
SPACAR User Manual

dr. ir. R. G. K. M. Aarts, dr. ir. J. P. Meijaard and prof. dr. ir. J. B. Jonker

2011 Edition, March 21, 2011

Report No. WA-1299

Table of contents

Preface iii

1 The SPACAR program 1
1.1 Introduction . 1
1.2 SPACAR and MATLAB . 1
1.3 SPAVISUAL . 10
1.4 SPASIM and SIMULINK . 11
1.5 Perturbation method and modal techniques 13

2 Keywords 15
2.1 Introduction .15
2.2 Kinematics . 16
2.3 Dynamics . 25
2.4 Inverse dynamics (setpoint generation) 34

2.4.1 Trajectory generation .. 34
2.4.2 Nominal inputs and reference outputs 39

2.5 Linearization .41
2.6 Non-linear simulation of manipulator control 45

3 Examples 47
3.1 Planar sliding bar .. 47
3.2 Planar slider–crank mechanism 49
3.3 Cardan-joint mechanism .. 57
3.4 Planar four-bar mechanism 60
3.5 Rotating mass–spring system 63
3.6 Cantilever beam in Euler buckling 66
3.7 Cantilever beam subject to concentrated end force 68
3.8 Short beam . 71
3.9 Lateral buckling of cantilever beam 73
3.10 State-variable and output equations 76
3.11 Rigid spatial manipulator mechanism 79

i

ii Table of contents

3.12 Flexible spatial manipulator mechanism 89
3.13 Chord-driven underactuated robotic finger 90
3.14 Tricycle . 93
3.15 Screw motion . 98

A SPACAR installation 101

B SPACAR error messages 103

C MATLAB tutorial 105
C.1 Basic MATLAB graphics commands .105
C.2 Quitting and saving the workspace 107

References 109

Preface

This is the 2011 edition of the manual that describes the use of the SPACAR-package in aMAT-
LAB /SIMULINK environment. This software is being developed at the Laboratory of Mechani-
cal Automation of the Faculty of Engineering Technology, University of Twente, and is partly
based on work carried out at the Laboratory for Engineering Mechanics, Delft University of
Technology.
This manual accompanies the 2011 UT-release ofSPACAR. With respect to the previous edi-
tions of this manual new keywords have been included reflecting changes in the software. In
particular, the screw and tube elements are included. TheSPAVISUAL manual is separated from
this manual and reflects the extensive revision of this visualization program. Some examples
have been added to show the use of the new elements.
The references to sections and examples in the lecture notes[1] are updated for the 2005 edition
of these lecture notes. They may be only approximate for other editions.
The visualisation toolSPAVISUAL has been implemented by Jan Bennik and later extended by
Tjeerd van der Poel and Steven Boer, who also provided the separate manual for this tool.
Corrections of errors, suggestions for improvements and other comments are welcome.

March 21, 2011, dr. ir. R. G. K. M. Aarts (Email:R.G.K.M.Aarts@utwente.nl), dr. ir.
J. P. Meijaard and prof. dr. ir. J. B. Jonker.

iii

iv Preface

1

The SPACAR program

1.1 Introduction

The computer programSPACARis based on the non-linear finite element theory for multi-degree
of freedom mechanisms as described in Jonker’s lecture notes on the Dynamics of Machines
and Mechanisms [1]. The program is capable of analysing the dynamics of planar and spatial
mechanisms and manipulators with flexible links and treats the general case of coupled large
displacement motion and small elastic deformation. The motion can be simulated by solving the
complete set of non-linear equations of motion or by using the so-called perturbation method.
The computational efficiency of the latter method can be improved further by applying modal
techniques.
In this chapter, an outline of theSPACARpackage for use withMATLAB andSIMULINK is given
in the next sections. For instance, for the design of mechanical systems involving automatic
controls (such as robotic manipulators), interfaces withMATLAB [2] are provided for open-
loop system analyses, Section 1.2. Open-loop and closed-loop simulations can be carried out
with blocks from aSIMULINK library, Section 1.4. A special visualization tool,SPAVISUAL, is
described in Section 1.3. Additional tools are available for using the perturbation method and
the modal techniques inSIMULINK (Section 1.5). Installation notes forSPACAR are given in
Appendix A.
A graphical user interface (GUI) for generating input files for spatial systems is available and
will be further developed. People interested in rigid planar mechanisms may consider the use
of the commercially available packageSAM by ARTAS [4]. It has a nice graphical interface for
the definition of mechanisms and it provides more elements thanSPACAR.

1.2 SPACAR and MATLAB

TheSPACARprogram system for use in theMATLAB environment contains five modules, which
obtain their input from format-free user-supplied data. Inthe following a short description of
every module will be given. The functional connections between the modules are illustrated in
Fig. 1.1.

1

2 Chapter 1. The SPACAR program

KIN

INVDYN

DYN

STATIO

LINEAR

mode 1

mechanism

connectivity

configuration

DOFs q =

(xm, em)

dynamic

properties

forces

(fm, σm)

trajectory path

velocity profile

(xp

o
, ẋp

o
)

DOFs (q, q̇)

joint variables (em

0
, ėm, σm

0
)

nominal inputs (u0)

reference outputs (y
0
)

mode 2

State space matrices
mode 3

mode 4

mode 7

mode 8

mode 9

Linearized equation

Eigen frequencies

Buckling loads

State space matrices

LINEAR

Figure 1.1. Functional relations between modules inSPACAR. The indicated modes are
available in theMATLAB environment.

KIN is the kinematics module that analyses the configuration of the mechanism. The kinematic
properties of the motion are specified by the geometric transfer functions. The following
steps are provided by theKIN -module:

1. Definition of the mechanism connectivity, the configuration and the degrees of free-
dom (DOFs),q = (x(m),e(m)).

2. System preparation.

3. Calculation of the geometric transfer functions.

DYN is the dynamics module that generates the equations of motion and performs numerical
integration in the forward dynamic analysis (in the so-calledmode=1 of SPACAR). Fur-
thermore, it generates and solves the equations for the kinetostatic analysis.

INVDYN is the inverse manipulator dynamics module that performs the inverse kinematics and
dynamics (mode=2) and generates the setpoints for the simulation of manipulator motion
with closed-loop control inSIMULINK (see Sect. 1.4). The system inputs, represented by
the nominal input vectoru0, are to be varied by the control system actuators. The system
outputs, represented by the reference output vectory0, consist of the coordinates to be
monitored by control sensors. Coordinates that are not measured may be added to check
the performance of the manipulator in the simulation.

STATIO computes stationary solutions of autonomous systems. Stationary solutions are solu-
tions in which the vector of dynamic degrees of freedomqd has a constant value. This
can represent a static equilibrium configuration or a state of steady motion.

LINEAR is a forward dynamics stage for the generation of linearizedequations and state space
matrices. It can be used in different modes as described below.

Section 1.2. SPACAR and MATLAB 3

In mode=4 the LINEAR module is an extension of the forward dynamic analysis (mode=1)
where coefficient matrices of the linearized equations are calculated as functions of the set of
degrees of freedomq. If there are only holonomic deformations in a system, the linearized
equations are generated in the form:

M̄ 0δq̈ + [C0 + D0] δq̇ + [K0 + N 0 + G0] δq = DF
(x)T
0 δf − DF

(e)T
0 δσa, (1.1)

whereM̄ 0 is the reduced mass matrix,C0 the velocity sensitivity matrix,D0 the damping ma-
trix, K0 the structural stiffness matrix, andN 0 andG0 are the dynamic and geometric stiffness
matrices respectively. External and internal driving forces are represented by the vectorsδf
andδσa, respectively. In addition, if input and output vectorsδu andδy are defined also the
linearized state equations and output equations are computed (seemode=9).
In mode=3 locally linearized models are generated about a predefined nominal trajectory where
the output data (setpoints) from the inverse dynamics module (i.e. a previousmode=2 run) are
used. In addition to the coefficient matrices, a complete state space system is generated and
written to a so-calledltv file (see Sect. 1.5). In the case of a flexible mechanism additional
degrees of freedom describing the elastic behaviour of the mechanism have to be included in
the dynamic models (bothmode=2 and3). At this stage in the so-called “rigidified” model,
these flexibilities are prescribed zero, i.e.εm

i ≡ 0.
In mode=7 eigenvalues (frequencies) and corresponding eigenvectors of the state space ma-
trix A are computed for a static equilibrium configuration or a state of steady motion. The
associated frequency equation of the undamped system is given by

det
(

−ω2
i M̄

dd

0 + Kdd
0 + N dd

0 + Gdd
0

)

= 0, (1.2)

where the quantitiesωi are the natural frequencies of the system.
In mode=8 a linear buckling analysis is carried out for a static equilibrium configuration or a
state of steady motion. Critical load parametersλi are determined by solving the eigenvalue
problem:

det(Kdd
0 + λiG

dd
0) = 0, (1.3)

where the load multipliers satisfy

f i = λif 0. (1.4)

Here,Kdd
0 is the structural stiffness matrix andGdd

0 is the geometric stiffness matrix due to the
reference loadf 0 giving rise to the reference stressesσ0. f i represents the bucking load that
corresponds withλi. In addition, directional nodal compliances are computed.
In mode=9 linearized equations for control system analysis are computed for a static equilib-
rium configuration or a state of steady motion and are generated in the form:

M̄
dd

0 δq̈d +
[

Cdd
0 + Ddd

0

]

δq̇d +
[

Kdd
0 + N dd

0 + Gdd
0

]

δqd = B0δu, (1.5)

where

B0 =
[

DqdF
(x)T
0 | − DqdF

(e)T
0 | − M̄

dr

0 | −
(

Cdr
0 + Ddr

0

)

| −
(

Kdr
0 + N dr

0 + Gdr
0

)]

(1.6)

is the input matrix and

δu =
[

δf (c,m)T , δσ(m,c)T
a , δq̈rT , δq̇rT , δqrT

]T
(1.7)

4 Chapter 1. The SPACAR program

is the input vector. The vectorsδq̈rT , δq̇rT , δqrT represent the prescribed (input) accelerations,
velocities and displacements respectively. The linearized equations can be transformed into the
linearized state space form:

δż = Aδz + Bδu,

δy = Cδz + Dδu,
(1.8)

whereA is the state matrix,B the input matrix,C the output matrix andD the feed through
matrix. The state vectorδz is defined byδz = [δqdT , δq̇dT]T , whereδqd is the vector of
dynamic degrees of freedom. The matricesB, C andD depend on the chosen input vectorδu
and the output vectorδy. Details of the linearization are discussed in Chapter 12 of the lecture
notes.

Systems with non-holonomic deformations

For systems with non-holonomic deformations arising from wheel elements, the above descrip-
tion has to be modified in several respects. Onlymode=0, mode=1, mode=4, mode=7 and
mode=9 are supported. The state vector consists of the coordinatesdescribing the configura-
tion,qk, and the velocity coordinates,q̇d. The configuration coordinates are split in coordinates
whose derivatives are velocity coordinates and coordinates that have no corresponding velocity
coordinates; the latter are called kinematic coordinates.The dynamic equations consist of two
parts, the kinematic differential equations defining the derivatives of the configuration coordi-
nates and the equations of motion defining the time derivatives of the velocity coordinates.
The linearized equations have the form

[

I O

O M̄ 0

] [

δq̇k

δq̈d

]

+

[

−Bk0 −Ak0

K0 + N 0 + G0 C0 + D0

] [

δqk

δq̇d

]

=

[

0

DF
(x)T
0 δf − DF

(e)T
0 δσa

]

, (1.9)

whereAk0 andBk0 are kinematic matrices. For ordinary systems,Bk0 is a zero matrix and
Ak0 is an identity matrix. Formode=7, a stationary solution is first obtained with the module
STATIO and the eigenvalues are obtained by solving the characteristic equation

det

[

Iλ − Bk0 −Ak0

K0 + N 0 + G0 M̄ 0λ + C0 + D0

]

= 0. (1.10)

Formode=9, the linearized state equations are obtained as in equation(1.8), with the difference
that the variations in the states are nowδz = [δqkT , δq̇dT]T .

Definition of a mechanism model

A model of a mechanism must be defined in an input file of file type(or file name extension)
dat . This input file consists of a number of keywords with essential and optional parameters.
The input file can be generated with any text editor.
In Chapter 2 the meaning of the keywords and their parameters is discussed in detail. In the
examples in Chapter 3 complete input files are presented.

Section 1.2. SPACAR and MATLAB 5

Running SPACAR in the MATLAB environment

Once the mechanism is defined and this information is saved toa dat input file, SPACAR can
be activated with theMATLAB command

>> spacar(mode,’filename’)

Here,mode indicates the type of computation as shown in Fig. 1.1.filename is the name
of the input file, without the extension.dat . Thefilename is limited to 20 characters from
the set “0”–“9”, “a”–“z”, “A”–“Z” and “ ”, so it can not include drive or path specifications.
The linearization withmode=3 needs data from a previous inverse dynamics computation. To
that end the specifiedfilename is truncated with at least one character at the right until a
valid output data file is found. So e.g.spacar(3,’testlin’) can use data from an earlier
spacar(2,’test’) computation. If no data file can be found in this way the linearization
is aborted.
During the computation a plot of the mechanism is shown in a separate window. While the
simulation is running anAbort button is activated in the plot area. Pressing this button will
terminate the simulation (possibly after some delay). To speed up the computation, the plot can
be disabled by specifying the mode with a minus sign, e.g.mode=-2 for an inverse dynamics
computation without a continually updated plot. The plotting utility spadraw can also be used
after the simulation to visualize the results, see page 10.
During the computations the results are stored in one or moredata files and inMATLAB arrays.
A log file is always created whenSPACARstarts processing the inputdat file. This log file
contains an analysis of the input and possible errors and warnings. It is described in more detail
on page 8. Some errors in the input file do not lead to an early termination of theSPACAR

computation, but nevertheless give unusable results. Therefore it is advisable to check thelog
file for unexpected messages.
All other data files are so-calledSPACAR binary data files (SBF), which implies that these are
in a binary format and cannot be easily read by a user. Therefore, utilities are provided to read
and modify data in these files, see page 9. Depending on themode up to three binary output
files may be created.
For all modes aSPACARbinary data file with filename identical to the input file and extension
sbd is written. The contents of this file are also stored inMATLAB arrays, that are of course
immediately available in theMATLAB workspace e.g. to be visualized with the standardMAT-
LAB graphics commands, such asplot (see e.g. Chapter 3 and Appendix C). The following
variables are created or overwritten:

mode SPACARmode number
ndof number of DOFs including rheonomic ones
nddof number of dynamic DOFs
nkdof number of configuration coordinates including rheonomic ones
nkddof number of configuration coordinates
nx number of coordinates
ne number of deformation parameters
nxp number of fixed, calculable, input, dynamic and

kinematic coordinates
nep number of fixed, calculable, input, dynamic and

kinematic deformation parameters
lnp location matrix for the nodes *1

6 Chapter 1. The SPACAR program

le location matrix for the elements *1
ln connection matrix for the nodes in the elements *2
it list of element types *2
kdform information about quadratic terms in strains for elements *2
rxyz initial orientations of elements *2
rxyzq initial orientations of elements at second node *2
dr0 geometric data of elements *2
estiff stiffness parameters of elements
edamp damping parameters of elements
em mass per unit of length of elements
einit initial deformations of elements
esig initial stresses of elements
rl0 undeformed length of elements
time time column vector
x coordinates (nodal displacements)
xd nodal velocities
xdd nodal accelerations
fx prescribed nodal forces/moments
fxgrav gravity nodal forces/moments
fxtot reaction forces/moments
e generalized deformations
ed velocities of generalized deformations
edd accelerations of generalized deformations
sig generalized stress resultants
dec first order geometric transfer function for the deformations DF

c(e) *3
dxc first order geometric transfer function for the coordinatesDF

c(x) *3
de first order geometric transfer function for the deformations DF

(e) *3
dx first order geometric transfer function for the coordinatesDF

(x) *3
d2e second order geometric transfer function for the deformationsD2

F
(e) *3

d2x second order geometric transfer function for the coordinatesD2
F

(x) *3
xcompl location vector for directional nodal compliances *4

Notes:

∗1 The two location matrices provide information to find the location of a specific quantity in
the data matrices:

lnp location matrix for the nodes. The matrix elementlnp(i,j) denotes
the location of thej th coordinate (j =1..4) of nodei .

le location matrix for the elements. The matrix elementle(i,j) denotes
the location of thej th generalized deformation (j =1..6) of elementi .

The locations of undefined or unused coordinates and deformations equal zero.

For example, thex- andy-coordinates of node 7 can be shown as function of time in a
graph by typing

>> plot(time,x(:,lnp(7,1:2)))

Section 1.2. SPACAR and MATLAB 7

and the first generalized stresses in elements 1, 2 and 3 can beplotted by typing

>> plot(time,sig(:,le(1:3,1)))

Obviously, storage in thex , xd , xdd , fx , e, ed , edd andsig matrices is likex(t,k)
wheret is the time step andk ranges from 1 tonx for x , xd , xdd andfx , fxtot and
from 1 tone for e, ed , edd andsig , respectively.

∗2 The variablesln , it , rxyz andrxyzq are mainly intended for internal use in the drawing
tool spadraw . More user-friendly information is available in thelog file, page 8.

∗3 The (large) variablesdec , dxc , de , dx , d2e andd2x are only created if the parameters
of theLEVELLOGare set accordingly, Sect. 2.2.

∗4 After a linearization run (mode=8) directional nodal compliances (inverse stiffnesses) are
computed. Using the location matrix,xcompl(lnp(i,j)) gives this quantity for the
j th coordinate (j =1..4) of nodei .

After a linearization run (mode=3, 4, 7, 8 or 9) the coefficient matrices are stored in aSPACAR

binary matrix file with extensionsbm. Besidesnnom (see infra) andtime , the accompanying
MATLAB matrices are:

m0 reduced mass matrixM 0 *5
b0 input matrixB0 *5, *6
c0 velocity sensitivity matrixC0 *5
d0 damping matrixD0 *5
k0 structural stiffness matrixK0 *5
n0 geometric stiffness matrixN 0 *5
g0 geometric stiffness matrixG0 *5
ak0 kinematic matrixAk0 *5
bk0 kinematic matrixBk0 *5

Notes:

∗5 Storage of the time-varying matrices is in a row for each timestep, so inm0(t,k) indext
is the time step andk ranges from 1 tondof ×ndof . To restore the matrix structure at
some time step type e.g.reshape(m0(t,:),ndof,ndof)’ .

∗6 Only available formode=4 andmode=9.

In mode=2, 3, 4 and9 a so-calledltv file is created. The contents of this file varies and is
not automatically imported to theMATLAB workspace. From amode=2 run the following data
are available (the names identitify the data used in the file;data marked with “*” are available
at each time step):

NNOM number of (actuator) inputs
NY number of outputs
T time *
U0 nominal input for the desired motion *
Y0 reference output of the desired motion *

8 Chapter 1. The SPACAR program

In the addition the linearization runs yield additional setpoints, state space matrices and other
data in theltv file (not all data are always present):

NNOM number of (actuator) inputs
NX number of states (2×ndof)
NU number of inputs (length ofU0)
NY number of outputs (length ofY0)
NRBM number of rigid body DOFs
NYS number of outputs with 2nd order expression
NYSI index array for outputs with 2nd order expression
DFT direct feedthrough flag (D6=0)
X0 initial state vector
T time *
A state space system matrix *
B state space input matrix *
C state space output matrix *
D state space direct feedthrough matrix *
G second order output tensor *
M0 mass matrixM 0 *
C0B combined damping matrixC0 + D0 *
K0B combined stiffness matrixK0 + N 0 + G0 *
SIG0 generalized stress resultants *

The getss tool can be used to read the state space matrices from theltv file, see page 9.
Other utilities are available to use parts of these data in aSIMULINK environment, e.g. to read
setpoints or to simulate a linear time-varying (LTV) system (see Sect. 1.4).

The log file

Thelog file contains an analysis of the input and possible errors andwarnings that are encoun-
tered. The error and warning messages are explained in more detail in Appendix B. The other
output can be separated into a number of blocks.
The first lines indicate the version and release date of the software and a copyright note.
Next the lines from the input file read by theKIN module are shown (not showing comments
present in the input file), see also Sect. 2.2. From the analysis is written:

• The elements used in this model. The deformations of all elements are shown with the
internal numbers according to thele array and the classification of each deformation:
O= fixed,C= calculable andM= DOF.

• The nodal point information with the internal numbers of thecoordinates according to the
lnp array and the classification as above.

• A list showing the degrees of freedom, in which dynamic degrees of freedom are indi-
cated.

• The condition number of the part of the difference matrix that has to be inverted, which
shows how well the degrees of freedom have been chosen.

