output for the spatial manipulator mechanism.

linear mechanism rather complicated functions for thetiateof the hinges are needed.

Note that the input file defines the inputs and outputs thdtheilused in asIMULINK simu-
lation. The nominal inputs are computed to accomplish tHerdetions of the hinges. The
outputs include the six sensor signals with the rotatiomisthe speeds of rotation of the hinges.
Nine more outputs are defined to obtain extra informatiorhemperformance of the manipula-
tor: the acceleration of the rotation of the hinges and mosand velocity of the end-effector.
At the end of the file visualization settings fepAvISUAL are defined. In figure_3.41 the output
of SPAVISUAL is presented.
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Figure 3.42. Stresses to be applied at the hingesFigure 3.43. Position coordinates of the end-
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Figure 3.44. Velocity components of the end- Figure 3.45. Acceleration components of the end-
effector. effector.
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Figure 3.46. Deformations (relative rotations) of Figure 3.47. Velocities of deformation of hinges
hinges 1, 2 and 3. 1,2and3.
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] Rotational nodes for the spatial manipulator

|

O ONDNDNDNDN

nodel node2 node3 node6 node7 node?9
type 2 2 2 2 2
Ao 2 2 2 2 2
Al 1 2 2 2 2
Ao 1 2 2 2 2
A3 1 2 2 2 2
forces 0 0 0 0 0
L, 0 0 0 0 0
] Translational nodes for the spatial manipulator \
node 4 nodeb5 node 8
type 1 1 1
xz-coordinate] O 0.268 0.536
y-coordinate| O 0 0
z-coordinate| O 0.647 0
BC-typex 1 2 3
Zo 0.536
.I"o O
BC-typey 1 2 3
Yo 0
Yo 0
BC-typez 1 2 3
20 0
ZO 0
forcex 0 0 0
forcey 0 0 0
forcez (x) -14 -121 -307
mass 0 10 30
(%) including the element masses

Elements for the spatial manipulator

|

elementl element2 element3 element4 eleme
elementtype| hinge hinge hinge beam beam
T-nodes 4,5 5,8
R-nodes 1,2 2,3 6,7 3,6 7,9
x local y-axis 0 0 0 0 0
y local y-axis 0 -1 -1 1 1
z local z-axis 1 0 0 0 0
typee; 2 2 2 1 1
typees 1 1 1 1 1
typees 1 1 1 1 1
typeey 1 1
typees 1 1
typeeg 1 1

T=translational, R=rotational

nt5

83
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Linearization

In one of the next sections the design of a closed-loop chatror this manipulator will be
discussed. This controller depends on parameters dernwgdthe linearized equations of mo-
tion. Therefore, a linearization is needed in terms of theFB©orresponding to the actuator

joints. An input file ¢obotinvlin.dat ) for this analysis ¢PACARMoOde=3) is:

HINGE 1 1 2 0O 0 1 NOMS 111

HINGE 2 2 3 0-1 0 NOMS 2 21

BEAM 44356 0 1 O NOMS 331

HINGE 3 6 7 0-1 O

BEAM 55789 0 1 O REFE 111
REFE 2 21

X 4 0. 0. O. REFE 3 31

X 5 0.268 0. 0.6467 REFEP 4 1 1

X 8 0536 0. O. REFEP 5 2 1
REFEP 6 3 1

FIX 1 REFEDP 7 1 1

FIX 4 REFEDP 8 2 1

INPUTE 1 1 REFEDP 9 3 1

INPUTE 2 1 REFX 10 8 1

INPUTE 3 1 REFX 11 8 2
REFX 12 8 3

END REFXP 13 8 1

HALT REFXP 14 8 2
REFXP 15 8 3

XM 5 10.

XM 8 30. END

EM 4 4. END

EM 5 2.

XF 1 0. 0. -14.

XF 5 0. 0. -121.

XF 8 0. 0. -307.

