

SERVICE MANUAL

MIDEA AIRCONDITIONER DC INVERTER SPLIT WALL-MOUNTED TYPE

MSC-09HRDN1-QD0(E) MSC-12HRDN1-QC6(E) MSH-09HRDN1-QD0(E) MSH-12HRDN1-QC6(E)

CONTENTS

1.	Preca	aution	1
	1.1	Safety Precaution	1
	1.2	Warning	1
2.	Funct	tion	3
3.	Dime	nsion	5
	3.1	Indoor Unit	5
	3.2	Outdoor Unit	6
	•	ification	
5.	Refriç	gerant cycle diagram	9
6.	Wirin	g diagram	10
	6.1	Indoor Unit	10
	6.2	Outdoor Unit	11
7.	Instal	llation details	12
	7.1	Wrench torque sheet for installation	12
	7.2	Connecting the cables	12
	7.3	Pipe length and the elevation	12
	7.4	Air purging of the piping and indoor unit	13
	7.5	Pumping down (Re-installation)	14
	7.6	Re-air purging (Re-installation)	15
	7.7	Balance refrigerant of the 2-way, 3-way valves	16
	7.8	Evacuation	17
	7.9	Gas charging	18
8.	Opera	ation characteristics	19
	8.1	MSC-09HRDN1-QD0(E)	19
	8.2	MSC-12HRDN1-QC6(E)	20
	8.3	MSH-09HRDN1-QD0(E)	21
	8.4	MSH-12HRDN1-QC6(E)	22
9.	Electi	ronic function	23
	9.1	Abbreviation	23
	9.2	Display function	23
	9.3	Protection	24
	9.4	Fan-Only Mode	24
	9.5	Cooling Mode	25
	9.6	Drying mode	27
	9.7	Heating mode	27
	9.8	Auto mode function	31
	9.9	Forced operation function	31
	9.10	Action of 4-way valve	32
	9.11	Two speeds outdoor fan function	32
	9.12	Timer function	32
	9.13	Sleep function mode	32
	9.14	Electronic control parameter	33

10. Troul	bleshooting	35
10.1	Indoor Unit Error Display	. 35
10.2	Diagnosis and Solution	. 35
11. Chara	acteristic of temp. sensor	39

1. Precaution

1.1 Safety Precaution

- To prevent injury to the user or other people and property damage, the following instructions must be followed.
- Incorrect operation due to ignoring instruction will cause harm or damage.
- Before service unit, be sure to read this service manual at first.

1.2 Warning

- Installation
- Do not use a defective or underrated circuit breaker. Use this appliance on a dedicated circuit.

 There is risk of fire or electric shock.
- For electrical work, contact the dealer, seller, a qualified electrician, or an Authorized service center.

Do not disassemble or repair the product, there is risk of fire or electric shock.

■ Always ground the product.

There is risk of fire or electric shock.

■ Install the panel and the cover of control box securely.

There is risk of fire of electric shock.

- Always install a dedicated circuit and breaker. Improper wiring or installation may cause fore or electric shock.
- Use the correctly rated breaker of fuse.

 There is risk of fire or electric shock.
- Do not modify or extend the power cable.

 There is risk of fire or electric shock.
- Do not install, remove, or reinstall the unit by yourself (customer).

There is risk of fire, electric shock, explosion, or injury.

Be caution when unpacking and installing the product.

Sharp edges could cause injury, be especially careful of the case edges and the fins on the condenser and evaporator.

■ For installation, always contact the dealer or an Authorized service center.

There is risk of fire, electric shock, explosion, or injury.

■ Do not install the product on a defective installation stand.

It may cause injury, accident, or damage to the

product.

Be sure the installation area does not deteriorate with age.

If the base collapses, the air conditioner could fall with it, causing property damage, product failure, and personal injury.

■ Do not let the air conditioner run for a long time when the humidity is very high and a door or a windows is left open.

Moisture may condense and wet or damage furniture.

■ Take care to ensure that power cable could not be pulled out or damaged during operation.

There is risk of fire or electric shock.

■ Do not place anything on the power cable.

There is risk of fire or electric shock.

■ Do not plug or unplug the power supply plug during operation.

There is risk of fire or electric shock.

■ Do not touch (operation) the product with wet hands.

There is risk of fire or electric shock.

■ Do not place a heater or other appliance near the power cable.

There is risk of fire and electric shock.

- Do not allow water to run into electric parts.

 It may cause fire, failure of the product, or electric shock.
- Do not store or use flammable gas or combustible near the product.

There is risk of fire or failure of product.

■ Do not use the product in a tightly closed space for a long time.

Oxygen deficiency could occur.

■ When flammable gas leaks, turn off the gas and open a window for ventilation before turn the product on.

Do not use the telephone or turn switches on or off. There is risk of explosion or fire.

If strange sounds, or small or smoke comes from product. Turn the breaker off or disconnect the power supply cable.

There is risk of electric shock or fire.

Stop operation and close the window in storm or hurricane. If possible, remove the product from the window before the hurricane arrives.

There is risk of property damage, failure of product, or electric shock.

■ Do not open the inlet grill of the product during

operation. (Do not touch the electrostatic filter, if the unit is so equipped.)

There is risk of physical injury, electric shock, or product failure.

■ When the product is soaked (flooded or submerged), contact an Authorized service

There is risk of fire or electric shock.

- Be caution that water could not enter the product.

 There is risk of fire, electric shock, or product damage.
- Ventilate the product from time to time when operating it together with a stove, etc.

 There is risk of fire or electric shock.
- Turn the main power off when cleaning or maintaining the product.

There is risk of electric shock.

When the product is not be used for a long time, disconnect the power supply plug or turn off the breaker.

There is risk of product damage or failure, or unintended operation.

■ Take care to ensure that nobody could step on or fall onto the outdoor unit.

This could result in personal injury and product damage.

> CAUTION

■ Always check for gas (refrigerant) leakage after installation or repair of product.

Low refrigerant levels may cause failure of product.

■ Install the drain hose to ensure that water is drained away properly.

A bad connection may cause water leakage.

- Keep level even when installing the product.

 To avoid vibration of water leakage.
- Do not install the product where the noise or hot air from the outdoor unit could damage the neighborhoods.

It may cause a problem for your neighbors.

■ Use two or more people to lift and transport the product.

Avoid personal injury.

■ Do not install the product where it will be exposed to sea wind (salt spray) directly.

It may cause corrosion on the product. Corrosion, particularly on the condenser and evaporator fins, could cause product malfunction or inefficient operation.

> Operational

■ Do not expose the skin directly to cool air for long periods of time. (Do not sit in the draft).

This could harm to your health.

■ Do not use the product for special purposes, such as preserving foods, works of art, etc. It is a consumer air conditioner, not a precision refrigerant system.

There is risk of damage or loss of property.

- Do not block the inlet or outlet of air flow.

 It may cause product failure.
- Use a soft cloth to clean. Do not use harsh detergents, solvents, etc.

There is risk of fire, electric shock, or damage to the plastic parts of the product.

- Do not touch the metal parts of the product when removing the air filter. They are very sharp.

 There is risk of personal injury.
- Do not step on pr put anything on the product. (outdoor units)

There is risk of personal injury and failure of product.

Always insert the filter securely. Clean the filter every two weeks or more often if necessary.

A dirty filter reduces the efficiency of the air conditioner and could cause product malfunction or damage.

■ Do not insert hands or other object through air inlet or outlet while the product is operated.

There are sharp and moving parts that could cause personal injury.

- Do not drink the water drained from the product.

 It is not sanitary could cause serious health issues.
- Use a firm stool or ladder when cleaning or maintaining the product.

Be careful and avoid personal injury.

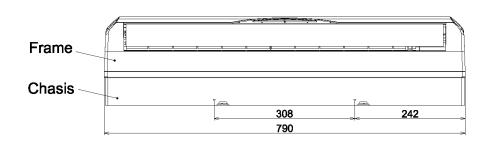
- Replace the all batteries in the remote control with new ones of the same type. Do not mix old and mew batteries or different types of batteries. There is risk of fire or explosion.
- Do not recharge or disassemble the batteries. Do not dispose of batteries in a fire.

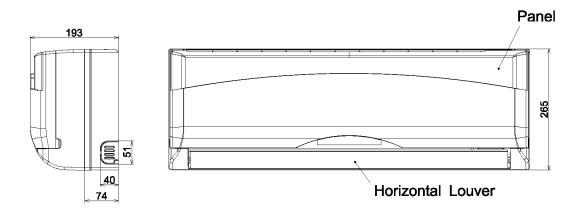
They may burn of explode.

■ If the liquid from the batteries gets onto your skin or clothes, wash it well with clean water. Do not use the remote of the batteries have leaked.

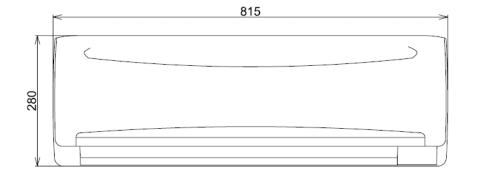
The chemical in batteries could cause burns or other health hazards

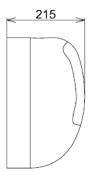
2. Function

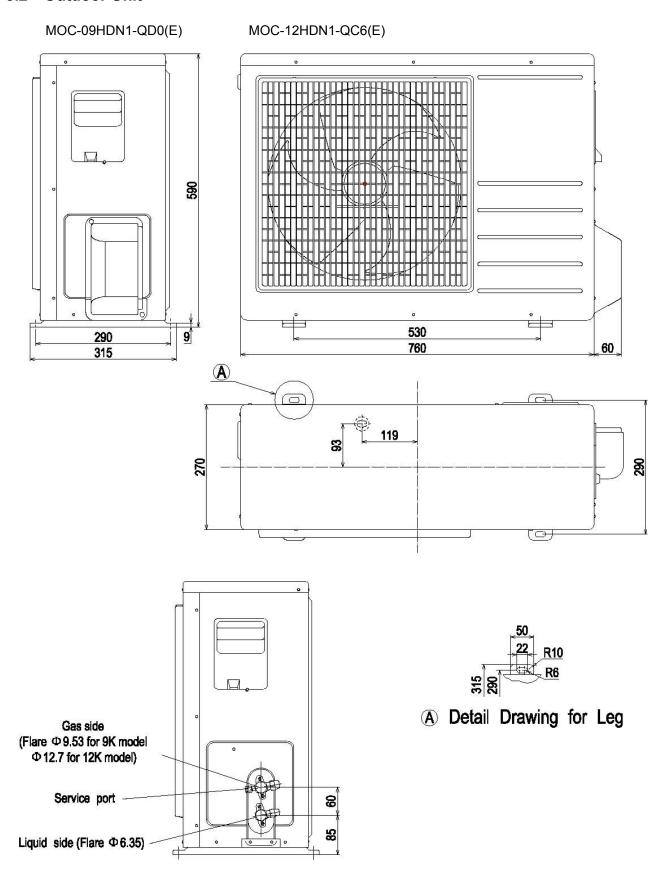

Indoor unit Operation by remote controller Sensing by room temperature Room temperature sensor. Pipe temperature sensor. Room temperature control Maintain the room temperature in accordance w ith the setting temperature. Anti-freezing control in cooling Prevent the water being freezed on evaporator by sensing the evaporator pipe temperature in cooling mode Ionizer (Optional) **Time Delay Safety control** Restarting is for approx. 3 minutes.. Plasma (Optional) Indoor fan speed control Turbo wind, high, med, low, breeze. Tele Remote control (Optional) Two-direction air vane The unit will decide the louver direction according to Work voltage (160V-253V) operation mode. Sleep mode auto control Self-diag. function The fan is turn to low speed (cooling/heating). The unit will be turn off at the seventh hour. **Anti-cold function** Independent dehumidification Prevent the cold wind at the beginning of unit start. The function is usually used in rainy days in springtime or damp areas. **Auto defrost** Air flow Direction control The louver can be set at the desired position or **Auto-restart function** swing up and down automatically When the power supply is interrupted and then restore, the air Auto mode conditioners automatically restore the previous function setting. The mode can be change by the room temperature. Flexible wiring connection Temp. Compensation


