

 CodeWarrior
®

IDE User Guide

Because of last-minute changes to CodeWarrior, some of the
information in this manual may be inaccurate. Please read the

Release Notes on the CodeWarrior CD for the latest
up-to-date information.

Metrowerks CodeWarrior copyright ©1993Ð1997 by Metrowerks Inc. and its licensors. All
rights reserved.

Documentation stored on the compact disk(s) may be printed by licensee for personal use.
Except for the foregoing, no part of this documentation may be reproduced or transmitted
in any form by any means, electronic or mechanical, including photocopying, recording, or
any information storage and retrieval system, without permission in writing from Metro-
werks Inc.
Metrowerks, the Metrowerks logo, CodeWarrior, and Software at Work are registered
trademarks of Metrowerks Inc. PowerPlant and PowerPlant Constructor are trademarks of
Metrowerks Inc.
All other trademarks and registered trademarks are the property of their respective owners.
ALL SOFTWARE AND DOCUMENTATION ON THE COMPACT DISK(S) ARE SUB-
JECT TO THE LICENSE AGREEMENT IN THE CD BOOKLET.

How to Contact Metrowerks:

U.S.A. and international Metrowerks Corporation
2201 Donley Drive, Suite 310
Austin, TX 78758
U.S.A.

Canada Metrowerks Inc.
1500 du College, Suite 300
Ville St-Laurent, QC
Canada H4L 5G6

Mail order Voice: (800) 377Ð5416
Fax: (512) 873Ð4901

World Wide Web http://www.metrowerks.com

Registration information register@metrowerks.com

Technical support support@metrowerks.com

Sales, marketing, & licensing sales@metrowerks.com

CompuServe goto Metrowerks

Table of Contents
1 Introduction . 19

Introduction . 19
Read the Release Notes! 21
Typographical Conventions 21

Notes, Warnings, Tips, and BeginnerÕs Hints 21
Typeface Conventions. 21

IDE User Guide Overview 22
About the CodeWarrior IDE 23
Where to Go From Here 23

QuickStart and Tutorial Resources 24
Operating System Targeting Documentation 24

WhatÕs New in This Release 25
Threaded Execution 26
Multiple Open Projects 27
Multiple Targets Per Project 27
Subprojects . 28
Mac OS Merge Linker 29
New Toolbars . 30
Customizable User Interface Key Bindings 30
Improved Drag and Drop Support 30
Improved Project File Management 30

2 Getting Started. . 31
Getting Started Overview 31
System Requirements 31
CodeWarrior IDE Installation. 32
Programming Concepts 32

Creating Input Files 33
Source Code File 33
Resource File . 33
Interface or Header File 33
Project File . 34

Generating the Software. 34
Compilers . 34
IDE User Guide UG–3

Table of Contents

Assemblers . 34
Linkers . 34

Output Files (Product) 34
Debugging and ReÞning 35

CodeWarrior IDE Guided Tour 35
Initial View of the IDE 35
IDE Menus . 36

File Menu. 37
Edit Menu . 38
Search Menu . 39
Project Menu . 40
Window Menu 41
Help Menu . 42

Global Toolbar . 42
Global Toolbar Overview 42
Customizing Toolbar Commands 43
Customizing the Global Toolbar 43

Other IDE Components 43

3 Working with Projects . 45
Projects Overview . 45
Creating a Simple Project 46

About Project Stationery 46
Using Stationery Projects 47

Choosing the New Project Stationery File 47
Naming Your New Project 49
Modifying Your New Project 51
Building Your New Project 52

About the Project Stationery Folder 52
Creating Your Own Project Stationery 52

Opening an Existing Project 55
Using the Open Command 55
Using the Open Recent Command 56
Using the Project Window to Open Subprojects. 56

Saving a Project . 56
Items Saved with Your Project 57
UG–4 IDE User Guide

Table of Contents

Saving a Copy of Your Project 57
Closing a Project . 57
Choosing a Default Project 58
Guided Tour of the Project Window 58

Navigating the Project Window 59
Project Window User Interface Items 59

Category Tabs . 60
Toolbar . 61
Group Organization 61
File Column. 62
Code Column . 62
Data Column . 63
Debug Column 63
Touch Column. 63
Interfaces Pop-up 64
Group Pop-up . 64
Checkout Status Column 64

Managing Files in a Project. 65
About Groups and Segments 65
Expanding and Collapsing Groups 66
Selecting Files and Groups. 67

Selection by mouse-clicking 68
Selection by keyboard 69

Adding Files. 69
Where Files Appear 70
Using the Add Files Command 70
Using Drag and Drop. 72
Using the Add Window Command. 73

Moving Files and Groups 73
Creating Groups . 74
Removing Files and Groups 75
Renaming Groups 76
Touching and Untouching Files 76

Synchronizing modiÞcation dates 79
Creating Complex Projects 79

What is a Target? . 80
IDE User Guide UG–5

Table of Contents

What is a Subproject? 81
Strategy for Creating Complex Projects 83
Creating a New Target 84
Changing a Target Name 87
Changing the Target Settings. 87
Setting the Current Build Target 88
Creating Target Dependencies 88
Assigning Files to Targets 91
Creating Subprojects Within Projects 93

Examining Project Information 94
Moving a Project . 96
Controlling Debugging in a Project 96

Activating Debugging for a Project 97
Activating Debugging for a File 97

Debug Info Marker for Groups 98
Adding Preprocessor Symbols to a Project 99

4 Working with Files . 101
Working with Files Overview 101
Creating a New File 101
Opening an Existing File. 102

Opening Files with the File Menu 102
Project File . 102
Text File . 103

Opening Files from the Project Window 104
File Column. . 104
Group Pop-up Menu 104
Interfaces Pop-up Menu 105

Opening Files from an Editor Window 106
Opening a Related File 107

Saving a File . 107
Saving One File 108
Saving Files Automatically 109
Renaming and Saving a File 109
Backing Up Files 110
Saving as a UNIX or DOS text Þle 111
UG–6 IDE User Guide

Table of Contents

Closing a File . 112
Closing One File . 112
Closing All Files . 113

Printing a File . 113
Setting Print Options 114
Printing a Window 114

Reverting to a Previously-Saved File 115

5 Editing Source Code . 117
Source Code Editor Overview 117
Guided Tour of the Editor Window 117

Text Editing Area. 119
Interface Pop-Up Menu 119
Routine Pop-Up Menu 121
Marker Pop-Up Menu 122
Options Pop-Up Menu 123
File Path Caption 124
Permissions Pop-up Menu. 125
Line Number Button 125
Pane Splitter Controls 126
Pop-Up Menu Disclosure Button 126
Dirty File Marker. 126

Editor Window ConÞguration 126
Setting Text Size and Font 127
Seeing Window Controls 127
Splitting the Window into Panes 129

Creating a new pane 130
Resizing a pane 131
Removing a pane 131

Saving Window Settings 131
Customizing the Toolbar 132

Basic Text Editing . . 132
Basic Editor Window Navigation 132

Scroll bar navigation 133
Keyboard navigation 133

Adding Text . . 134
IDE User Guide UG–7

Table of Contents

Deleting Text . 135
Selecting Text . 135
Moving Text (Drag and Drop) 136
Using Cut, Copy, Paste, and Clear 140
Balancing Punctuation 141

Using automatic balancing 141
Shifting Text Left and Right 141
Undoing Changes 142

Undoing the last edit 142
Undoing and redoing multiple edits 142
Reverting to the last saved version of a Þle 143

Controlling Color 143
Navigating in Text . 143

Finding a Routine 144
Adding, Removing, and Selecting a Marker 144

Adding a Marker 144
Removing a Marker 147
Jumping to a Marker 147

Opening a Related File 147
Going to a Particular Line 149
Using Go Back and Go Forward 149
ConÞguring Editor Commands 150

6 Searching and Replacing Text 151
Searching and Replacing Text Overview 151
Guided Tour of the Find Dialog Box 151

Search and Replace Section 152
Find Text Box . 153
Replace Text Box 153
Recent Strings Pop-Up Menu 154
Find Button . . 154
Replace Button 155
Replace & Find Button 155
Replace All Button 155
Batch Checkbox 155
Wrap Check Box 156
UG–8 IDE User Guide

Table of Contents

Ignore Case Check Box 156
Entire Word Check Box 156
Regexp Check Box 156
Multi-File Search Disclosure Triangle 157
Multi-File Search Button 157

Multi-File Search Section 158
File Sets Pop-Up Menu 159
File Sets List. . 160
Project Pop-up Menu 160
Stop at End of File Check Box 161
Sources Check Box 162
System Headers Check Box 162
Project Headers Check Box 162
Others Button . 162

Searching for Selected Text 163
Finding text in the active editor window 163
Finding text in another window 164

Searching and Replacing Text in a Single File 164
Finding Search Text. 165
Controlling Search Range 166
Controlling Search Parameters 167

Ignore Case Check Box 167
Entire Word Check Box 167

Replacing Found Text 168
Replace All . 168
Selective Replace. 168

Using Batch Searches 169
Searching and Replacing Text in Multiple Files 171

Activating Multi-File Search 171
Choosing Files to be Searched 172

Adding project source Þles 172
Adding project header Þles 173
Adding system header Þles 173
Adding and removing arbitrary Þles 174
Choosing a Þle set 175

Saving a File Set . 176
IDE User Guide UG–9

Table of Contents

Removing a File Set. 177
Controlling Search Range 177

Using Regular Expressions (grep) 178
Matching simple expressions 179
Matching any character 179
Repeating expressions 179
Grouping expressions 180
Choosing one character from many. 180
Matching the beginning or end of a line 181
Using the Find string in the Replace string 181
Remembering sub-expressions. 182

7 Browsing Source Code . 183
Browser Overview . 183

Activating the Browser 184
Understanding the Browser Strategy 184

Catalog View . 185
Browser View . 186
Hierarchy View . 187

Guided Tour of the Browser 188
Catalog Window 189

Category pop-up menu 190
Symbols pane . 191

Multi-Class Browser Window 191
Orientation button 193
List button . 194
Open File button. 194
Classes pane . 195
Member Functions pane 195
Data Members pane 195
Source pane . . 196
Resize bar. . 196
IdentiÞer icon . 196

Single-Class Browser Window 197
Bases text Þeld. 199
Show checkboxes 199
UG–10 IDE User Guide

Table of Contents

Show Declaration button 199
Show Hierarchy button 199

Multi-Class Hierarchy Window 199
Line button . 201
Hierarchy expansion triangle 201
Ancestor Class pop-up menu 202

Single-Class Hierarchy Window 202
Symbol Window . 204

Routine Symbols pane 205
Context Pop-Up Menu 205

Using the Browser . 207
Setting Browser Options 207
Navigating Code in the Browser 208

Using the Context Pop-Up Menu. 208
Go Back and Go Forward 208

Opening a Source File. 210
Seeing a Declaration 211
Seeing a Routine DeÞnition 211
Editing Code in the Browser 212
Analyzing Inheritance 212
Finding Functions That Are Overrides 212
Seeing MFC Classes 213
Saving a Default Browser 213

Customizing the Browser 214

8 Configuring IDE Options . 215
ConÞguring IDE Options Overview 215
Option Dialog Boxes Guided Tour 216

Options Panels . . 216
Dialog Box Buttons 218

Discarding Changes 219
Factory Settings Button 219
Revert Panel Button 219
Save Button . . 220

Choosing Preferences 220
Editor Preferences 220
IDE User Guide UG–11

Table of Contents

General Preferences 221
Editor Settings . . 221

Dynamic Scroll 222
Balance While Typing 222
Save All Before ÒUpdateÓ 223
Relaxed C Popup Parsing 223
Use Multiple Undo. 224
Flashing Delay 224
Context Popup Delay. 224
Drag and Drop Editing 225
Sort Function Popup 225
Main Text Color 225
Background Color 225

Fonts and Tabs . . 225
Syntax Coloring . 226

Changing syntax hiliting colors 227
Controlling syntax hiliting within a window. 228
Using color for custom keywords 228
Importing or exporting custom keywords 230

Browser Coloring 230
Enable Automatic Toolbar Help 231

Key Bindings . 231
Restrictions for Choosing Key Bindings 232
What is a PreÞx Key? 233
What is a Quote Key?. 233
Modifying Key Bindings 233
Setting the PreÞx Key Timeout. 236
Exporting Key Bindings 237
Importing Key Bindings 237
ConÞguring Misc Bindings 238
ConÞguring Editor Commands Bindings 239
ConÞguring PreÞx Keys Bindings 243
ConÞguring the Quote Key Binding 243

Choosing Target Settings 244
Editor . 244
Target . 244
UG–12 IDE User Guide

Table of Contents

Language Settings 244
Code Generation. 245
Linker . 245

Custom Keywords 245
68K Target. . 246
Access Paths . . 247

Always Search User Paths. 248
User Include Path Pane 248
System Include Path Pane 248
Add Default. . 249
Add . 249
Change . . 250
Remove . 251

Build Extras . 251
Use ModiÞcation Date Caching 251
Activate Browser 252

Java Project . 252
PPC Target . 253
File Mappings . 253

File Mappings List 254
Extension . . 255
Compiler . 255
Precompiled . 255
Launchable . 255
Resource File . 255
Ignored by Make. 255

Target Settings . . 255
Linker and Post Linker 256
Target Name . 256
Output Directory 256

x86 Target . . 257
C/C++ Compiler 258
C/C++ Warnings. 259
Pascal Compiler . 260
Pascal Warnings . 260
PPCAsm . 261
IDE User Guide UG–13

Table of Contents

Rez . . 261
WinRC Resource Compiler 261
68K Processor . 261
68K Disassembler 262
IR Optimizer . 263
Java VM . 264
PPC Processor . 264
PPC Disassembler 264
x86 CodeGen . 264
68K Linker . 265
CFM68K Linker . 266
Java Linker . 267
PPC Linker . 267
PPC PEF . 268
x86 Linker . . 268

Toolbar Customization 269

9 Compiling and Linking . 271
Compiling and Linking Overview 271
Choosing a Compiler 272

Understanding Plugin Compilers. 272
Setting a File Extension 273

Compiling and Linking a Project 273
Touching and Untouching Files 274
Compiling Files . 274

Compiling One File 275
Compiling Selected Files 275
Recompiling Files 276

Updating a Project 276
Making a Project . 276
Enabling Debugging 277
Running a Project 278
Debugging a Project 278
Generating a Link Map 279
Synchronizing ModiÞcation Dates 279
Removing Objects 280
UG–14 IDE User Guide

Table of Contents

Removing Object Code 280
Advanced Compile Options 280

Alerting Yourself After a Build. 281
Speeding Up a Build by Avoiding Date Checks 281

Using Precompiled or Preprocessed Headers 281
Creating Precompiled Headers 282

Precompile command 283
Automatic updating 284

DeÞning Symbols For C/C++ 285
DeÞning Symbols For Pascal 286

Preprocessing Source Code. 287
Disassembling Source Code 289
Guided Tour of the Message Window 290

Error Button . . 292
Warning Button . 293
Project Information Caption 293
Stepping Buttons 293
Message List Pane 293
Source Code Disclosure Triangle 294
Source Code Pane 294
Pane Resize Bar . 294
Pop-Up Menu Disclosure Button 294
Interface Pop-Up Menu 294
Routine Pop-Up Menu 294
File Path Caption 295
Line Number Button 295

Using the Message Window 295
Seeing Errors and Warnings 296
Stepping Through Messages 297
Correcting Compiler Errors and Warnings 299

Correcting Errors in the Source Code Pane 299
Opening the File for the Corresponding Message. 300

Correcting Linker Errors 300
Viewing Linker Errors 301
Why Linker Errors Occur 301

Correcting Pascal Circular References 301
IDE User Guide UG–15

Table of Contents

Saving and Printing the Message Window 303
Locating Errors in ModiÞed Files 304

10 Configuring Version Control Software 305
Version Control System Overview 305
Using Source Code Control with Files 305

11 IDE Menu Reference . 307
IDE Menu Reference Overview 307
File Menu . 307

New . 308
New Project . . 308
Open . . 309
Open Recent . 309
Open File . . 309
Open Selection 309
Close . . 309
Switch to MW Debugger 310
Save . 310
Save As . . 310
Save A Copy As 310
Revert . 310
Print Setup . 311
Print . 311
Exit . 311

Edit Menu . . 312
Undo. . 312
Redo, Multiple Undo, and Multiple Redo 313
Cut . 313
Copy . . 313
Paste . . 313
Clear . . 314
Select All . 314
Balance . . 314
Shift Left . 314
Shift Right . 314
UG–16 IDE User Guide

Table of Contents

Insert Reference Template 315
Preferences . 315
Target Settings. 315

Search Menu . . 315
Find . 316
Find Next . . 317
Find Previous . 317
Find in Next File 317
Enter ÔFindÕ String 317
Enter ÔReplaceÕ String. 317
Find Selection 318
Replace . . 318
Replace & Find Next 318
Replace All . 319
Find DeÞnition 319
Find DeÞnition and Reference 319
Go Back . 319
Go Forward . . 319
Go To Line . 320

Project Menu . . 321
Add Window . 322
Add Files . . 322
Create New Group 322
Create New Target 322
Create New Segment 322
Remove Selected Items 323
Check Syntax . 323
Preprocess . 323
Precompile . 323
Compile . 324
Disassemble. . 324
Bring Up To Date 324
Make . . 324
Remove Object Code 325
Reset File Paths 325
Synchronize ModiÞcation Dates 325
IDE User Guide UG–17

Table of Contents

Enable Debugger 325
Disable Debugger 325
Run . 326
Debug . 326
Set Default Project 326
Set Current Target 326

Window Menu . . 326
Stack . . 327
Tile . 328
Tile Vertical . 328
Zoom Window 328
Save Default Window 328
Toolbar . . 328
Show Catalog Window 328
Show Hierarchy Window 329
New Class Browser 329
Build Progress Window. 329
Errors & Warnings Window 329
Project Inspector 329
Other Window Menu Items 330

Toolbar Submenu . . 330
Toolbar Elements Window 331
Show Window Toolbar and Hide Window Toolbar 331
Reset Window Toolbar 332
Clear Window Toolbar 332
Show Global Toolbar and Hide Global Toolbar 332
Reset Floating Toolbar 332
Clear Floating Toolbar 332

Help Menu . 333
Contents . 333
Keys . 333
How to Use Help 333
About Metrowerks 333

Index . 335
UG–18 IDE User Guide

1
Introduction
This manual describes the CodeWarrior Integrated Development
Environment (IDE) in detail. The IDE is used to develop code to run
on various operating systems, using various programming languag-
es.

Introduction
This section introduces the CodeWarrior IDE. The topics in this
chapter are:

¥ Read the Release Notes!

¥ Typographical Conventions

¥ IDE User Guide Overview

¥ About the CodeWarrior IDE

¥ Where to Go From Here

¥ WhatÕs New in This Release

The IDE is a collection of development tools for creating and gener-
ating code for the systems listed in Table 1.1. To learn which manual
to read for a given target that you are interested in, refer to Table 1.2
on page 25.

Table 1.1 CodeWarrior IDE Targets

Target Description

68K Mac OS Any Mac OS computer that uses the Mo-
torola 680x0 family of microprocessors

Power Mac OS Any Mac OS computer that uses a Power-
PC microprocessor
IDE User Guide UG–19

Introduct ion

Introduction

NOTE: Your version of the CodeWarrior product does not contain
compilers for all possible targets listed in Table 1.1. Check your
product description for targets available to you.

You use the same IDE when developing code for all these systems.

You can develop applications using these languages:

¥ Object Pascal, a compiler for ANS Pascal and Object Pascal,
which supports Turbo Pascal Input/Output routines, condi-
tional compilation and macros, extended debugging features,
and inline assembly code.

¥ C and C++, a compiler that implements templates, exception
handling, run-time type information (RTTI), and inline as-
sembly code.

¥ Java, for Java virtual machines.

¥ Assembly Language, a low-level machine code language that
the processor understands.

Win32/x86 The Win32 model for Windows NT 4.0 and
Windows 95 on 80x86-class processors

Java The Java virtual machine

BeOS The Be operating system

PlayStation The PlayStation game console

PowerTV OS The PowerTV digital set-top box operating
system

Palm OS The operating system for the Pilot connect-
ed organizer

OS-9 A real-time operating system for software
running on embedded systems

Target Description
UG–20 IDE User Guide

Introduct ion

Read the Release Notes!

NOTE: Some languages (such as Java) can only be used for
certain targets.

Read the Release Notes!
By now, you probably have read the CodeWarrior IDE release notes.
If you havenÕt, please do so. They contain important information
about new features, bug Þxes, and incompatibilities that may not
have made it into the documentation due to release deadlines. You
can Þnd them on the CodeWarrior CDs, in the Release Notes folder.

Typographical Conventions
When reading the manual, there are a few style rules that are ob-
served, in order to make the format of the manual consistent.

Notes, Warnings, Tips, and Beginner’s Hints

An advisory statement or NOTE may restate an important fact, or
call your attention to a fact which may not be obvious.

A WARNING given in the text may call attention to something such
as an operation that, if performed, could be irreversible, or ßag a
possible error that may occur.

A TIP can help you become more productive with the CodeWarrior
IDE. Impress your friends with your knowledge of little-known
facts that can only be learned by actually reading the fabulous man-
ual!

A For Beginners note may help you better understand the terminol-
ogy or concepts if you are new to programming.

Typeface Conventions

If you see some text that suddenly appears in a different typeface
(as the word different does in this sentence), you are reading
IDE User Guide UG–21

Introduct ion
IDE User Guide Overview
ÒComputer VoiceÓ text. This is used to denote Þle or directory
names, code, keyboard input, or other items that you see on the
computerÕs hard disk.

IDE User Guide Overview
There are several chapters in the User Guide. Each chapter begins
with an overview of the topics discussed in that chapter. The chap-
ter overviews are:

¥ Introduction Ñ (this chapter) contains an overview of the
CodeWarrior IDE languages, platforms, and documentation

¥ Getting Started OverviewÑ system requirements, installa-
tion, guided tour of the user interface

¥ Projects OverviewÑ introduces the CodeWarrior IDE Project
Window, shows how to setup, conÞgure, and work with
projects

¥ Working with Files OverviewÑ introduces the concepts be-
hind working with Þles in the CodeWarrior IDE

¥ Source Code Editor OverviewÑ explains how to use the
CodeWarrior IDE text editor

¥ Searching and Replacing Text OverviewÑ explains how to
use the CodeWarrior IDE facilities to search and replace text
in Þles

¥ Browser OverviewÑ describes Code WarriorÕs class browser,
a tool you use to examine your project source code from vari-
ous perspectives

¥ ConÞguring IDE Options OverviewÑ discusses the many
options available in the CodeWarrior IDEÕs Preferences and
Project Settings dialog boxes

¥ Compiling and Linking OverviewÑ discusses how to control
compilation, linking, and running a CodeWarrior project

¥ Version Control System OverviewÑdiscusses how to use re-
vision control systems with the CodeWarrior IDE

¥ IDE Menu Reference OverviewÑ describes each command
on each CodeWarrior IDE menu
UG–22 IDE User Guide

Introduct ion
About the CodeWarrior IDE
About the CodeWarrior IDE
The CodeWarrior IDE is a collection of tools that allows you to de-
velop computer code for many different platforms using different
programming languages. Using the IDE, you can develop a pro-
gram, plug-in, library, or other executable code to run on a comput-
er system.

The CodeWarrior IDE permits a code developer to quickly assemble
a variety of source code Þles (for example, a Þle written in the C++
computer language), resource Þles, and library Þles into a project,
without writing a complicated build script (or ÒMakeÞleÓ) for the
project. Source code Þles may be added or deleted from the IDEÕs
project using simple mouse and keyboard operations instead of ed-
iting a build script. Tools such as a debugger, compilers, linkers, a
code browser, and source code editor are included with the
CodeWarrior IDE. These tools allow you to edit your code, navigate
and browse your code, compile it, link it, and debug it until you
have a running application. Options for code generation, debug-
ging, and navigation of your project are all conÞgurable in the IDE.

The CodeWarrior product comes with everything you need to de-
velop code!

Where to Go From Here
If you are an experienced CodeWarrior IDE user, review ÒWhatÕs
New in This ReleaseÓ on page 25 for an overview of the new fea-
tures in this release.

There are a few different options for where to start reading more
about developing with the CodeWarrior IDE.

When you are ready to debug, be sure to read the CodeWarrior De-
bugger Manual on the CodeWarrior Reference CD.

When you are trying to get started quickly with a new platform or if
you are new to CodeWarrior, see ÒQuickStart and Tutorial Resourc-
esÓ on page 24.
IDE User Guide UG–23

Introduct ion
Where to Go From Here
To get started quickly with a new target operating system, see ÒOp-
erating System Targeting DocumentationÓ on page 24.

The following sections will give you a better idea of how to get help
for your next step with the CodeWarrior product.

¥ QuickStart and Tutorial Resources

¥ Operating System Targeting Documentation

QuickStart and Tutorial Resources

You will Þnd all the manuals mentioned in this section in the
CodeWarrior Documentation folder on the CodeWarrior CD.
For some products this will be on the CodeWarrior Reference CD.

If you are new to the CodeWarrior IDE, check out these resources:

¥ The CodeWarrior QuickStart Guide for an overview of the
CodeWarrior IDE, descriptions of some CodeWarrior win-
dows and shortcuts, and pointers to the references available
to you. Quick Start s is on your CD, so you can use it regard-
less of whether you purchased any printed documentation.

¥ ÒCodeWarrior IDE Guided TourÓ on page 35 provides a
quick overview of the CodeWarrior IDE user interface.

¥ The CW Tutorials Code folder on the CodeWarrior CD con-
tains some sample projects that will help you become pro-
ductive quickly with the CodeWarrior IDE.

¥ The instructions for using the viewers Metrowerks provides
for on-line documentation in the CodeWarrior Documenta-
tion folder on the CodeWarrior CD.

Operating System Targeting Documentation

When you are developing code with the CodeWarrior IDE, you Òtar-
getÓ a speciÞc operating system. This means that you select a target
operating system on which you want your Þnished code to run.
Many different targets are available for your CodeWarrior product.

To target a speciÞc operating system for your code, consult the
guides described inTable 1.2.
UG–24 IDE User Guide

Introduct ion
WhatÕs New in This Release
Table 1.2 Targeting Guides for Various CodeWarrior Targets

What’s New in This Release
The Metrowerks IDE is now at version 2.0, and with the change in
version number there are many signiÞcant new features. In addi-
tion, the build system and project manager portions of the
CodeWarrior IDE have been rewritten to incorporate new features,
and provide improved performance.

Among the new features, the following are probably the most nota-
ble:

¥ Threaded Execution

¥ Multiple Open Projects

¥ Multiple Targets Per Project

¥ Subprojects

¥ Mac OS Merge Linker

¥ New Toolbars

¥ Customizable User Interface Key Bindings

¥ Improved Drag and Drop Support

Target Targeting Manual

Mac OS Targeting Mac OS

Win32/x86 Targeting Win32

Java Targeting Java

BeOS CodeWarrior BeIDE UserÕs Guide, and the
manuals supplied by Be, Inc.

PlayStation Targeting PlayStation OS

PowerTV OS Targeting PowerTV

Palm OS Targeting Palm OS

OS-9 Targeting OS-9
IDE User Guide UG–25

Introduct ion
WhatÕs New in This Release
¥ Improved Project File Management

Threaded Execution

Compilation now occurs in a separate run time task. This means
you can use the Editor to edit Þles at the same time your project is
being compiled in the IDE. Other things you can do include using
the Browser to browse your code, or using the text search features in
the IDE.

Certain operations that would interfere with compilation may be
disabled when compilation is in progress, such as changing prefer-
ences, target settings, or adding and removing Þles for the project.
UG–26 IDE User Guide

Introduct ion
WhatÕs New in This Release
Multiple Open Projects

The CodeWarrior IDE can now have multiple projects open at a
time, as shown in Figure 1.1.

Figure 1.1 Multiple Open Projects

Multiple Targets Per Project

It is now possible to have your project contain multiple targets, as
shown in Figure 1.2. As a result, you can use the same project to
build different versions of your code.
IDE User Guide UG–27

Introduct ion
WhatÕs New in This Release
To learn more information about using multiple targets in your
projects, refer to ÒCreating Complex ProjectsÓ on page 79.

Figure 1.2 Multiple Targets in a Project

Subprojects

The CodeWarrior IDE now allows you to use your projects nested
within other projects. These nested projects are called subprojects. A
subproject Þle is identical to a project Þle, except that it is nested in-
side a project. You add a subproject to your project window just like
any other Þle. Figure 1.3 shows you a subproject named Cool-
App.mcp as part of the main project. Using this project-embedding
technique, you can create a subproject that builds all shared libraries
in your main project, then add the subproject to the main project.
When you build your main project, the CodeWarrior IDE scans all
dependencies of the subproject and builds it automatically if neces-
sary.
UG–28 IDE User Guide

Introduct ion
WhatÕs New in This Release
To learn more about subprojects, refer to ÒCreating Complex
ProjectsÓ on page 79.

Figure 1.3 Subproject within a Project

Mac OS Merge Linker

The new CodeWarrior tools include a new merging linker that can
merge Mac OS 68K and PowerPC executables into one application.
This allows you to build a ÒfatÓ application of both 68K and Power-
PC Mac OS binaries in one output Þle.

To learn more about how to use the merge linker with your Mac OS
projects, refer to the Targeting Mac OS manual on your CodeWarrior
CD.
IDE User Guide UG–29

Introduct ion
WhatÕs New in This Release
New Toolbars

Many CodeWarrior IDE windows now have conÞgurable toolbars.
To learn more about customizing the icons on the toolbars, refer to
ÒToolbar CustomizationÓ on page 269.

Customizable User Interface Key Bindings

The CodeWarrior IDE now has customizable key bindings for all
menu, keyboard, and editor commands. You can conÞgure the IDE
to suit your personal working style using this feature. To learn more
about how to use this feature, refer to ÒKey BindingsÓ on page 231.

Improved Drag and Drop Support

Drag and drop support has been improved. You can add Þles to a
project by dragging Þles and folders into the project window from
the Windows Explorer shell.

To learn more about this feature, refer to ÒAdding FilesÓ on page 69.

Improved Project File Management

With this release, the Resource.frk restriction for project Þles is gone.
The CodeWarrior IDE has been redesigned to remove the need for
it.

Storage of the data for the IDEÕs internal settings for a project is fac-
tored among different Þles, only one of which is required to create
the project again.

To learn more about the internal workings of the project Þle storage,
refer to ÒMoving a ProjectÓ on page 96.
UG–30 IDE User Guide

2
Getting Started
This chapter gives you the information you need to get started with
the CodeWarrior IDE. YouÕll Þnd the system requirements and in-
formation about installing the software, as well as a guided over-
view of the CodeWarrior IDE user interface.

Getting Started Overview
The sections in this chapter are:

¥ System Requirements

¥ CodeWarrior IDE Installation

¥ Programming Concepts

¥ CodeWarrior IDE Guided Tour

TIP: For a quick look at the CodeWarrior IDE user interface, go
to ÒCodeWarrior IDE Guided TourÓ on page 35. The tour gives you
your first glimpse of the CodeWarrior IDE interface, particularly the
Global Toolbar.

System Requirements
The Windows-hosted version of CodeWarrior requires a 80486DX or
Pentiumª-class processor, 16 megabytes of RAM, Microsoft Win-
dows 95 or Windows NT 4.0 operating system, and a CD-ROM
drive to install the software.

For optimum performance, we recommend that you use a computer
equipped with a Pentiumª-class processor with at least 24 mega-
bytes of RAM.
IDE User Guide UG–31

Gett ing Star ted
CodeWarrior IDE Installation
CodeWarrior IDE Installation
To learn how to install the CodeWarrior IDE product, read the
QuickStart guide on the CodeWarrior CD. When you install the
CodeWarrior software, you install the CodeWarrior Integrated De-
velopment Environment (IDE), including the CodeWarrior tools,
languages, and debugger.

All compilers and targets available in the CodeWarrior IDE use the
same IDE. This manual provides information for all items in the
IDE, noting platform-speciÞc items when applicable.

Programming Concepts
If you are new to programming computers, this section should help
deÞne some of the terms used in this manual. In this section, weÕll
deÞne terms such as compilers, linkers, and resource Þles, and give
you some information that may help you digest the material in this
manual more quickly.

There are four categories of items that you will encounter when cre-
ating a computer program:

¥ Creating Input Files

¥ Generating the Software

¥ Output Files (Product)

¥ Debugging and ReÞning

As an overview to the process of creating an executable piece of
computer software, think of this process as being four steps.

First, you create Þles that contain computer code statements using a
computer language such as C, C++, Java, assembly language (ma-
chine code), or Pascal. You might also create Þles that contain re-
source descriptions of objects your program will need, such as win-
dows, dialog boxes, menus, and other user interface items.

Next, you apply build tools to help turn your ÒsourceÓ materials
into a product that can execute on your intended target computer.
UG–32 IDE User Guide

Gett ing Star ted
Programming Concepts
These tools include compilers, linkers, and maybe even assembly-
language assemblers. With these build tools you create a software
product that can run on your target computer.

You can create many different types of software products, depend-
ing on your tools and intended target computer. Some of the prod-
ucts you can create include applications (or executables), shared li-
braries, and static libraries.

Once you have created a software product, you can use a debugger
to run the software and see if it behaves correctly. If it doesnÕt, you
go back to the beginning and make changes to your source material
so that the software behaves the way you want it to.

Creating Input Files

The types of Þles you create include Source Code Þles, Resource
Þles, a Project Þle, and Interface or Header Files.

Source Code File

A Source Code Þle is a text format computer language Þle, contain-
ing program statements, and written in a language such as C, C++,
Java, assembly language, or Pascal.

Resource File

A Resource Þle contains descriptions of items that your software
may need, such as window deÞnitions, dialog box layouts, and
other items. A resource Þle may be a binary Þle linked into your
software product, or it may be a text Þle that is compiled with a spe-
cial resource compiler before being linked.

Interface or Header File

An Interface Þle (as it is called in Pascal) or a Header or Include Þle
(as it is called in most other languages) is a text format Þle that
works in conjunction with your Source Code Þles. Generally, these
Þles contain data and parameter deÞnitions used by your Source
Code Þles.
IDE User Guide UG–33

Gett ing Star ted
Programming Concepts
Project File

A Project Þle is a Þle that describes which Source Code and Re-
source Þles to include in your Þnished software product, and also
describes the actions that should be taken when building your prod-
uct.

Generating the Software

The types of tools you use to build your software product include
Compilers, Assemblers, and Linkers.

Compilers

A Compiler is a tool that takes a computer language Source Code
Þle, such as a C, C++, Pascal, or Java Þle, and compiles the Þle into
binary machine code (also called Object Code) that will be used
when the Þnal build stage is invoked. A Compiler is one of the Þrst
tools that is invoked to build your program.

Assemblers

An Assembler is a tool that takes an assembly-language Source
Code Þle and produces Object Code.

Linkers

A Linker is a tool that takes all the Object Code produced by the
compilation and assembly stage of building your project, and links
all the Object Code together, producing a software product.

Output Files (Product)

There are many different types of software products. An applica-
tion, or executable as it may be called, is a piece of code that can run
on a computer. It may make use of other software products called li-
braries. A library is a binary Þle that can be linked with other Object
Code Þles and other library Þles to produce a piece of software.

For in-depth information about the kinds of software products you
can develop for your target, please see the CodeWarrior Targeting
UG–34 IDE User Guide

Gett ing Star ted
CodeWarrior IDE Guided Tour
manual appropriate for your platform. A table describing which
guide to refer to is shown in ÒTargeting Guides for Various
CodeWarrior TargetsÓ on page 25.

Debugging and Refining

A Debugger is a tool that you can use to monitor the execution of
you program. With it, you can stop at certain points in your pro-
gramÕs execution and see what the contents of variables are. You can
step one line of code at a time and watch your program execute in
Òslow motion.Ó

All you need to do to enable the Debugger is produce special format
Þles that can be read by the Debugger when the code is executing.
These Þles are often called debugging info Þles, or simply referred
to by their format (CodeView or SYM Þles, depending on the plat-
form you are working on).

The CodeWarrior Debugger is discussed in the CodeWarrior Debug-
ger Manual on the CodeWarrior Reference CD. Other useful tools for
reÞning your code that complement the debugger can be found on
the CodeWarrior Tools CD. ZoneRanger and the ProÞler are espe-
cially useful.

CodeWarrior IDE Guided Tour
This section gives an overview of the CodeWarrior IDE user inter-
face. In this section youÕll Þnd:

¥ Initial View of the IDE

¥ IDE Menus

¥ Global Toolbar

¥ Other IDE Components

Initial View of the IDE

When you launch CodeWarrior, you see the menu bar at the top of
the CodeWarrior window, with the Global Toolbar below it, as
IDE User Guide UG–35

Gett ing Star ted
CodeWarrior IDE Guided Tour
shown in Figure 2.1. To learn how to hide the iconic toolbar, refer to
ÒShow Global Toolbar and Hide Global ToolbarÓ on page 332.

You use the menus and icons on this main menu and Global Toolbar
to access the CodeWarrior IDE tools and commands.

Figure 2.1 The CodeWarrior Menubar

Because the menu commands are so extensive, this chapter de-
scribes each menu only brießy. Information about the various menu
options can be found throughout this manual. If youÕd like to look
up what a speciÞc menu item does, you can refer to ÒIDE Menu Ref-
erence OverviewÓ on page 307.

The section titled ÒToolbar CustomizationÓ on page 269 describes
how to customize the icons on the CodeWarrior IDE toolbars.

IDE Menus

The CodeWarrior IDE menus allow you to perform a large number
of tasks to accomplish your work.

For beginners: Depending on your operating system and pref-
erence choices, some items on some menus may be disabled.
These commands are not available for use with your current pro-
cedure or with your current file.

The following sections describe each menu brießy. YouÕll Þnd a de-
tailed reference for every command on each menu starting at ÒIDE
Menu Reference OverviewÓ on page 307.
UG–36 IDE User Guide

Gett ing Star ted
CodeWarrior IDE Guided Tour
File Menu

The File Menu, shown in Figure 2.2, contains all the necessary com-
mands used to create new and open existing source code Þles and
projects. The File Menu also provides a few additional methods for
saving edited Þles, as well as commands for showing a Þle in the de-
bugger and printing Þles.

Figure 2.2 The File menu
IDE User Guide UG–37

Gett ing Star ted
CodeWarrior IDE Guided Tour
Edit Menu

The Edit Menu, shown in Figure 2.3, contains commands to help
you customize the CodeWarrior IDE to your needs. Undo, cut, copy,
paste, and selection operations are on this menu. Text formatting
features are also present on this menu. The section titled ÒConÞgur-
ing IDE Options OverviewÓ on page 215 describes conÞguration of
the Preferences and Target Settings.

Figure 2.3 The Edit menu
UG–38 IDE User Guide

Gett ing Star ted
CodeWarrior IDE Guided Tour
Search Menu

The Search Menu, shown in Figure 2.4, contains all the necessary
commands used to Þnd text, replace text, and to Þnd the deÞnitions
of routines in your source code.

Figure 2.4 The Search menu
IDE User Guide UG–39

Gett ing Star ted
CodeWarrior IDE Guided Tour
Project Menu

Use the commands on the Project Menu, shown in Figure 2.5, to add
and remove source code Þles and libraries for your project, and to
compile, build, link, and run your project. Commands for syntax
checking, preprocessing, disassembling source Þles, and setting the
target and project are also on this menu. In addition, the Debugger
may be enabled using this menu.

Figure 2.5 The Project menu
UG–40 IDE User Guide

Gett ing Star ted
CodeWarrior IDE Guided Tour
Window Menu

The Window Menu, shown in Figure 2.6, includes commands that
arrange open editor windows, switch between windows, and
switch to previously-opened projects. Operations to bring up source
code browser views are also accessible in this menu. In addition,
there are commands for conÞguring the toolbars in the IDE, includ-
ing the toolbars for the project, browser, and editor windows.

Figure 2.6 The Window menu
IDE User Guide UG–41

Gett ing Star ted
CodeWarrior IDE Guided Tour
Help Menu

The Help Menu, as shown in Figure 2.7, includes commands that
allow you to search for information on how to perform tasks and
understand terminology in CodeWarrior. This menu also has a com-
mand for viewing the version of the CodeWarrior IDE you are
working with.

Figure 2.7 Help Menu

Global Toolbar

The Global Toolbar is a palette of icons (Figure 2.8) that execute a
corresponding menu command.

The topics in this section are:

¥ Global Toolbar Overview

¥ Customizing Toolbar Commands

¥ Customizing the Global Toolbar

Global Toolbar Overview

The Global Toolbar contains a row of icons that represent com-
mands also listed in the CodeWarrior menus, such as Add Files,
Make, or Run.
UG–42 IDE User Guide

Gett ing Star ted
CodeWarrior IDE Guided Tour
Figure 2.8 The Global Toolbar

Customizing Toolbar Commands

Some of the menus have additional commands accessed by key-
board/mouse combinations. If a command you use frequently is not
on the Global Toolbar, it may allow you to save time if you add it to
the toolbar.

 To learn about how to do this, refer to ÒToolbar CustomizationÓ on
page 269.

Customizing the Global Toolbar

To learn how to customize the location of the Global Toolbar, or
change the icons on it, refer to ÒToolbar CustomizationÓ on page
269.

Other IDE Components

This chapter discussed the CodeWarrior IDE menus and the Global
Toolbar. There are a few more components in the IDE that have
Guided Tours.

For a tour of the Project Window, see ÒGuided Tour of the Project
WindowÓ on page 58.

For a tour of the Editor Window, see ÒGuided Tour of the Editor
WindowÓ on page 117.

For a tour of the Browser Windows, see ÒGuided Tour of the Brows-
erÓ on page 188.
IDE User Guide UG–43

Gett ing Star ted
CodeWarrior IDE Guided Tour
UG–44 IDE User Guide

3
Working with
Projects
This chapter introduces the CodeWarrior IDE project window, and
shows how to create, conÞgure, and work with projects.

Projects Overview
A project is a collection of Þles that the CodeWarrior compiler and
linker use to create executable computer code. Some examples of ex-
ecutable code include an application, library, or shared library.

Project Þles also contain options that affect the project youÕre work-
ing with. There are a wide variety of options that control many as-
pects of the CodeWarrior IDE, such as code optimization, the brows-
er, compiler warnings, and much more.

This chapter discusses many of the basic tasks involving projects,
such as creating, opening, adding Þles, and saving projects. It also
describes operations such as moving Þles in the project window,
marking Þles for debugging, creating nested projects and targets,
and dividing the project window into segments or groups of Þles.