END

HALT

Note that the setpoints are read from #oel data file of which the name is the longest substring
of the name of the input file nammebotinvlin . The file from the previous inverse dynamics
runrobotinv s a likely candidate.
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Open-loop simulation

The behaviour of the manipulator mechanism without feetkl@ontrol is simulated using
SIMULINK for the open-loop configuration of Fig._3]148. Two blocks frtime SPACAR library
spacar_lib  are used to read thgetpoint U0 andReference YO data, respectively,
from the inverse dynamics run (file namebotinv ). In this open-loop configuration the
nominal input is fed directly into thePAsiM block (also available in the library). In the in-
put file robotsim  for this block the actual inputs and outputs are identicahtopreviously
defined inputs and outputs.

HINGE 11 2 0 0 1 INPUTS 1 11

HINGE 2 2 3 0-1 O INPUTS 2 2 1

BEAM 44356 0 1 O INPUTS 3 3 1

HINGE 3 6 7 0-1 O OUTE 111

BEAM 55789 0 1 O OUTE 221
OUTE 331

X 4 0. 0. O OUTEP 411

X 5 0.268 0. 0.6467 OUTEP 5 21

X 8 0536 0. O. OUTEP 6 3 1
OUTEDP 7 1 1

FIX 1 OUTEDP 8 2 1

FIX 4 OUTEDP 9 3 1

DYNE 11 OUTX 10 8 1

DYNE 21 OUTX 11 8 2

DYNE 31 OuUTxX 12 8 3
OUTXP 13 8 1

END OUTXP 14 8 2

HALT OUTXP 15 8 3

XM 5 10. END

XM 8 30 END

EM 4 4.

EM 5 2.

XF 1 0. 0. -14.

XF 5 0. 0. -121

XF 8 0. 0. -307

END

HALT

The other blocks in the block diagram are standarULINK blocks and are used to export data
to workspace and to display results on the screen. The “®¢ldidocks select only specified
components from an input vector. They are e.g. used to sahcthe first three components of
the output vector (deformations of the hinges) as disptagihcomponents makes the graphs
unreadable.

SIMULINK’s ode45 solver is used with a relative tolerance Iof°, an absolute tolerance of
10~% and a maximum time step 6f01s. With these parameters the simulation of the motion
fromt = 0.0s tot = 1.5s is completed after 172 time steps. The size of many times ssep
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robotinviin |- 3 ! 15 5 P Selector 3
Setpoint UO % Selector E Scope E
:
Unom To Workspace 1y Y To Workspace
g =
Selector Ytip Scope dvtip
=
Reference YO Selector Eref  scope Eref —
isplay Time
Yref To Workspace Clock Time To Workspace
Figure 3.48. Block diagram for an open-loop simulation of the motion of the manipulator
mechanism usingIMULINK .
2 14

el(1),e1(2),e1(3) [rad]

)

i i i I i
0 0.2 0.4 0.6 0.8 1 12 14 0 0.2 0.4 0.6 0.8 1 12 14
time [s] time [s]

Figure 3.49. Deformation of the hinges of spatial Figure 3.50. Position of the end-effector of spa-
manipulator mechanism in an open-loop simula-tial manipulator mechanism in an open-loop sim-
tion. ulation.

dictated by the specified maximum value.
The results from the simulation are plotted usingt»aLAB commands;

>> plot(t,yref(:,1),'r ,t,yref(:,2),'d’,...
t,yref(:,3),’0’,t,y(:,1),’r’,...
t,y(:,2),'9:,t,y(:,3),’b:")

>> plot(t,yref(:,10),'r tyref(:,11),’q’,...
t,yref(:,12),’b’,t,y(:,10),’r’,...
t,y(;,11),’9:,t,y(:,12),’b:")

Figured 3.49 and 3.50 show the deformation of the hingeslamg@asition coordinates of the
end-effector from this simulation. The solid lines are tbkerence datay(ef ) and the dotted
lines are from the actual simulatiog)( Clearly, small errors during the integration lead to
relatively large position errors at the end of the motione €hror can be decreased by increasing
the integration accuracy, e.g. by enlarging the number ofprded setpoints. More reliable
results can be obtained by applying feedback control, ddwitliscussed next.
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Closed-loop simulation

The block diagram of Fid._3.48 is extended with a feedbackrotiar as shown in Fid. 3.51.