Outdoor unit Power relay control The unit has 3 mins delay between continuously ON/OFF operations. Low noise air flow system Bird tail propeller fan makes the outdoor unit run more quietly. Hydrophilic aluminum fin The hydrophilic fin can improve the heating efficiency at operation mode. 4 way valve control It is only operated in the heating operation mode except defrosting operation. **Anti-rust cabinet** Made from electrolytic zinc steel sheet and anti-rust coated components. Valve protection cover It protects the valves and prevents water from dripping. Discharge pipe temperature protect **Heating cable (Optional)** Driving heating at -15℃

3. Dimension

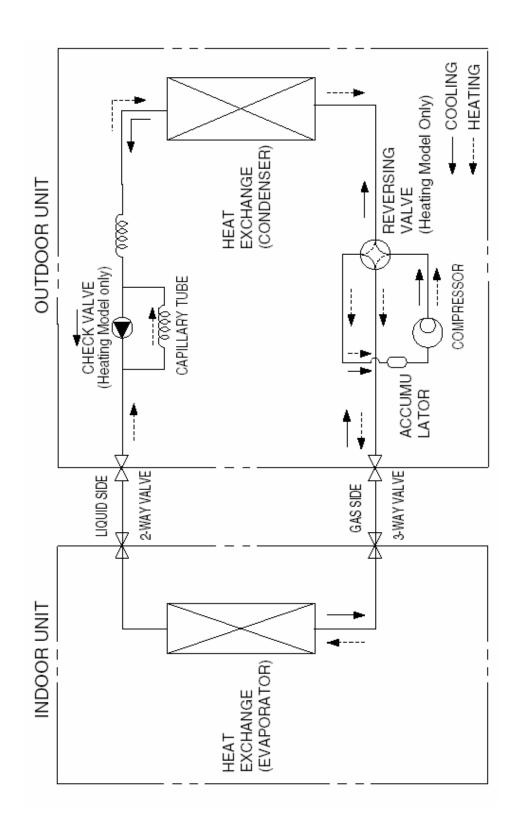

3.1 Indoor Unit


MSC-09HRDN1-QD0(E) MSC-12HRDN1-QC6(E)



MSH-09HRDN1-QD0(E) MSH-12HRDN1-QC6(E)

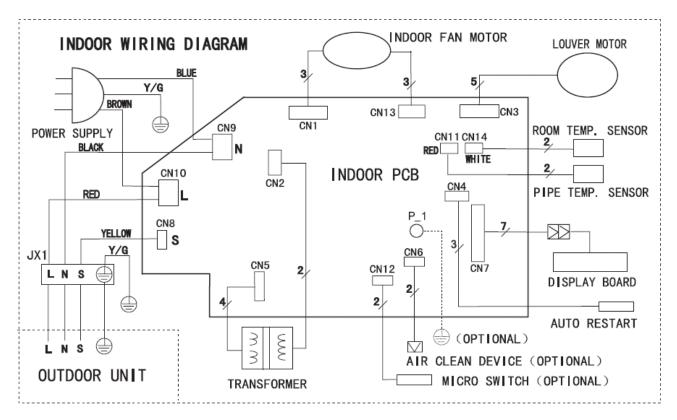
3.2 Outdoor Unit


4. Specification

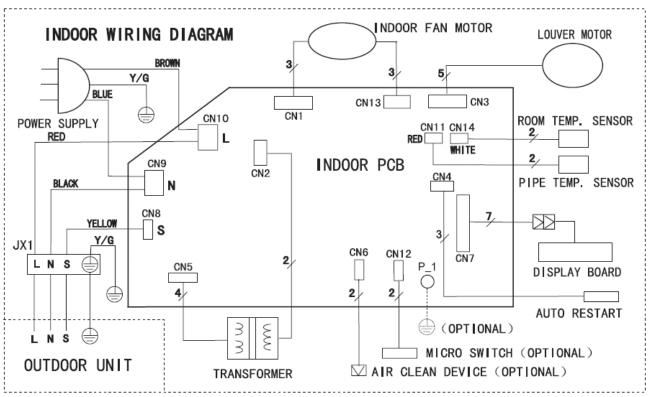
Indoor			MSC-09HRDN1-QD0(E)	MSC-12HRDN1-QC6(E)
Outdoor			MOC-09HDN1-QD0(E)	MOC-12HDN1-QC6(E)
Power supply		Ph-V-Hz	1,220-240V~,50Hz	1, 220-240V~, 50Hz
	Capacity	Btu/h	9000(3100~11200)	12000(3800~14700)
Cooling	Input	W	660(300~1100)	970(400~1480)
Cooling	Rated current	Α	2.9(1.3~4.8)	4.3(1.8~6.5)
	EER	Btu/w.h,	13.6,4.0	12.4, 3.62
	Capacity	Btu/h	10000(3300~12300)	13000(4000~15200)
Hooting	Input	W	690(310~1150)	950(390~1460)
Heating	Rated current	Α	3.0(1.4~5.0)	4.2(1.7~6.4)
	COP	W/W	4.2	4
Moisture Remova	al	L/h	0.8	1.2
Max. input consu	mption	W	1500	1600
Max. current		Α	8	8.5
Starting current		Α	3.2	4.5
PTC Heater(option	onal)	W	85	85
	Model		DA108X1C-20FZ3	DA108X1C-20FZ3
	Туре		Rotary	Rotary
	Brand		TOSHIBA	TOSHIBA
	Capacity	Btu/h	10918	10918
0	Input	W	855	855
Compressor	Rated current(RLA)	Α	5.3	5.3
	Locked rotor Amp(LRA)	Α	8	8
	Thermal protector		CS-74	CS-74
	Capacitor	uF	No	No
	Refrigerant oil	ml	480	480
	Model		RPG20D	RPG20D
Indoor fan	Brand		Welling	Welling
	Input	W	38	38
motor	Capacitor	uF	1.5	1.5
	Speed(hi/mi/lo)	r/min	1150/1000/800	1250/1060/800
Indoor air flow (H	i/Mi/Lo)	m3/h	590/470/325	615/485/325
Indoor noise leve	l (Hi/Mi/Lo)	dB(A)	41/35/30	43/37/30
	Dimension (W*H*D)	mm	790*265*193	790*265*193
Indoor unit	Packing (W*H*D)	mm	875*375*285	875*375*285
	Net/Gross weight	Kg	8.5/10.5	9.0/11.0
	Model		YDK24-6G	YDK24-6G
Outdoor fan	Brand		Welling	Welling
	Input	W	59	59
motor	Capacitor	uF	2.5	2.5
	Speed	r/min	800/550	800/550
Outdoor air flow		m3/h	1650/1060	1650/1060
Outdoor noise lev	vel	dB(A)	52	54
	Dimension(W*H*D)	mm	760*590*285	760*590*285
Outdoor unit	Packing (W*H*D)	mm	887*655*355	887*655*355
	Net/Gross weight	Kg	40.5/43	40.5/43
Refrigerant type	R410A	g	1230	1230
Refrigerant Liquid side/ Gas side		mm(inch)	Ф6.35/Ф9.53	Φ6.35/Φ12.7
· ·	Max. refrigerant pipe	m	15	15
piping	Max. difference in level	m	8	8
Operation temp		$^{\circ}$	17 ~ 30	17 ~ 30
Ambient temp		$^{\circ}$	-15 ~ 50	-15 ~ 50

Indoor			MSH-09HRDN1-QD0(E)	MSH-12HRDN1-QC6(E)		
Outdoor			MOC-09HDN1-QD0(E)	MOC-12HDN1-QC6(E)		
Power supply		Ph-V-Hz	1,220-240V~,50Hz	1, 220-240V~, 50Hz		
	Capacity	Btu/h	9000(3100~11200)	12000(3800~14700)		
Cooling	Input	W	660(300~1100)	970(400~1480)		
Cooling	Rated current	Α	2.9(1.3~4.8)	4.3(1.8~6.5)		
	EER	Btu/w.h,	13.6,4.0	12.4, 3.62		
	Capacity	Btu/h	10000(3300~12300)	13000(4000~15200)		
Hooting	Input	W	690(310~1150)	950(390~1460)		
Heating	Rated current	Α	3.0(1.4~5.0)	4.2(1.7~6.4)		
	COP	W/W	4.2	4		
Moisture Remova	1	L/h	0.8	1.2		
Max. input consu	Max. input consumption		1500	1600		
Max. current	•	Α	8	8.5		
Starting current		Α	3.2	4.5		
PTC Heater(optio	nal)	W	85	85		
(-)	Model		DA108X1C-20FZ3	DA108X1C-20FZ3		
	Туре		Rotary	Rotary		
	Brand		TOSHIBA	TOSHIBA		
	Capacity	Btu/h	10918	10918		
	Input	W	855	855		
Compressor	Rated current(RLA)	Α	5.3	5.3		
	Locked rotor Amp(LRA)	A	8	8		
	Thermal protector		CS-74	CS-74		
	Capacitor	uF	No	No		
	Refrigerant oil	ml	480	480		
	Model		RPG20D	RPG20D		
la de en fem	Brand		Welling	Welling		
Indoor fan	Input	W	38	38		
motor	Capacitor	uF	1.5	1.5		
	Speed(hi/mi/lo)	r/min	1150/1000/800	1250/1060/800		
Indoor air flow (Hi	, , , , ,	m3/h	650/515/375	675/520/375		
Indoor noise level	/	dB(A)	41/35/30	43/37/30		
	Dimension (W*H*D)	mm	810*282*215	810*282*215		
Indoor unit	Packing (W*H*D)	mm	915*360*290	915*360*290		
	Net/Gross weight	Kg	9.5/11.5	9.5/11.5		
	Model		YDK24-6G	YDK24-6G		
Out de au fau	Brand		Welling	Welling		
Outdoor fan	Input	W	59	59		
motor	Capacitor	uF	2.5	2.5		
	Speed	r/min	800/550	800/550		
Outdoor air flow		m3/h	1650/1060	1650/1060		
Outdoor noise lev	/el	dB(A)	52	54		
2 222001 110100 104	Dimension(W*H*D)	mm	760*590*285	760*590*285		
Outdoor unit	Packing (W*H*D)	mm	887*655*355	887*655*355		
	Net/Gross weight	Kg	40.5/43	40.5/43		
Refrigerant type R410A		g	1230	1230		
Liquid side/ Con side		mm(inch)	Ф6.35/Ф9.53	Ф6.35/Ф12.7		
Refrigerant	Max. refrigerant pipe	m	15	15		
piping	Max. difference in level	m	8	8		
Operation temp	Max. amerence in 1646	°C	17 ~ 30	17 ~ 30		
Ambient temp		°C	-15 ~ 50	-15 ~ 50		
The above design and specifications are subject to change without prior notice for product improvement						

