

Important User Information

Because of the variety of uses for the products described in this publication, those responsible for the application and use of this control equipment must satisfy themselves that all necessary steps have been taken to assure that each application and use meets all performance and safety requirements, including any applicable laws, regulations, codes and standards.

The illustrations, charts, sample programs, and layout examples shown in this guide are intended solely for purposes of example. Since there are many variables and requirements associated with any particular installation, Allen-Bradley does not assume responsibility or liability (to include intellectual property liability) for actual use based upon the examples shown in this publication.

Allen-Bradley publication SGI-1.1, Safety Guidelines for the Application, Installation and Maintenance of Solid-State Control (available from your local Allen-Bradley office), describes some important differences between solid-state equipment and electromechanical devices that should be taken into consideration when applying products such as those described in this publication.

Reproduction of the contents of this copyrighted publication, in whole or part, without written permission of Allen-Bradley Company, Inc., is prohibited.

Throughout this manual we use conventions to make you aware of safety considerations:

ATTENTION: Identifies information about practices or circumstances that can lead to personal injury or death, property damage, or economic loss.

Attention statements help you to:

- identify a hazard
- avoid a hazard
- recognize the consequences

Important: Identifies information that is critical for successful application and understanding of the product.

ControlLogix, Logix5550, and RSLogix are trademarks of Allen-Bradley Company, Inc., a Rockwell International company.

Using This Manual	Preface	P-1
	Who Should Use This Manual	P-2 P-3 P-3 P-4 P-4
Understanding the ControlLogix	Chapter 1	1-1
Motion Control System	Understanding ControlLogix Motion Control	1-2 1-2 1-2 1-3 1-4 1-4 1-5 1-6 1-6
Installing Your Motion Module	Chapter 2	2-1
	Identifying the Module Components Identifying the Motion Module Identifying the Removable Terminal Block and Housing Identifying the Removable Terminal Block and Housing Determining the Power Requirements Preventing Electrostatic Discharge Removing and Inserting Under Power (RIUP) Identifying Directive Understanding Compliance with the European Union Directive EMC Directive Low Voltage Directive Identifying Directive	2-2 2-3 2-3 2-4 2-4 2-5 2-5

Installing the Module
Keying the Removable Terminal Block 2-8
Wiring a Removable Terminal Block 2-10
Wiring a Spring Clamp RTB 2-10
Wiring a Cage Clamp RTB 2-11
Assembling the Removable Terminal Block and the Housing 2-12
Installing the Removable Terminal Block onto the Module 2-12
Checking the LED Indicators 2-14
Removing the Removable Terminal Block from the Module 2-15
Removing the Module from the Chassis 2-16

Getting Started With Your Motion Module

Chapter 3 3-1
Understanding the Getting Started Tutorial
Setting the Master Coordinated System Time
Adding the 1756-M02AE Module
Naming an Axis
Configuring a Motion Axis 3-9
Running Hookup Diagnostics and Auto Tuning
Entering a Ladder Logic Program 3-29
Creating Additional Tags Using the Tag Editor
Completing Your Application Program

Adding and Configuring Your Motion Module

Understanding Motion Instructions	Chapter 5	5-1
	Understanding Motion State Instructions	5-2
	Understanding Motion Move Instructions	5-3
	Understanding Motion Group Instructions	5-4
	Understanding Motion Event Instructions	5-5
	Understanding Motion Configuration Instructions	5-6
Troubleshooting	Chapter 6	6-1
0	Understanding Module Status Using the OK Indicator	
	Understanding Module Status Using the FDBK Indicator	
	Understanding Module Status Using the DRIVE Indicator	
Specifications and Performance	Appendix A	A-1
	Understanding Motion Module Specifications	
	Understanding Coarse Update Rate Calculations	
	Defining the Baseline Task Time (Table 1)	
	Understanding Action Timing (Table 2)	
	Using the Sample Calculations Worksheet	
	Understanding Sample Calculation 2	
Loop and Interconnect Diagrams	Appendix B	B-1
	Understanding Block Diagrams	B-2
	Using a 1756-M02AE Module With a Torque Servo Drive	
	Using a 1756-M02AE Module With a Velocity Servo Drive	
	Understanding Wiring Diagrams	
	Wiring to a Servo Module RTB	B-5
	Wiring to an Ultra 100 Series Drive	B-6
	Wiring to an Ultra 200 Series Drive	B-7
	Wiring to a 1394 Servo Drive	B-8
	Wiring the 1394-SA15 Cable	B-9
	Wiring Registration Sensors	
	Wiring the Home Limit Switch Input	
	Wiring the OK Contacts	B-12

The Motion Control Structures	Appendix C)-1
	Understanding the AXIS Structure	C-8 -11 -12 -13
The Motion Attributes	Appendix D)-1
	Motion Instance Variables	D-1
Instruction Timing	Appendix E	E-1
	Understanding Immediate Type Instructions Understanding Message Type Instructions Understanding Process Type Instructions	E-3
Fault Handling	Appendix F	F-1
	Handling Motion Faults Understanding Errors Understanding Minor/Major Faults	F-1

Using This Manual

This preface describes how to use this manual. The following table describes what the preface contains:

For information about	See page
Who Should Use This Manual	P-1
The Purpose of This Manual	P-2
Conventions Used in This Manual	P-3
Related Documentation	P-3
Rockwell Automation Support	P-4

Who Should Use This Manual

To use this manual, you should be able to program and operate the Allen-Bradley Logix5550TM controller to efficiently use you motion control modules.

If you need more information about programming and operating the Logix5550 controller, refer to the Logix5550 Controller User Manual, publication number 1756-6.5.12.

The Purpose of This Manual

This manual describes how to install, configure, and troubleshoot your ControlLogix motion module.

The following table shows the contents of each section in this manual:

Section	Contains
Chapter 1 Understanding the ControlLogix Motion Control System	Information about the ControlLogix motion control system.
Chapter 2 Installing Your Motion Module	Information about installing and wiring the motion module.
Chapter 3 Getting Started With Your Motion Module	A tutorial for configuring and using your 1756-M02AE motion module.
Chapter 4 Adding and Configuring Your Motion Module	A step-by-step procedure for configuring your motion module using the RSLogix™ 5000 programming software.
Chapter 5 Understanding Motion Instructions	Information about the 27 motion instructions provided in the RSLogix 5000 programming software.
Chapter 6 Troubleshooting	Information about troubleshooting your ControlLogix motion control system.
Appendix A Specifications and Performance	Specifications and performance guidelines for the motion module.
Appendix B Loop and Interconnect Diagrams	Loop diagrams and wiring diagrams for your ControlLogix motion control system.
Appendix C The Motion Control Structures	An explanation of the motion control structures.
Appendix D The Motion Attributes	Information about the motion attributes.
Appendix E Instruction Timing	Information about types of timing for motion instructions.
Appendix F Fault Handling	Information about motion control faults.

Conventions Used in This Manual

This manual uses the following conventions for using windows and dialog boxes.

Convention	Example
Names of fields in windows and dialog boxes are <i>italicized</i> .	In the <i>Name</i> field, type the name of your axis.
Input that you type exactly is bold .	In the <i>Name</i> field, type Module_1.

Note: Some windows and dialog boxes may contain greyed-out (unavailable) fields because of configuration options you have chosen. If a field is greyed-out, it means the field does not apply to your configuration and is not required.

Related Documentation

The following table lists related ControlLogix documentation:

Publication Number	Publication	Description
1756-5.47	Analog Encoder (AE) Servo Module Installation Instructions	Provides instructions for installing, wiring, and troubleshooting your 1756-M02AE servo module.
1756-5.72	ControlLogix Motion Module Application Guide	Provides in-depth descriptions of motion concepts and instructions.
1756-10.1	Logix5550 Controller Quick Start	Provides instructions for installing the Logix5550 controller and its components.
1756-6.5.11	Logix5550 Controller Instruction Set Quick Reference	Provides a brief description of the RSLogix 5000 programming software instructions.
1756-6.5.12	Logix5550 Controller User Manual	Provides information for using your Logix5550 controller and its components.
1756-6.4.1	Logix5550 Controller Instruction Set Reference Manual	Provides descriptions of all the instructions supported by the RSLogix 5000 programming software.
1756-5.33	Logix5550 Memory Board Installation Instructions	Provides instructions for installing the Logix5550 memory board.

For more information on the documentation, refer to the Allen-Bradley Publication Index, publication number SD499.

Rockwell Automation Support

Rockwell Automation offers support services worldwide, with over 75 sales/support offices, 512 authorized distributors, and 260 authorized systems integrators located throughout the United States. In addition, Rockwell Automation representatives are located in every major country in the world.

Local Product Support

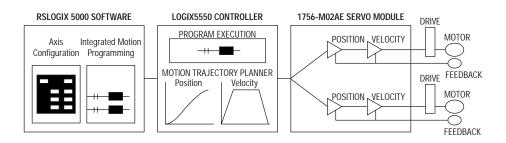
Contact your local Rockwell Automation representative for:

- sales and order support
- product technical training
- warranty support
- support service agreements

Technical Product Assistance

If you need to contact Rockwell Automation for technical assistance, please review Chapter 6 - *Troubleshooting* in this manual. If the problem persists, call your local Rockwell Automation representative.

Understanding the ControlLogix Motion Control System


This chapter describes the ControlLogix motion control system. The following table shows the contents of this chapter:

For information about	See page
Understanding ControlLogix Motion Control	1-1
Identifying the Components of the ControlLogix Motion System	1-2
Developing a Motion Control Application Program	1-4

Understanding ControlLogix Motion Control

The Logix5550 controller, 1756-M02AE servo module, and RSLogix 5000 programming software provide integrated motion control support.

- The Logix5550 controller contains a high-speed motion task, which executes ladder motion commands and generates position and velocity profile information. The controller sends this profile information to one or more 1756-M02AE servo modules. You can use several Logix5550 controllers in each chassis. Each controller can control up to 16 1756-M02AE servo modules.
- The 1756-M02AE servo module connects to a servo drive and closes a high-speed position and velocity loop. Each Logix5550 controller can support up to 16 1756-M02AE servo modules. Each 1756-M02AE module can control up to two axes.
- RSLogix 5000 programming software provides complete axis configuration and motion programming support.

Identifying the Components of the ControlLogix Motion System

The Logix5550 Controller

The Logix5550 controller is the main component in the ControlLogix system. It supports sequential and motion functions, and it performs all of the motion command execution and motion trajectory planner functions. You can use one or more Logix5550 controllers in each chassis, and each controller can control up to 16 motion modules.

The Logix5550 controller provides the following motion support:

- Twenty-seven motion instructions
- A high-speed motion task, which manages motion functions and generates move profiles
- The ability to control up to 16 Analog/Encoder servo modules for a total of 32 axes

The Analog/Encoder Servo Module (1756-M02AE)

The Analog/Encoder servo module provides an analog/quadrature encoder servo drive interface. The servo module receives configuration and move information from the Logix5550 controller and manages motor position and velocity.

The servo module supports the following:

- Connection capability for up to two drives
 - ±10V analog outputs
 - Quadrature encoder inputs
 - Home limit switch inputs
 - Drive fault inputs
 - Drive enable outputs
 - 5V or 24V registration inputs
- 200 µs position and velocity loop updates

RSLogix 5000 Programming Software

The RSLogix 5000 programming software provides complete programming and commissioning support for the ControlLogix system. RSLogix 5000 is the only programming software needed to fully configure and program ControlLogix motion control systems.

RSLogix 5000 software provides the following motion support:

- Wizards for servo axis configuration including drive hookup diagnostics and auto tuning
- Ladder-based application programming including support for 27 motion commands

Developing a Motion Control Application Program

This section provides an introduction to concepts used in developing application programs for motion control. These concepts include:

- Understanding application program development
- Understanding the MOTION_INSTRUCTION tag
- Understanding motion status and configuration parameters
- Modifying motion configuration parameters
- Handling motion faults

Understanding Application Program Development

Developing a motion control application program involves the following:

Task	Description
Select the master coordinated system time	Sets one controller as the master controller. Once you complete this step, you can synchronize all the motion modules and Logix5550 controllers in your chassis
Add a motion module	Adds a motion module to your application program
Name an axis	Adds an axis to your application program
Configure an axis	Configures each axis for motion control
Assign additional servo modules and axes	Adds additional modules and axes to your application program
Run hookup diagnostics and auto tuning	Completes hookup diagnostics and auto tuning for each axis
Develop a motion application program	Create a program for your motion control application

For more information about completing these tasks, refer to Chapter 4 - *Adding and Configuring Your Motion Module*.

Understanding the MOTION_INSTRUCTION Tag

The controller uses the MOTION_INSTRUCTION tag (structure) to store status information during the execution of motion instructions. Every motion instruction has a motion control parameter that requires a MOTION_INSTRUCTION tag to store status information.