The DYN module reads the next data block and processed input lines are shown. From the
analysis we get

Section 1.2. SPACAR and MATLAB 9

• The numbersNEO, NEMM, NEMandNECindicating the numbers of deformations in each
class as explained in the lecture notes [1].

• The numbersNXO, NXC, NXMMandNXMindicating the numbers of position coordinates
in each class as explained in the lecture notes [1].

• The stiffness, damping and mass of the elements.

• The nodal point forces, mass and gyroscopic terms.

• The total mass of the system.

The zeroth, first, second and third order transfer functionsare shown next, each for the position
parameters and deformation parameters, respectively. Theamount of output can be controlled
by the keywordOUTLEVELin the input file.
Next for a forward analysis (mode=1 andmode=4) the name of the integrator and accuracy
settings are shown. Finally a list with all time steps and thenumber of internal iterations are
given. For an inverse dynamics analysis the trajectories and input/output definitions (see also
Sect. 2.4) are read and analysed. In case ofmode=3 the name of the data file of the previous
mode=2 is shown. In case ofmode=7 the eigenvalues (frequencies) and normalized eigenvec-
tors of the state system matrix are shown. In case ofmode=8 load multipliers and normalized
buckling modes are presented. In addition the vector of directional nodal compliances is shown.

SPACAR binary data files

Some utilities are available to show, check, load or replacethe data inSPACARbinary data files
(SBF). These are files with extensionssbd , sbm andltv .

checksbf checks and shows the contents of aSPACARbinary data file. The output for each
variable is the name (“Id”), the type (1 for integer, 2 for real, 3 for text) and the size
(number of rows and columns). First the “header” variables are shown with their values.
Long vectors may be truncated. BetweenTDEF and TDAT the time-varying data are
given. The number of time steps is equal to the number of rows specified forTDEF.

getfrsbf extracts a variable from aSPACARbinary data file. The “Id” must be specified and
for time-varying data the time step as well.

repinsbf replaces the value of a variable in aSPACAR binary data file. The “Id” must be
specified and for time-varying data the time step as well.

loadsbd loads all data from aSPACARbinary data (sbd) file into MATLAB ’s workspace.

loadsbm loads all data from aSPACARbinary matrix data (sbm) file into MATLAB ’s
workspace.

getss loads the state space matrices at one time instant from aSPACAR ltv file into a state
space system inMATLAB ’s workspace.

combsbd combines data from two or moreSPACARbinary data (sbd) files into a single output
file. The specified output file is overwritten without a warning.

10 Chapter 1. The SPACAR program

spadraw is the plotting utility used internally bySPACAR. It can also be used to visualize
results after a simulation has been completed.

For all utilities additional online help is available by typing help command at theMATLAB

prompt.

Limitations

The SPACAR package has some built-in limitations on the size of the manipulators that can be
analysed. Table 1.1 shows the limits for the so-called “Student version” that can be downloaded
as describes in Appendix A. In case your requirements are larger, you need to contact the
authors. The licence for the freely downloadable software is time limited.

Maximum number of coordinates/deformations 175
Maximum number of DOFs 20
Maximum number of elements/nodal points 50
Maximum number of inputs 12
Maximum number of outputs 25

Table 1.1.Built-in limitations of the “Student version” of theSPACARpackage.

1.3 SPAVISUAL

SPAVISUAL is the visualization tool forSPACAR. It can visualize deformation, vibration and
buckling modes. SPAVISUAL shows beams, trusses and hinges in 2-D as well as in 3-D. It
works with default settings which can be adjusted by the user. The only input ofSPAVISUAL

is a filename. This file has to be a.dat file which has been analysed withSPACAR. This is
necessary becauseSPAVISUAL needs the.sbd files for the deformation modes and also the
.sbm files for the vibration and the buckling modes. There are somekeywords that can adjust
the default settings. Alternatively, the settings can be specified as command line options. These
keywords are listed in a separate manual forSPAVISUAL.
SPAVISUAL is a stand-alone function inMATLAB . To run SPAVISUAL the user has to type the
command

>> spavisual(’filename’)

or

>> spavisual(’filename’,mode)

Herefilename refers to the.dat -file that has been executed bySPACAR, andmode is the
mode of theSPACARanalysis.

Section 1.4. SPASIM and SIMULINK 11

1.4 SPASIM and SIMULINK

The behaviour of a manipulator mechanism with e.g. closed-loop control can be simulated
usingSIMULINK . The closed-loop simulation is defined as the problem of computing the actual
trajectory of e.g. the manipulator tip with controlled actuation of the motion. Tracking errors
with respect to a nominal prescribed trajectory can be calculated.

Rigid or rigidified link model
prescribed
trajectory

µ

hp

x
p
0

Flexible link model

actual
trajectory

xp

INVDYN

LINEAR

read
setpoints

read coeff.
matrices

simulation

control
parameters

u0

y0

y

−

M 0,C0,K0

MATLAB analyses SIMULINK simulation

Figure 1.2. Typical overview withMATLAB analyses and aSIMULINK simulation.

Figure 1.2 shows an overview of a typical simulation scheme.The simulation is characterized
by the inverse dynamics stage, based on a rigid link model anda forward dynamic stage. At
the forward dynamics stage the tracking behaviour of the manipulator system is studied. In
the case of flexible manipulators additional generalized coordinates (εm

i) describing the elastic
behaviour of the manipulator links can be used in the dynamicsystem.
The block diagram in Fig. 1.3 shows a typical closed-loop simulation in more detail. Blocks are
used from theSPACAR SIMULINK library spacar_lib that is part of theSPACAR package.
These blocks are front-ends to so-called S-functions inSIMULINK [3]. The following blocks
are provided:

1. SPASIM: the non-linear open-loop model of the manipulator with itsactuators and sen-
sors. It operates in a way comparable to the forward dynamicsmode inSPACAR as dis-
cussed for theMATLAB interface in Sect. 1.2. The mechanism is defined in an input data
file of file type dat . The filename of the input file must be specified. An output
log file is written. Note that in aSIMULINK simulation the integration is determined
by theSIMULINK environment, e.g. the kind of solver, the step size and tolerances. The
degrees of freedom of the mechanism and their first time derivatives are the “states” of
the SPACAR S-function. The dimensions of the input and output vectors are determined
from the input file and should match the requirements of the otherSIMULINK blocks they
are connected to.

12 Chapter 1. The SPACAR program

Read
Unom

Read
Yref

read setpoints &
coeff. matrices

u0

y
0

Read
M0

control
parameters

e.g. M-function

+

−
control
system

δu

+

+

u actuator
model

σe,m

SPASIM

S-function

mechanism
model

ėm

em
sensor
model

y

Figure 1.3. Block diagram of a typical closed-loop simulation inSIMULINK . The left
blocks read setpoints and coefficient matrices stored in data files during previousSPACAR

analyses (Fig. 1.1).

2. LTV: simulation of a linear time-varying system as defined in anltv file, see Sect. 1.5.

3. Setpoint U0 : reads the nominal input from anltv file with setpoints generated e.g.
with mode=2 or mode=3. The filename must be specified. The setpoints are inter-
polated between the specified time steps. The interpolationmethod can be chosen from:
Stepwise, Linear (default) and Spline. The block has no input and the dimension of the
output vector equals the number of nominal inputs found in the file.

4. Setpoint Sigma0 : readsσ0 from an ltv file generated with e.g.mode=3, see
Sect. 1.5.

5. Reference Y0 : reads the reference output from anltv data file with setpoints. The
filename must be specified. Interpolation is as above. This block has no input and the
dimension of the output vector equals the number of reference outputs found in the file.

6. Times M0 : reads the square reduced mass matrixM 0 from anltv file generated with
e.g.mode=3. The output of the block equals the input of the block is multiplied with the
mass matrix. Thefilename must be specified. In the case not the full dimension of
M 0 in the ltv is used, the reduced dimension has to be specified. All elements of M 0

are interpolated linearly (default) or stepwise. The dimension of the output vector equals
the dimension of the input vector.

In the block diagram in Fig. 1.3 the output vectory of the SPASIM block is compared with
the reference output vectory0. The difference of these vectors is the input of the control sys-
tem. The state matrices can be used to develop and tune a controller of any type (e.g. lin-
ear, non-linear, discrete, continuous) by means of the available software tools inMATLAB and
SIMULINK . The output of the controllerδu is added to the nominal input vectoru0 to actuate
the mechanism. An example is discussed in Sect. 3.11.

When using blocks from theSPACAR SIMULINK library spacar_lib note the following:

• Using any of theLTV, Setpoint U0 , Setpoint Sigma0 , Reference Y0 and
Times M0 blocks at times beyond the last time step found in the data filemay lead to
unexpected results.

Section 1.5. Perturbation method and modal techniques 13

• In the current version of the software allspasim blocks in a block diagram should
refer to the same inputfilename . Analogously, allLTV, Setpoint U0 , Setpoint
Sigma0 , Reference Y0 andTimes M0 must use the sameltv file.

1.5 Perturbation method and modal techniques

For systems with a larger number of degrees of freedom the required computer time for a
SPASIM simulation may be unacceptable, in particular when high eigenfrequencies play a role.
Then theperturbation methodmay provide a numerically efficient solution strategy.
Consider e.g. the motion of the flexible manipulator depictedin Fig. 1.2. In the case the flex-
ibility is taken into account, the generalized coordinatesor degrees of freedom can be written
as

q =

[

em

εm

]

, (1.11)

whereem represent the large relative displacements and rotations and εm are the flexible de-
formation parameters. Due to the flexibility the actual trajectory motion will deviate from the
prescribed motion. If the deviations are small compared with the large scale motion, then the
(small) vibrational motion of the manipulator can be modelled as a first-order perturbationδq
of the nominal rigid link motionq0 by writing for the degrees of freedom

q = q0 + δq. (1.12)

The perturbation method involves two steps:

1. Compute nominal rigid link motionq0 from the non-linear equations of motion with all
flexible deformation parametersεm ≡ 0. This analysis will also provide the nominal
input u0 of the manipulator necessary to carry out the nominal motionand the general-
ized stress resultants (Langrange multipliers)σεm

0 of the rigidified deformations, i.e. the
flexible deformations that are prescribed as zero.

2. Compute the vibrational motionδq from linearized equations of motion

M̄ 0δq̈ + C̄0δq̇ + K̄0δq = σ0, (1.13)

whereM̄ 0 is the reduced mass matrix,C̄0 includes the velocity sensitivity and damping
matrices and all stiffness matrices are combined intoK̄0. The right-hand side equals

σ0 =

[

δu
σεm

0

]

, (1.14)

whereδu = u − u0 is the actual control actionu minus the nominal inputu0. The pre-
viously computed generalized stress resultantsσεm

0 are now applied as internal excitation
forces.

To solve the linearized equations of motion (1.13) these areexpressed as a linear time varying
(LTV) system. ASPACARmode=3 run generates time-varying state space matrices that are well
suited for this purpose. Then a typicalSPACARanalysis and linearized simulation procedure is
as follows:

14 Chapter 1. The SPACAR program

• Use e.g. an inverse dynamics run (mode=2) to define the nominal motion for the rigidified
manipulator. Inputs and outputs of the system may be specified.

• Next the system is linearized with amode=3 call. The system is analysed along the
nominal path computed previously. The elastic deformations are defined withINPUTE
commands. Inputs and outputs must be specified.

-
controller

u0
+

+

u

δu

σεm
0

LTV

y0
+

+

y

δy

Figure 1.4. Block diagram of a typical closed-loop simulation inSIMULINK based on the
perturbation method.

• Finally the linearized simulation can be run with aSIMULINK model of which a typical
example is shown in Fig. 1.4. In comparison with the non-linear simulation of Fig. 1.3 the
spasim block is replaced by anLTV block that uses the linearized equations of motion.
Note that now only the differences compared to the nominal motion are computed. Only
the differenceδu of the manipulator’s input compared to the nominal input is needed. In
addition, the generalized stress resultantsσεm

0 are part of the input of theLTV block.

In addition to the above outlined standard implementation some further extensions are provided.
It is possible to include the effect of proportional controller gain, i.e. a proportional control
matrix Kp, into the stiffness matrix̄K0. Of course, in that case this part of the control action
should no longer be included in the controller in the block scheme.
This approach offers advantages when subsequently a modal analysis is applied to the linear
time varying state space system. Such an analysis discriminates quasi-static behaviour of the
system, low-frequency vibrational modes and high-frequency vibrational modes. Mostly the
latter do not significantly affect the output of the system while they can have a detrimental
effect on the computational efficiency, even for a linearized system. With a modal analysis it is
possible to eliminate these high-frequency modes.
A more profound description of the latter two techniques is currently outside the scope of this
manual.

2

Keywords

2.1 Introduction

In this chapter the user is informed about the creation of correct input data for the software
packageSPACAR. The input must have a specific form. Behind a number of permitted keywords
the user supplies a list of arguments. The arguments behind akeyword are well defined. Each
module ofSPACAR, exceptmode=4 of LINEAR, has its own list of available keywords. They
form blocks that are separated by the following pair of keywords:

END
HALT

The final closure of the input is effected by:

END
END

The first block contains the kinematic data. The input of the mechanism model (by means of
keywords) is treated in the “Kinematics” section 2.2. A second block of input is reserved for the
dynamics module. The keywords for this block are presented in the “Dynamics” section 2.3.
The solution of inverse dynamics problems demands additional input for the trajectory descrip-
tion and for the definition of the input and output vectorsu0 andy0. Trajectory keywords and
system keywords are treated in the “Inverse dynamics” section 2.4. The keywords for the lin-
earization ofmode=3, mode=4 andmode=9 are given in the “Linearization” section 2.5. At
the end of the file custom settings forSPAVISUAL can be added. The visualization toolSPAVI-
SUAL is described in a separate manual. The simulation of mechanisms usingSIMULINK is
controlled by the keywords described in the “Simulation” section 2.6.
Some general remarks:

• Keywords and arguments can be separated by one or more spaces, tabs or line breaks.

• Lines must not contain more than 160 characters.

15

16 Chapter 2. Keywords

• Any text in a line following a#, %or ; is treated as a comment.

• All input is case insensitive.

• Data read from the input file are echoed in thelog file, after the comments have been
removed and all text is transformed into upper case (capitals).

• Angles are always specified in radians.

• For some commands, such asXF andSTARTDE, not all arguments have to be specified.
Default values are zero unless otherwise specified.

2.2 Kinematics

A kinematic mechanism model can be built up with finite elements by letting them have nodal
points in common. The nodal coordinates of the finite elements are described by position and
orientation coordinates. Therefore, two types of nodes aredistinguished:position or trans-
lational nodes, denoted by~p for nodep, andorientationor rotational nodesdenoted by

x

p.
The nodes, nodal coordinates, and deformation parameters for the truss, beam, planar bearing,
hinge, pinbody (rigid beam) planar belt (gear) element and wheel elements are summarized in
Table 2.1.
Usually, the convention is made that nodep of an element is assigned to the lower number of
the element nodes, and that nodeq is assigned to the higher node number. The interconnections
between the elements are accomplished by indicating commonnodes between the elements.
For instance, with a pin-joint connection only the translational nodes are shared. In case of a
hinge-joint connection only the rotational nodes are shared whereas translational coordinates
can either be shared or unshared. When elements are rigidly connected to each other, both the
translational and rotational nodes are shared, see Fig. 2.1. It can be observed from Table 2.1
that a truss element and a hinge element do not have common nodal types and therefore cannot
be connected to each other.

pin-joint hinge-joint rigid-joint

Figure 2.1. Joint connections between finite elements.

In the first block of the kinematics module either two-dimensional (planar) or three-dimensional
(spatial) elements can be specified. In the second block the initial configuration of the mecha-
nism is specified. In the third block the coordinates and generalized deformations are divided
into four groups, depending on the boundary conditions:

1. fixed prescribed coordinates (supports)
2. dependent, calculable deformations
3. prescribed, time-dependent coordinates
4. dynamic degrees of freedom

Section 2.2. Kinematics 17

For the keywords in the third block it is important to remark that there are no keywords to fix
a deformation or to release a coordinate. These are the default settings. So a deformation is
fixed unless aRLSE, INPUTE or DYNEkeyword specifies otherwise. Similarly, a coordinate is
calculable unless aFIX , INPUTX or DYNXkeyword specifies otherwise.
For systems with non-holonomic deformations, dependent coordinates or deformations can be
specified as generalized configuration coordinates by the keywordsKINX andKINE; these are
called the kinematic generalized coordinates and the corresponding velocities are not dynamic
degrees of freedom.
With the keywords of the fourth optional block, the calculation of some non-linear terms in the
expressions for the deformations of planar or spatial beamscan be suppressed and geometric
properties forPINBODYelements and their cognates (rigid beam, planar pinbody, planar rigid
beam) can be specified.
The keyword in the fifth section is not really a kinematic keyword as it sets the level of output
from the program.

18 Chapter 2. Keywords

keyword type end nodep end nodeq generalized
~ x ~ x deformation modes

PLBEAM planar beam xp φp xq φq ε1, ε2, ε3

PLTRUSS planar truss xp – xq – ε1

PLTOR planar hinge – φp – φq ε1

PLBEAR planar bearing xp φp xq φq ε1, ε2, ε3

PLPINBOD planar pinbody xp φp xq – ε1, ε2

PLRBEAM planar rigid beam xp φp xq – ε1, ε2

PLWHEEL planar wheel xp φp – φq ε̇1, ε̇2

PLBELT planar belt (gear) xp φp xq φq ε1

PLTUBE planar tube xp φp xq φq ε1, ε2, ε3

BEAM spatial beam xp λp xq λq ε1, ε2, ε3, ε4, ε5, ε6

TRUSS spatial truss xp – xq – ε1

HINGE spatial hinge – λp – λq ε1, ε2, ε3

PINBODY spatial pinbody xp λp xq – ε1, ε2, ε3

RBEAM spatial rigid beam xp λp xq – ε1, ε2, ε3

WHEEL spatial disk wheel xp λp xq – ε1, ε2, ε3, ε4, ε̇5, ε̇6

TWHEEL spatial torus wheel xp λp xq – ε1, ε2, ε3, ε4, ε̇5, ε̇6

TUBE spatial tube xp λp xq λq ε1, ε2, ε3, ε4, ε5, ε6

SCREW screw xp λp xq λq ε1, ε2, ε3, ε4, ε5, ε6

Table 2.1. Nodes, nodal coordinates and deformation parameters for the planar and spatial
truss, beam, bearing, hinge, pinbody, belt (gear), wheel and tube elements and the screw
element.

Section 2.2. Kinematics 19

KEYWORDS KINEMATICS
1

PLBEAM Planar beam element
PLTRUSS Planar truss element
PLTOR Planar hinge element
PLBEAR Planar bearing element (not supported !!)
PLPINBOD Planar pinbody element
PLRBEAM Planar rigid beam element
PLWHEEL Planar wheel element
PLBELT Planar belt (gear) element
PLTUBE Planar tube element
BEAM Beam element
TRUSS Truss element
HINGE Hinge element
PINBODY Spatial pinbody element
RBEAM Spatial rigid beam element
WHEEL Spatial disk wheel element
TWHEEL Spatial torus wheel element
TUBE Spatial tube element
SCREW Screw element (only spatial)

2
X Specification of the initial Cartesian nodal positions

3
FIX Support coordinatesx0

RLSE Calculable deformationsec

INPUTX Prescribed DOFxm

INPUTE Prescribed DOFem

DYNX Dynamic DOFxm

DYNE Dynamic DOFem

KINX Configuration coordinatexk

KINE Configuration coordinateek

4
LDEFORM Suppresses the calculation of non-linear elastic strains

of a beam element, due to possibly large curvatures
and twists of the elastic line.

ORPINBOD Defines the orientations of the generalized deforma-
tions for thePINBODYelements and cognates.

DRPINBOD Defines the undeformed reference distances for the
PINBODYelements and cognates.

ORTUBE Defines the initial orientations of the spatial tube at its
end points.

20 Chapter 2. Keywords

5
OUTLEVEL Sets the level of output generated in thelog file and

in theSPACARbinary data (sbd) file.

The parameters for these keywords are listed below.{∗i} refers to notei listed at the end of the
keywords.