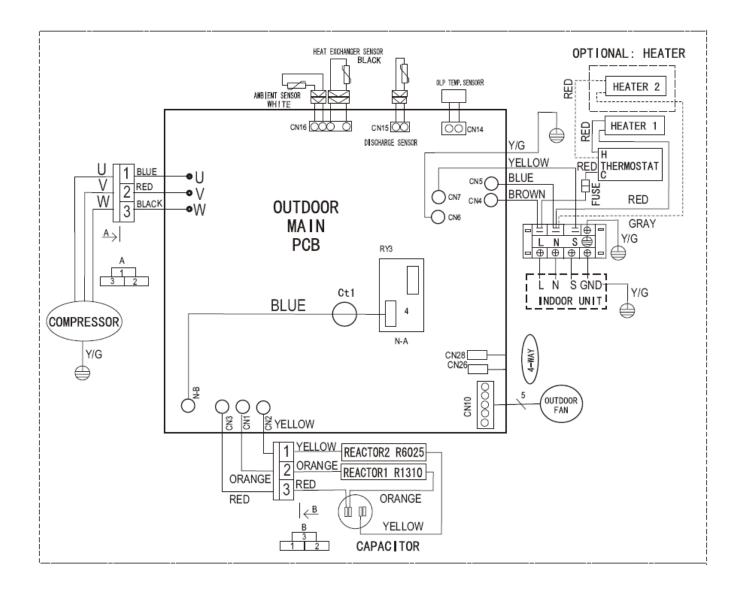
The above design and specifications are subject to change without prior notice for product improvement.


5. Refrigerant cycle diagram

6. Wiring diagram


6.1 Indoor Unit

MSC-09HRDN1-QD0(E) MSC-12HRDN1-QC6(E)


MSH-09HRDN1-QD0(E)

MSH-12HRDN1-QC6(E)

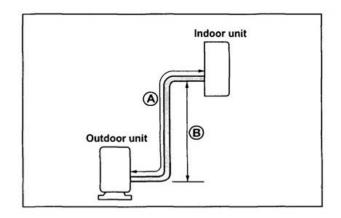
6.2 Outdoor Unit

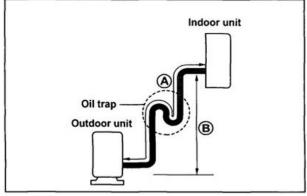
MOC-09HDN1-QD0(E) MOC-12HDN1-QC6(E)

7. Installation details

7.1 Wrench torque sheet for installation

Ou	Torque	
mm	mm inch	
Ф6.35	1/4	1.8
Ф9.52	3/8	4.2
Ф12.7	1/2	5.5
Ф15.88	5/8	6.6
Ф19.05	3/4	6.6


7.2 Connecting the cables


The power cord of connect should be selected according to the following specifications sheet.

	Grade			
Unit	7K	9K	12K	
mm ²	1.0	1.0	1.5	

7.3 Pipe length and the elevation

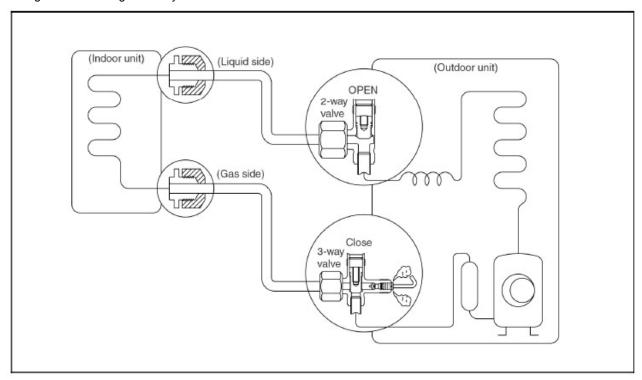
Capacity	Pipe size		Standard	Max.	Max.	Additional
Btu/h	0	Limite	length	Elevation	Elevation	refrigerant
Dtu/II	Gas Liquid	(m)	B (m)	B (m)	(g/m)	
7k~12K	3/8" (Ф9.52)	1/4" (Ф6.35)	5	5	10	30
7 K~ 12K	1/2" (Ф12.7)	1/4" (Ф6.35)	5	5	10	30
	1/2" (Ф12.7)	1/4" (Ф6.35)	5	8	15	30
18K~28K	5/8" (Ф15.88)	1/4" (Ф6.35)	5	10	20	30
	5/8" (Ф15.88)	3/8" (Ф9.52)	5	10	20	65

Caution:

Capacity is base on standard length and maximum allowance length is base of reliability.

Oil trap should be install per 5-7 meters.

7.4 Air purging of the piping and indoor unit


Required tools:

Hexagonal wrench; adjustable wrench; torque wrenches, wrench to hold the joints and gas leak detector.

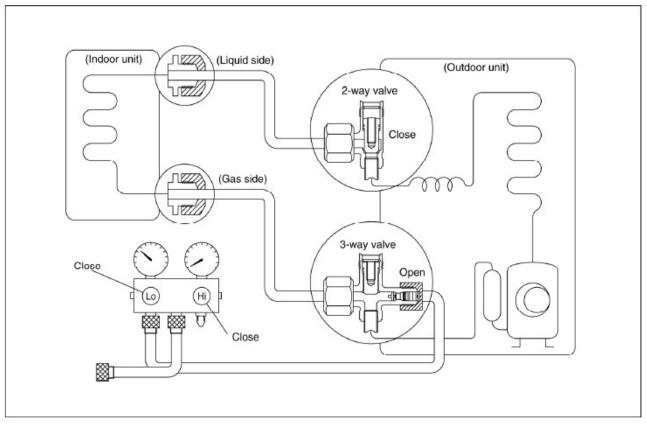
Note:

The air in the indoor unit and in the piping must be purged. If air remains in the refrigeration piping, it will affect the compressor, reduce the cooling capacity, and could lead to a malfunction of unit.

Be sure, using a torque wrench to tighten the service port cap (after using the service port), so that it prevents the gas leakage from the refrigeration cycle.

Procedure

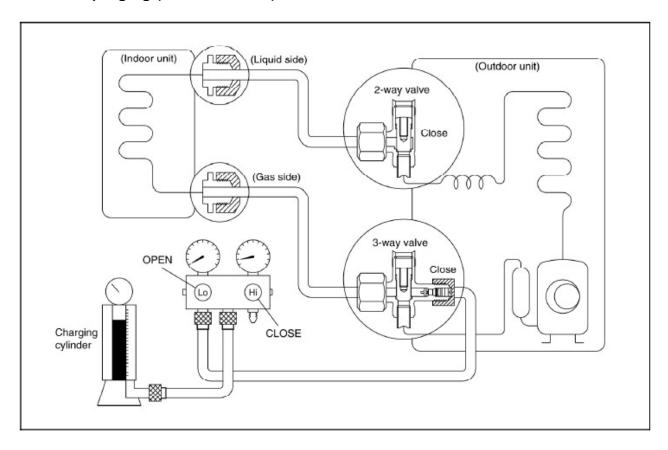
- 1. Recheck the piping connections.
- Open the valve stem of the 2-way valve counterclockwise approximately 90', wait 10 seconds, and then set it to closed position.
 Be sure to use a hexagonal wrench to operate the valve stem.
- Check for gas leakage.
 Check the flare connection for gas leakage
- 4. Purge the air from the system. Set the 2-way valve to the open position and remove the cap from the 3-way valve's service port.
 - Using the hexagonal wrench to press the valve core pin, discharge for three seconds and then wait for one minute.
- 5. Use torque wrench to tighten the service port cap to a torque of 1.8 kg.m. (18n.m)
- 6. Set the 3-way valve to the opened position.


- Mounted the valve stem nuts to the 2-way and 3-way valves.
- Check for gas leakage.
 At this time, especially check for gas leakage from the 2-way and 3-way stem nuts, and from the service port.

Caution:

If gas leakage is discovered in step (3) above, take the following measures.

If the leaks stop when the piping connections are tightened further, continue working from step (4). If the gas leaks do not stop when the connections are retightened, repair the location of the leak, discharge all of the gas through the service port, and then recharge with the specified amount of gas from a gas cylinder.


7.5 Pumping down (Re-installation)

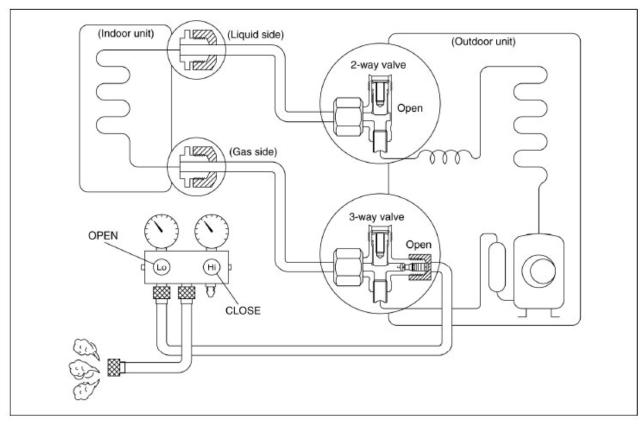
Procedure

- 1. Confirm that both the 2-way and 3-way valves are set to the opened position.
 - Remove the valve stem caps and confirm that the valve stems are in the opened position.
 - Be sure to use a hexagonal wrench to operate the valve stems.
- 2. Operate the unit for 10 to 15 minutes.
- 3. Stop operation and wait for 3 minutes, then connect the charge set to the service port of the 3-way valve. Connect the charge hose with the push pin to the gas service port.
- 5. Air purging of the charge hose.
 - Open the low-pressure valve on the charge set slightly to purge air from the charge hose.
- 6. Set the 2-way valve to the close position.
- 7. Operate the air conditioner at the cooling cycle and stop it when the gauge indicates 0.1MPa.
- 8. Immediately set the 3-way valve to the closed position.
 - Do this quickly so that the gauge ends up indicating 0.3 to 0.5Mpa.
 - Disconnect the charge set, and amount the 2-way and 3-way valve's stem nuts and service port caps.
 - Use a torque wrench to tighten the service port cap to a torque of 1.8 kg.m.
 - Be sure to check for gas leakage.