ATTENTION: Tags used for the motion control parameter of instructions should only be used once. Re-use of the motion control parameter in other instructions can cause unintended operation of the control variables.

For more information about the MOTION_INSTRUCTION tag, refer to Appendix C - *The Motion Control Structures*.

Understanding Motion Status and Configuration Parameters

Method	Example	For more information	
Directly accessing the AXIS and MOTION_GROUP structures	Axis faultsMotion statusServo status	Refer to Appendix C - <i>The Motion</i> <i>Control Structures</i>	
Using the GSV instruction	Actual positionCommand positionActual velocity	Refer to the <i>Input/Output</i> <i>Instructions</i> chapter of the Logix5550 Controller Instruction Set Reference Manual, publication 1756-6.4.1	

You can read motion status and configuration parameters in your ladder logic program using two methods.

Modifying Motion Configuration Parameters

In your ladder logic program, you can modify motion configuration parameters using the SSV instruction. For example, you can change position loop gain, velocity loop gain, and current limits within your program.

For more information about the SSV instruction, refer to the *Input/ Output Instructions* chapter of the Logix5550 Controller Instruction Set Reference Manual, publication 1756-6.4.1.

Handling Motion Faults

Two types of motion faults exist.

Туре	Description	Example	
Errors	 Do not impact controller operation Should be corrected to optimize execution time and ensure program accuracy 	A Motion Axis Move (MAM) instruction with a parameter out of range	
Minor/Major	 Caused by a problem with the servo loop Can shutdown the controller if you do not correct the fault condition 	The application exceeded the PositionErrorTolerance value	

For more information about handling faults, see *Handling Controller Faults* in the Logix5550 Controller User Manual, publication 1756-6.5.12.

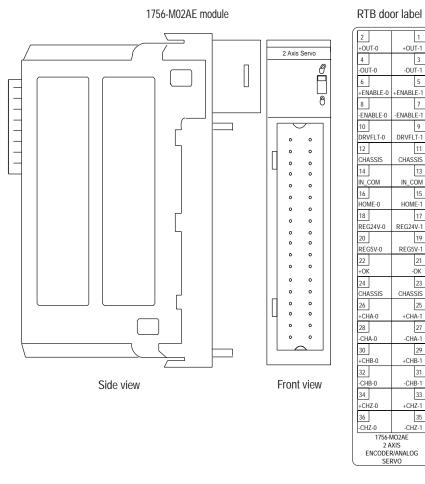
Installing Your Motion Module

This chapter describes how to install you motion module. The following table shows the contents of this chapter:

For information about	See page
Identifying the Module Components	2-2
Determining the Power Requirements	2-3
Preventing Electrostatic Discharge	2-4
Removing and Inserting Under Power (RIUP)	2-4
Understanding Compliance with the European Union Directive	2-5
Installing the Module	2-6
Keying the Removable Terminal Block	2-8
Wiring a Removable Terminal Block	2-10
Assembling the Removable Terminal Block and the Housing	2-12
Installing the Removable Terminal Block onto the Module	2-12
Checking the LED Indicators	2-14
Removing the Removable Terminal Block from the Module	2-15
Removing the Module from the Chassis	2-16

The Analog Encoder (AE) Servo module mounts in a ControlLogix chassis and uses a removable terminal block (RTB) to connect all field-side wiring.

Before you install your module you should have:


- installed and grounded a 1756 chassis and power supply.
- ordered and received an RTB and its components for your application.

Identifying the Module Components

Identifying the Motion Module

You received two components with your order:

- 1756-M02AE module
- RTB door label

1 +0UT-1

3 -OUT-1

5

7

11

13

15

17

19

21 -OK

23

25

27

29

REG5V-1

CHASSIS

+CHA-1

-CHA-1

+CHB-1

31 -CHB-1

33 +CHZ-1

35

-CHZ-1

CHASSIS

IN_COM

HOME-1

If you did not receive these components, contact your local Allen-Bradley representative.

Identifying the Removable Terminal Block and Housing

A separately-ordered RTB connects field-side wiring to the module. You cannot use your module without an RTB and its components.

Use one of the following RTBs with your module:

- 1756-TBCH 36-position cage clamp RTB
- 1756-TBS6H 36-position spring clamp RTB

You received the following components with your RTB:

- 1756-TBH standard-depth RTB housing
- Wedge-shaped keying tabs and U-shaped keying bands
- RTB door label

Determining the Power Requirements

This module receives power from the 1756 chassis power supply and requires two sources of power: 700 mA at 5V and 2.5 mA at 24V from the backplane. Add this current to the requirements of the other modules in the chassis to prevent overloading the backplane power supply.

Preventing Electrostatic Discharge

ATTENTION: Electrostatic discharge can damage the servo board if you touch the circuitry or connector pins without taking precautions. Follow these guidelines when you handle the servo board:

- Touch a grounded object to discharge potential static.
- Wear an approved grounding wriststrap.
- Do not touch the connector or connector pins on the servo board.
- Do not touch circuit components inside the servo board.
- If available, use a static-safe work station.

Removing and Inserting Under Power (RIUP)

ATTENTION: This module is designed so you can remove and insert it under backplane power and field-side power. When you remove or insert a module while field-side power is applied, you can cause an electrical arc. An electrical arc can cause personal injury or property damage because it can:

- Send an erroneous signal to your system field devices causing unintended machine motion or loss of process control.
- Cause an explosion in a hazardous environment.

Repeated electrical arcing causes excessive wear to contacts on both the module and its mating connector. Worn contacts may create electrical resistance. For additional information on RIUP, please contact your local Allen-Bradley sales representative

Understanding Compliance with the European Union Directive

If this product bears the CE marking, it is approved for installation within the European Union and EEA regions. It has been designed and tested to meet the following directives.

EMC Directive

This product is tested to meet Council Directive 89/336/EEC Electromagnetic Compatibility (EMC) and the following standards, in whole or in part, documented in a technical construction file:

- EN 50081-2EMC Generic Emission Standard, Part 2 Industrial Environment
- EN 50082-2EMC Generic Immunity Standard, Part 2 Industrial Environment

This product is intended for use in an industrial environment.

Low Voltage Directive

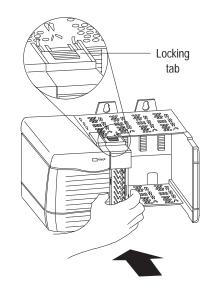
This product is tested to meet Council Directive 73/23/EEC Low Voltage, by applying the safety requirements of EN 61131-2 Programmable Controllers, Part 2 - Equipment Requirements and Tests.

For specific information required by EN 61131-2, see the appropriate sections in this publication, as well as the following Allen-Bradley publications:

- Industrial Automation Wiring and Grounding Guidelines For Noise Immunity, publication 1770-4.1
- Automation Systems Catalog, publication B111

This equipment is classified as open equipment and must be installed (mounted) in an enclosure during operation as a means of providing safety protection.


Installing the Module

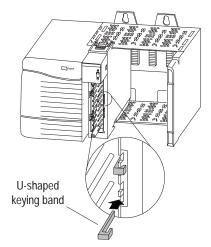

ATTENTION: When you remove or insert an RTB with field-side power applied, unintended machine motion or loss of process control can occur. Exercise extreme caution when power is applied. Failure to observe this caution can cause personal injury.

To install the AE module:

1. Align the module circuit board with the top and bottom chassis guides.

2. Push evenly and firmly to seat the module in the chassis. It is seated when the top and bottom locking tabs have snapped into place.

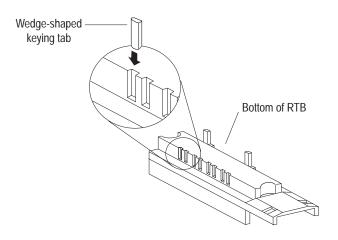
Note: The 1756 chassis provides grounding for your module.


Keying the Removable Terminal Block

To identify the RTB that belongs with each module, you can use a module keying pattern. First, you can create a unique keying pattern for your module using the U-shaped keying bands that you received with your RTB. Then you can use the keying tabs to key the RTB with the same pattern as the module.

To prevent confusion, use a unique keying pattern for each module.

To key the module:


1. Insert the U-shaped keying band with the longer side near the terminals.

2. Push the keying band onto the module until it snaps into place.

To key your removable terminal block:

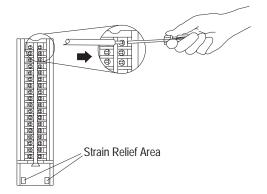
- 1. With the rounded edge first, insert the wedge-shaped keying tab on the RTB.
 - Note: Insert the wedge-shaped keying tabs in positions that correspond to unkeyed positions on the module.

- 2. Push the keying tab onto the RTB until it stops.
- Note: To use the RTB in future module applications, you can reposition the keying tabs on the RTB.

Wiring a Removable Terminal Block

There are two types of RTBs:

- spring clamp
- cage clamp

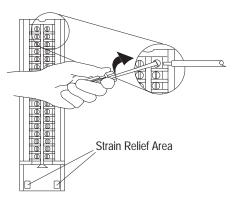

This section describes how to wire each type of RTB. For wiring diagrams, refer to Appendix B - *Interconnect Diagrams*.

Wire the RTB before installing it onto the module. Use a 1/8 inch (3.2mm) maximum flat-bladed screwdriver.

Wiring a Spring Clamp RTB

To wire a spring clamp RTB:

- 1. Strip a maximum of 7/16 in. (11mm) of insulation from the end of your wire.
- 2. Insert the screwdriver into the outer hole of the RTB.
- 3. Insert the wire into the open terminal and remove the screwdriver.

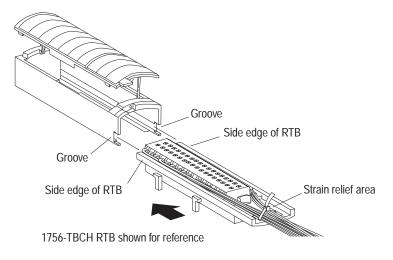


4. After you complete field-side wiring, secure the wires in the strain relief area with a cable-tie.

Wiring a Cage Clamp RTB

To wire a cage clamp RTB:

- 1. Strip 5/16-3/8 in. (8-9.5mm) of insulation from the end of your wire.
- 2. Insert the wire into the open terminal.
- 3. Turn the screw clockwise to close the terminal on the wire. Use 5 lb-in. (0.5 Nm) maximum torque.



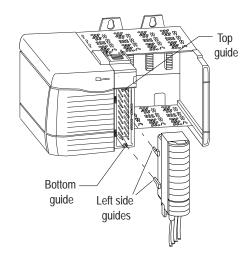
4. After you complete field-side wiring, secure the wires in the strain relief area with a cable-tie.

Assembling the Removable Terminal Block and the Housing

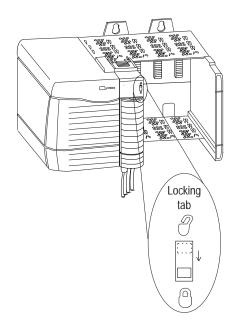
To assemble the removable terminal block and housing:

- 1. Align the grooves at the bottom of each side of the housing with the side edges of the RTB.
- 2. Slide the RTB into the housing until it snaps into place.

Installing the Removable Terminal Block onto the Module


ATTENTION: A shock hazard exists. If the RTB is installed onto the module while the field-side power is applied, the RTB is electrically live. Do not touch the RTB terminals. Failure to observe this caution can cause personal injury.

Before installing the RTB, make certain:


- field-side wiring of the RTB has been completed.
- the RTB housing is snapped into place on the RTB.
- the RTB housing door is closed.
- the locking tab at the top of the module is unlocked.

To install the removable terminal block onto the module:

1. Align the top, bottom, and left side guides of the RTB with the guides on the module.

- 2. Press quickly and evenly to seat the RTB on the module until the latches snap into place.
- 3. Slide the locking tab down to lock the RTB onto the module.

Checking the LED Indicators

The module provides bi-colored LED indicators to show individual drive and feedback status for both axes and a single bi-colored LED for module OK.

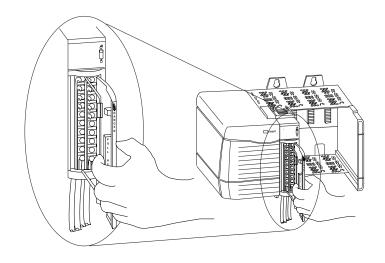
2 AXIS SERVO	
CH 0 CH 1 DBK FDBK CDBK FDBK DRIVE DRIVE OK	

During power up, the module completes an indicator test. The OK indicator turns red for 1 second and then turns to flashing green if the module passes all its self-tests.