A feedback signal is computed by a controller that is impleteé as a subsystem block and
a multiplication with the reduced mass matfid{,. The subsystem assumes that the input is a
vector with bothe andde. These are the differences in joint positions and velagitrteich are
computed by comparing the actual motion and the nominalutuifhe output of the subsystem
is

K,de + K ¢

with well chosen matrice&’, and K, (see e.g. the lecture notés [1]). This output is multiplied
with the time-dependerst x 3 reduced mass matrixf, using a block from thepacar_lib
library. Finally the nominal input vectai, is added as a feedforward signal.

u y

robotinviin |2 3 » unom 3

Unom 5

Setpoint U0 Unom To Workspace U To Workspace Y To Workspace

6 Omega =28 |3 - 3 15 - 6 R 3
5 beta = 0.85 P robotinviin - />\ 5P| Selector 5P Selector —)@

robotsim
Kp Kv control times MO SPASIM Selector E + Ed Selector E

5 yref

Yref To Workspace

robotinvlin »| Selector |- Selector |2

l >
15 67

Reference YO | sejector Eref + Edref Selector Eref Scope Eref 5 4

()8 fsecor 2 p ]

Selector YD gconcqvip

N

Clock Time To Workspace

Figure 3.51. Block diagram for a closed-loop simulation of the motion of the manipulator
mechanism usingIMULINK . Most signals are vectors and the numbers indicate the size of
the vectors.

The motion is simulated with the same parameters as in the-lmo@ simulation (see pagel85).
In this case the actual size of the variable time step is sdraegmaller and after 183 time
steps the simulation is completed. The differences betweeprescribed and actual trajectory
is much smaller in this case as is illustrated in Figs.|3.5%&B63. The maximum error of the
tip position is less than 1 mm which is better than 0.1%.

Figs.[3.54 and 3.55 show the feedforward pasg)(and feedback part( — wu,) of the input
applied to the manipulator, respectively. Clearly, thedaxgpntribution is from the feedforward
part. The size of the feedback part is smaller and relati\gtye correction are only applied
during limited periods of time. However, as is clear fronstekample, this feedback is essential
to keep the manipulator on track.

The simulation for 1.5 s now requires 182 time steps, whiatniy slightly more than in the
open-loop simulation. However, the simulation takes muchetime which is caused by the
occurrence of a so-called algebraic loop in the block diagrdhe reason for this algebraic
loop is the presence of the joint accelerations in the outpator of thespasim block, as
accelerations depend algebraically on the input torqubssé& accelerations are only exported
to the workspace and are not used in the feedback loop soitheseeal algebraic loop. Unfor-
tunately,SIMULINK has no means to detect this. If you are not interested in tbelexations,
they can easily be removed from the output vector and thelatron speed will increase sig-
nificantly.
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Figure 3.52. Error in the deformation of the Figure 3.53. Position error of the end-effector of
hinges of spatial manipulator mechanism in aspatial manipulator mechanism in a closed-loop
closed-loop simulation. simulation.
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feedforward part). feedback party — uy).
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3.12 Flexible spatial manipulator mechanism

To be added ...
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3.13 Chord-driven underactuated robotic finger

second pulley proximal phalanx

first pulley
™
\ distal phalanx
p) © )
7 1
F

M
/» third pulley
7

Figure 3.56.Robotic finger.

In order to illustrate the use of the planar belt/gear eléngemodel for a chord-driven underac-
tuated robotic finger with two phalanges, as in a thumb, isicamed; see Fig, 3.56. The distal
phalanx can rotate with respect to the proximal phalanx aedotoximal phalanx can rotate
with respect to the palm, which is assumed to be immobile. Kepus rigidly connected to
the distal phalanx, centred at its rotation point, whiclrieara chord that is slung over a second
pulley centred at the rotation point of the proximal phalabut free to rotate. The chord is
finally attached to a third pulley, which is driven by a mot®he finger is underactuated, for
it has two degrees of freedom, but a single motor. The degrefgsedom are chosen as the
relative rotation angle between the two phalanges and taéon angle of the motor pulley.

A force F' = 10N acts near the tip of the finger, which is balanced by a momént 1.5 Nm
delivered by the motor. Owing to the choice of the dimensiointhe radii of the pulleys and
the lengths of the phalanges, this is an equilibrium pasitio

~t L0

e

Figure 3.57.Finite element model for the robotic finger.