PLBEAM 1 element number
2 first position node
3 first orientation node
4 second position node
5 second orientation node

PLTRUSS 1 element number
2 first position node
3 second position node

PLTOR 1 element number
2 first orientation node
3 second orientation node

PLPINBOD 1 element number
2 first position node
3 first orientation node
4 second position node

PLRBEAM 1 element number
2 first position node
3 first orientation node
4 second position node

PLWHEEL 1 element number
2 position node
3 first orientation node, yaw angle
4 second orientation node, spin angle
5 wheel radius
6–7 initial direction of the spin axis, i.e. they′-axis

PLBELT 1 element number
2 first position node
3 first orientation node
4 second position node
5 second orientation node
6 first pulley/base circle radius
7 second pulley/base circle radius

PLTUBE 1 element number
2 first position node
3 first orientation node
4 second position node
5 second orientation node

[6 initial rotation of nodep from pq-axis
7 initial rotation of nodeq from pq-axis]

Section 2.2. Kinematics 21

BEAM 1 element number
2 first position node
3 first orientation node
4 second position node
5 second orientation node

[6–8 initial direction of the principaly′-axis of the beam cross-
section]{∗1}

[6/9 torsion–elongation coupling parameterft] {∗1}
TRUSS 1 element number

2 first position node
3 second position node

HINGE 1 element number
2 first orientation node
3 second orientation node
4–6 initial direction of thex′-axis of rotation{∗2}

PINBODY 1 element number
2 first position node
3 first orientation node
4 second position node

[5–7 initial direction of the principaly′-axis of the beam cross-
section]{∗3}

RBEAM 1 element number
2 first position node
3 first orientation node
4 second position node

[5–7 initial direction of the principaly′-axis of the beam cross-
section]{∗1}

WHEEL 1 element number
2 first position node
3 first orientation node
4 second position node
5–7 initial direction of the spin axis, i.e. thez′-axis

TWHEEL 1 element number
2 first position node
3 first orientation node
4 second position node
5 wheel radius in equatorial plane
6 transverse wheel radius
7–9 initial direction of the spin axis, i.e. thez′-axis

22 Chapter 2. Keywords

TUBE 1 element number
2 first position node
3 first orientation node
4 second position node
5 second orientation node

[6–8 initial direction of the principaly′-axis of the beam cross-
section]{∗1}

[6/9 torsion–elongation coupling parameterft] {∗1}
SCREW 1 element number

2 first position node
3 first orientation node
4 second position node
5 second orientation node
6–8 initial direction of thex′-screw axis{∗2}
9 pitch expressed in displacement per radian (not per full turn)

X 1 position node number
2 x1-coordinate
3 x2-coordinate

[4 x3-coordinate]{∗4}

FIX 1 node number
[2– coordinate number (1, 2, 3 or 4)]{∗5}

RLSE 1 element number
[2– deformation mode coordinate number (1, 2, 3, 4, 5 or 6)]

{∗6}
INPUTX 1 node number

[2– coordinate number (1, 2, 3 or 4)]{∗5}
INPUTE 1 element number

[2– deformation mode coordinate number (1, 2, 3, 4, 5 or 6)]
{∗6}

DYNX 1 node number
[2– coordinate number (1, 2, 3 or 4)]{∗5}

DYNE 1 element number
[2– deformation mode coordinate number (1, 2, 3, 4, 5 or 6)]

{∗6}
KINX 1 node number

[2– coordinate number (1, 2, 3 or 4)]{∗5}
KINE 1 element number

[2– deformation mode coordinate number (1, 2, 3, 4, 5 or 6)]
{∗6}

Section 2.2. Kinematics 23

LDEFORM 1 BEAMelement number
ORPINBOD 1 PINBODY, RBEAM, PLPINBOD or PLRBEAMelement

number
2–10 direction vectors{∗7}

DRPINBOD 1 PINBODY, RBEAM, PLPINBOD or PLRBEAMelement
number

2 undeformed projection ofxq −xp on the first direction vec-
tor

3 undeformed projection ofxq − xp on the second direction
vector

[4 undeformed projection ofxq − xp on the third direction
vector for spatial elements]

ORTUBE 1 TUBEelement number
2–4 tangent vector in pointp, localx′-axis
5–7 tangent vector in pointq, localx′-axis

[8–10 direction of localy′-axis in pointq]

OUTLEVEL 1 level of output inlog file {∗8}
[2 level of output in theSPACARbinary data (sbd) file] {∗8}

NOTES:

∗1 The direction vector lies in the localx′y′-plane of the beam element. If no direction is
specified, the local direction vector is chosen as the standard basis vector that makes the
largest angle with axis of the beam; in case of a draw, the vector with the highest index is
chosen.

The torsion–elongation coupling parameter takes into account the shortening of the beam
due to torsion, such that for a twisted, axially unloaded beam the axial strain is−1

2
ftα

2,
whereα is the specific twist of the beam. For thin-walled open cross-sections,ft =
(Iy′ + Iz′)/A, but it may have a different value, or even be negative, for solid cross-
sections.

∗2 The localy′ andz′ unit vectors are chosen as follows. First, the standard basis vector with
the largest angle with the hinge axis is chosen; in case of a draw, the vector with the
highest index is chosen. Then the localy′ is chosen in the direction of the cross product
of the localx′-direction with this basis vector. The localz′-direction is chosen so as to
complete an orthogonal right-handed coordinate system.

∗3 If no direction is specified, directions initially aligned with the global coordinate axes are
chosen; otherwise the line connecting the translational nodes is chosen as the localx′-
direction and the specified vector is in the localx′y′-plane. The directions used are made
orthonormal. The directions can also be specified with the keyword ORPINBOD.

24 Chapter 2. Keywords

∗4 The specification of the initial positions with the keywordX is only required for non-zero
position-coordinates. The initial orientations cannot bechosen freely.

∗5 If the keywordsINPUTX, DYNX, FIX andKINX are used without an explicit specification
of the coordinate, all (independent) coordinates will be marked as degrees of freedom or
supports. This means thatx1, x2 (andx3) are marked for position nodes andβ or λ1, λ2

andλ3 for orientation nodes. If more than one coordinate is specified, each of the speci-
fied coordinates is chosen as a degree of freedom or a support.

∗6 If the keywordsINPUTE, DYNE, RLSEandKINE are used without an explicit specification
of the deformation mode coordinate, all deformation mode coordinates will be marked as
degrees of freedom or released. If more than one deformationmode coordinate is speci-
fied, each of the specified coordinates is chosen as a degree offreedom or as released.

∗7 There are four distinct cases, two for the planar elements and two for the spatial elements.
For the planar elements, if two numbers are specified, this isthe direction of the local
x′-axis and an orthogonaly′-direction is found by rotating by a right angle in the positive
direction and the directions are normalized; if four numbers are specified, these are taken
as the direction vectors in the localx′- and y′-directions as they are. For the spatial
elements, if six numbers are specified, these are taken as thedirection of thex′-axis and
a direction in the localx′y′-plane, which are made orthonormal and completed by a local
z′-axis; if nine numbers are specified, these are taken as the three direction vectors as they
are.

∗8 Both parameters for the output level are integers of which thevalues are the sum of the
desired outputs. A value of 0 implies the least output; an output level of−1 means maxi-
mum output; to obtain multiple outputs, the specified valuesfor the parameters should be
added.
For the first parameter for thelog file are defined:
0 Default: All “normal” output.
1 Additional output of the first order geometric transfer functions inde anddx .
2 Additional output of the second order geometric transfer functions ind2e and

d2x for mode=4, 7, 8 and9.
4 Additional output of the third order geometric transfer functions ind3e andd3x

for mode=4, 7, 8 and9.
8 Additional output of the derivative of the global deformation function for

mode=4, 7, 8 and9.
For the second parameter (SPACARbinary data (sbd) file) are defined:
0 Default for all modes exceptmode=7, 8 and9: All “normal” output.
1 Default formode=7, 8 and9: Additional output of the first order geometric

transfer functions inde anddx .
2 Additional output of the second order geometric transfer functions ind2e and

d2x .
3 Additional output of the first and second order geometric transfer functions (a

combination of 1 and 2).

Section 2.3. Dynamics 25

2.3 Dynamics

With the keywords of the dynamics module the following blocks of information can be supplied.
Blocks 1 and 2 are optional. If deformable elements have been defined in the kinematics,
block 3 has to be filled, lest the stiffness and damping are zero. If the motion is not prescribed
by trajectories, block 4 has to be used to define the input motion. Finally with the keywords
from the 5th block miscellaneous settings can be adjusted.

KEYWORDS DYNAMICS
1

XM Inertia specification of lumped masses
EM Inertia specification of distributed element masses
XGYRO Inertia specification of gyrostat
MEE User-defined mass put intoM (e,e)

2
XF External force specification of the mechanism in

nodes
USERSIG Specification ofMATLAB M-file for user functions

with input for forces and stresses

3
ESTIFF Specification of elastic constants
ESIG Specification of preloaded state
EDAMP Specification of viscous damping coefficients

4
TIMESTEP Duration and number of time steps
INPUTX Specification of simple time functions for the
INPUTE prescribed degrees of freedom
STARTDX Specification of initial values for the dynamic degrees
STARTDE of freedom
USERINP Specification ofMATLAB M-file for user functions

with input for the degrees of freedom

5
GRAVITY Specification of the gravitational acceleration vector
INTEGRAT Selection of integrator
ERROR Specification of error tolerances for the integrator
ITERSTEP Specification of number of iterations and steps and

error tolerance for static calculations in modes 7, 8
and 9

26 Chapter 2. Keywords

6
DELXF Increment in the external forces in nodes
DELGRAV Increment in the gravitational acceleration
DELQMF Increment of the mass flow rate of tube elements
DELESIG Increment in the initial stresses of elements
DELINPX Increment in the input displacement for nodes
DELINPE Increment in the input deformation for elements

The parameters required with these keywords are listed below. {∗i} refers to notei listed at the
end of the keywords.

XM 1 node number
2 concentrated mass for position nodes;

rotational inertiaI for planar orientation nodes;
for spatial orientation nodes, the inertia components
Jxx {∗1}

3 Jxy {∗1}
4 Jxz {∗1}
5 Jyy {∗1}
6 Jyz {∗1}
7 Jzz {∗1}

Section 2.3. Dynamics 27

EM 1 element number
2 mass per unit of length

[3 rotational inertiaJx′x′ per unit of length for spatial beam;
{∗2}
rotational inertiaJ per unit of length for planar beam;{∗2}
angle over which the belt is initially wound over the first
pulley for a planar belt
fluid mass per unit of length for tube elements]

[4 rotational inertiaJy′y′ per unit of length for spatial beam;
{∗2}
angle over which the belt is initially wound over the second
pulley for a planar belt
mass flow rate for tube elements]

[5 rotational inertiaJz′z′ per unit of length for spatial beam
{∗2}
flow shape factor for tube elements (default is 1.0)]

[6 rotational inertiaJy′z′ per unit of length for spatial beam
{∗2}
inflow and outflow condition at ends of tube elements (0, 1,
2 or 3){∗3}]

[7 rotational inertiaJ per unit of length for planar tube ele-
ments
rotational inertiaJx′x′ for spatial tube elements]

[8 rotational inertiaJy′y′ for spatial tube elements]
[9 rotational inertiaJz′z′ for spatial tube elements]
[10 rotational inertia productJy′z′ for spatial tube elements]

XGYRO 1 node number
2
3
4

Ω1

Ω2

Ω3

components of absolute angular rotor velocity (free
rotor motion) or components of constant angular rotor
velocity relative to the carrier body (prescribed rotor
motion)

5 rotor inertiaJ
6 type of rotor motion (0: free, 1: prescribed)

MEE 1 first element number
2 deformation coordinate of first element

[3 second element number
4 deformation coordinate of second element]
3/5 entry in the mass matrixM (e,e) {∗4}

XF 1 node number
2 forces dual with the 1st nodal coordinate

[3-5 forces dual with the 2nd, 3rd and 4th nodal coordinate]
USERSIG 1 Name of theMATLAB M-file with user functions with forces

and stresses{∗5}

28 Chapter 2. Keywords

ESTIFF 1 element number
2 EA for beam, truss and belt elements

S1 = St for hinge elements
S1, first stiffness coefficient for pinbody and cognates

[3 GIt for spatial beam
EI for planar beam
S2, second stiffness coefficient for pinbody and cognates]
{∗6}

[4 EIy′ for spatial beam
EI/(GAk) for planar beam
S3, third stiffness coefficient for pinbody and cognates]
{∗6}

[5 EIz′ for spatial beam]{∗6}
[6 EIy′/(GAkz′) for spatial beam]{∗6}
[7 EIz′/(GAky′) for spatial beam]{∗6}

ESIG 1 element number
2– preloaded generalized stresses{∗6}

EDAMP 1 element number
2 EdA, longitudinal damping for beam, truss and belt ele-

ments
Sd1, torsional damping for hinge elements
Sd1, first damping coefficient for pinbody and cognates

[3 GdIt, torsional damping for beam elements
EdI, bending damping for planar beams
Sd2, second damping coefficient for pinbody and cognates]
{∗6}

[4 EdIy′, bending damping iny′-direction for spatial beams
Sd3, third damping coefficient for pinbody and cognates]
{∗6}

[5 EdIz′ , bending damping inz′-direction for spatial beam]
{∗6}

Section 2.3. Dynamics 29

TIMESTEP 1 length of time period
2 number of time steps

INPUTX 1 node number (position or orientation node){∗7}
2 coordinate number (1, 2, 3 or 4)
3 start value{∗8}
4 start rate
5 acceleration (constant)

INPUTE 1 element number{∗9}
2 deformation mode coordinate number (1, 2, 3, 4, 5 or 6)

{∗10}
3 start value{∗11}
4 start rate
5 acceleration (constant)

STARTDX 1 node number
2 coordinate number (1, 2, 3 or 4)
3 start value{∗8}
4 start rate

STARTDE 1 element number
2 deformation mode coordinate number (1, 2, 3, 4, 5 or 6)
3 start value{∗11}
4 start rate

USERINP 1 Name of theMATLAB M-file with user defined input func-
tions{∗12}

GRAVITY 1 x-component of the acceleration of gravity
2 y-component of the acceleration of gravity

[3 z-component of the acceleration of gravity]
INTEGRAT 1 Specify integrator type{∗13}

2 Step size or initial step size
ERROR 1 Absolute error for the integrator

2 Relative error for the integrator{∗14}
ITERSTEP 1 maximal number of iterations in calculating a stationary so-

lution (default value 10)
2 number of load steps (default value 4)
3 error tolerance (default value 5.0E–7)

[4 number of steps between output steps
5 type of analysis{∗15}
6 number of load steps used in the calculation of the initial

solution]

30 Chapter 2. Keywords

DELXF 1 node number
2 incremental forces dual with the 1st nodal coordinate

[3-5 incremental forces dual with the 2nd, ’ 3rd and 4th nodal
coordinate]

DELGRAV 1 x-component of the incremental acceleration of gravity
2 y-component of the incremental acceleration of gravity

[3 z-component of the incremental acceleration of gravity]
DELQMF 1 element number

2 incremental mass flow rate for tube elements
DELESIG 1 element number

2– additional preloaded generalized stresses{∗6}
DELINPX 1 node number (position or orientation node){∗7}

2 coordinate number (1, 2, 3 or 4)
3 increment in the start value{∗8}

DELINPE 1 element number{∗9}
2 deformation mode coordinate number (1, 2, 3, 4, 5 or 6)

{∗10}
3 increment in the start value{∗11}

NOTES:

∗1 The inertia components are related to the global coordinatesystem(x, y, z) in the initial
configuration. The tensor components are needed, soJxy, etc., represent the negative of
the products of inertia.

∗2 The distributed moments of inertia are lumped to the orientation nodes of the beam elements.
They represent the mass moments of inertia of the cross-section of the beam, soJx′y′ and
Jx′z′ are zero.

∗3 The different flow conditions at the entry and exit of the tubeare 0: spherical flow at node
p and nodeq; 1: jet flow at nodep and spherical flow at nodeq; 2: spherical flow at node
p and jet flow at nodeq; 3: jets flows at nodep and nodeq. In the usual situation all tube
elements have flow condition 0, except the tube element at which the flow exits the tube,
which has flow condition 2.

∗4 The keywordMEEis used to add a fixed mass coupled to deformation mode coordinates.
If all five numbers are specified, the mass is placed as a coupling between the two de-
formation mode coordinates; if three numbers are specified,the mass is placed on the
diagonal.

∗5 The (required) parameter of theUSERSIGkeyword is the name of aMATLAB M-file without
the extension.m and with a maximum filename length of 8 characters. The calling syntax
of the M-script is

function [time,sig,f]=pushsig(t,ne,le,e,ep,nx,lnp,x,xp);

Section 2.3. Dynamics 31

The input parameters are the timet and a list of variables that store the instantaneous
values of the same quantities as are represented by the corresponding variables in the
SPACAR binary data, see the overview on page 5. The script should return (again) time
t , user defined stressessig and user defined nodal forcesfx . Eithersig or fx or both
may be empty in the case no stresses and/or forces are prescribed. Otherwise each row in
sig and/orfx should define one stress value or force component at the specified timet .
Three columns should be provided with

1. The element number (e) or the node number (x).

2. The deformation mode number (e) or the coordinate number (x).

3. The current value of the stress or force component.

Two more columns can be provided, which specify the diagonalelements of the stiffness
and damping matrices, respectively, coresponding to the stress or force component.

∗6 Unspecified values for the stiffness and damping are assumedto be zero by default. The
meaning of the variables is:E, elasticity modulus (Young’s modulus);G = E/(2 +
2ν), shear modulus;ν, Poisson’s ratio;Ed, damping modulus in Kelvin–Voigt model;
Gd, shear damping modulus in Kelvin–Voigt model;A, cross-sectional area;I (Iy′, Iz′),
second area moment (abouty′-axis andz′-axis);It, Saint-Venant’s torsion constant;k (ky′

andkz′), shear correction factor (iny′-direction andz′-direction). The shear correction
factors are about 0.85; a table of values for various cross-sections can be found in [5].

The generalized stresses are calculated according to the Kelvin–Voigt model as follows.
All first stresses are calculated asσ1 = S1ε1 + Sd1ε̇1 + σ0, whereS1 = EA/l0 and
Sd1 = EdA/l0 for the truss and beam elements, wherel0 is the undeformed length of
the element, and the first stiffness and damping coefficientsas defined in the input for
the other types of elements.σ0 is the preload defined by the keywordESIG. For hinge
and pinbody elements, the other stresses are calculated in an analogous way. For a planar
beam element, the bending stresses are calculated as

[

σ2

σ3

]

=
S2

1 + Φ

[

4 + Φ −2 + Φ
−2 + Φ 4 + Φ

] [

ε2

ε3

]

+
Sd2

1 + Φ

[

4 + Φ −2 + Φ
−2 + Φ 4 + Φ

] [

ε̇2

ε̇3

]

,

whereS2 = EI/l30, Φ = 12EI/(GAkl20) andSd2 = EdI/l30. For a spatial beam element,
the torsional stress is calculated asσ2 = S2ε2 + Sd2ε̇2, whereS2 = GIt/l

3
0 andSd2 =

GdIt/l
3
0. For bending along the localy′- andz′-axes, the stresses are, analogous to the

planar case,
[

σ3

σ4

]

=
S3

1 + Φz

[

4 + Φz −2 + Φz

−2 + Φz 4 + Φz

] [

ε3

ε4

]

+
Sd3

1 + Φz

[

4 + Φz −2 + Φz

−2 + Φz 4 + Φz

] [

ε̇3

ε̇4

]

and
[

σ5

σ6

]

=
S4

1 + Φy

[

4 + Φy −2 + Φy

−2 + Φy 4 + Φy

] [

ε5

ε6

]

+
Sd4

1 + Φy

[

4 + Φy −2 + Φy

−2 + Φy 4 + Φy

] [

ε̇5

ε̇6

]

,

whereS3 = EIy′/l30, Φz = 12EIy′/(GAkz′l
2
0), Sd3 = EdIy′/l30, S4 = EIz′/l

3
0, Φy =

12EIz′/(GAky′l20), andSd4 = EdIz′/l
3
0. To all stress components, a preload can be

added by the key wordESIG.

32 Chapter 2. Keywords

∗7 In a mode=7, 8 or 9 run a (deformed) mechanism configuration is computed which corre-
sponds with the specified nodal position.

∗8 The default position start value for INPUTX and STARTDX is the value specified by the
kinematic keyword X, which has a default zero.

∗9 Stiffness and damping properties of the corresponding element are not used for the dynamic
computations.
In a mode=7, 8 or 9 run a (deformed) mechanism configuration is computed which
corresponds with the specified element deformation.

∗10 Rotational deformations are defined in radians.

∗11 Note that the keywordX defines an initial configuration in which the deformations are zero.
(An exception is an element for which the keyword DRPINBOD has been used.) A start
value defined withINPUTE or STARTDEdefines a deformation with respect to the initial
configuration.

∗12 The (required) parameter of theUSERINPkeyword is the name of aMATLAB M-file with-
out the extension.m and with a maximum filename length of 8 characters. The calling
syntax of the M-script is

function [t,e,x]=mymotion(t,is);

The input parameters are the timet and time step numberis . The script should return
(again) timet , prescribed deformationse and prescribed coordinatesx . Eithere or x
may be empty in the case no deformations or coordinates are prescribed. Otherwise each
row in e and/orx should define one deformation or coordinate at the specified time t .
Five columns should be provided with

1. The element number (e) or the node number (x).

2. The deformation mode number (e) or the coordinate number (x).

3. The current value of the deformation (e) or coordinate (x).

4. The current rate of the deformation (ė) or velocity (ẋ).

5. The current acceleration of the deformation (ë) or coordinate (̈x).

The user has to assure the correctness of the derivatives.SPACARdoes not carry out any
checks, but the results depend heavily on these derivatives.