For more information about the LED indicators, refer to Chapter 6 - *Troubleshooting*.

This completes installation of the module.

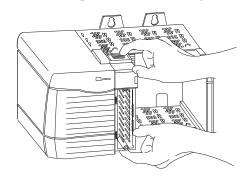
Removing the Removable Terminal Block from the Module

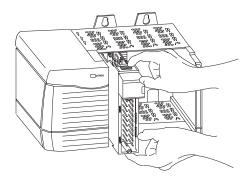


ATTENTION: A shock hazard exists. If the RTB is removed from the module while the field-side power is applied, the module is electrically live. Do not touch the RTBs terminals. Failure to observe this caution can cause personal injury.

You must remove the RTB before you can remove the module.

To remove the RTB from the module:


- 1. Unlock the locking tab at the top of the module.
- 2. Open the RTB door using the bottom tab.
- 3. Hold the spot marked PULL HERE and pull the RTB toward you and off the module.


Removing the Module from the Chassis

To remove the module from the chassis:

- 1. If the RTB is on the module, unlock the RTB and remove it. (Refer to *Removing the Removable Terminal Block from the Module.*)
- 2. Push in and hold the top and bottom locking tabs on the module.

3. Pull the module out of the chassis.

Getting Started With Your Motion Module

This chapter provides a step-by-step procedure for configuring a motion axis and developing a simple application program using one axis.

Note: Before beginning this chapter, complete the *Getting Started* chapter in the Logix5550 Controller User Manual, publication 1756-6.5.12.

For information about	See page
Understanding the Getting Started Tutorial	3-2
Setting the Master Coordinated System Time	3-3
Adding the 1756-M02AE Module	3-6
Naming an Axis	3-8
Configuring a Motion Axis	3-9
Running Hookup Diagnostics and Auto Tuning	3-19
Entering a Ladder Logic Program	3-29

The following table shows the contents of this chapter:

Before using this tutorial, you should:

- Install your Logix5550 controller (For more information, refer to the Logix5550 Controller User Manual, publication 1756-6.5.12.)
- Install your 1756-M02AE motion module (For more information, refer to Chapter 2 *Installing Your Motion Module*.)
- Complete the *Getting Started* chapter in the Logix5550 Controller User Manual, publication 1756-6.5.12
- Ensure your application is offline. (If your application is online, select **Go Offline** from the Communication menu.)

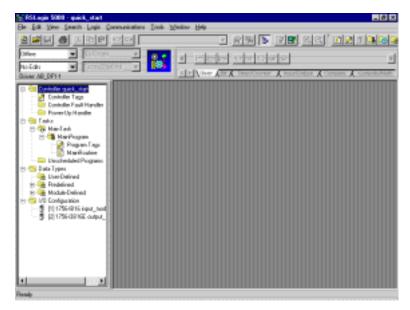
Understanding the Getting Started Tutorial

This tutorial guides you through all the steps in developing a simple motion control application with one axis. For this tutorial, you will use the following control system components:

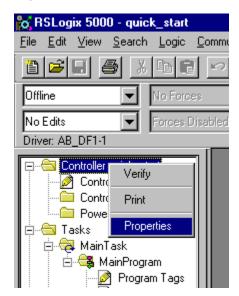
- One 4-slot chassis and power supply
- One 1756-M02AE servo module (installed in slot 0)
- One 1756-IB16 input module (installed in slot 1)
- One 1756-OB16E output module (installed in slot 2)
- One Logix5550 controller (installed in slot 3)
- RSLogix 5000 programming software

During this tutorial, you will create a motion application program by completing the following tasks:

Task	Description
Select the master coordinated system time	Sets one controller as the master controller. Once you complete this step, you can synchronize all the motion modules and Logix5550 controllers in your chassis
Add a motion module	Adds a motion module to your application program
Name an axis	Adds an axis to your application program
Configure an axis	Configures each axis for motion control
Run hookup diagnostics and auto tuning	Completes hookup diagnostics and auto tuning for each axis
Develop a motion application program	Create a program for your motion control application


Setting the Master Coordinated System Time

To select the master coordinated system time:


1. In the File menu of the RSLogix 5000 programming software, select **Open**.

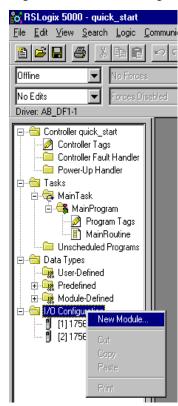
2. Select **quick_start**, which is the project you created when you completed the *Getting Started* chapter in the Logix5550 Controller User Manual, publication 1756-6.5.12. The following window appears.

3. Right-click the Controller folder.

4. Select **Properties**. The Controller Properties window appears.

o Controller P	roperties	- quick_start			_ 🗆 ×
Serial Port Pr General	otocol	Major Faults Date/Time	Minor Faults Communicatio	Advanced	File Serial Port
Vendor:	Allen-Bra	idley			
Туре:	1756-L1 ControlLogix5550 Programmable Controller				
<u>N</u> ame:	quick_s	tart			
<u>D</u> escription:				*	
Sl <u>o</u> t Number:	3	3			
Chassis Type:	1756-A4	IA 4-Slot Chassis	•		
Revision:	1	i i			
		OK	Cancel	Apply	Help

5. Select the Date/Time tab. The following window appears.


Date: Time: Set Coordinated System Time Make this controller the master Is the master Synchronized with a master Duplicate master detected	Serial Port Protocol	Major Faults	Minor Faults	Advanced	d File
Time:	General	Date/Time	Communications	s	Serial Port
Coordinated System Time Make this controller the master Is the master Synchronized with a master Duplicate master detected	Date:				
Make this controller the master Is the master Synchronized with a master Duplicate master detected	Time:	Set			
Make this controller the master Is the master Synchronized with a master Duplicate master detected					
 Is the master Synchronized with a master Duplicate master detected 	 Coordinated System 	n Time			
 Synchronized with a master Duplicate master detected 	Make this contr	oller the <u>m</u> aster			
 Synchronized with a master Duplicate master detected 	AL				
O Duplicate master detected	-				
•					
O Timer hardware faulted	·				
	O Timer hardware	faulted			
		ОК	Cancel		Help

- 6. Select Make this controller the master.
- 7. Select OK.

Adding the 1756-M02AE Module

To add a motion module:

1. Right-click the I/O Configuration folder.

2. Select New Module. The Select Module Type window appears.

elect Module	Туре
<u>T</u> ype:	Major <u>R</u> evision:
1747-ASB	1 🔽
Туре	Description
1747-ASB	1747 Remote I/O Adapter 🗾 🔼
1756-CNB	1756 ControlNet Bridge
1756-CNBR	1756 ControlNet Bridge, Redundant Media
1756-DHRIO	1756 DH+ Bridge/RIO Scanner —
1756-DNB	1756 DeviceNet Scanner
1756-ENET	Ethernet Communication Interface
1756-IA16	16 Point 79V-132V AC Input
1756-IA16I	16 Point 79V-132V AC Isolated Input
1756-IA8D	8 Point 79V-132V AC Diagnostic Input
1756-IB16	16 Point 10V-31.2V DC Input
1756-IB16D	16 Point 10V-30V DC Diagnostic Input
1756-IB16I	16 Point 10V-30V DC Isolated Input, Sink/Source
-Show	
⊻endor:	Allen-Bradley Company, Inc.
🔽 A <u>n</u> alog	☑ Digital ☑ Communication ☑ Motion ☑ Processor Clear All
	OK Cancel <u>H</u> elp

- 3. In the *Type* field, select **1756-M02AE 2 Axis Analog/Encoder Servo**.
- 4. Select **OK**. The New Module window appears.

Module Prope	erties - Local (1756-MO2AE 1.1)	×
Type:	1756-M02AE 2 Axis Analog/Encoder Servo	
Vendor:	Allen-Bradley Company, Inc.	
Parent:	Local	
Na <u>m</u> e:	Si <u>o</u> t O	
Descri <u>p</u> tion:	X V	
- Associated (Axes:	
Channel 0:	<none> New Axis</none>	
Channel 1:	<none></none>	
<u>R</u> evision:	1 I 🔤 Electronic Keying: Compatible Module 💌	
	Cancel < <u>B</u> ack <u>N</u> ext > Finish >> Help	

5. Make entries in the following fields.

Field	Entry
Name	Servocard
Slot	0
Electronic keying	Disable keying

Naming an Axis

To name an axis:

1. In the New Module window (shown in step 4 of the *Adding the 1756-M02AE Module* section), select **New Axis**. The New Tag window appears.

New Tag		×
<u>N</u> ame:		OK
<u>D</u> escription:	Å	Cancel
		Help
Tag Type:	• Base • Alias • Consumed	
Data <u>T</u> ype:	AXIS	<u>C</u> onfigure
<u>S</u> cope:	quick_start(controller)	
Style:	V	
Produce t	his tag for up to 2 🖉 consumers	

2. Make an entry in the following field.

Field	Entry
Name	Axis_X

Configuring a Motion Axis

To configure your new axis:

1. In the New Tag window (shown in step 1 of the *Naming an Axis* section), select **Configure**. The Axis Wizard-General window appears.

Axis Wizard Axis_X - General				
<u>M</u> odule:	<u>C</u> hannel :			
<none></none>		•		
Type: Servo	•			
Positioning Mode: Linear	•			
	Help Cancel	< <u>B</u> ack	<u>N</u> ext >	Finish

2. Make entries in the following fields.

Field	Entry
Туре	Servo
Positioning Mode	Linear

3. Select Next. The Axis Wizard-Group window appears.

Axis Wizard Axis_X - Gro	up
Assigned Motion Group:	New Group
Ages Assigned:	
<u>C</u> oarse Rate:	1 ms
<u>S</u> ervo Update Period:	us us
<u>G</u> eneral Fault Type:	
	Help Cancel < <u>B</u> ack <u>N</u> ext > Finish

4. Select New Group. The New Tag window appears.

New Tag		×
<u>N</u> ame:		OK
<u>D</u> escription:	<u> </u>	Cancel
		Help
Tag Type:		
Data <u>T</u> ype:	MOTION_GROUP	<u>C</u> onfigure
<u>S</u> cope:	quick_start(controller)	
Style:		
Produce the	nis tag for up to 2 consumers	

5. Make an entry in the following field.

Field	Entry
Name	Motion_Group

6. Select **Configure**. The Axis Wizard-Axis Assignment window appears.

Axis Wizard Motion_Group -	Axis Assignment		
Unassigned:	A <u>s</u> signed:		
<u>A</u> dd>	< <u>R</u> emove		
Help Cancel	< <u>B</u> ack	<u>N</u> ext >	Finish

- 7. From the *Unassigned* field, select **Axis_X**.
- 8. Select Add.

9. Select Next. The Axis Wizard-Update Rates window appears.

Axis Wizard Motion_Group - Update Rates
Coarse Rate: 2 ms
<u>S</u> ervo Update Period: 200 us
General Fault Type: Non Major Fault
Help Cancel < <u>B</u> ack <u>M</u> ext > Finish

10. Make entries in the following fields.

Field	Entry
Coarse rate	5
Servo update period	200
General fault type	Non major fault

11. Select Finish. The Axis Wizard-Group window appears.

xis Wizard Axis_X - Gro	oup				
Assigned Motion Group:	<none></none>	• <u>N</u>	ew Group		
Ages Assigned:					
<u>C</u> oarse Rate:	1	× ms			
Servo Update Period:	200	🖵 us			
	Non Major Fault	_			
	Help	Cancel	< <u>B</u> ack	<u>N</u> ext >	Finish

12. In the Assigned Motion Group field, select Motion_Group.

13. Select Next. The Axis Wizard-Units window appears.

Axis Wizard Axis_X - U	its
Position Units: Revs	ds 💌
Motion Instruction Defa	ilts
<u>S</u> peed Unit:	Percentage
Acceleration and Deceleration Unit:	Percentage
	Help Cancel < <u>B</u> ack <u>N</u> ext > Finish

14. Make entries in the following fields.

Field	Entry
Position units	Revs
Time unit	Seconds

15. Select Next. The Axis Wizard-Feedback window appears.

8000.0
8000

16. Make an entry in the following field.

Field	Entry
Counts/1.0 revs	8000.0

17. Select Next. The Axis Wizard-Positioning window appears.

Axis Wizard Axis_X - Posit	tioning				
Move Instruction Defaults					
Move Velocity Profile:	Trapezoidal	~			
Log Velocity Profile:	Trapezoidal	~			
LockTolerance:	0.0	Revs			
-	,				
Average Velocity Timebase	° 0.25	s			
	Help	Cancel	< <u>B</u> ack	<u>N</u> ext >	Finish

18. Make entries in the following fields.

Field	Entry
Lock tolerance	0.025
Average velocity timebase	0.005

19. Select Next. The Axis Wizard-Homing window appears.

<u>M</u> ode: - Active	Active 💌			
<u>S</u> equence:	Immediate Home	•		
	Normally Open	7		
Homing <u>D</u> irec	ion: © <u>P</u> ositive	C <u>N</u> egative		
Speeds Rev				
Homing Sp	ed: 0.0	Home <u>R</u> eturn	Speed: 0.0	

20. Make entries in the following fields.

Field	Entry
Home position	0.0
Mode	Active
Sequence	Home to marker only
Homing direction	Negative
Homing speed	1.25
Home return speed	0.625

21. Select Next. The Axis Wizard-Overtravels window appears.

xis Wizard Axis_X - Ov	ertravels				
Soft Travel Limits					
Overtravels:					
uveniaves;					
Maximum <u>P</u> ositive:	0.0	Revs			
Maximum <u>N</u> egative:	0.0	Revs			
	,				
	Help	Cancel	< <u>B</u> ack	<u>N</u> ext >	Finish

- 22. Do not make any entries in this window.
- 23. Select Next. The Axis Wizard-Servo window appears.