The topics in this chapter are:

¥ Creating a Simple Project

¥ Opening an Existing Project

¥ Saving a Project

¥ Closing a Project

¥ Choosing a Default Project

¥ Guided Tour of the Project Window

¥ Managing Files in a Project
IDE User Guide UG–45

Working with Projects
Creating a Simple Project
¥ Creating Complex Projects

¥ Guided Tour of the Project Window

¥ Moving a Project

¥ Controlling Debugging in a Project

Creating a Simple Project
This section discusses how to create a simple project. It includes an
explanation of project stationery that you can use to speed the
project creation process.

CodeWarrior projects can be conÞgured to have multiple targets,
and may also contain subprojects. To learn more about these topics,
refer to ÒCreating Complex ProjectsÓ on page 79 after reading the
material in this section.

The topics in this section include:

¥ About Project Stationery

¥ Using Stationery Projects

¥ About the Project Stationery Folder

¥ Creating Your Own Project Stationery

About Project Stationery

A project stationery Þle is an exact copy of a minimal ÒstarterÓ
project Þle. Think of it as a template, or blank slate, that is used to
quickly create a new project. When you create a new project or open
a project stationery Þle, the CodeWarrior IDE creates a new project
and, optionally, a new project folder. It then copies all the stationery
information Þles to the new folder.

 Stationery information includes the following:

¥ All option settings for the project

¥ All Þles included in the stationery project (libraries, source
code Þles, and resource Þles)
UG–46 IDE User Guide

Working with Projects
Creating a Simple Project
¥ All segmentation and grouping information, including seg-
ment loader settings (Mac OS 68K projects only) and names.

If you use a stationery Þle to create your project, all the necessary
Þles can be put into a new folder with the same name as your
project. After creating your new project from stationery, you can
open it and begin writing code in the CodeWarrior IDE.

Using Stationery Projects

There are a few short steps involved in using a stationery project Þle
to create a new project:

¥ Choosing the New Project Stationery File

¥ Naming Your New Project

¥ Modifying Your New Project

¥ Building Your New Project

Choosing the New Project Stationery File

To create a new project, select the New Project command from the
File Menu.
IDE User Guide UG–47

Working with Projects
Creating a Simple Project
The CodeWarrior IDE displays the New Project window, shown in
Figure 3.1, from which you choose your project stationery.

Figure 3.1 New Project window

Click on a disclosure triangle in the window (the triangles on the left
side of the list) for the type of code that you are interested in. You
then see the project stationery available for that target. Figure 3.2
shows several levels expanded. It may be necessary for you to click
on more disclosure triangles to show the stationery of interest to
you.
UG–48 IDE User Guide

Working with Projects
Creating a Simple Project
If you want to create an empty project that contains no libraries or
other support Þles, you may choose the Empty Project option from
the list.

Figure 3.2 Choosing project stationery

Click one of the project stationery items that corresponds to your in-
tended target code type. If you want to create a new folder contain-
ing all the new project Þles, make sure the Create Folder checkbox
has a check in it by clicking on it.

Naming Your New Project

Click the OK button and a dialog box appears to allow you to name
your new project, as shown in Figure 3.3. Enter a name for your new
project, and use the dialog box controls to navigate to a location on
your hard disk where you want to save the project. Then click Save
to save the new project information to disk.

TIP: We suggest naming your project with a .mcp extension. This
makes your project easier to visually identify on your hard disk,
IDE User Guide UG–49

Working with Projects
Creating a Simple Project
and is the convention that the CodeWarrior IDE uses for project
files.

Figure 3.3 Naming a new project

WARNING! If you selected Create Folder when choosing statio-
nery, and you already have a project with the same name in the
same location on the hard disk, you will get an error message. Be
sure to use a unique name for your new project.

When you choose Save, the CodeWarrior IDE automatically sets up
your project, including:

¥ Creating a project folder with the same name as your project
(if you selected the Create Folder checkbox as discussed in
ÒChoosing project stationeryÓ on page 49), minus the Þle ex-
tension. The new folder contains your new project Þle for the
stationery you chose.
UG–50 IDE User Guide

Working with Projects
Creating a Simple Project
¥ Setting Target Settings and Preferences to be the same as the
settings stored in the chosen stationery.

¥ Opening the project window. The new project contains librar-
ies, source code placeholders, and resource Þle placeholders.
If you chose to create an empty project, there will not be any
Þles or libraries in your new project window.

Figure 3.4 A project window

Modifying Your New Project

Most new projects created from stationery contain source code Þles
that are basically empty placeholders. You can remove these and
substitute your own Þles. Refer to the section titled ÒManaging Files
in a ProjectÓ on page 65 for more information about removing and
adding files in a project.
IDE User Guide UG–51

Working with Projects
Creating a Simple Project
You may also want to add additional libraries to your project Þle. To
learn about which libraries to include, refer to the targeting manual
of interest to you. A table of all the targeting manuals for the
CodeWarrior product can be found as Table 1.2 on page 25.

Building Your New Project

After you have your project created and Þles added to it, you will
want to build it to produce your target application, library, or what-
ever you are creating. To learn how to build a project, refer to the
discussion in ÒCompiling and Linking OverviewÓ on page 271.

About the Project Stationery Folder

CodeWarrior provides project stationery for many different kinds of
projects. Project stationery for common types of projects are inside
folders nested inside the (Stationery) folder, inside the
CodeWarrior folder on your hard disk.

When you create a new project, you can see all the available statio-
nery by clicking the disclosure triangles at the left side of the New
Project window (Figure 3.2).

The following Þles can be included in the (Stationery) folder
and are recognized by CodeWarrior as stationery projects.

¥ Normally saved projects

¥ Project stationery Þles

Refer to the ReadMe Þle in the (Stationery) folder for more in-
formation about the stationery.

Creating Your Own Project Stationery

You can create a unique stationery or ÒtemplateÓ project Þle that in-
cludes the Þles and options you want to have for a starter project.
This stationery project can be reused whenever you are creating a
new project, so that you always start from your own customized set-
tings.
UG–52 IDE User Guide

Working with Projects
Creating a Simple Project
To create your own project stationery Þle, create a new project or
open an existing project. Then, change the settings using the Prefer-
ences command on the Edit Menu. You should then save your new
stationery project in the appropriate subfolder in the (Statio-
nery) folder.

To learn how to conÞgure Preferences settings, refer to ÒChoosing
PreferencesÓ on page 220. You can also customize Target Settings for
your custom stationery in a similar way. To learn more about how to
do this, refer to ÒChoosing Target SettingsÓ on page 244.

Next, add the appropriate Þles as desired for your stationery
project. You can add your own ÒplaceholderÓ Þles that will always
appear in your stationery projects. To do this, copy the Òplacehold-
erÓ Þles you want to appear in your stationery into your new sub-
folder inside the (Stationery) folder on your hard disk. You
should have one folder per stationery project that you create.

For information about adding or changing Þles in the project, see
ÒManaging Files in a ProjectÓ on page 65.

Now choose the Save A Copy As command from the File Menu. Se-
lect Project Files from the Save As Type pull-down menu in the dia-
log box that appears. If you would like to learn more information
about this process, refer to ÒBacking Up FilesÓ on page 110 for more
information about saving a copy of the project under a different
name. Make sure to select a suitable location for your project statio-
nery Þle. The Þle should be saved somewhere inside one of the sub-
directories inside the (Stationery) folder, which is located in
your CodeWarrior folder.

Give the project a name and click the Save button.
IDE User Guide UG–53

Working with Projects
Creating a Simple Project
By saving your stationery in one of the subdirectories, you will have
your stationery available the next time you use the New Project
command.

Figure 3.5 Save A Copy As Dialog Box

TIP: We suggest naming your stationery project ending with a
.mcp.This makes your project easier to identify on your hard disk
and obeys the conventional naming that the CodeWarrior IDE ex-
pects for a project file.

The reason you want to save the stationery project before doing a lot
of work with it is because you will have a ÒstarterÓ or ÒtemplateÓ
project Þle on your hard disk. You can make copies of the ÒstarterÓ
project to get new projects quickly started, with all your favorite set-
tings, by using the New Project command.
UG–54 IDE User Guide

Working with Projects
Opening an Existing Project
New projects started with stationery will have all the settings you
initially conÞgured for your stationery project.

If at any time you decide that you want to use different project set-
tings for new projects, you just create a new stationery project. Just
make sure that you have a project window open, then conÞgure
your options, then save your new stationery project in the appropri-
ate stationery folder.

Opening an Existing Project
There are several different ways you can open a project Þle from
within the CodeWarrior IDE. This section tells you how to open
your projects so you can work on them.

Note that you may have many different projects open at a time, not
just one project.

The current project window you have open can be made the active
window using the Window Menu (Figure 11.5 on page 327). To
switch to one of these opened projects, just choose a project from
this menu. You can also click in the window to make it the active
window.

The topics in this section are:

¥ Using the Open Command

¥ Using the Open Recent Command

¥ Using the Project Window to Open Subprojects

Using the Open Command

Information on how to open a project Þle using the Open command
on the File Menu is found in the section of the manual titled ÒOpen-
ing Files with the File MenuÓ on page 102.

You can have more than one project open at a time in the CodeWar-
rior IDE.
IDE User Guide UG–55

Working with Projects
Saving a Project
Using the Open Recent Command

The CodeWarrior IDE maintains some of the projects you have
opened recently in a list under the File Menu. As a convenience, you
may use the Open Recent menu command to reopen one of these
projects.

Using the Project Window to Open Subprojects

If your project contains subprojects, and you want to open one of
those subprojects, you can double-click on the project Þle icon in the
Project window to open it.

To learn more about subprojects, and how to add them to your
Project window, refer to ÒCreating Complex ProjectsÓ on page 79.

Saving a Project
The CodeWarrior IDE automatically updates and saves your project
when you perform certain actions. This section discusses these ac-
tions that cause the project Þle to get saved.

Some of the times when your settings get saved are when you:

¥ Close the project

¥ Change Preferences or Target Settings for the project

¥ Add or delete Þles for the project

¥ Compile any Þle in the project

¥ Edit Groups or Segments in the project

¥ Remove Object Code from the project

¥ Quit the CodeWarrior IDE

You never have to manually save your project unless you want to
create a copy of it, since the project is automatically saved each time
it is closed, and also when other common actions are performed.
UG–56 IDE User Guide

Working with Projects
Closing a Project
Items Saved with Your Project

When the CodeWarrior IDE automatically saves your project, it
saves the following information:

¥ The names of the Þles added to your project and their loca-
tions

¥ All conÞguration options

¥ Dependency information (the touch state and interface Þle
lists)

¥ Browser information

¥ The object code of any compiled source code Þles

Saving a Copy of Your Project

The CodeWarrior IDE lets you save a copy of the project under a
new name. To learn about using this feature, see the discussion in
ÒBacking Up FilesÓ on page 110.

Closing a Project
After you have been working with your project for awhile, you may
want to close it to work on another project, or to quit the CodeWar-
rior IDE application to work on something else. To read about how
to close your project, refer to ÒClosing One FileÓ on page 112.

You donÕt have to close your project before quitting the CodeWar-
rior IDE application, since your project settings are automatically
saved. To learn more details about saved projects, refer to ÒSaving a
ProjectÓ on page 56.

The CodeWarrior IDE will allow you to have more than one project
open at a time, so you donÕt have to close each project you are Þn-
ished with before switching to another project. Just open your new
project and begin working with it.
IDE User Guide UG–57

Working with Projects
Choosing a Default Project
TIP: Having multiple projects open at a time consumes more
memory on your computer, and also causes project opening times
to lengthen slightly.

Choosing a Default Project
Since the CodeWarrior IDE permits multiple open projects, it is
sometimes ambiguous as to what project is used when you perform
a Make, Run, or other operation on your project. If the active win-
dow is a project window, that project will be used for any builds
that are started. Source code Þles can be in more than one open
project. So you can set which project is the default project for builds
using the Set Default Project menu command on the Project Menu.
In any ambiguous case such as this, when a source code Þle may be-
long to one or more open projects, the CodeWarrior IDE will operate
on the default project you have chosen using the Set Default Project
menu command.

The Þrst project you open becomes the default project. If you close
the default project, the default project will then be set to the Project
window that is closest to the top.

Guided Tour of the Project Window
The project window displays the project information you are work-
ing with, showing the projectÕs Þles, grouping, and whether or not
debugging information is to be generated for each Þle. It also shows
which Þles need to be compiled the next time the project is built,
and object code and data sizes. See Figure 3.6 on page 60 for a de-
tailed look at the project window.

To learn more about debugging information, see ÒControlling De-
bugging in a ProjectÓ on page 96.
UG–58 IDE User Guide

Working with Projects
Guided Tour of the Project Window
Navigating the Project Window

To navigate the project window, use the scroll bar on the right side
of the window, or the Up and Down Arrow keys on your keyboard.
If your project window contains many Þles, use the Home and End
keys, if available, to jump from the Þrst Þle in the Þrst segment or
group (Home Key) to the last Þle in the last segment (End Key).

Use the Page Up and Page Down keys, if available, to scroll your
project window one page up or one page down.

To learn about a technique for selecting Þles as you type, refer to
ÒSelection by keyboardÓ on page 69.

Project Window User Interface Items

This section will take you on a tour of the various user interface
items that you can use to alter your project view or project settings.
The project window contains many pop-up menus and columns
that indicate segmentation/grouping, debugging, access path, and
interface Þle information. This section brießy describes these user
interface items.

The topics in this section are:

¥ Category Tabs

¥ Toolbar

¥ Group Organization

¥ File Column

¥ Code Column

¥ Data Column

¥ Debug Column

¥ Touch Column

¥ Interfaces Pop-up

¥ Group Pop-up
IDE User Guide UG–59

Working with Projects
Guided Tour of the Project Window
¥ Checkout Status Column

Figure 3.6 The Project Window

Category Tabs

You click on one of the three Category Tabs, shown in Figure 3.6, to
change the view of your project window. The Category Tabs are
Files, Segments or Link Order, and Targets. The Files tab allows you
to inspect some information for Þles in your project. The Link Order
or Segments tab (name depends on your target type) allows you to
group your Þles for segmenting purposes. The Targets view allows
you to conÞgure what targets your project will build code for, and in
what order the targets are built.

To learn more about targets, refer to ÒWhat is a Target?Ó on page 80.
To learn more about working with Þles in the project window, refer

Touch Column

Group

File Column

Code Column

Data Column

Debug Column

Interfaces Pop-Up

Project Totals

Category Tabs

Toolbar

Checkout Status
Column

Group Pop-up
UG–60 IDE User Guide

Working with Projects
Guided Tour of the Project Window
to ÒManaging Files in a ProjectÓ on page 65. To learn more about
segmenting Þles, refer to ÒAbout Groups and SegmentsÓ on page 65.

Toolbar

The Toolbar in the project window allows you to perform shortcuts
for commands to boost your productivity. You may conÞgure which
icons are on the Toolbar, and the order in which they are displayed.
You can even conÞgure whether the toolbar is visible. To learn more
about toolbars in the CodeWarrior IDE and how to conÞgure them,
refer to ÒToolbar CustomizationÓ on page 269.

Group Organization

Each CodeWarrior project is visually divided into different groups
of Þles. Files are moved between groups, groups can be collapsed
and other groups expanded using the disclosure triangle at the top
left edge of each group, and entire groups can be moved around in
the window. Figure 3.6 shows an example of Þle groups in the Files
category of the project window.

The Þles shown in the Files view are all the Þles in all targets of the
project, while the Þles shown in the Segments or Link Order view
show the link order for the current target.

Items shown in the Files view can be grouped together with an arbi-
trary hierarchy, and rearranging items has no effect on the Þnal bi-
nary code that is produced by your project. By default, the
CodeWarrior IDE compiles Þles in the speciÞed order, but will de-
part from this to follow dependencies where necessary. This is be-
cause there could be Þles the IDE couldn't build right the Þrst time
because the dependencies were not known until after the Þrst build.
If the Þles are in an unsympathetic dependency order, the build
could fail. By putting the Þles in a correct order in the Link Order or
Segments view the user can allow the Þrst build to succeed.

Items in the Link Order or Segments view can only be nested one
level deep. The Þles in this view are arranged in the order they will
be compiled. Changing their order affects the Þnal binary code that
is produced by your project Þle.
IDE User Guide UG–61

Working with Projects
Guided Tour of the Project Window
While this Þle grouping capability is deÞnitely useful from an orga-
nizational standpoint, it also has signiÞcance for some particular
targets you may be building. Using the Segments category, some
targets use the grouping facility to produce code segments at link
time. These segments of code break the entire program code into
pieces, or segments. Sometimes this code segmenting is required by
the target computerÕs hardware architecture. For more discussion
about groups, refer to ÒManaging Files in a ProjectÓ on page 65.

File Column

The File Column of the project window, shown in Figure 3.6, shows
which Þles are in your project and the names of the groups which
contain those Þles. Files can be added, moved around, opened, or
removed from within groups.

Double-clicking on a Þle name in the File Column opens the Þle in
an editor window. The exception to this is binary Þles (such as li-
brary Þles) which cannot be opened into an editor window. For in-
formation on opening Þles from the File Column, see ÒOpening
Files from the Project WindowÓ on page 104.

For information on adding, moving, or removing Þles, see ÒManag-
ing Files in a ProjectÓ on page 65.

Code Column

The Code Column of the project window, shown in Figure 3.6 on
page 60, shows the size, in bytes or kilobytes, of the compiled exe-
cutable object code for a corresponding Þle. If zero is displayed, it
means that your Þle has not yet been compiled.

The code values do not necessarily reßect the amount of object code
that will be added to the Þnal binary Þle. The linker may not use all
a project ÞleÕs object code. Instead, the linker may only use the data
and code that are referenced by other Þles in the project.

The numeric values shown are only for items in the current target.
Values for items not in the current target are shown in gray.
UG–62 IDE User Guide

Working with Projects
Guided Tour of the Project Window
For more information on how the linker works, see ÒCompiling and
Linking a ProjectÓ on page 273.

Data Column

The Data Column of the project window, shown in Figure 3.6 on
page 60, shows the size, in bytes or kilobytes, of the non-executable
data area for a corresponding Þle. If zero is displayed, it means that
your Þle has not yet been compiled, or that the Þle does not contain
a data section in its source code.

The data values do not necessarily reßect the amount of data that
will be added to the Þnal binary Þle. The linker does not necessarily
use all a project ÞleÕs data. Instead, the linker may only use the parts
necessary to completely link the project.

The numeric values shown are only for items in the current target.
Values for items not in the current target are shown in gray.

For more information on how the linker works, see ÒCompiling and
Linking a ProjectÓ on page 273.

Debug Column

The Debug Column of the project window, shown in Figure 3.6 on
page 60, indicates whether debugging information is being generat-
ed for a Þle. ItÕs easy to recognize the Debug Column because there
is an icon of a small bug at the top of the column.

For more information about debugging information for a Þle, see
ÒActivating Debugging for a FileÓ on page 97.

Touch Column

The Touch Column of the project window, shown in Figure 3.6 on
page 60, indicates whether a Þle needs to be compiled the next time
a project is built.

When clicked, the Touch icon at the top of the Touch column causes
all Þles in the project to have their modiÞcation dates synchronized.
To learn more about this feature, refer to ÒSynchronizing modiÞca-
tion datesÓ on page 79.
IDE User Guide UG–63

Working with Projects
Guided Tour of the Project Window
When clicking in the Touch Column next to the segment/group
names, all Þles in that group/segment will be touched.

For more information about touching and untouching Þles, see
ÒTouching and Untouching FilesÓ on page 274.

Interfaces Pop-up

The Interfaces Pop-up in the project window, shown in Figure 3.6 on
page 60, allows you to see and open interfaces and header Þles for
your project source Þles.

The Interfaces File Pop-up also allows you to toggle the touched or
untouched status for a given Þle.

For more information about opening interfaces and header Þles, see
ÒInterfaces Pop-up MenuÓ on page 105.

For more information about touching and untouching Þles, see
ÒTouching and Untouching FilesÓ on page 274.

Group Pop-up

The Group Pop-up of the project window, shown in Figure 3.6 on
page 60, allows you to easily see which Þles are in a group without
fully expanding the group. You can also open a Þle from this pop-
up. This pop-up distinguishes itself from an Interfaces Pop-up since
it is in the same row as the name of a Group.

For more information about opening Þles this way, refer to ÒOpen-
ing Files from the Project WindowÓ on page 104.

Checkout Status Column

The Checkout Status Column is not yet available for use in this re-
lease of the CodeWarrior product.
UG–64 IDE User Guide

Working with Projects
Managing Files in a Project
Managing Files in a Project
This section discusses aspects of adding, moving, naming, organiz-
ing, viewing, marking for compilation, and removing Þles from
your project. The topics in this section are:

¥ About Groups and Segments

¥ Expanding and Collapsing Groups

¥ Selecting Files and Groups

¥ Adding Files

¥ Moving Files and Groups

¥ Creating Groups

¥ Removing Files and Groups

¥ Renaming Groups

¥ Touching and Untouching Files

About Groups and Segments

Groups allow you to organize your source code Þles into logical cat-
egories to help you keep track of where you put your Þles. Segments
provide a similar function that is different in a subtle way. Some tar-
get linkers break executable code into segments. These segments of
executable code are swapped in and out of memory while the pro-
gram is running. Creating groups of these Þles tells the linker which
Þles to put in one segment.

In other words, you can use Groups to group your Þles together in
the Files view of the project window. In the Segments view of the
project window, other targets that require segmenting use the Þle
grouping to create code segments of related code.

For example, in the Segments tab view, by grouping all the Þles that
contain sound playback functionality into a group named ÒSound,Ó
you would be creating a segment of code that is loaded when your
programÕs execution calls for playing sound. When another seg-
ment needs room in memory, and no sound is being played, your
ÒSoundÓ segment would be swapped out of memory by the operat-
ing system to free space for the new segment to load.
IDE User Guide UG–65

Working with Projects
Managing Files in a Project
Now, in the Files view, you can still group all the ÒSoundÓ Þles to-
gether in a group, but these Þles would not necessarily be put into
the same segment, unless the #pragma segment directive were
used in the source code.

Motorola 68K projects use segments. PowerPC, Win 32/x86,
CFM68K, Java, and Be projects do not use segmenting.

In summary, Groups allow you to organize your source code Þles
into logical categories to help you keep track of where you put your
Þles. For some targets, Segments serve the additional purpose of as-
signing code to segments that the linker will create.

Expanding and Collapsing Groups

Groups display Þles in collapsible lists, in much the same way the
Windows tree control can display Þles and folders hierarchically.

To expand a group and view its Þles, click on the disclosure triangle
in the top left edge of the desired group. To close a group and view
only its name, click the triangle again (Figure 3.7).
UG–66 IDE User Guide

Working with Projects
Managing Files in a Project
Figure 3.7 Expanding and collapsing groups

Alt-click on a disclosure triangle to do a "deep expand." This action
expands a group and all its subgroups in the project window. It does
not expand groups that are at the same level as the group you Alt-
clicked. Instead, use Control-click to expand these sibling groups.
By doing a Control-click or Alt-click again, the expansion that you
did will be collapsed.

Selecting Files and Groups

From the project window you can select one or several Þles and
groups to open, compile, check syntax, remove from the project, or
move to a different group.

Click on a disclosure triangle to expand a group, showing all of its files.
IDE User Guide UG–67

Working with Projects
Managing Files in a Project
When a group is selected, all of the Þles within the group are select-
ed, regardless of whether or not one of its source code Þles are in-
cluded in the selection. For example, the project in Figure 3.8 has
one of its source code Þles selected. If you executed the Check Syn-
tax command, the operation is performed on all of the selected Þles.

Figure 3.8 Selecting a file in a project window

Selection by mouse-clicking

To select a single Þle or group in the project window, click its name.

To deselect a single Þle or group in the project window, Shift-click
on its name.

To select a consecutive list of Þles or groups, select the Þrst Þle or
group in the list by clicking its Þlename, then Shift-click the last Þle
or group to be selected. If the Þrst entry in the selection is a Þle, only
Þles will be selected. If the Þrst entry in the selection is a group, only
groups are selected.

To select a non-consecutive group of Þles or groups, Shift-click each
Þlename or group.
UG–68 IDE User Guide

Working with Projects
Managing Files in a Project
Selection by keyboard

Type the Þrst few characters of the Þle name you want to select. As
you type, the CodeWarrior IDE selects the Þle in the project window
as soon as the characters identify the Þle closest to your entry.

Use the Backspace key if you make a typo.

Press Enter to open the Þle.

NOTE: Only files in currently-expanded groups in the Project
window can be selected this way. Files in collapsed groups will not
be matched with your keystrokes.

Adding Files

This section tells how to add Þles to your CodeWarrior project.

When adding a Þle to a project, Access Paths to the Þle or Þles auto-
matically get set in the project. The Message Window informs you
whenever a new access path is added.

For more information about Access Paths see ÒAccess PathsÓ on
page 247.

For more information about the Message Window, see ÒGuided
Tour of the Message WindowÓ on page 290.

Here are the topics you will learn about in this section:

¥ Where Files AppearÑwhere Þles go when they are added to
your project

¥ Using the Add Files CommandÑadd one or more Þles

¥ Using Drag and DropÑadd one or more Þles

¥ Using the Add Window CommandÑadd one Þle
IDE User Guide UG–69

Working with Projects
Managing Files in a Project
Where Files Appear

Files are always added after the currently selected item in the
Project window, or at the bottom of the Project window if there is
nothing selected. To put a new Þle or Þles in a particular location, al-
ways select the Þle or group above that location before performing
the Add Files or Add Window command.

If a group is selected, regardless of whether or not the group is ex-
panded or collapsed, the Þles to be added are placed at the end of
the selected group. To learn about how to select a Þle or group of
Þles, see ÒSelecting Files and GroupsÓ on page 67.

If no group is selected in the Files view of the project window, new
items will be added to the end of the list instead of within an exist-
ing group. If no group is selected in the Segments view, new items
will get added to the end of the Þrst segment.

NOTE: If a group or a file within a group is not selected prior to
adding files, a new group is created and appended to your project.
The files added are placed in this new group.

Of course, you can always move a Þle or group of Þles to a new loca-
tion after adding to the project. To see how to move Þles and groups
around in the project window, see ÒMoving Files and GroupsÓ on
page 73.

Using the Add Files Command

The Add Files command on the Project Menu opens a dialog box
you can use to add Þles to your project from many locations. Use
this command to add source code Þles, libraries, resource Þles, or a
shared library.

This command opens a dialog box that can be used to add Þles to
your project from a directory (Figure 3.9). In order for Þles to appear
in this Add Files dialog box, the Þles must have a recognized exten-
sion (such as .c or .p) at the end of the Þlename. To examine and con-
Þgure possible extensions for Þle names, refer to ÒSetting a File Ex-
tensionÓ on page 273.
UG–70 IDE User Guide

Working with Projects
Managing Files in a Project
NOTE: You can add large numbers of files this way, but there
may be a delay while the CodeWarrior IDE locates the files and
adds them to the project.

Figure 3.9 Adding Files to a Project

TIP: To select multiple files, as shown in Figure 3.9, press the
Control key when clicking on a file name in the dialog box. To se-
lect a contiguous group of files, click on the first file name, then
press the Shift key and click the last file that you want to end your
group.

Note that if your project contains multiple targets, you will be
prompted to choose the targets that your Þles should be added to.
IDE User Guide UG–71

Working with Projects
Managing Files in a Project
Using Drag and Drop

When you drag and drop Þles or folders onto the CodeWarrior
project window, they will be added to the project.

To add Þles to your project using this method, Þrst select the Þles or
folders you want to add to the project.

You can select Þles in many places, including the Desktop, or the
multi-Þle search list in the CodeWarrior IDEÕs Find dialog box.

To complete the add operation, drag your selection onto the project
window. Note that if your project contains multiple targets, you will
be prompted to choose the targets that your Þles should be added
to.

When dragging the selected Þles onto the project window, the
CodeWarrior IDE veriÞes that the Þles can be added to the project.
When dragging a folder, the CodeWarrior IDE checks to make sure
that the folder, or one of its subfolders, contains at least one source
code Þle, library, or resource Þle, and that Þle is not already in the
project.

If the selection does not contain at least one Þle recognized by the
CodeWarrior IDE, the project window will not be highlighted, indi-
cating that the selection cannot be added to the project.

If the project window is highlighted, then releasing the mouse adds
the selected Þles and the contents of the selected folders to the
project, appending them to the segment/group which the cursor is
in. To add Þles to a new segment/group, release the mouse when
the cursor is over the blank space after the last segment/group.

The new Þles will be added after the selected item in the project
window, so activate that window and select the item before drag-
ging for best results.

The CodeWarrior IDE does not allow the dragging of entire vol-
umes (such as your hard disk) onto the project window because
adding Þles from an entire hard disk would probably take too long.
UG–72 IDE User Guide

Working with Projects
Managing Files in a Project
The CodeWarrior IDE allows dragging and dropping outside of the
project window. You can also drag Þles to another application to
open them in that application.

Although the CodeWarrior IDE supports dragging and dropping
Þles into the project window, you cannot drag Þles out of the project
window. To learn how to remove Þles from the project window,
refer to ÒRemoving Files and GroupsÓ on page 75.

Using the Add Window Command

The Add Window command adds the Þle associated with the active
window to the project. You typically do this when youÕve opened a
new Þle for editing, then decided that you would like to add it to the
currently-open project window.

To use the Add Window command, select a location in the project
window. Then, open a Þle, make sure its window is active, and se-
lect the Add Window command from the Project Menu. If the win-
dow is untitled, the Save As dialog box appears, prompting you to
select a location and name for the Þle. After you save the Þle, the Þle
is added to the open project.

Note that if your project contains multiple targets, you will be
prompted to choose the targets that your Þles should be added to.

NOTE: The Add Window command is enabled when the active
window is a text file, the file is not yet in the project, and it has a
recognized file name extension (to learn about configuring permis-
sible file name extensions, refer ÒFile MappingsÓ on page 253).
The Add Window command is dimmed otherwise.

Moving Files and Groups

To move one or more Þles or groups, select the Þles or groups to be
moved. Selecting a group selects all of its Þles regardless of whether
or not its Þles are visually selected in the project window. If you
need help selecting Þles and groups, see ÒSelecting Files and
GroupsÓ on page 67.
IDE User Guide UG–73

Working with Projects
Managing Files in a Project
Next, drag the selected Þles or groups to their new location in the
project.

A focus bar (an underline) indicates where the selected Þles will be
moved to when the mouse is released.

Whether you are moving Þles or groups depends on your selection.
For example, if your selection consists of Þles then the focus bar is
shown on each line, under both groups and Þles.

If your selection includes at least one group, then the underline is
shown only under other groups as you move the mouse in the
project window. This enables you to rearrange groups.

Finally, release the mouse button when the small triangle underline
is positioned after the desired Þle or group position.

When a Þle is underlined and the mouse is released, the selected
Þles are placed in the same group, following this Þle. When a group
is underlined, the selected Þles are placed at the end of this group.

Creating Groups

To create a new group, select the Þle(s) you want to put in the new
group, then drag to right just below the division line of the last
group in the project. A new group is automatically created.

Another way to do this is select the Þle that will be the Þrst Þle in the
new segment then press Control-Return. CodeWarrior creates a new
group with the selected Þle and those below it, stopping at the next
group.

Dragging items past the last group adds them to the top level of the
window, instead of creating a new group.

After creation, the projectÕs groups are renumbered to include the
new group. The new group will have a name like ÒGroup 3Ó or
some other number. For information on how to change this name,
see ÒRenaming GroupsÓ on page 76.
UG–74 IDE User Guide

Working with Projects
Managing Files in a Project
Removing Files and Groups

When removing Þles from the project window, you need to be
aware of a subtle issue. If you remove Þles from the Files view, they
are removed from the entire project, including all targets. When re-
moving Þles from the Segments view, the Þles are just deleted from
the current target.

To learn more about targets, refer to ÒWhat is a Target?Ó on page 80.

To remove one or more Þles or groups, Þrst select the Þles or groups
to be removed. Note that selecting a group selects all of its Þles re-
gardless of whether or not its Þles are visually selected in the Project
window.

To learn how to select Þles, refer to ÒSelecting Files and GroupsÓ on
page 67.

WARNING! This command can’t be undone. If you mistakenly
remove a group, you must re-add its files using either the Add
Window or Add Files commands under the Project Menu.

After selection, choose the Remove Selected Items command from
the Project Menu or press Alt-Delete. The selected Þles and groups
will be removed from your project.

When you remove a group from your project, all of the Þles that are
in that group will still be in the project. If there is more than one
group in the project, the Þles will be added to the group that is
above the group you are deleting. If there is only one group in your
project, you wonÕt be able to delete the group, since the CodeWar-
rior IDE requires at least one group in a project.

To remove a group from your project, select the group to remove
and press Shift-Control-Return. CodeWarrior moves the Þles in this
group up to the previous group and the group numbers are updat-
ed.
IDE User Guide UG–75

Working with Projects
Managing Files in a Project
Renaming Groups

To rename a group, select the group to be renamed by clicking on it
then press the Enter key. You may also use the arrow keys to navi-
gate to the group, then hit the Enter key.

When you have done this, a dialog box appears containing a name
text Þeld you use to enter a new name (Figure 3.10).

Figure 3.10 Changing a group name

Type the new name in the name box and click OK. The name of the
group is changed in the project window.

If you have selected more than one group, the same dialog box
opens for the next group selected, enabling you to change its name
as well.

Note that when you attempt to change the groupÕs name again,
ÒGroupÓ (or ÒSegmentÓ) and its number are displayed in the dialog
boxÕs title, not the name that you have given it. This shows the
groupÕs order in your project.

Touching and Untouching Files

Use the Touch Column shown in Figure 3.11 to ßag Þles that need
compilation. The CodeWarrior IDE doesnÕt always recognize Þle
changes and may not automatically recompile all Þles in certain cas-
es, which is why the Touch Column features are useful.
UG–76 IDE User Guide

Working with Projects
Managing Files in a Project
There are three possible ways to make sure changed Þles get com-
piled. One way is to click in the Touch Column beside the Þlename
in the project window. A check icon should appear in the Touch Col-
umn next to the Þle name.

Another way is to select the Touch command from the Interfaces
Pop-up menu. The Touch command may appear at the top of the In-
terfaces Pop-up and the Group Pop-up.

The last way to make sure that changed Þles get compiled is to click
on the Touch Column icon at the top of the column. This will resyn-
chronize the state of the Þles in the project depending on the dates
they were last modiÞed. This is useful if the Þles have been modi-
Þed outside of the CodeWarrior IDE, perhaps by a third-party edi-
tor.

TIP: If the file hasn’t been changed since it was last compiled,
the first command in either pop-up is Touch. When you choose
Touch, the CodeWarrior IDE marks your file as dirty and compiles
the file the next time it makes your project. If the file has been
changed since it was last compiled, the Untouch command is
shown.

Refer to Figure 3.11 to see this illustrated in a project window. YouÕll
see a checkmark in the Touch Column next to the Þlename if the Þle
IDE User Guide UG–77

Working with Projects
Managing Files in a Project
is marked for compilation, and the Touch command in the Interfaces
Pop-up for the Þle you touched becomes Untouch.

Figure 3.11 Marking files for compilation

To unßag Þles you ßagged for compilation, click again in the Touch
Column left of the Þle name, or choose Untouch from the Interfaces
Pop-up.

Note that the ÒcheckÓ icon at the top of the Touch Column may be
used to touch all the Þles in the entire project.

To learn more about Touch and Untouch, see ÒTouching and Un-
touching FilesÓ on page 274.
UG–78 IDE User Guide

Working with Projects
Creating Complex Projects
Synchronizing modification dates

To update the modiÞcation dates stored in your project Þle, click the
checkmark icon above the Touch Column, next to the barber pole
icon, as shown in Figure 3.11.

Alternatively, choose the Synchronize ModiÞcation Dates command
in the Project Menu.

The CodeWarrior IDE updates the modiÞcation dates stored in the
project Þle. It checks the modiÞcation date for each Þle in the
project, and if the Þle has been modiÞed since it was last compiled,
the CodeWarrior IDE marks it for recompilation. This will resyn-
chronize the state of the Þles in the project depending on the dates
they were last modiÞed. This is useful if the Þles have been modi-
Þed outside of the CodeWarrior IDE, perhaps by a third-party editor
that doesnÕt notify the CodeWarrior IDE when it modiÞes a Þle.

Creating Complex Projects
The CodeWarrior IDE provides ßexible facilities for creating project
Þles containing sophisticated build rules. This section discusses
how to construct complex project Þles that may contain multiple dif-
ferent kinds of build target code, or contain other projects. This facil-
ity allows you to create powerful build hierarchies for your entire
software project.

For example, you may want to create complex projects so that one
project Þle can contain targets for both shipping and debugging ver-
sions of code. By switching between shipping and debug targets,
different versions of the code can be generated during the develop-
ment process. Each of these targets can have their own settings. For
example, the debugging target could have optimizations disabled
and debugging information enabled, and the shipping target can
have code generation optimizations enabled.

Using the CodeWarrior IDEÕs targets and subprojects, it is even pos-
sible to do builds of both Mac OS software and Win32 software right
on your computer!
IDE User Guide UG–79

Working with Projects
Creating Complex Projects
The topics in this section are:

¥ What is a Target?

¥ What is a Subproject?

¥ Strategy for Creating Complex Projects

¥ Creating a New Target

¥ Changing a Target Name

¥ Changing the Target Settings

¥ Setting the Current Build Target

¥ Creating Target Dependencies

¥ Assigning Files to Targets

¥ Creating Subprojects Within Projects

What is a Target?

A target is a set of rules and settings that you conÞgure to produce a
code product from a build.

The CodeWarrior IDE has the capability to build many different
code products, or targets, from one project Þle, as shown in Figure
3.12. For example, this is useful if you want to have a build of your
code for debugging, and a separate build for your shipping code.

You can also deÞne targets that are common to multiple targets, so
that one target gets built before trying to build another. This could
be useful for sharing resource Þles between other targets. In this
way, you can create a target that depends on some other target, forc-
ing the latter target to build Þrst.

Each target in the project can have its own build settings. Each set of
target settings is distinct.
UG–80 IDE User Guide

Working with Projects
Creating Complex Projects
To learn more about considerations for using targets, refer to ÒStrat-
egy for Creating Complex ProjectsÓ on page 83.

Figure 3.12 Multiple Targets in the Project Window

What is a Subproject?

A subproject is a normal, stand-alone project Þle that can be nested
within a project, as for the project Þle at the bottom of the project
window named msl_cpp.mcp shown in Figure 3.13. Subprojects are
useful if you have a project Þle that you want to keep separate from

Link Column
IDE User Guide UG–81

Working with Projects
Creating Complex Projects
the main project Þle. This allows you to factor the build process into
separate project Þles.

Figure 3.13 Subproject Within a Project

One case where this factoring might be useful is for applications
that utilize a code plug-in architecture. Suppose your program uses
many different plug-in code modules, each sharing some common
source code with other plug-ins. You can create one project Þle to
build all the plug-ins by creating a separate target for each plug-in.
In this scenario, the project Þle for the plug-ins is the subproject. In-
cluding the subproject in the project Þle of the main application al-
lows all the plug-ins to be built, before building the main applica-
tion.

A project Þle may be assigned to any target in a project. To learn
how to do this, refer to ÒAssigning Files to TargetsÓ on page 91.
UG–82 IDE User Guide

Working with Projects
Creating Complex Projects
To learn how to add Þles to a project, refer to ÒAdding FilesÓ on
page 69.

You may select one or more targets in a subproject, to be built when
the containing target in the main project is built. When the target in
the main project is built, the CodeWarrior IDE Þrst builds any select-
ed targets in any subprojects. You can optionally link the output
code of the main project against the output code of the subproject's
target. A subprojectÕs targets are not built automatically when a sub-
project is added to a parent project. Only the chosen targets within
the subproject will be built.

Subprojects can be made target-speciÞc. That is, if you add a sub-
project, you can choose which targets it belongs to. Other targets in
the main project will not build the subproject unless the subproject
Þle is added to the target you choose.

To learn more about considerations for using subprojects, refer to
ÒStrategy for Creating Complex ProjectsÓ on page 83.

Strategy for Creating Complex Projects

The choice of whether to use multiple targets or subprojects within a
project Þle depends on what works best for you. If you want access
to all the source code in one project, then multiple targets is a good
choice. Subprojects are better when you prefer to keep separate
stand-alone project Þles.

For example, if you need to build a number of plug-in shared librar-
ies that accompany your application, create a project that builds the
subprojects with a single Make command. Then, include this project
Þle as a subproject in your main application project Þle. When your
main application is built, the subprojectÕs plug-ins will be built Þrst.

There is a limit of 255 targets per project. Before you hit that limit,
there's the consideration of memory and project load times. Projects
with lots of targets will take up more disk space, take longer to load,
and use more memory.

Once you get past ten or twenty targets, it's likely that you would
beneÞt by moving some of them off to subprojects. Anything that is
IDE User Guide UG–83

Working with Projects
Creating Complex Projects
not built often and uses a distinct set of source Þles is a good candi-
date for moving to a subproject.

Creating a New Target

To create a new target in your project, use the Create New Target
command in the Project Menu. This command appears if you have
the Targets category selected in your project window, as shown in
Figure 3.12 on page 81.

After you choose this menu command, you see the dialog box as
shown in Figure 3.14. In this dialog box, you can choose the name of
the new target using the Name For New Target editable text Þeld.

Then, choose whether you want your new target to be empty, or a
clone of a previous target. If you choose Empty Target, you need to
conÞgure all the settings of the target as if a new project window
were just opened. If you choose Clone Existing Target, the settings
for the new target are the same as those of the target that you chose
from the pop-up menu. You also get a copy of all the Þles that the
original target contains.

After creating a target, you may want to associate the target with
other targets, in order to create dependent build relationships. To
learn about how to do this, refer to ÒCreating Target DependenciesÓ
on page 88.

To learn how to conÞgure settings for a target, refer to ÒChoosing
Target SettingsÓ on page 244.

When creating a new target that depends on using an output Þle
from another target, you will need to click in the Link Column for
the target that creates the output Þle. For an example of this, refer to
Figure 3.15. Here the target named Muscle Fat depends on both
Muscle 68K, Muscle Resources and Muscle PPC being built Þrst.
UG–84 IDE User Guide

Working with Projects
Creating Complex Projects
After these targets are built, Muscle Fat can be built and linked
using the output Þles from the other two targets.
IDE User Guide UG–85

Working with Projects
Creating Complex Projects
Figure 3.14 New Target Dialog Box

Figure 3.15 Link Column Dependencies

Link Column
UG–86 IDE User Guide

Working with Projects
Creating Complex Projects
Changing a Target Name

To change the name of a target in the Targets category of the project
window, as shown in Figure 3.12 on page 81, just double-click on the
name of the target. After that, make sure that the Target Settings
panel is chosen, using the Target Settings menu command on the
Edit Menu. Change the name of the target using the Target Name
editable text Þeld.