7.6 Re-air purging (Re-installation)

Procedure:

- 1. Confirm that both the 2-way and 3-way valves are set to the closed position.
- 2. Connect the charge set and a charging cylinder to the service port of the 3-way valve. Leave the valve on the charging cylinder closed.
- 3. Air purging.

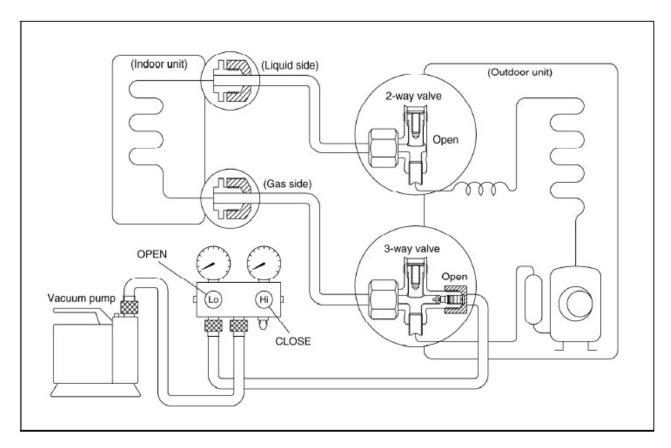

Open the valves on the charging cylinder and the charge set. Purge the air by loosening the flare nut on the 2-way valve approximately 45' for 3 seconds then closing it for 1 minutes; repeat 3 times.

After purging the air, use a torque wrench to tighten the flare nut to on the 2-way valve.

- 4. Check the gas leakage.
 - Check the flare connections for gas leakage.
- 5. Discharge the refrigerant.
 - Close the valve on the charging cylinder and discharge the refrigerant until the gauge indicate 0.3 to 0.5 Mpa.
- 6. Disconnect the charge set and the charging cylinder, and set the 2-way and 3-way valves to the open position.

 Be sure to use a hexagonal wrench to operate the valve stems.
- 7. Mount the valve stems nuts and the service port cap.
 - Be sure to use a torque wrench to tighten the service port cap to a torque 18N.m.
 - Be sure to check the gas leakage.

7.7 Balance refrigerant of the 2-way, 3-way valves

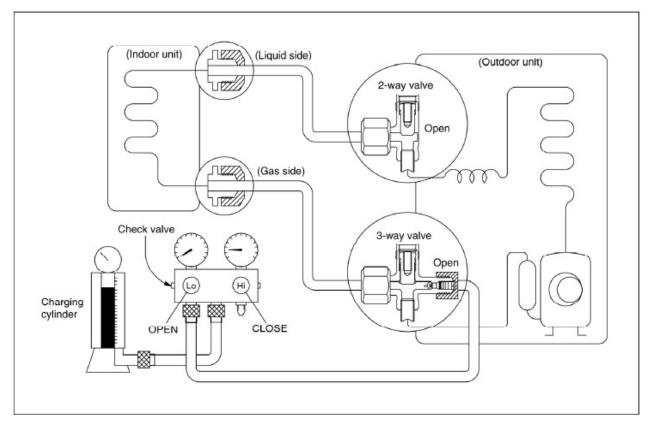

Procedure:

- 1. Confirm that both the 2-way and 3-way valves are set to the open position.
- 2. Connect the charge set to the 3-way valve's service port.
 - Leave the valve on the charge set closed.
 - Connect the charge hose with the push pin to the service port.
- 3. Open the valves (Low side) on the charge set and discharge the refrigerant until the gauge indicates 0.05 to 0.1Mpa.

If there is no air in the refrigeration cycle [the pressure when the air conditioner is not running is higher than 0.1Mpa, discharge the refrigerant until the gauge indicates 0.05 to 0.1 Mpa. If this is the case, it will not be necessary to apply a evacuation.

Discharge the refrigeration gradually; if it is discharged too suddenly, the refrigeration oil sill be discharged.

7.8 Evacuation



Procedure:

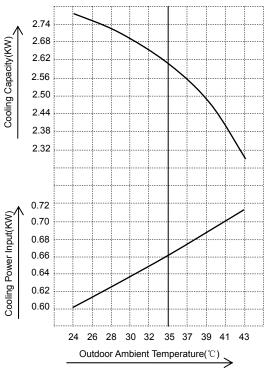
- 1. Connect the vacuum pump to the charge set's centre hose.
- 2. Evacuation for approximately one hour.

 Confirm that the gauge needle has moved toward -0.1 Mpa (-76 cmHg) [vacuum of 4 mmHg or less].
- 3. Close the valve (Low side) on the charge set, turn off the vacuum pump, and confirm that the gauge needle does not move (approximately 5 minutes after turning off the vacuum pump).
- Disconnect the charge hose from the vacuum pump.
 Vacuum pump oil, if the vacuum pump oil becomes dirty or depleted, replenish as needle.

7.9 Gas charging

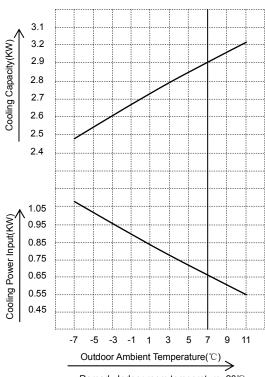
Procedure:

- Connect the charge hose to the charging cylinder.
 Connect the charge hose which you disconnected from the vacuum pump to the valve at the bottom of the cylinder.
- Purge the air from the charge hose.Open the valve at the bottom of the cylinder and press the check valve on the charge set to purge the air (be careful of the liquid refrigerant).
- 3. Open the valves (Low side) on the charge set and charge the system with liquid refrigerant.

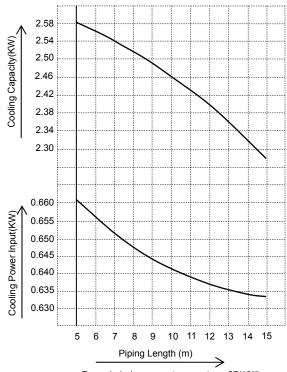

 If the system cannot be charge with the specified amount of refrigerant, if can be charged with a little at a time (approximately 150g each time0 while operating the air conditioner in the cooling cycle; however, one time is not sufficient, wait approximately 1 minute and then repeat the procedure (pumping down-pin).
- 4. Immediately disconnect the charge hose from the 3-way valve's service port.
 Stopping partway will allow the refrigerant to be discharged.
 If the system has been charged with liquid refrigerant while operating the air conditioner, turn off the air conditioner before disconnecting the hose.
- Mounted the valve stem caps and the service port
 Use torque wrench to tighten the service port cap to a torque of 18N.m.

 Be sure to check for gas leakage.

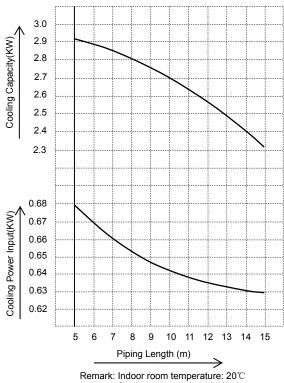
8. Operation characteristics


8.1 MSC-09HRDN1-QD0(E)

Cooling Characteristics

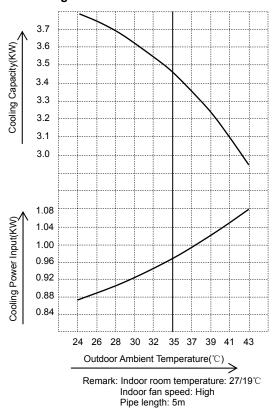

Remark: Indoor room temperature: 27/19°C Indoor fan speed: High Pipe length: 5m

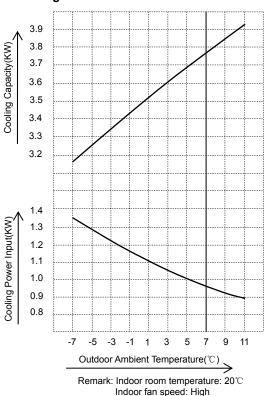
Heating Characteristics


Remark: Indoor room temperature: 20°C Indoor fan speed: High Pipe length: 5m

Piping Lenth Characteristics(Cooling)

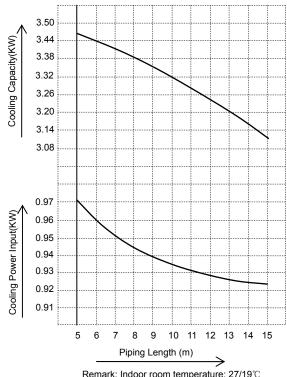
Remark: Indoor room temperature: 27/19°C Outdoor temperature: 35°C Indoor fan speed: High


Piping Lenth Characteristics(Heating)

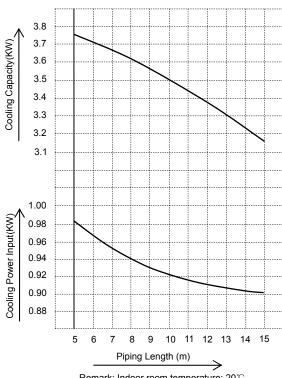

Remark: Indoor room temperature: 20℃ Outdoor temperature: 7/6℃ Indoor fan speed: High

8.2 MSC-12HRDN1-QC6(E)

Cooling Characteristics

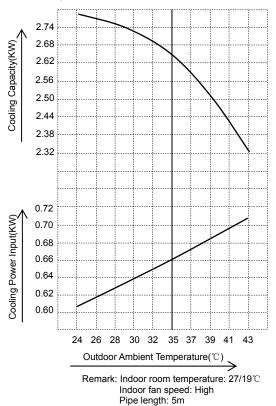


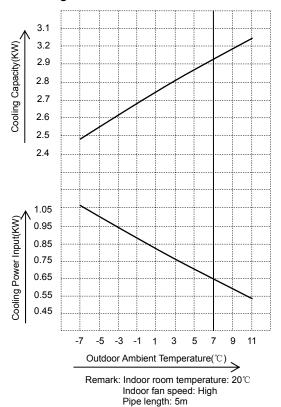
Heating Characteristics


Pipe length: 5m

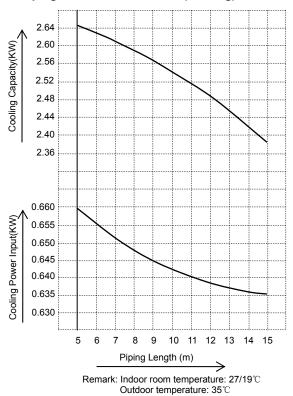
Piping Lenth Characteristics(Cooling)