Axis Wizard Axis_X - S	ervo	
Drive <u>T</u> ype: <mark>Velocity</mark>		
🔽 Enable Drive Fault	Input	
Drive <u>F</u> ault Input:	Normally Closed	
<u>O</u> utput Limit	10.0 V	
Enable Servo Update:		
Position Error	☐ Velocity Error ☐ Velocity Command ☐ Servo Output Level	
Position <u>I</u> Error	Velocity IError 🗖 Velocity Feedback	
	Help Cancel < <u>B</u> ack <u>N</u> ext > Finish	h

24. Make entries in the following fields.

Field	Entry
Drive type	Torque
Enable drive fault input	Select the checkbox
Drive fault input	Normally closed
Output limit	10.0
Enable servo update	 Position error Velocity command Servo output level

25. Select Next. The Axis Wizard-Fault Action window appears.

Axis	s Wizard Axis_X - Faul	t Action				
	Fault Action					
	<u>S</u> oft Overtravel :	Disable Drive	7			
	Position Error:	Disable Drive				
	Drive Fault:	Disable Drive	•			
	Transducer <u>N</u> oise:	Disable Drive	•			
	Transducer <u>L</u> oss:	Disable Drive	•			
	Programmed Stop Action:	Fast Stop	•			
		Help	Cancel	< <u>B</u> ack	<u>N</u> ext >	Finish

26. Make entries in the following fields.

Field	Entry
Position error	Disable drive
Drive fault	Disable drive
Transducer noise	Status only
Transducer loss	Stop motion
Programmed stop action	Fast stop

27. Select Next. The Axis Wizard-Hookup window appears.

Axis Wizard Axis_X - I	lookup
Motor/Encoder Test	[Enter Test Increment, Initiate Test and Watch Motion Direction]
<u>T</u> est Increment:	Revs
Start Motor/Enc	oder Trest DANGER: This test may cause axis motion with the controller in program mode.
Polarity 🔀	DANGER: Modifying polarity determined after executiing the motor/encoder test may cause axis runaway condition.
<u>S</u> ervo Output:	C Positive Eeedback: C Positive
	C Negative O Negative
Marker Test (Start t	he marker test and then Generate a Marker Pulse)
Start <u>M</u> arker	Test
	Help Cancel < <u>B</u> ack <u>N</u> ext> Finish

28. Make entries in the following fields.

Field	Entry
Test increment	5.0
Servo output	Positive
Feedback	Positive

29. Select Next. The Axis Wizard-Tune window appears.

Axis Wizard Axis_X -	Tune
Tuning <u>T</u> ravel Limit:	00 Revs
Tuning <u>S</u> peed:	0.0 Revs/Seconds
Tuning <u>D</u> irection:	
Damping <u>F</u> actor:	0.80000001
Tune: 🔲 <u>P</u> osition Er	ror Integrator 🔲 Velocity <u>F</u> eedforward 📄 <u>O</u> utput Filter
☐ <u>V</u> elocity Er	ror Integrator 🛛 🗖 Acceleration Feedforward
Start Tuning	DANGER: This test may cause axis motion with the controller in program mode.
	Help Cancel < <u>B</u> ack <u>N</u> ext> Finish

30. Make entries in the following fields.

Field	Entry
Tuning travel limit	100.0
Tuning speed	20.0
Tuning direction	Positive
Damping factor	0.80000001

31. Select Next. The Axis Wizard-Gains window appears.

Proportional: Image: 1/ms Friction Image: 0.0 Image: 1/ms Integral: 0.0 Image: 1/ms Image: 0.0 Image: 1/ms Image: 0.0 Image: 1/ms Velocity 0.0 Image: 4 % Image: 0.0 Image: 4 % Image: 0.0 Image: 4 % Velocity 0.0 Image: 4 % Image: 0.0 Image: 4 % Image: 0.0 Image: 4 % Velocity 0.0 Image: 4 % Image: 0.0 Image: 4 % Image: 4 % Velocity 0.0 Image: 4 % Image: 4 % Image: 4 % Image: 4 % Velocity 0.0 Image: 4 % Image: 4 % Image: 4 % Image: 4 % Velocity 0.0 Image: 4 % Image: 4 % Image: 4 % Image: 4 % Velocity 0.0 Image: 4 % Image: 4 % Image: 4 % Image: 4 % Integral: 0.0 Image: 4 % Image: 4 % Image: 4 % Image: 4 % Integral: 0.0 Image: 4 % Image: 4 % Image: 4 % Image: 4 % Integral: 0.0 Image: 4 % Image: 4 % Image: 4 % <	
Velocity 0.0 Image: Constraint of the second secon	
Feedforward: 10.0 Image: A state of the	
Proportional: 0.0 1/ms	🗖 <u>E</u> nable
Proportional: 0.0 * 1/ms	/KC/s^2
Integral: 0.0 - 1/mo^2	
Acceleration 0.0 ** * % Beset	

- 32. Do not make any entries in this window.
- 33. Select Next. The Axis Wizard-Dynamics window appears.

Axis Wizard Axis_X - Dyr	namics		
Position Error Tolerance:	0.000125	🗧 🕈 Revs	Re <u>s</u> et
Maximum ⊻elocity:	0.00000125	🗧 ፍ Revs/Seconds	
Maximum <u>A</u> cceleration:	0.00125	🗧 < Revs/Seconds^2	
Maximum <u>D</u> eceleration:	0.00125	🗧 < Revs/Seconds^2	
	I		
	Help	Cancel < <u>B</u> ack <u>N</u> ex	t> Finish

34. Do not make any entries in this window.

35. Select Finish. The Module Properties window appears.

Module Prope	rities - Local (1756-MO2AE 1.1)	X
Туре:	1756-M02AE 2 Axis Analog/Encoder Servo	
Vendor:	Allen-Bradley Company, Inc.	
Parent:	Local	
Na <u>m</u> e:	Servocard Slot: 0	
Descri <u>p</u> tion:		
- Associated <u>/</u>	<u>Axes:</u>	
Channel 0:	<none></none>	
Channel 1:	<none></none>	
<u>R</u> evision:	1 Electronic Keying: Disable Keying	
	Cancel < <u>B</u> ack <u>N</u> ext > Finish >> Help	

- 36. In the *Channel 0* field, select **Axis_X**.
- 37. Select Finish. The Module Properties window will close.

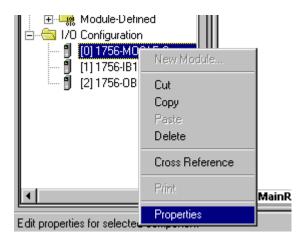
Running Hookup Diagnostics and Auto Tuning

Once you have added and configured your motion module and axis, you can run hookup diagnostics and auto tuning. To run diagnostics and tuning, you must download a program and go online.

- Important: This section assumes that you have connected a drive to channel 0 of the 1756-M02AE module in slot 0. See Appendix B *Loop and Interconnect Diagrams* for wiring information.
- 1. Double-click Main Routine. The following window appears.
 - Note: This section assumes you have completed the *Getting Started* chapter in the Logix5550 Controller User Manual, publication 1756-6.5.12.

and advectional states of the	naziatina Inde Malor Bela 27 2	-
Calling 💽 (Callinger), No Editi 💌 (Factor)(Call Okiver, AB, DF14		The Content of Station & Content & Content
Controller quet_nint Controller quet_nint Controller Tag Controler Tag Controller Tag Controller Tag Controller Tag	P Main/Program - M ain/Postore Provi 1 	Tom On Delay France VOLT- Access 3+ Operation D Constant D Constant D
	/[E] Barkates /	

2. Make sure the keyswitch is in the REM position.

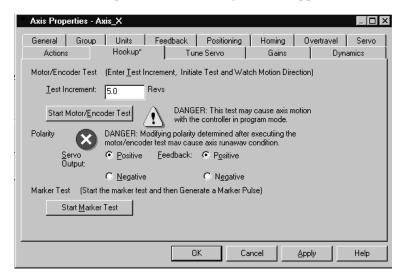

😹 RSLogix 5000 - quick_start Communications <u>File</u> <u>E</u>dit <u>V</u>iew <u>S</u>earch Logic Took Configure... Ж 1 Ð leto, Lī <u>G</u>o Online Offline Upload As.. No Edits <u>D</u>ownload Ŧ Driver: AB_DF1-1 g ⊡…⊜ Controller quick_start 🖉 Controller Tags 🧰 Controller Fault Handler 🚞 Power-Up Handler 🚖 Tasks

3. From the Communications menu, select **Download**.

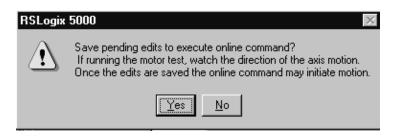
The following window appears.

Download	x
<u>.</u>	Download to the controller: Name: quick_start Type: 1756-L1/A 1756-M2/A LOGIX5550 Using this communications configuration:
	Driver: AB_DF1-1 Path: <none></none>
	DANGER: All active servo axes will be turned off prior to download.
	Download Cancel Help

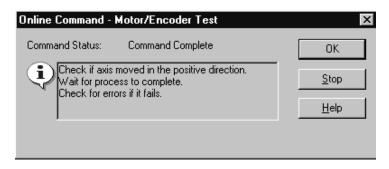
- 4. Select Download.
- 5. Under the I/O Configuration folder, right-click the 1756-M02AE module Servocard.


6. Select **Properties**. The Module Properties window appears.

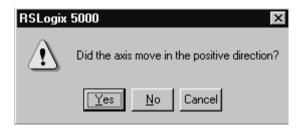
🔲 Module Pro	perties - Local:0 (1756-M02AE 1.1)	X
General Cor	nnection Module Info Backplane	
Type: Vendor:	1756-M02AE 2 Axis Analog/Encoder Servo Allen-Bradley Company, Inc.	
Parent:	Local	
Na <u>m</u> e:	Servocard Slgt: 0 🗮	
Descri <u>p</u> tion:	A	
Associated	Axes:	
Channel 0:	Axis_X New Axis	
Channel 1:		
<u>R</u> evision:	1 Electronic Keying: Disable Keying	
	OK Cancel Apply Help	


7. Next to the *Channel 0* field, select the _____ button. The Axis Properties window appears.

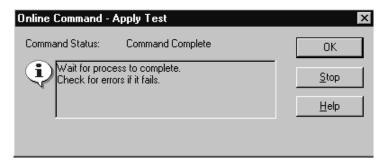
Asia Properti	ez - Asiz_X					_ 0
Actions	Haakup	Tu	në Seivo	Gaiss	Dying	nict
General (aroup Units	Feedback	Pasitioning	Hanning	Overtavel	Servo
Module:		Charry	nel :			
Servocard		• 0	•			
Lope:	Servo	-				
Positioning Mo	at Linear	•				


8. Select the Hookup tab. The following window appears.

9. Select **Start Motor/Encoder Test**. The following window appears.

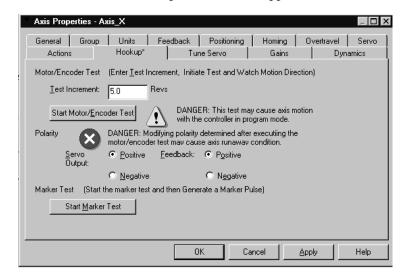


10. Select Yes. The following window appears.



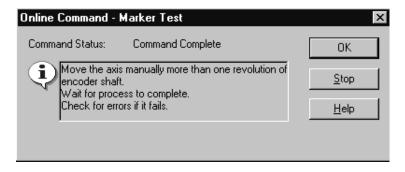
11. Watch the motor to see which way it turns.