∗13 Available integrator types are:

Section 2.3. Dynamics 33

0 Default: Shampine–Gordon.
130 Explicit third-order Runge–Kutta, fixed step size.
135 Explicit third-order Runge–Kutta, variable step size.
140 Explicit fourth-order Runge–Kutta, fixed step size.
155 Explicit fifth-order Runge–Kutta, variable step size.
220 Explicit Runge-Kutta for second-order systems, second-order accurate, fixed

step size.
225 Explicit Runge–Kutta for second-order systems, second-order accurate, variable

step size.
310 Semi-implicit Runge–Kutta–Rosenberg, first-order accurate, fixed step size.
320 Semi-implicit Runge–Kutta–Rosenberg, second-order accurate, fixed step size.
330 Semi-implicit Runge–Kutta–Rosenberg, third-order accurate, fixed step size.
410 Singly diagonally implicit Runge–Kutta (implicit Euler), first-order accurate,

fixed step size.
420 Singly diagonally implicit Runge–Kutta, second-order accurate, fixed step size.
430 Singly diagonally implicit Runge–Kutta, third-order accurate, fixed step size.

Change this only if you know what you are doing.

∗14 The error tolerances are used for integration methods with avariable step size in the inte-
grators of type 0, 135, 155 and 255. Defaults are0.00001 for the absolute error tolerance
and0.0001 for the relative error tolerance. For the integrators of type 410, 420 and 430,
the absolute tolerance is used as the tolerance for the modified Newton–Raphson iteration.

∗15 The following types of analysis are available:
0 Default: only initial loading
1 Only initial loading withN 0 taken equal to zero in the Newton–Raphson itera-

tion
2 Initial and additional loading
3 Initial and additional loading withN 0 taken equal to zero in the Newton–

Raphson iteration

34 Chapter 2. Keywords

2.4 Inverse dynamics (setpoint generation)

For clarity the keywords for the inverse dynamics includingthe generation of setpoints are dis-
cussed in two subsections. In the input file keywords from both subsections must be combined
into one part, so there should benoEND/HALTpair in between.

2.4.1 Trajectory generation

There are three essential keyword blocks:

KEYWORDS TRAJECTORY GENERATION
1

TRAJECT Trajectory header; the given trajectory number is
valid for all keywords before the nextTRAJECT.

2
TROT Definition of the actual trajectory:
TRANS the number and type of DOFs determine which key-

words and
TRCIRL how many of them have to be specified:
TRE TROT, TRANS, andTRCIRL for nodes and

TREfor elements (maximum of 6).

USERTRAJ Trajectory defined by a user function.

3
TRTIME Definition of trajectory time and number of time

steps.

and there are two blocks of optional keywords:

1
TREPMAX Specification of velocity profile: rise time
TRVMAX and maximum velocity.
TRFRONT Specification of acceleration front for each velocity

profile.

2
TRM Specification of extra masses and
TRF forces on the end-effector.

Section 2.4. Inverse dynamics (setpoint generation) 35

The trajectories can be constructed in two ways: with a user function or with built-in profiles.
The latter are defined below and are of course limited to (combinations of) the built-in profiles.
On the other hand, practically any input can be generated with user functions. This feature
is activated by defining exactly oneTRAJECTwith theUSERTRAJkeyword. The (required)
parameter is the name of anMATLAB M-script that is to be called. WithTRTIME the total
trajectory time and the number of time steps must be specified. The calling syntax of the M-
script is exactly equal to that of the M-script for theUSERINPkeyword, see page 32.
Alternatively, one can use the built-in trajectory profiles. The next scheme shows in more
detail the combination possibilities of the setpoint generation keywords. Essential keywords
are accompanied by a number of optional keywords placed between brackets. Other optional
keywords than those mentioned are not allowed for that specific essential keyword.

-

TRTIME

TRANS
[TRVMAX TRM TRF TRFRONT]

TRCIRL
[TRVMAX TRM TRF TRFRONT]

TRE
[TREPMAX TRFRONT]

TROT
[TRVMAX TRM TRFRONT]

TRAJECT

�

The way to follow through the scheme is almost fully dictatedby the number and type of degrees
of freedom. Each trajectory is defined for the same DOF and therefore runs through the same
branch of the scheme. OnlyTRANSandTRCIRL may be changed into one another after each
trajectory.

36 Chapter 2. Keywords

At this stage it is useful to mention the way in which degrees of freedom are declared:

Position and orientation coordinates are declared as DOF byinput-command

INPUTX node-number component-number

Deformation mode coordinates are declared as DOF by input-command

INPUTE element-number component-number

(INPUTX andINPUTE are “kinematic keywords”, Sect. 2.2).
So, degrees of freedom are declared separately. For generation of setpoints in relative coor-
dinates (such as joint angles), eachINPUTE in the kinematics input prepares oneTRE in the
setpoint generation input (only the first relative coordinate per element is allowed as input for
the setpoint generation). For the positions and orientations the situation is more complex be-
cause a trajectory in two or three dimensions is defined on node level, not on coordinate level.
The keywordsTROT, TRANSandTRCIRL prescribe the motion of one node:

keyword description node type and type number DOF

TROT
rotation about a
fixed axis in space

2-D orientation
3-D orientation

1
4

φ
φ, h1, h2, h3

TRANS
translation along a
straight line

2-D position
3-D position

2
3

x1, x2

x1, x2, x3

TRCIRL
translation along a
circle segment

2-D position
3-D position

2
3

x1, x2

x1, x2, x3

For the administration of trajectories two numbers are of main importance: the trajectory
number and the node or element number. The trajectory numberhas to be given once after
TRAJECT, node numbers or element numbers follow immediately after all other keywords. In
this way information about the path, the velocity profile andadditional loads can be grouped
and worked up by node/element number. Taking as starting point the type of DOF the picture
becomes:

DOF PATH VELOCITY PROFILE LOADS
ELEMENT e1 TRE TREPMAX TRFRONT

TROT TRVMAX TRFRONTTRM
NODE xi TRANS TRVMAX TRFRONTTRM TRF

TRCIRL TRVMAX TRFRONTTRM TRF

Section 2.4. Inverse dynamics (setpoint generation) 37

The parameters required with these keywords are listed below. {∗i} refers to notei listed at the
end of the keywords.

TRAJECT 1 trajectory number

TROT 1 node number (orientation node)
2 total angle in rad

[3 h1-coordinate of fixed rotation axis
4 h2-coordinate
5 h3-coordinate]

TRANS 1 node number (position node)
2 x1-coordinate of end position
3 x2-coordinate

[4 x3-coordinate]
TRCIRL 1 node number (position node)

2-3 2D:c1 andc2 coordinates of circle centre point{∗1}
4-5 2D:b1 andb2 coordinates of circle end point{∗1}
2-4 3D:c1, c2 andc3 coordinates of circle centre point{∗1}
5-7 3D:b1, b2 andb3 coordinates of circle end point{∗1}

TRE 1 element number
2 total displacement (relative angle or elongation)

USERTRAJ 1 name of M-script{∗2}

TRTIME 1 total time for the trajectory
2 number of time steps

[3 number of intermediate time steps]{∗3}

TREPMAX 1 element number
2 rise time (period of acceleration)

[3 extreme velocity]{∗4}
TRVMAX 1 node number (position or orientation node)

2 rise time (period of acceleration)
[3 extreme value of the velocity]{∗4}

TRFRONT 1 node or element number
2 acceleration front type{∗5}

TRM 1 node number (position or orientation node)
2 extra mass (m, I or Jxx)

[3 Jxy

4 Jxz

5 Jyy

6 Jyz

7 Jzz] {∗6}
TRF 1 node number (position node)

2 f1-coordinate of external force
3 f2-coordinate

[4 f3-coordinate]

38 Chapter 2. Keywords

NOTES:

∗1 The positions of the parameters of keywordTRCIRL are different in 2-D and in 3-D cases.
Places 2–5 are used for 2-D, places 2–7 for 3-D. Note that the “endpoint” of the circle
cannot be taken literally, as it is over-determined. The second point defines a line through
the centre on which the circle ends.

∗2 See the note for theUSERINPkeyword on page 32.

∗3 The keywordTRTIME has an optional third argument that influences the meaning ofthe
second argument:

2 arguments 3 arguments
1 total trajectory time total trajectory time
2 number of time steps number of time steps for an extended analysis
3 number of time steps within the previous step

For three arguments the total number of time steps is a multiplication of the last two
arguments. In intermediate points a standard analysis is done.

∗4 The keywordsTRVMAXandTREPMAXhave an optional third argument to express the ex-
treme velocity (creation of a zero-acceleration period). If no extreme is given it can be
calculated from the total time and path length. The second argument contains the rise-
time. The period of deceleration is calculated from the (a) total time, (b) rise time, (c)
total path length, (d) extreme velocity. In this way the velocity profile is fully determined.
For asymmetrical velocity profiles the rise time can be calculated too. To indicate the
symmetry of the profile the second argument is given a dummy argument: a non-positive
value.
The default velocity profile is: symmetrical without constant velocity period.

∗5 The keywordTRFRONThas a second argument for the type of acceleration and deceleration
function of time. There are three types of fronts:
0 – constant acceleration
1 – sine function (half period)
2 – quadratic sine function (half period)
The default velocity front has a constant acceleration (type 0).

∗6 The keywordTRMhas only for 3-D orientation nodes a real list of parameters.For 2-D
orientation and position nodes one mass parameter is sufficient. In the 3-D case six values
determine the symmetric rotational inertia matrix:

Jxx Jxy Jxz

Jyy Jyz

Jzz

1 2 3
4 5

6

Section 2.4. Inverse dynamics (setpoint generation) 39

2.4.2 Nominal inputs (u0) and reference outputs (y0)

The nominal input vectoru0 and the reference output vectory0 are defined in the following
blocks. These blocks are optional, but omitting one or both blocks means that no input and/or
output vectors are defined and hence no setpoints for that input and/or output vector are gener-
ated and written to theltv file.

KEYWORDS NOMINAL INPUT VECTOR u0 (mode=2)
1

NOMS Specification of actuator elements.
NOMF Specification of actuated nodes.

KEYWORDS REFERENCE OUTPUT VECTOR y0 (mode=2)
2

REFE Specification of the deformation parameters to be
sensed.

REFEP The same, first time derivative.
REFEDP The same, second time derivative.
REFX Specification of the nodal coordinates to be sensed.
REFXP The same, first time derivative.
REFXDP The same, second time derivative.

The parameters for these keywords are listed below.{∗i} refers to notei listed at the end of the
keywords.

NOMS 1 nominal input number{∗1}
2 element number
3 deformation parameter number (1, 2, 3, 4, 5 or 6)

NOMF 1 nominal input number{∗1}
2 node number
3 coordinate number (1, 2, 3, or 4)

REFE 1 reference output number{∗1, 2}
REFEP 2 element number
REFEDP 3 deformation parameter number (1, 2, 3, 4, 5 or 6)
REFX 1 reference output number{∗1, 2}
REFXP 2 node number
REFXDP 3 coordinate number (1, 2, 3, or 4)

NOTES:

∗1 The nominal input numbers and reference output numbers are the positions of the specified
input or output in the input and output vectors, respectively.

40 Chapter 2. Keywords

∗2 The keywordsREFESandREFXSthat are defined for the linearization module (Sect. 2.5)
are accepted as well and do not give errors. Their meaning andusage is identical to the
normal keywordsREFEandREFX, respectively.

Section 2.5. Linearization 41

2.5 Linearization

As mentioned in Sect. 1.2 the moduleLINEAR is a forward dynamics stage for the generation of
linearized equations of motion and state space matrices that can be used in two different modes.

mode=4 is basically an extension of the forward dynamic analysis ofmode=1. No further
keywords are required to obtain the coefficient matrices of the linearized equations as functions
of the set of dynamic degrees of freedomqd. These matrices are stored in aSPACAR binary
matrix data file with extensionsbm. This file can be loaded with the utilityloadsbm . If
input and output vectorsδu andδy are defined, also the linearized state equations and output
equations are computed (seemode=9).

Linearization inmode=3 is around a predefined nominal trajectory and takes place after that
trajectory has been generated in an inverse dynamics run (mode=2). The set of DOFs used
in the inverse dynamics computation represent the actuatorjoint coordinatesem. In case of a
flexible manipulator mechanism additional DOFsεm

i ≡ 0 describing the elastic behaviour of
the mechanism links should be included in the dynamic model (both inmode=2 andmode=3).
Clearly, the mechanisms used in both runs have to be closely related. If the manipulation task is
prescribed in terms of relative DOFs (TRE) the list of keywords is identical with those used in
the inverse dynamics run (mode=2). If the manipulation task is prescribed as a motion of some
nodal points (triads) (TROT, TRANS, TRCIRL) then the correspondingRLSEcommand of the
actuators should be replaced byINPUTE commands in the kinematic block. In the software
some checks are carried out to verify that data from the inverse dynamics run can be reasonably
used during the linearization.
The nominal input vectoru0 and the reference output vectory0 are again defined in the fol-
lowing blocks. These blocks are optional, but as before omitting one or both blocks means
that no input and/or output vectors are defined and hence no state space matrices can be gen-
erated and written to theltv file. The keywords are similar to the input and output keywords
in Sect. 2.4.2. In the outputltv file of a mode=3 run the setpoints of the input and output
vector are stored in the same way as for amode=2 run. In addition the state space matrices
for the linearized equations of motion (Sect. 1.5) are generated. Obviously, the input matrix
B and output matrixC depend on the chosen input and output vectors. In a usual state space
system the output vector is computed from a linear expression. In the case a larger accuracy is
required,SPACARcan be instructed to use a second order expression. This feature is available
for all deformation parameters and coordinates (not for thetime derivatives) with the keywords
REFESandREFXS. The use of these keywords will generate elements in the output reference
vector that are the same as the elements fromREFEandREFX, respectively. Also the associated
row in the output matrixC is the same, but in addition a tensor denotedG in the ltv file is
computed with the second order geometric transfer function.
Linearization inmode=7, 8 and9 is around a pre-computed static equilibrium configuration,
or a state of steady motion. In addition inmode=9 the state space matrixA, the input matrices
B0 andB, the output matrixC and the feedthrough matrixD are calculated. Obviously, the
matricesB0,B,C andD depend on the chosen input and output vectorsδu andδy respec-
tively. These vectors are again defined in the blocks on page 43. These blocks are optional, but
as before omitting one or both blocks means that no input and/or output vectors are defined and
hence no state space matrices can be generated and written tothe ltv-file.

42 Chapter 2. Keywords

KEYWORDS NOMINAL INPUT VECTOR u0 (mode=3)
1

NOMS Specification of actuator elements.
NOMF Specification of actuated nodes.

KEYWORDS REFERENCE OUTPUT VECTOR y0 (mode=3)
2

REFE Specification of the deformation parameters to be
sensed.

REFES The same, with second order expression.
REFEP The same, first time derivative.
REFEDP The same, second time derivative (see note).
REFX Specification of the nodal coordinates to be sensed.
REFXS The same, with second order expression.
REFXP The same, first time derivative.
REFXDP The same, second time derivative (see note).

Note: Specifying second derivatives in the output vector implies an algebraic coupling between
input and output, i.e. a non-zero state space matrixD. This is currentlynot implemented and
the keywordsREFEDPandREFXDPare ignored for the linearization.

The parameters for these keywords are listed below.{∗i} refers to notei listed at the end of the
keywords.

NOMS 1 nominal input number{∗1}
2 element number
3 deformation parameter number (1, 2, 3, 4, 5 or 6)

NOMF 1 nominal input number{∗1}
2 node number
3 coordinate number (1, 2, 3, or 4)

REFE 1 reference output number{∗1}
REFES 2 element number
REFEP 3 deformation parameter number (1, 2, 3, 4, 5 or 6)
REFEDP
REFX 1 reference output number{∗1}
REFXS 2 node number
REFXP 3 coordinate number (1, 2, 3, or 4)
REFXDP

NOTES:

∗1 The nominal input numbers and output numbers are the positions of the specified input or
output in the input and output vectors, respectively.

Section 2.5. Linearization 43

KEYWORDS INPUT VECTOR δu (mode=4,9)
1

INPUTS Specification of input stresses.
INPUTF Specification of input forces.
INE Specification of input deformation parameters.
INEP The same, first time derivative.
INEDP The same, second time derivative.
INX Specification of input nodal coordinates.
INXP The same, first time derivative.
INXDP The same, second time derivative.

KEYWORDS OUTPUT VECTOR δy (mode=4,9)
2

OUTS Specification of output stresses.
OUTF Specification of output forces.
OUTE Specification of output deformation parameters.
OUTEP The same, first time derivative.
OUTEDP The same, second time derivative.
OUTX Specification of output nodal coordinates.
OUTXP The same, first time derivative.
OUTXDP The same, second time derivative (see note).

The parameters for these keywords are listed below.{∗i} refers to notei listed at the end of the
keywords.

INPUTS {∗2} 1 input number{∗1}
INE
INEP
INEDP

{∗3}
2
3

element number
deformation parameter number
(1, 2, 3, 4, 5 or 6)

INPUTF {∗4} 1 input number{∗1}
INX
INXP
INXDP

{∗5}
2
3

node number
coordinate number (1, 2, 3, or 4)

OUTS{∗6} 1 output number{∗1}
OUTE
OUTEP
OUTEDP

{∗7}
2
3

element number
deformation parameter number
(1, 2, 3, 4, 5 or 6)

OUTF{∗8} 1 output number{∗1}
OUTX
OUTXP
OUTXDP

{∗9}
2
3

node number
coordinate number (1, 2, 3, or 4)

44 Chapter 2. Keywords

NOTES:

∗1 The input numbers and output numbers are the positions of thespecified inputs or outputs
in the input and output vectors, respectively.

∗2 Associated with dynamic DOFse(m,d) or dependent coordinatese(c).

∗3 Associated with prescribed deformationse(m,r). For INE, only holonomic deformations are
allowed.

∗4 Associated with calculable coordinatesx(c) or dynamic DOFsx(m,d).

∗5 Associated with prescribed nodal coordinatesx(m,r).

∗6 Can be associated with prescribed deformationse(o) or e(m,r), but can also be associated
with the free types, in which case the output stress is calculated from the constitutive
equations and, possibly, from the input stress.

∗7 Associated with calculable deformationse(c) or dynamic DOFse(m,d) or prescibed defor-
mationse(m,r).

∗8 Associated with prescribed nodal coordinatesx(o) or x(m,r).

∗9 Associated with calculable coordinatesx(c) or dynamic DOFsx(m,d) or prescribed coordi-
natesx(m,r).

Section 2.6. Non-linear simulation of manipulator control 45

2.6 Non-linear simulation of manipulator control

To simulate the behaviour of a manipulator with a control system theSPACARprogram is also
accessible as an “S-function” blockSPASIM from SIMULINK . SIMULINK treats this block like a
non-linear state-space system which has a state vectorz, an input vectoru and an output vector
y. Each of these vectors has a well-defined meaning in theSPACARblock: the states correspond
to the degrees of freedom and their first time derivatives. The input and output are coupled to
actuators and coordinates as specified by keywords in theSPACAR input data file (see below).
In theSIMULINK graphical user interface the input and output vectors must be coupled to other
blocks, e.g. the control system. The states are used internally in SIMULINK and are usually not
available to the user. That implies that any coordinate or deformation parameter that is used for
control purposes or is monitored in a graph must be included in the output vectory (block 2).

KEYWORDS INPUT VECTOR u (SPASIM)
1

INPUTS Specification of actuator elements.
INPUTF Specification of actuated nodes.

KEYWORDS OUTPUT VECTOR y (SPASIM)
2

OUTE Specification of the deformation parameters to be
sensed.

OUTEP The same, first time derivative.
OUTEDP The same, second time derivative.
OUTX Specification of the nodal coordinates to be sensed.
OUTXP The same, first time derivative.
OUTXDP The same, second time derivative.

46 Chapter 2. Keywords

The parameters for these keywords are listed below.{∗i} refers to notei listed at the end of the
keywords.

INPUTS 1 input number{∗1}
2 element number
3 deformation parameter number (1, 2, 3, 4, 5 or 6)

INPUTF 1 input number{∗1}
2 node number
3 coordinate number (1, 2, 3, or 4)

OUTE 1 output number{∗1}
OUTEP 2 element number
OUTEDP 3 deformation parameter number (1, 2, 3, 4, 5 or 6)
OUTX 1 output number{∗1}
OUTXP 2 node number
OUTXDP 3 coordinate number (1, 2, 3, or 4)

NOTES:

∗1 The input numbers and output numbers are the positions of thespecified input or output
in the input and output vectors, respectively. They need notbe identical to the nominal
input vector and reference output vector specified during the generation of setpoints (see
Sect. 2.4.2 and/or Sect. 2.5), but for a quite straightforward comparison it is convenient
to use, at least partially, the same numbering scheme.