Remark: Indoor room temperature: 27/19°C Outdoor temperature: 35°C Indoor fan speed: High

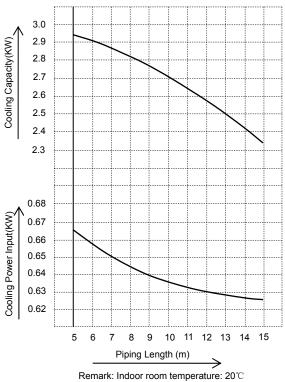

Piping Lenth Characteristics(Heating)


Remark: Indoor room temperature: 20 $^{\circ}$ C Outdoor temperature: 7/6 $^{\circ}$ C Indoor fan speed: High

8.3 MSH-09HRDN1-QD0(E)

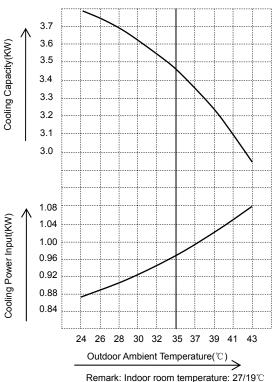

Cooling Characteristics

Heating Characteristics

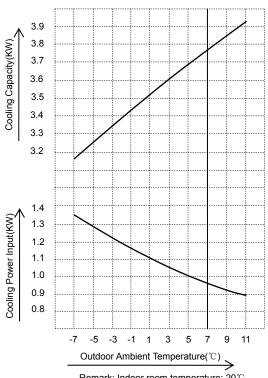


Piping Lenth Characteristics(Cooling)

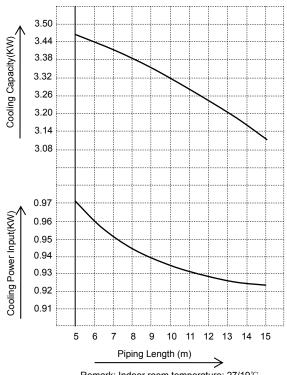
Piping Lenth Characteristics(Heating)


Indoor fan speed: High

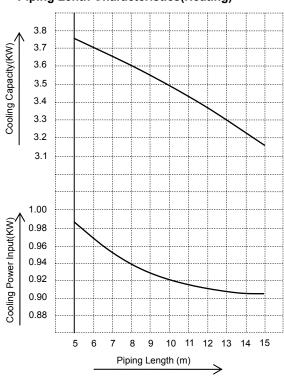
Remark: Indoor room temperature: 20°C Outdoor temperature: 7/6°C Indoor fan speed: High


8.4 MSH-12HRDN1-QC6(E)

Cooling Characteristics


Remark: Indoor room temperature: 27/19°C Indoor fan speed: High Pipe length: 5m

Heating Characteristics

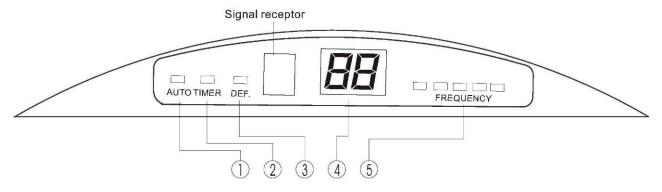

Remark: Indoor room temperature: 20°C Indoor fan speed: High Pipe length: 5m

Piping Lenth Characteristics(Cooling)

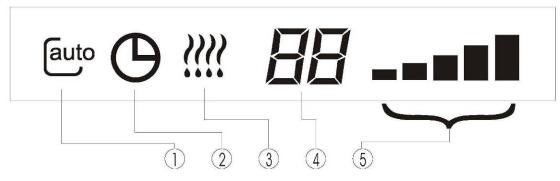
Remark: Indoor room temperature: 27/19°C Outdoor temperature: 35°C Indoor fan speed: High

Piping Lenth Characteristics(Heating)

Remark: Indoor room temperature: 20 °C Outdoor temperature: 7/6 °C Indoor fan speed: High


9. Electronic function

9.1 Abbreviation


- T1: Indoor ambient temperature
- T2: Pipe temperature of indoor heat exchanger
- T3: Pipe temperature of outdoor heat exchanger
- T4: Outdoor ambient temperature

9.2 Display function

9.2.1 Icon explanation on indoor display board.

MSC-09HRDN1-QD0(E) MSC-12HRDN1-QC6(E)

MSH-09HRDN1-QD0(E) MS

MSH-12HRDN1-QC6(E)

① Auto indication

This indicator illuminates when the air conditioner is in AUTO operation.

2 Timer indicator

This indicator illuminates when TIMER is set ON/OFF.

③ PRE.-DEF. Indicator (For Cooling & Heating models only)

This indicator illuminates when the air conditioner starts defrosting automatically or when the warm air control feature is activated in heating mode.

4 TEMPERATURE indicator

Usually it displays the temperature settings. When change the setting temperature, this indicator begins to flash, and stops 20 seconds later.

It displays the room temperature when the air conditioner is in FAN only operation, and the range of that is $0\sim50\,^{\circ}$ C. When the unit stops operation, it returns to original factory settings.

Displays the malfunction code or protection code.

⑤ Frequency indicator

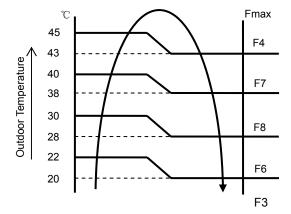
This indicator appears only when the compressor is in operation and indicates the current operating frequency.

- 9.2.2 LED display control function.
 - Pressing "LED display" button on remote controller will turn off all displays on indoor unit, while pressing once again, all displays will resume.
- 9.2.3 Display function in outdoor unit.

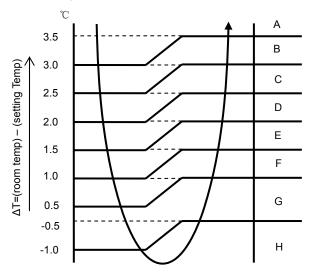

9.3 Protection

- 9.3.1 Three Minutes Delay at restart for compressor.
- 9.3.2 Temperature protection of compressor top.
- 9.3.3 If the temperature of compressor top is too high(higher than 115°C and the Over-load Protector is cut, the units stop. When the Over-load Protector restore and close(lower than 100°C), the compressor will restart(in this case the compressor is restricted by Three Minutes Delay protection.
- 9.3.4 Temperature protection of compressor exhaust.
 - a) Initialize temperature of compressor as Tex, if 108<Tex<115°C, the speed of compressor will be restrict and descend one grade every 3 minutes till 1870rpm for 9K(1829rpm for 12K), then the speed will not be changed until Tex<105°C. When Tex<90°C, the restriction can be released.
 - b) If Tex≥115°C for 5 seconds, the compressor will stop, and the units can not restart until Tex<90°C.
- 9.3.5 Inverter module Protection, Inverter module Protection itself has a protection function against current, voltage and temperature. If these protections happened, the the corresponding code will display on indoor unit LED.
- 9.3.6 Sensor protection at open circuit and breaking disconnection
- 9.3.7 Fan Speed is out of control. When Indoor Fan Speed is too low (lower than 300RPM for 60 seconds), the unit stops and LED displays failure information and can't return to normal operation automatically.
- 9.3.8 Cross Zero signal error warning. If there are 20 alternations of Cross Zero signals are incorrect, the unit stops and LED displays failure information. After resuming, the motor rotates again. The spacing of Cross Zero signal is 6-13ms.
- 9.3.9 Indoor fan delayed open function
- 9.3.10 For all modes, when the units are turned on, the indoor fan can operate 10 seconds after the action of louver.
- 9.3.11 Compressor preheating function.compressor heating cable.
 - 1) Preheating permitting condition:
 - After OPMR (Outdoor Power Main Relay) closing, if T4(outdoor ambient temperature) $< 3^{\circ}\mathbb{C}$ and the machine connects to power supply newly or if T4 $< 3^{\circ}\mathbb{C}$ and compressor has stopped for over 3 hours, the compressor heating cable will work.
 - 2) Preheating mode:
 - A weak current flows through the coil of compressor from the wiring terminal of compressor, then the compressor is heated without operation.
 - 3) Preheating release condition:
 - If T4>5 $^{\circ}$ C or user turns on the machine and compressor runs, preheating function will stop.
- 9.3.12 Compressor heating cable
 - If outdoor temperature(sensed by outdoor thermostat) is lower than 5° , the thermostat closes and compressor heating cable begins to work. If outdoor temperature is higher than 15° , the thermostat opens and compressor heating cable stopping working.

9.4 Fan-Only Mode

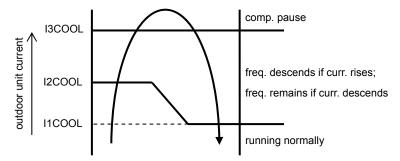

- 9.4.1 In fan-only mode, compressor and outdoor fan keep off. For the action of 4-way valve please refer the passage 9.10.
- 9.4.2 Temperature setting function is disabled, and no setting temperature display.

- 9.4.3 In this mode, the action of louver is the same as in cooling mode.
- 9.4.4 The action of auto fan in fan-only mode is the same as auto fan in cooling mode with 24°C setting temperature.



9.5 Cooling Mode

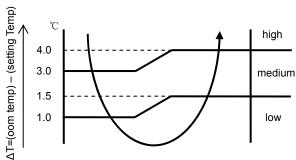
- 9.5.1 In this mode, for the action of 4-way valve please refer the passage 9.10.
- 9.5.2 The maximum starting and operation frequency decided by outdoor ambient temperature.
 - If the machine is turned on in cooling mode with controller, after start compressor runs as cooling maximum frequency, viz. the target start frequency is Fmax, and within 7 minutes, frequency limit caused by the difference between room temperature and setting temperature is disabled. During this period, frequency limit and pause caused by protection is available. After this 7 minutes, the operation rule is as the third point.



2) If the machine stops and then resarts caused by protection and frequency limit or reachs setting temperature, the start frequency is as following rule.