The finite element model is shown in Fig. 3.57. The input fikgger.dat , IS

PLBEAM 112 3 4

PLTOR 245

PLBEAM 3 3 56 7

PLBELT 4 8 9 1 10 -0.015 -0.015
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PLBELT 5 1 10 3 5 -0.015 -0.009
PLRBEAM 6 6 7 11
FIX112

FIX8 1 2

DYNX 9 1

DYNE 2 1

X 100

X 3 0.06 0.0

X 6 0.15 0.0

X 8 0 -0.06

X 11 0.15 -0.015
END

HALT

EM 3 1.0

EM 5 1.0

STARTDX 9 1 0.0 0.0
STARTDE 2 1 0.0 0.0
XF 11 0.0 10.0

XF 9 -15
TIMESTEP 0.2 100
END

END

VISUALIZATION
VIBRATIONMODE 1
ENLARGEFACTOR 0.2

91

By running SPACAR with mode=7, it can be checked that the initial position is indeed an
equilibrium position, but it is unstable. One mode has armiglue equal to zero, and in
the corresponding mode shape, the distal phalanx remanmmohtal. The other mode has an
exponentially increasing or decaying motion and is showrigure[3.58. (Note that the current

version ofSPAVISUAL does not draw the pulleys.) A simulation with an initial pebation,

specified by

STARTDX 9 1 0.001 0.04
STARTDE 2 1 0.004 0.16

shows this unstable behaviour. Note that the initial péstion is approximately in the direction
of the eigenvector corresponding to the unstable eigeavalu
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Figure 3.58. Unstable mode.
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3.14 Tricycle

Figure 3.59. Tricycle.

A tricycle has two rear wheels on a common axle and a front Wihe& fork that can rotate
about a steering axis with respect to the rear frame. Thesgeaxis can be vertical\(= 0) or
be inclined; see Fig. 3.59. The input file for the planar \@rdirike2.dat , IS:

PLRBEAM 1 1 2 3

PLWHEEL 2 3 2 4 0.3 0.0 1.0
PLRBEAM 3 5

PLWHEEL 4 6 0.3 0.0 1.0
PLRBEAM 5 7

PLTOR 6

PLRBEAM 7
PLWHEEL 8
X 03 00
X 0.0 035
X 0.0 -0.35
X 1.05 0.0
X 9 1.00 0.0
RLSE 4 2
DYNE 6 1
KINX 1 1 2
KINX 2 1
DYNX 4 1
KINX 6 1

KINX 10 1

END

9

12
5 2
12
28
7 8
9 8 10 0.25 0.0 1.0

~N 01wk
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HALT

XM 1 80.0
XM 2 50
XM 3 20
XM 4 0.1
XM &5 20
XM 6 0.1
XM 8 0.025
XM 9 15
XM 10 0.05

STARTDX 4 1 0.0 10.0
STARTDE 6 1 0.5 0.0
TIMESTEP 1.0 100
END

END

The origin of the coordinate system is initially located la tentre of the rear axle, with the
x-axis pointing in the forward direction and theaxis pointing to the left. The centre of mass
of the frame is at a distance of 0.3 m in front of the rear axlee fiear wheels, elements 2 and 4,
have a radius of 0.3 m and are connected to the centre of m#ss fohme by two rigid beams,
elements 1 and 3. Another rigid beam, element 5, connectsethige of mass of the frame
to the steering head, where the hinge, element 6, makes timecion to the front fork. The
rigid beam 7 represents the rigid connection between tlegistehead and the the front wheel,
element 8, with radius 0.25 m, which is conncted to the frork.f All wheels can rotate freely
about their spin axis. The frame and the wheels have masthéiitont fork is assumed to be
massless.

The system has two degrees of freedom: the rotation anghe ¢étt rear wheel and the steering
angle are chosen as generalized coordinates. The latgraf ghe right rear wheel is released,
because otherwise the system whould be overconstrainee.otfler five slips at the wheels
are prescribed as zero to impose the non-holonomic contsrai pure rolling. Five kinematic
coordinates are defined as the two position coordinateshanybiv angle for the rear frame and
the two rotation angles at the other wheels. The momentsdiaat the nodes 4, 6 and 10 are
the moments of inertia about the spin axes of the wheels.