3

Examples

The data files used to run the examples in this chapter can be downloaded from theSPACAR

web site, see Appendix A.

3.1 Planar sliding bar

In example 4.3.1 of the lecture notes [1] the sliding bar of Fig. 3.1 is described. A rigid barpq
of length 2 m is suspended from two sliders. The bar is driven by the conditionxp − vt = 0,
wherev =| v | is the constant horizontal velocity component of pointp. Thus ẋp = v and
ẍp = 0. We want to computėyq andÿq for 0 ≤ t ≤ 2

√
3 s andv = 1 m/s.

The positionyq can be computed easily from the symbolic expressionyq =
√

4 − (
√

3 − xp)2,
so

yq =
√

4 − (
√

3 − t)2.

x

y

p

q

√
3

1
β β = 30o

v

Figure 3.1. Sliding bar.

47

48 Chapter 3. Examples

Differentiating once and twice with respect to the timet yields

ẏq = − −
√

3 + t
√

1 + 2
√

3t − t2
, ÿq =

4
(

−1 − 2
√

3t + t2
)√

1 + 2
√

3t − t2
.

The mechanism has one degree of freedom and there is only one element. This is the planar
truss element denoted by 1 that connects nodal points 1 and 2 in the followingSPACAR input
file (slider.dat):

PLTRUSS 1 1 2

X 1 0. 0.
X 2 1.7321 1.

FIX 1 2
FIX 2 1

INPUTX 1 1

END
HALT

INPUTX 1 1 0. 1. 0.

TIMESTEP 3.4641 100

END
END

Both symbolic and numeric results are shown in Figs. 3.2 and 3.3 with the Matlab commands

>> t=time;

0 0.5 1 1.5 2 2.5 3 3.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

time [s]

(d
/d

t)
 y

(2
)

[m
/s

]

Figure 3.2. Vertical velocityẏq of the sliding bar.

0 0.5 1 1.5 2 2.5 3 3.5
−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

time [s]

(d
/d

t)
2 y

(2
)

[m
/s

2]

Figure 3.3. Accelerationÿq of the sliding bar.

Section 3.2. Planar slider–crank mechanism 49

>> plot(t,[xd(:,lnp(2,2)) ...
-(-3ˆ(1/2)+t)./(1+2 * 3ˆ(1/2) * t-t.ˆ2).ˆ(1/2)])
>> grid
>> xlabel(’time [s]’)
>> ylabel(’(d/dt) y(2) [m/s]’)
>> figure
>> plot(t,[xdd(:,lnp(2,2)) ...
4./(-1-2 * 3ˆ(1/2) * t+t.ˆ2)./(1+2 * 3ˆ(1/2) * t-t.ˆ2).ˆ(1/2)])
>> grid
>> xlabel(’time [s]’)
>> ylabel(’(d/dt)ˆ2 y(2) [m/sˆ2]’)

Obviously, in both graphs the symbolic and numeric results are practically identical, which
illustrates the good agreement between both solutions.
Note that in this example no masses are defined. There are no dynamic degrees of freedom
either, so effectively only a kinematic problem is solved.

3.2 Planar slider–crank mechanism

The slider–crank mechanism is frequently applied as a subsystem in the design of a mechanism.
It finds its applications in combustion engines, compressors and regulators. Figure 3.4 presents
a slider–crank mechanism for which three dynamics computations have to be carried out. In
the first problem (case 1, see also example 5.7.2 in the lecture notes [1]), the crank and the
connecting rod are assumed to be rigid. In the second computation (case 2), the connecting rod
is shorter but still somewhat longer than the crank. In case 3, the flexibility of the connecting
rod with the dimensions of case 1 is taken into account; see also example 8.3.1 in the lecture
notes [1].

Case 1

First of all, the nodal coordinates must be specified. In the initial configuration, the crank and
the connecting rod are horizontal. The crank length is0.15 m, the length of the connecting rod

x

y

m1 m2

~1,
x

2

~3,
x

4 ,
x

5

~6,
x

7

ω0

A

B

C

Figure 3.4. Planar slider–crank mechanism.

50 Chapter 3. Examples

is 0.30 m. For the dynamic analysis the following parameters are needed. The connecting rod
has a circular cross-section with diameterd = 6 mm. The mass density isρ = 7.87 · 103 kg/m3

and the Young’s modulus isE = 2.1 · 1011 N/m2. Consequently, the mass per unit length is
0.2225 kg/m and its total massms = 0.06675 kg. The mass of the sliding block or plungerC
is given bymC = 1

2
ms = 0.033375 kg. The crank is driven at a constant angular velocity

ω0 = 150 rad/s. The total simulation should comprise two crank rotations. NodeB must be
defined as a single translational node and a double rotational node, since the rotations of the
slider and the crank are not the same. The mass of the crank is taken as zero.
An input file (crank.dat) describing this case is:

PLBEAM 1 1 2 3 4
PLBEAM 2 3 5 6 7

X 1 0.00 0.
X 3 0.15 0.
X 6 0.45 0.

FIX 1
FIX 6 2
INPUTX 2 1

END
HALT

XM 6 0.033375
EM 2 0.2225

INPUTX 2 1 0. 150. 0.
TIMESTEP 0.1 100

END
END

The initial configuration of case 1 is depicted in Fig. 3.5. The horizontal position, velocity and
acceleration of the sliding block as function of time are given in Figs. 3.6–3.8. The driving
moment in node 2 versus time is shown in Fig. 3.9 and the supporting forces acting on the
sliding block are presented in Fig. 3.10.
TheMATLAB commands used to plot these results are:

>> plot(time,x(:,lnp(6,1)))
>> grid
>> xlabel(’time [s]’)
>> ylabel(’x(6) [m]’)
>>
>> plot(time,xd(:,lnp(6,1)))
>> grid
>> xlabel(’time [s]’)
>> ylabel(’(d/dt) x(6) [m/s]’)

Section 3.2. Planar slider–crank mechanism 51

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

 1 2 1 3 6

Figure 3.5. Case 1: Initial configuration of the
slider–crank mechanism.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

time [s]

x(
6)

 [m
]

Figure 3.6. Case 1: Horizontal position of the
sliding block.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
−30

−20

−10

0

10

20

30

time [s]

(d
/d

t)
 x

(6
)

[m
/s

]

Figure 3.7. Case 1: Horizontal velocity of the
sliding block.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
−6000

−5000

−4000

−3000

−2000

−1000

0

1000

2000

3000

time [s]

(d
/d

t)
2 x

(6
)

[m
/s

2]

Figure 3.8. Case 1: Horizontal acceleration of the
sliding block.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
−40

−30

−20

−10

0

10

20

30

40

time [s]

M
(2

)
[N

m
]

Figure 3.9. Case 1: Driving moment in rotational
node 2.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
−100

−80

−60

−40

−20

0

20

40

60

80

100

time [s]

F
x(

6)
, F

y(
6)

 [N
]

Figure 3.10. Case 1: Supporting forces on the
sliding block.

52 Chapter 3. Examples

>>
>> plot(time,xdd(:,lnp(6,1)))
>> grid
>> xlabel(’time [s]’)
>> ylabel(’(d/dt)ˆ2 x(6) [m/sˆ2]’)
>>
>> plot(time,fxtot(:,lnp(2,1)))
>> grid
>> xlabel(’time [s]’)
>> ylabel(’M(2) [Nm]’)
>>
>> plot(time,fxtot(:,lnp(6,1:2)))
>> grid
>> xlabel(’time [s]’)
>> ylabel(’Fx(6), Fy(6) [N]’)

Case 2

The input file of case 1 (page 50) is modified to account for the shortened connecting rod. Only
the initial position of node 6 in the second block of the kinematic definition has to be changed:

X 6 0.35 0.

The initial configuration of case 2 is depicted in Fig. 3.11. The horizontal position, velocity and
acceleration of the sliding block as a function of time are given in Figs. 3.12–3.14. The driving
moment in node 2 versus time is shown in Fig. 3.15 and the supporting forces acting on the
sliding block are presented in Fig. 3.16.
TheMATLAB commands used to plot these results are the same as in case 1 (page 50).

Case 3

To take the flexibility of the connecting rod into account with a reasonable accuracy the planar
beam element used for this rod (see Fig. 3.4) is split into twoparts. One translational node
and one rotational node are inserted and the numbers of the nodes in the sliding blockC are
changed. The bending stiffness of the connecting rod is computed using the moment of inertia
I = πd4/64. The input file (crankfl.dat) is now:

Section 3.2. Planar slider–crank mechanism 53

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

 1 2 1 3 6

Figure 3.11. Case 2: Initial configuration of the
slider–crank mechanism.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

time [s]

x(
6)

 [m
]

Figure 3.12. Case 2: Horizontal position of the
sliding block.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
−30

−20

−10

0

10

20

30

time [s]

(d
/d

t)
 x

(6
)

[m
/s

]

Figure 3.13. Case 2: Horizontal velocity of the
sliding block.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
−6000

−4000

−2000

0

2000

4000

6000

time [s]

(d
/d

t)
2 x

(6
)

[m
/s

2]

Figure 3.14. Case 2: Horizontal acceleration of
the sliding block.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
−40

−30

−20

−10

0

10

20

30

40

time [s]

M
(2

)
[N

m
]

Figure 3.15. Case 2: Driving moment in rota-
tional node 2.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
−200

−150

−100

−50

0

50

100

150

200

time [s]

F
x(

6)
, F

y(
6)

 [N
]

Figure 3.16. Case 2: Supporting forces on the
sliding block.

54 Chapter 3. Examples

PLBEAM 1 1 2 3 4
PLBEAM 2 3 5 6 7
PLBEAM 3 6 7 8 9

X 1 0.000 0.000
X 3 0.150 0.000
X 6 0.300 0.000
X 8 0.450 0.000

FIX 1
FIX 8 2
INPUTX 2 1
DYNE 2 2 3
DYNE 3 2 3

END
HALT

XM 8 0.033375
EM 2 0.2225
EM 3 0.2225

ESTIFF 2 0.000000 13.359623
ESTIFF 3 0.000000 13.359623

INPUTX 2 1 0.000000 150.000000 0.000000
TIMESTEP 0.100000 100
STARTDE 2 2 0.000000 0.000000
STARTDE 2 3 0.000000 0.000000
STARTDE 3 2 0.000000 0.000000
STARTDE 3 3 0.000000 0.000000

END
END

The second-order contributions of the bending deformations on the elongation (Eq. (6.4.22) in
the lecture notes) are taken into account.
The initial configuration of case 3 is depicted in Fig. 3.17. The horizontal acceleration of the
sliding block as function of time is given in Fig. 3.18. The bending of the slider, given by
v = 1

2
(ε

(2)
3 + ε

(3)
2), as function of the crank angleφ2, is presented in Fig. 3.19.

TheMATLAB commands used to plot these results are:

>> plot(time,xdd(:,lnp(8,1)))
>> grid
>> xlabel(’time [s]’)
>> ylabel(’(d/dt)ˆ2 x(8) [m/sˆ2]’)
>>

Section 3.2. Planar slider–crank mechanism 55

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

 1 2 3 1 3 6 8

Figure 3.17. Case 3: Initial configuration of the
slider–crank mechanism.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
−6000

−5000

−4000

−3000

−2000

−1000

0

1000

2000

3000

time [s]

(d
/d

t)
2 x

(8
)

[m
/s

2]

Figure 3.18. Case 3: Horizontal acceleration of
the sliding block.

0 2 4 6 8 10 12 14 16
−4

−3

−2

−1

0

1

2

3

4

5
x 10

−3

phi(2) [rad]

v=
(e

ps
(2

,3
)+

ep
s(

3,
2)

)/
2

[m
]

Figure 3.19.Case 3: Bending of the flexible con-
necting rod (elements 2 and 3).

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
−18

−16

−14

−12

−10

−8

−6

−4

−2

0

2
x 10

−5

time [s]

x(
8)

−
x0

(6
)

[m
]

Figure 3.20. Case 3: Difference in the horizontal
position of the sliding block compared to case 1.

>> plot(x(:,lnp(2,1)),(e(:,le(2,3))+e(:,le(3,2)))/2)
>> grid
>> xlabel(’phi(2) [rad]’)
>> ylabel(’v=(eps(2,3)+eps(3,2))/2 [m]’)

Figure 3.20 shows the (small) vibration of the sliding blockdue to the bending by comparing
its position with the rigid simulation of case 1 (Fig. 3.6).

56 Chapter 3. Examples

Nodal points for the planar slider-crank mechanism
node 1 node 2 node 3 node 4,5,7 node 6node 8 node 9

node type T R T R T T R
x-coordinate 0 0.15 0.45 0.30
y-coordinate 0 0 0 0
BC-typex 1 2 2 2
BC-typey 1 2 1 2
BC-typeφ 3 2 2
φ0 0
ω0 = φ̇ 150
ω̇ 0
forces/moment 0 0 0 0 0 0 0
mass/inertia 0 0 0 0 0.033 0 0

T=translational, R=rotational, BC=boundary condition

The numbers of the BC-type refers to the numbers of the groups mentioned on page 16.

Elements for the planar slider-crank mechanism
element 1 element 2element 2a, 3

element type beam beam beam
T-nodes 1, 3 3, 6 3, 8 / 8, 6
R-nodes 2, 4 5, 7 5, 9 / 9, 7
typee1 1 1 1
typee2 1 1 4
(e2)0 0
(ė2)0 0
typee3 1 1 4
mass per length 0.2225 0.2225 0.2225
EA 5.65 · 106 5.65 · 106 5.65 · 106

EI 13.4 13.4 13.4
damping 0 0 0

T=translational, R=rotational

Section 3.3. Cardan-joint mechanism 57

3.3 Cardan-joint mechanism

In section 11.1 of the lecture notes [1] a cardan joint is described. Cardan joints, also known
as Hooke’s joints, have been used as a shaft coupling in a widerange of machinery, which
includes locomotive as well as automotive drive lines. A drive line connected by a Cardan joint
may exhibit torsional oscillations due to fluctuating angular velocity ratios inherent in such
systems.

e
(1)
1

e
(2)
1

e
(3)
1

e
(4)
1

(a) (b)

Figure 3.21.Schematic of Cardan joint system.

Figure 3.21a shows a one-degree of freedom shaft system incorporating a Cardan joint. The
Cardan joint is modelled by four spatial hinge elements as shown in Figure 3.21b. The ro-
tating shaft axes having an angular misalignment ofβ = 45◦ is driven at a constant angular
speedė(1) = Ωin. The quantitiese(1) ande(4) represent the input and output angles of the hinge

elements m1 and m4 , respectively.
The essential behaviour of the joint can be simulated with the following input file
(cardansimp.dat):

HINGE 1 1 2 -1. 0. 0.
HINGE 2 2 3 0. -1. 0.
HINGE 3 3 4 0. 0. -1.
HINGE 4 4 5 0.707 -0.707 0.

FIX 1
FIX 5
INPUTE 1 1
RLSE 2 1
RLSE 3 1
RLSE 4 1

END HALT

INPUTE 1 1 0. 6.28 0.
TIMESTEP 1.0 100

END END

58 Chapter 3. Examples

Note that in the initial configuration, the input shaft is rotated by a right angle with respect to
the configuration in Figure 3.21.
However, the visualization of this simulation is quite poor. This can be improved by adding
some beams to the input and output rotational nodes numbers 2and 4, respectively. The com-
plete input file (cardan.dat) becomes:

HINGE 1 1 2 -1. 0. 0.
HINGE 2 2 3 0. -1. 0.
HINGE 3 3 4 0. 0. -1.
HINGE 4 4 5 0.707 -0.707 0.

BEAM 5 6 2 7 8 0. 1. 0.
BEAM 6 7 8 9 10 0. 1. 0.
BEAM 7 6 4 11 12 0.707 0.707 0.
BEAM 8 11 12 13 14 0.707 0.707 0.

FIX 1
FIX 5
FIX 6

X 6 0. 0. 0.
X 7 1. 0. 0.
X 9 1. 0. 0.15
X 11 -0.707 0.707 0.
X 13 -0.707 0.707 0.15

INPUTE 1 1

RLSE 2 1
RLSE 3 1
RLSE 4 1

END
HALT

INPUTE 1 1 0. 6.28 0.

TIMESTEP 1.0 100

END
END

The initial configuration of this mechanism is shown in Fig. 3.22. Figures 3.23, 3.24 and 3.25
show the zeroth, first and second order geometric transfer functions from inpute(1)

1 to output
e
(4)
1 , respectively. TheMATLAB commands to plot these data are:

>> plot(e(:,le(1,1)),e(:,le(1,1)), e(:,le(1,1)),e(:,le(4,1)))

Section 3.3. Cardan-joint mechanism 59

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

−0.1

0

0.1

Figure 3.22. Initial configuration of the cardan
joint.

0 1 2 3 4 5 6
0

1

2

3

4

5

6

e
1
(1) [rad]

e 4(1
) [r

ad
]

Figure 3.23. Zeroth order geometric transfer
function for the cardan joint.

0 1 2 3 4 5 6
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

e
1
(1) [rad]

D
F

(e
1(1

))

Figure 3.24. First order geometric transfer func-
tion for the cardan joint.

0 1 2 3 4 5 6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

e
1
(1) [rad]

D
2 F

(e
1(1

))

Figure 3.25. Second order geometric transfer
function for the cardan joint.

>> grid
>> xlabel(’e_1ˆ{(1)} [rad]’)
>> ylabel(’e_4ˆ{(1)} [rad]’)
>>
>> plot(e(:,le(1,1)),ed(:,le(4,1))./ed(:,le(1,1)))
>> grid
>> xlabel(’e_1ˆ{(1)} [rad]’)
>> ylabel(’DF(e_1ˆ{(1)})’)
>>
>> plot(e(:,le(1,1)),edd(:,le(4,1))./(ed(:,le(1,1)).ˆ2))
>> grid
>> xlabel(’e_1ˆ{(1)} [rad]’)
>> ylabel(’Dˆ2F(e_1ˆ{(1)})’)

60 Chapter 3. Examples

3.4 Planar four-bar mechanism

In examples 5.7.1 and 12.4.1 of the lecture notes [1] the planar four-bar mechanism of Fig. 3.26
is analysed analytically. The mechanism has one degree of freedom. The mechanism is mod-
elled by four rigid truss elements, denoted by 1, 2, 4 and 5, which are joined together at their
nodal points to form a rhombus. As Fig. 3.26 implies, these four bars are set at right angles

x

y

~1

~2 ~3

~4m

m1 m2

m3

m4 m5

g

k

Figure 3.26.Four-bar mechanism.

to one another. The diagonal element 3 represents a spring with stiffnessk = EA/l0. A con-
centrated massm is attached to node 4. The deformation parametere3 has been chosen as the
generalized coordinate. The equation of motion is

më3 +
√

2m(ė3)
2 + ke3 = mg . (3.1)

Using the coefficient matrices from the lecture notes, the linearized equation of motion is

mδë3 + 2
√

2mė3δė3 + (k −
√

2mg + 2
√

2më3 + 5m(ė3)
2)δe3 = 0 . (3.2)

These results can also be obtained numerically from aSPACAR analysis. E.g. with numerical
values form = 1, g = 10 andk = 1 and initial conditionse3 = 0 andė3 = 1 the acceleration
is according to Eq. (3.1)̈e3 = 10 −

√
2 = 8.59. A SPACAR input file (fourbar.dat) for this

case is:

PLTRUSS 1 1 2
PLTRUSS 2 1 3
PLTRUSS 3 2 3
PLTRUSS 4 2 4
PLTRUSS 5 3 4

X 1 0. 0.

Section 3.4. Planar four-bar mechanism 61

X 2 -0.7071 0.7071
X 3 0.7071 0.7071
X 4 0. 1.4142

FIX 1
FIX 4 1
DYNE 3 1

END
HALT

XM 4 1.
XF 4 0. -10.
ESTIFF 3 1.4142
STARTDE 3 1 0. 1.