You can also choose the Target Settings panel using the Target Set-
tings menu command.

To learn more about the Target Settings panel, refer to ÒTarget Set-
tingsÓ on page 255.

Changing the Target Settings

Each target in a project has its own Preferences and Target Settings.
To learn how to change these, refer to ÒConÞguring IDE Options
OverviewÓ on page 215.

While you can conÞgure the Preferences and Target Settings for the
target, there are some target settings that may be of immediate inter-
est to you. Those settings are covered here in this section.

To change the settings of a target in the Targets category of the
project window, as shown in Figure 3.12, just double-click on the
name of the target. After that, make sure that the Target Settings
panel is chosen, using the pop-up menu. You can also choose the
Target Settings panel using the Preferences menu command, in the
Target category panel, instead of double-clicking.

Change the name of the target using the Target Name editable text
Þeld. To change the Linker or Post Linker used for the target, use the
pop-up menus. Refer to the appropriate targeting manual, as de-
tailed in Table 1.2 on page 25, for the appropriate settings for your
project.

To learn more about the Target Settings panel, refer to ÒTarget Set-
tingsÓ on page 255, or your targeting manual.
IDE User Guide UG–87

Working with Projects
Creating Complex Projects
Setting the Current Build Target

You can choose a different target within the current project to work
with, using the Set Current Target command under the Project
Menu. This command might be useful if you want to switch be-
tween multiple targets in a project, and do a build for each one.

You can also change the current target by using the Targets category
of the Project window, as shown in Figure 3.12 on page 81. The cur-
rent targets that will be built are denoted by the circle icon (an ar-
chery ÒtargetÓ) with an arrow going into it. To change to a different
target for building, click once on the name of the target you want to
choose as the current target.

Creating Target Dependencies

You can conÞgure your targets so that one target depends on anoth-
er. That way, if you build a target, and the target depends on another
target being built Þrst, the second target will be built before building
the Þrst target.

Figure 3.16 shows an example project window that contains two tar-
gets that do not have any dependencies. If you donÕt know how to
UG–88 IDE User Guide

Working with Projects
Creating Complex Projects
create new targets, refer to ÒCreating a New TargetÓ on page 84 to
learn how.

Figure 3.16 Multiple Targets Without Dependencies

Figure 3.17 shows the Þnished result for the following discussion.
Suppose that you wanted the Resources and Cool App Shared Li-
braries targets to be built before building the CoolApp target. One
reason why you might want to do this is perhaps the Cool App tar-
get uses the output of the Resources and Cool App Shared Libraries
targets at link time. You want these targets to be up to date before
linking your Cool App target. To make Resources a target that Cool
App depends on, just use drag and drop to conÞgure the dependen-
cy. To do this, click on the Resources target and drag it on top of
Cool App, then release the mouse button. Do the same thing for the
other targets. Figure 3.17 shows what this look like when you are
Þnished doing this.

Click on the disclosure triangles on the left side of the screen to ex-
pand the dependency information for a given target. Figure 3.17
IDE User Guide UG–89

Working with Projects
Creating Complex Projects
shows what a window will look like after you have clicked some of
the disclosure triangles to show the targets that are dependents.

Figure 3.17 Multiple Targets with Dependencies

If we then made Cool App the current target, and did a Make of it,
then the Resources and Cool App Shared Libraries targets will be
built Þrst. This is because Cool App is now dependent on these tar-
gets.

If this were a real-world programming task for you, it might be a
good idea to also have debug targets too.

Refer to ÒSetting the Current Build TargetÓ on page 88 to learn how
to set the current target before building if you donÕt already know
how to do this.

To learn more about strategies for setting up complex projects using
targets and subprojects, refer to ÒStrategy for Creating Complex
ProjectsÓ on page 83.
UG–90 IDE User Guide

Working with Projects
Creating Complex Projects
Assigning Files to Targets

You can select the target that a Þle belongs to using the Project In-
spector window. First, select a Þle in the project window. To learn
how to do this, refer to ÒSelecting Files and GroupsÓ on page 67.
Then, choose the Project Inspector menu command from the Win-
dow Menu. A window appears, as shown in Figure 3.18.

Figure 3.18 Project Inspector Window for Attributes

Click the Targets category tab to switch the view to that shown in
Figure 3.19. This window is showing you which targets your select-
IDE User Guide UG–91

Working with Projects
Creating Complex Projects
ed Þle belongs to. If you want to change so that a Þle belongs to dif-
ferent targets, just click in the check boxes on the left side of the win-
dow to include or exclude the Þle from a given target.

You may close the window when you are Þnished by clicking the
close box. If you make changes that you want to undo, click the Re-
vert button. If you want to apply your changes but keep the win-
dow open, click the Apply button.

Figure 3.19 Project Inspector Window for Targets
UG–92 IDE User Guide

Working with Projects
Creating Complex Projects
In the example of Figure 3.19, the Þle float.win32i.c belongs to
all targets. It will only be compiled when building for the targets
that are checked.

Creating Subprojects Within Projects

To create a subproject, just drag and drop a project Þle into an open
project window. Note that if your main project Þle contains multiple
targets, you will be prompted to choose the targets that the sub-
project should be added to. After you do this, the project window
will look similar to Figure 3.20, with a project Þle added to the list of
Þles in your project. In this example, the Þle is named track-
er.mcp . You may also add the file using the methods discussed in
ÒAdding FilesÓ on page 69.

Figure 3.20 Subproject Within a Project
IDE User Guide UG–93

Working with Projects
Examining Project Information
This causes the subproject Þle to become part of the main project
Þle. When you do a Make on the main project, the subproject will be
built Þrst.

Once you add a subproject to a project, you can assign which targets
the subproject is used in. To learn how to do this, refer to ÒAssigning
Files to TargetsÓ on page 91.

Examining Project Information
The CodeWarrior IDE allows you to review and conÞgure informa-
tion about your project and source code Þles, using the Project In-
spector window, shown in Figure 3.21. To show this window, choose
the Project Inspector command from the Window Menu.

There are 2 tabbed categories in this window, Attributes and Tar-
gets.

To learn how to inspect and set the Targets for which a given Þle will
be compiled, refer to ÒAssigning Files to TargetsÓ on page 91, as that
section of the manual discusses the Targets category in detail.

To learn more information about a given Þle in your project, you can
review its Attributes category settings. The Attributes include the
Þle name, its path to a location on your hard disk, the name of the
project it is included in, the code and data size (if it has been com-
piled), and whether or not Debug Info is being generated for the Þle
when compiled.

You may close the window when you are Þnished by clicking the
close box. If you make changes that you want to undo, click the Re-
UG–94 IDE User Guide

Working with Projects
Examining Project Information
vert button. If you want to apply your changes but keep the win-
dow open, click the Apply button.

Figure 3.21 Project Inspector Window

To learn about conÞguring Debug Info for Þles, refer to ÒControlling
Debugging in a ProjectÓ on page 96.
IDE User Guide UG–95

Working with Projects
Moving a Project
Moving a Project
Previous versions of the Windows-hosted CodeWarrior IDE used a
folder called Resource.frk to store state information for the project
Þle. Resource.frk is now obsolete and will no longer be generated or
utilized by the CodeWarrior IDE.

The CodeWarrior IDE stores all required information about your
project in the project Þle. There are other Þles that are stored on the
hard disk along with the project Þle. These other Þles, usually stored
in a folder having a similar name to your project Þle, are not needed
by the CodeWarrior IDE to recreate your project. The Þles contain
information about window positions, object code, debug info,
browse data, and other settings which are not crucial to rebuilding
the code of your project. Some of the Þles are needed for caching in-
formation about which Þles have already been compiled, so that
only the Þles that changed are compiled each time you build.

To move your project on your hard disk, just copy the project Þle
(ending in .mcp if it obeys the project Þle naming convention) to a
new location on your disk. If you want all the information in the ad-
ditional Þles to travel with the project Þle, you may also copy the
folder containing those Þles. However, these Þles are not needed.
The CodeWarrior IDE will be able to reconstruct its state when a
Bring Up To Date or Make operation is performed. Generally, you
would only check the main project Þle into a revision control sys-
tem, and not the other Þles.

If you have set absolute Access Paths, you may need to modify them
when you move your project Þle. To learn how to do this, refer to
ÒAccess PathsÓ on page 247.

Controlling Debugging in a Project
Your program will probably not run correctly the Þrst time you
build it. In order to debug it, you need to enable debug information
for your project and the Þles you are concerned with. This section
tells you how to do this.
UG–96 IDE User Guide

Working with Projects
Controlling Debugging in a Project
The topics in this section are:

¥ Activating Debugging for a Project

¥ Activating Debugging for a File

Activating Debugging for a Project

To enable debugging for a project, you need to set certain options in
the Project Settings. Refer toÒx86 LinkerÓ on page 268 and ÒChoos-
ing Target SettingsÓ on page 244 for a discussion of how to do this. If
you select the Enable Debugger command from the Project Menu,
all the necessary conÞguration will be done for you automatically.

Activating Debugging for a File

To generate debugging information for a source code Þle, click in
the Debug Column and a Debug Info Marker appears in the col-
umn, as shown in Figure 3.22 on page 99. When you add Þles to
your project, CodeWarrior automatically sets this marker unless you
have deselected the appropriate option in the x86 Linker or other
Target Settings panel.

You can also set Debug Info generation in the Project Inspector win-
dow. To learn how to do this, refer to ÒGuided Tour of the Project
WindowÓ on page 58. When Þles are added to the project, their
debug state is set by the state of the Enable Debugger and Disable
Debugger menu command setting in the Project Menu.

The Debug Info Marker indicates that debugging information will
be generated for this Þle when the project is built. Clicking the
marker removes it and causes the source code Þle to not have de-
bugging information.

When a Debug Info Marker is selected for the Þrst time, the Þle is
also marked for compilation the next time you build your project.
Whenever a Debug Info Marker is changed, the Þle will be marked
for recompilation the next time your project is built.
IDE User Guide UG–97

Working with Projects
Controlling Debugging in a Project
To generate Debug Info for all Þles in the project, hold down the Alt
key while clicking any Debug Column marker. Generating debug-
ging information for all Þles can be deselected by Alt-clicking again.

NOTE: Marking a source code file for debug inclusion does not
mean that a debug file is created during linking. The x86 Linker
contains the option that enables CodeWarrior to create a debug-
ging file.

Debug Info Marker for Groups

The Debug Info marker also appears on the right end of group rows
(Figure 3.22), and can be toggled on and off by clicking. The Debug
Column, for groups, may show one of three markers:

¥ Black marker: all Þles in the group generate debugging infor-
mation

¥ Grey marker: only some of the Þles in the group generate de-
bugging information.

¥ No marker: means no debugging info for all Þles in group.
UG–98 IDE User Guide

Working with Projects
Adding Preprocessor Symbols to a Project
Figure 3.22 Debug Info Markers

Adding Preprocessor Symbols to a Project
Sometimes you may want to add your own symbol deÞnitions to
your project so that they are automatically included at the begin-
ning of each source code Þle when you build your project.

An example of this using the C or C++ language would be:

Black dot
indicates debug
info will be
generated for
this file

Gray dot indicates
that some files in
group selected
for debug info
generation
IDE User Guide UG–99

Working with Projects
Adding Preprocessor Symbols to a Project
#define GLOBAL_DEBUG

Maybe you want to deÞne this symbol when building development
versions of your code, but want to undeÞne it before shipping your
Þnal product.

To do this, you would create a precompiled header and insert this
symbol deÞnition into the header. See ÒUsing Precompiled or Pre-
processed HeadersÓ on page 281 for more information on how to do
this.

To learn more about this topic, refer to the C Compiler Guide manual,
and the CodeWarrior Pascal Compiler Guide for more information.
UG–100 IDE User Guide

4
Working with Files
This chapter introduces the concepts behind working with Þles in
the CodeWarrior IDE.

Working with Files Overview
In this chapter we discuss opening, creating, saving, closing, and
printing Þles in the CodeWarrior environment.

To learn about editing Þles, refer to ÒSource Code Editor OverviewÓ
on page 117.

To learn about working with Þles using revision control systems,
refer to ÒVersion Control System OverviewÓ on page 305.

The topics in this chapter are:

¥ Creating a New File

¥ Opening an Existing File

¥ Saving a File

¥ Closing a File

¥ Printing a File

¥ Reverting to a Previously-Saved File

Creating a New File
To create a new untitled window where source code may be entered,
choose the New command from the File Menu.

After the new window appears, a text insertion point is placed on
the Þrst line of the window. When you begin typing, the CodeWar-
rior IDE places text at this insertion point.
IDE User Guide UG–101

Working with Fi les
Opening an Existing File
To learn more about text editing in the window you have just creat-
ed, see ÒSource Code Editor OverviewÓ on page 117.

Opening an Existing File
There are several ways to open a Þle with the CodeWarrior IDE. The
methods discussed here are:

¥ Opening Files with the File Menu

¥ Opening Files from the Project Window

¥ Opening Files from an Editor Window

¥ Opening a Related File

NOTE: You cannot open libraries or shared libraries with the
CodeWarrior Editor, because of their binary format.

Opening Files with the File Menu

You can open two types of Þles with the CodeWarrior Editor:

¥ Project FileÑa Þle containing information on building a
CodeWarrior project

¥ Text FileÑa source code, interface, or other text Þle

Project File

To open a Project File, choose the Open command from the File
Menu. The CodeWarrior Editor displays an Open dialog, as shown
in Figure 4.1. Click on the triangle on the right end of the Files of
Type drop-down menu to cause the menu to appear, and select
Project Files from it. The list of Þles changes to show project Þles
that are eligible for you to open. You can navigate to a different di-
rectory to look for Þles to open by using the Look In drop-down
menu at the top of the dialog.

Click on the project Þle you would like to open, then click the Open
button. The CodeWarrior IDE then opens the project. You may keep
multiple project Þles open at a time.
UG–102 IDE User Guide

Working with Fi les
Opening an Existing File
For more information about working with CodeWarrior project
Þles, see ÒProjects OverviewÓ on page 45.

Text File

To open a Text File, choose the Open command from the File Menu.
The CodeWarrior Editor displays an Open dialog, as shown in Fig-
ure 4.1. Click on the triangle on the right side of the Files of Type
drop-down menu to cause the menu to appear, and select All Files
from it. The list of Þles changes to show Þles that are eligible for you
to open. You can navigate to a different directory to look for Þles to
open by using the Look In drop-down menu.

Figure 4.1 Open dialog box

Then, click on the Þle you would like to open to select it, and click
the Open button. The CodeWarrior IDE opens the Þle in an Editor
window.

For more information about editing source code, see ÒSource Code
Editor OverviewÓ on page 117.
IDE User Guide UG–103

Working with Fi les
Opening an Existing File
Opening Files from the Project Window

There are three different ways to open Þles from within the project
window, depending on the type of the Þle you wish to see. The three
different mechanisms include:

¥ File ColumnÑopening a Þle that is in the project

¥ Group Pop-up MenuÑopening a text source Þle from within
a collapsed group

¥ Interfaces Pop-up MenuÑopening an interface Þle included
by a projectÕs source Þle

File Column

If the Þle you wish to see appears in the File Column of the project
window, double-click on the Þle name to open it.

CodeWarrior opens the Þle in an editor window.

TIP: To open several files from the File Column at one time, hold
down the Control key and click each file that you want to see.
Then, double-click on one of the selected files.

Another way to open a Þle is to select it, and then press the Enter
key. You can select multiple Þles in the project window, and open
them all by pressing the Enter key. If you donÕt know how to select
multiple Þles in a project, you can learn how by reading ÒSelecting
Files and GroupsÓ on page 67.

For more information about the File Column, refer to ÒFile ColumnÓ
on page 62.

Group Pop-up Menu

One way to open a source Þle is to click on the Group Pop-up for a
particular group so that it pops up. A similar menu is shown in Fig-
ure 4.2. From this pop-up menu you may select the Þle in the group
that you want to open.
UG–104 IDE User Guide

Working with Fi les
Opening an Existing File
You can open a source Þle by choosing it from the Group Pop-up
menu for the group that contains the Þle. This works even if the
group is collapsed and the Þle is not visible in the project window.

Interfaces Pop-up Menu

To open a header or interface Þle, click on the Interfaces Pop-up to
see a list of Þles. Select the Þle you want to open from this list, as
shown in Figure 4.2.

Figure 4.2 Interfaces Files Pop-up Menu in the Project window

When the Interfaces File Pop-up is clicked for a library Þle that is
part of your project, you will only have the option to Touch or Un-
touch the library Þle. Since libraries do not contain header or inter-
face Þles, these Þles can not be opened from a pop-up correspond-
ing to a library Þle.
IDE User Guide UG–105

Working with Fi les
Opening an Existing File
Opening Files from an Editor Window

To open an interface Þle from within a source Þle you are editing,
click the Interface Pop-Up Menu at the top right of the editor win-
dow as shown in Figure 5.2 on page 120. This pop-up menu lists all
interface or header Þles used by the source Þle. Select a Þle from this
menu to open that Þle in a new editor window.

NOTE: If there are no files available in the menu, it means your
text file does not contain source code, or that the source file has
not yet been compiled.

HereÕs a different method. If youÕre editing any source code Þle, you
can open an interface Þle mentioned anywhere in the text Þle with
the Open Selection command.

First, select text in the editor window containing the name of the in-
terface Þle you would like to open. An example of a Þle name you
might see in a C source code Þle is stdio.h . You could select
stdio.h by double-clicking on the stdio portion of the text. Then,
choose the Open Selection command from the File Menu.

The CodeWarrior IDE then searches for the Þle and opens the Þle in
an editor window.

If youÕre editing a source code Þle and want to open a Þle without
selecting any text, you may choose the Open File command from the
File Menu. This command will use the settings in the Access Paths
for the project to search for the Þle to open.

After you choose Open File, the CodeWarrior IDE then displays an
open Þle dialog box, as shown in Figure 4.3. Type the name of the
Þle you wish to search for in the Open editable text Þeld.
UG–106 IDE User Guide

Working with Fi les
Saving a File
Figure 4.3 Open Selection dialog box

To search only the CodeWarrior directory structure (the paths speci-
Þed in the System Include Path Pane of the Access Paths), click on
the Search only in the System Tree option to turn it on.

If you want to search both System Include Path Pane and User In-
clude Path Pane directory paths (all paths speciÞed in the Access
Paths), turn the Search only in the System Tree option off.

If no project is open when you attempt an Open Selection operation,
the CodeWarrior IDE will search the paths speciÞed by the choices
in both the System Include Path Pane and User Include Path Pane.

To learn more about Access Paths and how to conÞgure them, refer
to ÒAccess PathsÓ on page 247 for more information.

Opening a Related File

If you are working in a source code Þle and wish to open the corre-
sponding header Þle, or working with a header Þle and wish to
open the corresponding source Þle, there is a shortcut for you. You
can easily switch back and forth between the 2 Þles.

To learn how to do this, refer to ÒOpening a Related FileÓ on page
147.

Saving a File
This section describes the many ways that the CodeWarrior IDE can
save Þles. The topics discussed are:
IDE User Guide UG–107

Working with Fi les
Saving a File
¥ Saving One File

¥ Saving Files Automatically

¥ Renaming and Saving a File

¥ Backing Up Files

¥ Saving as a UNIX or DOS text Þle

NOTE: When saving a file, you will often have the option of sav-
ing a file as a stationery file. A stationery file is like a template or
“starter” file. For example, creating a stationery file would be useful
if you had standard documentation header text that you wanted to
appear at the top of every file you create. If you create a stationery
file with the header text, you could start every new file by opening
this stationery file.

Saving One File

To save your changes to the current Editor Þle, choose the Save com-
mand from the File Menu. The CodeWarrior IDE saves your Þle to
your hard disk.

The Save command is dimmed if the window is new and has no
data, if the contents of the active window have already been saved,
or when the active window is the project window.

Projects are saved when they are closed, when you exit CodeWar-
rior, or when the Save A Copy As command is selected. You donÕt
need to explicitly save projects.

NOTE: If the file is new and untitled, the CodeWarrior IDE dis-
plays the Save As dialog box, described in ÒRenaming and Saving
a FileÓ on page 109. Choose a name and location for your new file
with this dialog box.
UG–108 IDE User Guide

Working with Fi les
Saving a File
Saving Files Automatically

The CodeWarrior IDE automatically saves the changes to all your
modiÞed Þles whenever you choose the Run, Make, or Bring Up To
Date commands from the Project Menu.

This feature can save your work if your program should crash while
running, but if youÕre experimenting with a change and donÕt want
to save it, you may want to turn this option off.

To learn about how to enable or disable this feature, refer to the Save
All Before ÒUpdateÓ option in the section of this manual titled ÒEdi-
tor SettingsÓ on page 221.

Renaming and Saving a File

If you want to save a new untitled Þle or save a Þle under a new
name, use the Save As command on the File Menu. If the Þle is in
the current project, the CodeWarrior IDE updates the project to use
the new name.

When you choose Save As from the File Menu, the CodeWarrior IDE
displays the dialog box shown in Figure 4.4.
IDE User Guide UG–109

Working with Fi les
Saving a File
Figure 4.4 Save As dialog box

Choose the Þle location and name the Þle, then click the Save but-
ton.

The CodeWarrior IDE saves the Þle and changes the name of the ed-
itor window to the name you entered.

If the Þle is in the current project, the CodeWarrior IDE changes the
ÞleÕs entry in the project to match the saved name. If you donÕt want
to change the project, but still want to save the Þle, you can read
how to do this in ÒBacking Up FilesÓ on page 110.

Backing Up Files

If you want to save a backup copy of a text Þle before you make
some changes to the original, use the Save A Copy As command on
the File Menu. The CodeWarrior IDE creates a copy of the Þle under
a new name that you specify, but leaves the original Þle unchanged
and does not change the currently-open project to use the new Þle
name.
UG–110 IDE User Guide

Working with Fi les
Saving a File
After choosing Save A Copy As from the File Menu, the CodeWar-
rior editor displays the dialog shown in Figure 4.4. Specify the ÞleÕs
new location and choose a unique name for the Þle. Click Save and
CodeWarrior saves a version of the Þle with your new name. It does
not change the Þle in the editor window or in the current project.

If the project window is the active window, Save A Copy As allows
you to save the project using a new name, or as a text Þle. You de-
cide which type of project to create using the Save Project As Type
pop-up menu shown in Figure 4.5. Saving the project as a text Þle
creates a text Þle that contains the names of all the Þles in the
project.

When moving a project Þle to a new location on your hard disk, you
need to be aware of special considerations. To learn more about how
to copy your projectÕs saved information when you copy your
project Þles, refer to ÒMoving a ProjectÓ on page 96.

Figure 4.5 Saving a Copy of a Project Window

Saving as a UNIX or DOS text file

When you open a text Þle originally formatted in a UNIX or Macin-
tosh editor, CodeWarrior automatically converts it to a DOS-com-
IDE User Guide UG–111

Working with Fi les
Closing a File
patible text Þle. When you save the Þle, CodeWarrior saves it in its
original format.

You can use this feature to save a Þle in a different end-of-line for-
mat by selecting a new command from the menu.

Closing a File
Every editor or project window in the CodeWarrior IDE that you
have opened is associated with a Þle on the hard disk. When you
close the window, you close the Þle. You can close all windows or
just a single CodeWarrior IDE window.

The topics in this section are:

¥ Closing One File

¥ Closing All Files

Closing One File

To close a window, choose Close from the File Menu.

If you close a text Þle using the File Menu and have not yet saved
your changes, the CodeWarrior IDE asks if you want to save the
changes before closing the window, as shown in Figure 4.6. If you
choose to close the Þle without saving your changes, all changes are
lost.

Figure 4.6 The dialog box for unsaved changes
UG–112 IDE User Guide

Working with Fi les
Printing a File
Another way to close a window is by clicking the close box of the ac-
tive window. This is exactly the same as choosing the Close com-
mand in the File Menu.

If the active window is the project window, closing the window au-
tomatically saves the project before the window closes, and you will
not see the dialog shown in Figure 4.6. For more on saving project
Þles, consult ÒSaving a ProjectÓ on page 56.

The Close command also saves other properties of the window, such
as the size, location, and the selected text in the active window.
Refer to ÒEditor SettingsÓ on page 221 for information on how to
conÞgure these options. If the appropriate options are enabled, the
next time the source code Þle is opened, it will occupy the same po-
sition on your screen and the same text will be selected.

Closing All Files

To close all the open editor windows, use the Switch to MW Debug-
ger command on the File Menu.

Switch to MW Debugger doesnÕt close all the CodeWarrior IDE win-
dows, just editor windows. The Find dialog box and any Project
windows remain open when using this command.

TIP: To close all Editor windows at once, press the Alt key and
click on the close box of an Editor window.

Printing a File
Use the print options in the CodeWarrior IDE to print open Þles, a
project Þle, or the contents of a window.

The topics in this section are:

¥ Setting Print Options

¥ Printing a Window
IDE User Guide UG–113

Working with Fi les
Printing a File
Setting Print Options

To conÞgure printing options, choose Print Setup from the File
Menu. CodeWarrior displays the Print Setup dialog, similar to that
shown in Figure 4.7.

Use this dialog box to select the paper size, orientation, and other
settings. The speciÞc settings and options depend on the printer you
have connected to your computer. For more information on printing
using your printer, consult the documentation packaged with your
computer and printer, or the documentation that came with your
operating system.

Figure 4.7 Print Setup dialog

If you Click OK, CodeWarrior saves the options for the next time
you print any Þles.

Printing a Window

To print a window in CodeWarrior, make the window active and
them choose the Print command from the File Menu. A dialog simi-
UG–114 IDE User Guide

Working with Fi les
Reverting to a Previously-Saved File
lar to that shown in Figure 4.8 appears. Make any changes you re-
quire to the print settings, then click the OK button to begin printing
your window.

Figure 4.8 Print dialog

Reverting to a Previously-Saved File
If youÕve opened a text Þle and started editing it, then realize that
you donÕt want to use the changes youÕve made, use the Revert
command on the File Menu. When you select this command the dia-
log box shown in Figure 4.9 appears.
IDE User Guide UG–115

Working with Fi les
Reverting to a Previously-Saved File
Figure 4.9 Revert to a Previous File

If you click the OK button, the last copy of the Þle youÕre working
with will be opened, and all changes you have made since the last
time you saved the Þle are lost. If you choose Cancel, the Þle youÕre
working with is not changed or saved to disk, and you can continue
editing it.
UG–116 IDE User Guide

5
Editing Source Code
This chapter explains how to use the CodeWarrior IDE text editor to
edit your source code.

Source Code Editor Overview
The CodeWarrior Editor is a full-featured text editor specially de-
signed for programmers, with features such as:

¥ Pop-up menus on every editor window for opening your in-
terface Þles and navigating your routines quickly.

¥ Syntax highlighting formats source code for easy identiÞca-
tion of comments and keywords in your source Þles.

The topics in this chapter are:

¥ Guided Tour of the Editor Window

¥ Editor Window ConÞguration

¥ Basic Text Editing

¥ Navigating in Text

You can also customize options that affect the way the CodeWarrior
Editor works. To learn more about how to do this, refer to ÒEditor
SettingsÓ on page 221.

Guided Tour of the Editor Window
The CodeWarrior Editor window, shown in Figure 5.1, contains ele-
ments youÕll Þnd useful when viewing and editing your source Þles.
IDE User Guide UG–117

Edit ing Source Code
Guided Tour of the Editor Window
Figure 5.1 The Editor window

To see an editor window, create a new text Þle using the New com-
mand on the File Menu.

The sections that follow describe the elements of the editor window
shown in Figure 5.1.

¥ Text Editing Area

¥ Interface Pop-Up Menu

¥ Routine Pop-Up Menu

Interface Pop-up
Menu

Routine Pop-up
Menu

Marker Pop-up Menu

Options Pop-up Menu

Permissions Pop-up Menu

File Path Caption

Dirty File Marker

Text Editing Area
Pane
Splitter
Control

Pop-up Menu
Disclosure Button

Pane Splitter Controls

Line Number Button
UG–118 IDE User Guide

Edit ing Source Code
Guided Tour of the Editor Window
¥ Marker Pop-Up Menu

¥ Options Pop-Up Menu

¥ File Path Caption

¥ Line Number Button

¥ Pane Splitter Controls

¥ Pop-Up Menu Disclosure Button

¥ Dirty File Marker

Text Editing Area

The Text Editing Area of the editor window is where your text is en-
tered in your new window.

You may select and drag text out of an editor window to any desti-
nation that can accept a drop, such as another open editor window.
You may also drag selected text into an editor window from other
applications that support drag and drop.

For more information about drag and drop operations with text, see
ÒMoving Text (Drag and Drop)Ó on page 136.

Interface Pop-Up Menu

Use the Interface Pop-up Menu shown in Figure 5.2 to open
interface or header Þles referenced by the current Þle. You

can also use the Touch and Untouch commands from this pop-up.
IDE User Guide UG–119

Edit ing Source Code
Guided Tour of the Editor Window
Figure 5.2 The Interface Pop-Up menu

To open a Þle in the list, scroll down to the Þle youÕd like to see and
release the mouse button. Note that in order to see a list of Þles in
the menu, the project Þle must be opened. Note also that some Þles
cannot be opened, such as precompiled header Þles, and libraries.

For more information on opening Þles, see ÒOpening an Existing
FileÓ on page 102.

To cause your Þle to be recompiled the next time the project is built,
you choose the Touch command, or click on the Dirty File Marker so
that it becomes checked. If you click on the Interface pop-up again
you can deselect the Þle for compilation with the Untouch com-
mand on the menu.
UG–120 IDE User Guide

Edit ing Source Code
Guided Tour of the Editor Window
For more information on Touch and Untouch, see ÒTouching and
Untouching FilesÓ on page 274.

Routine Pop-Up Menu

Use the Routine Pop-up Menu shown in Figure 5.3 to set the
current location of the text insertion point in your text Þles.

The Routine pop-up menu lists the routines in your source Þle. The
checked routine in the pop-up tells you where the text insertion
point is currently located.

Figure 5.3 The Routine Pop-Up menu

NOTE: If the pop-up is empty, the file is not a source file.

Note that, by default, the menu lists the routines in the order in
which they appear in the Þle. If youÕd like to list routines alphabeti-
cally, hold down the Alt key as you click on the routine icon.
IDE User Guide UG–121

Edit ing Source Code
Guided Tour of the Editor Window
If youÕd like to change the default display order of the routines to al-
phabetical, enable the Sort Function Popup option. See ÒEditor Set-
tingsÓ on page 221 for more information about editor options.

TIP: If you’re editing a Pascal file, the Routine Pop-up Menu dis-
plays procedure names in italics, function names are in plain face,
and the main program is in bold .

Marker Pop-Up Menu

 Use the Marker Pop-up Menu shown in Figure 5.4 to add
and remove markers in your text Þles. These markers are

easy to use and convenient for quick access to a certain line of code,
to remember where you left off, and for other identiÞcation purpos-
es.
UG–122 IDE User Guide

Edit ing Source Code
Guided Tour of the Editor Window
Figure 5.4 The Marker pop-up menu

To learn more about how to set, remove, and use markers, see
ÒAdding, Removing, and Selecting a MarkerÓ on page 144.

Options Pop-Up Menu

Use the Options Pop-up Menu, shown in Figure 5.5, to
choose syntax highlighting for the current Þle, and also to set

the format for how to save the Þle.

The Macintosh, DOS, and UNIX options indicate the type of Þle cur-
rently open in the Editor window. The checkmark indicates the cur-
IDE User Guide UG–123

Edit ing Source Code
Guided Tour of the Editor Window
rent Þle type. The next time you save the Þle, the CodeWarrior IDE
saves it in the format you select.

Figure 5.5 The Options Pop-up Menu

The Options Pop-up Menu allows you to change the format of your
text ÞleÕs end-of-line formatting (UNIX, DOS or Macintosh), and
also enable or disable syntax coloring for the window.

For more information on how to use the end-of-line formatting op-
tions on this pop-up menu, see ÒSaving as a UNIX or DOS text ÞleÓ
on page 111.

For more information on the Syntax Coloring option shown in this
menu, see ÒSyntax ColoringÓ on page 226.

File Path Caption

The CodeWarrior IDE automatically displays the directory path of
the current Þle in the File Path Caption, which is at the top right of
the window shown in Figure 5.1 on page 118.
UG–124 IDE User Guide

Edit ing Source Code
Guided Tour of the Editor Window
Permissions Pop-up Menu

The Permissions Pop-up Menu, shown in Figure 5.6, indicates the
read/write revision control database status of the current Þle. If the
pop-up icon box has an Unlocked icon displayed, or has the Read/
Write icon displayed, you can modify the Þle youÕre working with.
The icons and their meanings are described in the section called
ÒUsing Source Code Control with FilesÓ on page 305.

Figure 5.6 Permissions Pop-up Menu

For more information about revision control system software, see
ÒUsing Source Code Control with FilesÓ on page 305.

Line Number Button

The line number box shown in Figure 5.1 displays the number of the
line that contains the text insertion point. You can also use this but-
ton to go to another line in the Þle.
IDE User Guide UG–125

Edit ing Source Code
Editor Window ConÞguration
For information about setting the text insertion point on another
line, see ÒGoing to a Particular LineÓ on page 149.

Pane Splitter Controls

Pane Splitter Controls split the editor windows into panes so you
can view different portions of a Þle in the same window.

You use these controls to adjust the sizes of the panes after youÕve
created them. Figure 5.9 on page 130 shows an editor window with
multiple panes.

For more information on this topic, see ÒSplitting the Window into
PanesÓ on page 129.

Pop-Up Menu Disclosure Button

The Pop-up Menu Disclosure Button allows you to modify the edi-
tor window to create a view that puts all the pop-up controls along
the bottom of the editor window (see Figure 5.8 on page 129).

For more information on using the Pop-up Menu Disclosure Button,
refer toÒSeeing Window ControlsÓ on page 127.

Dirty File Marker

The Dirty File Marker tells you whether the Þle you are viewing is
marked for compilation. Another term for Dirty File Marker might
be Touch Marker. If a Þle is Òtouched,Ó that means it is marked for
compilation. You can click on this marker to ÒtouchÓ a Þle.

To learn more about marking Þles for compilation, refer to ÒTouch-
ing and Untouching FilesÓ on page 274.

Editor Window Configuration
The editor allows you to customize your view of the Þle youÕre
working with. In this section, youÕll learn about the following top-
ics:
UG–126 IDE User Guide

Edit ing Source Code
Editor Window ConÞguration
¥ Setting Text Size and Font

¥ Seeing Window Controls

¥ Splitting the Window into Panes

¥ Saving Window Settings

¥ Customizing the Toolbar

Setting Text Size and Font

You set the size or font used to display text in an editor window in
the Fonts & Tabs preference panel. For more information on this
topic, refer to ÒFonts and TabsÓ on page 225.

Seeing Window Controls

To toggle the row of pop-up menus and controls that appear along
the top of the editor window to the bottom of the window, you can
click the Pop-Up Menu Disclosure Button, as shown in Figure 5.7.
IDE User Guide UG–127

Edit ing Source Code
Editor Window ConÞguration
Figure 5.7 Editor Window When Clicking the Pop-up Disclosure Button

Clicking this button changes the editor window to look like Figure
5.8. Note that the File Path Caption is no longer visible.
UG–128 IDE User Guide

Edit ing Source Code
Editor Window ConÞguration
Figure 5.8 Pop-ups Along the Editor Window Bottom (After Clicking)

To show the pop-up menus along the top of the editor window
again, click the Pop-up Menu Disclosure Button once more.

You can make your choice for pop-up menu buttons the default
choice for editor windows. To do so, choose the Save Default Win-
dow item in the Window menu. For more information on this topic,
refer to ÒSave Default WindowÓ on page 328.

Splitting the Window into Panes

You can split the editor window into panes, so you can view differ-
ent parts of a Þle in the same window, as shown in Figure 5.9. This
section describes creating, adjusting, and removing multiple panes.
IDE User Guide UG–129

Edit ing Source Code
Editor Window ConÞguration
Figure 5.9 Multiple panes in a window

Creating a new pane

To create a new pane in an editor window, click and drag a
Splitter Bar. Splitter bars are on each scroll bar of the editor window,
on the top and left sides.

As you drag a Splitter Bar, grayed lines track your progress and in-
dicate where the new pane will go. When you release the mouse
button, the editor creates a new pane.

Double-click on the Splitter Bar to split a pane into two equal parts.
UG–130 IDE User Guide

Edit ing Source Code
Editor Window ConÞguration
Resizing a pane

 To change the sizes of the panes in an editor window, click and
drag the pane resize boxes.

As you drag a resize box, grayed lines indicate your progress. When
you release the mouse button, the editor redraws the panes in their
new positions.

Removing a pane

 To remove a pane from an editor window, click and drag a Re-
size Box all the way to an edge of the window.

As you drag the Resize Box, grayed lines indicate your progress. If
you drag close to the edge of the window, the gray lines are no long-
er displayed. If you release the mouse button at that time, the editor
removes one of the panes from the window.

Double click on the Resize Box to remove a split.

Saving Window Settings

The Save Default Window menu command on the Window Menu
allows you to save the settings for your currently-active editor win-
dow. This allows you to maintain the same settings the next time the
window is opened.

The settings saved are the size and location of the window, and the
setting of the Pop-Up Menu Disclosure Button. Any new windows
you open will have these new default settings. Any windows you
presently have open will need to be closed and reopened to get the
new settings.

You must save each windowÕs setup individually, while that win-
dow is the active window.

To learn more about conÞguring editor window settings, refer to
ÒFonts and TabsÓ on page 225.
IDE User Guide UG–131

Edit ing Source Code
Basic Text Editing
To learn about using this command with the CodeWarrior Browser,
see ÒSaving a Default BrowserÓ on page 213.

Customizing the Toolbar

You can customize the icons that are shown on the toolbar in your
Editor windows. To learn about how to do this, refer to ÒToolbar
CustomizationÓ on page 269.

Basic Text Editing
The CodeWarrior IDE gives you lots of help in editing source Þles,
all of it described in the sections that follow.

The topics in this section are:

¥ Basic Editor Window Navigation

¥ Adding Text

¥ Deleting Text

¥ Selecting Text

¥ Moving Text (Drag and Drop)

¥ Using Cut, Copy, Paste, and Clear

¥ Balancing Punctuation

¥ Shifting Text Left and Right

¥ Undoing Changes

¥ Controlling Color

Basic Editor Window Navigation

The CodeWarrior IDE gives you several ways to move the text inser-
tion point in a Þle to get to where you want. Review this section
again after you become more familiar with the CodeWarrior editorÕs
features.
UG–132 IDE User Guide

Edit ing Source Code
Basic Text Editing
Scroll bar navigation

The CodeWarrior editor provides dynamic scrolling, which means
that as you drag the Scroll Bar at the far right of the editor window,
the CodeWarrior editor updates the contents. See Figure 5.10 to see
what the Scroll Bars look like.

You can see the text scroll by in the editor window as you click and
drag the Scroll Bar. Use the Scroll Bar at the bottom of the editor
window to scroll left and right.

Figure 5.10 Scroll Bars in an Editor Window

CodeWarrior lets you conÞgure how the scroll bars affect the win-
dow view when you drag the scroll bar box around. You can modify
the way that scrolling behaves in the editor windows of your project
by changing the Dynamic Scroll option. To learn how to do this,
refer to ÒDynamic ScrollÓ on page 222.

Keyboard navigation

Table 5.1 describes how to move the insertion point around in a Þle
with function keys.
IDE User Guide UG–133

Edit ing Source Code
Basic Text Editing
Table 5.1 Text navigation with the keyboard

Table 5.2 describes how to scroll to different locations in a Þle, with-
out moving the insertion point. Note that some of the keys listed in
the table may not be on your keyboard, depending on what kind of
keyboard you have.

Table 5.2 Scroll with the keyboard

Adding Text

To add text to a Þle youÕve opened, click once in the Text Editing
Area of the window to set the new location of the text insertion
point. After you see the insertion point at the new location, you may
begin typing on the keyboard to enter text.

To read about different ways to move the insertion point in an Edi-
tor window, see ÒBasic Editor Window NavigationÓ on page 132.

To move insertion
point to Press

Beginning of the line CtrlÐLeft Arrow

End of the line CtrlÐRight Arrow

Beginning of the Þle CtrlÐUp Arrow

End of the Þle CtrlÐDown Arrow

To scroll to the… Press this…

Previous page Page Up

Next page Page Down

Beginning of the Þle Home

End of the Þle End

Insertion point Left Arrow, and Right Arrow
UG–134 IDE User Guide

Edit ing Source Code
Basic Text Editing
Deleting Text

There are several different methods for deleting text.

To delete text that you just typed, hit the Backspace key.

To delete more than one contiguous character at a time, select the
text you want to delete and hit the Backspace key.

The Delete key on your keyboard can also be used for deleting text.
You can select text and then press Delete. Or, you can use the Delete
key to delete the character to the right of the text insertion point.
This differs from Backspace, which deletes text to the left of the text
insertion point.

If you donÕt know how to select text, you can learn how by reading
ÒSelecting TextÓ on page 135.

Selecting Text

There are several different ways to select text in the editor window.

To select a word, double-click on the word.

To select a line, triple-click anywhere in the line.

You can also select text by holding down the Shift key while press-
ing any of the shortcuts listed in Table 5.1.

To select a range of text, click and drag the mouse in a portion of
your window where there is text. Another way to select a range is to
set your text insertion point somewhere in your window. Then,
press the Shift key and click at the place in your text where you
want the range to end. All text between the insertion point and your
Shift-click location will be selected.

The editor can select parts of text identiÞers by holding down the
Control key while using the left or right arrow keys, or when dou-
ble-clicking. For example, double-clicking between the two ÒmÓ
characters in FindCommandStatus() would result in the word
Command being selected.To list and display an entire routine in the
IDE User Guide UG–135

Edit ing Source Code
Basic Text Editing
editor window, press the Shift key while selecting a routine in the
Routine Pop-Up Menu. This is particularly useful for copy and
paste operations and for using drag and drop to move code around
in your Þle.

For more information about using drag and drop with text, see
ÒMoving Text (Drag and Drop)Ó on page 136.