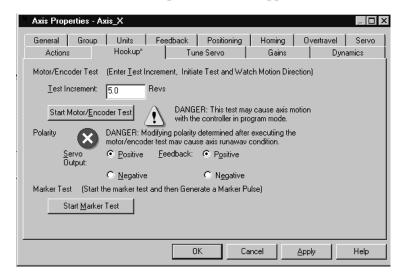
12. Select **OK**. The following window appears.


13. Select Yes. The following window appears.

14. Select OK. The following window appears.

15. Select **OK**. The Axis Properties window appears.

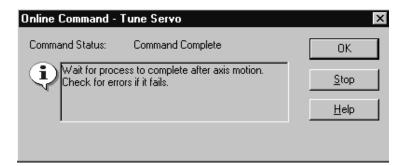

16. Select Start Marker Test. The following window appears.


17. Select Yes. The following window appears.

Online Command - Marker Test	×
Command Status:	OK.
Move the axis manually more than one revolution of encoder shaft. Wait for process to complete. Check for errors if it fails.	<u>S</u> top <u>H</u> elp
J	

18. Slowly rotate the motor axis until the following window appears.

19. Select OK. The Axis Properties window appears.



- Axis Properties Axis_X _ 🗆 🗙 General Group Units Feedback Positioning Homing Overtravel Servo Actions Hookup Tune Servo* Gains Dynamics Tuning <u>T</u>ravel Limit: Revs 5.0 Tuning <u>Speed</u>: Revs/Seconds 20 Tuning Direction: • Positive O <u>N</u>egative Damping <u>Factor</u>: 0.80000001 Tune: 🔲 Position Error Integrator 👘 Velocity Eeedforward 👘 Qutput Filter □ Velocity Error Integrator □ Acceleration Feedforward DANGER: This test may cause axis motion Start Tuning <u>^</u> with the controller in program mode. ΟK Cancel Apply Help
- 20. Select the Tune Servo tab. The following window appears.

21. Select Start Tuning. The following window appears.

RSLogin	500
1	Save pending edits to execute online command? Once the edits are saved the online command may initiate motion.
	<u>Yes</u>

22. Select Yes. The following window appears.

23. Select **OK**. The Tune Bandwidth window appears.

Tune Ba	andwid	th						×
	– Positic	on Loop <u>B</u> andwidth	16.1	3829	-	Hertz		
	A		m ban	idwidth.		nined by the t sing the band	une process is width may	
				OK		Cancel	<u>H</u> elp	

24. Select **OK**. The following window appears.

Online Command - Apply Tune 🛛 🛛 🛛 🔀						
Command Status: Command Complete	OK					
Wait for process to complete. Check for errors if it fails.	<u>S</u> top					
	<u>H</u> elp					

25. Select OK. The following window appears.

Axis Properties - A	kis_X					_ 🗆 ×	
General Group Actions	Units Units Hookup	Feedback Tune !	Positioning Servo*	Homing Gains	Overtravel	Servo amics	
Tuning <u>T</u> ravel Limit: Tuning Speed:	5.0	Revs Revs/Seconds					
Tuning <u>Direction:</u> C <u>Positive</u> C <u>Negative</u>							
Damping Eactor: 0.80000001 Tune: Position Error Integrator Velocity Eeedforward Output Filter							
Velocity Error Integrator DANGER: This test may cause axis motion with the controller in program mode.							
		OK	Ca	ncel	Apply	Help	

26. Select **OK**. The Axis Properties window appears.

27. Select the Gains tab. The following window appears.

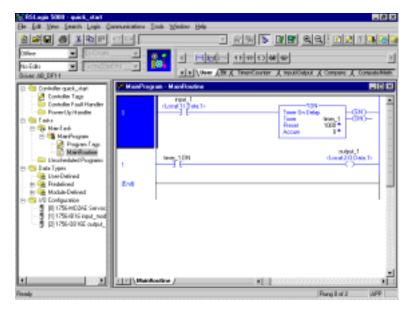
Axis Properties - Axis_X					
General Gr Actions	oup Units I Hooku	Feedback	Positioning une Servo	Homing I Gains	Overtravel Servo Dynamics
Position Loop- <u>P</u> roportional:	0.10172527		- Servo Output Eriction Compensation:	0.0	le ∨
Integral:	0.0	÷ € 1/ms^2	Output Offset:		
Velocity Feedforward: Velocity Loop	0.0	.	Output <u>F</u> ilter Bandwidth:	0.0	← Hz <u>E</u> nable
Proportional:	0.26041672		Output Scaling	0.14142856	← mV/KC/s^2
l <u>n</u> tegral:	0.0	÷ € 1/ms^2			
Acceleration Feedforward:	0.0	÷ * %		<u>R</u> eset]
			ок с	ancel Ap	aply Help

The window will show values for the position loop, velocity loop, and output compensation.

Asis Properties - Asis	х	- D ×
General Broup Actions	Unitz Feedback Pozitioning Homing H Hookup TuneServo Gains	Overtravel Servo Dynamics
Position Error Tolevance:	08009100 + Revo	Repet
Maximum Velocity:	20.0 😤 • Revo/Seconds	
Maximum Acceleration:	6433.3945 🔆 + Revo/Seconds*2	
Maximum Deceleration:	9393.6594 🚔 • Revol/Seconds'2	
	OK Cancel (3	gia Help

28. Select the Dynamics tab. The following window appears.

This window will show values for maximum velocity, error tolerance, maximum acceleration, and maximum deceleration.


29. Select OK. The Axis Properties window will close.

This completes the configuration of Axis_X. You can use Axis_X for motion instructions within your application program.

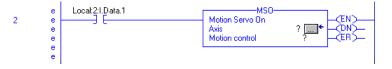
Entering a Ladder Logic Program After completing all the motion control configuration, you can begin

to enter your application program. To enter a ladder logic program:

- 1. From the Communications menu, select Go Offline.
- Double-click Main Routine. The following window appears. 2.

- 3. To add rung 2, select the \square button.
- To add an XIC to rung 2, select the ++ button in the User 4. instructions. Rung 2 should look like the following.

5. Double-click the question mark.


6. Select the down arrow. The following window appears.

Local:2:1.Da 💌	
Tag Name	Data Type 🔺
	AXIS
input_1	BOOL
	AB:1756_DI:C:
	AB:1756_DI:I:0
	AB:1756_DO:C
⊟-Local:2:I	AB:1756_DO_
Local:2:I.Fault	DINT
-Local:2:I.Data	🔽 DINT
0 1 2 3 4 5 6 7	DINT[2]
8 9 10 11 12 13 14 15	DINT
H 16 17 18 19 20 21 22 23	AB:1756_DO:
1 24 25 26 27 28 29 30 31	MOTION_GRO 🔽

7. Select Local:2:I.Data.1. Rung 2 should look like the following.

8. To add an MSO instruction to rung 2, select the MSO button from the Motion State instructions. Rung 2 should look like the following.

- 9. Next to the Axis field, double-click on the question mark.
- 10. Select Controller Tags.
- 11. Double-click Axis_X.

12. Right-click the Motion Control field.

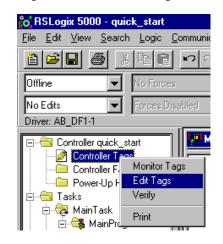
Motion Servo On Axis Axis Motion control	Cut Instruction Copy Instruction Paste	Ctrl+X Ctrl+C Ctrl+V
	Delete Instruction Add Ladder Element Edjt Instruction Edit Tag Description	Del Ins Enter
	Toggle Bit	Ctrl+T
	Find Replace	Ctrl+F
	Go To	Ctrl+G
	Create Tag	

13. Select Create Tag. The following window appears.

New Tag		×
<u>N</u> ame:	6	OK
<u>D</u> escription:	<u> </u>	Cancel
	<u></u>	Help
Tag Type:	● <u>B</u> ase O <u>A</u> lias O C <u>o</u> nsumed	
Data <u>T</u> ype:	MOTION_INSTRUCTION	Configure
<u>S</u> cope:	quick_start(controller)	
Style:	7	
Produce t	his tag for up to 2 consumers	

14. Make entries in the following fields.

Field	Entry
Name	Axis_X_MSO


15. Select OK. Rung 2 should look like the following.

2	Local:2:I.Data.1	Motion Servo On Axis Motion control	

Creating Additional Tags Using the Tag Editor

Before adding additional rungs and instructions, you can create all the tags needed for your program. To create these tags using the tag editor:

1. Right-click Controller Tags.

2. Select Edit Tags. The following window appears.

RSLagia S000 - quick_start						- E
de Edit Yes Seach Logic (jannunica	tions Jook Mindow	Elefe			
	17 02		三頭馬	5.22.9	49:0209	1
Offere 💌 🕅 Ölferrer		2 0 • 1	Elete store	dasher body	al	
Nolidu 💌 Exercite	dist.	5 3 4	te lestra solar a			
Diver AR_DF14			Adotor State A Million	ilon 🖌 ilon i	inter 🖌 Maken David 🖌	Monor
🗉 📴 Conheller quick_stat	2 La	ntroller Tags - quick_	start(controller)			ale i
🖉 Controller Tage	Sea	at gaick, startboorholes	 Star Don 4 	• Sec.	Tog Name 💌	_
 Eonindies Fault Handles Fourer Up Handles 	11	Eagtime	C Mar Fre	Aser Tag	Luse	tinja a
- Cake	1	Fisher X			4041	
8 - 1 Harles	16-	814ab_X1450			MOTION_INSTRUCTION	
🖂 🖼 MariProgram		input_1	Local11Date.1	Lood 11 Detail	\$00.	Deck
Proper Lap		#Hone11G			AB:1756_DECO	
Unsteaded Programs		#Honal11			AD:1756_0116	
🔁 Data Types		# Local 2:C			AD:1756_DO:C:0	
Liver Delived		#iLocal21			A0:1756_00_Fundt18	
8 Michael Redefined		Kilocal20			AD:1756_00:0:0	
1/0 Lonfiguation		R Motor_Group			MOTION_GROUP	
- 5 IE1756HE046 Served		t_lupio	Local2DData1	Loog 20 Data 1	800.	Decal.
 B [1]17564816 kpst_nec B [2]17564816 kpst_nec 		Films_1			TIMER	
	11+1-					

Tag Name	Туре	Style
Axis_X_MAFR	MOTION_INSTRUCTION	NA
Axis_X_MAH	MOTION_INSTRUCTION	NA
Axis_X_MAJF	MOTION_INSTRUCTION	NA
Axis_X_MAJR	MOTION_INSTRUCTION	NA
Axis_X_MAM	MOTION_INSTRUCTION	NA
Axis_X_MAS	MOTION_INSTRUCTION	NA
Axis_X_MSF	MOTION_INSTRUCTION	NA
Axis_X_MS0	MOTION_INSTRUCTION	NA
Axis_X_pos	REAL	Float

3. Add the following tags.

When you close and re-open the Tag Editor, your Tag Editor window should look like the following.

icap	pe quick_staticontrol	er Show Show A	u 🗉	Sagt Tag Name 🔳	
P	Tag Name	Alias For	BaseTag	Туре	Style
	⊞-Axis_X			AVOS	
	H-Axis_X_MAFR			MOTION_INSTRUCTION	
	B Avis_X_MAH			MOTION_INSTRUCTION	
	E-Avis_X_MAJF			MOTION_INSTRUCTION	111111
	E-Axis_X_MAIR			MOTION_INSTRUCTION	
	E Axis_X_MAN			MOTION_INSTRUCTION	
	B Avis_X_MAS			MOTION_INSTRUCTION	
	E-Avis_X_MSF			MOTION_INSTRUCTION	
Г	⊞-Avis_X_MSO			MOTION_INSTRUCTION	
	Axis X_pax			REAL	Roat
	input_1	Local 1:LD ata 1	Local 11 Data 1	800.	Decinal
	⊞-Local1:C			48:1756_DtC:D	
	*-Local11			A8:1796_DEED	
	itHocal2€			A8:1796_00:0:0	
	30 Local 21			All:1796_0.0_Fused1:0	
	H-Local20			48:1766_00:0:0	
	⊞-Motion_Group			MOTION_GROUP	
	output_1	Local 20 Data 1	Local 20.Date 1	BDOL	Decinal
	H free_1			TIMER	

Completing Your Application Program

After you create all the tags for your program, you can add the remaining rungs and instructions. To complete your application program:

1. Enter the following rungs of logic.

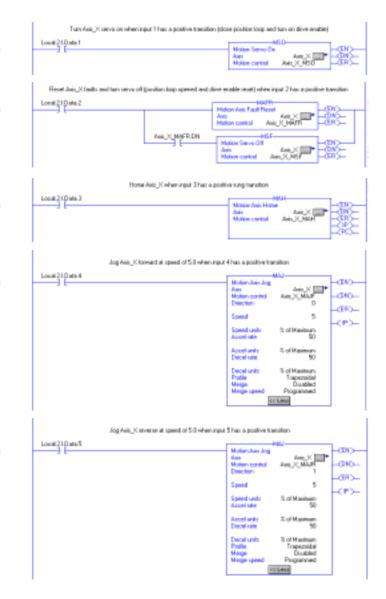
Rung 2:

When input 1 has a positive transition, the controller turns the Axis_X servo on. This instruction closes the position loop and activates the drive enable output.