Temp. Zone	Α	В	С	D	Е	F	G	Н
Start Freq.	F8	F8	F7	F6	F5	F3	F1	F0

- 9.5.3 After start the operation frequency of compressor submits to following rule.
 - 1) When the machine is running and ΔT (=room temp. setting temp.) changes, the frequency will rise or descend a grade(maximum frequency is F8 in cooling mode, if current frequency is F1, it will not descend even ΔT is reduced) (after 7 minutes).
 - 2) After start, if ΔT stays in a zone for 3 minutes, the frequency will change as follow:
 - Zone A E: Current frequency rise a grade(F8 is excluded) till F8.
 - Zone F: Keep current frequency invariable.
 - Zone G: Current frequency descend s grade(F1 is excluded).
 - Zone H: Compressor stops after running as F1 for 60 minutes or ΔT is less than -2°C.
- 9.5.4 Indoor heat exchanger anti-freezing function.
 - If T2(indoor heat exchanger temperature) gets down to be lower than 4° C, frequency will descend every one grade for 1 minute(till F0), and this action will not stop until $4 \le T2 \le 6^{\circ}$ C. If T2 gets up to be higher than 7° C, the limit will be released. If T2 is lower than 0° C, the compressor stops and resumes when T2>5 $^{\circ}$ C.
- 9.5.5 Outdoor unit current control in cooling mode(refer to the parameter table)



- Remark: a) The frequency descending is based on current grade, and judges if d escending again or resuming every 2 minutes.
 - b) If the current descends and stays at frequency remaining zone for 3 minutes, the frequency will rise a grade. After 3 minutes if stays at this zone still, the frequency will rise a grade again.

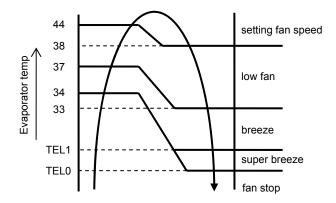
9.5.6 Rating capacity test function

- 1) Set the indoor unit with remote controller as: high fan, 17℃ in cooling mode, then press "TURBO" button on controller 6 times or more within 10 seconds(make sure indoor unit receives these signals), the machine will turn into rating capacity test mode, the buzzer will make a "di" sound for 2 seconds continuously. Also, indoor fan will change to rating speed(<u>RACFAN</u>), the frequency of compressor will be fixed as rating value(<u>RATIFC</u>). Any condition of above is not satisfied, the machine can not be turned into rating capacity test mode.
- 2) The machine will quit from the rating capacity test mode if running for 5 hours or changing fan speed or setting temperature.
- 3) In this mode, if anti-freezing protection or start and operation frequency limit caused by general protection occurs, compressor will not run as rating frequency any more, but indoor fan will still run as rating speed. When the frequency limit is released, the machine will resume rating capacity test. If the machine stops caused by protection in this test mode, after release, it can not turn back to the mode automatically again.
- 9.5.7 Turbo function(press the "TURBO" button on remote controller)
 - 1) Elevate current frequency(lower than F8) to a higher grade.
 - 2) Indoor fan turns to turbo speed.
 - 3) In turbo mode, general protection, maximum frequency limit, anti-freezing protection for evaporator and high temp. protection for condenser is valid.
 - 4) After running for 30 minutes the machine will turn back to previous setting mode.
 - 5) In non-turbo mode, press "TURBO" button on controller will switch current mode to turbo mode, if user press this button again, the machine will turn back to previous setting mode.

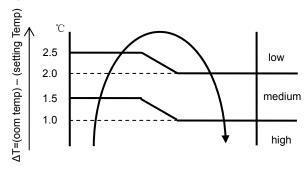

- 6) In turbo mode, turning off the units or switching running mode will make the machine quit turbo mode.
- 9.5.8 Indoor fan operation rule.
 - In cooling mode, indoor fan runs all the time and the speed can be selected as high, medium, low and auto.
 - 2) Auto fan in cooling mode acts as follow:

- 9.5.9 Condenser high temperature protection function(in cooling and drying mode)
 - If T3(condenser pipe temperature) satisfies: 55<T3<60℃, frequency of compressor
 will be limited immediately, it will descend one grade every 3 minutes till F1 and then run at this grade. If 52≤T3
 <54℃, the frequency will not descend and stay at current grade.
 - 2) If T3<52°C, frequency limit will be released and resume to previous grade.
 - 3) If T3>60°C for 5 seconds, compressor will stop immediately, and the machine will not resume until T3<52°C.

9.6 Drying mode

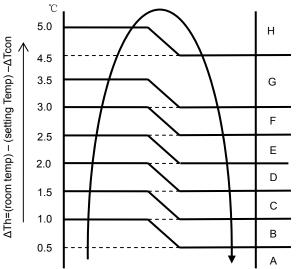

- 9.6.1 In this mode, for the action of 4-way valve please refer the passage 9.10.
- 9.6.2 Indoor fan speed is fixed at breeze grade and can't be changed. The horizontal angle is the same as in cooling mode.
- 9.6.3 Compressor action rule:

- 9.6.4 Room overlow temperature protection
 - In drying mode, if room temperature is lower than 10° C, compressor will stop and not resume until room temperature climbs up to 12° C.
- 9.6.5 Evaporator anti-freezing protection, condenser high temperature protection and outdoor unit frequency limit are valid, and they are the same as that in cooling mode.
- 9.6.6 Horizontal louver action is the same as that in cooling mode.

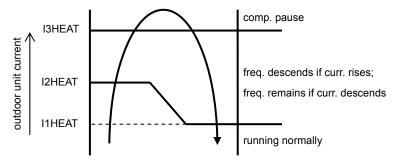

9.7 Heating mode

- 9.7.1 In this mode, for the action of 4-way valve please refer the passage 9.10.
- 9.7.2 For outdoor fan action, please refer to the passage 9.11.
- 9.7.3 Indoor fan action:
 - 1) Anti-cold-wind function.

- 2) If the compressor stops caused by room temperature rising, indoor fan will be forced to run 127 seconds with breeze. During this period, anti-cold-wind is disabled. After this, anti-cold –wind function is available.
- 3) If the machine runs in rating capacity test mode, indoor fan runs with rating speed, and anti-cold-wind is disabled.
- 9.7.4 Indoor fan speed can be set as high, medium, low or auto grade,but anti-cold-wind function is preferential.


 Auto fan action in heating mode.

- 9.7.5 Running rule of compressor after start:
 - 1) After start in heating mode with remote controller, compressor runs at the highest grade Fmax, and frequency limit caused by ΔT(=room temperature setting temperature) is disabled within initial 7 minutes, but the pause of machine and frequency limit caused by protection is valid. After this, frequency changing rule is as the seventh item.
 - 2) If the machine pauses caused by protection, frequency limit or room temperature meeting setting value and then resarts, the start frequency of compressor is set as follow and without 7 minutes limit.
- 9.7.6 After start the operation frequency of compressor submits to following rule:
 - 1) If temperature(Δ Th) zone changes, frequency of compressor will rise or descend one grade, and the maximum frequency is F10, the minimum is F1. This item is valid after the machine start and running for 7 minutes.
 - 2) When the machine runs, if Δ Th stays in a zone for 3 minutes, action of frequency is as follow:
 - Zone A E: Elevate current frequency(excluding F10) one grade, and not stop until Fmax.
 - Zone F: Keep current frequency invariable.
 - Zone G: Descend current frequency(excluding F1) one grade.
 - Zone H: Compressor stops after running with F1 for 60 minutes or when $\Delta Th > 6^{\circ}C$.
 - 3) Temperature difference (Δ Tcon) choice.


After power on, the machine will self-diagnose, and if there are no J1 and J2 jump wires, ∆Tcon will be set as 0°C.

J1	on	on	off	off
J2	on	off	on	off
ΔTcon(°C)	0	-4	-2	0

Remark: $\Delta T con$ can be changed among 0, -2,- $4\,^\circ\! C$, the default is $0\,^\circ\! C$

9.7.7 Outdoor unit current control in heating mode.

- 1) The frequency descending is based on current grade, and judges if descending again or resuming every 2 minutes.
- 2) If the current descends and stays at frequency remaining zone for 3 minutes, the frequency will rise a grade. After 3 minutes if stays at this zone still, the frequency will rise a grade again.
- 9.7.8 Indoor heat exchanger high temperature protection.
 - If T2><u>TEH2</u>°C, compressor frequency will be descended one grade every 20 seconds. When it drops to F2, if T2 is still higher than <u>TEH2</u>°C and remains 3 minutes, the compressor will stop.
 - 2) If T2 descends to be lower than 48° C, or remains between 48° C to <u>TEH2</u>°C for 6 minutes, frequency limit will be released.
 - 3) If T2>60°C, the compressor will stop and not resume until T2<48°C.
- 9.7.9 Defrosting mode.
 - 1) Condition of defrosting.

Condition 1. If $T4>0^{\circ}C$,

When the units are running, if the following two items are satisfied the units start defrosting:

- a) The units runs with T3<3℃ for 40 minutes and T3 keeps lower than **TCDI**℃ for more than 3 minutes.
- b) The units runs with T3<3 $^{\circ}$ C for 80 minutes and T3 keeps lower than (**TCDI**+2) $^{\circ}$ C for more than 3 minutes.

Remark: The above means that when T3 is lower than 3° C PCB begins to time, if T3 is lower than start temperature for 3 minutes, the machine starts defrosting. Here start temperature are **TCDI** $^{\circ}$ C and **(TCDI+2)** $^{\circ}$ C.

Condition 2. If $T4 < 0^{\circ}C$,

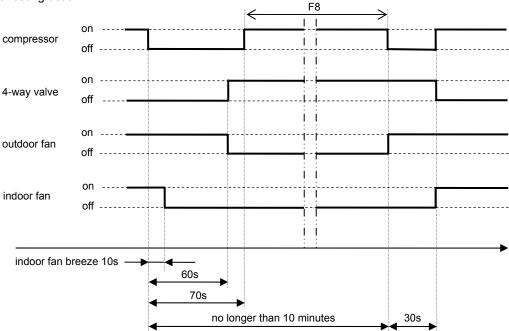
The program judges according to the condition 1, if the two items are satisfied, then judges if T2 has descended for more than 5° C, if it has the machine starts defrosting, or continues to judge T2 and will not defrost until T2

drops more than 5°C.

T2 initial record:

- a) In anti-cold-wind control, if indoor fan is setting speed, T2 will be recorded after 5 minutes of reaching setting temperature.
- b) In anti-cold-wind control, if indoor fan is low speed, breeze or fan pause, the maximum value of T2 will be recorded in this process.

Condition 3. No matter what value T4 is, if the machine runs with T3<3°C for more than 120 minutes and T3 keeps lower than ($\underline{\text{TCDI}}$ +4) °C for more than 3 minutes, the machine will defrost, no matter if T2 drops for more than 5°C or not.