You can also select blocks of code quickly using the Balance com-
mand. To learn how to do this, refer to ÒBalancing PunctuationÓ on
page 141.

Moving Text (Drag and Drop)

If you have some text in your editor window that you would like to
move to a new location, you can use the drag and drop features of
the editor to do it. In order to use drag and drop editing, this feature
must be enabled in the IDE. To learn more about turning this feature
on or off, refer to ÒEditor SettingsÓ on page 221.

The CodeWarrior editor can also accept drag and drop text items
from other applications that support drag and drop. To see if one of
your applications supports drag and drop, refer to the documenta-
tion that came with it.

Figure 5.11 shows a Þle before any rearrangment has been done on
the text. LetÕs see how we can modify this text using drag and drop.
UG–136 IDE User Guide

Edit ing Source Code
Basic Text Editing
Figure 5.11 Original File Before Drag and Drop

First, select the text you want to move. Figure 5.12 shows a window
with the text weÕre going to move. For information on how to select
text, see ÒSelecting TextÓ on page 135.
IDE User Guide UG–137

Edit ing Source Code
Basic Text Editing
Figure 5.12 File with Text Selected

Next, click on the selected text and drag it to a new location in the
Þle. You will see the text insertion point blink in the window as you
move to a new location on each line of the Þle. The insertion point
indicates where the text will be inserted when you release the
mouse. Figure 5.13 shows what the screen looks like as you drag the
selected text to a new location.
UG–138 IDE User Guide

Edit ing Source Code
Basic Text Editing
Figure 5.13 File with Drag and Drop in Progress

Figure 5.14 shows the Þnal result after dragging the text selection
down to a new line.
IDE User Guide UG–139

Edit ing Source Code
Basic Text Editing
Figure 5.14 Final Drag and Drop-Edited File

Using Cut, Copy, Paste, and Clear

There are standard menu commands available on most computer
applications, called Cut, Copy, Paste, and Clear. In the CodeWarrior
IDE, these commands appear on the Edit Menu.

You use these commands to remove text, or to copy and paste in a
window, between windows, or between applications.

For more information about these commands, refer to ÒEdit MenuÓ
on page 312.
UG–140 IDE User Guide

Edit ing Source Code
Basic Text Editing
Balancing Punctuation

When youÕre editing source code, you must make sure that every
parenthesis (()), bracket ([]), and brace ({}) has a mate, or the
compiler could misinterpret your code or give you an error.

The CodeWarrior IDE provides several checks that help you balance
these elements correctly.

To check for balanced parentheses, brackets, or braces, place the in-
sertion point in the text you want to test. Then, choose Balance from
the Edit Menu. Alternatively, double-click on a parenthesis, bracket,
or brace character that you want to test.

The CodeWarrior editor searches starting from the text insertion
point until it Þnds a parenthesis, bracket, or brace, then it searches
in the opposite direction until it Þnds the matching half. When it
Þnds the match, it selects the text between them. If the insertion
point isnÕt enclosed or if the punctuation is unbalanced, the comput-
er beeps.

NOTE: Use the Balance command as described in the step
above to select blocks of code quickly.

Using automatic balancing

You can have the CodeWarrior editor check for balanced punctua-
tion automatically. If you would like to learn more about checking
the balance of code automatically as you type, refer to ÒBalance
While TypingÓ on page 222.

Shifting Text Left and Right

Use the Shift Left and Shift Right commands on the Edit Menu to
shift a block of text to the left or right.

To shift blocks of text, select a block of text. If you donÕt know how
to do this, refer to ÒSelecting TextÓ on page 135. After selecting,
choose Shift Right or Shift Left from the Edit Menu.
IDE User Guide UG–141

Edit ing Source Code
Basic Text Editing
The CodeWarrior editor shifts the selected text one tab stop to the
right or left by inserting or deleting a tab at the beginning of every
line in the selection.

To learn more about controlling the number of spaces the text is in-
dented, refer to ÒFonts and TabsÓ on page 225.

Undoing Changes

The CodeWarrior editor supplies ways to Undo mistakes as you edit
a Þle.

Undoing the last edit

The Undo command reverses the effect of your last action. The
name of the Undo command on the Edit Menu varies depending on
what you last did. For example, if you just typed in some text, the
command changes to Undo Typing.

Undoing and redoing multiple edits

When the Use Multiple Undo option is enabled, you can Undo and
Redo, Multiple Undo, and Multiple Redo multiple previous actions
by continuing to choose the Undo or Redo commands.

For instance, if you Cut a word, then Paste it, then type some text,
you can backtrack all those actions by choosing Undo. The Þrst
Undo removes the text you typed, the second Undo unpastes the
text you pasted, and the third Undo uncuts the text you Cut, there-
fore returning the text to its original condition.

You can perform those activities again in the same order by choos-
ing the Redo, Multiple Undo, and Multiple Redo command three
times.

To learn how to enable the Use Multiple Undo option, refer to ÒUse
Multiple UndoÓ on page 224.
UG–142 IDE User Guide

Edit ing Source Code
Navigating in Text
WARNING! Handle multiple Undo carefully. If the Use Multiple
Undo option is turned on and you use Undo repeatedly, you may
lose text permanently.

Reverting to the last saved version of a file

The Revert command on the Edit Menu returns a Þle to its last
saved version. To learn more about how to revert to the previous
version of a Þle, refer to ÒReverting to a Previously-Saved FileÓ on
page 115.

Controlling Color

You can use color to highlight many elements in your source code,
such as comments, keywords, and quoted character strings. High-
lighting these elements helps you identify them in the text, so you
can check your spelling and syntax as you type by recognizing color
patterns. For information on conÞguring color syntax options, see
ÒSyntax ColoringÓ on page 226.

You can also highlight custom keywords, which are in list of words
you designate. See ÒSyntax ColoringÓ on page 226 for instructions
on conÞguring the Editor to do this for you.

Navigating in Text
The CodeWarrior editor provides several methods for navigating in
a Þle that you are editing.

You should know that you can change the key bindings that cause
the text insertion point to move around in a Þle. To learn how to
change the deÞnitions of keys that allow you to move around in a
Þle, refer to ÒConÞguring Editor Commands BindingsÓ on page 239.

This section covers these methods:

¥ Finding a Routine

¥ Adding, Removing, and Selecting a Marker

¥ Opening a Related File
IDE User Guide UG–143

Edit ing Source Code
Navigating in Text
¥ Going to a Particular Line

¥ Using Go Back and Go Forward

¥ ConÞguring Editor Commands

In addition, the integrated code browser has many powerful tech-
niques for navigating through your code. To learn more about using
the CodeWarrior Browser, refer to ÒBrowser OverviewÓ on page
183.

Finding a Routine

Click the Routine icon to display the Routine pop-up menu,
discussed inÒThe Routine Pop-Up menuÓ on page 121, then

select the routine you want to go to.

NOTE: If the pop-up is empty, the file is not a source code file.

Adding, Removing, and Selecting a Marker

You can Add or Remove a marker in any of your text Þles using the
facilities built into the CodeWarrior editor. Markers are useful for
setting places in your Þle that you can jump to quickly, or for leav-
ing notes to yourself about work in progress on your code.

Adding a Marker

The example text Þle in Figure 5.15 has one marker set in it named
ÒInitInstanceÓ, as you see by looking at the selections on the Marker
Pop-Up Menu.

To add a marker, move the text insertion point to the location in the
text you want to mark, then click on the Marker Pop-Up Menu and
choose Add marker from the pop-up.
UG–144 IDE User Guide

Edit ing Source Code
Navigating in Text
Figure 5.15 File Marker Menu

After choosing Add marker from the pop-up, you will see the Add
Marker dialog box shown in Figure 5.16.

Figure 5.16 Add Marker dialog box

Enter text in the Add Marker dialog box to mark your insertion
point location in the Þle with a note, comment, routine name, or
other text that would be helpful to you.
IDE User Guide UG–145

Edit ing Source Code
Navigating in Text
When you are through adding your text note, click Add and your
marker will be visible in the Marker Pop-Up Menu the next time
you pop it up, as shown in Figure 5.17.

Figure 5.17 Example Text File with a Marker Added

There is another method for marking Þles on a more permanent ba-
sis. The #pragma mark directive, for C/C++ language programs,
can be used to leave markers in a Þle wherever the following syntax
is inserted in the Þle. For Pascal, use {$PRAGMA MARK}. Unlike
the markers weÕve been talking about in this section, these markers
donÕt appear in the Marker Pop-up Menu. Instead, markers created
with #pragma mark appear in the Routines Pop-up menu

When embedded in your Þle, this example adds myMarker to the
Routine Pop-Up Menu automatically when the Þle is opened in the
Editor.

#pragma mark myMarker
UG–146 IDE User Guide

Edit ing Source Code
Navigating in Text
{$PRAGMAC MARK myMarker }

Removing a Marker

To remove a marker, click the Marker Pop-Up Menu and choose the
Remove markers command. The dialog box shown in Figure 5.18 is
shown, and you may select the marker you wish to delete. After you
select the marker, click Delete to remove it permanently from the
marker list.

Figure 5.18 Remove Markers dialog box

Jumping to a Marker

Click the Marker Pop-Up Menu and choose the name of the marker
from the list shown on the pop-up to set the text insertion point at
the location of the marker.

Opening a Related File

There are a few ways to open Þles related to the active editor win-
dow. For example, if you are looking at a C++ .cpp source code Þle
IDE User Guide UG–147

Edit ing Source Code
Navigating in Text
and want to view a .h header Þle that is used by the .cpp Þle, there
are different ways to do this.

Use the Interface Pop-Up Menu shown in Figure 5.19 to open inter-
face or header Þles referenced by the current Þle. You can also use
the Touch and Untouch commands from this pop-up.

Figure 5.19 The Interface pop-up menu

To open a Þle in the list, choose the corresponding item from the
menu.

There is another method for opening an interface or header Þle that
your source code Þle uses. To open the related Þle, you type a spe-
cial key combination after selecting the Þle name in the active win-
UG–148 IDE User Guide

Edit ing Source Code
Navigating in Text
dow. To learn more about this method for opening Þles, refer to
ÒOpening an Existing FileÓ on page 102.

To learn about the Touch and Untouch commands, refer to ÒTouch-
ing and Untouching FilesÓ on page 274.

Going to a Particular Line

You can go to speciÞc line in an editor window if you know its num-
ber. Lines are numbered consecutively, with the Þrst line designated
as line 1.

Click the Line Number Button on the editor window to
open the Go To Line Number dialog box shown in Fig-

ure 5.20. Then enter the number of the line you want to go to and se-
lect OK.

Figure 5.20 Go to Line Number dialog box

Using Go Back and Go Forward

The Go Back and Go Forward commands are only available when
you use the Browser. If you already have the Browser enabled you
can see ÒGo Back and Go ForwardÓ on page 208 for information
about how to use these commands.

If you arenÕt using the Browser and want to learn how to use it, see
ÒBrowser OverviewÓ on page 183.
IDE User Guide UG–149

Edit ing Source Code
Navigating in Text
Configuring Editor Commands

The CodeWarrior IDE will allow you to customize key bindings for
the editor to suit your working style. Refer to ÒConÞguring Editor
Commands BindingsÓ on page 239 to learn about the commands
you can customize to your liking.
UG–150 IDE User Guide

6
Searching and
Replacing Text
This chapter explains how to use the CodeWarrior IDE facilities to
search and replace text in Þles.

Searching and Replacing Text Overview
The CodeWarrior IDE provides comprehensive search and replace
features with the Find dialog box. You can search for and replace
text in a single Þle, in every Þle in a project, or in any combination of
Þles. You can also search for regular expressions, such as those used
in UNIXÕs grep command.

The CodeWarrior IDE also provides facilities for searching text
without using the Find dialog box, so that you get quicker searches.

The topics in this chapter are:

¥ Guided Tour of the Find Dialog Box

¥ Searching for Selected Text

¥ Searching and Replacing Text in a Single File

¥ Searching and Replacing Text in Multiple Files

¥ Using Regular Expressions (grep)

Guided Tour of the Find Dialog Box
The Find window, shown in Figure 6.1 and Figure 6.4 on page 159, is
a versatile feature of the CodeWarrior IDE development environ-
ment. To show the Find dialog box, choose the Find command
under the Search Menu. With this window you do text searching
through a single Þle or multiple Þles in your project. You can search
IDE User Guide UG–151

Searching and Replacing Text
Guided Tour of the Find Dialog Box
and replace text strings and text substrings (using pattern match-
ing), using groups of different Þles that you specify.

There are two different sections in the Find dialog box.

¥ Search and Replace Section

¥ Multi-File Search Section

Search and Replace Section

This section presents a short tour of the search and replace user in-
terface items in the Find window shown in Figure 6.1. The items in
the window are:

Figure 6.1 The Find Dialog Search and Replace Section

¥ Find Text Box
UG–152 IDE User Guide

Searching and Replacing Text
Guided Tour of the Find Dialog Box
¥ Replace Text Box

¥ Multi-File Search Button

¥ Multi-File Search Disclosure Triangle

¥ Recent Strings Pop-Up Menu

¥ Find Button

¥ Replace Button

¥ Replace & Find Button

¥ Replace All Button

¥ Batch Checkbox

¥ Wrap Check Box

¥ Ignore Case Check Box

¥ Entire Word Check Box

¥ Regexp Check Box

Find Text Box

The Find Text Box is one of the editable text Þelds in the Find dialog
box, shown in Figure 6.1. You enter text in this Þeld that you want to
search for.

You can use the Cut, Paste, Clear, and Copy commands with the
Find Text Box. These commands are documented in the section
called ÒEdit MenuÓ on page 312.

Also, the discussion ÒEnter ÔFindÕ StringÓ on page 317 tells how to
enter text into the Find Text Box without using the Find dialog box.

Replace Text Box

The Replace Text Box is one of the editable text Þelds in the Find di-
alog box, shown in Figure 6.1. The text you enter in this Þeld will be
used to replace the text youÕre searching for.

You can use the Cut, Paste, Clear, and Copy commands with the
Find Text Box. These commands are documented in the section
called ÒEdit MenuÓ on page 312.
IDE User Guide UG–153

Searching and Replacing Text
Guided Tour of the Find Dialog Box
Also, the discussion ÒEnter ÔReplaceÕ StringÓ on page 317 tells how
to enter text into the Replace Text Box without using the Find dialog
box.

Recent Strings Pop-Up Menu

The Recent Strings Pop-up Menu is shown in Figure 6.2. It contains
strings that were recently used for searches.

There are actually two of these pop-ups. Each pop-up is to the right
of both the Replace Text Box and the Find Text Box. When you select
one of the strings from the pop-up it is substituted in the appropri-
ate editable text Þeld.

Figure 6.2 Recent Strings Pop-up Menu

Find Button

The Find Button is one of the buttons in the Find dialog box, shown
in Figure 6.1 on page 152. It allows you to begin a text search opera-
tion once you set the other Find dialog box controls, and have com-
pleted certain required Þelds in the Find dialog box.

To learn more about Þnding text, see ÒSearching for Selected TextÓ
on page 163.
UG–154 IDE User Guide

Searching and Replacing Text
Guided Tour of the Find Dialog Box
Replace Button

The Replace Button is one of the buttons in the Find dialog box,
shown in Figure 6.1 on page 152.

When you enter text in the Replace Text Box and the Find Button is
clicked, the CodeWarrior IDE will search for text matching that de-
scribed by the other control settings, and the text in the Find Text
Box. If text matching the Find Text Box text is found, the Replace
Button can be clicked to replace the found text with that shown in
the Replace Text Box.

To learn more about searching and replacing text, see ÒReplacing
Found TextÓ on page 168.

Replace & Find Button

The Replace & Find Button is shown in Figure 6.1 on page 152. This
button behaves much like the Replace Button, but also initiates an-
other Find operation after the text substitution is performed.

To learn more about searching and replacing text, see ÒSearching
and Replacing Text in a Single FileÓ on page 164 and ÒSearching and
Replacing Text in Multiple FilesÓ on page 171.

Replace All Button

The Replace All Button is shown in Figure 6.1 on page 152. This but-
ton behaves much like the Replace Button, but replaces every occur-
rence of the Find Text Box text with the Replace Text Box in the ap-
propriate window.

To learn more about searching and replacing text, see ÒReplacing
Found TextÓ on page 168.

Batch Checkbox

The Batch Check Box is shown in Figure 6.1 on page 152. Selecting
this check box causes the results of the Find command to print into
the Message window.
IDE User Guide UG–155

Searching and Replacing Text
Guided Tour of the Find Dialog Box
If youÕd like to learn more about the role of the Batch Check Box in
searching, see ÒUsing Batch SearchesÓ on page 169.

Wrap Check Box

The Wrap Check Box is shown in Figure 6.1 on page 152. This check
box causes the search to continue from the beginning of the Þle once
the search reaches the end.

To learn more about this feature, consult ÒControlling Search
RangeÓ on page 166.

Ignore Case Check Box

The Ignore Case Check Box is shown in Figure 6.1 on page 152. This
check box causes the CodeWarrior IDE to disregard the case (upper-
case or lowercase) of the text entered into the Find Text Box.

To learn more about this feature, consult ÒControlling Search Pa-
rametersÓ on page 167.

Entire Word Check Box

The Entire Word Check Box is shown in Figure 6.1 on page 152. This
check box causes the CodeWarrior IDE to ignore occurrences of the
text in the Find Text Box that occur within words.

To learn more about this feature, consult ÒControlling Search Pa-
rametersÓ on page 167.

Regexp Check Box

The Regexp Check Box is shown in Figure 6.1 on page 152. This
check box causes the CodeWarrior IDE to Interpret the Find Text
Box string as a regular expression.

CodeWarriorÕs regular expressions are similar to the regular expres-
sion for grep in UNIXª. To learn more about this feature, refer to
ÒUsing Regular Expressions (grep)Ó on page 178.
UG–156 IDE User Guide

Searching and Replacing Text
Guided Tour of the Find Dialog Box
Multi-File Search Disclosure Triangle

The Multi-File Search Disclosure Triangle is shown in Figure 6.1 on
page 152. Clicking this triangle exposes the Multi-File Search Sec-
tion of the Find window, so that the window looks as shown in Fig-
ure 6.4 on page 159, or Figure 6.3 on page 158

To learn more about multi-Þle searching using the Find window, see
ÒSearching and Replacing Text in Multiple FilesÓ on page 171.

Multi-File Search Button

The Multi-File Search Button is shown in Figure 6.3. When de-
pressed, as shown in Figure 6.2 on page 154, the items in the bottom
portion of the Find window are enabled for use in searches.

When the Multi-File Search Button is not depressed, as shown in the
dialog box of Figure 6.3, the items in the Multi-File Search Section of
the Find window are dimmed.

To learn more about Multi-File Search Button, see ÒActivating
Multi-File SearchÓ on page 171.
IDE User Guide UG–157

Searching and Replacing Text
Guided Tour of the Find Dialog Box
Figure 6.3 Multi-File Search Button Not Selected

Multi-File Search Section

This section presents a short tour of the Multi-File Search user inter-
face items in the Find window, shown in Figure 6.4. These items are:

¥ File Sets Pop-Up Menu

¥ File Sets List

¥ Project Pop-up Menu

¥ Stop at End of File Check Box

¥ Sources Check Box

¥ System Headers Check Box

¥ Project Headers Check Box

¥ Others Button
UG–158 IDE User Guide

Searching and Replacing Text
Guided Tour of the Find Dialog Box
Figure 6.4 The Find Dialog Box for a Multiple File Search

File Sets Pop-Up Menu

The File Sets Pop-up Menu is shown in Figure 6.5. This pop-up
menu is used with Multi-Þle searches. When you select this pop-up,
options appear that allow you to select, remove, or save sets of Þles
to search through.

You can build up sets of Þles that you care about, such as collections
of header or interfaces Þles, that will be available whenever you
want to search through the Þles for text.

For more information about Multi-Þle sets of Þles, see ÒChoosing
Files to be SearchedÓ on page 172.
IDE User Guide UG–159

Searching and Replacing Text
Guided Tour of the Find Dialog Box
Figure 6.5 File Set Pop-up Menu

File Sets List

The File Sets List is shown in Figure 6.5. This is a list of the Þles that
will be searched in a Multi-Þle search. You add Þles to this list by
using other controls.

For more information about adding Þles and removing Þles in Þle
sets, see ÒChoosing Files to be SearchedÓ on page 172.

Project Pop-up Menu

The Project Pop-up Menu, shown in Figure 6.6, allows you to choose
the project Þle which you want to perform your search. Since the
CodeWarrior IDE can have multiple projects open at a time, this
menu provides a way to perform the same search in different
projects.
UG–160 IDE User Guide

Searching and Replacing Text
Guided Tour of the Find Dialog Box
Figure 6.6 Project Pop-up Menu

Stop at End of File Check Box

If you turn off the Stop at End of File Check Box, all the Þles in the
File Sets List are searched as though they are one large Þle. When
the CodeWarrior IDE reaches the end of one Þle, it starts searching
the next. When it reaches the end of the last Þle to search, it beeps.

To search each Þle individually, turn on the Stop at End of File
Check Box. When the CodeWarrior IDE reaches the end of a Þle, it
beeps. You must choose Find in Next File from the Search Menu to
continue the search.

For more information about using the Stop at End of File Check Box,
see ÒControlling Search RangeÓ on page 166.
IDE User Guide UG–161

Searching and Replacing Text
Guided Tour of the Find Dialog Box
Sources Check Box

The Sources Check Box is shown in Figure 6.4 on page 159. This
check box adds all the source Þles from the current project to the File
Sets List.

For more information about source Þles in Þle sets, and their role in
Multi-Þle searches, see ÒAdding project source ÞlesÓ on page 172.

System Headers Check Box

The System Headers Check Box is shown in Figure 6.4 on page 159.
This check box adds all the system header or interfaces Þles from the
current project to the File Sets List.

For more information about system headers in Þle sets, and their
role in Multi-Þle searches, see ÒAdding system header ÞlesÓ on page
173.

Project Headers Check Box

The Project Headers Check Box is shown in Figure 6.4 on page 159.
This check box adds all the header or interfaces Þles from the cur-
rent project to the File Sets List.

For more information about project headers in Þle sets, and their
role in Multi-Þle searches, see ÒAdding project header ÞlesÓ on page
173.

Others Button

The Others Button is shown in Figure 6.4 on page 159. This button
and its check box allows you to add one or many additional Þles to
the File Sets List.

For more information about adding Þle to Þle sets, see ÒAdding and
removing arbitrary ÞlesÓ on page 174.
UG–162 IDE User Guide

Searching and Replacing Text
Searching for Selected Text
Searching for Selected Text
The CodeWarrior editor provides two ways of searching for text
without using the Find dialog box. In both of these methods, you se-
lect text in a window, and the CodeWarrior IDE Þnds the text for
you without displaying the Find dialog box.

When you search for text using this method, the CodeWarrior IDE
uses the option settings that you last chose in the Find window. To
change these option settings, you must use the Find dialog box.

You should know how to select text in the editor window before
reading this section. If you donÕt know how to select text, refer to
ÒSelecting TextÓ on page 135.

Finding text in the active editor window

This method is useful if you want to Þnd additional occurrences of a
text string in the same open editor window that youÕre working
with.

First, select an instance of the text you want to Þnd. After selecting
your text, choose Find Selection from the Search Menu.

The CodeWarrior IDE looks for the next occurrence of your text
string in the current Þle only.

To search toward the end of the Þle for the next occurrence of the
text string, click the Find button or choose Find Next from the
Search Menu.

To search toward the beginning of the Þle for the previous occur-
rence of the text string, choose Find Previous from the Search Menu.

The CodeWarrior IDE Þnds the previous occurrence of the text
string and selects it. If the string is not found, then the CodeWarrior
IDE beeps.

Search for more occurrences of the text string by continuing to use
Find, Find Next, or Find Previous on the Search Menu.
IDE User Guide UG–163

Searching and Replacing Text
Searching and Replacing Text in a Single File
Finding text in another window

This method is useful when your text string is in one Þle and you
want to search for the same text string in another Þle.

First, select an instance of the text you want to Þnd. After selecting
your text, choose Enter ÔFindÕ String from the Search Menu. The edi-
tor enters the text in the Find Text Box of the Find dialog box.

Now make the window you want to search active. Then, choose
Find Next or Find Previous from the Search Menu depending on
whether you want to search forwards or backwards in the window
for the next occurrence of your text string.

The CodeWarrior IDE looks for the Find Text Box string in the active
editor window, starting from the location of the text insertion point
in that window.

If you want to search toward the end of the Þle for the next occur-
rence of the Find Text Box string, click the Find Button or choose
Find Next from the Search Menu.

To search toward the beginning of the Þle for the previous occur-
rence of the Find string, choose Find Previous from the Search
Menu.

Search for more occurrences of the Find Text Box string by continu-
ing to use Find, Find Next, or Find Previous from the Search Menu.

Searching and Replacing Text in a Single File
The Find window allows you to search for text patterns in the editor
window you are working in. When you Þnd the text you are inter-
ested in, you can change it or look for another occurrence of it.

This section discusses how to use the Find dialog box to locate spe-
ciÞc text you want to replace in the active editor window.

If you donÕt yet have a window open, see ÒOpening an Existing
FileÓ on page 102.
UG–164 IDE User Guide

Searching and Replacing Text
Searching and Replacing Text in a Single File
If you havenÕt yet created a Þle, see ÒCreating a New FileÓ on page
101.

The topics in this section are:

¥ Finding Search Text

¥ Controlling Search Range

¥ Controlling Search Parameters

¥ Replacing Found Text

¥ Replacing Found Text

¥ Using Batch Searches

Finding Search Text

To enter text in the Find Text Box, bring up the Find window using
the Find command in the Search menu. Type a text string into the
Find Text Box on the dialog box, or choose a string from the Recent
Strings Pop-Up Menu, as shown in Figure 6.7.

Figure 6.7 Find Text Box and Recent Strings Pop-up Menu

Before searching, you can set other search options that control the
range of your search.

The search range deÞnes whether you want to search the entire Þle
or just from the text insertion point in one direction. To set up the
range of your search, see ÒControlling Search RangeÓ on page 166.
IDE User Guide UG–165

Searching and Replacing Text
Searching and Replacing Text in a Single File
The search parameters deÞne whether you want to search for text
regardless of upper or lower case, and whether to search partial
words for the text. To set up the parameters of your search, see
ÒControlling Search ParametersÓ on page 167.

Before proceeding, make sure that multi-Þle searching is turned off
since you are only interested in searching the active editor window.
To learn about how to determine whether multi-Þle searching is
turned off, refer to ÒActivating Multi-File SearchÓ on page 171.

Click the Find Button in the Find window to search forward from
the text insertion point in the Þle, or select Find or Find Next from
the Search Menu. Select Find Previous from the Search Menu if you
want to search backwards from the text insertion point in the Þle.
CodeWarrior now searches for the Find Text Box string in the active
editor window.

To continue searching toward the end of the Þle for the next occur-
rence of the Find Text Box string, click the Find Button or choose
Find Next from the Search menu.

To continue searching toward the beginning of the Þle for the previ-
ous occurrence of the Find Text Box string, choose Find Previous
from the Search Menu.

The editor finds and selects the Find Text Box string. If the string is
not found, the editor beeps.

Search for more occurrences of the Find Text Box string by continu-
ing to use Find, Find Next, or Find Previous.

From this point, you can replace some or all of the text you Þnd with
a new text string.

To replace text, see ÒReplacing Found TextÓ on page 168.

Controlling Search Range

The Wrap Check Box option in the Find dialog box controls what
happens when you reach the beginning or end of a Þle in a search.
UG–166 IDE User Guide

Searching and Replacing Text
Searching and Replacing Text in a Single File
For example, say that the text insertion point is somewhere in the
middle of your text Þle in the active editor window. Also, suppose
that you have the Wrap Check Box option checked. When you
choose Find Previous on the Search Menu, the CodeWarrior IDE
searches from the end of the Þle after the search reaches the begin-
ning. In other words, the search ÒwrapsÓ around the ends of the Þle.
The Find Next command operates in a similar fashion when the end
of the Þle is reached.

If you have the Wrap Check Box option unchecked, and you choose
Find Previous on the Search Menu, the search stops when it reaches
the beginning of the Þle.

If youÕre searching multiple Þles with the Wrap Check Box option
checked, the CodeWarrior IDE searches from the Þrst Þle in the Þle
list after it reaches the last Þle.

Controlling Search Parameters

There are two easily-accessible options for choosing how to match
the text you are searching for.

Ignore Case Check Box

The Ignore Case Check Box is shown in Figure 6.1 on page 152. This
check box causes the CodeWarrior IDE to disregard the case (upper
or lower) entered into the Find Text Box.

For example, if ÒFoobarÓ is in the Find Text Box, then the CodeWar-
rior IDE will also Þnd occurrences like ÒfoobarÓ or ÒFOOBARÓ, and
other possible combinations of upper and lower-case text charac-
ters.

Entire Word Check Box

The Entire Word Check Box is shown in Figure 6.1 on page 152. This
check box causes the CodeWarrior IDE to ignore occurrences of the
text in the Find Text Box that occur within words. For example, if the
Find Text Box string is ÒWordÓ, the CodeWarrior IDE Þnds only
ÒWordÓ. If this option is off, it matches text like ÒWordsÓ, ÒWord-
CountÓ, and ÒBigWordCountÓ.
IDE User Guide UG–167

Searching and Replacing Text
Searching and Replacing Text in a Single File
Replacing Found Text

When you Þnd an occurrence of text you are interested in, you can
either replace one occurrence at a time, or you can replace all occur-
rences in the entire Þle.

Replace All

To replace text, Þrst enter some text to Þnd in the Find Text Box, then
choose the Find operation on the Search Menu, or click the Find But-
ton in the Find dialog box. You can read more about how to Þnd text
by referring to ÒFinding Search TextÓ on page 165.

Next, enter the replacement text string in the Replace Text Box Þeld
of the Find dialog box.

To replace all the occurrences of the Find Text Box string, click the
Replace All Button in the Find dialog box, or choose Replace All
from the Search Menu.

WARNING! Be careful when you use the Replace All command,
since Undo is not available for this operation.

Selective Replace

To selectively replace text, Þrst enter some text to Þnd, then choose
the Find operation on the Search Menu, or click the Find Button in
the Find dialog box. You can read more about how to Þnd text by re-
ferring to ÒFinding Search TextÓ on page 165.

Next, enter the replacement text string in the Replace Text Box Þeld
of the Find dialog box.

Type the string in the Replace Text Box Þeld or choose a string from
the Recent Strings Pop-Up Menu of the Replace Text Box by clicking
the arrow icon just to the right. The Recent Strings Pop-Up Menu
(Figure 6.8) contains the last Þve strings you have used.
UG–168 IDE User Guide

Searching and Replacing Text
Searching and Replacing Text in a Single File
Figure 6.8 Recent Strings pop-up menu

Now choose whether to replace the string you found. For conve-
nience, there are three buttons in the Find dialog box for doing this,
the Replace Button, the Replace & Find Button, and the Replace All
Button. Each button performs a different operation.

To replace the string and see the results, click the Replace Button in
the Find dialog box or choose Replace from the Search Menu. The
editor replaces the text that was found with the Replace Text Box
string.

To continue searching forward, choose Find Next from the Search
Menu, or click the Find Button in the Find dialog box.

To continue searching backward, press the Shift key as you choose
Find Previous from the Search Menu, or press the Shift key and click
the Find Button in the Find dialog box.

To replace the string and Þnd the next occurrence, choose Replace
and Find Next from the Search Menu, or click the Replace & Find
Button in the Find dialog box. The editor replaces the selected text
with the Replace Text Box string and Þnds the next occurrence of the
Find Text Box string. If it canÕt Þnd another occurrence, it beeps.

Using Batch Searches

The CodeWarrior IDE gives you a way to collect all matching de-
scriptions of your text search in one window for easy reference.

If the Batch Checkbox option is checked in the Find dialog box, and
the Find button is clicked, the CodeWarrior IDE searches for all oc-
currences of the Find Text Box string and lists them in the Search Re-
sults message window, as shown in Figure 6.9.
IDE User Guide UG–169

Searching and Replacing Text
Searching and Replacing Text in a Single File
Figure 6.9 Batch search results

The Search Results window shown in Figure 6.9 has a List View and
a Source View.

To go to a particular occurrence of the Find Text Box string, so that it
is shown in the Source View pane of the window, double-click on its
entry in the List View.

To learn more about the features of this window, refer to the discus-
sion of the Message Window in ÒGuided Tour of the Message Win-
dowÓ on page 290.

Source View List View
UG–170 IDE User Guide

Searching and Replacing Text
Searching and Replacing Text in Multiple Files
Searching and Replacing Text in Multiple Files
The CodeWarrior IDE allows you to search multiple Þles for the oc-
currence of text strings.

In this section you will learn how to do text searches through multi-
ple Þles.

Another way to quickly access information and search in multiple
Þles is with the BrowserÕs Go Back and Go Forward commands on
the Search menu. To learn about how to use these commands, refer
to ÒGo Back and Go ForwardÓ on page 208.

The topics in this section are:

¥ Activating Multi-File Search

¥ Choosing Files to be Searched

¥ Saving a File Set

¥ Removing a File Set

¥ Controlling Search Range

Activating Multi-File Search

To conÞgure the CodeWarrior IDE to search through multiple Þles,
you need to activate multi-Þle searching in the Find dialog box.

When the Multi-File Search Button is on, the button appears to
be depressed.

When the Multi-File Search Button is off, the button looks
three-dimensional.

Click the Multi-File Search Disclosure Triangle to the left of the
Multi-File Search Button, shown in Figure 6.10 on page 172, so that
the triangle points down.

The CodeWarrior IDE displays the Find dialog box with the Multi-
File Search Section enabled, as shown in Figure 6.10.
IDE User Guide UG–171

Searching and Replacing Text
Searching and Replacing Text in Multiple Files
To learn about how to conÞgure the Multi-File Search Section of the
Find dialog box, refer to ÒChoosing Files to be SearchedÓ on page
172, ÒSaving a File SetÓ on page 176, ÒRemoving a File SetÓ on page
177, and ÒControlling Search RangeÓ on page 177.

Figure 6.10 The Find dialog box with Multi-File Search options

Choosing Files to be Searched

There are several ways to choose Þles for searching through.

Adding project source files

To add all the source Þles from the current project, turn on the
Sources Check Box. When you turn off the Sources Check Box, the
CodeWarrior IDE removes all associated Þles from the Þle list.
UG–172 IDE User Guide

Searching and Replacing Text
Searching and Replacing Text in Multiple Files
To include only some of the Þles, turn on the Sources Check Box and
delete the Þles you donÕt want by selecting them and pressing De-
lete after clicking on the Þle name.

If turning on this option doesnÕt add any Þles, update your projectÕs
internal list of header and interfaces Þles with the Make command.
To learn how to do this, refer to ÒMaking a ProjectÓ on page 276.

Adding project header files

To add all the project header or interfaces Þles from the current
project, turn on the Project Headers Check Box. When you turn off
the Project Headers Check Box, the CodeWarrior IDE removes all
associated Þles from the Þle list.

To include only some of the Þles, turn on the Project Headers Check
Box and delete the Þles you donÕt want by selecting them and press-
ing Delete.

If turning on this option doesnÕt add any Þles, update your projectÕs
internal list of header or interfaces Þles with the Make command. To
learn how to do this, refer to ÒMaking a ProjectÓ on page 276.

Adding system header files

To add all the system header or interfaces Þles from the current
project, turn on the System Headers Check Box. When you turn off
the System Headers Check Box, the CodeWarrior IDE removes all
associated Þles from the Þle list.

To include only some of the Þles, turn on the System Headers Check
Box and delete the Þles you donÕt want by selecting them and press-
ing Delete.

If turning on this option doesnÕt add any Þles, update your projectÕs
internal list of header or interfaces Þles with the Make command. To
learn how to do this, refer to ÒMaking a ProjectÓ on page 276.
IDE User Guide UG–173

Searching and Replacing Text
Searching and Replacing Text in Multiple Files
Adding and removing arbitrary files

For your multi-Þle searches, you can add and remove Þles using the
Add File dialog box shown in Figure 6.11. This method is particular-
ly useful for adding Þles not included in your current project.

First, click the Others Button in the Multi-File Search Section of the
Find dialog box. Then, choose any Þles from the dialogÕs File List.

Alternatively, you can drag Þles from the Desktop to the File dialog.
Just drag individual or groups of Þles or complete folders to the
Multi-Þle Search list.

Figure 6.11 Adding files to a file set with the Add Dialog Box

The Select Þles to search dialog box shows the Þles in the current di-
rectory you may choose to add to the Þle set.

To add a Þle to the search list, select it and click the Add button. You
can select multiple Þles by pressing the Control key and clicking a
Þle at the same time.
UG–174 IDE User Guide

Searching and Replacing Text
Searching and Replacing Text in Multiple Files
When youÕre Þnished selecting Þles, click the Add button. If you
change your mind, click Cancel and the Þle set is unchanged.

To add more Þles later, just click the Others Button in the Find dia-
log box and the same dialog box appears again.

Choosing a file set

To select a previously-saved Þle set to include in your search, click
on the File Sets Pop-Up Menu and choose a Þle set from the menu,
as shown in Figure 6.12.

Figure 6.12 File Sets Pop-up menu
IDE User Guide UG–175

Searching and Replacing Text
Searching and Replacing Text in Multiple Files
Saving a File Set

To save a Þle set for use in future multi-Þle searches, choose Save
this File Set from the File Sets pop-up menu. The CodeWarrior IDE
displays the Save File Set dialog box shown in Figure 6.13.

Figure 6.13 The Save File Set dialog box

Name the Þle set by entering a name in the Save File Set as text Þeld.

To choose which projects can use this Þle set, select either the Global
or SpeciÞc radio buttons in the dialog box.

If you plan to use this Þle set only with the current project, choose
SpeciÞc to this project. The CodeWarrior IDE stores the Þle set in the
project.

If you think youÕll use this Þle set with other projects, choose Global,
for all projects. The CodeWarrior IDE stores the Þle set in its prefer-
ences Þle, so all projects (even existing projects) can use it.

After making your selection and naming the Þle set, click the Save
button. If you change your mind and donÕt want to save the Þle set,
click Cancel.
UG–176 IDE User Guide

Searching and Replacing Text
Searching and Replacing Text in Multiple Files
Removing a File Set

To remove a previously-saved Þle set, choose Remove a Þle set from
the File Sets Pop-Up Menu in the Find window. Select the set you
want to delete in the dialog box that appears, shown in Figure 6.14,
and click the Remove button. CodeWarrior removes the Þle set so
that future searches will not have this Þle set available. If you
change your mind about removing the Þle set, click Cancel instead.

Figure 6.14 Remove a file set dialog box

Controlling Search Range

The CodeWarrior IDE lets you search any number of Þles for a
string. The Þles can be in the current project or any text Þle on disk.
If you frequently search a particular set of Þles, just save that set and
restore it later.

You choose whether to stop searching at the end of each Þle, or you
can choose to search all Þles without stopping.
IDE User Guide UG–177

Searching and Replacing Text
Using Regular Expressions (grep)
To treat all the Þles in the Þle set as one large Þle, turn off the Stop at
End of File Check Box. When the editor reaches the end of one Þle, it
starts searching the next Þle until the selected text is found. When it
reaches the end of the last Þle to search, it beeps. After text is found,
you may resume your searching for the next occurrence using the
Find, Find Next, or Find Previous menu commands.

To search each Þle individually, turn on the Stop at End of File
Check Box. When the editor reaches the end of a Þle, it beeps. The
arrow to the left of the Þle set indicates the Þle the editor is currently
searching.

You must choose Find in Next File from the Search Menu to contin-
ue the search. To start the search from a particular Þle, just select the
Þle and click in the column to its left.

After choosing your option, proceed just as you would if you were
searching only one Þle.

To learn more about text searching, see ÒSearching for Selected TextÓ
on page 163, or ÒSearching and Replacing Text in Multiple FilesÓ on
page 171.

Using Regular Expressions (grep)
A regular expression is a text substring that is used as a mask for
comparing text in a Þle. When the regular expression is compared
with the text in your Þle by the CodeWarrior IDE, the CodeWarrior
IDE analyzes whether the text matches the regular expression you
have entered.

This section discusses regular expressions the CodeWarrior IDE rec-
ognizes and how they can be used to Þnd and replace text.
CodeWarriorÕs regular expressions are similar to the ones that
UNIXÕs grep command uses.

NOTE: Make sure the Regexp checkbox is selected in the Find
dialog box.
UG–178 IDE User Guide

Searching and Replacing Text
Using Regular Expressions (grep)
Matching simple expressions

Most characters match themselves. The only exceptions are called
special characters: the asterisk (*), plus sign (+), backslash (\), peri-
od (.), caret (^), square brackets ([and]), dollar sign ($), and amper-
sand (&). To match a special character, precede it with a backslash,
like this * .

For example,

Matching any character

A period (.) matches any character except a newline character.

Repeating expressions

Repeat expressions with an asterisk or plus sign.

¥ A regular expression followed by an asterisk (*) matches zero
or more occurrences of the regular expression. If there is any
choice, the editor chooses the longest, left-most matching
string in a line.

¥ A regular expression followed by a plus sign (+) matches one
or more occurrences of the one-character regular expression.
If there is any choice, the editor chooses the longest, left-most
matching string in a line. For example:

This expression… matches this… but not this…

a a b

\.* .* dog

100 100 ABCDEFG

This expression… matches this… but not this…

.art dart
cart
tart

art
hurt
dark
IDE User Guide UG–179

Searching and Replacing Text
Using Regular Expressions (grep)
Grouping expressions

If an expression is enclosed in parentheses ((and)), the editor
treats it as one expression and applies any asterisk (*) or plus (+) to
the whole expression. For example

Choosing one character from many

A string of characters enclosed in square brackets ([]) matches any
one character in that string. If the Þrst character in the brackets is a
caret (^), it matches any character except those in the string. For ex-
ample, [abc] matches a, b, or c , but not x , y, or z . However,
[^abc] matches x , y, or z , but not a, b, or c.

A minus sign (-) within square brackets indicates a range of consec-
utive ASCII characters. For example, [0-9] is the same as
[0123456789] . The minus sign loses its special meaning if itÕs the
Þrst (after an initial ^ , if any) or last character in the string.