Rung 3:

When input 2 has a positive transition, the controller turns the Axis_X servo off. This instruction opens the position loop and deactivates the drive enable output.

Rung 4:


When input 3 has a positive transition, the controller homes Axis_X

Rung 5:

When input 4 has a positive transition, the controller jogs Axis_X in the forward direction with a speed of 5.0.

Rung 6:

When input 5 has a positive transition, the controller jogs Axis_X in the reverse direction with a speed of 5.0.

Rung 7:

When input 4 or input 5 has a negative transition, the controller stops the jog on Axis_X.

Rung 8:

When input 6 has a positive transition, the controller moves Axis_X an incremental distance of 10.0 at a speed of 5.0.

Rung 9:

The controller reads the Axis_X actual position attribute and stores its value in Axis_pos.

	When input 4 as input 5 has a negative have	alition strong during, K jang	i
7	Lond2()pea4 Lond2()pea8	Hoter Anti Step Anti Anti Step Ster Spe Dange Geol Ng Decel ster College	
•	Hover, fail, 2 an increase and distance of 10.0 as a speed of 50 Loost 210 state	Haten Asis More Asis Motor cartral Motor cartral Motor type 1 -CHO	
		Position 10.0 Speed 5.0 Speed ants 2 of Maximum Accel rate 3:0 Accel rate 3:0	
		Post and 2: of Manual Post Post Display Page Display Noge good Poggament	
	Read/Init_X actual position and stare		
9		000 Def optime Ave DP Disect dans Ave Ambute name Adda Statistics Dear Adda Statisti	
End			

2. From the File menu, select **Save**.

o R	SLog	ix 500	0 - quicl	c_start		
<u>F</u> ile	<u>E</u> dit	⊻iew	<u>S</u> earch	Logic	<u>Communications</u>	Tool
<u>Ν</u> ε	w				Ctrl+N	1
	en				Ctrl+C	
<u>C</u> lo	ose					
<u> </u>	ve				Ctrl+S	;
Sa	ive <u>A</u> s.					
Ne	<u>w</u> Con	nponen	t			•
Įm	port AS	SCII				
<u>E</u> ×	port A	SCII				
Co	<u>m</u> pact					
Eri	nt				Ctrl+F	>

Once you have created and saved your program, you can download it to your controller and test its operation. For more information about downloading and testing your program, refer to the Logix5550 Controller User Manual, publication 1756-6.5.12.

Adding and Configuring Your Motion Module

This chapter describes how to add and configure your motion module for use in your motion control application. The following table shows the contents of this chapter:

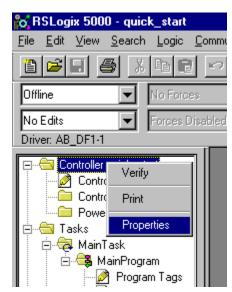
For information about	See page
Understanding Application Program Development	4-1
Selecting the Master Coordinated System Time	4-2
Adding the 1756-M02AE Module	4-5
Naming an Axis	4-7
Configuring a Motion Axis	4-8
Assigning Additional Motion Modules and Axes	4-27
Running Hookup Diagnostics and Auto Tuning	4-28
Developing a Motion Application Program	4-38
Understanding a Programming Example	4-39

Understanding Application Program Development

Developing a motion control application program involves the following:

Task	Description
Select the master coordinated system time	Sets one controller as the master controller. Once you complete this step, you can synchronize all the motion modules and Logix5550 controllers in your chassis
Add a motion module	Adds a motion module to your application program
Name an axis	Adds an axis to your application program
Configure an axis	Configures each axis for motion control
Assign additional servo modules and axes	Adds additional modules and axes to your application program
Run hookup diagnostics and auto tuning	Completes hookup diagnostics and auto tuning for each axis
Develop a motion application program	Create a program for your motion control application

This chapter will describe each of these tasks.


Selecting the Master Coordinated System Time

By selecting the master controller for your application, you can synchronize all the motion modules and Logix5550 controllers in your chassis.

Note: For the motion module to operate correctly, you must select a master controller in each chassis that contains motion modules. Each chassis should contain only one master controller.

To select the master coordinated system time:

1. Right-click the Controller folder.

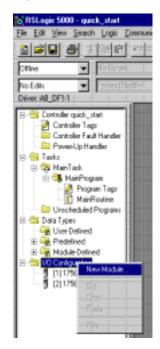
👸 Controller Pi	operties -	quick_start			_ 🗆 🗵
Serial Port Pr General		Major Faults ate/Time	Minor Faults Communicati	Advance	ed File Serial Port
Vendor:	Allen-Bradle	9			
Туре:	1756-L1 ControlLogi	x5550 Programm	able Controller		
<u>N</u> ame:	quick_start				
<u>D</u> escription:				×	
Sl <u>o</u> t Number:	3 .				
Chassis Type:	1756-A4A	4-Slot Chassis	•		
Revision:	1	E			
		OK	Cancel	Apply	Help

2. Select **Properties**. The Controller Properties window appears.

3. Select the Date/Time tab. The following window appears.

Controller Proper	ties - quick_start			_ 0
Serial Port Protoco		Minor Faults	Advanced	File
General	Date/Time	Communication	ns	Serial Port
Date: Time:	Set			
O Is the master O Synchronized	ntroller the <u>master</u> with a master			
 Duplicate mas Timer hardwar 				

2	1	


lf	And	Then
Your controller uses a motion axis	No other controllers in your chassis are configured as the master controller	 Select Make this controller the master Select OK
Your controller uses a motion axis	Another controller in your chassis is configured as the master controller	Select OK

5. Select OK.

Adding the 1756-M02AE Module To use your motion module in a control system, you must add your motion module to the application program.

To add a motion module:

1. Right-click the I/O Configuration folder.

2. Select New Module. The Select Module Type window appears.

elect Module	Туре			
<u>T</u> ype:	Major <u>R</u> evision:			
1747-ASB	1			
Туре	Description			
1747-ASB	1747 Remote I/O Adapter 📃 🔺			
1756-CNB	1756 ControlNet Bridge			
1756-CNBR	1756 ControlNet Bridge, Redundant Media			
1756-DHRIO	1756 DH+ Bridge/RIO Scanner —			
1756-DNB	1756 DeviceNet Scanner			
1756-ENET	Ethernet Communication Interface			
1756-IA16	16 Point 79V-132V AC Input			
1756-IA16I	16 Point 79V-132V AC Isolated Input			
1756-IA8D	8 Point 79V-132V AC Diagnostic Input			
1756-IB16	16 Point 10V-31.2V DC Input			
1756-IB16D	16 Point 10V-30V DC Diagnostic Input			
1756-IB16I	16 Point 10V-30V DC Isolated Input, Sink/Source			
-Show				
⊻endor:	Allen-Bradley Company, Inc.			
🔽 A <u>n</u> alog	☑ Digital ☑ Communication ☑ Motion ☑ Processor Clear All			
	OK Cancel <u>H</u> elp			

3. In the *Type* field, select **1756-M02AE 2** Axis Analog/Encoder Servo.

Туре	1756-MD24E 2 Axis Analog/Encoder Servo	
Vendos	Allen-Bradley Company, Inc.	
Parent:	Local	
Nage	Sizk [0 포님	
Description		
Associated	geex:	
Channel 0:	(none) MawAgin	
Channel 1:	cnoneo	
Beviolon:	1 Electronic Keyling: Compatible Module	

4. Select **OK**. The New Module window appears.

Field	Entry		
Name	 Type a name for the servo module. The name can: have a maximum of 40 characters contain letters, numbers and underscores (_). 		
Slot	Enter the number of the chassis slot that contains your module.		
Description	Type a description for your motion module. Note: This field is optional.		
Electronic keying	Select the electronic keying level. To	Select	
	Match the vendor, catalog number, and major revision attributes of the physical module and the software configured module		
	Disable the electronic keying protection mode	Disable keying	
	Match the vendor, catalog number, major revision, and minor revision attributes of the physical module and the software configured module	Exact match	

Naming an Axis

Naming an axis adds it to your application. To name an axis:

1. In the New Module window (shown in step 4 of the *Adding the 1756-M02AE Module* section), select **New Axis**. The New Tag window appears.

New Tag		×
<u>N</u> ame:		OK
<u>D</u> escription:	<u></u>	Cancel
	×	Help
Tag Type:	● <u>B</u> ase C <u>A</u> lias C C <u>o</u> nsumed	
Data <u>T</u> ype:	AXIS	<u>C</u> onfigure
<u>S</u> cope:	quick_start(controller)	
Style:	V	
Produce t	his tag for up to 2 consumers	

Field	Entry	Entry		
Name		The name can:		
Description	Type a description for your motion axis. Note: This field is optional.			
Data type	AXIS			
Scope	Select the scope of the axis variable.To use the axis	Select		
	Within the entire program	Controller		

Configuring a Motion Axis

To configure your new axis:

- Note: When you configure your axis, some fields may be unavailable (greyed-out) because you are using a type of axis, fault, etc.
- 1. In the New Tag window (shown in step 1 of the *Naming an Axis* section), select **Configure**. The Axis Wizard-General window appears.

: Wizerd Asia_)	X - General			_	
Module:			Dannel:		
(mane)		×			
<u>Lype:</u> <u>Positioning</u> Mode	Servo Linear	-			

Field	Entry				
	Select the type of axis you are using.				
Туре	To use your axis for	Select			
Type	Full servo operation	Servo			
	Monitoring position	Position-only			
	Select the positioning mode for you module.				
	To enable	Select			
Positioning mode	A maximum linear excursion of one billion encoder counts	Linear			
	The rotary unwind option of the axis	Rotary			

3.

lf	Then
You have already created a motion group for this axis	Go to step 13.
You want to create a new motion group	Go to step 4.

4. Select Next. The Axis Wizard-Group window appears.

Axis Wizard Axis_X - Gro	up				
Assigned Motion Group: Ages Assigned			See Group		
<u>Coaros Raite:</u> Servo Update Period <u>G</u> enesal Fault Type:	1	 - nu 			
	Help	Cancel		Nest	Finish

5. Select **New Group**. The New Tag window appears.

New Tag		×
<u>N</u> ame:		ОК
Description:	A	Cancel
	*	Help
Tag Type:	● <u>B</u> ase O <u>A</u> lias O C <u>o</u> nsumed	
Data <u>T</u> ype:	MOTION_GROUP	<u>C</u> onfigure
<u>S</u> cope:	quick_start(controller)	
Style:		
Produce the	nis tag for up to 2 consumers	

Field	Entry		
Name	 Type a name for the motion group. The name can: have a maximum of 40 characters contain letters, numbers and underscores (_). 		
Description	Type a description for your motion group. Note: This field is optional.		
Data type	MOTION_GROUP		
Scope	Select the scope of the axis variable. To use the axis Select		
	Within the entire program	Controller	

7. Select **Configure**. The Axis Wizard-Axis Assignment window appears.

Axis Wizard Motion_Group - /	Axis Assignment
<u>U</u> nassigned: Axis X	A <u>s</u> signed:
<u>A</u> dd>	< <u>R</u> emove
Help Cancel	< <u>B</u> ack <u>N</u> ext > Finish

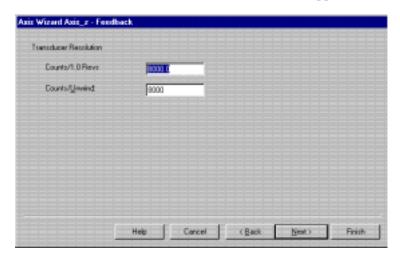
- 8. From the *Unassigned* field, select your axis.
- 9. Select Add.