The stationary motion and the linearized equations can baddy runningsPACAR with
mode=7. It appears that there are seven eigenvalues equal to z#hoenyenvectors which
correspond to the three rotations of the wheels and the twias and yaw angle of the rear
frame, and a change in the forward velocity. The other twemiglues are real and negative,
corresponding to exponentially decaying motion. A simalatan be made witmode=1.

A three-dimensional model of the same tricycle is (filke3v.dat )

RBEAM 1 1 2 3 00 10 0.0

HINGE 2 2 4 00 10 0.0

WHEEL 3 3 4 5 00 1.0 0.0
4 1 2

RBEAM 6 00 1.0 0.0
HINGE 5 2 7 0.0 10 0.0
WHEEL 6 6 7 8 00 1.0 0.0
RBEAM 7 1 2 9 00 1.0 0.0

HINGE 8 2 10 00 0.0 1.0
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RBEAM 9 9 10 11 0.0 1.0 0.0
HINGE 10 10 12 00 1.0 0.0
WHEEL 11 11 12 13 0.0 1.0 0.0
HINGE 12 14 2 00 00 10

FIX 14
RLSE 12 2 3

RLSE

DYNE
DYNE
KINE 5
KINE 10

03 0.0 0.9
0.0 0.35 0.3
0.0 0.35 0.0
0.0 -0.35 0.3
0.0 -0.35 0.0
1.05 0.0 0.3
1.00 0.0 0.25
1.00 0.0 0.0

6
2
8

e

KINX 1
KINX 1

END
HALT

1
1
KINE 12 1
1
2

GRAVITY 0.0 0.0 -9.81

XM
XM
XM
XM
XM
XM

1
2

o b~ W

7

XM 11
XM 12
STARTDE 2 1 0.0 10.0
STARTDE 8 1 -0.5 0.0
TIMESTEP 1.0 100

END
END

80.0

2.0 0.0 0.0 3.0 0.0 5.0

2.0

0.0 0.0 0.0 0.1 0.0 0.0
2.0

00 0.0 0.0 0.1 0.0 00
15

0.025 0.0 0.0 0.05 0.0 0.025

Note that hinges (elements 2, 5 and 10) are used to conneathbels to the rigid beams and
an additional hinge, element 12, is introduced in order tkerthe yaw angle available. With

mode=7, the same eigenvalues are found as for the planar modelriibkas are saved from

the run with the planar model, it will be seen that the resoflis simulation are very nearly the

same. The three-dimensional model has the advantage ¢habthal forces at the wheels are
calculated, which are the first components of the stresseofvtieel elements (Fig 3.60):

>> plot(time,sig(:,le(3,1)),’k-",time,sig(:,le(6,1)),’k:’, ...
time,sig(:,le(11,1)),’k--"); grid on
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-100 7._ -
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Figure 3.60. Normal forces at road contact points. The fully drawn line is for the kit r
wheel, the dotted line for the right rear wheel and the dashed line foraheviheel.

>> xlabel('time [s])
>> ylabel('normal force [N])

It is seen that all forces are negative, which means that dneal force is compressive, as it
should be. The normal force in the right rear wheel is irlitimhuch higher than the corre-
sponding force at the left rear wheel. Because the wheel pleeraain perpendicular to the
road surface, the third components of the stresses areqisbte the normal force at the road.
Lateral forces are in the second components, as well as isixtiein a scaled version. The
fourth components of the stresses are zero, as they shoulthieefifth components represent
scaled longitudinal tyre forces at the contact points.

A model with aninclined steering axis, as shown in Eig. Bi§# the input filetrike3i.dat ,
which differs fromtrike3v.dat in the definition of the hinge at the steering head, element 8,
and the position of node 9,

HINGE 8 2 10 -0.30901699437495 0.0 0.95105651629515

X 9 09 0.0 0.3
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Figure 3.61. Normal forces at road contact points. The fully drawn line is for the k=t r
wheel, the dotted line for the right rear wheel and the dashed line foraheviheel.