This expression… matches this… but not this…

a+b ab
aaab

b
baa

a*b b
ab
aaab

baa

.*cat cat
9393cat
the old cat
c7sb@#puiercat

dog

This expression… matches this… but not this…

(ab)*c abc
ababababc

aabbbc
abaac

(.a)+b xab
ra5afab

b
gaab
UG–180 IDE User Guide

Searching and Replacing Text
Using Regular Expressions (grep)
If a right square bracket is immediately after a left square bracket, it
does not terminate the string but is considered to be one of the char-
acters to match. If any special character, such as backslash (\), aster-
isk (*), or plus sign (+), is immediately after the left square bracket, it
doesnÕt have its special meaning and is considered to be one of the
characters to match.

Matching the beginning or end of a line

You can specify that a regular expression match only the beginning
or end of the line.

¥ If a caret (^) is at the beginning of the entire regular expres-
sion, it matches the beginning of a line.

¥ If a dollar sign ($) is at the end of the entire regular expres-
sion, it matches the end of a line.

¥ If an entire regular expression is enclosed by a caret and dol-
lar sign (^like this$), it matches an entire line.

Using the Find string in the Replace string

You can include the contents of the Find string in the Replace string
by using an ampersand (&) in the Replace string. For example, sup-

This expression… matches this… but not this…

[aeiou][0-9] a6
i3
u2

ex
9a
$6

[^cfl]og dog
bog

cog
fog

END[.] END. END;
END DO
ENDIAN

This expression… matches this… but not this…

^(the cat).+ the cat runs see the cat run

.+(the cat)$ watch the cat the cat eats
IDE User Guide UG–181

Searching and Replacing Text
Using Regular Expressions (grep)
pose the Find string is [a-z]+123 and the Replace string is my_&. If
the editor Þnds func123 , the editor replaces it with my_func123 .

To use an ampersand in the Replace without any special meaning,
use \& . An ampersand has no special meaning in the Find string.

Remembering sub-expressions

You can remember and recall a part of a regular expression. Enclose
the part to remember with parentheses. To recall it use \ n, where n
is a digit that speciÞes which expression in parentheses to recall. De-
termine n by counting occurrences of (from the left.

For example:

Notice that in the last example \1 does not re-apply (ab.) but
matches exactly what (ab.) matched.

You can also use \ n in a Replace string to recall part of an expression
from the Find string. For example, suppose the Find string is ([a-
z]+)123 and the Replace string is my_\1 . If the editor finds
func123 , the editor replaces it with my_func .

This expression… matches this… but not this…

(ab)\1 abab abc

(ab.)\1 abcabc
ab1ab1

abcab1
abab
UG–182 IDE User Guide

7
Browsing Source
Code
This chapter describes Code WarriorÕs class browser, a tool you use
to examine your project source code from various perspectives.

Browser Overview
This chapter gives you a full description of the CodeWarrior IDE
browser. The browser lets you decide what code is important to look
at, and lets you get to that code quickly and easily.

The CodeWarrior IDE browser creates a database of all the symbols
in your code, and provides you with a user interface to access the
data quickly and easily, regardless of language.

Historically, programmers have used browsers primarily with ob-
ject-oriented code, but the CodeWarrior IDE browser works with
procedural and object-oriented code. It works with most compilers,
including C, C++, Pascal, and Java.

To help you understand the browser, weÕre going to look at it from
three perspectives: high-level architecture, user interface, and func-
tionality. The topics in this chapter include:

¥ Understanding the Browser StrategyÑwhat the browser is
and what it does from a high-level perspective

¥ Guided Tour of the BrowserÑwhat you see when you work
with the browser

¥ Using the BrowserÑhow to use the browser effectively

¥ Customizing the BrowserÑhow to customize the toolbar
IDE User Guide UG–183

Browsing Source Code
Understanding the Browser Strategy
The rest of this section shows you how to activate the browser so
that you can start using it.

Activating the Browser

To learn more about how to activate the browser, refer to ÒActivate
BrowserÓ on page 252. When the browser is activated, the compiler
generates the browser database information.

For more information on browser settings and options, see ÒSetting
Browser OptionsÓ on page 207.

Understanding the Browser Strategy
When the browser is activated, the CodeWarrior IDE compilers gen-
erate a database of information about your code. This database in-
cludes data not only about your code, but about the relationships
between various parts of your code, such as inheritance hierarchies.

The browser is a user interface that allows you to sort and sift
through this information in ways that suit your needs.

Like any good database access program, the browser does not dic-
tate how you should look at your information. It gives you a variety
of tools to suit your working style.

There are three principal ways of looking at the information avail-
able to you in the browser:

¥ Catalog ViewÑa comprehensive view of all data

¥ Browser ViewÑa class-based view

¥ Hierarchy ViewÑan inheritance-based view

These sections take a brief look at each option. ÒGuided Tour of the
BrowserÓ on page 188 discusses the user interface in detail.

The browser also implements instant access to information. By click-
ing and holding the mouse on any symbol for which there is infor-
mation in the database, you get instant access to related source code.
ÒContext Pop-Up MenuÓ on page 205 discusses this feature.
UG–184 IDE User Guide

Browsing Source Code
Understanding the Browser Strategy
In addition, the browser gives you one more approach to deciding
how you should view data. You decide how broad your view is. You
may want to look at data in all your classes. Or, you may wish to
focus on one class.

Within the browser and hierarchy views, you can look at multiple
classes or single classes. Table 7.1 summarizes the various major
choices you have when using the browser

Table 7.1 Browser viewing options

The browser-related menu commands in the Window MenuÑShow
Catalog Window, Show Hierarchy Window, and New Class Brows-
erÑdisplay wide-focus views. Once you have the wide view, you
can focus on a particular class.

No matter what viewing style or focus you happen to be in at any
given moment, the browser has simple and intuitive mechanisms
for switching to another kind of view.

Catalog View

The catalog view lets you see all of your data sorted by category into
alphabetical lists. Figure 7.1 shows a catalog view, with the various
categories shown in the pop-up menu.

You select the particular category you want to examine. You can
focus on classes, constants, enumerations, routines, global variables,
macros, routine templates, and type deÞnitions.

See ÒCatalog WindowÓ on page 189 for details on the catalog win-
dow interface.

viewing style wide focus narrow focus

comprehensive catalog not applicable

class-based multi-class browser single-class browser

inheritance-based multi-class hierarchy single-class hierarchy
IDE User Guide UG–185

Browsing Source Code
Understanding the Browser Strategy
Figure 7.1 A catalog view

Browser View

The browser view is like a traditional class browser. You use this
view to look at your data from a class-oriented perspective. Figure
7.2 shows what a multi-class browser view looks like.

In the browser view, you have a list of classes. For the selected class
in that list, you see all of its member routines and its data members.
When you select an item, the source code related to that item ap-
pears in the Source code pane.

See ÒMulti-Class Browser WindowÓ on page 191 and ÒSingle-Class
Browser WindowÓ on page 197 for details on the browser view in-
terface.
UG–186 IDE User Guide

Browsing Source Code
Understanding the Browser Strategy
Figure 7.2 A browser view

Hierarchy View

The hierarchy view is a graphical view of your class hierarchy. You
use this view to understand or follow class relationships. Figure 7.3
illustrates a multi-class hierarchy view for some classes.

The hierarchy view gives you a real feel for the way your classes are
connected with each other. You can expand and collapse a hierarchy
at will.
IDE User Guide UG–187

Browsing Source Code
Guided Tour of the Browser
See ÒMulti-Class Hierarchy WindowÓ on page 199 and ÒSingle-
Class Hierarchy WindowÓ on page 202 for details on the hierarchy
view interface.

Figure 7.3 A hierarchy view

Guided Tour of the Browser
At Þrst glance, the browser interface is quite complicated. There are
multiple windows Þlled with controls and information. However,
there are really only three kinds of views: catalog, browser, and hier-
archy.

In addition, there is a fundamental and vital feature of the browser
interface that makes navigating code simple. If you click and hold
the mouse button down on any symbol for which there is data in the
UG–188 IDE User Guide

Browsing Source Code
Guided Tour of the Browser
browser database, a pop-up menu appears. The menu lists a variety
of destinations related to the symbol.

For object-oriented code (member functions only) , if you click and
hold on a routine name, you have the opportunity to see the decla-
ration or deÞnition of any routine with that name. You can also open
up a symbol browser that lists every implementation of the routine.
Depending upon the nature of the symbol (class name, routine
name, enumeration, and so forth), the pop-up menu lists different
destinations appropriate for the item. This gives you instant access
to the source code related to any symbol.

This section examines each window used by the browser, its con-
trols, and the Context Pop-Up Menu. The sections are:

¥ Catalog Window

¥ Multi-Class Browser Window

¥ Single-Class Browser Window

¥ Multi-Class Hierarchy Window

¥ Single-Class Hierarchy Window

¥ Symbol Window

¥ Context Pop-Up Menu

Catalog Window

The Catalog window displays browser data sorted by category into
alphabetical lists. Choose Show Catalog Window from the Window
Menu to display the Catalog window. Figure 7.4 shows the catalog
window.

The items in this window are:

¥ Category pop-up menu

¥ Symbols pane
IDE User Guide UG–189

Browsing Source Code
Guided Tour of the Browser
Figure 7.4 A catalog window

Category pop-up menu

The Category pop-up menu controls the current type of information
on display in the Symbols pane. The currently-selected item is
marked with a bullet.

Figure 7.5 The Category Pop-Up menu
UG–190 IDE User Guide

Browsing Source Code
Guided Tour of the Browser
Symbols pane

The Symbols pane displays every item in the browser database that
is a member of the currently-selected category. The items are listed
alphabetically.

NOTE: Routines are listed alphabetically by routine name, but
the class name appears first. As a result, it may appear that the
routines are not listed alphabetically.

Multi-Class Browser Window

The Multi-Class Browser window gives you a class-based view of
every class in the browser database. The window has several panes
displaying lists of information. Choose New Class Browser from the
Window Menu to display the Multi-Class Browser window.
IDE User Guide UG–191

Browsing Source Code
Guided Tour of the Browser
Figure 7.6 The multi-class browser window

The Classes pane, Member Functions pane, and Data Members pane
are lists of their respective data. The currently active pane has a grey
focus box around the pane indicating it is active. You can change the
active pane by clicking in the desired pane. You can also use the Tab
key to rotate through the panes (except for the Source pane).

Zoom boxList Button Focus Box

Open File ButtonPermissions Pop-up

Orientation Button

Identifier Icons Column
UG–192 IDE User Guide

Browsing Source Code
Guided Tour of the Browser
TIP: Using the Tab key can be mildly hazardous to your source
code. If the Source pane is active and you press the Tab key, you
enter a tab into your source code. Once you are in the Source
pane, you can’t press the Tab key to get out of it. You must use the
mouse.

You can click an item in any list to select it, or navigate through the
items in the active list by typing or using the arrow keys. You can
type in a name, and as you type the selection changes.

The items in this window include:

¥ Orientation button

¥ List button

¥ Open File button

¥ Classes pane

¥ Member Functions pane

¥ Data Members pane

¥ Source pane

¥ Resize bar

¥ IdentiÞer icon

Orientation button

The Orientation button at the bottom left of the Source pane controls
the distribution of panes in the window. The window may be orient-
ed horizontally, as in Figure 7.6, or vertically as in Figure 7.7.
IDE User Guide UG–193

Browsing Source Code
Guided Tour of the Browser
Figure 7.7 The multi-class browser in vertical orientation

List button

The List button at the top right of the Classes pane controls the dis-
play of classes. You can toggle between an alphabetical list or a hier-
archical list.

Open File button

The File button displays the name of the Þle that contains the code
on view in the Source pane. Click this button to open the source Þle.
It uses the CodeWarrior Editor to open the Þle.
UG–194 IDE User Guide

Browsing Source Code
Guided Tour of the Browser
Classes pane

The Classes pane lists all the classes in the browser database.

You can view the list alphabetically or by class hierarchy. You toggle
the view by clicking the List button at the top right of the pane.

In hierarchy view, disclosure triangles appear next to class names
that have subclasses. Click the disclosure triangle to show or hide
subclasses.

TIP: Alt-click a disclosure triangle to open all subclasses at all
levels. This is a “deep” disclosure. Control-click to display sub-
classes in a class and all of its siblings. This is a “wide” disclosure.
Control-Alt-click to open both wide and deep.

When you select a class in the Classes pane, the Multi-Class Hierar-
chy Window selection changes too. It will scroll to the newly select-
ed class if necessary.

Member Functions pane

The Member Functions pane lists all member functions deÞned in
the currently selected class. This list does not include inherited func-
tions. In a Single-Class Browser Window, you may display inherited
member functions.

Constructors and destructors are at the top of the list. After that, all
other entries are alphabetical.

Data Members pane

The Data Members pane lists all data members deÞned in the cur-
rently selected class. This list does not include inherited data mem-
bers.

The entries in this list are alphabetical. In a Single-Class Browser
Window, you may display inherited data members. If inherited
members are being displayed, data members are listed by super-
class, but alphabetically within each class.
IDE User Guide UG–195

Browsing Source Code
Guided Tour of the Browser
Source pane

The Source pane displays the source code for the currently selected
item. If the item is a class, this pane shows the class declaration. If
the item is a routine, this pane shows the routine deÞnition. If the se-
lected item is a data member, it shows the data member declaration
from the interface Þle.

The text in the source pane is fully editable.

The path to the Þle that contains the code on display is shown at the
top of the pane.

There are two buttons at the bottom of the pane. The Orientation
button modiÞes the arrangement of panes in the window. The Open
File button opens the source Þle containing the code on display.

Resize bar

A Resize bar appears between each pair of panes. To resize a pane,
click and drag the resize bar next to that pane.

Identifier icon

A routine or data member may have an identiÞer icon beside its
name. The following table describes the icons.

Table 7.2 Browser identifier icons

Icon Meaning The member is…

static a static member

virtual a virtual function that you can override, or
an override of an inherited function

pure virtual a member function that you must override
in a subclass if you want to create instances
of that subclass
UG–196 IDE User Guide

Browsing Source Code
Guided Tour of the Browser
Single-Class Browser Window

The Single-Class Browser Window gives you a detailed view of one
class in the browser database. The window is similar to the Multi-
Class Browser Window. Figure 7.8 shows the window.

You can open a single-class browser using several techniques, in-
cluding:

¥ Use the Context Pop-Up Menu in the Catalog Window

¥ Double-click a class name in a Multi-Class Hierarchy Win-
dow

¥ Double-click a class name in a Single-Class Hierarchy Win-
dow

¥ Use the Context Pop-Up Menu in the Multi-Class Browser
Window
IDE User Guide UG–197

Browsing Source Code
Guided Tour of the Browser
Figure 7.8 The single-class browser window

The appearance and behavior of this window is similar to the Multi-
Class Browser Window. For a discussion of the window in general,
see ÒMulti-Class Browser WindowÓ on page 191. That topic includes
discussion of these items also found in the Single-Class Browser
Window:

¥ Orientation button

¥ Open File button

¥ Member Functions pane

¥ Data Members pane

¥ Source pane

¥ Resize bar

¥ IdentiÞer icon
UG–198 IDE User Guide

Browsing Source Code
Guided Tour of the Browser
This window also has some unique items. They are:

¥ Bases text Þeld

¥ Show checkboxes

¥ Show Declaration button

¥ Show Hierarchy button

Bases text field

The Bases text Þeld lists all the immediate base classes for the class
on display in the browser window. This list does not include more
distant ancestors of the class, only those from which it is a direct and
immediate descendant.

This Þeld is informational only and cannot be edited.

Show checkboxes

The check boxes in the Show section of the Single-Class Browser
Window control what kinds of data are displayed in the window.
You may turn any individual item on or off. The possibilities are: in-
herited, public, protected, and private.

The choices you make apply to both member functions and data
members.

Show Declaration button

If you click the Show Declaration button, the class declaration ap-
pears in the Source pane.

Show Hierarchy button

If you click the Show Hierarchy button, you open a Single-Class Hi-
erarchy Window for the class on display in the Single-Class Browser
Window.

Multi-Class Hierarchy Window

The Multi-Class Hierarchy window displays a complete graphical
map of the classes in the browser database. Each class name appears
IDE User Guide UG–199

Browsing Source Code
Guided Tour of the Browser
in a box, and is connected to other related classes by lines. Choose
Show Hierarchy Window from the Window Menu to display the
Multi-Class Hierarchy window. Figure 7.9 shows the window.

Figure 7.9 The Multi-Class Hierarchy Window

Use the arrow keys to change the selected class Ògeographically.Ó
The up and down keys work on siblings. The left and right keys
work on ancestors and descendants.

You can type ahead to change the selection. Use the Tab key to
change the selected class alphabetically.
UG–200 IDE User Guide

Browsing Source Code
Guided Tour of the Browser
TIP: If you select a class in the Classes pane in the Multi-Class
Browser Window, the selection in the Multi-Class Hierarchy Win-
dow changes too.

If you double-click a class entry, or select the entry and press the
Enter key, you open a Single-Class Browser Window for that class.

In addition to the entry for each class, this window has three items:

¥ Line button

¥ Hierarchy expansion triangle

¥ Ancestor Class pop-up menu

Line button

The Line button controls the appearance of the lines that connect re-
lated classes. You can toggle between diagonal lines and straight
lines. The choice is entirely aesthetic.

Hierarchy expansion triangle

The Hierarchy expansion triangle controls the display of subclasses.

If you click this triangle, the next level of subclasses appears or dis-
appears. To be more precise, the expanded state restores to what it
was the last time this class was open.

For example, if you were to click the CDessert expansion triangle in
the state shown in Figure 7.10, all the exposed classes would disap-
pear. If you click it again to open the hierarchy, it will return to the
state shown, with the CApple subclasses visible as well as the im-
mediate descendants of CDessert.
IDE User Guide UG–201

Browsing Source Code
Guided Tour of the Browser
Figure 7.10 An expansion triangle example

TIP: Alt-click a disclosure triangle to open all subclasses at all
levels. This is a “deep” disclosure. Control-click to display sub-
classes for a class and all of its siblings. This is a “wide” disclosure.
Control-Alt-click to open both wide and deep. You can use Control-
Alt-click to expand or collapse an entire map if you click the expan-
sion triangle for a base class that has no ancestors.

Ancestor Class pop-up menu

Click on the Ancestor Class triangle to display the pop-up menu.
The menu lists immediate ancestors. When you choose an item in
the pop-up menu, you jump to that class in the map. If the item is
not currently visible, the computer beeps.

This control appears only for classes that have multiple base classes.

Single-Class Hierarchy Window

The Single-Class Hierarchy Window displays a complete graphical
map for a single class in the browser database. The map displays all
immediate ancestors of the class, and all of its descendants. (The
Multi-Class Hierarchy Window only shows one base class.)

Figure 7.11 shows the window, displaying multiple base classes and
subclasses. The underlined class name is the focus of the window.

You can open a single class hierarchy view using several techniques,
including:
UG–202 IDE User Guide

Browsing Source Code
Guided Tour of the Browser
¥ Use the Context Pop-Up Menu in the Catalog Window

¥ Use the Context Pop-Up Menu in the Multi-Class Hierarchy
Window

¥ Use the Context Pop-Up Menu in the Multi-Class Browser
Window

¥ Use the Show Hierarchy button in a Single-Class Browser
Window

Figure 7.11 The Single-Class Hierarchy window

This window is identical to the Multi-Class Browser Window, ex-
cept that it displays a limited map. For information about how this
window behaves, see ÒMulti-Class Browser WindowÓ on page 191.
IDE User Guide UG–203

Browsing Source Code
Guided Tour of the Browser
Symbol Window

The Symbol window lists all implementations of any symbol that
has multiple deÞnitions. Most commonly, these are multiple ver-
sions of overridden functions in object-oriented code. However, the
Symbol window works for any symbol that is multiply deÞned in
the database.

By selecting an implementation in this list, you see its deÞnition in
the Source pane. Figure 7.12 shows this window.

Figure 7.12 The browser Symbol window

You open a Symbol window by clicking and holding on a symbol
name in any browser or editor window. When you do, a Context
Pop-Up Menu appears. If the routine has multiple implementations,
UG–204 IDE User Guide

Browsing Source Code
Guided Tour of the Browser
one item in the pop-up menu will be ÒFind all implementations of.Ó
When you choose that item, the Symbol window appears.

TIP: In a Source pane or editor window, Alt-click or Control-click a
function or other symbol name to find all implementations and
open the Symbol window without using the pop-up menu.

Most of the items in this window are identical to the Multi-Class
Browser Window. For a discussion of the window in general, see
ÒMulti-Class Browser WindowÓ on page 191. That topic includes
discussion of these items, also found in the Symbol window:

¥ Orientation button

¥ Open File button

¥ Source pane

¥ Resize bar

This window also has one unique item, the Symbols pane.

Routine Symbols pane

The Symbols pane lists all versions of a routine in the database.

When you select an item in the list, that itemÕs deÞnition appears in
the Source pane.

Context Pop-Up Menu

When the browser is active, click and hold on any symbol for which
there is data in the browser database. When you do, a pop-up menu
appears with a variety of items.

The nature of the items in the pop-up menu depends upon the na-
ture of the symbol you are investigating. Some items may allow you
to open browser windows. In every case, one or more items in the
menu direct you to a location in code.

In effect, every symbol in your codeÑroutine name, class name,
data member name, constant, enumeration, template, macro, type
IDE User Guide UG–205

Browsing Source Code
Guided Tour of the Browser
deÞnition, and so forthÑbecomes a hypertext link to a location or
multiple locations in your source code.

For example, if you click and hold on a class name, you open the
class declaration, open a Single-Class Browser Window, or a Single-
Class Hierarchy Window. If you click and hold on a routine name,
you get different choices, as shown in Figure 7.13.

Figure 7.13 The context pop-up menu for a routine

Other menus for other kinds of symbols have items of a similar na-
ture.
UG–206 IDE User Guide

Browsing Source Code
Using the Browser
TIP: The context pop-up feature works not only in browser win-
dows, but in the CodeWarrior source code Editor too! This is a
great reason for always having the browser enabled, even if you
don’t use the browser windows.

Of particular note in the Context Pop-Up Menu for routine names is
the ÒFind all implementations ofÓ item. When you choose this item,
you open a Symbol Window in the browser.

Using the Browser
The browser provides multiple paths through the data related to
your code. There is no way that this manual can deÞne all possible
browser paths through arbitrary source code. What we can do is
give you a feel for how to work with the browser, and outline some
techniques you use to accomplish common tasks.

Topics in this section include:

¥ Setting Browser Options

¥ Navigating Code in the Browser

¥ Opening a Source File

¥ Seeing a Declaration

¥ Seeing a Routine DeÞnition

¥ Editing Code in the Browser

¥ Analyzing Inheritance

¥ Finding Functions That Are Overrides

¥ Seeing MFC Classes

¥ Saving a Default Browser

Setting Browser Options

Browser-related menu items and browser-speciÞc options become
available when you activate the browser. See ÒActivating the Brows-
erÓ on page 184 for information on how to turn the browser on.
IDE User Guide UG–207

Browsing Source Code
Using the Browser
When the browser is on, browser-related menu items are enabled.
These are the Show Catalog Window, Show Hierarchy Window,
and New Class Browser items in the Window Menu.

TIP: A quick way to tell whether the browser is enabled is to look
in the Window Menu at the browser-related menu items. If they
are enabled, the browser is activated.

In addition, there are global IDE options that relate to the browser.
You control how various items are colored in browser windows, and
the time delay before the Context Pop-Up Menu appears:

¥ Browser Coloring

¥ The Flashing Delay is the amount of time the CodeWarrior
Editor displays and highlights an item. It is measured in
60ths of a second. This option is for balancing punctuation.
To learn more about balancing punctuation, refer to ÒBalanc-
ing PunctuationÓ on page 141.

Navigating Code in the Browser

There are many ways to move around in code with the browser.

Using the Context Pop-Up Menu

Perhaps most powerful and ßexible is the Context Pop-Up Menu.
You see this menu when you click and hold on any symbol for
which there is data in the browser database. This includes class
names, routine names, global variables, class data members, and
much more. To learn more refer to ÒContext Pop-Up MenuÓ on page
205.

In the Multi-Class Browser Window and Single-Class Browser Win-
dow, simply selecting a class, routine, or data member displays the
associated code in the windowÕs Source pane.

Go Back and Go Forward

The browser fully supports the Go Back and Go Forward items in
the Search Menu. No matter what views, windows, or code you
UG–208 IDE User Guide

Browsing Source Code
Using the Browser
have looked at, you can always go back to what you had been view-
ing earlier.

TIP: If you have the Go Back and Go Forward tools in the , click
and hold on the tool icon to see a pop-up menu of all the locations
in the go-back queue. You jump directly to any view in the queue.

These commands allow you to go backward or forward in a series of
changes you made. For example, say you use the Browser to look at
your project and make changes to a Þle. Then, you switch Þles and
make more changes. You may do this many times. You use the Go
Back command to go back one or more actions you have performed.
Even if you didnÕt make any changes to the Þle, but looked at it (or a
speciÞc class or method), you can go back to that action. Similarly,
once youÕve gone back, you can use the Go Forward command to re-
turn you to where you started.

If you add these commands to the CodeWarrior, pressing and hold-
ing the mouse button down will show a pop-up menu of the actions
you have performed (Figure 7.14 on page 210).
IDE User Guide UG–209

Browsing Source Code
Using the Browser
Figure 7.14 Go Back and Go Forward toolbar buttons

Choose any item from the menu to go to that action. If you choose
an action out of sequence, CodeWarrior will go to that action without
going through any previous action.

NOTE: Go Back and Go Forward do not undo any actions you
performed. They allow for a more flexible method of moving
around to specific places you have been in the Browser window.

Opening a Source File

There are at least three quick methods you use to open the source
Þle you want to see.

In the Multi-Class Browser Window or Single-Class Browser Win-
dow, click the Open File button when portions of the Þle you wish
to see are displayed in the windowÕs Source pane.

Click on a symbol used in the Þle, and hold the mouse button. Then
use the Context Pop-Up Menu to open the desired Þle or see a par-
ticular routine.
UG–210 IDE User Guide

Browsing Source Code
Using the Browser
Seeing a Declaration

There are several methods used to see a declaration. The methods
vary depending upon the kind of symbol you are investigating.

If you select a class name or data member name in a Multi-Class
Browser Window or Single-Class Browser Window, and the declara-
tion appears in the Source pane. To open the Þle that contains the
declaration, double-click the name. (If you select or double-click a
routine name, you see the deÞnition).

If you click the Show Declaration button in the Single-Class Browser
Window, you see a class declaration.

If you click and hold on a name in any window. Then use the Con-
text Pop-Up Menu to open the declaration. Use this technique to see
a routine declaration.

Seeing a Routine Definition

There are several methods you can use to see a routine deÞnition.

In the Multi-Class Browser Window or Single-Class Browser Win-
dow, select the routine in the Member Functions pane. The deÞni-
tion appears in the Source pane. To open the Þle that contains the
deÞnition, double-click the routine.

Click and hold on the routine name in any editor or browser win-
dow. Then use the Context Pop-Up Menu and you jump to the par-
ticular routine deÞnition.

Choose the Go Back item in the Search Menu.

Alt-double-click a function name in any source view to open the
Symbol Window with all implementations of the function. You can
use Control-double-click to do the same thing.

In the Multi-Class Hierarchy Window or the Single-Class Hierarchy
Window, click and hold on a class name. Then use the Context Pop-
Up Menu to jump to the particular routine deÞnition.
IDE User Guide UG–211

Browsing Source Code
Using the Browser
Editing Code in the Browser

Any code visible in a Source pane is fully editable. Locate the deÞni-
tion you wish to work with. When the code appears in the Source
pane, use the same techniques you would in any CodeWarrior Edi-
tor window.

For more information about the CodeWarrior Editor, see ÒSource
Code Editor OverviewÓ on page 117.

Analyzing Inheritance

Use the Multi-Class Hierarchy Window or the Single-Class Hierar-
chy Window. Look for the little triangle on the left of a class name
that indicates the class has multiple ancestors. Use the associated
Ancestor Class pop-up menu to jump to any ancestor class to study
its descendants (or ancestors).

Use the Hierarchy expansion triangle to expose or conceal subclass-
es.

Finding Functions That Are Overrides

Use the Single-Class Browser Window. Turn off the display of inher-
ited functions. This turns off the display of unchanged inherited
functions. It does not turn off functions you have overridden.

Then look for functions that are marked as virtual with an IdentiÞer
icon. Most of these functions are likely to be overrides of inherited
functions, although some could be functions you declared in this
class that were not inherited from an ancestor.

To open a Symbols pane window for any routine, click and hold on
a routine name, and then choose the ÒFind all implementations ofÓ
item. Combined with a hierarchy view, you see precisely who over-
rides the routine, and where they are in the class hierarchy.
UG–212 IDE User Guide

Browsing Source Code
Using the Browser
Seeing MFC Classes

If you want the browser to display MFC classes, you have to include
MFC headers in such a way that the compiler sees them.

You should use precompiled headers to speed compilation time. If
you simply use the precompiled headers directly, however, the com-
piler does not see MFC classes and does not generate information
for the symbol database.

The way around this problem is to include a renamed copy of the
source Þle used to create the precompiled headers in your project.
These Þles have a name like myFile.mch .

This creates a project-speciÞc precompiled header. By including the
source Þle, CodeWarrior builds the precompiled header from within
your project, exposing MFC symbols to the compiler, which gener-
ates information for the browser database.

The reason you want to include a renamed copy is to avoid prob-
lems if you have multiple projects that use the same precompiled
headers. When one project updates the headers, it will be marked as
changed for all other projects, which then rebuild the precompiled
headers. This defeats the purpose of the precompiled header.

Saving a Default Browser

The browser windows all have various settings that you can modify.
You can preserve these as your default settings.

Simply set up a browser window the way that you like. For exam-
ple, in a Multi-Class Browser Window, set the orientation, the size
of each pane, and the size and location of the window. Then choose
Save Default Window from the Window Menu. The next time you
open a multi-class browser window, it will take on the attributes
you just set.

You can do the same for any of the browser windows. You must
save each windowÕs setup individually, while that window is the ac-
tive window.
IDE User Guide UG–213

Browsing Source Code
Customizing the Browser
Customizing the Browser
This feature was under construction at the time this manual was
printed. Check the release notes for the latest information.

To learn more about customizing the toolbar icons that are visible on
the browser windows, refer to ÒToolbar CustomizationÓ on page
269.
UG–214 IDE User Guide

8
Configuring IDE
Options
This chapter discusses the many options available in the CodeWar-
rior IDEÕs Preferences and Target Settings dialog boxes, found on
the Edit Menu.

Configuring IDE Options Overview
You control many features of the CodeWarrior IDE. The CodeWar-
rior IDE has two dialog boxes for handling options that you can
conÞgure. One dialog box handles global preferences. The other
handles target-speciÞc settings. This chapter discusses all the op-
tions available in these dialog boxes.

To set options that are global to all projects that you work with in
the CodeWarrior IDE, you choose the Preferences command from
the Edit Menu. To set options speciÞc to the CodeWarrior target
within your project that you are working with, you choose the Tar-
get Settings command from the Edit Menu.

In each case, the many options are organized into a series of panels
devoted to a particular topic. For example, one panel controls the
font and tab settings in the CodeWarrior Editor. Another panel con-
trols the target settings for your compiled code.

To learn about how to create Project stationery using the Target Set-
tings menu command, so that your favorite option settings will be
used when you create a new project, refer to ÒAbout Project Statio-
neryÓ on page 46.

The topics in this chapter include:

¥ Option Dialog Boxes Guided Tour
IDE User Guide UG–215

Configur ing IDE Opt ions
Option Dialog Boxes Guided Tour
¥ Choosing Preferences

¥ Choosing Target Settings

¥ Toolbar Customization

Option Dialog Boxes Guided Tour
The various options available to you for conÞguring the CodeWar-
rior IDE settings are found on the Edit Menu, using the Preferences
and Target Settings commands.

The topics in this section are:

¥ Options Panels

¥ Dialog Box Buttons

Options Panels

To see an options panel that you conÞgure to set your CodeWarrior
IDE options, choose the Target Settings command from the Edit
Menu (the name of the command that appears in the menu may
vary with the name of your targets, but ends with the word ÒSet-
tingsÉÓ next to it). The actual options panels available to you may
vary, depending upon the CodeWarrior IDE product you are using.

A typical Target Settings panel for Windows-based platform devel-
opment, for example, might allow you to conÞgure C/C++ Warn-
ings, IR Optimizer, x86 CodeGen, x86 Linker, Custom Keywords,
Access Paths, File Mappings, Build Extras, WinRC Resource Com-
piler options, and C/C++ Compiler options.

To select one of these to conÞgure, click on the name of the panel in
the list box on the left side of the dialog box, for the panel of interest
to you. Refer to Figure 8.1 for an example that shows the Target Set-
tings panel list you can choose from. If you click on IR Optimizer,
you will see a panel resembling Figure 8.2.
UG–216 IDE User Guide

Configur ing IDE Opt ions
Option Dialog Boxes Guided Tour
Figure 8.1 Selecting an Options Panel

Figure 8.2 An Options Panel
IDE User Guide UG–217

Configur ing IDE Opt ions
Option Dialog Boxes Guided Tour
To set global preferences for all projects, you use the Preferences
menu command under the Edit Menu. This command causes the di-
alog box shown in Figure 8.3 to appear. This dialog box operates
similarly to the Target Settings dialog box, but is used instead for
changing preferences that are global to all projects in the IDE, not
just local to a project that is currently open.

Figure 8.3 Preferences Dialog Box

You can create project stationery that contains your favorite prefer-
ences, so that the factory default preferences will not be used when
you create a new project. To learn more about this topic, refer to the
discussion ÒCreating Your Own Project StationeryÓ on page 52.

Dialog Box Buttons

There are several buttons in the dialog box to control how a panelÕs
options are used and applied.
UG–218 IDE User Guide

Configur ing IDE Opt ions
Option Dialog Boxes Guided Tour
The topics in this section are:

¥ Discarding Changes

¥ Factory Settings Button

¥ Revert Panel Button

¥ Save Button

Discarding Changes

If you make changes on a panel, then change your mind about
them, you can click the close box of the dialog box to close the dia-
log box. A dialog box similar to that shown in Figure 8.4 may be
shown. To discard your changes, click the DonÕt Save button. To
keep your changes, click the Save button. To keep the preferences
dialog box open so that you may continue making changes, click
Cancel.

Figure 8.4 Preferences Confirmation Dialog Box

Factory Settings Button

The Factory Settings button causes the dialog box panel to revert to
the settings that the CodeWarrior IDE uses as the defaults. If you
click this button, you will reset the setting in the panel to a known
state. Settings in other panels of this dialog box are not affected by
this button. Only the settings for the options you are currently view-
ing will be reset.

Revert Panel Button

The Revert Panel button allows you to reset the state of the current
panel youÕre viewing to the settings it had when you Þrst viewed it.
IDE User Guide UG–219

Configur ing IDE Opt ions
Choosing Preferences
This is useful if you start making changes to a panel, then decide
you donÕt want to commit them.

Save Button

The Save button commits any changes you made in any of the op-
tions panels. If you changed an option that will require the project
be recompiled, you will see the dialog box similar to that shown in
Figure 8.5. Click Save, DonÕt Save, or Cancel depending on whether
you want to keep your changes or not.

Figure 8.5 Save Changes Dialog Box

To close the dialog Preferences or Target Settings box, click the close
box in the upper left corner of the dialog box.

Choosing Preferences
This section discusses setting preferences for your project. Here you
will learn how to conÞgure preferences for the Editor, and for things
such as the user interface key bindings that will invoke a given
menu command, or perform a command in the Editor.

To conÞgure the preferences panels, Þrst select the Preferences com-
mand from the Edit Menu. Then, select the category of the prefer-
ences you want to conÞgure, by clicking on the name of the desired
preferences group in the list box on the left side of the dialog box.

Editor Preferences

¥ Editor Settings
UG–220 IDE User Guide

Configur ing IDE Opt ions
Choosing Preferences
¥ Fonts and Tabs

¥ Syntax Coloring

¥ Browser Coloring

General Preferences

¥ Key Bindings

Editor Settings

You can conÞgure the CodeWarrior Editor to conform to the way
you work. This section tells how to conÞgure the EditorÕs behavior
to make your text editing chores easier. The Editor options panel is
shown in Figure 8.6.

This preference panel has three areas of options, miscellaneous edi-
tor settings, Remember, and Color Settings. Editor settings (such as
Dynamic Scroll and Balance While Typing) control how the Editor
works. The Remember group of preferences determines what state
information is saved for editor windows. Color Settings controls the
main text color (non-syntax) and the background color in the editor
and browser windows.
IDE User Guide UG–221

Configur ing IDE Opt ions
Choosing Preferences
Figure 8.6 Editor Settings Panel

Dynamic Scroll

If this option is enabled, dragging the scroll box in the scrollbar
causes the text to scroll while dragging, instead of just dragging a
gray outline of the scrollbox and jumping to the new location when
you release the thumb.

Balance While Typing

When the Balance While Typing option is enabled, the CodeWarrior
IDE checks for balanced parentheses, brackets, and braces as you
type.

When you type a right parenthesis, bracket, or brace, the editor
searches for the left counterpart. If the editor Þnds it, the editor
highlights it for a speciÞed length of time called the Flashing Delay
(scrolling to bring it into view, if necessary) and then resumes
(scrolling back to where you were, if necessary). If the editor doesnÕt
Þnd it, it beeps.
UG–222 IDE User Guide

Configur ing IDE Opt ions
Choosing Preferences
By default, the Balance While Typing option is on.

To learn more about Flashing Delay, refer to ÒFlashing DelayÓ on
page 224.

TIP: If you want to check for balanced punctuation without flash-
ing it, set the Flashing Delay to 0.

Save All Before “Update”

Enable this option if you want all text documents to be saved auto-
matically before a Make, Bring Up To Date, or Run, or Debug com-
mand is executed.

Relaxed C Popup Parsing

Lets the Routine Pop-Up Menu parser recognize K&R style func-
tions. To learn more about this feature, refer to ÒRoutine Pop-Up
MenuÓ on page 121.

There are some commonly used macros, particularly in Win32/MFC
programming but also elsewhere, that somtimes confuse the routine
pop-up parser. With Relaxed C Popup Parsing turned off, the parser
usually won't get confused by the macros, but will not recognize
K&R (Kernighan and Richey) old-style C functions. With this option
turned on, it will recognize them, but may show some aberrant re-
sults if you have functions deÞned using complex macros.

A K&R function deÞnition looks like:

int func(x)
int x;
{
}

which is a different form than the ANSI-standard way:
IDE User Guide UG–223

Configur ing IDE Opt ions
Choosing Preferences
int func(int x)
{
}

Use Multiple Undo

Enable this option if you want to use the multiple undo feature.
When active, the Undo command and Redo, Multiple Undo, and
Multiple Redo command are separate items with separate com-
mand keys. If this option is off, the Undo command works as nor-
mal. See ÒRedo, Multiple Undo, and Multiple RedoÓ on page 313 for
more information.

Flashing Delay

The Flashing Delay is the amount of time the CodeWarrior Editor
displays and highlights an item. It is measured in 60ths of a second.
This option is for balancing punctuation. To learn more about bal-
ancing punctuation, refer to ÒBalancing PunctuationÓ on page 141.

Context Popup Delay

Context Popup Delay determines how long the mouse button must
be held down before the browserÕs Context Pop-Up Menu appears.
The range of acceptable values is 0-240. This value is in ÒticksÓ
which are the same as 1/60th of a second (16.67 millseconds).

WARNING! If you enter 0 (zero) for the time delay, you disable
the popup menu entirely.

To learn more information about this feature of the browser, refer to
ÒContext Pop-Up MenuÓ on page 205 and ÒUsing the Context Pop-
Up MenuÓ on page 208.
UG–224 IDE User Guide

Configur ing IDE Opt ions
Choosing Preferences
Drag and Drop Editing

Enable this option to enable Drag & Drop support in the editor. To
learn more about Drag & Drop Editor features, refer to ÒMoving
Text (Drag and Drop)Ó on page 136.

Sort Function Popup

Enable this option if you want the Routine Pop-Up Menu in the Ed-
itor window to always be sorted by default. To learn more about this
feature, refer to ÒRoutine Pop-Up MenuÓ on page 121.

Main Text Color

This option conÞgures the color of any text not colored by the
Browser Coloring, Syntax Coloring, or Custom Keywords color sets.
Click the color area to change the color, and you will see with the
color changing dialog as shown in Figure 8.9 on page 228.

Background Color

Click the color area to change the background color of the Editor
and Browser windows. You will see the color changing dialog as
shown in Figure 8.9 on page 228.

Fonts and Tabs

To change the settings for Fonts and Tabs you use the preference
panel shown in Figure 8.7. This preference panel sets the font and
tab information for the active Editor window.

To change the font and tab settings for a Þle, make it the active Edi-
tor window, then open this options panel and make your changes.

Choose Auto Indent if you want the editor to automatically indent
text on a new line to match up with the text on the previous line.

Tab Size is the number of spaces the CodeWarrior IDE inserts to
make up a ÔtabÕ character using the Tab key.
IDE User Guide UG–225

Configur ing IDE Opt ions
Choosing Preferences
Figure 8.7 Fonts and Tabs Options Panel

Syntax Coloring

The Syntax Coloring options panel provides four Custom Keyword
Set settings you can use to make lists of custom keywords to high-
light. The list can contain routine names, type names, or anything
else you want to have stand out in your Editor windows.

To enable Syntax Coloring, enable the Use Color Syntax checkbox in
the top left corner of the options panel, as shown in Figure 8.8.

Figure 8.8 Syntax Coloring Options Panel

Table 8.1 describes each element of text that the CodeWarrior Editor
highlights in color.
UG–226 IDE User Guide

Configur ing IDE Opt ions
Choosing Preferences
Table 8.1 Syntax coloring highlights

Changing syntax hiliting colors

In the Syntax Coloring preference panel, click on any color you want
to change.

the CodeWarrior IDE uses different colors for each type of text. To
change these colors, click on the color sample beside the name. the
CodeWarrior IDE displays a dialog box (Figure 8.9) you use to select
string color. The next time you view a text Þle, the CodeWarrior IDE
uses the new color.

Element Description

Main Text Anything thatÕs not a comment, keyword,
or custom keyword, such as literal values,
variable names, routine names, and type
names.

Comments Code comments. In Java, C or C++, a
comment is text enclosed by /* and */ or
text from // to the end of the line. In Pas-
cal, a comment is text enclosed by { and }
or (* and *) .

Keywords The languageÕs keywords. It does not in-
clude any macros, types, or variables that
you or the system interface Þles deÞne.

Custom Keywords Any keyword listed in the Custom Key-
word List. This list is useful for macros,
types, and other names that you want to
have stand out.
IDE User Guide UG–227

Configur ing IDE Opt ions
Choosing Preferences
Figure 8.9 Select color dialog box

Controlling syntax hiliting within a window

You can learn how to turn syntax coloring on or off by reading
ÒAdding, Removing, and Selecting a MarkerÓ on page 144.