10. Select Next. The Axis Wizard-Update Rates window appears.

Axis Wizard Motion_Group - Update Rates
Coarse Rate: 2 ms
<u>S</u> ervo Update Period: 200 💌 us
General Fault Type: Non Major Fault
Help Cancel < <u>B</u> ack <u>M</u> ext⇒ Finish

Field	Entry				
Coarse rate	Type the coarse update rate for the motion group.				
	Select the update period for your motion	on group.			
Servo update period	For	Select			
	200 µs update rate	200			
	Select the type of fault for group faults				
General fault type	To classify group faults	Select			
ocherar laun type	As minor faults	Non major fault			
	As major faults	Major fault			

ix Wizard Axiz_X - Group				
Assigned Motion Group: (none)	•	A (anvign		
den barren.	_			
2000-700s	18			
Nuclearly New York	1			
internal international data with the second states of the second states	7			
Help	Cancel	(Back	News	Finish


12. Select Finish. The Axis Wizard-Group window appears.

- 13. In the Assigned Motion Group field, select your motion group.
- 14. In the Coarse Rate field, type the coarse update rate based on the number of axes in your application. For more information about coarse update rates, refer to Appendix A *Specifications and Performance*.
- 15. Select Next. The Axis Wizard-Units window appears.

is Wizerd Asis_X - Units			
Position Units Revo			
Ine Unit Second:			
igesti (ve Peicentege)	~		
Decision and Percentage	7		
Help	Cancel	 Nest >	Freith

Field	Entry		
Position units	Type the units for your axis. For example, a linear axis may use inches, meters, etc.		
	Select the time unit for your axis.		
Time unit	To use	Select	
	Seconds as the time unit	Seconds	
	Select the velocity unit for your axis.		
Speed unit	To use	Select	
	A percentage of the maximum velocity	Percentage	
	The actual velocity	Units per sec	
	Select the acceleration and decelerat	ion units.	
	To use	Select	
Acceleration and deceleration unit	A percentage of the maximum acceleration and deceleration	Percentage	
	The actual acceleration and deceleration rates	Units per sec2	

17. Select Next. The Axis Wizard-Feedback window appears.

Field	Entry
Counts/1.0 revs	Type the number of transducer counts per axis position unit. This value allows the conversion of encoder counts into axis position units. For example, an axis uses a 1000-line encoder coupled directly to a 5-pitch lead screw (5 turns per inch). The counts/1.0 revs value is: $\frac{1000 lines}{rev} \times \frac{4 counts}{line} \times \frac{5 revs}{inch} = \frac{20000 counts}{inch}$
Counts/unwind	Type the position unwind value. This value allows the controller to perform an automatic electronic unwind of a rotary axis.
	For example, a rotary axis uses degrees as units. There are 10 encoder counts per degree. The counts/unwind value is:
	$10 counts \times 360 degrees = 3600 encoder counts$

19. Select Next. The Axis Wizard-Positioning window appears.

Aziz Wizard Aziz_X - Pozitioning		
Mana Patrician Dahala Mana Malan Patrici Lago Ghang Patrici Trapanadak		
LockTolesance.	Rev:	
Help	Cancel (Back New)	> Fireth

Field	Entry				
	Select the move profile for your axis.				
	To use:	Select:			
Move velocity profile	 Linear acceleration The fastest acceleration and deceleration rates 	Trapezoidal			
	Controlled jerkLeast motor stress	S-curve			
	Select the jog profile for your axis.				
	To use:	Select:			
Jog velocity profile	 Linear acceleration The fastest acceleration and deceleration rates 	Trapezoidal			
	Controlled jerk Least motor stress				
Lock tolerance	Type the allowable position error the servo module will tolerate when giving a true position locked status indication.				
Average velocity timebase	Type the time in seconds for calculating the average velocity of your axis.				

21. Select Next. The Axis Wizard-Homing window appears.

Hanse Pasition: 0.0 Mode: Active					
Active					
Sequence: Hone To Switch		*			
Linit Switch: Normaly Open		-			
Honing Direction: 17 Basilive	C Nep	evite			
Speed: Revs/Seconds					
Hgwing Speed 0.0		Kome Beturn S	peed 0.0		

22.	Make	entries	in	the	follo	wing	fields.

Field	Entry				
Home position	Type the absolute position for the axis after a homing sequence completes.				
	Select the type of homing to use.				
	То	Select			
Mode	Use a homing sequenceUse the trapezoidal velocity profile.	Active			
	Redefine the current absolute position on the next occurrence of the encoder marker	Passive			
	Select the type of active homing sequ	ence to use.			
	То	Select			
Sequence	Allow the controller to immediately assign the home position to the current axis position	Immediate home			
	Move the axis until it detects the home limit switch	Home to switch			
	 Move the axis until it detects the home limit switch Use the most precise active homing sequence. 	Home to switch with marker			
	Move the axis until it detects the encoder marker	Home to marker only			
	Select the default setting of the home	switch.			
Limit switch	To set the home switch	Select			
	To open	Normally open			
	To closed	Normally closed			
	Select the initial direction of the homi	ng motion.			
Homing direction	To use	Select			
	A positive direction	Positive			
	A negative direction	Negative			
Homing speed	Type the initial speed of the jog profile homing sequence.	e used in an active			
Home return speed	Type the return speed of the jog profil homing sequence.	e used in an active			

- Axis Wizerd Axis_z Overtravels

 P Get TravelLinits

 Overtravels

 Nasinum Bostive: 10 Revs
 Nasinum Begetive: 00 Revs

 Help Carcel (Back Next) Finish
- 23. Select Next. The Axis Wizard-Overtravels window appears.

Field	Entry
Soft travel limits	If you want to use soft overtravel limits, select Soft Travel Limits.
Maximum positive	Type the maximum overtravel value in the positive direction.
Maximum negative	Type the maximum overtravel value in the negative direction.

25. Select Next. The Axis Wizard-Servo window appears.

is Wizerd Asis_X - S	ervo				
Drive Lips: Melocity					
F Enable Drive Fault	Input				
Drive Eault Input	Normally Closed	*			
Quiput Linit	10.0	v			
Enable Servo Update:					
Pasition Error	E 24000 E(x)	Velocity Command	🗖 Serva Dutput I	avel.	
Position (Enor	North And	Welocity Eeedback			
	Help	Cancel	(Back Ne	0 1	Finish
	Help	Cancel	C Back No	80 -	Pritth

Field	Entry					
	Select the drive type you are using.					
Drive type	To use	Select				
Drive type	A velocity loop servo drive	Velocity				
	A torque loop servo drive	Torque				
Enable drive fault input	If you are using the servo module drive fault input, select Enable Drive Fault Input .					
	Select the type of drive fault input.					
	If the drive fault input	Select				
Drive fault input	Closed in reference to the servo module	Normally closed				
	Open in reference to the servo Normally open module					
Output limit	Type the maximum servo output volta	ge of your axis.				
Enable servo update	Select the status attributes you want t	to regularly update.				

27. Select Next. The Axis Wizard-Fault Action window appears.

2010(etcer)	Disable Orive 1			
Basilian Error	Disable Drive			
Drive Fault	Disable Drive			
Transducer Noise	Disable Drive	*		
Transducer Loss:	Disable Drive			
Brogrammed Stop Action:	Fact Stop			

28.	Make	entries	in	the	follo	wing	fields.
-----	------	---------	----	-----	-------	------	---------

Field	Entry					
	Select the type of action when this fa	ult occurs.				
	То	Select				
Soft overtravel	 Disable servo action Zero the servo amplifier output Deactivate the drive enable output Open the OK contact 	Shutdown				
	 Disable servo action Zero the servo amplifier output Deactivate the drive enable output 	Disable drive				
	Decelerate the axis to a stop according to the MaximumDeceleration value	Stop motion				
	Handle the fault using your application program	Status only				
	Select the type of action when this fa	ult occurs.				
	То	Select				
	 Disable servo action Zero the servo amplifier output Deactivate the drive enable output Open the OK contact 	Shutdown				
Position error	 Disable servo action Zero the servo amplifier output Deactivate the drive enable output 	Disable drive				
	Decelerate the axis to a stop according to the MaximumDeceleration value	Stop motion				
	Handle the fault using your application program	Status only				

Field	Entry					
	Select the type of action when this far	ult occurs.				
	То	Select				
	 Disable servo action Zero the servo amplifier output Deactivate the drive enable output Open the OK contact 	Shutdown				
Drive fault	 Disable servo action Zero the servo amplifier output Deactivate the drive enable output 	Disable drive				
	Decelerate the axis to a stop according to the MaximumDeceleration value	Stop motion				
	Handle the fault using your application program	Status only				
	Select the type of action when this far	ult occurs.				
	То	Select				
	 Disable servo action Zero the servo amplifier output Deactivate the drive enable output Open the OK contact 	Shutdown				
Transducer noise	 Disable servo action Zero the servo amplifier output Deactivate the drive enable output 	Disable drive				
	Decelerate the axis to a stop according to the MaximumDeceleration value	Stop motion				
	Handle the fault using your	1				

Field	Entry					
	Select the type of action when this fa	ault occurs.				
	То	Select				
	 Disable servo action Zero the servo amplifier output Deactivate the drive enable output Open the OK contact 	Shutdown				
Transducer loss	 Disable servo action Zero the servo amplifier output Deactivate the drive enable output 	Disable drive				
	Decelerate the axis to a stop according to the MaximumDeceleration value	Stop motion				
	Handle the fault using your application program	Status only				
	 Select how this axis will stop when The ControlLogix controller undergoes a critical mode change You use a Motion Group Programmed Stop (MGPS) instruction. 					
	То	Select				
	 Decelerate the axis to a stop using the MaximumDeceleration value. Maintain servo action after axis motion stops. 	Fast stop				
Programmed stop action	 Decelerate the axis to a stop using the MaximumDeceleration value. Place the axis in the shutdown state after axis motion stops. Note: You must use shutdown reset instructions (MASR or MGSR) to recover the axis from the shutdown state. 	Fast shutdown				
	 Immediately place the axis in the shutdown state. Note: Unless you configure the axis with dynamic breaking, the axis will coast to a stop. Note: You must use shutdown reset instructions (MASR or MGSR) to recover the axis 	Hard shutdown				

- Asiz Wizerd Asiz_X Hookup Motor/Encoder Test (Enter Lest Increment, Initiate Test and Watch Motor Direction) Lest Increment Revo. DANGER: This test may cause axis motion ۱ with the controller in program mode DANGER: Modifying polarity determined after invicuting the motor/encoder test may cause an runaway condition. Polatky 1 IF Postive Feedback IF Ppolive Servo Dutput C Negative C Negative Marker Test [Start the marker test and then Generate a Marker Pulse] Help Cancel < Back Nest) Finish
- Note: To use the hookup diagnostic tests, you must ensure the controller is online and the application program is downloaded. If the controller is offline, the **Start Motor/Encoder Test** and **Start Marker Test** buttons will be greyed-out.
- 30. Make entries in the following fields.

Field	Entry				
Test increment	Type the amount of motion that is necessary to test:The connection to the encoder.The direction of the encoder.				
	Select the polarity of the servo output to the drive.				
Sorue output	То	Select			
Servo output	Use positive polarity	Positive			
	Use negative polarity	Negative			
	Select the polarity of the encoder feedback.				
Feedback	То	Select			
reeuback	Use positive polarity	Positive			
	Use negative polarity	Negative			

31. Select **Next**. The Axis Wizard-Tune window appears.

Tuning I savel Linit:	10	Reva
Tuning Speed.	0.0	Reys/Seconds
Tuning Direction:	G Ecoleve	C Negative
D-emping Elector	0.80000001	-
Tune: 🥅 Basilian E	nor Integrator 🔽	Velocity Exectlorward 🗖 Quiput Filter
T Velocity E	nor Integrator	Acceleration Feedforward
senteria 🧕		This test may cause axis motion néroller in program mode.

- Note: To use auto tuning, you must ensure the controller is online and the application program is downloaded. If the controller is offline, the **Start Tuning** button will be greyed-out.
- 32. Make entries in the following fields.

Field	Entry				
Tuning travel limit	Type the limit of axis motion during the auto tuning.				
Tuning speed	Type the maximum speed initiated during auto tuning.				
	Select the direction of the tuning motion profile.				
Tuning direction	To Select				
	Use the positive direction	Positive			
	Use the negative direction	Negative			
Damping factor	Type the value to calculate the maximum position servo bandwidth.				
Tune	Select the values you want to calculate	e during tuning.			

Position Loop Proportional		- 1/m	Serve Duput Election Compensation	
Colorada an			Compensation: 100	2.
[r/egral	0.0	- 1/m/2	Output Offset: 0.0	÷.∀
Velocity Feedloward	0.0	<u></u> • X	1. performente D.O.	Ha T Enste
Velocity Loop			Output Scaling: 0.0	+++W/KC/6"2
Pysportional	0.0	- 1/m		
iptograf.	0.0	= 1/mt 2		
Acceleration Feedforward	0.0	- x	Barat	_

33. Select Next. The Axis Wizard-Gains window appears.

	MINZO	ontriog	11	tho	toll	OWING	tiolda
14	IVIAKE	entries		1110	1011	OWINY	TICIUS .