Note that for this case, the normal force in the right rear eVl initially just compressive
(Figure[3.61), so for a slightly higher speed, the wheel wdabke contact with the ground.
This loss of contact cannot directly be included in the modéle front wheel no longer stays
perpendicular to the road surface, so the first and thirgsttemponents are no longer equal.
Morreover, the rotation angle of the hinge with element nenit® is not exactly equal to the
yaw angle in this case.
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3.15 Screw motion

X 2 1 R
: )
y
z
X 2 1 IQ
N
3
NN\

Figure 3.62. Screw moving a flexible beam.

We consider the kinematic model of a screw pushing againgxible beam. In the model
shown in Fig[3.6R, element 1 is a screw element fixed at oneaeddconected to a hinge
element, element 2, which is free to rotate and is rigidlynsm to a flexible beam element,
element 3, which is fixed at its other end. A rigid beam elemelaiment 4, is only included
to show the rotation of the screw. The screw as well as thebliexieam have a length of 1 m.
The pitch of the screw is 1 cm/radian. The input filstsew.dat

SCREW 11234100 001
X 1 0.0 0.0 0.0

X 3 1.0 0.0 0.0

FIX 1

FIX 2

HINGE 2 4 5100

DYNE 2 1

BEAM 3 6 7 35 1.0 0.0 0.0
RLSE 3

X 6 1.0 0.0 -1.0

FIX 6

FIX 7

RBEAM 4 1 2 3 0.0 1.0 0.0
RLSE 4

RBEAM 5 3 4 8 1.0 0.0 0.0
X 8 1.0 0.2 0.0

INPUTE 1 1

END
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HALT

EM 3 1.0

ESTIFF 3 1000.0 1.5 100.0 1.0
EDAMP 3 1000.0 0.015 0.1 0.01
INPUTE 1 1 0.0 1.0 0.0
STARTDE 2 1 0.0 -1.0
TIMESTEP 10 200

END

END

TIMESTEP 1.0 100

END

END

The screw is driven over an angle of 10 radians in 10 seconls.nfoment to drive to screw
and the normal force in the flexible beam (bath) are shown in Fig 3.63. This figure was

generated by the commands

>> plot(time,100
>> xlabel('time [s])

*sig(;,le(1,1)),’k--",time,sig(:,le(3,1)),’k-"); grid on

>> ylabel(’normal force [N] and driving torque [N cm]’)

As the distance between the end points of the flexible bearaases, the normal force increases

in approximately a quadratic way.

8

normal force [N] and driving torque [N cm]

Figure 3.63. Normal force in the flexible beam 3ully drawn) and the negative driving

torque of the screwdasheq.

5 6 7 8 9 10
time [s]
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SPACAR installation
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Prerequisites

Before installingSPACAR on a computer system it is advisable to check that the system i
suitable of running the software and to haveTLAB installed.

This SPACAR version has been developed and tested wiTLAB 7.0.4 andSIMULINK 6.2
(Release 14SP2). Itis expected to work with any modern veidimATLAB /SIMULINK since
R12, but in case of problems we can offer only limited support.

The system requirements depend heavily on the versiemofAB you are using. Consult the
accompanying Installation Guide or check The Mathworksu Wy expect thasPACARwill

run on any Microsoft 32-bit Windows PC on whiGmTLAB /SIMULINK are running. Only the
base systems afiATLAB andSIMULINK are required to rusPACAR, but additional toolboxes
like the Control System Toolbox may be helpful to develop amalyse control systems.

The installation oSPACARuUSes less than 4 MB extra disk space.

ThesPACARfiles are stored in ZIP-archives or, in Microsoft Windows #Rompressed folder.
In Windows XP you can easily open such archives, but of coyosemay chose to use your
favourite unzipper. The ZIP-archives can be downloadeshfro
http://www.wa.ctw.utwente.nl/Software/SPACAR/

In addition to the software there is a ZIP-archive with thiaddes that are used for the examples
in Chaptef B.