END
END

In a MATLAB session we get (the literal text of the session is modified somewhat to get a more
compact presentation):

>> spacar(1,’fourbar’)
>> e(le(3,1))
ans = 0

>> ed(le(3,1))
ans = 1

>> edd(le(3,1))
ans = 8.5858

Substituting the numerical values of the parameters into the linearized equation of motion
Eq. (3.2) gives

δë3 + 2
√

2δė3 + (1 − 10
√

2 + 2
√

2(10 −
√

2) + 5)δe3 = 0 , (3.3)

or

δë3 + 2.83 δė3 + 16.14 δe3 = 0 . (3.4)

The stiffness term is a combination of

K0 = k = 1

G0 =
√

2ke3 = 0

N 0 =
√

2g + ė3)
2 − k/m e3 = 15.14

(3.5)

where the solution of Eq. 3.1

ë3 = g −
√

2(ė3)
2 − k/m e3 (3.6)

has been used. In aMATLAB session we get:

62 Chapter 3. Examples

>> spacar(4,’fourbar’)
>> m0
m0 = 1.0000

>> c0
c0 = 2.8285

>> k0
k0 = 1

>> n0
n0 = 15.1423

>> g0
g0 = 0

Section 3.5. Rotating mass–spring system 63

3.5 Rotating mass–spring system

Figure 3.27.Rotating mass–spring system.

Consider the system shown in Fig. 3.27. A smooth horizontal tube containing massesm1

and m2 connected with springsk1 = EA1/l1 and k2 = EA2/l2 is mounted on a rotating
shaft. The shaft rotates at constant angular speedφ̇. The unstretched lengths of the springs are
denoted byl1 and l2. The equations of motion in terms of the generalized coordinatesr1 and
r2 are

[

m1 0
0 m2

] [

r̈1

r̈2

]

=

[

m1φ̇
2r1 − k1(r1 − l1) + k2(r2 − r1 − l2)

m2φ̇
2r2 − k2(r2 − r1 − l2)

]

(3.7)

The stationary solution(r01, r02) is obtained by substitutinġr1 = ṙ2 = r̈1 = r̈2 = 0

[

k1 + k2 − m1φ̇
2 −k2

−k2 k2 − m2φ̇
2

] [

r01

r02

]

=

[

k1l1 − k2l2
k2l2

]

, (3.8)

from which the stationary configuration(r01, r02) is obtained analytically as

r01 =
−(m2k1l1 − m2k2l2)φ̇

2 + k1k2l1

m1m2φ̇4 − (k2m2 + k2m1 + k1m2)φ̇2 + k1k2

(3.9)

r02 =
−m1φ̇

2k2l2 + k1k2(l1 + l2)

m1m2φ̇4 − (k2m2 + k2m1 + k1m2)φ̇2 + k1k2

(3.10)

This result can also be obtained numerically from a SPACAR analysis. E.g. with the following
numerical values:

l1 = 0.10 m k1 = 1.3 kN/m
l2 = 0.15 m k2 = 0.7 kN/m

m1 = 0.80 kg φ̇ = 10 rad/s
m2 = 0.50 kg

A SPACAR input file (massspring.dat) describing this case is:

64 Chapter 3. Examples

PLBEAM 1 1 2 3 4
PLBEAM 2 3 4 5 6
PLTRUSS 3 1 5

X 1 0. 0.
X 3 0.1 0.
X 5 0.25 0.

FIX 1

INPUTX 2 1
DYNE 1 1
DYNE 3 1

RLSE 2 1

END
HALT

XM 2 1.
XM 3 0.8
XM 5 0.5

ESTIFF 1 130.
ESTIFF 2 105.

INPUTX 2 1 0.0 10.0

END
END

In a MATLAB session we find for the stationary configuration(r01) and(r02) in agreement with
Eqs. (3.9) and (3.10):

>> spacar(7,’massspring’)
>> x(lnp(3,1))

ans = 0.1184

>> x(lnp(5,1))

ans = 0.2891

The linearized equations of motion in terms of the dynamic degrees of freedom are:

[

m1 0
0 m2

] [

δr̈1

δr̈2

]

+

[

k1 + k2 − m1φ̇
2 −k2

−k2 k2 − m2φ̇
2

] [

δr1

δr2

]

=

[

0
0

]

(3.11)

Section 3.5. Rotating mass–spring system 65

The associated frequency equation is given by:

det

(

− ωi
2

[

m1 0
0 m2

]

+

[

k1 + k2 − m1φ̇
2 −k2

−k2 k2 − m2φ̇
2

])

= 0, (3.12)

where the quantitiesωi are the natural frequencies of the system. In a MATLAB session we
obtain:

>> spacar(7,’massspring’)
>> m0

m0 =

0.8000 0 0 0.5000

>> k0

k0 =

2000 -700 -700 700

>> n0

n0 =

-80.0000 0 -0.0000 -50.0000

The complex eigenvalues and associated eigenvectors can befound in the log file:

Complex eigenvalues and normalised eigenvectors of the sta te-space
system matrix
Notation (real : imaginary)
Eigenvalue numbers 1 to 4
(0.00000E+00 : +/-5.55511E+01) (0.00000E+00 : +/-2.47806 E+01)
Eigenvector numbers 1 to 4
(0.0141650 : 0.0000000) (0.0177403 : 0.0000000)
(-0.0111041 : 0.0000000) (0.0362089 : 0.0000000)
(0.0000000 : +/-0.7868804) (0.0000000 : +/-0.4396164)
(0.0000000 : -/+0.6168430) (0.0000000 : +/-0.8972801)

From the eigenvalues numbers in this table we findω1 = 24.78 rad/s andω2 = 55.55 rad/s.

66 Chapter 3. Examples

3.6 Cantilever beam in Euler buckling

F

l

1 2
3 4

65
21

Figure 3.28.Cantilever beam loaded axially by a forceF at the free end.

Consider a slender cantilever beam or column, with suppressed rotation of the free end, loaded
axially by a forceF . The smallest load that produces buckling is called the critical or Euler load
Fcr. For a load equal to or greater than the critical load, the beam is unstable. The bent shape
shown represents the buckling mode. Euler’s theoretical buckling load for the above beam end
conditions isFth = π2EI/l2, whereEI is the flexural rigidity andl the length of the beam.
This result can also be obtained numerically from a SPACAR analysis, e.g. with the following
numerical values,l = 1, EI = 1, F0 = 1. The beam is modelled by two equal planar beam
elements as shown in Figure 3.28. A SPACAR input file (column2.dat) for this case is:

PLBEAM 1 1 2 3 4
PLBEAM 2 3 4 5 6

X 1 0.0 0.0
X 3 0.5 0.0
X 5 1.0 0.0

FIX 1
FIX 2
FIX 6

DYNX 3 2
DYNX 4 1
DYNX 5 2
RLSE 1 2 3
RLSE 2 2 3

END
HALT

EM 1 1.
EM 2 1.

Section 3.6. Cantilever beam in Euler buckling 67

ESTIFF 1 0. 1.
ESTIFF 2 0. 1.

XF 5 -1.0 0.0

END
END

In a MATLAB session we obtain:

>> spacar(8,’column2’)
>> edit column2.log

Load multipliers and normalized buckling modes
Load multiplier no 1 to 3

9.94384680E+00 4.00000000E+01 1.28722820E+02
Buckling mode nro 1 to 3

0.2596610869 -1.0000000000 -0.0519056301
0.8141747968 0.0000000000 0.9932416764
0.5193221738 0.0000000000 -0.1038112603

Hence, we find a load multiplierλ1 = Fcr/F0 = 9.944. SinceF0 = 1 we have Fcr/Fth =
9.944/π2 = 1.0075.

68 Chapter 3. Examples

3.7 Cantilever beam subject to concentrated end force

1 2 3 54

F

l

Figure 3.29.Cantilever beam loaded by a concentrated force at the free end.

Consider a slender cantilever beam with a circular cross-section of diameterd = 1 cm and
length l = 10 m. The material properties for this example areEI = 102 Nm2. The beam
is subdivided into5 planar finite elements as shown in Fig. 3.29. A point forceF of 14 N is
applied along the vertical axis at the free end of the beam. Itgenerates an elastic deformation
as shown in the figure. The deformation is reached in ten stepsof loading. For each step the
residual vector converges in4 Newton–Raphson iterations with an accuracy equal to0.5E − 6.
A SPACAR input file (plbeam5.dat) for this case is:

PLBEAM 1 1 2 3 4
PLBEAM 2 3 4 5 6
PLBEAM 3 5 6 7 8
PLBEAM 4 7 8 9 10
PLBEAM 5 9 10 11 12

X 1 0. 0.
X 3 1.666 0.
X 5 3.333 0.

Section 3.7. Cantilever beam subject to concentrated end force 69

X 7 5. 0.
X 9 6.666 0.
X 11 10.00 0.

FIX 1
FIX 2

DYNE 1 2 3
DYNE 2 2 3
DYNE 3 2 3
DYNE 4 2 3
DYNE 5 2 3

END
HALT

EM 1 1.
EM 2 1.
EM 3 1.
EM 4 1.
EM 5 1.

ESTIFF 1 0.0 102.0
ESTIFF 2 0.0 102.0
ESTIFF 3 0.0 102.0
ESTIFF 4 0.0 102.0
ESTIFF 5 0.0 102.0

XF 11 0.0 -14

END
END

In a MATLAB session we get:

>> spacar(8,’plbeam5’)

>> x(lnp(11,1))
ans =

3.6808 (theoretically, 3.8109)

>> x(lnp(11,2))
ans =

-8.4897 (theoretically, -8.4044)

>> xcompl(lnp(11,1))
ans =

70 Chapter 3. Examples

0.4859 (undeformed configuration, 0.)

>> xcompl(lnp(11,2))
ans =

0.0633 (undeformed configuration, 3.268)

To show the usefulness ofSPAVISUAL the first three free vibration modes (no external loads)
and buckling modes (axially loaded by an end force) are displayed for the cantilever beam of
this example in figures 3.30 to 3.35.

Figure 3.30. First vibration mode for a cantilever
beam with 5 elements,ω1 = 0.355131 rad/s (the-
oretically,0.355100 rad/s).

Figure 3.31. First buckling mode for a cantilever
beam with 5 elements,Fcr1 = 2.516776 N (theo-
retically,2.516749 N).

Figure 3.32. Second vibration mode for a can-
tilever beam with 5 elements,ω2 = 2.2266 rad/s
(theoretically,2.22537 rad/s).

Figure 3.33. Second buckling mode for a can-
tilever beam with 5 elements,Fcr2 = 22.715 N
(theoretically,22.651 N).

Figure 3.34.Third vibration mode for a cantilever
beam with 5 elements,ω3 = 6.25198 rad/s (theo-
retically,6.23111 rad/s).

Figure 3.35.Third buckling mode for a cantilever
beam with 5 elements,Fcr3 = 64.798 N (theoreti-
cally, 62.919 N).

Section 3.8. Short beam 71

3.8 Short beam

F

y

h

l

Figure 3.36.Short Timoshenko beam loaded in shear.

In this example the influence of shear deformation on the behaviour of short beams is studied.
A square plate is loaded in shear in its plane as shown in Figure 3.36. The beam has unit height,
h, length,l, and Young’s modulus,E, and a small unit width,t. With Poisson’s ratioν = 0.27,
the shear correction value isk = 10(1 + ν)/(12 + 11ν) = 0.8484. The deflection, if shear
deflection is taken into account, is

y =
Fl3

12EI
+

2(1 + ν)Fl

kEth
(3.13)

with I = th3/12. So the compliance is

y

F
=

l3

12EI
+

2(1 + ν)l

kEth
= 1 +

2(1 + ν)

k
= 3.9940. (3.14)

The moment of inertia per unit of length isJ = ρth3/12.
An input file in which the beam is modelled by two planar beams of equal length (shear2.dat)
in this case is:

PLBEAM 1 1 2 3 4
PLBEAM 2 3 4 5 6

X 1 0.0 0.0
X 3 0.5 0.0
X 5 1.0 0.0

FIX 1
FIX 2
FIX 6
FIX 5 1
RLSE 1
RLSE 2
DYNX 3

72 Chapter 3. Examples

DYNX 4
DYNX 5 2

END
HALT

EM 1 1.0 0.0833333333
EM 2 1.0 0.0833333333
ESTIFF 1 1.0 0.0833333333 0.2495
ESTIFF 2 1.0 0.0833333333 0.2495

ITERSTEP 10 1 0.000000000001

END
END

In a MATLAB session, the compliances and eigenfrequencies can be foundas follows

>> spacar(8,’shear2’)
>> xcompl(lnp(5,2))
ans =

3.9940
>> spacar(7,’shear2’)
>> type shear2.log

...

Eigenvalue numbers 5 to 8
(0.00000E+00 : +/-2.54107E+00) (0.00000E+00 : +/-7.95645E-01)
Eigenvector numbers 5 to 8
(0.0000000 : 0.0000000) (0.0000000 : 0.0000000)
(-0.1544078 : 0.0000000) (0.4065978 : 0.0000000)
(0.2825588 : 0.0000000) (0.2566711 : 0.0000000)
(0.1744141 : 0.0000000) (0.6173727 : 0.0000000)
(0.0000000 : 0.0000000) (0.0000000 : 0.0000000)
(0.0000000 : -/+0.3923612) (0.0000000 : +/-0.3235074)
(0.0000000 : +/-0.7180016) (0.0000000 : +/-0.2042190)
(0.0000000 : +/-0.4431985) (0.0000000 : +/-0.4912094)

...

The compliance based on thin plate theory is3.8822 m/N, so the approximation with a short
beam overrates the compliance by about 3%. If the shear flexibility were nor included, the
compliance would be1.0 m/N.
The lowest numerical eigenfrequency,ω1 = 0.795645 rad/s, compares well with a value from
plate theory,ω1,pl = 0.7987 rad/s. If shear flexibility nor rotational inertia is included, the first
numerical eigenfrequency is1.6168 rad/s.

Section 3.9. Lateral buckling of cantilever beam 73

3.9 Lateral buckling of cantilever beam

In this example lateral buckling is considered of a cantilever beam with a narrow rectangular
cross-section which is loaded by a transverse forceFkipp at its free end in the direction of the
larger flexural rigidity. The theoretical buckling load isFth = 4.013

√
(EISt)/l

2, whereEI is
the smaller flexural rigidity,St the torsional rigidity andl the length of the beam. For numerical
analysis, the beam is divided into four equal spatial beam elements in which the second-order
terms in the bending deformations are included in the analysis.
In a MATLAB session we get:

>>spacar(8,’lateral4’)
>>spavisual(’lateral4’)

An input file (lateral4.dat) describing this case is:

BEAM 1 1 2 3 4 0. 1. 0.
BEAM 2 3 4 5 6 0. 1. 0.
BEAM 3 5 6 7 8 0. 1. 0.
BEAM 4 7 8 9 10 0. 1. 0.

X 1 0.00 0.00 0.00
X 3 0.25 0.00 0.00
X 5 0.50 0.00 0.00
X 7 0.75 0.00 0.00
X 9 1.00 0.00 0.00

DYNE 1 2 5 6
DYNE 2 2 5 6
DYNE 3 2 5 6
DYNE 4 2 5 6

FIX 1
FIX 2

OUTLEVEL 0 1

END
HALT

EM 1 1.0 0.0033
EM 2 1.0 0.0033
EM 3 1.0 0.0033
EM 4 1.0 0.0033

ESTIFF 1 0.0 2.0 0.0 1.0
ESTIFF 2 0.0 2.0 0.0 1.0
ESTIFF 3 0.0 2.0 0.0 1.0
ESTIFF 4 0.0 2.0 0.0 1.0

74 Chapter 3. Examples

XF 9 0.0 0.0 -1.0

END
END

VISUALIZATION
BUCKLINGMODE 1
TRANSPERANCY 0.9
BEAMVIS 0.01 0.1
LIGHT 1
STEPLINE 0.01
ENLARGEFACTOR 0.04

The 3D-visualization of this file is presented in figure 3.37.The buckling load found is5.7619 N,
whereas the theoretical value is5.6752 N. If the warping is constrained at the clamped end, the
first element is effectively shorter for torsion by a distance b

√

(1 + ν)/24, whereb is the height
of the beam, hereb = 0.2 m, andν is Poisson’s ratio, hereν = 0. The torsional stiffness of the
first beam element now increases with a factorl/(l− b

√

2/3) = 1.19517. The input line for the
stiffness of the first beam element now becomes

ESTIFF 1 0.0 2.39034 0.0 1.0

The critical load is now increased to6.1694 N.

Section 3.9. Lateral buckling of cantilever beam 75

F

Figure 3.37.Cantilever beam lateral buckling (buckling mode 1).

76 Chapter 3. Examples

3.10 State-variable and output equations

y

x

b1 m2 k2

k5

1 2

3

5

7 9

l4

l3

1 2

3

4

5

Figure 3.38.Lever system.

Find the state-space-variable and output equations for thesystem shown in Fig. 3.38.
The input is the displacementδx7 of the left end of springk2 = EA2/l2; it affects the massm2

through springk5 = EA5/l5 and the lever, which is modelled by the planar beam elements3
and4. The lever has a fixed pivot at node5 and is assumed to be massless yet rigid. Its angular
orientation is small so that only horizontal motion need be considered. We will selectδx2 and
δẋ2 as state variables, withδx7 being the input and reaction forceδfx

5 as output. With these
definitions the state variable and output equations are then:

[

δẋ2

δv̇2

]

=

[

0 1
−k2/m2 −b1/m2

]

︸ ︷︷ ︸

A

[

δx2

δẋ2

]

+

[

0
−(k2/m2)(l4/l3)

]

︸ ︷︷ ︸

B

[

δx7
]

(3.15)

[

δfx
5
]

=
[

−k2(1 + l3/l4) 0
]

︸ ︷︷ ︸

C

[

δx2

δẋ2

]

+
[

−k2l3/l4(1 + l3/l4)
]

︸ ︷︷ ︸

D

[

δx7
]

, (3.16)

which have the desired form. These results can also be obtained numerically from a SPACAR
analysis. E.g. with numerical values form2 = 1, b1 = EdA1/l1 = 5, k2 = k5 = 1000 and
l4/l3 = 2. A SPACAR input file (lever.dat) for this case is:

PLTRUSS 1 1 2
PLTRUSS 2 2 3
PLBEAM 3 3 4 5 6
PLBEAM 4 5 6 7 8
PLTRUSS 5 7 9

X 1 0.0 0.0

Section 3.10. State-variable and output equations 77

X 2 1.0 0.0
X 3 2.0 0.0
X 5 2.0 2.0
X 7 2.0 3.0
X 9 3.0 3.0

FIX 1
FIX 2 2
FIX 5
FIX 9

DYNX 2 1
INPUTX 7 1
RLSE 1 1
RLSE 2 1
RLSE 5 1

END
HALT

XM 2 1.0

ESTIFF 2 1000.
ESTIFF 5 1000.
EDAMP 1 5

END
HALT

INX 1 7 1
OUTF 1 5 1

END
END

In a MATLAB session we get:

>> spacar(9,’lever’)
>> A=getfrsbf(’lever.ltv’, ’A’, 1)

A =

0 1
-1000 -5

>> B=getfrsbf(’lever.ltv’, ’B’, 1)

78 Chapter 3. Examples

B =

0
-2000

>> C=getfrsbf(’lever.ltv’, ’C’, 1)

C =

-3000 0

>> D=getfrsbf(’lever.ltv’, ’D’, 1)

D =

-6000

The state-space matrices can also be obtained with the commandgetss(’lever’) . A Bode
diagram (Figure 3.39) can be made by the command

>> bode(getss(’lever’))

0

10

20

30

40

50

60

70

80

90

100

M
ag

ni
tu

de
 (

dB
)

10
−1

10
0

10
1

10
2

10
3

180

225

270

315

360

P
ha

se
 (

de
g)

Bode Diagram

Frequency (rad/sec)

Figure 3.39.Bode diagram for the lever system.

Section 3.11. Rigid spatial manipulator mechanism 79

3.11 Rigid spatial manipulator mechanism

Figure 3.40 gives an example of a simplified manipulator. Theprescribed motion of the end-
effectorC is represented by the coordinatesxC , yC andzC as functions of time.

x

y

z

I

II

B

C

1, 2

3

4 5

t

v

1.76 m/s

0.0 0.2 0.4 1.0 1.2 1.4

Figure 3.40. Spatial manipulator mechanism, trajectory and velocity profile of the end-
effector.

The end-effector must follow the straight trajectory from point I to point II. Three trajectories
are distinguished: Initially the manipulator is at rest for0.2 s. Next, during 1.0 s, the mo-
tion is carried out according to the velocity profile in Fig. 3.40 with constant acceleration and
deceleration during the first and final 0.2 s. Finally the manipulator is at rest again.
The motion of manipulator is determined by the rotation of three hinges. Hinge 1 enables
rotations about thez-axis, while hinge 2 enables motions perpendicular to thexy-plane. Hinge 3
takes care of motions in the same plane wherein hinge 2 is active. The hinges are driven by
internal actuators. For control purposes we assume that sensors are available that measure the
rotations and the speed of rotation of the hinges.
The manipulator consists of two beams, elements 4 and 5, which are equal in length:l4 =
l5 = 0.7 m. The distributed mass per length isρ4 = 4 kg/m for element 4 andρ5 = 2 kg/m for
element 5. The concentrated masses in nodesB andC are10 kg and30 kg respectively. The
effect of gravity is accounted for by applying external forcesmig in negativez-direction, where
g = 10 m/s2.