Remark: That means that no matter what condition is, only when $T3 < 3^{\circ}$ C PCB begins to time, if the machine runs for more than 120 minutes and T3 keeps lower than start temperature(<u>TCDI</u>+4) for 3 minutes, it begins to defrost and are not restricted by T2.

2) Condition of ending defrosting.

If any one of following items is satisfied, defrosting will finish and the machine will turn to normal heating mode.

- a) T3 rises to be higher than **TCDE1** °C.
- b) T3 rises to be higher than **TCDE2**°C and remains for 80 seconds.
- c) The machine has run for 10 minutes in defrosting.

9.7.10 Defrosting action.

9.7.11 Rating capacity test function.

- 1) Set the indoor unit with remote controller as: high fan, 30°C in heating mode, then press "TURBO" button on controller 6 times or more within 10 seconds(make sure indoor unit receives these signals), the machine will turn into rating capacity test mode, the buzzer will make a "di" sound for 2 seconds continuously. Also, indoor fan will change to rating speed(<u>RAHFAN</u>), the frequency of compressor will be fixed as rating value(<u>RATIFH</u>). Any condition of above is not satisfied, the machine can not be turned into rating capacity test mode.
- 2) The machine will quit from the rating capacity test mode if running for 5 hours or changing fan speed or setting temperature.
- 3) In this mode, if indoor heat exchanger high temperature protection or start and operation frequency limit caused by general protection occurs, compressor will not run as rating frequency any more, but indoor fan will still run as rating speed. When the frequency limit is released, the machine will resume rating capacity test. If

the machine stops caused by protection in this test mode, after release, it can not turn back to the mode automatically again.

Thereinto indoor heat exchanger high temperature protection function is changed as follow:

- a) If T2>58℃, compressor frequency will be descended one grade every 20 seconds. When it drops to F2, if T2 is still higher than 58℃ and remains 3 minutes, the compressor will stop.
- b) If T2 descends to be lower than 48°C, frequency limit will be released.
- c) If T2>60 $^{\circ}$ C, the compressor will stop and not resume until T2<48 $^{\circ}$ C.
- 9.7.12 Turbo function in heating mode. (press the "TURBO" button on remote controller)
 - Elevate current frequency(excluding F8) to a higher grade. If indoor fan is in low speed or pause caused by defrosting or anti-cold-wind function, frequency of compressor will not be elevated one grade until these limit has been released.
 - 2) Indoor fan changes to turbo speed and anti-cold-wind function is valid.
 - 3) In turbo mode, general protection, maximum frequency limit, indoor heat exchanger high temperature protection is valid.
 - 4) After running for 30 minutes the machine will turn back to previous setting mode.
 - 5) In non-turbo mode, press "TURBO" button on controller will switch current mode to turbo mode, if user press this button again, the machine will turn back to previous setting mode.
 - 6) In turbo mode, turning off the machine or switching running mode will make the machine quit turbo mode.

9.8 Auto mode function

9.8.1 This mode can be chosen with remote controller and the setting temperature can be changed between $17\sim30^{\circ}$ C. In auto mode, the machine will choose cooling, heating or fan-only mode according to $\Delta T(\Delta T = T1-Ts)$.

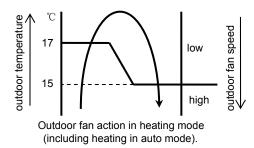
ΔT=T1-Ts	Running mode
ΔT>1°C	Cooling
-1 ≤ΔT≤1 ℃	Heating
ΔT<-1°C	Fan-only

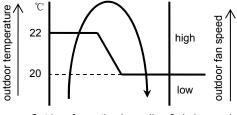
- 9.8.2 Indoor fan will choose auto speed of relevant mode.
- 9.8.3 The louver action is the same as that in relevant mode.
- 9.8.4 If the machine switches mode between heating and cooling, compressor will keep stopping for 15 minutes and then rechoose mode according to ΔT .
- 9.8.5 If the setting temperature is modified, the machine will rechoose running function.
- 9.8.6 Turbo function in this mode is the same as that in relevant mode.

9.9 Forced operation function

- 9.9.1 Forced cooling and auto function can carry out with a touch button. In these two modes, the machine can be changed by remote controller to any other mode at any moment.
- 9.9.2 When the machine is off, pressing the touch button will carry the machine to forced auto mode, after this, if pressing the button once again within 5 seconds, the machine will turn into forced cooling mode. In forced auto, forced cooling or any other operation mode, pressing touch button will turn off the machine. In forced operaton, remote control is available.
- 9.9.3 In forced operation mode, all general protections is available.
- 9.9.5 In forced cooling mode, compressor frequency is fixed at F2, indoor fan is at freeze grade, anti-frozen, outdoor unit current protection and maximum start and running frequency limit caused by outdoor temperature are valid.

 After running for 30 minutes.the machine will turn to normal auto mode which setting temperature is 24°C.


9.9.6 The action of forced auto mode is the same as normal auto mode which temperature is 24°C.


9.10 Action of 4-way valve

In heating, fan-only, standby or turning off mode, 4-way valve is off, while in cooling or drying mode 4-way valve is on. If the machine changes operation mode from cooling or drying mode to some other mode, 4-way valve will be delayed off 2 minutes after compressor stop. For defrosting, please refer to the passage "defrosting mode".

9.11 Two speeds outdoor fan function

- 9.11.1 Outdoor fan starts at the same time with compressor, but stops 30 seconds later after compressor stop.
- 9.11.2 Outdoor fan action in heating mode(including heating in auto mode).

Outdoor fan action in cooling & drying mode (including cooling in auto & forced mode).

9.11.3 Outdoor fan action in cooling & drying mode(including cooling in auto & forced mode).
Please refer to the pic. above.

9.12 Timer function

- 9.12.1 Timing range is 24 hours, and the minimum resolution is 15 minutes.
- 9.12.2 Timer on. After turning off, the machine will turn on automatically when reaching the setting time.
- 9.12.3 Timer off. After turning on, the machine will turn off automatically when reaching the setting time.
- 9.12.4 Timer on/off. After turning off, the machine will turn on automatically when reaching the setting "on" time, and then turn off automatically when reaching the setting "off" time.
- 9.12.5 Timer off/on. After turning on, the machine will turn off automatically when reaching the setting "off" time, and then turn on automatically when reaching the setting "on" time.
- 9.12.6 The tolerance of timer is 1 minute per hour.

9.13 Sleep function mode

- 9.13.1 Operation time in sleep mode is 7 hours. After 7 hours the machine quits this mode and turns off.
- 9.13.2 In cooling, heating or auto mode sleep function is available.
- 9.13.3 Operation process in sleep mode is as follow:
 - 1) After pressing ECONOMIC or SLEEP button on controller, the machine will turn into sleep mode.
 - 2) When cooling, the setting temperature rises 1°C(be lower than 30°C) every one hour, 2 hour later the rising stops and indoor fan is fixed as low speed.
 - 3) When heating, the setting temperature descends 1°C(be lower than 30°C) every one hour, 2 hour later the descending stops and indoor fan is fixed as low speed, and anti-cold-wind is available.
- 9.13.4 If user uses timer on function in sleep mode, sleep function will pause and not resume until reaches the setting on time.
- 9.13.5 When user uses timer off function in sleep mode(or sleep function in timer off mode), if the timing time is less than 7 hours, sleep function will be cancelled when reaching the setting time. If the timing time is more than 7 hours, the machine will not stop until reaches the setting off time in sleep mode.

9.14 Electronic control parameter

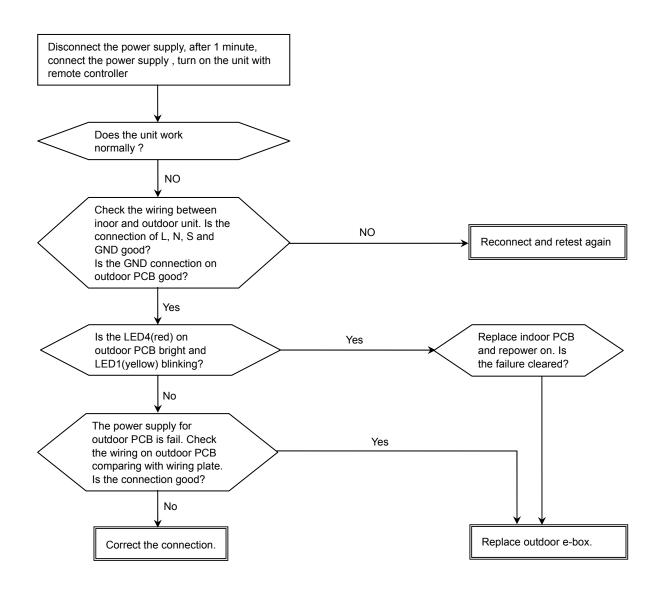
N			MSC-09HRD	MSC-12HRD
о.	Parameter	Parameter Explanation	N1	N1
1	RATIFC	Cooling Rating Frequency (HZ)	41	56
2	RATIFH	Heating Rating Frequency (HZ)	43	57
3	SLEEPTIMC	Sleep Time(Hour)	7	7
4	FANCSHIGH	Turbo Speed in Cooling (rpm)	1200	1250
5	FANHSHIGH	Turbo Speed in Heating (rpm)	1300	1300
6	FANCHIGH	High Fan in Cooling (rpm)	1150	1250
7	FANHHIGH	High Fan in Heating (rpm)	1250	1300
8	FANMID	Medium Fan(rpm)	1000	1060
9	FANLOW	Low Fan(rpm)	800	800
10	FANSLOW	Breeze(rpm)	700	700
11	F1	Running Frequency (HZ)	32	31
12	F2	Running Frequency (HZ)	32	40
13	F3	Running Frequency (HZ)	35	48
14	F4	Running Frequency (HZ)	38	53
15	F5	Running Frequency (HZ)	41	59
16	F6	Running Frequency (HZ)	44	64
17	F7	Running Frequency (HZ)	55	72
18	F8	Running Frequency (HZ)	62	76
19	F9	Running Frequency (HZ)	72	79
20	F10	Running Frequency (HZ)	76	82
21	I1COOL	Current of Releasing Freq. Limit in	4.5	5.2
22	I2COOL	Protection Current of Freq. Limit in	5.5	6.4
23	I3COOL	Protection Current of Stopping in Cooling(A)	6.5	7.5
24	I1HEAT	Current of Releasing Freq. Limit in	5.2	5.2
25	I2HEAT	Protection Current of Freq. Limit in	6.4	6.4
26	I3HEAT	Protection Current of Stopping in Heating(A)	7.5	7.5
27	TCDI	Starting Temp. of Defrosting(℃)	-6	-6
28	TCDE1	Exiting Temp. of Defrosting(℃)	12	12
29	RACFAN	Fan Speed in Cooling Capacity Test(rpm)	1300	1250
30	RAHFAN	Fan Speed in Heating Capacity Test (rpm)	1300	1300
31	TEH2	Freq. Limit Starting Temp. of Evap.(℃)	53	53
32	ANGLSTART	Reset Angle of Power On (°)	193	193
33	ANGLOFF	Closing Angle (°)	101	101
34	ANGLHEATMAX	Max. Angle in Heating (°)	11	11
35	ANGLHEAT	Standard Angle in Heating (°)	17	17
36	ANGLHEATMIN	Min. Angle in Heating (°)	51	51
37	ANGLSMALL	Standard Angle in Drying (°) (Not Available)	0	0
38	ANGLCOOLMAX	Max. Angle in Cooling (°)	180	180
39	ANGLCOOL	Standard Angle in Cooling (°)	176	176
40	ANGLCOOLMIN	Min. Angle in Cooling (°)	155	155
41	PARASUM0	Parameter Verifying		
42	TCDE2	Exiting Temp. of Defrosting(°C)	8	8
43	SUPSLOWFAN	Super Breeze Speed (rmp)	600	600