Installation
First of all, you should create a subdirectory algatlab\Toolbox\Spacar . Next, you
extract the files from thesPACAR software ZIP-archivespacar2007_bin.zip into this

subdirectory. There are three types of files:

e Files with the extensiordll  are the actual executables of theacAR package. The
original sPACAR-code (not provided) is written it and FORTRAN77, compiled and
linked into so-called MEX-modules, that are executablesuke within the MATLAB-
environment. The following files must exist:
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checksbf.dll combsbd.dll getfrsbf.dll loadsbd.dll
loadsbm.dll Itv.dll mritv.dll repinsbf.dll
spacar.dll spacntrl.dll spasim.dli

o Files with extensionm are theMATLAB -files necessary to use tseACARprogram. The
following file must exist:

spadraw.m

Other.m-files provide help text for the MEX-modules. These files are:

checksbf.m combsbd.m getfrsbf.m getss.m
loadsbd.m loadsbm.m ltv.m mrltv.m
repinsbf.m spacar.m spacntrl.m spasim.m

e Files with extensionmdl aresIMULINK models. There is only one file which is actually
a library from which thespAcARmModules for use iBIMULINK can be copied:

spacar_lib.mdl

The (optional) data files frorspadata.zip ~ can be extracted in a separate working directory.
The files in thesPACAR subdirectory should be in theATLAB path whenvATLAB is running.
There are two ways to accomplish this:

1. Make sure that thePACAR subdirectory is the local directory. You can verify this by
typing pwd. If necessary, change your local directory by typing
cd \Matlab\Toolbox\Spacar
or whatever directory you chose to store your files.
2. Another possibility is to change the settings of eherLAB environment by adding the
SPACARSsubdirectory to thamATLAB path. This modification is either temporary or per-

manent. The path can be modified from the pulldown menu Rilth |Set Path...
or by using themATLAB commandgath oraddpath .

Now you are ready to ruUBPACARIN MATLAB andSIMULINK .
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An analysis withsPACARIN MATLAB or a simulation wittsPASIMin SIMULINK can suffer from

errors. These errors can be divided into fatal errors thasean immediate terminations and

less severe errors which may report unexpected conditiotielog file, while the calculation

continues.
Most fatal error have a clear error message:

e SPACAR requires 2 or 3 input arguments ,
SPACAR requires no output argument ,
CCONST must be 1 x N or N x 1 vector |,
CCONST contains too many parameters :
MODE has an invalid value and
FILENAME contains illegal characters

indicate an incorrect call o§PACAR from MATLAB. The last error can also occur in

SPASIM (SIMULINK).

e Wrong number of input arguments ,
Flag must be a scalar variable ,
Too many output arguments
Time must be a scalar variable ,
State vector of wrong size :

Input vector of wrong size and
Not a valid flag number

indicate an incorrect call gfPASIMfrom SIMULINK and should not occur during normal

operation.

e ERROR opening file ... means thasPACAR can not open the specified file for
output.

e ERROR opening existing file ... means that a file from a previous run is not
found.

e ERROR in subroutine DINVOE is caused by an error in the dynamics input, see

Sect[2.B.
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e PREPTR: lllegal velocity profile is reported when no valid velocity profile
can be determined.

e Can not determine valid and existing input file names from
means that nanode=2 output data file with extensiosbd matching the current
(mode=3) data file can be found.

e Mechanisms are different :
Configuration mismatch LE and
Configuration mismatch LNP
arise from an error during the comparison between a the amatign used in a (previous)
mode=2 run and the currenthode=3 run.

e ERROR in subroutine ORDEO: IFLAG = 2 and
ERROR in subroutine ORDEO: No convergence
indicate problems with the zeroth order iteration. drasimM this may be avoided by
setting or decreasing the maximum time steg®fULINKs solver.

e ERROR in subroutine SOLDYN is usually caused by a singular mass matrix.

e PRPARE: NUMBER OF NXC NOT EQUAL TO NEOisNBNsed by an ill-defined
mechanism.

e ERROR in subroutine PRPARE: Too many ... means that the mechanism
that is defined is too large to be handled by #mCAR version you are using, see Ta-
ble[1.1 on page_10. Simplify the mechanism or contact theoasith

The messages written to thheg file may be self-explanatory, but also a somewhat cryptic
messagesERROR OR POSSIBLE ERROR CODED: <code> ITEM: <numbeérean
occur. The<code> is related to a procedure in the software. Typical exampies a

¢ INVOERI input for the kinematics (Se¢t. 2.2).

SINVOERI input for the inverse dynamics (setpoint generation) (£24).