Inverse dynamics problem

First the inverse dynamics problem is analysed. Figure 3.44shows the velocity components of
the end-effector that are computed for the trajectory defined in the input file. The position and
acceleration components of the end-effector are shown Fig.3.43 and Fig. 3.45, respectively.
The following input file (robotinv.dat) is used (SPACARmode=2):

80 Chapter 3. Examples

HINGE 1 1 2 0 0 1
HINGE 2 2 3 0 -1 0
BEAM 4 4 3 5 6 0 1 0
HINGE 3 6 7 0 -1 0
BEAM 5 5 7 8 9 0 1 0

X 4 0. 0. 0.
X 5 0.268 0. 0.6467
X 8 0.536 0. 0.

FIX 1
FIX 4
INPUTX 8 1
INPUTX 8 2
INPUTX 8 3
RLSE 1 1
RLSE 2 1
RLSE 3 1

END
HALT

XM 5 10.
XM 8 30.
EM 4 4.
EM 5 2.
XF 1 0. 0. -14.
XF 5 0. 0. -121.
XF 8 0. 0. -307.

END
HALT

TRAJECT 1
TRANS 8 0.536 0. 0.
TRTIME 0.2 20
TRAJECT 2
TRANS 8 0. 1.3 0.
TRVMAX 8 0.2 1.76
TRFRONT 8 0.
TRTIME 1.0 100

TRAJECT 3
TRANS 8 0. 1.3 0.
TRTIME 0.2 20

NOMS 1 1 1
NOMS 2 2 1
NOMS 3 3 1

REFE 1 1 1
REFE 2 2 1
REFE 3 3 1
REFEP 4 1 1
REFEP 5 2 1
REFEP 6 3 1
REFEDP 7 1 1
REFEDP 8 2 1
REFEDP 9 3 1
REFX 10 8 1
REFX 11 8 2
REFX 12 8 3
REFXP 13 8 1
REFXP 14 8 2
REFXP 15 8 3

END
END

VISUALIZATION
BEAMVIS 0.01 0.01
HINGEVIS 1 0.01 0.03
HINGEVIS 2 0.01 0.03
HINGEVIS 3 0.01 0.03
LIGHT 1
TRANSPARENCY 0.6
TRAJECT 1
TRAJECTNODE 8

The inverse dynamics analysis yields the stresses that haveto be applied at the hinges and
the deformations of the hinges. Fig. 3.42 shows the stresses. Figures 3.46 and 3.47 show
the deformations which are the relative rotations of the hinges, and the first time derivatives,
respectively. Clearly, to accomplish the quite simple trajectory of the end-effector of this non-

Section 3.11. Rigid spatial manipulator mechanism 81

Figure 3.41. SPAVISUAL output for the spatial manipulator mechanism.

linear mechanism rather complicated functions for the rotation of the hinges are needed.
Note that the input file defines the inputs and outputs that will be used in aSIMULINK simu-
lation. The nominal inputs are computed to accomplish the deformations of the hinges. The
outputs include the six sensor signals with the rotations and the speeds of rotation of the hinges.
Nine more outputs are defined to obtain extra information on the performance of the manipula-
tor: the acceleration of the rotation of the hinges and position and velocity of the end-effector.
At the end of the file visualization settings forSPAVISUAL are defined. In figure 3.41 the output
of SPAVISUAL is presented.

82 Chapter 3. Examples

0 0.2 0.4 0.6 0.8 1 1.2 1.4
−200

−100

0

100

200

300

400

500

600

time [s]

u0
(1

),
 u

0(
2)

, u
0(

3)
 [N

/m
]

Figure 3.42. Stresses to be applied at the hinges
(u0).

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

time [s]

x,
y,

z(
8)

 [m
]

Figure 3.43. Position coordinates of the end-
effector.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
−1

−0.5

0

0.5

1

1.5

2

time [s]

(d
/d

t)
 x

,y
,z

(8
)

[m
/s

]

Figure 3.44. Velocity components of the end-
effector.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
−10

−8

−6

−4

−2

0

2

4

6

8

10

time [s]

(d
/d

t)
2 x

,y
,z

(8
)

[m
/s

2]

Figure 3.45.Acceleration components of the end-
effector.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
−1

−0.5

0

0.5

1

1.5

2

time [s]

e1
(1

),
e1

(2
),

e1
(3

)
[r

ad
]

Figure 3.46. Deformations (relative rotations) of
hinges 1, 2 and 3.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
−2

−1

0

1

2

3

4

time [s]

(d
/d

t)
 e

1(
1)

,e
1(

2)
,e

1(
3)

 [r
ad

/s
]

Figure 3.47. Velocities of deformation of hinges
1, 2 and 3.

Section 3.11. Rigid spatial manipulator mechanism 83

Rotational nodes for the spatial manipulator
node 1 node 2 node 3 node 6 node 7 node 9

type 2 2 2 2 2 2
λ0 2 2 2 2 2 2
λ1 1 2 2 2 2 2
λ2 1 2 2 2 2 2
λ3 1 2 2 2 2 2
forces 0 0 0 0 0 0
I∗∗ 0 0 0 0 0 0

Translational nodes for the spatial manipulator
node 4 node 5 node 8

type 1 1 1
x-coordinate 0 0.268 0.536
y-coordinate 0 0 0
z-coordinate 0 0.647 0
BC-typex 1 2 3
x0 0.536
ẋ0 0
BC-typey 1 2 3
y0 0
ẏ0 0
BC-typez 1 2 3
z0 0
ż0 0
forcex 0 0 0
forcey 0 0 0
forcez (∗) -14 -121 -307
mass 0 10 30

(∗) including the element masses

Elements for the spatial manipulator
element 1 element 2 element 3 element 4 element 5

element type hinge hinge hinge beam beam
T-nodes 4, 5 5, 8
R-nodes 1, 2 2, 3 6, 7 3, 6 7, 9
x localy-axis 0 0 0 0 0
y localy-axis 0 -1 -1 1 1
z local z-axis 1 0 0 0 0
typee1 2 2 2 1 1
typee2 1 1 1 1 1
typee3 1 1 1 1 1
typee4 1 1
typee5 1 1
typee6 1 1

T=translational, R=rotational

84 Chapter 3. Examples

Linearization

In one of the next sections the design of a closed-loop controller for this manipulator will be
discussed. This controller depends on parameters derived from the linearized equations of mo-
tion. Therefore, a linearization is needed in terms of the DOFs corresponding to the actuator
joints. An input file (robotinvlin.dat) for this analysis (SPACARmode=3) is:

HINGE 1 1 2 0 0 1
HINGE 2 2 3 0 -1 0
BEAM 4 4 3 5 6 0 1 0
HINGE 3 6 7 0 -1 0
BEAM 5 5 7 8 9 0 1 0

X 4 0. 0. 0.
X 5 0.268 0. 0.6467
X 8 0.536 0. 0.

FIX 1
FIX 4
INPUTE 1 1
INPUTE 2 1
INPUTE 3 1

END
HALT

XM 5 10.
XM 8 30.
EM 4 4.
EM 5 2.
XF 1 0. 0. -14.
XF 5 0. 0. -121.
XF 8 0. 0. -307.

END
HALT

NOMS 1 1 1
NOMS 2 2 1
NOMS 3 3 1

REFE 1 1 1
REFE 2 2 1
REFE 3 3 1
REFEP 4 1 1
REFEP 5 2 1
REFEP 6 3 1
REFEDP 7 1 1
REFEDP 8 2 1
REFEDP 9 3 1
REFX 10 8 1
REFX 11 8 2
REFX 12 8 3
REFXP 13 8 1
REFXP 14 8 2
REFXP 15 8 3

END
END

Note that the setpoints are read from thesbd data file of which the name is the longest substring
of the name of the input file namerobotinvlin . The file from the previous inverse dynamics
run robotinv is a likely candidate.

Section 3.11. Rigid spatial manipulator mechanism 85

Open-loop simulation

The behaviour of the manipulator mechanism without feed-back control is simulated using
SIMULINK for the open-loop configuration of Fig. 3.48. Two blocks fromthe SPACAR library
spacar_lib are used to read theSetpoint U0 andReference Y0 data, respectively,
from the inverse dynamics run (file namerobotinv). In this open-loop configuration the
nominal input is fed directly into theSPASIM block (also available in the library). In the in-
put file robotsim for this block the actual inputs and outputs are identical tothe previously
defined inputs and outputs.

HINGE 1 1 2 0 0 1
HINGE 2 2 3 0 -1 0
BEAM 4 4 3 5 6 0 1 0
HINGE 3 6 7 0 -1 0
BEAM 5 5 7 8 9 0 1 0

X 4 0. 0. 0.
X 5 0.268 0. 0.6467
X 8 0.536 0. 0.

FIX 1
FIX 4
DYNE 1 1
DYNE 2 1
DYNE 3 1

END
HALT

XM 5 10.
XM 8 30.
EM 4 4.
EM 5 2.
XF 1 0. 0. -14.
XF 5 0. 0. -121.
XF 8 0. 0. -307.

END
HALT

INPUTS 1 1 1
INPUTS 2 2 1
INPUTS 3 3 1
OUTE 1 1 1
OUTE 2 2 1
OUTE 3 3 1
OUTEP 4 1 1
OUTEP 5 2 1
OUTEP 6 3 1
OUTEDP 7 1 1
OUTEDP 8 2 1
OUTEDP 9 3 1
OUTX 10 8 1
OUTX 11 8 2
OUTX 12 8 3
OUTXP 13 8 1
OUTXP 14 8 2
OUTXP 15 8 3

END
END

The other blocks in the block diagram are standardSIMULINK blocks and are used to export data
to workspace and to display results on the screen. The “Selector” blocks select only specified
components from an input vector. They are e.g. used to selectonly the first three components of
the output vector (deformations of the hinges) as displaying all components makes the graphs
unreadable.
SIMULINK ’s ode45 solver is used with a relative tolerance of10−5, an absolute tolerance of
10−8 and a maximum time step of0.01 s. With these parameters the simulation of the motion
from t = 0.0 s to t = 1.5 s is completed after 172 time steps. The size of many time steps is

86 Chapter 3. Examples

yref

Yref To Workspace

y

Y To Workspace

unom

Unom To Workspace

t

Time To Workspace

robotinvlin

Setpoint U0

Selector

Selector Ytip

Selector

Selector Eref

Selector

Selector E

Scope dYtip

Scope Eref

Scope Erobotsim
SPASIM

robotinvlin

Reference Y0

1.5

Display Time

Clock

3

3

3
15

15

15

15

3

15

15

15

15

3

15 3

Figure 3.48. Block diagram for an open-loop simulation of the motion of the manipulator
mechanism usingSIMULINK .

0 0.2 0.4 0.6 0.8 1 1.2 1.4
−1

−0.5

0

0.5

1

1.5

2

time [s]

e1
(1

),
e1

(2
),

e1
(3

)
[r

ad
]

e
(1)
1

e
(2)
1

e
(3)
1

Figure 3.49. Deformation of the hinges of spatial
manipulator mechanism in an open-loop simula-
tion.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

time [s]

x,
y,

z(
8)

 [m
]

x(8) y(8)

z(8)

Figure 3.50. Position of the end-effector of spa-
tial manipulator mechanism in an open-loop sim-
ulation.

dictated by the specified maximum value.
The results from the simulation are plotted using theMATLAB commands;

>> plot(t,yref(:,1),’r’,t,yref(:,2),’g’,...
t,yref(:,3),’b’,t,y(:,1),’r:’,...
t,y(:,2),’g:’,t,y(:,3),’b:’)

>> plot(t,yref(:,10),’r’,t,yref(:,11),’g’,...
t,yref(:,12),’b’,t,y(:,10),’r:’,...
t,y(:,11),’g:’,t,y(:,12),’b:’)

Figures 3.49 and 3.50 show the deformation of the hinges and the position coordinates of the
end-effector from this simulation. The solid lines are the reference data (yref) and the dotted
lines are from the actual simulation (y). Clearly, small errors during the integration lead to
relatively large position errors at the end of the motion. The error can be decreased by increasing
the integration accuracy, e.g. by enlarging the number of computed setpoints. More reliable
results can be obtained by applying feedback control, as will be discussed next.

Section 3.11. Rigid spatial manipulator mechanism 87

Closed-loop simulation

The block diagram of Fig. 3.48 is extended with a feedback controller as shown in Fig. 3.51.
A feedback signal is computed by a controller that is implemented as a subsystem block and
a multiplication with the reduced mass matrixM 0. The subsystem assumes that the input is a
vector with bothδe andδė. These are the differences in joint positions and velocities which are
computed by comparing the actual motion and the nominal output. The output of the subsystem
is

Kpδe + Kvδė

with well chosen matricesKp andKv (see e.g. the lecture notes [1]). This output is multiplied
with the time-dependent3× 3 reduced mass matrixM 0 using a block from thespacar_lib
library. Finally the nominal input vectoru0 is added as a feedforward signal.

robotinvlin

times M0

yref

Yref To Workspace

y

Y To Workspace

unom

Unom To Workspace

u

U To Workspace

t

Time To Workspace

robotinvlin

Setpoint U0

Selector

Selector Ytip

Selector

Selector Eref + Edref

Selector

Selector Eref

Selector

Selector E + Ed

Selector

Selector E

Scope dYtip

Scope Eref

Scope E
robotsim
SPASIM

robotinvlin

Reference Y0

Omega = 28
beta = 0.85

Kp Kv control

1.5

Display Time

Clock

15
15

15

15

3

36
6

6

3
3

3
3
Unom 3

3

6 3 3

6

6

6

315

15
15

15

15

Figure 3.51. Block diagram for a closed-loop simulation of the motion of the manipulator
mechanism usingSIMULINK . Most signals are vectors and the numbers indicate the size of
the vectors.

The motion is simulated with the same parameters as in the open-loop simulation (see page 85).
In this case the actual size of the variable time step is somewhat smaller and after 183 time
steps the simulation is completed. The differences betweenthe prescribed and actual trajectory
is much smaller in this case as is illustrated in Figs. 3.52 and 3.53. The maximum error of the
tip position is less than 1 mm which is better than 0.1%.
Figs. 3.54 and 3.55 show the feedforward part (u0) and feedback part (u − u0) of the input
applied to the manipulator, respectively. Clearly, the larger contribution is from the feedforward
part. The size of the feedback part is smaller and relativelylarge correction are only applied
during limited periods of time. However, as is clear from this example, this feedback is essential
to keep the manipulator on track.
The simulation for 1.5 s now requires 182 time steps, which isonly slightly more than in the
open-loop simulation. However, the simulation takes much more time which is caused by the
occurrence of a so-called algebraic loop in the block diagram. The reason for this algebraic
loop is the presence of the joint accelerations in the outputvector of thespasim block, as
accelerations depend algebraically on the input torques. These accelerations are only exported
to the workspace and are not used in the feedback loop so thereis no real algebraic loop. Unfor-
tunately,SIMULINK has no means to detect this. If you are not interested in the accelerations,
they can easily be removed from the output vector and the simulation speed will increase sig-
nificantly.

88 Chapter 3. Examples

0 0.2 0.4 0.6 0.8 1 1.2 1.4
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5
x 10

−3

time [s]

e1
(1

)−
e1

re
f(

1)
,e

1(
2)

−
e1

re
f(

2)
,e

1(
3)

−
e1

re
f(

3)
 [r

ad
]

e
(1)
1 − e

(1)
1,ref

e
(2)
1 − e

(2)
1,ref

e
(3)
1 − e

(3)
1,ref

Figure 3.52. Error in the deformation of the
hinges of spatial manipulator mechanism in a
closed-loop simulation.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
−7

−6

−5

−4

−3

−2

−1

0

1

2

3
x 10

−4

time [s]

x−
xr

ef
,y

−
yr

ef
,z

−
zr

ef
(8

)
[m

]

x(8) − x
(8)
ref

y(8) − y
(8)
ref

z(8) − z
(8)
ref

Figure 3.53. Position error of the end-effector of
spatial manipulator mechanism in a closed-loop
simulation.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
−200

−100

0

100

200

300

400

500

600

time [s]

u0
(1

,2
,3

)
[N

/m
]

u
(1)
0

u
(2)
0

u
(3)
0

Figure 3.54. Input applied to the manipulator:
feedforward part (u0).

0 0.2 0.4 0.6 0.8 1 1.2 1.4
−20

−10

0

10

20

30

40

time [s]

u−
u0

(1
,2

,3
)

[N
/m

]

u(1) − u
(1)
0

u(2) − u
(2)
0

u(3) − u
(3)
0

Figure 3.55. Input applied to the manipulator:
feedback part (u − u0).

Section 3.12. Flexible spatial manipulator mechanism 89

3.12 Flexible spatial manipulator mechanism

To be added ...

90 Chapter 3. Examples

3.13 Chord-driven underactuated robotic finger

F
M

distal phalanx

proximal phalanx
first pulley

second pulley

third pulley

Figure 3.56.Robotic finger.

In order to illustrate the use of the planar belt/gear element, a model for a chord-driven underac-
tuated robotic finger with two phalanges, as in a thumb, is considered; see Fig. 3.56. The distal
phalanx can rotate with respect to the proximal phalanx and the proximal phalanx can rotate
with respect to the palm, which is assumed to be immobile. A pulley is rigidly connected to
the distal phalanx, centred at its rotation point, which carries a chord that is slung over a second
pulley centred at the rotation point of the proximal phalanx, but free to rotate. The chord is
finally attached to a third pulley, which is driven by a motor.The finger is underactuated, for
it has two degrees of freedom, but a single motor. The degreesof freedom are chosen as the
relative rotation angle between the two phalanges and the rotation angle of the motor pulley.
A forceF = 10 N acts near the tip of the finger, which is balanced by a momentM = 1.5 Nm
delivered by the motor. Owing to the choice of the dimensionsof the radii of the pulleys and
the lengths of the phalanges, this is an equilibrium position.

1 2 3

45

6

F
M

y

x

Figure 3.57.Finite element model for the robotic finger.

The finite element model is shown in Fig. 3.57. The input file,finger.dat , is

PLBEAM 1 1 2 3 4
PLTOR 2 4 5
PLBEAM 3 3 5 6 7
PLBELT 4 8 9 1 10 -0.015 -0.015

Section 3.13. Chord-driven underactuated robotic finger 91

PLBELT 5 1 10 3 5 -0.015 -0.009
PLRBEAM 6 6 7 11
FIX 1 1 2
FIX 8 1 2
DYNX 9 1
DYNE 2 1
X 1 0 0
X 3 0.06 0.0
X 6 0.15 0.0
X 8 0 -0.06
X 11 0.15 -0.015
END
HALT
EM 3 1.0
EM 5 1.0
STARTDX 9 1 0.0 0.0
STARTDE 2 1 0.0 0.0
XF 11 0.0 10.0
XF 9 -1.5
TIMESTEP 0.2 100
END
END
VISUALIZATION
VIBRATIONMODE 1
ENLARGEFACTOR 0.2

By running SPACAR with mode=7, it can be checked that the initial position is indeed an
equilibrium position, but it is unstable. One mode has an eigenvalue equal to zero, and in
the corresponding mode shape, the distal phalanx remains horizontal. The other mode has an
exponentially increasing or decaying motion and is shown inFigure 3.58. (Note that the current
version ofSPAVISUAL does not draw the pulleys.) A simulation with an initial perturbation,
specified by

STARTDX 9 1 0.001 0.04
STARTDE 2 1 0.004 0.16

shows this unstable behaviour. Note that the initial perturbation is approximately in the direction
of the eigenvector corresponding to the unstable eigenvalue.

92 Chapter 3. Examples

Figure 3.58.Unstable mode.

Section 3.14. Tricycle 93

3.14 Tricycle

x

y

x

z λ

Figure 3.59.Tricycle.