Using color for custom keywords

Use the Custom Keyword Sets to choose additional words to dis-
play in color. These words can be macros, types, or other names that
you want to have stand out. These keywords are global to the
CodeWarrior IDE and will apply to every project. See also ÒCustom
KeywordsÓ on page 245.
UG–228 IDE User Guide

Configur ing IDE Opt ions
Choosing Preferences
In the options panel, click the Edit button to the right of the Custom
Keyword Set you want to modify. The CodeWarrior IDE displays
the Custom Keywords List dialog box, shown in Figure 8.10.

Figure 8.10 Custom keyword dialog box

Type a keyword in the Add Þeld, then click Add. the CodeWarrior
IDE adds the keyword to the Custom Keywords List. You can add as
many keywords as you want.

To delete a keyword, select the keyword, then click delete. the
CodeWarrior IDE removes the keyword from the Custom Keywords
List.

When youÕre done, press OK. The dialog box disappears. When you
next view a source Þle, all the custom keywords you entered are col-
ored.
IDE User Guide UG–229

Configur ing IDE Opt ions
Choosing Preferences
Importing or exporting custom keywords

To retrieve or save an entire group of keywords, use the Import from
File and Export to File buttons.

Click the Edit button to the left of the appropriate Custom Keyword
Set (shown in Figure 8.8 on page 226).

Choose the Import or Export button. Complete the standard Open
Þle dialog box that appears by navigating to your Þle and opening
it.

the CodeWarrior IDE adds or subtracts the custom keywords from
that Þle to or from your Custom Keyword Set.

When youÕre done, click OK. The dialog box disappears. When you
next view a source Þle, all the custom keywords you entered will be
highlighted as you designated.

Browser Coloring

The Browser Coloring preferences are shown in Figure 8.11. The
Browser can export its lists of symbols and their types to the editor.
This enables the editor to use different colors for various types of
symbols. Choose Activate Browser Syntax Coloring to use this fea-
ture. When active, the color choice for each symbol type will be dis-
played in the Editor window and the Browser window. Click on a
color area to bring up the dialog box (shown in Figure 8.9 on page
228) to change the color.
UG–230 IDE User Guide

Configur ing IDE Opt ions
Choosing Preferences
Figure 8.11 Browser highlighting options

Enable Automatic Toolbar Help

This option turns on Balloon Help for the toolbar icons. When you
move the mouse over an icon and leave it there for a second or two,
a balloon will pop up and tell you what command the icon repre-
sents.

Key Bindings

The CodeWarrior IDE has customizable key bindings for menu,
keyboard, and editor commands. You can conÞgure the IDE to suit
your personal working style using this feature. This feature will
allow you to change the keys that activate many commands in the
CodeWarrior IDE to key bindings that you Þnd convenient for your
working style.

For example, you may wish to change the menu command for Save
from Control-S to Control-Alt-S. You could change this using the
key bindings feature.

The key bindings for the menu commands are conÞgurable via the
File Menu, Edit Menu, Search Menu, Project Menu, and Window
Menu categories in the options panel shown in Figure 8.12. There
are other key bindings that can be conÞgured, using the Misc, Editor
Commands, and PreÞx Keys categories in the options panel.

The topics discussed in this section are:
IDE User Guide UG–231

Configur ing IDE Opt ions
Choosing Preferences
¥ Restrictions for Choosing Key Bindings

¥ What is a PreÞx Key?

¥ What is a Quote Key?

¥ Modifying Key Bindings

¥ Setting the PreÞx Key Timeout

¥ Exporting Key Bindings

¥ Importing Key Bindings

¥ ConÞguring Misc Bindings

¥ ConÞguring PreÞx Keys Bindings

¥ ConÞguring the Quote Key Binding

Restrictions for Choosing Key Bindings

When you are customizing key bindings, you need to be aware of
some restrictions for keys that can and can not be used. These re-
strictions are listed here.

This section is under construction. As this manual went to press,
some of the limitations of this feature were not yet characterized.

The following represents possible advice for using this feature:

Key bindings that use printing characters must use at least the Com-
mand or Control key in the key binding. Printable characters such
as the following are not valid for key binding assignment:

¥ ÔaÕ

¥ Shift-ÕaÕ

This printable character restriction does not apply for the second
key of a two-key sequence.

The Alt key is not valid for use in Key Bindings.

The Return and Tab keys require at least the Control or Shift key.
This restriction does not apply for the second key of a two-key se-
quence.

The Escape and Space keys are always invalid for key bindings.
UG–232 IDE User Guide

Configur ing IDE Opt ions
Choosing Preferences
Function keys and the Clear key are valid for creating key bindings.

What is a Prefix Key?

PreÞx Keys are for supporting multiple-keystroke key bindings,
such as those of the Emacs text editor available on many different
computer platforms. For example, the key sequence in Emacs to
save a Þle is Control-X followed by Control-S.

To emulate this Emacs key binding in the CodeWarrior IDE, Þrst set
one of the PreÞx Keys to be Control-X, and then set the key binding
for the Save menu command to Control-X Control-S.

To learn how to conÞgure PreÞx Keys, refer to ÒConÞguring PreÞx
Keys BindingsÓ on page 243. You can also adjust the maximum time
to wait for a key press after a PreÞx Key is entered. To learn how to
do this, refer to ÒSetting the PreÞx Key TimeoutÓ on page 236.

What is a Quote Key?

Information on this topic was not available at the time this manual
was prepared for publication. Check the release notes for the latest
information.

Modifying Key Bindings

When you select the Key Bindings command from the pop-up
menu, you see the Key Bindings options panel shown in Figure 8.12.
IDE User Guide UG–233

Configur ing IDE Opt ions
Choosing Preferences
Figure 8.12 Key Bindings Options Panel

To change the key binding that will activate a given IDE operation,
you must Þrst select the operation you wish to modify. To do this,
click the disclosure triangle next to the Command category to show
the individual operations. For example, clicking on the disclosure
triangle next to File Menu changes the view of Figure 8.12 to look
like the view of Figure 8.13.
UG–234 IDE User Guide

Configur ing IDE Opt ions
Choosing Preferences
Figure 8.13 File Menu Key Bindings

If you wanted to change the key binding for the New command,
double-click the line that contains the command in the window. The
dialog box shown in Figure 8.14 appears. Once you see this dialog,
hold down the key combination that you want to be used for the
command. For example, if you wanted to make the key binding for
this command Control-8, you would press the Control key and the 8
key at the same time.

You may also select an additional key binding that can be used for
the command, so that each command can have 2 different key bind-
ings for it. To create an additional key binding, click on the Alternate
rectangle so that it is selected. Then, hold down the keys that you
want to be used for the key binding.
IDE User Guide UG–235

Configur ing IDE Opt ions
Choosing Preferences
If you wish to clear the Primary or Alternate key bindings, click the
Clear button to the right of the appropriate Þeld.

The Allow Auto Repeat option is used to make a key binding repeat
if you continue to depress the key combination. A good key binding
to use here as an example is the Find Next command. If you click
Allow Auto Repeat for the Find Next key binding, then you can just
hold down the key combination while you watch the search engine
Þnd all the text matching your search criteria in the currently-open
Þle. This is a quick way to jump through a Þle, Þnding all the pat-
terns you are looking for and showing them quickly. If you did not
conÞgure this feature to Allow Auto Repeat, then you would have
to release the keys and depress them again every time.

Figure 8.14 Modify Key Binding Dialog Box

When you are Þnished changing key bindings, click the OK button
to dismiss the dialog box, saving your changes. If you do not wish
to save your changes, click the Cancel button.

Setting the Prefix Key Timeout

The PreÞx Key Timeout Þeld sets how long the IDE waits for the
second key after a preÞx key is depressed. Larger values mean that
the IDE will wait longer for the second key to be depressed.

This value is in ÒticksÓ which are the same as 1/60th of a second
(16.67 millseconds). Legal values are in the range of 1 to 999. The de-
fault is 120.
UG–236 IDE User Guide

Configur ing IDE Opt ions
Choosing Preferences
Exporting Key Bindings

If you wish to save your key bindings in a Þle so that you can later
import them into the IDE at another time, you use the Export but-
ton. When you click this button, the dialog box shown in Figure 8.15
appears. Navigate to the place on your hard disk that you would
like to save the key bindings Þle to, and click Save.

Figure 8.15 Key Bindings Export Dialog Box

Importing Key Bindings

If you wish to import saved key bindings from a previously-export-
ed Þle, you use the Import button.

This section of the manual is under construction. This feature was
not available at the time this manual was written. Check the release
notes for the latest information.
IDE User Guide UG–237

Configur ing IDE Opt ions
Choosing Preferences
Configuring Misc Bindings

Table 8.2 shows your options for conÞguring the Misc Key Bindings.

This section describes how to conÞgure the key bindings that are as-
sociated with miscellaneous CodeWarrior IDE features. Refer to
Table 8.2 to see what the default command key bindings are for the
feature you are interested in.

Table 8.2 Misc Key Bindings

Command Default Key Binding Description

Go to header/source
Þle

Control-Tab This command switches be-
tween a source and header
Þle of the same name. To
learn more about this fea-
ture, refer to ÒOpening a Re-
lated FileÓ on page 147.

Toggle balloon help Shift-Control-/ This command toggles bal-
loon help on and off.

Go to previous error
message

Alt-Control-Up
Arrow

This command moves to the
previous error message in
the Message window. To
learn more about stepping
through messages in the
Message window, refer to
ÒStepping Through Messag-
esÓ on page 297.

Go to next error mes-
sage

Alt-Control-Down
Arrow

This command moves to the
next error message in the
Message window. To learn
more about stepping
through messages in the
Message window, refer to
ÒStepping Through Messag-
esÓ on page 297.
UG–238 IDE User Guide

Configur ing IDE Opt ions
Choosing Preferences
Configuring Editor Commands Bindings

This section describes how to conÞgure the key bindings that are as-
sociated with CodeWarrior IDE Editor features. Refer to Table 8.3 to
see what the default command key bindings are for the feature you
are interested in.

To learn more about text navigation features of the Editor, refer to
ÒNavigating in TextÓ on page 143.

Table 8.3 Editor Command Key Bindings

Command Default Key Binding Description

Move character left Left Arrow Pressing this key moves the
text insertion point one
character to the left.

Move character right Right Arrow Pressing this key moves the
text insertion point one
character to the right.

Move word left Alt-Left Arrow Pressing these keys moves
the text insertion point one
word to the left.

Move word right Alt-Right Arrow Pressing these keys moves
the text insertion point one
word to the right.

Move sub-word left Control-Left Arrow Pressing these keys moves
the text insertion point to
the left of the next capital
letter or start of a word on
the left.

Move sub-word right Control-Right Arrow Pressing these keys moves
the text insertion point to
the left of the next capital
letter or start of a word on
the right.
IDE User Guide UG–239

Configur ing IDE Opt ions
Choosing Preferences
Move to start of line Control-Left Arrow Pressing these keys moves
the text insertion point to
the start of the current line.

Move to end of line Control-Right Arrow Pressing these keys moves
the text insertion point to
the end of the current line.

Move line up Up Arrow Pressing this key moves the
text insertion point one line
up.

Move line down Down Arrow Pressing this key moves the
text insertion point one line
down.

Move to top of page Alt-Up Arrow Pressing these keys moves
the text insertion point to
the top of the current view.

Move to bottom of
page

Alt-Down Arrow Pressing these keys moves
the text insertion point to
the bottom of the current
view.

Move to top of Þle Control-Up Arrow Pressing these keys moves
the text insertion point to
the top of the current Þle.

Move to bottom of
Þle

Control-Down
Arrow

Pressing these keys moves
the text insertion point to
the bottom of the current
Þle.

Delete character left Backspace Pressing this key erases the
last character typed.

Delete character right Del (Delete key) Pressing this key deletes the
character immediately to
the right to the text insertion
point.

Command Default Key Binding Description
UG–240 IDE User Guide

Configur ing IDE Opt ions
Choosing Preferences
Delete to end of Þle Control-Backspace Pressing these keys deletes
the characters from the text
insertion point to the end of
the Þle.

Character select left Shift-Left Arrow Pressing these keys adds the
character to the left of the
text insertion point to the
current selection.

Character select right Shift-Right Arrow Pressing these keys adds the
character to the right of the
text insertion point to the
current selection.

Select word left Alt-Shift-Left Arrow Pressing these keys selects
the full word to the left of
the text insertion point.

Select word right Alt-Shift-Right
Arrow

Pressing these keys selects
the full word to the right of
the text insertion point.

Select sub-word left Control-Shift-Left
Arrow

Pressing these keys selects
the partial word to the left
of the text insertion point,
up to the Þrst capital letter
or white space, whichever
comes Þrst.

Select sub-word right Control-Shift-Right
Arrow

Pressing these keys selects
the partial word to the right
of the text insertion point,
up to the Þrst capital letter
or white space, whichever
comes Þrst.

Command Default Key Binding Description
IDE User Guide UG–241

Configur ing IDE Opt ions
Choosing Preferences
Select line up Shift-Up Arrow Pressing these keys selects
all text from the current lo-
cation of the text insertion
point to a position one line
directly above.

Select line down Shift-Down Arrow Pressing these keys selects
all text from the current lo-
cation of the text insertion
point to a position one line
directly below.

Select to start of line Shift-Control-Left
Arrow

Pressing these keys selects
all text left of the text inser-
tion point through the be-
ginning of the current line.

Select to end of line Shift-Control-Right
Arrow

Pressing these keys selects
all text right of the text in-
sertion point through the
end of the current line.

Select to start of page Alt-Shift-Up Arrow Pressing these keys selects
all text left of the text inser-
tion point up to the top of
the current view of the Þle.

Select to end of page Alt-Shift-Down
Arrow

Pressing these keys selects
all text right of the text in-
sertion point down to the
bottom of the current view
of the Þle.

Select to start of Þle Shift-Control-Up
Arrow

Pressing these keys selects
all text left of the text inser-
tion point up to the top of
the Þle.

Command Default Key Binding Description
UG–242 IDE User Guide

Configur ing IDE Opt ions
Choosing Preferences
Configuring Prefix Keys Bindings

ConÞguring PreÞx Keys is an easy process. To learn about what a
PreÞx Key is and for an example of whay you can do with one, refer
to ÒWhat is a PreÞx Key?Ó on page 233.

To conÞgure a PreÞx Key, just follow the procedure for ÒModifying
Key BindingsÓ on page 233. The only difference in conÞguring a
PreÞx Key is that you will not be permitted to assign an Alternate
key combination.

Configuring the Quote Key Binding

ConÞguring the Quote Key is an easy process. To learn about what a
Quote Key is and for an example of whay you can do with one, refer
to ÒWhat is a Quote Key?Ó on page 233.

Select to end of Þle Shift-Control-Down
Arrow

Pressing these keys selects
all text right of the text in-
sertion point up to the top
of the Þle.

Scroll line up Control-Up Arrow Pressing these keys scrolls
the view up one line.

Scroll line down Control-Down
Arrow

Pressing these keys scrolls
the view down one line.

Scroll page up PgUp (Page Up Key) Pressing these keys scrolls
the view up one page.

Scroll page down PgDn (Page Down
Key)

Pressing these keys scrolls
the view down one page.

Scroll to top of Þle Home Pressing this key scrolls the
view up to the top of the
Þle.

Scroll to end of Þle End Pressing this key scrolls the
view down to the bottom of
the Þle.

Command Default Key Binding Description
IDE User Guide UG–243

Configur ing IDE Opt ions
Choosing Target Settings
To conÞgure the Quote Key, just follow the procedure for ÒModify-
ing Key BindingsÓ on page 233. The only difference in conÞguring
the Quote Key is that you will not be permitted to assign an Alter-
nate key combination.

Choosing Target Settings
You can change many different settings to conÞgure the CodeWar-
rior IDE to build your project and target the way you want. This sec-
tion discusses the changes you can make to Target Settings speciÞc
to your project.

Depending on the type of project you are working with, some of the
material in this chapter may not be visible in the dialog boxes. For
example, if you are working with an x86 project, you will not see
any dialog boxes for Motorola 68K conÞguration.

The options panels discussed in this section are in several different
categories: Editor, Target, Language Settings, Code Generation, and
Linker.

Editor

¥ Custom Keywords

Target

¥ 68K Target

¥ Access Paths

¥ Build Extras

¥ Java Project

¥ PPC Target

¥ File Mappings

¥ Target Settings

¥ x86 Target

Language Settings

¥ C/C++ Compiler
UG–244 IDE User Guide

Configur ing IDE Opt ions
Choosing Target Settings
¥ C/C++ Warnings

¥ Pascal Compiler

¥ Pascal Warnings

¥ PPCAsm

¥ Rez

¥ WinRC Resource Compiler

Code Generation

¥ 68K Processor

¥ 68K Disassembler

¥ IR Optimizer

¥ Java VM

¥ PPC Processor

¥ PPC Disassembler

¥ x86 CodeGen

Linker

¥ 68K Linker

¥ CFM68K Linker

¥ Java Linker

¥ PPC Linker

¥ PPC PEF

¥ x86 Linker

Custom Keywords

The Custom Keywords options panel, shown in Figure 8.16, allows
you to deÞne your own keyword sets that have certain colors associ-
ated with them when they appear in your Editor Þles. These key-
words are project-speciÞc, not global to the CodeWarrior IDE. See
also ÒUsing color for custom keywordsÓ on page 228.

To change a keyword set, click the Edit button and make the appro-
priate entries in the dialog box that is presented.
IDE User Guide UG–245

Configur ing IDE Opt ions
Choosing Target Settings
Figure 8.16 Custom Keywords Options Panel

68K Target

The 68K Target options panel, shown in Figure 8.17, allows you to
conÞgure settings for Motorola 680x0 target projects. Mac OS
projects use these conÞguration options.

To learn more about Mac OS programming, refer to Targeting Mac
OS on the CodeWarrior CD.

Figure 8.17 68K Target Options Panel
UG–246 IDE User Guide

Configur ing IDE Opt ions
Choosing Target Settings
Access Paths

If you need to deÞne additional access paths for the CodeWarrior
IDE to search while compiling and linking your project, you would
use the Access Paths options panel, shown in Figure 8.18.

You can use drag and drop to add paths to the Access Paths options
panel. Just drag the folder on to the path list. You can then remove
paths by dragging a path to the Recycle Bin.

If a folder icon appears beside the name of a folder in either the User
Include Path Pane, or the System Include Path Pane, the CodeWar-
rior IDE performs a recursive search on the path. That is, the
CodeWarrior IDE searches that folder and all the folders within it.

By clicking the folder icon to the left of any path in the User Include
Path or System Include Path panes, you can disable recursive
searching of all subdirectories below that path. If the folder is visi-
ble, recursive search is turned on. If the folder is not visible, all sub-
directories of that path will not be searched by the compiler.

TIP: If you turn off recursive searching of paths, and add each
specific path to every directory that contains your files to either the
System Include Path or User Include Path panes, you will speed
compilation of your project.

If your projectÕs Þles or libraries are not in either of the default ac-
cess paths, the CodeWarrior IDE will not Þnd them when compil-
ing, linking, or running your project. You must add their access path
to tell the environment where to look.
IDE User Guide UG–247

Configur ing IDE Opt ions
Choosing Target Settings
Figure 8.18 Access Paths Options Panel

Always Search User Paths

To search for system header or interfaces Þles in the same way as
user header Þles, turn on this option.

User Include Path Pane

In Pascal, these access paths are searched Þrst. In C, an #include
ÒÉÓ statement searches these access paths. By default, it contains
{Project Folder}, which is the folder that contains the open project.

System Include Path Pane

In Pascal, these access paths are searched after those in the User In-
clude Path Pane. In C, an #include < . . . > statement searches
UG–248 IDE User Guide

Configur ing IDE Opt ions
Choosing Target Settings
these access paths. By default, it contains {Compiler Folder}, which
is the folder that contains the the CodeWarrior IDE.

Add Default

The CodeWarrior IDE lets you add the default path for the User In-
clude Path Pane or System Include Path Pane after you have deleted
the default path. To add the default path to the access path pane you
are working with, click the Add Default button. the CodeWarrior
IDE adds the default path back into the relevant path pane.

Add

To add a new access path, Þrst select the System Include Path Pane
or the User Include Path Pane. Then, click the Add button. The dia-
log box shown in Figure 8.19 appears.

Figure 8.19 Access Path Selection Dialog Box

Use the standard Windows tree controls to navigate to the folder
you want to add to the Access Paths.
IDE User Guide UG–249

Configur ing IDE Opt ions
Choosing Target Settings
You can choose how CodeWarrior will store the access path with the
pop-up menu at the top of the dialog. The four commands in the
menu are Absolute Path, Project Relative, Compiler Relative, and
System Relative.

Absolute Path means that all the folders that lead to your project
folder, including the hard disk, will be incorporated in the Access
Path. You need to update an absolute access path if you move a
project to another system, or rename the hard drive, or rename the
folder that contains the project.

Project Relative Path means that the folders that lead to your folder,
in relation to the folder that contains the current project, will be in-
corporated in the Access Path. You do not need to update relative
access paths if you move a project, as long as the hierarchy of the
relative path is the same. However, you cannot create a relative path
to a folder on different hard disk than where your project Þle re-
sides.

Compiler Relative means that the folder leading to your folder, in
relation to the folder that contains the CodeWarrior IDE, will be in-
corporated in the Access Path. You do not need to update relative
access paths if you move a project, as long as the hierarchy of the
relative path is the same. However, you cannot create a relative path
to a folder on different hard disk than where your project Þle re-
sides.

System Relative means that folders leading to the Windows folder
will be incorporated in the Access Path. You do not need to update
relative access paths if you move a project as long as the hierarchy of
the relative path is the same.

Click the OK button, and the CodeWarrior IDE adds the Access Path
to the list.

Change

To change an access path, Þrst select a path in the System Include
Path Pane or the User Include Path Pane. Then, click the Change
button. The dialog box shown in Figure 8.19 on page 249 appears.
UG–250 IDE User Guide

Configur ing IDE Opt ions
Choosing Target Settings
Use this dialog box to navigate to the location of the access path you
want to change to.

To learn more information about the options in the dialog box, refer
to ÒAddÓ on page 249.

Remove

To remove an access path, Þrst select the System Include Path Pane
or the User Include Path Pane. Then, click the Remove button. The
path is removed.

Build Extras

The Build Extras panel contains various options that affect how a
project builds. These options are shown in Figure 8.20.

Figure 8.20 Build Extras Options Panel

Use Modification Date Caching

Before making a project, the CodeWarrior IDE checks the modiÞca-
tion dates of the Þles to see if youÕve changed them outside the
CodeWarrior IDE. If you edit Þles with the CodeWarrior Editor only,
turn on the Use ModiÞcation Date Caching option to shorten compi-
lation time.
IDE User Guide UG–251

Configur ing IDE Opt ions
Choosing Target Settings
Activate Browser

If you activate the Browser for a project, you must rebuild your
project (see ÒMaking a ProjectÓ on page 276) so the compiler can
generate the necessary information for each Þle.

For more information on browser settings and options, see ÒBrows-
er OverviewÓ on page 183.

Java Project

The Java Project options panel, shown in Figure 8.21, allows you to
conÞgure settings for Java target projects.

To learn more about conÞguring the options in this panel for Java
projects, refer to Targeting Java on the CodeWarrior CD.

Figure 8.21 Java Project Options Panel
UG–252 IDE User Guide

Configur ing IDE Opt ions
Choosing Target Settings
PPC Target

The PPC Project options panel allows you to conÞgure settings for
PowerPC (PPC) target projects. Mac OS and BeOS projects use these
conÞguration options.

To learn more about Mac OS and BeOS programming, refer to Tar-
geting Mac OS and Targeting BeOS on the CodeWarrior CD.

File Mappings

The File Mappings options panel, shown in Figure 8.22, is used to
associate a Þle name extension such as .c or .p with a plugin com-
piler. This tells the CodeWarrior IDE which compiler to use when a
Þle with a certain name is encountered.
IDE User Guide UG–253

Configur ing IDE Opt ions
Choosing Target Settings
Figure 8.22 File Mappings Options Panel

File Mappings List

The File Mappings List contains a File Type, associated Extension,
and compiler choice for each Þle name extension in the list. This list
tells the CodeWarrior IDE which compiler to invoke when a given
Þle name is encountered.

To add a new extension to this list, choose an existing entry in the
list, edit the Extension and Precompiled Þelds, and click the Add
button. You can choose values for the Flags before clicking the
Change button.

NOTE: To add the new file kind to all new empty projects, make
sure you close your Project window (if it is open).
UG–254 IDE User Guide

Configur ing IDE Opt ions
Choosing Target Settings
Extension

This ßag allows you to enter a Þle name extension such as .c or .h
for a File Type you are working with in the File Mappings List.

Compiler

This Þeld allows you to choose a compiler for a File Type you are
working with in the File Mappings List.

Precompiled

This ßag means to compile these Þles before other Þles. This is use-
ful if these Þles create documents that other source Þles or compilers
use. For example, this option lets you create a compiler that trans-
lates a Þle into a C source code Þle and then compile the C Þle.
YACC (Yet Another Compiler Compiler) Þles are treated as precom-
piled Þles since YACC generates C source code to be compiled by a
C compiler.

Launchable

This ßag means open the source code Þle with the application that
created it when you double-click it in a project window.

Resource File

This ßag means include the resources from these Þles in your Þn-
ished product.

Ignored by Make

This ßag means ignore these Þles when compiling or linking the
project. This is useful if the Þles contain comments or documenta-
tion that you want to include with your project.

Target Settings

The CodeWarrior IDE allows you to deÞne multiple targets in your
project Þle, so that you can have the same project Þle build different
variations of your code. For example, you can deÞne a debug target
IDE User Guide UG–255

Configur ing IDE Opt ions
Choosing Target Settings
and a shipping target in your project. You can then switch between
these targets to build them when you want them. To learn more in-
formation about using targets in your projects, refer to ÒCreating
Complex ProjectsÓ on page 79.

When you change the target or application type, you must change
the libraries contained in the project. Creating a new project does
this for you automatically. Choosing a new value for a target does
not change these Þles for you. For this reason, you should be careful
when changing values in this section.

TIP: To change the target or project type, it’s best to create a new
project and add the source code files from the old project.

The Target Settings options panel, shown in Figure 8.23, allows you
to conÞgure the name of your target, as well as which linker and
post linker plugins to use for the target. To learn more about which
plugins to select for your linker and post linker, refer to the targeting
manual for your selected target code, as deÞned in Table 1.2 on page
25.

Linker and Post Linker

Some targets have post linkers that perform additional work (such
as a data format conversion) on the Þnal executable. Refer to infor-
mation in the individual Targeting manual for your target.

Target Name

If youÕd like to change the name of a target, change the text in the
Target Name editable text Þeld of this options panel. When you use
the Targets category tab in the project window, you will be able to
view the name that you have set.

Output Directory

Click on the Choose button and select a directory where your Þnal
linked output Þle should be written to.
UG–256 IDE User Guide

Configur ing IDE Opt ions
Choosing Target Settings
Figure 8.23 Target Settings Options Panel

x86 Target

The x86 Target options panel, shown in Figure 8.24, allows you to
conÞgure your project binary options depending on whether you
are creating an application, library, or shared library (DLL). This
panel is used for Intel x86-architecture processor targets.

For a detailed explanation of how to conÞgure these options, refer to
the Targeting Win32 manual on the CodeWarrior CD.
IDE User Guide UG–257

Configur ing IDE Opt ions
Choosing Target Settings
Figure 8.24 x86 Project Options Panel

C/C++ Compiler

There are several settings you can conÞgure to tailor the C/C++
compilation of your projectÕs source code Þles, as shown in Figure
8.25. You may refer to the C Compiler Guide documentation for de-
tailed information on these options.
UG–258 IDE User Guide

Configur ing IDE Opt ions
Choosing Target Settings
Figure 8.25 C/C++ Compiler Options Panel

C/C++ Warnings

The C/C+ Warnings options panel, shown in Figure 8.26, allows
you to conÞgure the warning messages that are emitted during
compilation of your C and C++ code.

To learn more information about how to conÞgure these options,
refer to the C Compiler Guide documentation.
IDE User Guide UG–259

Configur ing IDE Opt ions
Choosing Target Settings
Figure 8.26 C/C++ Warnings Options Panel

Pascal Compiler

The Pascal Compiler options panel allows you to conÞgure your
compilation options for the Pascal compiler.

For a detailed explanation of how to conÞgure these options, refer to
the Pascal Language Reference manual on the CodeWarrior CD.

Pascal Warnings

The Pascal Warnings options panel allows you to conÞgure your op-
tions for warning messages in the Pascal compiler.

For a detailed explanation of how to conÞgure these options, refer to
the Pascal Language Reference manual on the CodeWarrior CD.
UG–260 IDE User Guide

Configur ing IDE Opt ions
Choosing Target Settings
PPCAsm

The PPCAsm options panel allows you to conÞgure options for
using PowerPC inline assembly code in your CodeWarrior IDE
source Þles.

To learn more about using the options in this panel, refer to the book
Targeting Mac OS on the CodeWarrior CD. To learn more about
writing PowerPC assembly code, refer to the MPW documentation
on the CodeWarrior CD, and the C Compiler Guide.

Rez

The Rez options panel allows you to conÞgure options for the MPW
Rez resource compiler.

To learn more about setting these options for the Mac OS, refer to
the Targeting Mac OS documentation on the CodeWarrior CD.

WinRC Resource Compiler

The WinRC Resource Compiler options panel, shown in Figure 8.27,
allows you to conÞgure options for the Win32 resource compiler.

For a detailed explanation of how to conÞgure these options for
your project, refer to the Targeting Win32 manual on the CodeWar-
rior CD.

Figure 8.27 WinRC Resource Compiler Options Panel

68K Processor

The 68K Processor options panel, shown in Figure 8.28, allows you
to conÞgure the options for Motorola 68K targets, such as Mac OS.
IDE User Guide UG–261

Configur ing IDE Opt ions
Choosing Target Settings
To learn more about setting these options for the Mac OS, refer to
the Targeting Mac OS documentation on the CodeWarrior CD.

Figure 8.28 68K Processor Options Panel

68K Disassembler

The 68K Disassembler options panel, shown in Figure 8.29, allows
you to conÞgure options for disassembly of Motorola 68K code.

For more information about conÞguring the options in this panel,
refer to the Targeting Mac OS manual on the CodeWarrior CD.
UG–262 IDE User Guide

Configur ing IDE Opt ions
Choosing Target Settings
Figure 8.29 68K Disassembly Options Panel

IR Optimizer

The IR Optimizer options panel, shown in Figure 8.30, allows you to
conÞgure code optimization options for your project.

For a detailed explanation of how to conÞgure these options, refer to
the Targeting Win32 manual on the CodeWarrior CD.

Figure 8.30 IR Optimizer Options Panel
IDE User Guide UG–263

Configur ing IDE Opt ions
Choosing Target Settings
Java VM

The Java VM options panel allows you to conÞgure code generation
settings for Java target projects.

To learn more about conÞguring the options in this panel for Java
projects, refer to Targeting Java on the CodeWarrior CD.

PPC Processor

The PPC Processor options panel allows you to conÞgure the op-
tions for PowerPC targets, such as Mac OS, PowerTV, and BeOS.

To learn more about settings these options for the Mac OS, refer to
the Targeting Mac OS documentation on the CodeWarrior CD. Refer
to Targeting PowerTV to learn more about creating PowerTV code.

PPC Disassembler

The PPC Disassembler options panel allows you to conÞgure op-
tions for disassembly of PowerPC code.

For more information about conÞguring the options in this panel,
refer to the Targeting Mac OS book on the CodeWarrior CD.

x86 CodeGen

The x86 CodeGen options panel, shown in Figure 8.31, allows you
to conÞgure the Intel x86-compatible code generation options for
your project.

For a detailed explanation of how to conÞgure these options, refer to
the Targeting Win32 manual on the CodeWarrior CD.
UG–264 IDE User Guide

Configur ing IDE Opt ions
Choosing Target Settings
Figure 8.31 x86 CodeGen Options Panel

68K Linker

The 68K Linker options panel, shown in Figure 8.32, allows you to
conÞgure the Motorola 68K linker options for your project.

To learn more about setting these options for the Mac OS, refer to
the Targeting Mac OS documentation on the CodeWarrior CD.
IDE User Guide UG–265

Configur ing IDE Opt ions
Choosing Target Settings
Figure 8.32 68K Linker Options Panel

CFM68K Linker

The CFM68K linker options panel, shown in Figure 8.33, allows you
to conÞgure the Motorola 68K linker options for your Mac OS
project.

To learn more about setting these options for the Mac OS, refer to
the Targeting Mac OS documentation on the CodeWarrior CD.
UG–266 IDE User Guide

Configur ing IDE Opt ions
Choosing Target Settings
Figure 8.33 CFM68K Linker Options Panel

Java Linker

The Java Linker options panel allows you to conÞgure linker set-
tings for Java target projects.

To learn more about conÞguring the options in this panel for Java
projects, refer to Targeting Java on the CodeWarrior CD.

PPC Linker

The PPC Linker options panel allows you to conÞgure the PowerPC
linker options for your project.

To learn more about setting these options for the Mac OS, refer to
the Targeting Mac OS documentation on the CodeWarrior CD. Refer
to Targeting Power TV to learn more about creating code for the
Power TV.
IDE User Guide UG–267

Configur ing IDE Opt ions
Choosing Target Settings
PPC PEF

The PPC PEF options panel allows you to conÞgure the PowerPC
PEF, or Program Executable Format, options for your project.

To learn more about setting these options for the Mac OS, refer to
the Targeting Mac OS documentation on the CodeWarrior CD.

x86 Linker

The x86 Linker options panel, shown in Figure 8.34, allows you to
conÞgure the linker options for your project. For a detailed explana-
tion of how to conÞgure these options, refer to the Targeting Win32
manual on the CodeWarrior CD.

Figure 8.34 x86 Linker Options Panel
UG–268 IDE User Guide

Configur ing IDE Opt ions
Toolbar Customization
Toolbar Customization

NOTE: As this manual went to press, the toolbar customization
features were not fully functional. Check the release notes for the
latest information.
IDE User Guide UG–269

Configur ing IDE Opt ions
Toolbar Customization
UG–270 IDE User Guide

9
Compiling and
Linking
This chapter discusses how to control compilation, linking and run-
ning a CodeWarrior project.

Compiling and Linking Overview
The information in this chapter assumes you have already created a
project, added the necessary Þles, grouped these Þles, and set the
projectÕs options. To learn more about how to do these things, refer
to other chapters in this book, including ÒProjects OverviewÓ on
page 45, ÒWorking with Files OverviewÓ on page 101, ÒSource Code
Editor OverviewÓ on page 117, and ÒConÞguring IDE Options
OverviewÓ on page 215.

You should also be familiar with features such as moving Þles in the
Project window, the Project windowÕs columns, and Project window
pop-up menus. To learn more about these things, refer to ÒProjects
OverviewÓ on page 45.

This chapter discusses how to compile and link a project to produce
your code, and how to correct common compiler and linker errors
using the Message window. It does not describe in detail the various
types of programs the CodeWarrior IDE can create. For that infor-
mation, please see the CodeWarrior Targeting manual appropriate for
your platform. A table describing which guide to refer to is shown
in ÒTargeting Guides for Various CodeWarrior TargetsÓ on page 25.

The CodeWarrior IDE can only compile and link Þles belonging to
an open project. That is, you should have a project open before try-
ing to compile any Þles.

The topics in this chapter are:
IDE User Guide UG–271

Compi l ing and Linking
Choosing a Compiler
¥ Choosing a Compiler

¥ Compiling and Linking a Project

¥ Using Precompiled or Preprocessed Headers

¥ Preprocessing Source Code

¥ Disassembling Source Code

¥ Guided Tour of the Message Window

¥ Using the Message Window

Choosing a Compiler
When you create source code Þles, you are using a certain program-
ming language such as C, C++, Pascal, or another language. These
languages have naming conventions for the Þles. For example, in
the C language, a source code Þle ends with a .c sufÞx and a header
Þle ends with a .h sufÞx.

This section describes how to associate a Þle sufÞx with a compiler
for a given language in the CodeWarrior IDE.

Understanding Plugin Compilers

The CodeWarrior IDE is designed to allow compilation of many dif-
ferent programming languages. In order to make the product modu-
lar to accept many different languages, plugin compilers are used.

Plugins are basically small loadable code modules that allow the
IDE to have many different compilers at its disposal. For example,
there are plugin compilers for C, C++, Pascal, Java, and assembly
language.

Plugin compilers usually have default target settings to help the
CodeWarrior IDE decide which project Þles a plugin handles. Dur-
ing regular compile and link operations, the IDE assigns Þles to the
proper plugin automatically.
UG–272 IDE User Guide

Compi l ing and Linking
Compiling and Linking a Project
Setting a File Extension

To associate a plugin compiler with a given Þle, you set the File
Mappings options. For a description of how to conÞgure these op-
tions to set a compiler for your source code Þles, refer to ÒFile Map-
pingsÓ on page 253.

Compiling and Linking a Project
The CodeWarrior IDE provides many different ways to build a
project. When you build a project, you compile and link it.

All compiling and linking commands are available from the Project
Menu and . Depending on your project type, a few of these com-
mands may be disabled or renamed. For example, you cannot Run a
shared library, but you can Make it. Also, a compiling or linking
command may be dimmed because CodeWarrior is busy executing
another command or the project is being debugged.

The CodeWarrior IDE can only compile and link Þles belonging to
an open project. That is, you should have a project open before try-
ing to compile any Þles.

If you have multiple projects open at the same time, you may want
to learn about how to select a default project before compiling and
linking. To learn about this topic, refer to ÒChoosing a Default
ProjectÓ on page 58.

The topics in this section are:

¥ Touching and Untouching Files

¥ Compiling Files

¥ Updating a Project

¥ Making a Project

¥ Enabling Debugging

¥ Running a Project

¥ Debugging a Project

¥ Generating a Link Map
IDE User Guide UG–273

Compi l ing and Linking
Compiling and Linking a Project
¥ Synchronizing ModiÞcation Dates

¥ Removing Objects

¥ Advanced Compile Options

Touching and Untouching Files

If you touch a Þle using one of the facilities in CodeWarrior, what
you are doing is telling the compiler you want that Þle to be com-
piled the next time the project is built. If you untouch a Þle, you are
telling the compiler to not compile that Þle the next time the project
is built. A newly-created Þle, or a Þle that has never been compiled,
canÕt be untouched.

CodeWarrior compiles all touched Þles the next time you choose the
Bring Up To Date command, the Make command, or the Run com-
mand.

To learn more information about how to select Þles for touching,
refer to ÒTouching and Untouching FilesÓ on page 76.

Compiling Files

You can tell CodeWarrior to compile a single Þle, or compile certain
Þles in your project. Of course, CodeWarrior can also compile all
Þles in your project.

You may want to switch between multiple targets in a project when
compiling Þles. To learn how to do this, refer to ÒSetting the Current
Build TargetÓ on page 88.

The Compile command on the Project Menu is dimmed when:

¥ There is no open project.

¥ The active Editor window does not have a source code Þle
name extension.

¥ The active windowÕs source code Þle is not included in your
project.

¥ The binary Þle, such as the application you created from the
project, is running under the CodeWarrior debugger.
UG–274 IDE User Guide

Compi l ing and Linking
Compiling and Linking a Project
¥ An application created from the project is running.

As CodeWarrior compiles source code Þles and libraries in the open
project, it highlights them in the Project window. The message area
displays a line count and the name of the Þle being compiled in the
message area (Figure 9.1).

A status line displaying the total number of Þles to be compiled and
the number of the Þle being compiled is also provided at the bottom
of the Project window.

Figure 9.1 Compiler progress

Compiling One File

To compile a single Þle in your project, select that Þle in your Project
window and choose Compile from the Project Menu. To learn how
to select several Þles in your project, refer to ÒSelecting Files and
GroupsÓ on page 67.

Alternatively, you can open the Þle in the CodeWarrior Editor, make
the window the active window, and choose Compile from the
Project Menu.

Compiling Selected Files

You may select several Þles in your project for compilation, by se-
lecting the Þles in the Project window and then choosing Compile
from the Project Menu. To learn how to select several Þles in your
project, refer to ÒSelecting Files and GroupsÓ on page 67.
IDE User Guide UG–275

Compi l ing and Linking
Compiling and Linking a Project
Recompiling Files

You can force CodeWarrior to recompile a Þle that CodeWarrior
may not recognize as changed. To do this, you must Touch the Þle
Þrst. To learn how to Touch a Þle, refer to ÒTouching and Untouch-
ing FilesÓ on page 274.

After touching the Þle or Þles that you want to recompile, choose
Compile or Make from the Project Menu.

Updating a Project

When you have many newly added, modiÞed, or touched Þles in
your project, you can use the Bring Up To Date command on the
Project Menu to compile all the Þles.

When using this command, the linker will not be invoked, so your
project will not have itÕs output binary produced. This command
only runs the compiler.

To learn more about touching Þles, refer to ÒTouching and Untouch-
ing FilesÓ on page 274.

You may want to switch between multiple targets in a project when
updating a project. To learn how to do this, refer to ÒSetting the Cur-
rent Build TargetÓ on page 88.

Making a Project

When you are ready to produce your binary Þle, such as an applica-
tion, library, or shared library, you use the Make command on the
Project Menu. This command builds the selected project type by up-
dating the newly added, modiÞed, and ÒtouchedÓ Þles, then linking
the project.

The results of a successful build depend on the selected project type.
For example, if the project type is an application, the Make com-
mand builds an application and saves it in the same folder as your
project. Table 9.1 lists some example project types and what is built
when the Make command is executed. To Þnd a full list of the types
UG–276 IDE User Guide

Compi l ing and Linking
Compiling and Linking a Project
of software products you can produce, refer to the targeting guide
for your target. Refer to Table 1.1 on page 19 to Þnd out which guide
to read for your target.

Table 9.1 Example Products for Certain Targets

Once all the modiÞed Þles and ÒtouchedÓ Þles have been compiled
successfully, CodeWarrior links all the Þles in the project to produce
your output binary. If the project has already been compiled using
Bring Up To Date or another command, then the Make command
only links the compiled source code Þles together.

You may want to switch between multiple targets in a project when
making a project. To learn how to do this, refer to ÒSetting the Cur-
rent Build TargetÓ on page 88.