LIMVOEi input for the linearization (Sedt. 2.5).

SIMVOE: input for the non-linear simulation of manipulator cont{Sect[2.6).

PREPTR.. trajectory data processing.

Note that errors in the input file are often reported one laterlthan the actual error position.
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C.1 Basic MATLAB graphics commands

MATLAB provides a variety of functions for displaying data. Thist&en describes some of
these functions. For a complete survey of graphics funstanvailable inMATLAB we refer to
the officialMATLAB documentation [2] or to the online help utility.

Elementary plotting functions

The following list summarizes the functions that producsibéine plots of data. These func-
tions differ only in the way they scale the plot axes. Eacleptzinput in the form of vectors
or matrices and automatically scales the axes to accommtiiatnput data.

e plot - creates a plot of vectors or columns of matrices.
e loglog - creates a plot using logarithmic scales for both axes.

e semilogx - creates a plot using a logarithmic scale for thaxis and a linear scale for
they-axis.

e semilogy - creates a plot using a linear scale for thaxis and a logarithmic scale for
they-axis.

You can add titles, axis labels, grid lines, and text to yaap using
e title  —adds attitle to the graph.

xlabel —adds a label to the-axis.

ylabel —adds a label to thg-axis.

text —displays a text string at a specified location.

gtext — places text on the graph using the mouse.

grid —turns on/off grid lines.
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Creating a plot

If y is a vectorplot(y)  produces a linear graph of the elementy afersus the index of the
elements ofy. If you specify two vectors as argumenfgot(x,y) produces a graph of
Versusx.

Line styles, markers, and color

You can pass a character string as an argument tpltite function in order to specify various
line styles, plot symbols, and colors. In the statement

plot(x,y,s)
s isa 1-, 2-, or 3-character string (delineated by single ggjotonstructed from the characters
in the following table:

Symbol Color Symbol Linestyle

y yellow | . point

m magenta o circle

C cyan X X-mark

r red + plus

g green | x star

b blue - solid

w white : dotted

Kk black -. dashdot
-- dashed

For exampleplot(x,y,’ c+") plots a cyan plus symbol at each data point.

If you do not specify a color, thelot  function automatically uses the colors in the above table.
For one line, the default is yellow because this is the masblé color on a black background.
For multiple lines, thelot function cycles through the first six colors in the table.

Adding lines to an existing graph

You can add lines to an existing graph using ledd command. When you sébld to on,
MATLAB does not remove the existing lines; instead it adds the mes lio the current axes. It
may, however, rescale the axes if the new data fall outsieleahge of the previous data. For
example:

plot(fl)
hold on
plot(f2,’--")
plot(f3,’-.")
hold off

These statements produce a graph displaying three plots.
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Creating hardcopy of MATLAB figures

You can make a hardcopy of a figure from the figure’s méile ( |Print... ) or by pressing
Ctrl+P . Output to several graphics formats can be carried out dgiéd |Export... ).
Alternatively, MATLAB's print command can be used at theTLAB command prompt. E.g.
you can generate PostScript output of the contents therduvierLAB figure window. The
print command sends the output directly to your default printevites it to the specified
file, if you supply a filename. You can also specify the type astScript file. Supported types
include

PostScript{dps )

Color PostScript-dpsc )

Encapsulated PostScriptéps )

Encapsulated color PostScriptiépsc )
For example, the statement
print dataplot -deps

saves the contents of the current figure window as EncapsuRdstScript in the file called
dataplot.eps . Depending on YOuMATLAB installation other graphics formats are sup-
ported, tryhelp print

C.2 Quitting and saving the workspace

To qUit MATLAB, typequit orexit . Terminating aMATLAB session deletes the variables in
the workspace. Before quitting, you can save the workspadatir use by typing
save
This command saves all variables in a file on disk nameatlab.mat . The next timevAT-
LAB is invoked, you can executead to restore the workspace fromatlab.mat
You can usesave andload with other filenames, or to save only selected variables.cone
mandsave temp stores the current variables in the file naneehp.mat . The command
save temp X
saves only variablX, while
save temp X,Y,Z
savesX, Y, andZ.
load temp retrieves all the variables from the file nantechp.mat .
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