N			MSH-09HRD	MSH-12HRD
о.	Parameter	Parameter Explanation	N1	N1
1	RATIFC	Cooling Rating Frequency (HZ)	41	56
2	RATIFH	Heating Rating Frequency (HZ)	43	57
3	SLEEPTIMC	Sleep Time(Hour)	7	7
4	FANCSHIGH	Turbo Speed in Cooling (rpm)	1200	1250
5	FANHSHIGH	Turbo Speed in Heating (rpm)	1300	1300
6	FANCHIGH	High Fan in Cooling (rpm)	1150	1250
7	FANHHIGH	High Fan in Heating (rpm)	1250	1300
8	FANMID	Medium Fan(rpm)	1000	1060
9	FANLOW	Low Fan(rpm)	800	800
10	FANSLOW	Breeze(rpm)	700	700
11	F1	Running Frequency (HZ)	32	31
12	F2	Running Frequency (HZ)	32	40
13	F3	Running Frequency (HZ)	35	48
14	F4	Running Frequency (HZ)	38	53
15	F5	Running Frequency (HZ)	41	59
16	F6	Running Frequency (HZ)	44	64
17	F7	Running Frequency (HZ)	55	72
18	F8	Running Frequency (HZ)	62	76
19	F9	Running Frequency (HZ)	72	79
20	F10	Running Frequency (HZ)	76	82
21	I1COOL	Current of Releasing Freq. Limit in	4.5	5.2
22	I2COOL	Protection Current of Freq. Limit in	5.5	6.4
23	I3COOL	Protection Current of Stopping in Cooling(A)	6.5	7.5
24	I1HEAT	Current of Releasing Freq. Limit in	5.2	5.2
25	I2HEAT	Protection Current of Freq. Limit in	6.4	6.4
26	I3HEAT	Protection Current of Stopping in Heating(A)	7.5	7.5
27	TCDI	Starting Temp. of Defrosting(°C)	-6	-6
28	TCDE1	Exiting Temp. of Defrosting(℃)	12	12
29	RACFAN	Fan Speed in Cooling Capacity Test(rpm)	1200	1250
30	RAHFAN	Fan Speed in Heating Capacity Test (rpm)	1300	1300
31	TEH2	Freq. Limit Starting Temp. of Evap.(℃)	53	53
32	ANGLSTART	Reset Angle of Power On (°)	200	200
33	ANGLOFF	Closing Angle (°)	125	125
34	ANGLHEATMAX	Max. Angle in Heating (°)	26	26
35	ANGLHEAT	Standard Angle in Heating (°)	40	40
36	ANGLHEATMIN	Min. Angle in Heating (°)	53	53
37	ANGLSMALL	Standard Angle in Drying (°) (Not Available)	0	0
38	ANGLCOOLMAX	Max. Angle in Cooling (°)	195	195
39	ANGLCOOL	Standard Angle in Cooling (°)	180	180
40	ANGLCOOLMIN	Min. Angle in Cooling (°)	168	168
41	PARASUM0	Parameter Verifying		
42	TCDE2	Exiting Temp. of Defrosting(°ℂ)	8	8
43	SUPSLOWFAN	Super Breeze Speed (rmp)	600	600

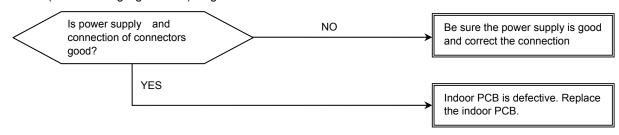
10. Troubleshooting

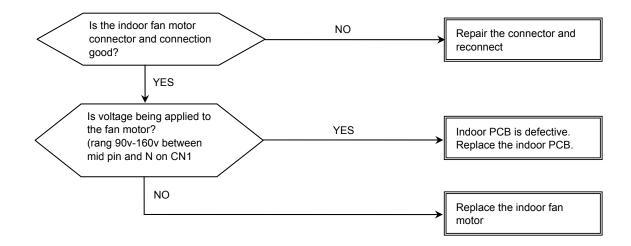
10.1 Indoor Unit Error Display

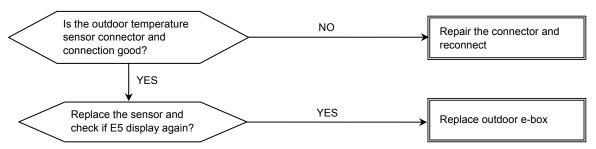
Display	LED STATUS				
E0	EEPROM parameter error				
E1	Indoor / outdoor units communication protection				
E2	Zero-crossing signal error				
E3	Fan speed out of control				
E5	Open or short circuit of outdoor temperature sensor				
E6	Open or short circuit of room or evaporator temperature sensor				
P0	IGBT over-strong current protection				
P1	Over voltage or too low voltage protection				
P2	Temperature protection of compressor top.				
P4	Inverter compressor drive error				

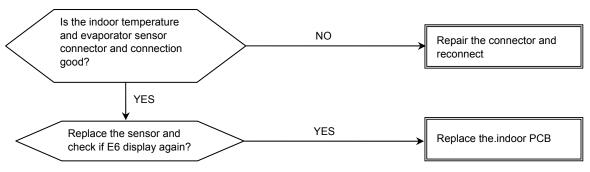

Note: E4 & P3: Reserved function

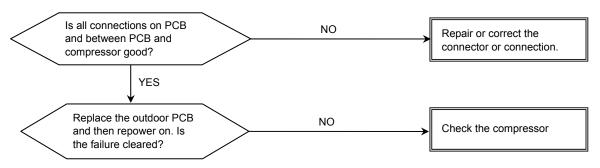
10.2 Diagnosis and Solution

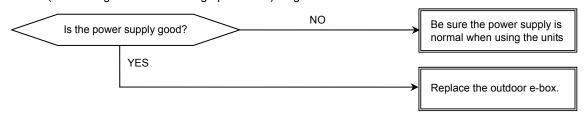

10.2.1 E0(EEPROM parameter error) error diagnosis and solution

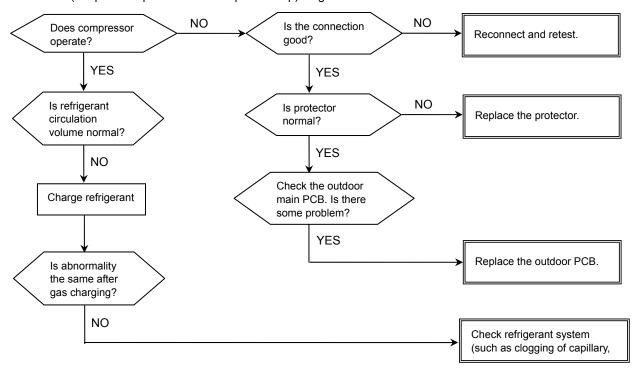

10.2.2 E1(indoor / outdoor units communication protection) error diagnosis and solution

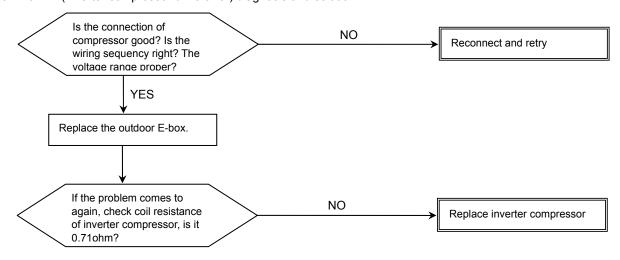

10.2.3 E2(zero-crossing signal error) diagnosis and solution


10.2.4 E3(indoor fan speed out of control) diagnosis and solution


10.2.5 E5(Open or short circuit of outdoor temperature sensor) diagnosis and solution.


10.2.6 E6(open or short circuit of room or evaporator temperature sensor) diagnosis and solution.


10.2.7 P0(IGBT over-strong current protection) diagnosis and solution.


10.2.8 P1(over voltage or too low voltage protection) diagnosis and solution.

10.2.9 P2(temperature protection of compressor top) diagnosis and solution.

10.2.10 P4(inverter compressor drive error) diagnosis and solution.

11. Characteristic of temp. sensor

Temp.	Resistance		Resistance		Resistance
°C	ΚΩ	Temp.℃	ΚΩ	Temp.℃	ΚΩ
-10	62.2756	17	14.6181	44	4.3874
-9	58.7079	18	13.918	45	4.2126
-8	56.3694	19	13.2631	46	4.0459
-7	52.2438	20	12.6431	47	3.8867
-6	49.3161	21	12.0561	48	3.7348
-5	46.5725	22	11.5	49	3.5896
-4	44	23	10.9731	50	3.451
-3	41.5878	24	10.4736	51	3.3185
-2	39.8239	25	10	52	3.1918
-1	37.1988	26	9.5507	53	3.0707
0	35.2024	27	9.1245	54	2.959
1	33.3269	28	8.7198	55	2.8442
2	31.5635	29	8.3357	56	2.7382
3	29.9058	30	7.9708	57	2.6368
4	28.3459	31	7.6241	58	2.5397
5	26.8778	32	7.2946	59	2.4468
6	25.4954	33	6.9814	60	2.3577
7	24.1932	34	6.6835	61	2.2725
8	22.5662	35	6.4002	62	2.1907
9	21.8094	36	6.1306	63	2.1124
10	20.7184	37	5.8736	64	2.0373
11	19.6891	38	5.6296	65	1.9653
12	18.7177	39	5.3969	66	1.8963
13	17.8005	40	5.1752	67	1.830
14	16.9341	41	4.9639	68	1.7665
15	16.1156	42	4.7625	69	1.7055
16	15.3418	43	4.5705	70	1.6469