Enabling Debugging

When the Enable Debugger option is chosen in the Project Menu,
choosing the Debug command lets the CodeWarrior Debugger
launch and debug your project. When you choose Disable Debugger
from the Project Menu, choosing the Run command runs your
project normally.

To learn about how to conÞgure your project so that Þles in the
project have debugging information generated for them, refer to
ÒControlling Debugging in a ProjectÓ on page 96.

To learn more about running your project, refer to ÒRunning a
ProjectÓ on page 278.

Project Type Target Make Creates

Application Win32 Win32 application

Library Win32 Win32 Library (.lib)

Dynamic link
library

Win32 Win32 Dynamic Link Library
(.dll)
IDE User Guide UG–277

Compi l ing and Linking
Compiling and Linking a Project
Running a Project

When you choose the Run command from the Project Menu,
CodeWarrior compiles and links (if necessary), and creates a stand-
alone application, then launches that application.

If the current project is for a library or shared library (DLL), the Run
command is not available.

When compiling and linking is successful, CodeWarrior saves a new
application on your hard disk. It is named according to options you
set. If you would like to change these options, refer to ÒChoosing
Target SettingsÓ on page 244.

Debugging a Project

To debug your project, there are basically two steps you need to do.
Of course, you must already have your project compiled and linked
with debugging information generated. To learn how to enable de-
bugging for your project, refer to ÒEnabling DebuggingÓ on page
277.

The second step is for you to start the debugger with your compiled
application as the debug target. You can do this by choosing the
Debug command from the Project Menu. If the Debug command is
not in the menu, you do not have debugging enabled for your
project. Refer to ÒEnabling DebuggingÓ on page 277 to learn how to
remedy this.

Once you have chosen the Debug command, CodeWarrior compiles
and links your project, creates a debugging information Þle, and
then opens that debug information Þle with the CodeWarrior De-
bugger.

If the Debug command is dimmed, make sure the proper options for
debugging are conÞgured, as detailed in ÒEnabling DebuggingÓ on
page 277. Also, make sure that Metrowerks Debugger application is
on your hard disk. If Debug is still dimmed, you are probably at-
tempting to run a project whose project type cannot be run, such as
a shared library or library, or the application is already running.
UG–278 IDE User Guide

Compi l ing and Linking
Compiling and Linking a Project
NOTE: The Debug command does not open any application that
you may need to debug your project. If you’re debugging an Adobe
Photoshop Plug-in or any other project that requires an applica-
tion, you must launch the application on your own before you
choose Debug.

Once you are in the Metrowerks Debugger, you need to refer to the
CodeWarrior Debugger Manual for information on how to use it.

TIP: If you want to switch to the debugger while you are in a
CodeWarrior Editor window, use the Switch to MW Debugger
command on the File Menu.

Generating a Link Map

Metrowerks C/C++ compilers let you create a link map Þle that
contains function and class section information on the generated ob-
ject code.

Metrowerks Pascal compilers let you create a make map Þle that
contains a list of dependencies and the compilation order.

To learn how to conÞgure your project to create one of these Þles,
refer to Òx86 LinkerÓ on page 268. After conÞguring your project,
you will need to Make your project. If the compile and link is suc-
cessful, a link map Þle name after your project with the MAP exten-
sion is saved in your project folder.

Synchronizing Modification Dates

If you want to update the modiÞcation dates stored in the project
Þle for all Þles in your project, choose the Synchronize ModiÞcation
Dates command from the Project Menu.

To learn more information about this topic, see ÒSynchronizing
modiÞcation datesÓ on page 79.
IDE User Guide UG–279

Compi l ing and Linking
Compiling and Linking a Project
Removing Objects

When you compile your project, the CodeWarrior IDE adds the ob-
ject code from each source Þle to the project. This binary object code
increases the size of the project Þle. There are a few different com-
mands available if you want your project Þle to consume less mem-
ory on the hard disk, or you want to remove all object code and start
compilation over again.

Removing Object Code

In some cases, you may wish to remove all the object code from the
project and restart the compiling and linking process. To remove a
projectÕs object code, select the Remove Object Code command from
the Project Menu. The dialog box shown in Figure 9.2 appears.

Figure 9.2 Remove Objects dialog box

Clicking All Targets removes all object code data for all targets in the
project, resetting the Code and Data size of each Þle in the project
window to zero. Current Target removes the objects for the current
target only, and leaves the objects in place for all other targets. Can-
cel aborts the operation so none of your object code is removed.

To learn how to change the current target of your project, refer to
ÒSetting the Current Build TargetÓ on page 88.

Advanced Compile Options

This section describes two options that either speed up your project
build times or alert you when a build is completed.
UG–280 IDE User Guide

Compi l ing and Linking
Using Precompiled or Preprocessed Headers
Alerting Yourself After a Build

You may start a project compile/link cycle in CodeWarrior, then
switch to another application running on your machine. To learn
how to receive notiÞcation when the build is completed, refer to
ÒBuild ExtrasÓ on page 251.

Speeding Up a Build by Avoiding Date Checks

To learn about how to optimize the speed of your builds in
CodeWarrior, refer to ÒUse ModiÞcation Date CachingÓ on page
251.

Using Precompiled or Preprocessed Headers
Source code Þles in a project typically use many header Þles (Ò.hÓ or
Ò.hppÓ Þles). Often, the same header Þle is included in many differ-
ent source code Þles, forcing the compiler to (inefÞciently) read the
same header Þles many times during the compilation process. Many
programming languages support precompiled headers, including C
and C++.

To shorten the time spent compiling and recompiling a header Þle,
use the Precompile command on the Project Menu. A precompiled
header Þle takes the compiler signiÞcantly less time to process than
an ordinary, uncompiled header Þle.

For instance, a header Þle that contains the most frequently used
headers in your project could be made into one precompiled header
Þle. Instead of having to compile the same thousands of lines of
header Þles for each source Þle in your project, the compiler only
has to load one precompiled header Þle.

NOTE: You can only include one precompiled header in a source
file. Including more than one precompiled header will result in an
error.
IDE User Guide UG–281

Compi l ing and Linking
Using Precompiled or Preprocessed Headers
TIP: CodeWarrior frequently changes the precompiled header
format when implementing new features in CodeWarrior updates.
Therefore precompiled header formats are often incompatible be-
tween CodeWarrior updates. After installing a new CodeWarrior
update, you usually need to precompile your precompiled headers
to use the new format. See “Automatic updating” on page 386 for
more information on updating precompiled headers.

The topics in this section are:

¥ Creating Precompiled Headers

¥ DeÞning Symbols For C/C++

¥ DeÞning Symbols For Pascal

Creating Precompiled Headers

To precompile a header Þle, you must Þrst open a project. The op-
tion settings from this project are used when precompiling. A Þle to
be precompiled does not have to be a header Þle (Ò.hÓ or Ò.hppÓ),
but it must meet these requirements:

¥ The source Þle must be a text Þle. You cannot precompile li-
braries or other Þles.

¥ The Þle does not have to be in a project, although a project
must be open to precompile.

¥ It must not contain any statements that generate data or code.
However, C++ source code can contain inline functions and
constant variable declarations (const).

¥ Precompiled header Þles for different targets are not inter-
changeable. For example, to generate a precompiled header
to use with Win32 compilers, you must use a Win32 compiler.

¥ A source Þle can include only one precompiled header Þle
using the #include directive.

Create a source code Þle using New on the File Menu. In that Þle,
put your #include directives. For example, if you wanted to create a
precompiled header Þle of the Þles string.h and stdio.h , just
put the following in your source code Þle:
UG–282 IDE User Guide

Compi l ing and Linking
Using Precompiled or Preprocessed Headers
#include <stdio.h>
#include <string.h>

Then, save your source code Þle using the Save command on the
File Menu. Use a name ending in the .mch extension, such as
MyHeader.mch, then use the Precompile command on the Project
Menu to precompile your Þle. By default, CodeWarrior precompiles
the source code, then saves it as the same name as your .mch Þle,
without the .mch extension. For example, myHeader.mch would be
precompiled and saved as myHeader on your hard disk.

WARNING! If you don’t use the .mch suffix, you may encounter a
performance penalty when using precompiled headers.

To specify the precompiled header Þlename in source code instead,
add

#pragma precompile_target “ name”

as the Þrst line in the source code Þle. This pragma tells the compiler
to save the precompiled header as name. With this pragma as the
Þrst line in the source code, you can rename your Þle whatever you
want, bypassing the default.

Precompile command

To precompile a Þle, choose Precompile from the Project Menu. This
command precompiles the source code Þle in the active window,
creating a precompiled header Þle. The progress of this operation is
displayed in the . If compiler errors are detected, a Message window
appears.

To learn more about the Message window and correcting compiler
errors, consult ÒCorrecting Compiler Errors and WarningsÓ on page
299.
IDE User Guide UG–283

Compi l ing and Linking
Using Precompiled or Preprocessed Headers
Automatic updating

During a Make or Bring Up To Date operation, the CodeWarrior IDE
automatically updates a precompiled header if the source has been
modiÞed.

If CodeWarrior encounters a .mch file in the project that was modi-
Þed since it was last precompiled, CodeWarrior precompiles it again
to ensure that the resulting precompiled header is up to date.

To create a precompiled header Þle that is automatically updated,
open the project that will use the precompiled header. Then create a
source code Þle that will be used as the precompiled headerÕs source
Þle.

To read about the requirements for a recompiled header source Þle,
refer to ÒCreating Precompiled HeadersÓ on page 282.

In the Þrst line of the source code Þle, add the line
#pragma precompile_target “ name”

This pragma tells the compiler to create a precompiled header with
the Þlename of name.

Save the source Þle with a .mch Þlename extension.

Now add the source Þle to the open project with the Add Window
command in the Project Menu.

Whenever the .mch Þle is modiÞed, the CodeWarrior project man-
ager will automatically update it by precompiling it.

To include the precompiled header in a project source code Þle, add
this line as the Þrst #include directive in the Þle:

#include “ name”

Alternatively, you may also specify the use of a precompiled header
Þle in your project settings. To learn about how to do this, refer to
ÒC/C++ CompilerÓ on page 258.
UG–284 IDE User Guide

Compi l ing and Linking
Using Precompiled or Preprocessed Headers
NOTE: Do not use the .mch source file in #include directives;
use the name of the resulting precompiled header file. Although
using the .mch file is legal and will not affect the final binary, you
won’t be taking advantage of the precompiled header’s speed.

Defining Symbols For C/C++

To automatically update and add predeÞned symbols and other pre-
processor directives, you can create a precompiled header Þle, add it
to your project, and place its name in the appropriate C/C++ Com-
piler option.

First, open your project and create a new source code Þle with the
New command on the File Menu.

This new text Þle will contain your preprocessor directives. YouÕll
use this Þle as a precompiled header Þle that you will add to your
project.

Choose Target Settings from the Edit Menu, and select the C/C++
Compiler settings panel.

If there is a Þlename in the PreÞx File box, Copy it into the Clip-
board, then click OK to close the dialog box.

In the new Editor window, paste the Þlename used in PreÞx File in
an include directive. Make sure this is the Þrst directive in the Þle.

For example, if the PreÞx Þle is MyHeaders, then the Þrst directive
in the editor window is

#include <MyHeaders>

Include the #pragma precompile_target statement. This statement
lets you name the precompiled Þle. For example, to create a Þle
named MyPrecomp, use this statement

#pragma precompile_target “MyPrecomp”

Type in all your own #deÞne, #include, and other preprocessor di-
rectives corresponding to the needs of your source code.
IDE User Guide UG–285

Compi l ing and Linking
Using Precompiled or Preprocessed Headers
Use .mch as a Þlename extension. For example, save this Þle as
ÒMyPrecomp.mchÓ.

Choose Add Window from the Project Menu to add this precom-
piled header Þle to your project.

Choose Target Settings from the Edit Menu and select the C/C++
Compiler settings panel.

In the PreÞx File Þeld, enter your precompiled Þle's name, in this ex-
ample ÒMyPrecomp.mchÓ. Click OK to save your changes.

Whenever your project is built, the CodeWarrior project manager
updates your precompiled header and automatically includes it in
each source code Þle.

Defining Symbols For Pascal

Although the Pascal preprocessor is not as powerful as the C/C++
preprocessor, you can still create Þles that can automatically insert
your own preprocessor symbols and compiler directives into your
project. For more information on the Pascal compiler directives, see
the Pascal Language Manual on the CodeWarrior Reference CD.

1. Create a New Source Code File

Open your project and create a new source code Þle with the New
command.

This new text Þle will contain your compiler directives.

2. Open the Pascal Compiler settings panel.

Choose Target Settings from the Edit Menu, and select the Pascal
Compiler settings panel.

3. Get the Prefix File name

If there is a Þlename in the PreÞx File box, Copy it into the Clip-
board, then click OK.
UG–286 IDE User Guide

Compi l ing and Linking
Preprocessing Source Code
4. Paste the Prefix File name

In the new editor window, paste (from the clipboard) the Þlename
used in PreÞx File in an include directive, {$I}. Make sure this is the
Þrst directive in the Þle.

For example, if the PreÞx Þle is OtherDefs.p, then the Þrst directive
in the editor window is

{$I OtherDefs.p}

5. Type in all your own {$SETC}, {$I}, and other preprocessor di-
rectives.

This Þle cannot contain any source code that generates data or exe-
cutable code.

6. Save this file

Save it as an ordinary Pascal source code Þle in the same folder as
your project.

For example, save this Þle as ÒMyPrecomp.pasÓ.

7. Open the Pascal Compiler settings panel.

Choose Target Settings from the Edit Menu, and select the Pascal
Compiler settings panel.

8. Set the New Prefix File

In the PreÞx File Þeld, enter your Þle's name, in this example
ÒMyPrecompÓ, then click OK to save your changes.

Whenever your project is built, the CodeWarrior project manager
automatically includes it in each source code Þle.

Preprocessing Source Code
The preprocessor prepares source code for the compiler. It interprets
directives beginning with the Ò#Ó and Ò$Ó symbols (such as #de-
fine, $pragma and #ifdef), removes extra spaces and blank
lines, and removes comments (such as /* É*/ and //). You might
want to preprocess a Þle if you want to see what the code looks like
just before compilation.
IDE User Guide UG–287

Compi l ing and Linking
Preprocessing Source Code
For example, Figure 9.3 shows a source code Þle before using the
Preprocess command on the Project Menu.

Figure 9.3 Source code before Preprocess

Open a Þle that you want to preprocess, or select a Þle in your cur-
rently-open Project window. To preprocess a Þle, select the Prepro-
cess command on the Project Menu. The results of the Preprocess
command are stored in a new Þle named after the source code Þle
that was preprocessed and beginning with the Ò#Ó character (Figure
9.4).

To save the contents of the new window, choose one of the save
commands in the File Menu.
UG–288 IDE User Guide

Compi l ing and Linking
Disassembling Source Code
Figure 9.4 Preprocessor output

Disassembling Source Code
If you wanted to see the code that would be generated for your Þle
you could disassemble the Þle. Disassembling is useful if you want
to know the machine level code that is being executed when your
source code is executed. In addition, the disassembled code can be a
model for writing your own assembly routines. Library Þles may
also be examined using this command.

The Disassemble command on the Project Menu disassembles the
compiled source code Þle selected in the project window and dis-
plays its assembly-language code in a new window. The title of the
new window consists of the name of the source code Þle with the
extension Ò.dump Ó (Figure 9.5).

To save the contents of the Ò.dump Ó window, choose one of the save
commands in the File Menu.
IDE User Guide UG–289

Compi l ing and Linking
Guided Tour of the Message Window
Figure 9.5 Disassembling a selected source code file

If the Þle being disassembled has not been compiled, the disassem-
ble command will compile the Þle before disassembling it.

Guided Tour of the Message Window
The Message window is used to display messages about events that
have occurred when compiling, linking, or searching Þles. There are
a number of elements in the window that are useful for accomplish-
ing certain tasks, such as navigating to error locations and scrolling
to see all messages for a project.

There are some user interface items in the Message window that are
not discussed here. To learn about what the Marker Pop-Up Menu,
Options Pop-Up Menu, Permissions Pop-up Menu, and File Path
Caption do, refer to ÒGuided Tour of the Editor WindowÓ on page
117.

The topics in this section include:
UG–290 IDE User Guide

Compi l ing and Linking
Guided Tour of the Message Window
¥ Error Button

¥ Warning Button

¥ Project Information Caption

¥ Stepping Buttons

¥ Message List Pane

¥ Source Code Disclosure Triangle

¥ Source Code Pane

¥ Pane Resize Bar
IDE User Guide UG–291

Compi l ing and Linking
Guided Tour of the Message Window
Figure 9.6 The CodeWarrior Message Window

Error Button

The Error Button in the Message window, shown in Figure
9.6, toggles the view of error messages on and off. This is

Stepping
Buttons

Pane Resize Bar

Project Information Caption

Warnings Button

Errors Button

Source Code Disclosure Triangle File Path Caption

Interface
Pop-up Menu

Line Number Button
Source Code Pane

Message List Pane

Routine Pop-up Menu
UG–292 IDE User Guide

Compi l ing and Linking
Guided Tour of the Message Window
useful if you have changed the view of the window to something
else and want to get back to viewing the error messages.

To learn more about seeing error messages in the Message window,
refer to ÒSeeing Errors and WarningsÓ on page 296.

Warning Button

The Warning Button in the Message window, shown in Fig-
ure 9.6 on page 292, toggles the view of warning messages
on and off

To learn more about seeing error messages in the Message window,
refer to ÒSeeing Errors and WarningsÓ on page 296.

Project Information Caption

The Project Information Caption, shown in Figure 9.6 on page 292,
gives a short description of the view you are looking at in the Mes-
sage window. Your project name will appear here.

Stepping Buttons

The Stepping Buttons, shown in Figure 9.6 on page 292, allow you
to step up or down through your messages in the window.

To learn more about stepping through messages in the Message
window, refer to ÒStepping Through MessagesÓ on page 297.

Message List Pane

The Message List Pane, shown in Figure 9.6 on page 292, allows you
to view your messages.

To learn more about seeing messages in the Message window, refer
to ÒSeeing Errors and WarningsÓ on page 296.
IDE User Guide UG–293

Compi l ing and Linking
Guided Tour of the Message Window
Source Code Disclosure Triangle

The Source Code Disclosure Triangle, shown in Figure 9.6 on page
292, allows you hide the Source Code Pane of the Message window.

Source Code Pane

The Source Code Pane of the Message window allows you to view
the source code at the location where a message is referring. To learn
more information about the view in this window, refer to ÒSeeing
Errors and WarningsÓ on page 296.

Pane Resize Bar

The Pane Resize Bar allows you to reallocate the amount of space in
the Message window given to the Source Code Pane and Message
List Pane. By clicking and dragging this bar up or down you will
change the amount of space on your computer screen that is allocat-
ed to these panes.

Pop-Up Menu Disclosure Button

To learn more about the Pop-up Menu Disclosure Button, refer to
the discussion of the CodeWarrior Editor in ÒPop-Up Menu Disclo-
sure ButtonÓ on page 126.

Interface Pop-Up Menu

To learn more about the Interface Pop-up Menu, refer to the discus-
sion of the CodeWarrior Editor in ÒInterface Pop-Up MenuÓ on page
119.

Routine Pop-Up Menu

To learn more about the Routine Pop-up Menu, refer to the discus-
sion of the CodeWarrior Editor in ÒRoutine Pop-Up MenuÓ on page
121.
UG–294 IDE User Guide

Compi l ing and Linking
Using the Message Window
File Path Caption

To learn more about the File Path Caption, refer to the discussion of
the CodeWarrior Editor in ÒFile Path CaptionÓ on page 124.

Line Number Button

To learn more about the Line Number Button, refer to the discussion
of the CodeWarrior Editor in ÒLine Number ButtonÓ on page 125.

Using the Message Window
While compiling your project, the CodeWarrior IDE may detect a
syntax error or other type of compiler error in one of your projectÕs
source code Þles. If this happens, the Message window displays the
total number of errors and warnings, and information about each
one.

In this section, you will learn how to interpret, navigate, and use the
information that appears in the Message window. The topics in this
section include:

¥ Seeing Errors and Warnings

¥ Stepping Through Messages

¥ Correcting Compiler Errors and Warnings

¥ Correcting Linker Errors

¥ Correcting Pascal Circular References

¥ Saving and Printing the Message Window

¥ Locating Errors in ModiÞed Files
IDE User Guide UG–295

Compi l ing and Linking
Using the Message Window
Seeing Errors and Warnings

The Message window displays several types of messages:

To close the Message window, click its close box or select Close in
the File Menu while the Message window is the active window. If
you close the message window and want to see it again, choose the
Errors & Warnings Window command from the Window Menu to
reopen it.

To see only error messages in the Message List Pane, click on the
Error Button and turn off the Warning Button.

To see only warnings in the Message List Pane, click the Warning
Button and turn off the Error Button.

To see both errors and warnings in the Message List Pane, click both
buttons. Notes do not appear in the Errors & Warnings window.

YouÕll also see other types of messages from time to time in a Mes-
sage window, such as:

¥ During Add Window or Add Files when a Þle being added
does not reside on an existing access path.

¥ During linking when a project contains conßicting resources.

Select this … To display this…

Errors Either compiler or linker errors. Both types of
errors prevent the compiler and linker from
creating a Þnal binary.

Warnings Either compiler or linker warnings. Neither
type prevents the CodeWarrior IDE from creat-
ing a binary. However, they indicate potential
problems during run time. You can specify
which conditions lead to warning messages or
you can upgrade all warnings to errors.

Notes All other types of messages issued in the Mes-
sage window. For example, results of a batch
Þnd are notes messages.
UG–296 IDE User Guide

Compi l ing and Linking
Using the Message Window
¥ During a Find when the Batch Checkbox is selected in the
Find dialog box.

Stepping Through Messages

When the compiler Þnds errors during a build, or the CodeWarrior
IDE search command Þnds text you asked it to look for when Using
Batch Searches, youÕll see the message window, as shown in Figure
9.7. The window is divided into two panes:

¥ Message List Pane, which lists the messages, or

¥ Source Code Pane, which displays the source code for the se-
lected message.
IDE User Guide UG–297

Compi l ing and Linking
Using the Message Window
Figure 9.7 Errors and Warnings Message Window

To step through the list of messages, click the up or down Stepping
Buttons or click the error message you are interested in.

To navigate your source code that is shown in the Source Code Pane
for a given message, you use the Interface Pop-Up Menu, Routine

Stepping
Buttons

Pane Resize Bar

Project Information Caption

Warnings Button

Errors Button

Source Code Disclosure Triangle File Path Caption

Interface
Pop-up Menu

Line Number Button
Source Code Pane

Message List Pane

Routine Pop-up Menu
UG–298 IDE User Guide

Compi l ing and Linking
Using the Message Window
Pop-Up Menu, or the Line Number Button. To learn about how to
use these navigational features, refer to ÒGuided Tour of the Editor
WindowÓ on page 117.

Correcting Compiler Errors and Warnings

When an error occurs during compilation, the Message window will
show you the error message in the Message List Pane. The location
in the source code that the message refers to will be shown in the
Source Code Pane. You can navigate to the spot in your source code
where the message refers to, and inspect or correct your code.

For a complete list of compiler errors and their possible causes, con-
sult the Error Reference documentation on your CodeWarrior CD.

Correcting Errors in the Source Code Pane

To correct a compiler error or warning, you must Þrst Þnd the cause.
First, make sure that the Source Code Pane of the Message window
is visible. If it isnÕt visible, refer to ÒSource Code Disclosure Trian-
gleÓ on page 294 to learn how to make it visible.

To view the statement that the compiler believes has caused the
error or warning, select the message in the Message List Pane of the
Message window, and notice that the Source Code Pane view is now
showing the source code that corresponds to the message.

When you do, the Þle containing the error is brought to the front.
The corresponding error is selected in the Source Code Pane, as
shown in Figure 9.8.

You can use the Interface Pop-Up Menu, Routine Pop-Up Menu, or
the Line Number Button in the Source Code Pane to navigate your
code or open interface Þles. To learn about how to use these naviga-
tional features, refer to ÒGuided Tour of the Editor WindowÓ on
page 117.
IDE User Guide UG–299

Compi l ing and Linking
Using the Message Window
Figure 9.8 Source Code Pane Compilation Error Location

Opening the File for the Corresponding Message

To open a source code Þle that corresponds to a given message, se-
lect the message in the Message List Pane and press Return. You
may also double-click the message in the Message List Pane to open
the relevant Þle.

Correcting Linker Errors

When your project is linked, any errors that may occur can be
viewed and corrected.
UG–300 IDE User Guide

Compi l ing and Linking
Using the Message Window
Viewing Linker Errors

If the linker encounters any errors while linking your project, the
Message window appears indicating these errors. This window can
be scrolled through using the scroll bar or Stepping Buttons.

To learn about how to scroll through messages in the Message win-
dow, refer to ÒStepping ButtonsÓ on page 293. To learn about chang-
ing the view of messages in the Message window, refer to ÒSeeing
Errors and WarningsÓ on page 296.

Since Linker errors are a result of problems in the object code, the
CodeWarrior IDE cannot show their corresponding errors in the
projectÕs source code Þles.

Why Linker Errors Occur

Linker errors are usually the result of one of the following circum-
stances:

¥ Your project is missing the necessary libraries. To Þnd out
which libraries or shared libraries should be added to your
project, refer to the CodeWarrior Targeting manual appropriate
for your platform, as described in Table 1.2 on page 25. Link-
er error messages of this type occur when the project is miss-
ing a library.

¥ You have misspelled the name of a library routine. This
means that the routine that the Linker is searching for does
not exist. Check the name of the routine to make sure it is
spelled correctly.

Correcting Pascal Circular References

The Make and Run command for the Metrowerks Pascal compiler
builds your project by examining every Pascal Þle in your project
Þle. As this examination is performed, a tree of dependencies is built
for the interfaces of your units and for their implementations.

A circular reference occurs when a unit declares something that is
used in another unit and that same unit declares something used by
the former. To break this loop, the Pascal compiler does not allow
IDE User Guide UG–301

Compi l ing and Linking
Using the Message Window
such things among the interface parts of units, but it is permitted for
implementations.

Listing 9.1 A valid example of circular referencing

UNIT A; UNIT B; UNIT C;
INTERFACE INTERFACE INTERFACE
USES C; USES C;

TYPE TYPE TYPE
A_type = ... B_type = C_type = ...

IMPLEMENTATION IMPLEMENTATION IMPLEMENTATION
USES B; USES A; USES A, B;
....

The example in Listing 9.1 is perfectly valid, since both AÕs and BÕs
interfaces depend on CÕs, but are independent from one another.
Knowing everything that was declared, AÕs implementation de-
pends on all interfaces, the same is true for BÕs and CÕs. For this ex-
ample, the make utility will ask the compiler to compile Listing 9.1
in the following order:

1. C’s interface is compiled.

2. B’s interface is compiled.

3. All of unit A is compiled (unit and implementation),

4. B’s implementation is compiled.

5. C’s implementation.

After an interface compilation, the compiler writes a binary symbol
table, containing all the declarations of the interface, in a ‘sbmf’ re-
source in the project Þle. This information is read back when the
unitÕs name is encountered in a USES clause for another compila-
tion. A unit is recompiled only when one of the following conditions
occur:

¥ The source was modiÞed,

¥ The source is currently open and edited, or,
UG–302 IDE User Guide

Compi l ing and Linking
Using the Message Window
¥ A unit on which the source depends was recompiled.

Saving and Printing the Message Window

To save or print the contents of the Message window, just follow
these steps.

1. Make the Message window active.

To accomplish this, either click on the deactivated Message window,
or select the Errors & Warnings Window command from the Win-
dow Menu.

2. Select the Save A Copy As or Print command from the File Menu.

The Save A Copy As command will display the following dialog
(Figure 9.9)

Figure 9.9 Saving the Message window
IDE User Guide UG–303

Compi l ing and Linking
Using the Message Window
3. Specify the name and the location in the dialog box, as shown
in Figure 9.9.

A text Þle will be saved containing all the errors, warnings, and
messages listed in the message window.

If you choose the Print command on the File Menu to print the Mes-
sage window, the print dialog box appears instead. Specify printing
options and click OK. All the errors, warnings, and messages will be
printed.

To learn more about printing, refer to the documentation that came
with your printer.

Locating Errors in Modified Files

If an error is corrected or the source code is changed, the compiler
may not be able to Þnd other errors in the source code Þle. This may
result in an alert telling the user that the position of the error could
not be found. When this happens, recompile your project to update
the list of errors in the Message window.
UG–304 IDE User Guide

10
Configuring Version
Control Software
This chapter explains how to use the CodeWarrior IDE version con-
trol integration facilities to control your source code.

This chapter is under construction.

Version Control System Overview
The CodeWarrior IDE includes features for integrating your projects
with revision control systems, such as Metrowerks CodeManager
and Microsoft Visual SourceSafe.

Using Source Code Control with Files
The Windows-platform CodeWarrior IDE does not yet support revi-
sion control systems, so these features are not yet available.
IDE User Guide UG–305

Configur ing Version Control Software
Using Source Code Control with Files
UG–306 IDE User Guide

11
IDE Menu Reference
This chapter describes each command on each CodeWarrior IDE
menu.

IDE Menu Reference Overview
There are several menus in the CodeWarrior IDE menu bar:

¥ File Menu

¥ Edit Menu

¥ Search Menu

¥ Project Menu

¥ Window Menu

¥ Toolbar Submenu

¥ Help Menu

The File Menu, Edit Menu, Search Menu, Project Menu, Window
Menu, and Help Menu are visible at all times.

Many menu commands can also have button equivalents on the
toolbars. To learn more about how to customize the toolbars, refer to
ÒToolbar CustomizationÓ on page 269.

File Menu
The File Menu, shown in Figure 11.1, contains commands you use
when opening, creating, saving, closing, and printing existing or
IDE User Guide UG–307

IDE Menu Reference
File Menu
new source code Þles and projects. The File Menu also provides a
few different methods of saving edited Þles.

Figure 11.1 The File Menu

New

Creates a new editable text Þle.

To learn more about this command, refer to ÒCreating a New FileÓ
on page 101 for more information.

New Project

Creates a new project Þle.

To learn more about this command, refer to ÒCreating a Simple
ProjectÓ on page 46.
UG–308 IDE User Guide

IDE Menu Reference
File Menu
Open

Allows you to open an existing text Þle.

To learn more about this command, refer to ÒOpening Files with the
File MenuÓ on page 102.

Open Recent

The Open Recent command exposes a submenu of projects and Þles
that have recently been opened. You may choose a Þle from the sub-
menu to instantly open one of these items.

To learn more about this command, refer to ÒOpening Files with the
File MenuÓ on page 102.

Open File

This menu item opens a text or project Þle.

To learn more about this command, refer to ÒOpening Files with the
File MenuÓ on page 102.

Open Selection

This menu item allows you to open an existing text Þle, using the
currently-selected text in the editor window as the target Þle name.

This menu item toggles between Open FileÉ and Open Selection.

Open Selection appears only when text is selected in the active edi-
tor window.

See ÒOpening Files with the File MenuÓ on page 102 for more infor-
mation.

Close

Closes the active window whether it is the Project window, the Mes-
sage Window, or a source code window.

See ÒClosing a FileÓ on page 112 for more information.
IDE User Guide UG–309

IDE Menu Reference
File Menu
To learn how to close all open Editor windows, refer to ÒClosing All
FilesÓ on page 113.

Switch to MW Debugger

Gives control to the debugger. The line containing the text insertion
point is on in the CodeWarrior Editor is displayed by the debugger.
This command is dimmed if no source code window is active, or the
debugger is not running.

To learn more about this topic, refer to the CodeWarrior Debugger
Manual.

Save

Saves the contents of the active Editor window to disk.

For more information on this topic, refer to ÒSaving One FileÓ on
page 108.

Save As

Saves the contents of the active window to disk under another name
of your choosing.

For more information, see ÒRenaming and Saving a FileÓ on page
109.

Save A Copy As

Saves the active Editor window, Message window, or Project win-
dow in a separate Þle. This command operates in two different
ways, depending on whether a source code Þle or the Project win-
dow is active.

For more information, see ÒBacking Up FilesÓ on page 110.

Revert

Use the Revert command to revert the active Editor window to its
last saved version.
UG–310 IDE User Guide

IDE Menu Reference
File Menu
To learn more about how to revert to the previous version of a Þle,
refer to ÒReverting to a Previously-Saved FileÓ on page 115.

Print Setup

Sets the options used when printing Þles from the CodeWarrior IDE.

For more information about Print Setup, see ÒSetting Print OptionsÓ
on page 114.

Print

Prints Þles from the CodeWarrior IDE on your printer.

For more information on printing Þles, see ÒPrinting a WindowÓ on
page 114, or read the documentation that came with your printer.

Exit

Quits CodeWarrior immediately provided one of the following con-
ditions have been met:

¥ All changes to the open Editor Þles have already been saved,
or

¥ The open Editor Þles have not been changed.

If a Project window is open, the Exit command saves all changes to
the project Þle before the environment quits. If an Editor window is
open and changes have not been saved, CodeWarrior asks if you
want to save the changes before exiting.
IDE User Guide UG–311

IDE Menu Reference
Edit Menu
Edit Menu
The Edit menu, shown in Figure 11.2, contains all the customary ed-
iting commands and some CodeWarrior additions, including the
commands that open the Preferences and Project Settings dialogs.

Figure 11.2 The Edit Menu

Undo

The text of this menu command varies depending on the most re-
cent action, and your Editor options settings.

Undo reverses the effect of your last action. The name of the Undo
command varies depending on the type of operation you last exe-
cuted. For example, if you have just typed in an open Editor win-
dow, the Undo command is renamed Undo Typing. Choosing the
Undo Typing command will remove the text you have just typed.
UG–312 IDE User Guide

IDE Menu Reference
Edit Menu
To learn more about this topic, refer to ÒUndoing the last editÓ on
page 142, and ÒUndoing and redoing multiple editsÓ on page 142.

If you donÕt have Use Multiple Undo turned on in the Editor op-
tions panel, Undo toggles between Undo and Redo. To learn more
about how to conÞgure this option, refer to ÒEditor SettingsÓ on
page 221.

Redo, Multiple Undo, and Multiple Redo

Once an operation has been undone, it may be redone. For example,
if you select the Undo Typing command, the command is changed
to Redo Typing. Choosing this command overrides the undo.

If you have Use Multiple Undo turned on in the Editor Settings, you
have more ßexibility with regard to Undo and Redo operations.
Choose Undo multiple times to undo multiple actions. Choose Redo
multiple times to redo multiple actions.

To learn more about undo operations, refer to ÒUndoing the last
editÓ on page 142, and ÒUndoing and redoing multiple editsÓ on
page 142.

To learn about how to conÞgure multiple undo, refer to ÒEditor Set-
tingsÓ on page 221.

Cut

Deletes the selected text and puts it in the Clipboard, replacing the
contents of the Clipboard.

Copy

Copies the selected text in the active Editor window onto the system
Clipboard. If the Message Window is active, the Copy command
copies all the text in the Message Window onto the Clipboard.

Paste

Pastes the contents of the Clipboard into the active Editor window.
IDE User Guide UG–313

IDE Menu Reference
Edit Menu
The Paste command replaces the selected text with the contents of
the Clipboard. If no text is selected, the Clipboard contents are
placed after the text insertion point.

If the active window is the Message Window, the Paste command is
dimmed and cannot be executed.

Clear

Deletes the selected text without placing it in the Clipboard. The
Clear command is equivalent to pressing the Delete or Backspace
key.

Select All

Selects all the text in the active window. This command is usually
used in conjunction with other Edit menu commands such as Cut,
Copy, and Clear.

To learn more about selecting text, refer to ÒSelecting TextÓ on page
135.

Balance

Selects the text enclosed in either parentheses (), brackets [], or brac-
es {}. For a complete procedure on how to use this command and
how to balance while typing, consult ÒBalancing PunctuationÓ on
page 141.

Shift Left

Shifts the selected source code one tab size to the left. The tab size is
speciÞed in the Preferences dialog box.

To learn more about this feature, refer to ÒShifting Text Left and
RightÓ on page 141.

Shift Right

Shifts the selected source code one tab size to the right.
UG–314 IDE User Guide

IDE Menu Reference
Search Menu
To learn more about this feature, refer to ÒShifting Text Left and
RightÓ on page 141.

Insert Reference Template

This command is not available on the Windows platform.

Preferences

Use this command to change the global preferences for the
CodeWarrior IDE.

To learn more about conÞguring preferences, refer to ÒChoosing
PreferencesÓ on page 220.

Target Settings

Use this command to change settings for the active target. Note that
the name of this menu command will vary depending on the name
of your current target.

To learn more about conÞguring Project Settings, refer to ÒChoosing
Target SettingsÓ on page 244. To learn how to change the current tar-
get, refer to ÒSet Current TargetÓ on page 326.

Search Menu
The Search Menu contains all the commands used to Þnd and re-
place text.
IDE User Guide UG–315

IDE Menu Reference
Search Menu
There are also some commands for code navigation. Refer to Figure
11.3 to see what this menu looks like when you click on it.

Figure 11.3 The Search Menu

Find

Opens the Find dialog box which is used to Þnd and/or replace the
occurrences of a speciÞc string in one or many Þles.

To learn more about the Find window and its capabilities, refer to
ÒGuided Tour of the Find Dialog BoxÓ on page 151.
UG–316 IDE User Guide

IDE Menu Reference
Search Menu
Find Next

Finds the next occurrence of the Find Text Box string in the active
window. This is an alternative to clicking the Find button in the Find
dialog box.

To learn more about this feature, refer to ÒFinding Search TextÓ on
page 165.

Find Previous

Find Previous operates the same way as Find Next, except that it
Þnds the previous occurrence of the Find Text Box string.

To learn more about this feature, refer to ÒFinding Search TextÓ on
page 165.

Find in Next File

Finds the next occurrence of the Find Text Box string in the next Þle
listed in the Multi-File Search portion of the Find window (as ex-
posed by the Multi-File Search Disclosure Triangle in the Find win-
dow). This is an alternative to using the Find window. If the Multi-
File Search Button is not enabled as shown in Figure 6.3 on page 158,
this command is dimmed.

To learn more about this feature, refer to ÒSearching and Replacing
Text in Multiple FilesÓ on page 171.

Enter ‘Find’ String

This command copies the selected text in the active window into the
Find Text Box, making it the search target string. This is an alterna-
tive to copying text and pasting it into the Find window.

To learn how to select text, refer to ÒSelecting TextÓ on page 135.

Enter ‘Replace’ String

This command copies the selected text in the active window into the
Replace Text Box, making it the replacement string.
IDE User Guide UG–317

IDE Menu Reference
Search Menu
To learn more about replacing text, refer to ÒReplacing Found TextÓ
on page 168.

Find Selection

Finds the next occurrence of the selected text in the active text editor
window. If you hold down the Shift key, this command becomes
Find Previous Selection.

To learn more about this feature, refer to ÒFinding Search TextÓ on
page 165.

Replace

This command replaces the selected text in the active window with
the text string in the Replace Text Box of the Find window. If no text
is selected in the active editor window, this command is dimmed.

This command is useful if you wish to replace one instance of a text
string without having to open the Find window. For example, say
that you have just replaced all the occurrences of the variable
Òicount Ó with Òjcount Ó. While scrolling through your source
code, you notice one instance of the variable Òicount Ó is mis-
spelled as Òicont Ó. To replace this variable with Òjcount Ó, select
Òicont Ó and choose the Replace command from the Search Menu.

To learn more about replacing text, refer to ÒReplacing Found TextÓ
on page 168.

To learn how to select text, refer to ÒSelecting TextÓ on page 135.

Replace & Find Next

This command replaces the selected text with the text in the Replace
Text Box string of the Find window, and then performs a Find Next.
If no text is selected in the active editor window and there is no text
in the Find Text Box string Þeld of the Find window, this command
is dimmed.

To learn more about replacing text, refer to ÒReplacing Found TextÓ
on page 168.
UG–318 IDE User Guide

IDE Menu Reference
Search Menu
To learn how to select text, refer to ÒSelecting TextÓ on page 135.

Replace All

Finds all the occurrences of the Find string and replaces them with
the Replace string. If no text is selected in the active editor window
and there is no text in the Find string Þeld in the Find dialog box,
this command is dimmed.

Find Definition

This feature was not be available on the Windows platform, at the
time of this writing. Check the release notes for the latest informa-
tion.

Find Definition and Reference

This command searches for the deÞnition of the routine name select-
ed in the active window. Searching is done in the source Þles be-
longing to the open project, followed by the on-line reference data-
bases.

If no deÞnition is found, a system beep sounds.

This feature was not available on the Windows platform, at the time
of this writing. Check the release notes for the latest information.

Go Back

This command returns you to the next previous view in the Brows-
er.

To learn more about this feature, refer to ÒGo Back and Go ForwardÓ
on page 208.

Go Forward

This command moves you to the next view in the Browser (after you
have used the Go Back command to return to a previous view.

ÒGo Back and Go ForwardÓ on page 208.
IDE User Guide UG–319

IDE Menu Reference
Search Menu
Go To Line

Opens a dialog box (in which you enter the line number) and then
moves the text insertion point to the line.

For more information about this feature, refer to ÒGoing to a Partic-
ular LineÓ on page 149.
UG–320 IDE User Guide

IDE Menu Reference
Project Menu
Project Menu
The Project menu, shown in Figure 11.4, lets you add and remove
Þles and libraries from your project. It also lets you compile, build,
and link your project. All of these commands are covered in this sec-
tion.

Figure 11.4 The Project Menu
IDE User Guide UG–321

IDE Menu Reference
Project Menu
Add Window

This command adds the Þle in the active Editor window to the open
project.

To learn more about this feature, refer to ÒUsing the Add Window
CommandÓ on page 73.

Add Files

This menu command adds Þles to the Project window.

To learn more about this feature, refer to ÒUsing the Add Files Com-
mandÓ on page 70.

Create New Group

This menu command allows you to create a new group in the cur-
rent project. This command is in the Project Menu if the Files catego-
ry is selected in the current project window.

For more information about creating groups, refer to ÒCreating
GroupsÓ on page 74.

Create New Target

This menu command allows you to create a new target for the cur-
rent project. This command is in the Project Menu if the Targets cat-
egory is selected in the current project window.

For more information about creating targets, refer to ÒCreating
Complex ProjectsÓ on page 79.

Create New Segment

This menu command allows you to create a new segment (also re-
ferred to as a group of Þles) in the current project. This command is
in the Project Menu if the Segments category is selected in the cur-
rent project window.

For more information about managing segments, refer to ÒManag-
ing Files in a ProjectÓ on page 65.
UG–322 IDE User Guide

IDE Menu Reference
Project Menu
Remove Selected Items

This menu command removes the items that are currently-selected
from the Project window.