A tricycle has two rear wheels on a common axle and a front wheel in a fork that can rotate
about a steering axis with respect to the rear frame. The steering axis can be vertical (λ = 0) or
be inclined; see Fig. 3.59. The input file for the planar version, trike2.dat , is:

PLRBEAM 1 1 2 3
PLWHEEL 2 3 2 4 0.3 0.0 1.0
PLRBEAM 3 1 2 5
PLWHEEL 4 5 2 6 0.3 0.0 1.0
PLRBEAM 5 1 2 7
PLTOR 6 2 8
PLRBEAM 7 7 8 9
PLWHEEL 8 9 8 10 0.25 0.0 1.0
X 1 0.3 0.0
X 3 0.0 0.35
X 5 0.0 -0.35
X 7 1.05 0.0
X 9 1.00 0.0
RLSE 4 2
DYNE 6 1
KINX 1 1 2
KINX 2 1
DYNX 4 1
KINX 6 1
KINX 10 1
END

94 Chapter 3. Examples

HALT
XM 1 80.0
XM 2 5.0
XM 3 2.0
XM 4 0.1
XM 5 2.0
XM 6 0.1
XM 8 0.025
XM 9 1.5
XM 10 0.05
STARTDX 4 1 0.0 10.0
STARTDE 6 1 0.5 0.0
TIMESTEP 1.0 100
END
END

The origin of the coordinate system is initially located at the centre of the rear axle, with the
x-axis pointing in the forward direction and they-axis pointing to the left. The centre of mass
of the frame is at a distance of 0.3 m in front of the rear axle. The rear wheels, elements 2 and 4,
have a radius of 0.3 m and are connected to the centre of mass ofthe frame by two rigid beams,
elements 1 and 3. Another rigid beam, element 5, connects thecentre of mass of the frame
to the steering head, where the hinge, element 6, makes the connection to the front fork. The
rigid beam 7 represents the rigid connection between the steering head and the the front wheel,
element 8, with radius 0.25 m, which is conncted to the front fork. All wheels can rotate freely
about their spin axis. The frame and the wheels have mass, butthe front fork is assumed to be
massless.
The system has two degrees of freedom: the rotation angle of the left rear wheel and the steering
angle are chosen as generalized coordinates. The lateral slip of the right rear wheel is released,
because otherwise the system whould be overconstrained. The other five slips at the wheels
are prescribed as zero to impose the non-holonomic constraints of pure rolling. Five kinematic
coordinates are defined as the two position coordinates and the yaw angle for the rear frame and
the two rotation angles at the other wheels. The moments of inertia at the nodes 4, 6 and 10 are
the moments of inertia about the spin axes of the wheels.
The stationary motion and the linearized equations can be found by runningSPACAR with
mode=7. It appears that there are seven eigenvalues equal to zero, with eigenvectors which
correspond to the three rotations of the wheels and the two positions and yaw angle of the rear
frame, and a change in the forward velocity. The other two eigenvalues are real and negative,
corresponding to exponentially decaying motion. A simulation can be made withmode=1.
A three-dimensional model of the same tricycle is (filetrike3v.dat)

RBEAM 1 1 2 3 0.0 1.0 0.0
HINGE 2 2 4 0.0 1.0 0.0
WHEEL 3 3 4 5 0.0 1.0 0.0
RBEAM 4 1 2 6 0.0 1.0 0.0
HINGE 5 2 7 0.0 1.0 0.0
WHEEL 6 6 7 8 0.0 1.0 0.0
RBEAM 7 1 2 9 0.0 1.0 0.0
HINGE 8 2 10 0.0 0.0 1.0

Section 3.14. Tricycle 95

RBEAM 9 9 10 11 0.0 1.0 0.0
HINGE 10 10 12 0.0 1.0 0.0
WHEEL 11 11 12 13 0.0 1.0 0.0
HINGE 12 14 2 0.0 0.0 1.0
X 1 0.3 0.0 0.9
X 3 0.0 0.35 0.3
X 5 0.0 0.35 0.0
X 6 0.0 -0.35 0.3
X 8 0.0 -0.35 0.0
X 9 1.05 0.0 0.3
X 11 1.00 0.0 0.25
X 13 1.00 0.0 0.0
FIX 14
RLSE 12 2 3
RLSE 6 6
DYNE 2 1
DYNE 8 1
KINE 5 1
KINE 10 1
KINE 12 1
KINX 1 1
KINX 1 2
END
HALT
GRAVITY 0.0 0.0 -9.81
XM 1 80.0
XM 2 2.0 0.0 0.0 3.0 0.0 5.0
XM 3 2.0
XM 4 0.0 0.0 0.0 0.1 0.0 0.0
XM 6 2.0
XM 7 0.0 0.0 0.0 0.1 0.0 0.0
XM 11 1.5
XM 12 0.025 0.0 0.0 0.05 0.0 0.025
STARTDE 2 1 0.0 10.0
STARTDE 8 1 -0.5 0.0
TIMESTEP 1.0 100
END
END

Note that hinges (elements 2, 5 and 10) are used to connect thewheels to the rigid beams and
an additional hinge, element 12, is introduced in order to make the yaw angle available. With
mode=7, the same eigenvalues are found as for the planar model. If variables are saved from
the run with the planar model, it will be seen that the resultsof a simulation are very nearly the
same. The three-dimensional model has the advantage that the normal forces at the wheels are
calculated, which are the first components of the stress of the wheel elements (Fig 3.60):

>> plot(time,sig(:,le(3,1)),’k-’,time,sig(:,le(6,1)),’k:’, ...
time,sig(:,le(11,1)),’k--’); grid on

96 Chapter 3. Examples

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−600

−500

−400

−300

−200

−100

0

time [s]

no
rm

al
 fo

rc
e

[N
]

Figure 3.60. Normal forces at road contact points. The fully drawn line is for the left rear
wheel, the dotted line for the right rear wheel and the dashed line for the front wheel.

>> xlabel(’time [s]’)
>> ylabel(’normal force [N]’)

It is seen that all forces are negative, which means that the normal force is compressive, as it
should be. The normal force in the right rear wheel is initially much higher than the corre-
sponding force at the left rear wheel. Because the wheel planes remain perpendicular to the
road surface, the third components of the stresses are also equal to the normal force at the road.
Lateral forces are in the second components, as well as in thesixth in a scaled version. The
fourth components of the stresses are zero, as they should be. The fifth components represent
scaled longitudinal tyre forces at the contact points.
A model with an inclined steering axis, as shown in Fig. 3.59,is in the input filetrike3i.dat ,
which differs fromtrike3v.dat in the definition of the hinge at the steering head, element 8,
and the position of node 9,

...

HINGE 8 2 10 -0.30901699437495 0.0 0.95105651629515

...

X 9 0.96 0.0 0.3

...

Section 3.14. Tricycle 97

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−600

−500

−400

−300

−200

−100

0

time [s]

no
rm

al
 fo

rc
e

[N
]

Figure 3.61. Normal forces at road contact points. The fully drawn line is for the left rear
wheel, the dotted line for the right rear wheel and the dashed line for the front wheel.

Note that for this case, the normal force in the right rear wheel is initially just compressive
(Figure 3.61), so for a slightly higher speed, the wheel would lose contact with the ground.
This loss of contact cannot directly be included in the model. The front wheel no longer stays
perpendicular to the road surface, so the first and third stress components are no longer equal.
Morreover, the rotation angle of the hinge with element number 12 is not exactly equal to the
yaw angle in this case.

98 Chapter 3. Examples

3.15 Screw motion

x

z

12

3

x

y

12

4

Figure 3.62.Screw moving a flexible beam.

We consider the kinematic model of a screw pushing against a flexible beam. In the model
shown in Fig. 3.62, element 1 is a screw element fixed at one endand conected to a hinge
element, element 2, which is free to rotate and is rigidly connect to a flexible beam element,
element 3, which is fixed at its other end. A rigid beam element, element 4, is only included
to show the rotation of the screw. The screw as well as the flexible beam have a length of 1 m.
The pitch of the screw is 1 cm/radian. The input file isscrew.dat ,

SCREW 1 1 2 3 4 1 0 0 0.01
X 1 0.0 0.0 0.0
X 3 1.0 0.0 0.0
FIX 1
FIX 2
HINGE 2 4 5 1 0 0
DYNE 2 1
BEAM 3 6 7 3 5 1.0 0.0 0.0
RLSE 3
X 6 1.0 0.0 -1.0
FIX 6
FIX 7
RBEAM 4 1 2 3 0.0 1.0 0.0
RLSE 4
RBEAM 5 3 4 8 1.0 0.0 0.0
X 8 1.0 0.2 0.0
INPUTE 1 1
END

Section 3.15. Screw motion 99

HALT
EM 3 1.0
ESTIFF 3 1000.0 1.5 100.0 1.0
EDAMP 3 1000.0 0.015 0.1 0.01
INPUTE 1 1 0.0 1.0 0.0
STARTDE 2 1 0.0 -1.0
TIMESTEP 10 200
END
END
TIMESTEP 1.0 100
END
END

The screw is driven over an angle of 10 radians in 10 seconds. The moment to drive to screw
and the normal force in the flexible beam (bothσ1) are shown in Fig 3.63. This figure was
generated by the commands

>> plot(time,100 * sig(:,le(1,1)),’k--’,time,sig(:,le(3,1)),’k-’); grid on
>> xlabel(’time [s]’)
>> ylabel(’normal force [N] and driving torque [N cm]’)

As the distance between the end points of the flexible beam increases, the normal force increases
in approximately a quadratic way.

0 1 2 3 4 5 6 7 8 9 10
−4

−2

0

2

4

6

8

time [s]

no
rm

al
 fo

rc
e

[N
] a

nd
 d

riv
in

g
to

rq
ue

 [N
 c

m
]

Figure 3.63. Normal force in the flexible beam 3 (fully drawn) and the negative driving
torque of the screw (dashed).

100 Chapter 3. Examples

A

SPACAR installation

Prerequisites

Before installingSPACAR on a computer system it is advisable to check that the system is
suitable of running the software and to haveMATLAB installed.
This SPACAR version has been developed and tested withMATLAB 7.0.4 andSIMULINK 6.2
(Release 14SP2). It is expected to work with any modern version of MATLAB /SIMULINK since
R12, but in case of problems we can offer only limited support.
The system requirements depend heavily on the version ofMATLAB you are using. Consult the
accompanying Installation Guide or check The Mathworks. You may expect thatSPACARwill
run on any Microsoft 32-bit Windows PC on whichMATLAB /SIMULINK are running. Only the
base systems ofMATLAB andSIMULINK are required to runSPACAR, but additional toolboxes
like the Control System Toolbox may be helpful to develop and analyse control systems.
The installation ofSPACARuses less than 4 MB extra disk space.
TheSPACARfiles are stored in ZIP-archives or, in Microsoft Windows XP,a compressed folder.
In Windows XP you can easily open such archives, but of courseyou may chose to use your
favourite unzipper. The ZIP-archives can be downloaded from
http://www.wa.ctw.utwente.nl/Software/SPACAR/ .
In addition to the software there is a ZIP-archive with the data files that are used for the examples
in Chapter 3.

Installation

First of all, you should create a subdirectory e.g.\Matlab\Toolbox\Spacar . Next, you
extract the files from theSPACAR software ZIP-archivespacar2007_bin.zip into this
subdirectory. There are three types of files:

• Files with the extension.dll are the actual executables of theSPACAR package. The
original SPACAR-code (not provided) is written inC and FORTRAN77, compiled and
linked into so-called MEX-modules, that are executables for use within the MATLAB-
environment. The following files must exist:

101

102 Appendix A. SPACAR installation

checksbf.dll combsbd.dll getfrsbf.dll loadsbd.dll
loadsbm.dll ltv.dll mrltv.dll repinsbf.dll
spacar.dll spacntrl.dll spasim.dll

• Files with extension.m are theMATLAB -files necessary to use theSPACARprogram. The
following file must exist:

spadraw.m

Other.m-files provide help text for the MEX-modules. These files are:

checksbf.m combsbd.m getfrsbf.m getss.m
loadsbd.m loadsbm.m ltv.m mrltv.m
repinsbf.m spacar.m spacntrl.m spasim.m

• Files with extension.mdl areSIMULINK models. There is only one file which is actually
a library from which theSPACARmodules for use inSIMULINK can be copied:

spacar_lib.mdl

The (optional) data files fromspadata.zip can be extracted in a separate working directory.
The files in theSPACARsubdirectory should be in theMATLAB path whenMATLAB is running.
There are two ways to accomplish this:

1. Make sure that theSPACAR subdirectory is the local directory. You can verify this by
typingpwd. If necessary, change your local directory by typing

cd \Matlab\Toolbox\Spacar

or whatever directory you chose to store your files.

2. Another possibility is to change the settings of theMATLAB environment by adding the
SPACARsubdirectory to theMATLAB path. This modification is either temporary or per-
manent. The path can be modified from the pulldown menu withFile |Set Path... ,
or by using theMATLAB commandspath or addpath .

Now you are ready to runSPACAR in MATLAB andSIMULINK .

B

SPACAR error messages

An analysis withSPACARin MATLAB or a simulation withSPASIM in SIMULINK can suffer from
errors. These errors can be divided into fatal errors that cause an immediate terminations and
less severe errors which may report unexpected conditions in thelog file, while the calculation
continues.
Most fatal error have a clear error message:

• SPACAR requires 2 or 3 input arguments ,
SPACAR requires no output argument ,
CCONST must be 1 x N or N x 1 vector ,
CCONST contains too many parameters ,
MODE has an invalid value and
FILENAME contains illegal characters
indicate an incorrect call ofSPACAR from MATLAB . The last error can also occur in
SPASIM (SIMULINK).

• Wrong number of input arguments ,
Flag must be a scalar variable ,
Too many output arguments ,
Time must be a scalar variable ,
State vector of wrong size ,
Input vector of wrong size and
Not a valid flag number
indicate an incorrect call ofSPASIM from SIMULINK and should not occur during normal
operation.

• ERROR opening file ... means thatSPACAR can not open the specified file for
output.

• ERROR opening existing file ... means that a file from a previous run is not
found.

• ERROR in subroutine DINVOE is caused by an error in the dynamics input, see
Sect. 2.3.

103

104 Appendix B. SPACAR error messages

• PREPTR: Illegal velocity profile is reported when no valid velocity profile
can be determined.

• Can not determine valid and existing input file names from
... means that nomode=2 output data file with extensionsbd matching the current
(mode=3) data file can be found.

• Mechanisms are different ,
Configuration mismatch LE and
Configuration mismatch LNP
arise from an error during the comparison between a the configuration used in a (previous)
mode=2 run and the currentmode=3 run.

• ERROR in subroutine ORDE0: IFLAG = 2 and
ERROR in subroutine ORDE0: No convergence
indicate problems with the zeroth order iteration. InSPASIM this may be avoided by
setting or decreasing the maximum time step ofSIMULINK ’s solver.

• ERROR in subroutine SOLDYN is usually caused by a singular mass matrix.

• PRPARE: NUMBER OF NXC NOT EQUAL TO NEO+NEMis caused by an ill-defined
mechanism.

• ERROR in subroutine PRPARE: Too many ... means that the mechanism
that is defined is too large to be handled by theSPACAR version you are using, see Ta-
ble 1.1 on page 10. Simplify the mechanism or contact the authors.

The messages written to thelog file may be self-explanatory, but also a somewhat cryptic
messages “ERROR OR POSSIBLE ERROR CODED: <code> ITEM: <number>” can
occur. The<code> is related to a procedure in the software. Typical examples are:

• INVOERi input for the kinematics (Sect. 2.2).

• SINVOERi input for the inverse dynamics (setpoint generation) (Sect. 2.4).

• LIMVOEi input for the linearization (Sect. 2.5).

• SIMVOEi input for the non-linear simulation of manipulator control(Sect. 2.6).

• PREPTR.. trajectory data processing.

Note that errors in the input file are often reported one line later than the actual error position.

C

MATLAB tutorial

C.1 Basic MATLAB graphics commands

MATLAB provides a variety of functions for displaying data. This section describes some of
these functions. For a complete survey of graphics functions available inMATLAB we refer to
the officialMATLAB documentation [2] or to the online help utility.

Elementary plotting functions

The following list summarizes the functions that produce basic line plots of data. These func-
tions differ only in the way they scale the plot axes. Each accepts input in the form of vectors
or matrices and automatically scales the axes to accommodate the input data.

• plot – creates a plot of vectors or columns of matrices.

• loglog – creates a plot using logarithmic scales for both axes.

• semilogx – creates a plot using a logarithmic scale for thex-axis and a linear scale for
they-axis.

• semilogy – creates a plot using a linear scale for thex-axis and a logarithmic scale for
they-axis.

You can add titles, axis labels, grid lines, and text to your graph using

• title – adds a title to the graph.

• xlabel – adds a label to thex-axis.

• ylabel – adds a label to they-axis.

• text – displays a text string at a specified location.

• gtext – places text on the graph using the mouse.

• grid – turns on/off grid lines.

105

106 Appendix C. MATLAB tutorial

Creating a plot

If y is a vector,plot(y) produces a linear graph of the elements ofy versus the index of the
elements ofy . If you specify two vectors as arguments,plot(x,y) produces a graph ofy
versusx .

Line styles, markers, and color

You can pass a character string as an argument to theplot function in order to specify various
line styles, plot symbols, and colors. In the statement

plot(x,y,s)
s is a 1-, 2-, or 3-character string (delineated by single quotes) constructed from the characters
in the following table:

Symbol Color Symbol Linestyle
y yellow . point
m magenta o circle
c cyan x x-mark
r red + plus
g green * star
b blue - solid
w white : dotted
k black -. dashdot

-- dashed

For example,plot(x,y,’c+’) plots a cyan plus symbol at each data point.
If you do not specify a color, theplot function automatically uses the colors in the above table.
For one line, the default is yellow because this is the most visible color on a black background.
For multiple lines, theplot function cycles through the first six colors in the table.

Adding lines to an existing graph

You can add lines to an existing graph using thehold command. When you sethold to on ,
MATLAB does not remove the existing lines; instead it adds the new lines to the current axes. It
may, however, rescale the axes if the new data fall outside the range of the previous data. For
example:

plot(f1)
hold on
plot(f2,’--’)
plot(f3,’-.’)
hold off

These statements produce a graph displaying three plots.

Appendix C. MATLAB tutorial 107

Creating hardcopy of MATLAB figures

You can make a hardcopy of a figure from the figure’s menu (File |Print...) or by pressing
Ctrl+P . Output to several graphics formats can be carried out as well (File |Export...).
Alternatively,MATLAB ’s print command can be used at theMATLAB command prompt. E.g.
you can generate PostScript output of the contents the current MATLAB figure window. The
print command sends the output directly to your default printer orwrites it to the specified
file, if you supply a filename. You can also specify the type of PostScript file. Supported types
include

• PostScript (-dps)

• Color PostScript (-dpsc)

• Encapsulated PostScript (-deps)

• Encapsulated color PostScript (-depsc)

For example, the statement

print dataplot -deps

saves the contents of the current figure window as Encapsulated PostScript in the file called
dataplot.eps . Depending on yourMATLAB installation other graphics formats are sup-
ported, tryhelp print .

C.2 Quitting and saving the workspace

To quit MATLAB , typequit or exit . Terminating aMATLAB session deletes the variables in
the workspace. Before quitting, you can save the workspace for later use by typing

save
This command saves all variables in a file on disk namedmatlab.mat . The next timeMAT-
LAB is invoked, you can executeload to restore the workspace frommatlab.mat .
You can usesave andload with other filenames, or to save only selected variables. Thecom-
mandsave temp stores the current variables in the file namedtemp.mat . The command

save temp X
saves only variableX, while

save temp X,Y,Z
savesX, Y, andZ.
load temp retrieves all the variables from the file namedtemp.mat .

108 Appendix C. MATLAB tutorial

References

[1] Jonker, J. B.,Dynamics of Machines and Mechanisms, A Finite Element Approach,
Lecture notes, Department of Mechanical Engineering, University of Twente, vakcode
113130, October 2001.

[2] The Math Works Inc.,Getting Started withMATLAB , version 7, Revised forMATLAB 7.1
(Release 14SP3), September 2005.

[3] The Math Works Inc.,SIMULINK — Getting Started, version 6, New forSIMULINK 6.3
(Release 14SP3), September 2005.

[4] SAM, Version 4.2, 5.0 or 5.1, ARTAS - Engineering Software, The Netherlands,
http://www.artas.nl/ , 2001–2005.

[5] Cowper, G. R., “The shear coefficient in Timoshenko’s beam theory”, ASME Journal of
Applied Mechanics33 (1966), pp. 335–340.

109

	Preface
	The SPACAR program
	Introduction
	SPACAR and MATLAB
	SPAVISUAL
	SPASIM and SIMULINK
	Perturbation method and modal techniques

	Keywords
	Introduction
	Kinematics
	Dynamics
	Inverse dynamics (setpoint generation)
	Trajectory generation
	Nominal inputs and reference outputs

	Linearization
	Non-linear simulation of manipulator control

	Examples
	Planar sliding bar
	Planar slider--crank mechanism
	Cardan-joint mechanism
	Planar four-bar mechanism
	Rotating mass--spring system
	Cantilever beam in Euler buckling
	Cantilever beam subject to concentrated end force
	Short beam
	Lateral buckling of cantilever beam
	State-variable and output equations
	Rigid spatial manipulator mechanism
	Flexible spatial manipulator mechanism
	Chord-driven underactuated robotic finger
	Tricycle
	Screw motion

	SPACAR installation
	SPACAR error messages
	MATLAB tutorial
	Basic MATLAB graphics commands
	Quitting and saving the workspace

	References