To learn more about removing items from the Project window, refer
to ÒManaging Files in a ProjectÓ on page 65.

WARNING! This command cannot be undone.

Check Syntax

This command checks the syntax of the source code Þle in the active
Editor window or the selected Þle(s) in the open Project window. If
the active Editor window is empty, or no project is open, this com-
mand is dimmed.

Check Syntax does not generate object code. This command only
checks the source code for syntax errors. The progress of this opera-
tion is tracked in the ToolbarÕs message area. To abort this command
at any time, press the Escape key.

If one or more errors are detected, the Message window appears.
For information on how to correct compiler errors, consult ÒCorrect-
ing Compiler Errors and WarningsÓ on page 299.

Preprocess

This command performs preprocessing on selected source code Þles
in any language that has a preprocessor, including C, C++, and Pas-
cal.

To learn more about this command, refer to ÒPreprocessing Source
CodeÓ on page 287.

Precompile

This command precompiles the source code Þle in the active Editor
window into a precompiled header Þle.
IDE User Guide UG–323

IDE Menu Reference
Project Menu
To learn more about this topic, refer to ÒUsing Precompiled or Pre-
processed HeadersÓ on page 281.

Compile

This command compiles selected Þles. If the project window is ac-
tive, the selected Þles and segments/groups are compiled. If a
source code Þle in an Editor window is active, the source code Þle is
compiled. The source code Þle must be in the open project.

To learn more about this topic, refer to ÒCompiling and Linking a
ProjectÓ on page 273.

Disassemble

This command disassembles the compiled source code Þles selected
in the project window, and displays object code in new windows
with the title of the source code Þle and the extension .dump .

To learn more about this feature, refer to ÒDisassembling Source
CodeÓ on page 289.

Bring Up To Date

This command updates the open project by compiling all of its mod-
iÞed and ÒtouchedÓ Þles.

To learn more about this topic, refer to ÒUpdating a ProjectÓ on page
276.

Make

This command builds the selected project by compiling and linking
the modiÞed and ÒtouchedÓ Þles in the open project. The results of a
successful build depend on the selected project type.

To learn more about this topic, refer to ÒMaking a ProjectÓ on page
276.
UG–324 IDE User Guide

IDE Menu Reference
Project Menu
Remove Object Code

This command removes all compiled source code binaries from the
open project. The numbers in the Code Column and Data Column
of each Þle are reset to zero.

To learn more about this topic, refer to ÒRemoving ObjectsÓ on page
280.

Reset File Paths

This command resets the projectÕs cache of access paths for all Þles
belonging to the open project. This command is useful if, for exam-
ple, you move one of the projectÕs Þles to a different location on
your drive.

Synchronize Modification Dates

This command updates the modiÞcation dates stored in the project
Þle. It checks the modiÞcation date for each Þle in the project, and if
the Þle has been modiÞed since it was last compiled, the CodeWar-
rior IDE marks it for recompilation.

To learn more about this topic, refer to ÒSynchronizing modiÞcation
datesÓ on page 79.

Enable Debugger

This command changes settings to allow your project to be de-
bugged. After using this command, the debugger can be launched
to debug your project.

To learn more about this topic, refer to ÒControlling Debugging in a
ProjectÓ on page 96.

Disable Debugger

After using this command, the debugger can not be launched to
debug your project.

To learn more about this topic, refer to ÒControlling Debugging in a
ProjectÓ on page 96.
IDE User Guide UG–325

IDE Menu Reference
Window Menu
Run

This command compiles, links, creates a stand-alone application,
and launches that application. If the project type is set as a library or
a shared library, then the Run command is dimmed.

To learn more about this topic, refer to ÒRunning a ProjectÓ on page
278.

Debug

This menu command compiles and links your project and then
opens the projectÕs debugger Þle with the Metrowerks Debugger.
This command runs the Metrowerks Debugger for any project that
the debugger can work with.

To learn more about the CodeWarrior Debugger, refer to the
CodeWarrior Debugger Manual.

Set Default Project

This menu command selects which project is the default project. To
learn more about what a default project is, refer to ÒChoosing a De-
fault ProjectÓ on page 58.

Set Current Target

This menu command allows you to choose a different target within
the current project to work with. This menu command might be use-
ful if you want to switch between multiple targets in a project and
do a build for each one.

Window Menu
The Window menu, shown in Figure 11.5, includes commands that
tile open editor windows, switch between windows, and reopen
UG–326 IDE User Guide

IDE Menu Reference
Window Menu
previously opened projects. There is also a submenu for customiz-
ing the toolbars.

Figure 11.5 The Window Menu

Stack

This command opens all Editor windows to their full screen size
and stacks them one on top of another, with their window titles
showing. This command is dimmed when the active window is the
Project window or Message window.
IDE User Guide UG–327

IDE Menu Reference
Window Menu
Tile

This command arranges all Editor windows so that none overlap.
This command is dimmed when the active window is the Project
window or Message window.

Tile Vertical

This command arranges all the Editor windows in a single row.

This command is dimmed when the active window is the Project
window or Message window.

Zoom Window

This menu command expands the active window to the largest pos-
sible size. If you choose it again, it returns the window to its original
size.

Save Default Window

This command saves the settings of the active window, so that the
next time you open a window of that type, the CodeWarrior IDE
opens it with the saved settings. This command works with Browser
windows, Message windows, and Editor windows.

To learn more about this command, refer to, ÒSaving Window Set-
tingsÓ on page 131, or ÒSaving a Default BrowserÓ on page 213.

Toolbar

This menu item causes the Toolbar submenu to appear. To learn
more about this submenu, refer to ÒToolbar SubmenuÓ on page 330.

Show Catalog Window

This command displays the Browser Catalog Window. This menu
command is dimmed when the Browser is not activated.

To learn more about this feature, refer to ÒCatalog WindowÓ on page
189. To learn how to activate the Browser, refer to ÒActivating the
BrowserÓ on page 184.
UG–328 IDE User Guide

IDE Menu Reference
Window Menu
Show Hierarchy Window

This command displays the Browser Multi-Class Hierarchy Win-
dow. This menu command is dimmed when the Browser is not acti-
vated.

To learn more about this feature, refer to ÒMulti-Class Hierarchy
WindowÓ on page 199.

To learn how to activate the Browser, refer to ÒActivating the Brows-
erÓ on page 184.

New Class Browser

This command displays the BrowserÕs Multi-Class Browser Win-
dow. This menu command is dimmed when the Browser is not acti-
vated.

To learn more about this feature, refer to ÒMulti-Class Browser Win-
dowÓ on page 191.

To learn how to activate the Browser, refer to ÒActivating the Brows-
erÓ on page 184.

Build Progress Window

This menu command brings the progress window for builds, as
shown in Figure 9.1 on page 275, to the front.

Errors & Warnings Window

This command opens and brings the Errors and Warnings window
to the front.

To learn more about this window, refer to ÒGuided Tour of the Mes-
sage WindowÓ on page 290. Also, refer to ÒUsing Batch SearchesÓ on
page 169.

Project Inspector

This menu command allows you to view information about your
project, and also enable debug information generation.
IDE User Guide UG–329

IDE Menu Reference
Toolbar Submenu
To learn more about this commandÕs window, refer to ÒGuided Tour
of the Project WindowÓ on page 58.

Other Window Menu Items

The other Window Menu items depend solely on which project,
source Þles, header or interfaces Þles, and other windows you have
open.

All of the open Þles are shown in this menu and the Þrst nine Þles (1
through 9) are given key equivalents. The current project is always
given the Ctrl-0 (zero) combination. A checkmark is placed beside
the Þle in the active window. A Þle whose modiÞcations have not
been saved is underlined.

A checkmark may also be placed beside the Message window if it is
the active window.

To make one of your open CodeWarrior Þles active and bring its
window to the front, do one of the following:

¥ Click in its window.

¥ Select it from the Window Menu.

¥ Use the key equivalent shown in the Window Menu.

Toolbar Submenu
The Window Menu has another submenu under it for the Toolbar
command, as shown in Figure 11.6. The Toolbar submenu contains
all the commands used to customize the toolbars that appear in
CodeWarrior IDE windows.
UG–330 IDE User Guide

IDE Menu Reference
Toolbar Submenu
To learn more about how to customize the toolbars, read the infor-
mation in ÒToolbar CustomizationÓ on page 269.

Figure 11.6 Toolbar Submenu

Toolbar Elements Window

The menu command shows the Toolbar Elements window. From
this window you can customize the toolbars by adding icon short-
cuts to better suit the way you work.

Show Window Toolbar and Hide Window Toolbar

These menu commands cause the toolbar in the active window to
disappear or reappear. The actual command shown in the menu will
toggle between Show Window Toolbar and Hide Window Toolbar,
depending on whether the active windowÕs toolbar is visible or not.
IDE User Guide UG–331

IDE Menu Reference
Toolbar Submenu
Reset Window Toolbar

This menu command causes the toolbar in the active window to
reset to a default state. You should use this menu command if you
want to return the Editor window toolbar to the original default
state.

Clear Window Toolbar

This menu command causes the toolbar in the active Editor, Project,
or Browser window to have all icons removed from it. Once all the
icons have been removed, you can add icons using the Toolbar Ele-
ments window.

Use the Reset Window Toolbar command to cause all the default
icons to come back.

Show Global Toolbar and Hide Global Toolbar

These menu commands cause the Global Toolbar to appear or dis-
appear. The actual command shown in the menu will toggle be-
tween Show Global Toolbar and Hide Global Toolbar, depending on
whether the Global Toolbar is already visible or not.

Reset Floating Toolbar

This menu command causes the Global Toolbar to return to its de-
fault state. You should use this menu command if you want to re-
turn the Global Toolbar to the original default state.

Clear Floating Toolbar

This menu command causes the Global Toolbar to have all icons re-
moved from it. Once all the icons have been removed, you can add
icons using the Toolbar Elements window.
UG–332 IDE User Guide

IDE Menu Reference
Help Menu
Help Menu
The Help menu, shown in Figure 11.7, contains commands to help
you look up on-line help information, learn about how to use on-
line help, and view the Metrowerks About Box.

Figure 11.7 Help Menu

Contents

This menu command displays the CodeWarrior help Þles.

Keys

This menu command displays the topic index for the CodeWarrior
on-line help Þles.

How to Use Help

This menu command displays the on-line help that tells how to use
the help facilities.

About Metrowerks

Displays the Metrowerks About Box.
IDE User Guide UG–333

IDE Menu Reference
Help Menu
UG–334 IDE User Guide

Index
Symbols
#pragma precompile_target 283
.cwp 54
.dump 289

Numerics
68K 19
80x86 20

A
About Metrowerks command 333
Add Default button 249
Add File command 322
Add Files command 322
Add Window command 73, 322
Alert Yourself After Build option 281
Arrow Keys 134
arrow keys 59
Automatic updating 284

B
Background Color 225
backup files 110
Balance command 141, 314
Balance While Typing option 222
Balancing punctuation 141
Batch search 169
BeOS 20, 25
boxes 199
Bring Up To Date command 281, 324
browser 183Ð213

activating 184, 252
analyzing inheritance 212
base classes in hierarchy 202
base classes in single-class 199
catalog view 185, 189
classes pane 195
customizing windows 213
data members pane 195
declaration button 199
editing code 212
file button 194
finding function overrides 212

hierarchy view 187
identifier icon 196
interface 188Ð207
lines in hierarchy 201
member functions pane 195
multi-class 191Ð196
multi-class hierarchy 199Ð202
navigating code with 205
opening source file 210
orientation button 193
resize bar 196
saving windows 213
seeing declaration 211
seeing function definition 211
seeing PowerPlant in 213
show hierarchy button 199
showing data in single-class 199
showing subclasses in hierarchy 201
single-class 197
single-class hierarchy 202
source pane 196
strategy 184Ð188
symbol window 204
synchronized class selection 195, 201
using 207Ð213
viewing options 184

browser view 186
Build Progress Window command 329

C
C 20
C++ 20
catalog view 185
catalog window

browser 189
category pop-up menu, in category window 190
Check Syntax command 323
classes pane in browser 195
Clear command 140, 314
Clear Floating Toolbar command 332
Clear Window Toolbar command 332
Close All command 113
Close command 309
Code Column 62
IDE User Guide UG–335

Index
code disassembly
68K 262
PPC 264

code generation
68K 261
PowerPC 264
x86 options 264

code navigation pop-up menu 205
CodeWarrior IDE 23
comments, coloring 227
Compile column 76
Compile command 324
Compiler 255
Compiling 271Ð304

project 273
compiling

68K options 261
BeOS options 264
Mac OS options 264
Power TV options 264
source files 276

Compiling and Linking
choosing a compiler 272
compiling files 274Ð276
debugging 278
disassembling 289
guided tour 290Ð295
link map 279
making a project 276
options 280
overview 271
plugin compilers 272
precompiling headers 281Ð287
preprocessing 287
removing binaries 280
removing object code 280
running 278
setting file extension 273
speeding 281
Synchronizing Modification Dates 279
touch and untouch 274

compiling one file 275
compiling selected files 275
Contents command 333
Context Popup Delay option 224
conventions 21

Copy command 140, 313
Create Folder 49
Create New Group command 322
Create New Segment command 322
Create New Target command 322
custom keyword, coloring 227, 228
Cut command 140, 313

D
Data Column 63
data members pane, in browser 195
date caching 281
Debug Column 63, 97
Debug Info Marker 97
debugger

generating information 97
Debugging configuration 277
Defining Symbols for C/C++ 285
Defining Symbols for Pascal 286
Disable Debugger command 325
Disassemble command 324
Disassembling source code 289
disassembly

68K 262
PPC 264

documentation
viewers 24

DOS text files 111
Drag & Drop editing support 225
Drag and Drop text 136Ð138
Dynamic Scroll option 222

E
Edit Menu 38, 311Ð315

Balance command 314
Clear command 314
Copy command 313
Cut command 313
Insert Reference Template command 315
Multiple Redo 313
Multiple Undo 313
Paste command 313
Preferences command 315
Redo command 313
Select All command 314
UG–336 IDE User Guide

Index
Shift Left command 314
Shift Right command 314
Target Settings command 315
Undo command 312

editing
in browser 212

editing, redoing 142
editing, undoing 142
Editor 117Ð149

adding text 134
balancing punctuation 141
color syntax 143
configuration 126Ð132
deleting text 135
drag and drop 225
finding a routine in 144
font 127
Go Back and Go Forward 149
go to line number 149
guided tour 117Ð126
markers 144Ð147
moving text 136Ð138
navigating text 143Ð149
opening related file 147
overview 117, 305
panes 129Ð131
saving window settings 131
selecting text 135
text editing 132Ð143
text size 127
undoing changes 142Ð143
user interface elements 117

Enable Debugging command 325
End Key 59
End key 134
Enter ÔFindÕ String command 164, 317
Enter ÔReplaceÕ String command 317
Enter ÕFindÕ String command 317
Enter ÕReplaceÕ String command 317
Entire Word Check Box 167
Error Button 292
Error Messages 296
error messages

compiler 297
Errors and Warnings Window command 329
Exit command 311

extension 254

F
Factory Settings button 219
file button, in browser 194
File Column 62
File extension 254
File Menu 37, 307Ð311

Close command 309
Exit command 311
New command 308
New Project command 308
Open command 309
Open File command 309
Open Recent command 309
Open Selection command 309
Print command 311
Print Setup command 311
Revert command 310
Save A Copy As command 310
Save As command 310
Save command 310
Switch to MW Debugger command 310

file name suffix 254
File Path Caption 124, 295
File Sets List 160
File Sets Pop-up Menu 159
Files 101Ð116

closing 112Ð113
creating 101
opening 147
opening existing 102Ð107
overview 101
printing 113Ð115
reverting to saved 115
saving 107Ð112
selecting 67

files
selecting 68

Files Sets
saving 176

Find command 316
Find Definition & Reference command 319
Find in Next File command 317
Find Next command 164, 317
Find Previous command 164, 166, 317
IDE User Guide UG–337

Index
Find Selection command 318
Find Window

guided tour 151Ð162
finding all implementations of function 204
Flashing Delay option 224
function, finding all 204

G
Go Back command 319
Go Forward command 319
Go To Line command 320
grep 178Ð182
Group File Pop-up 64
Group File Pop-up menu 77
groups 61, 62, 64, 65Ð76

creating 74
moving 73
naming 76
removing 75
selecting 67, 68

H
header files

opening 107
precompiling 281Ð287

Help Menu 42, 333
About Metrowerks command 333
Contents command 333
How to Use Help command 333
Keys command 333

Hide Global Toolbar command 332
Hide Window Toolbar command 331
hierarchy view

browser 187
Home Key 59
Home key 134
How to Use Help command 333

I
IDE 19, 23, 32

guided tour 35Ð43
installation 32
Menus 36
Toolbar 35, 42

IDE Toolbar 36

identifier icon in browser 196
Ignore Case Check Box 167
Ignored by Make option 255
Insert Reference Template command 315
Installation 32
Integrated Development Environment 19
Interface Pop-up Menu 119, 294
Interfaces File Pop-up 64
Interfaces File Pop-up menu 77

J
Java 20, 25
Java projects 252, 264, 267

K
Keys command 333
keywords, coloring 227

L
Launchable option 255
line button in hierarchy browser 201
Line Number Button 125, 295
line number, going to 149
Linking 271Ð304
linking

Motorola 68K 265, 266
Power TV 267
PowerPC 267

list button, in browser
browser

list button 194

M
Macintosh 19
Main Text Color 225
Make 276
Make command 281, 324
manual style 21
MAP 279
Marker Pop-up Menu 122
marker, adding to text 123
Marking files for compilation 78
member functions pane, in browser 195
UG–338 IDE User Guide

Index
Message List Pane 293
Message Window

command 329
correcting compiler errors 299
error and warning messages 296
stepping through messages 297
using 295Ð304

Modification dates, synchronizing 79
Motorola 68K

code generation 261
multi-class browser 191Ð196
multi-class hierarchy, browser 199Ð202
Multi-file searches 158Ð162
multiple redo 313
multiple undo 313
multiple Undo command 142

N
New Class Browser command 329
New command 308
New Project command 47, 54, 308
number, going to line 149

O
Open command 55, 309
Open File command 309
Open Recent command 309
Open Selection command 106, 309
opening file with browser 210
optimization

IR options 263
Options 215Ð261

advanced compile options 280
browser coloring 230
C/C++ Compiler panel 258
C/C++ Warnings Panel 259
Editor settings 221
fonts and tabs 225
guided tour 216
overview 215
Pascal Compiler panel 260
Pascal Warnings panel 260
preferences 220
syntax coloring 226Ð230
target settings 244Ð268

x86 Linker panel 268
x86 Project panel 257

options
68K code generation 261
68K disassembly 262
68K linker 265
Access Paths 247Ð251
Build Extras 251Ð252
CFM68K linker 266
Custom Keywords panel 245
IR Optimizer 263
Java projects 252, 264, 267
PowerPC code generation 264
PowerPC disassembly 264
PowerPC PEF 268
PPC linker 267
project settings 216
resource compiler 261
x86 code generation 264

Options Pop-up Menu 123
orientation button

in browser 193
Others Button 162

P
Page Down key 59, 134
Page Up key 59, 134
Palm OS 20, 25
Pane Resize Bar 294
Pane Splitter Controls 126
Panes

in editor window 129Ð131
Pascal 20
Paste command 140, 313
PEF 268
PlayStation 20, 25
Pop-up Menu Disclosure Button 126, 294
Post Linker option 256
PowerPC 19
PowerTV OS 20, 25
PPC

code generation
PPC 264

Precompile command 283, 323
precompile_target, #pragma 283
IDE User Guide UG–339

Index
Precompiled 255
Precompiled headers

automatic updating 284
creating 282

precompiled headers
automatic updating of 284

precompiling 281Ð287
Preferences 53

choosing 220
Preferences command 315
Preprocess command 323
Preprocessing code 287
preprocessor 287
Print command 114, 311
Print Setup command 311
printing 113Ð115
Program Executable Format 268
project

naming 49
opening 55

Project Headers Check Box 162
Project Information Caption 293
Project Inspector command 329
Project Menu 40, 321Ð326

Add File command 322
Add Window command 322
Bring Up To Date command 324
Check Syntax command 323
Compile command 324
Create New Group command 322
Create New Segment command 322
Create New Target command 322
Disable Debugger command 325
Disassemble command 324
Enable Debugging command 325
Make command 324
Precompile command 323
Preprocess command 323
Remove Binaries command 325
Remove Object Code command 325
Remove Selected Items command 323
Reset File Paths command 323, 325
Run command 326
Set Current Target command 326
Set Default Project command 326

Synchronize Modification Dates
command 325

Project Settings 216
Project stationery

creating 52
project stationery 46, 52

choosing 48, 52
folder 52

Project Stationery folder 53
Project Switch List submenu 55
Project Window

guided tour 58Ð64
navigating 59
user interface items 59

Projects 45Ð100
adding files 69Ð73
building 52, 273
choosing stationery 47
compiling 273
creating 46Ð55
creating groups 74
debug enabling 277
debugging 278
Expanding and Collapsing Groups 66
expanding and collapsing groups 66
groups and segments 66
Items Saved with 57
making 276
managing files in 65Ð79
modifying 51
moving around 59
moving files and groups 73
new 48
open command 55
opening existing 55Ð56
opening with Project Switch List 55
removing files and groups 75
running 278
save as type options 57
saving 56Ð57
selecting files and groups 67Ð69
settings 244Ð268
stationery folder 52
stationery, about 46
touching and untouching files 76
updating 276
using stationery 47
UG–340 IDE User Guide

Index
projects
adding preprocessor symbols to 99
building 281
closing 57
compiling 276, 281
debug setup 96Ð98
items saved with 57
naming groups 76
saving 56
selecting files 67
selecting groups 67
settings 216
switching between 55

Q
QuickStart 24, 32

R
Recent Strings pop-up menu 165, 168
recompiling 276
recompiling files 276
Redo command 142, 313
regular expressions 178Ð182
Release notes 21
Remove a file set command 177
Remove Binaries command 325
Remove Files command 75
Remove Object Code command 325
Remove Selected Items command 323
Replace & Find Next command 318
Replace All command 168, 319
Replace command 318
replacing

in multiple files 171Ð178
Reset File Paths command 323, 325
Reset Floating Toolbar command 332
Reset Window Toolbar command 332
resize bar, in browser 196
Resource file option 255
resources

WinRC compiler 261
Revert command 310
Revert Panel button 219
Routine Pop-up Menu 144, 294
routine pop-Up menu 121

Run command 326

S
Save A Copy As command 53, 110, 310
Save All Before "Update" option 223
Save As command 109, 310
Save command 310
Save Default Window command 328
Save this File Set command 176
Search Menu 39, 315Ð320

Enter ÕFindÕ String command 317
Enter ÕReplaceÕ String command 317
Find command 316
Find Definition & Reference command 319
Find in Next File command 317
Find Next command 317
Find Previous command 317
Find Selection command 318
Go Back command 319
Go Forward command 319
Go To Line command 320
Replace & Find Next command 318
Replace All command 319
Replace command 318

Search Menu Find Selection command 318
searching 163

for selection 164
multi-file 158Ð162
multiple files 171Ð178
selected text 163Ð164

segments 62, 65, 66
Select All command 314
selected text search 163
selection

finding 164
Set Current Target command 326
Set Default Project command 326
Shift Left command 141, 314
Shift Right command 141, 314
Show Catalog Window command 328, 329
Show Global Toolbar command 332
Show Hierarchy Window command 329
Show Window Toolbar command 331
single-class browser 197
single-class hierarchy, in browser 202
IDE User Guide UG–341

Index
Sort Function Pop-Up 225
Source Code Disclosure Triangle 294
Source Code Pane 294
source files

compiling 276
precompiling 281Ð287

source pane, in browser 196
Sources Check Box 162
Stack command 327
stationery 46, 47
Stepping Buttons 293
Stop at EOF option 161, 178
Switch to MW Debugger command 310
symbol window, in browser 204
Synchronize Modification Dates command 325
Synchronizing modification dates 79
Syntax coloring, table of 227
System Headers Check Box 162
System Include Path Pane 248
System Requirements 31

T
Target Settings command 315
Targets

documentation 24
IDE 25
settings 244Ð268

Text
drag and drop of 136Ð138

Text Editing Area 119
text replace

multiple file 171Ð178
Replace All 168
replacing found text 168
selective replace 168
single file 164Ð170

text search 151Ð182
activating multi-file 171
Batch search 169
choosing file sets 175
choosing files 172
controlling range 166
controlling search parameters 167
controlling search range 177

finding selection 164
finding text 165
for selection 164
multi-file 158Ð162
multiple file 171Ð178
overview 151
regular expressions 178Ð182
removing file sets 177
saving file sets 176
selected text search 163
single file 164Ð170

Tile command 328
Tile Vertical command 328
Toolbar

using Shift and Option with 43
Toolbar Elements Window command 331
Toolbar Submenu 330Ð332

Clear Floating Toolbar command 332
Clear Window Toolbar command 332
Hide Global Toolbar command 332
Hide Window Toolbar command 331
Reset Floating Toolbar command 332
Reset Window Toolbar command 332
Show Global Toolbar command 332
Show Window Toolbar command 331
Toolbar Elements Window command 331

Toolbar submenu 328
Touch Column 63
Touch command 78
Treat #include as #include "É" option 248
Turbo Pascal 20
Tutorial Resources 24
typographical conventions 21

U
Undo command 312, 313
UNIX text files 111
updating projects 276, 281
Use Modification Dates Caching option 251
Use Multiple Undo option 224
User Include Path Pane 248

V
viewers 24
UG–342 IDE User Guide

Index
W
Warning Button 293
Warning Messages 296
wildcard searching 178Ð182
Win32/x86 20, 25
Window Menu 41, 326Ð330

Build Progress Window command 329
Errors and Warnings Window command 329
New Class Browser command 329
Project Inspector command 329
Save Default Window command 328
Show Catalog Window command 328, 329

Show Hierarchy Window command 329
Stack command 327
Tile command 328
Tile Vertical command 328
Toolbar submenu 328
Zoom Window command 328

Windows 95 20, 31
Windows NT 20, 31
WinRC resource compiler 261

Z
Zoom Window command 328
IDE User Guide UG–343

Index
UG–344 IDE User Guide

CodeWarrior

IDE User Guide

Credits

writing lead: ÒBitHeadÓ Magnuson

other writers: Jeff Mattson, Sarah Markey, Jim Trudeau

engineering: Berardino Baratta, Kevin Bell, Jesse
Donaldson, Matt Henderson, Glenn
Meter, Dan Podwall, Dieter Shirley, Cam
Vien, Bob Kushlis, Eric Cloninger,
Andrew Southwick, HongGang Zhang,
Kurt Ostfeld, Joel Sumner, Kevin Bell,
Mark Anderson, Fred Peterson

frontline warriors: John Roseborough, Marc Paquette

Guide to CodeWarrior Documentation

050997 yoy

If you need information about... See this
Installing updates to CodeWarrior QuickStart Guide

Getting started using CodeWarrior QuickStart Guide
Tutorials (Apple Guide)

Using CodeWarrior IDE (Integrated Development Environment) IDE User Guide

Debugging Debugger Manual

Important last-minute information on new features and changes Release Notes folder

Creating Mac OS software Targeting Mac OS, & Mac OS folder

Creating Win32/x86 software Targeting Win32, & Win32/x86 folder

Creating Java software Targeting Java, & Sun Java Documenta-
tion folder

Creating software for other targets, such as
PlayStation game console and PalmPilot

the appropriate Targeting manual for the
target of interest

Using ToolServer with the CodeWarrior editor IDE User Guide

Controlling CodeWarrior through AppleScript IDE User Guide

Using CodeWarrior to program in MPW Command Line Tools Manual

Programming in C, C++, and inline assembly for
68K, PowerPC, MIPS, and x86

C Compiler Guide, MSL C Reference,
MSL C++ Reference

Pascal or Object Pascal programming Pascal Compiler Guide, Pascal Lan-
guage Manual, Pascal Library Reference

Programming in assembly language Assembler Guide

Fixing compiler and linker errors Errors Reference

Fixing Mac OS memory bugs ZoneRanger Manual

Speeding up your Mac OS programs Profiler Manual

PowerPlant Programming The PowerPlant Book
PowerPlant Advanced Topics
PowerPlant reference documents

Creating a PowerPlant visual interface Constructor Manual

Creating a Java visual interface Constructor for Java Manual

Creating a PalmPilot visual interface Constructor for PalmPilot Manual

Learning how to program for Mac OS, Windows, or Java Discover Programming series of CDs

Contacting Metrowerks about registration, sales, and licensing Quick Start Guide

Contacting Metrowerks about problems and suggestions using
CodeWarrior software

email Report Forms in the Release Notes
folder

Sample programs and examples CodeWarrior Examples folder
The PowerPlant Book
PowerPlant Advanced Topics
Tutorials (Apple Guide)

Problems other CodeWarrior users have solved Internet newsgroup [docs] folder

	Introduction
	Introduction
	Read the Release Notes!
	Typographical Conventions
	Notes, Warnings, Tips, and Beginner’s Hints
	Typeface Conventions

	IDE User Guide Overview
	About the CodeWarrior IDE
	Where to Go From Here
	QuickStart and Tutorial Resources
	Operating System Targeting Documentation

	What’s New in This Release
	Threaded Execution
	Multiple Open Projects
	Multiple Targets Per Project
	Subprojects
	Mac OS Merge Linker
	New Toolbars
	Customizable User Interface Key Bindings
	Improved Drag and Drop Support
	Improved Project File Management

	Getting Started
	Getting Started Overview
	System Requirements
	CodeWarrior IDE Installation
	Programming Concepts
	Creating Input Files
	Source Code File
	Resource File
	Interface or Header File
	Project File

	Generating the Software
	Compilers
	Assemblers
	Linkers

	Output Files (Product)
	Debugging and Refining

	CodeWarrior IDE Guided Tour
	Initial View of the IDE
	IDE Menus
	File Menu
	Edit Menu
	Search Menu
	Project Menu
	Window Menu
	Help Menu

	Global Toolbar
	Global Toolbar Overview
	Customizing Toolbar Commands
	Customizing the Global Toolbar

	Other IDE Components

	Working with Projects
	Projects Overview
	Creating a Simple Project
	About Project Stationery
	Using Stationery Projects
	Choosing the New Project Stationery File
	Naming Your New Project
	Modifying Your New Project
	Building Your New Project

	About the Project Stationery Folder
	Creating Your Own Project Stationery

	Opening an Existing Project
	Using the Open Command
	Using the Open Recent Command
	Using the Project Window to Open Subprojects

	Saving a Project
	Items Saved with Your Project
	Saving a Copy of Your Project

	Closing a Project
	Choosing a Default Project
	Guided Tour of the Project Window
	Navigating the Project Window
	Project Window User Interface Items
	Category Tabs
	Toolbar
	Group Organization
	File Column
	Code Column
	Data Column
	Debug Column
	Touch Column
	Interfaces Pop-up
	Group Pop-up
	Checkout Status Column

	Managing Files in a Project
	About Groups and Segments
	Expanding and Collapsing Groups
	Selecting Files and Groups
	Selection by mouse-clicking
	Selection by keyboard

	Adding Files
	Where Files Appear
	Using the Add Files Command
	Using Drag and Drop
	Using the Add Window Command

	Moving Files and Groups
	Creating Groups
	Removing Files and Groups
	Renaming Groups
	Touching and Untouching Files
	Synchronizing modification dates

	Creating Complex Projects
	What is a Target?
	What is a Subproject?
	Strategy for Creating Complex Projects
	Creating a New Target
	Changing a Target Name
	Changing the Target Settings
	Setting the Current Build Target
	Creating Target Dependencies
	Assigning Files to Targets
	Creating Subprojects Within Projects

	Examining Project Information
	Moving a Project
	Controlling Debugging in a Project
	Activating Debugging for a Project
	Activating Debugging for a File
	Debug Info Marker for Groups

	Adding Preprocessor Symbols to a Project

	Working with Files
	Working with Files Overview
	Creating a New File
	Opening an Existing File
	Opening Files with the File Menu
	Project File
	Text File

	Opening Files from the Project Window
	File Column
	Group Pop-up Menu
	Interfaces Pop-up Menu

	Opening Files from an Editor Window
	Opening a Related File

	Saving a File
	Saving One File
	Saving Files Automatically
	Renaming and Saving a File
	Backing Up Files
	Saving as a UNIX or DOS text file

	Closing a File
	Closing One File
	Closing All Files

	Printing a File
	Setting Print Options
	Printing a Window

	Reverting to a Previously-Saved File

	Editing Source Code
	Source Code Editor Overview
	Guided Tour of the Editor Window
	Text Editing Area
	Interface Pop-Up Menu
	Routine Pop-Up Menu
	Marker Pop-Up Menu
	Options Pop-Up Menu
	File Path Caption
	Permissions Pop-up Menu
	Line Number Button
	Pane Splitter Controls
	Pop-Up Menu Disclosure Button
	Dirty File Marker

	Editor Window Configuration
	Setting Text Size and Font
	Seeing Window Controls
	Splitting the Window into Panes
	Creating a new pane
	Resizing a pane
	Removing a pane

	Saving Window Settings
	Customizing the Toolbar

	Basic Text Editing
	Basic Editor Window Navigation
	Scroll bar navigation
	Keyboard navigation

	Adding Text
	Deleting Text
	Selecting Text
	Moving Text (Drag and Drop)
	Using Cut, Copy, Paste, and Clear
	Balancing Punctuation
	Using automatic balancing

	Shifting Text Left and Right
	Undoing Changes
	Undoing the last edit
	Undoing and redoing multiple edits
	Reverting to the last saved version of a file

	Controlling Color

	Navigating in Text
	Finding a Routine
	Adding, Removing, and Selecting a Marker
	Adding a Marker
	Removing a Marker
	Jumping to a Marker

	Opening a Related File
	Going to a Particular Line
	Using Go Back and Go Forward
	Configuring Editor Commands

	Searching and Replacing Text
	Searching and Replacing Text Overview
	Guided Tour of the Find Dialog Box
	Search and Replace Section
	Find Text Box
	Replace Text Box
	Recent Strings Pop-Up Menu
	Find Button
	Replace Button
	Replace & Find Button
	Replace All Button
	Batch Checkbox
	Wrap Check Box
	Ignore Case Check Box
	Entire Word Check Box
	Regexp Check Box
	Multi-File Search Disclosure Triangle
	Multi-File Search Button

	Multi-File Search Section
	File Sets Pop-Up Menu
	File Sets List
	Project Pop-up Menu
	Stop at End of File Check Box
	Sources Check Box
	System Headers Check Box
	Project Headers Check Box
	Others Button

	Searching for Selected Text
	Finding text in the active editor window
	Finding text in another window

	Searching and Replacing Text in a Single File
	Finding Search Text
	Controlling Search Range
	Controlling Search Parameters
	Ignore Case Check Box
	Entire Word Check Box

	Replacing Found Text
	Replace All
	Selective Replace

	Using Batch Searches

	Searching and Replacing Text in Multiple Files
	Activating Multi-File Search
	Choosing Files to be Searched
	Adding project source files
	Adding project header files
	Adding system header files
	Adding and removing arbitrary files
	Choosing a file set

	Saving a File Set
	Removing a File Set
	Controlling Search Range

	Using Regular Expressions (grep)
	Matching simple expressions
	Matching any character
	Repeating expressions
	Grouping expressions
	Choosing one character from many
	Matching the beginning or end of a line
	Using the Find string in the Replace string
	Remembering sub-expressions

	Browsing Source Code
	Browser Overview
	Activating the Browser

	Understanding the Browser Strategy
	Catalog View
	Browser View
	Hierarchy View

	Guided Tour of the Browser
	Catalog Window
	Category pop-up menu
	Symbols pane

	Multi-Class Browser Window
	Orientation button
	List button
	Open File button
	Classes pane
	Member Functions pane
	Data Members pane
	Source pane
	Resize bar
	Identifier icon

	Single-Class Browser Window
	Bases text field
	Show checkboxes
	Show Declaration button
	Show Hierarchy button

	Multi-Class Hierarchy Window
	Line button
	Hierarchy expansion triangle
	Ancestor Class pop-up menu

	Single-Class Hierarchy Window
	Symbol Window
	Routine Symbols pane

	Context Pop-Up Menu

	Using the Browser
	Setting Browser Options
	Navigating Code in the Browser
	Using the Context Pop-Up Menu
	Go Back and Go Forward

	Opening a Source File
	Seeing a Declaration
	Seeing a Routine Definition
	Editing Code in the Browser
	Analyzing Inheritance
	Finding Functions That Are Overrides
	Seeing MFC Classes
	Saving a Default Browser

	Customizing the Browser

	Configuring IDE Options
	Configuring IDE Options Overview
	Option Dialog Boxes Guided Tour
	Options Panels
	Dialog Box Buttons
	Discarding Changes
	Factory Settings Button
	Revert Panel Button
	Save Button

	Choosing Preferences
	Editor Preferences
	General Preferences
	Editor Settings
	Dynamic Scroll
	Balance While Typing
	Save All Before “Update”
	Relaxed C Popup Parsing
	Use Multiple Undo
	Flashing Delay
	Context Popup Delay
	Drag and Drop Editing
	Sort Function Popup
	Main Text Color
	Background Color

	Fonts and Tabs
	Syntax Coloring
	Changing syntax hiliting colors
	Controlling syntax hiliting within a window
	Using color for custom keywords
	Importing or exporting custom keywords

	Browser Coloring
	Enable Automatic Toolbar Help

	Key Bindings
	Restrictions for Choosing Key Bindings
	What is a Prefix Key?
	What is a Quote Key?
	Modifying Key Bindings
	Setting the Prefix Key Timeout
	Exporting Key Bindings
	Importing Key Bindings
	Configuring Misc Bindings
	Configuring Editor Commands Bindings
	Configuring Prefix Keys Bindings
	Configuring the Quote Key Binding

	Choosing Target Settings
	Editor
	Target
	Language Settings
	Code Generation
	Linker
	Custom Keywords
	68K Target
	Access Paths
	Always Search User Paths
	User Include Path Pane
	System Include Path Pane
	Add Default
	Add
	Change
	Remove

	Build Extras
	Use Modification Date Caching
	Activate Browser

	Java Project
	PPC Target
	File Mappings
	File Mappings List
	Extension
	Compiler
	Precompiled
	Launchable
	Resource File
	Ignored by Make

	Target Settings
	Linker and Post Linker
	Target Name
	Output Directory

	x86 Target
	C/C++ Compiler
	C/C++ Warnings
	Pascal Compiler
	Pascal Warnings
	PPCAsm
	Rez
	WinRC Resource Compiler
	68K Processor
	68K Disassembler
	IR Optimizer
	Java VM
	PPC Processor
	PPC Disassembler
	x86 CodeGen
	68K Linker
	CFM68K Linker
	Java Linker
	PPC Linker
	PPC PEF
	x86 Linker

	Toolbar Customization

	Compiling and Linking
	Compiling and Linking Overview
	Choosing a Compiler
	Understanding Plugin Compilers
	Setting a File Extension

	Compiling and Linking a Project
	Touching and Untouching Files
	Compiling Files
	Compiling One File
	Compiling Selected Files
	Recompiling Files

	Updating a Project
	Making a Project
	Enabling Debugging
	Running a Project
	Debugging a Project
	Generating a Link Map
	Synchronizing Modification Dates
	Removing Objects
	Removing Object Code

	Advanced Compile Options
	Alerting Yourself After a Build
	Speeding Up a Build by Avoiding Date Checks

	Using Precompiled or Preprocessed Headers
	Creating Precompiled Headers
	Precompile command
	Automatic updating

	Defining Symbols For C/C++
	Defining Symbols For Pascal

	Preprocessing Source Code
	Disassembling Source Code
	Guided Tour of the Message Window
	Error Button
	Warning Button
	Project Information Caption
	Stepping Buttons
	Message List Pane
	Source Code Disclosure Triangle
	Source Code Pane
	Pane Resize Bar
	Pop-Up Menu Disclosure Button
	Interface Pop-Up Menu
	Routine Pop-Up Menu
	File Path Caption
	Line Number Button

	Using the Message Window
	Seeing Errors and Warnings
	Stepping Through Messages
	Correcting Compiler Errors and Warnings
	Correcting Errors in the Source Code Pane
	Opening the File for the Corresponding Message

	Correcting Linker Errors
	Viewing Linker Errors
	Why Linker Errors Occur

	Correcting Pascal Circular References
	Saving and Printing the Message Window
	Locating Errors in Modified Files

	Configuring Version Control Software
	Version Control System Overview
	Using Source Code Control with Files

	IDE Menu Reference
	IDE Menu Reference Overview
	File Menu
	New
	New Project
	Open
	Open Recent
	Open File
	Open Selection
	Close
	Switch to MW Debugger
	Save
	Save As
	Save A Copy As
	Revert
	Print Setup
	Print
	Exit

	Edit Menu
	Undo
	Redo, Multiple Undo, and Multiple Redo
	Cut
	Copy
	Paste
	Clear
	Select All
	Balance
	Shift Left
	Shift Right
	Insert Reference Template
	Preferences
	Target Settings

	Search Menu
	Find
	Find Next
	Find Previous
	Find in Next File
	Enter ‘Find’ String
	Enter ‘Replace’ String
	Find Selection
	Replace
	Replace & Find Next
	Replace All
	Find Definition
	Find Definition and Reference
	Go Back
	Go Forward
	Go To Line

	Project Menu
	Add Window
	Add Files
	Create New Group
	Create New Target
	Create New Segment
	Remove Selected Items
	Check Syntax
	Preprocess
	Precompile
	Compile
	Disassemble
	Bring Up To Date
	Make
	Remove Object Code
	Reset File Paths
	Synchronize Modification Dates
	Enable Debugger
	Disable Debugger
	Run
	Debug
	Set Default Project
	Set Current Target

	Window Menu
	Stack
	Tile
	Tile Vertical
	Zoom Window
	Save Default Window
	Toolbar
	Show Catalog Window
	Show Hierarchy Window
	New Class Browser
	Build Progress Window
	Errors & Warnings Window
	Project Inspector
	Other Window Menu Items

	Toolbar Submenu
	Toolbar Elements Window
	Show Window Toolbar and Hide Window Toolbar
	Reset Window Toolbar
	Clear Window Toolbar
	Show Global Toolbar and Hide Global Toolbar
	Reset Floating Toolbar
	Clear Floating Toolbar

	Help Menu
	Contents
	Keys
	How to Use Help
	About Metrowerks

	Index