Field	Entry	
Position loop - Proportional	Type the value of the position proportional gain. This value is multiplied by the position error to produce a portion of the velocity command.	
Position loop - Integral	Type the value of the position integral gain correction. You can use this value to improve the steady-state positioning performance of the system.	
Position loop - Velocity feedforward	Type the velocity feedforward gain value. You can use this value to provide the velocity command output necessary to generate the commanded velocity.	
Velocity loop - Proportional	Type the value of the velocity proportional gain. This value is multiplied by the velocity error to produce a portion of the servo output or torque command.	
Velocity loop - Integral	Type the value of the velocity integral gain correction. This value is multiplied by the velocity integral error to produce a portion of the servo output or torque command.	
Velocity loop - Acceleration feedforward	Type the acceleration feedforward gain value. You can use this value to provide the torque command output necessary to generate the commanded acceleration.	
Friction compensation	Type the output level necessary to overcome the static friction of your axis.	
Output offset	Type a value to offset the cumulative offsets of the servo module DAC output and the servo drive input.	
Output filter bandwidth	Type the value of the bandwidth of the servo low-pass digital output filter.	
Output scaling	Type the value to convert the output of the servo loop into the equivalent drive voltage.	
Reset	To reset the values to those determined during auto tuning, select Reset .	

You can also determine these entries by performing auto Note: tuning. For more information, see the Running Hookup Diagnostics and Auto Tuning section.

Position Enter Tolesance:	0.000125	A Revo	Repet
Masinun Yelocity	0.00000125	- Revs/Seconds	
Maximum <u>Acceleration</u>	0.00125	- Revo/Secondo*2	
Maximum Deceleration	0.00125	A Revs/Seconds'2	

35. Select Next. The Axis Wizard-Dynamics window appears.

36. Make entries in the following fields.

Field	Entry		
Position error tolerance	Type the value of the position error the servo module can tolerate before a position error fault occurs.		
Maximum velocity	Type the value of the maximum steady-state speed of the axis.		
Maximum acceleration	Type the maximum acceleration to apply to an axis.		
Maximum deceleration	Type the maximum deceleration to apply to an axis.		
Reset	To reset the values to those determined during auto tuning, select Reset .		

Note: You can also determine these entries by performing auto tuning. For more information, see the *Running Hookup Diagnostics and Auto Tuning* section. 37. Select Finish. The Module Properties window appears.

Module Prope	erties - Local (1756-MO2AE 1.1)	×
Туре:	1756-M02AE 2 Axis Analog/Encoder Servo	
Vendor:	Allen-Bradley Company, Inc.	
Parent:	Local	
Na <u>m</u> e:	Servocard Sl <u>o</u> t:	
Descri <u>p</u> tion:	×	
- Associated (Axes:	
Channel 0:	<none></none>	
Channel 1:	<none></none>	
<u>R</u> evision:	1 Electronic Keying: Disable Keying	
	Cancel < <u>B</u> ack <u>N</u> ext > Finish >> Help	

38.

lf	Then
You want to assign your axis to channel 0	In the <i>Channel 0</i> field, select your axis from the drop-down menu.
You want to assign your axis to channel 1	In the <i>Channel 1</i> field, select your axis from the drop-down menu.

39.

lf	Then	
You want to add another axis	Go to the Naming an Axis section.	
You do not want to add another axis	Select Finish.	

Assigning Additional Motion Modules and Axes

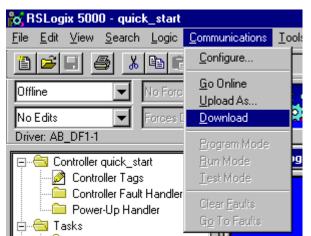
You can assign additional modules and axes by repeating the preceding sections. To name and assign another axis, refer to the *Naming an Axis* section.

You can assign up to 16 1756-M02AE modules to each Logix5550 controller. Each module uses a maximum of two axes. To add an additional motion module, refer to the *Adding the 1756-M02AE Module* section.

Running Hookup Diagnostics and Auto Tuning

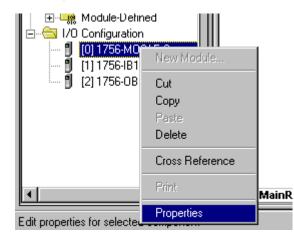
Once you have added and configured your motion module and axes, you can run hookup diagnostics and auto tuning. To run diagnostics and tuning, you must download a program and go online.

To run diagnostics and tuning:


- 1. Double-click Main Routine.
- 2.

lf	Then
The Main Routine window only shows rung 0 and the end rung	Select rung 0Delete rung 0Go to step 3
The Main routine window shows ladder logic rungs	Go to step 3

3. Make sure the keyswitch is in the REM position.


4. From the Communications menu, select **Download**.

A window similar to the following appears.

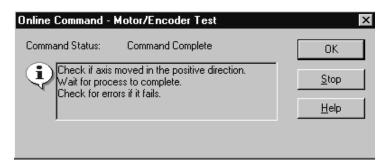
Download		х
	Download to the controller: Name: quick_start Type: 1756-L1/A 1756-M2/A LOGIX5550	
	Using this communications configuration: Driver: AB_DF1-1 Path: <none></none>	
	DANGER: All active servo axes will be turned off prior to download.	
	Download Cancel Help	

- 5. Select **Download**.
- 6. Under the I/O Configuration folder, right-click the 1756-M02AE module you want to use.

7. Select **Properties**. The Module Properties window appears.

Module Prop	perties - Local:0 (1756-MO2AE 1.1)	×	
General Conr	General Connection Module Info Backplane		
Type: Vendor:			
Parent:	Local		
Na <u>m</u> e:	Servocard Slot: 0 🗮		
Description:	×		
Associated			
Channel 0:	Axis_X		
Channel 1:	<none></none>		
<u>R</u> evision:	1 Electronic Keying: Disable Keying		
	OK Cancel Apply Help		

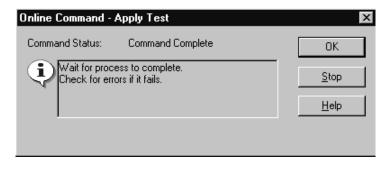
- Axis Properties Axis_X Haakup Tune Servo Gains Dyivanica Actions General Group Units Feedback Positioning Honing Overtravel Servo Channel Module • 0 ٠ Tupe Servo ٠ Positioning Mode: Linear ٠ ŪK. Cancel Help
- 9. Select the Hookup tab. The following window appears.


Axis Properties - A	xis_X				_ 0
General Group Actions	Units Fee Hookup*	dback Positi Tune Servo	oning Homin Gai		rel Servo Dynamics
Motor/Encoder Test (Enter Lest Increment, Initiate Test and Watch Motion Direction) Lest Increment: 5.0 Revs Start Motor/Encoder Test					
Polarity OANGER: Modifying polarity determined after executing the motor/encoder test may cause axis runaway condition. Servo Positive Output: Negative					
Marker Test (Start the marker test and then Generate a Marker Pulse)					
		ОК	Cancel	Apply	Help

10. Select **Start Motor/Encoder Test**. The following window appears.

8. Next to the *Channel* field of your axis, select the ____ button. The Axis Properties window appears.

11. Select Yes. The following window appears.


- 12. Watch the motor to see which way it turns.
- 13. Select **OK**. The following window appears.

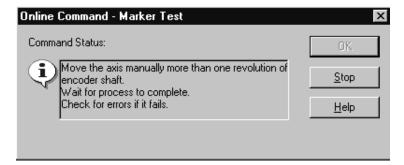
	RSLogix 5000 🗙		
Did the axis move in the positive direction			
	Yes No Cancel		

14.

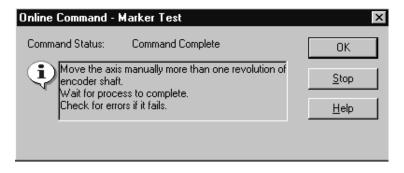
If the axis	Then
Moved in the positive direction	Select Yes
Moved in the negative direction	Select No

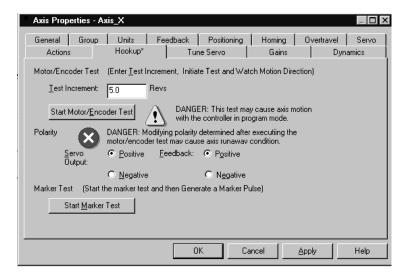
The following window appears.

15. Select **OK**. The following window appears.


16. Select OK. The Axis Properties window appears.

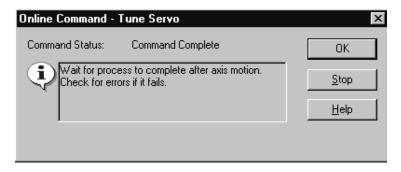
Axis Properties - A	xis_X					_ 🗆 ×
General Group Actions	Units F Hookup*	eedback Tune	Positioning Servo	Homing Gains	Overtrav	el Servo Dynamics
Motor/Encoder Test Iest Increment: Start Motor/Enc	(Enter <u>T</u> est Increi 5.0 Rev oder Test	s DANGE	e Test and Wat R: This test maj controller in pro	y cause axis m	ŗ	
Polarity Servo Servo Output:) ing polarity d	letermined after e axis runawav • P <u>o</u> sitive	- executiing the	÷	
	Image: Contract of the marker test and then Generate a Marker Pulse) Start Marker Test					
		Ok	Ca	ancel	Apply	Help


17. Select Start Marker Test. The following window appears.


18. Select Yes. The following window appears.

19. Slowly rotate the motor axis until the following window appears.

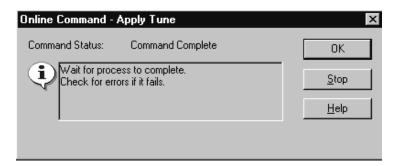
20. Select OK. The Axis Properties window appears.


21. Select the Tune Servo tab. The following window appears.

Axis Properties - A	xis_X					_ 🗆
General Group Actions	Units F Hookup	eedback Tun	Positioning e Servo*	Homing Gains	0vertra	avel Servo Dynamics
Tuning <u>T</u> ravel Limit:	5.0 F	levs				
Tuning <u>S</u> peed:	129	levs/Second				
Tuning <u>D</u> irection:	• <u>P</u> ositive	C <u>N</u> egativ	e			
Damping <u>Factor</u> :	0.80000001	l Veleziku Es	a dfarmard			
Tune: Position Error Integrator Velocity Eeedforward Dutput Filter						
Start Tuning DANGER: This test may cause axis motion with the controller in program mode.						
		0	K Ca	ancel	Apply	Help

22. Select Start Tuning. The following window appears.

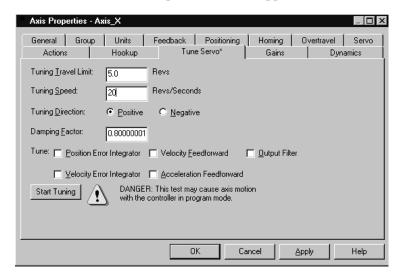
23. Select Yes. The following window appears.


24. Select OK. The Tune Bandwidth window appears.

Tune Bandwidth	n				×
- Position	Loop				٦
1	<u>B</u> andwidth	16.19829	÷	Hertz	
		,			
! }		he Bandwidth n bandwidth. Ir instability.			
		OK]_	Cancel	<u>H</u> elp

25.

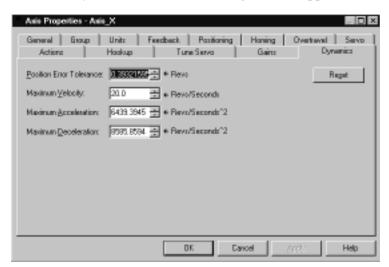
lf:	Then:
You do not want to change the bandwidth	Go to step 26.
You want to change the bandwidth	 In the <i>Bandwidth</i> field, type the position servo bandwidth, which is the unity bandwidth used to calculate gains. Go to step 26.


26. Select **OK**. The following window appears.

27. Select OK. The following window appears.

28. Select OK. The Axis Properties window appears.

Axis Properties - Axis_X		_ 🗆 X
General Group Units Actions Hookup	Feedback Positioning	Homing Overtravel Servo Gains Dynamics
Position Loop Proportional: 0.10172527	Servo Output	0.0 + V
	Compensation: • 1/ms^2 Output Offset:	0.0 × V
Velocity Feedforward: 0.0	€ € % Output <u>F</u> ilter Bandwidth:	0.0 ↔ Hz □ Enable
Velocity Loop Proportional: 0.26041672		: 0.14142856 📑 ← mV/KC/s^2
Acceleration 0.0 Feedforward:	. ← %	<u>R</u> eset
	ок с	ancel Apply Help
		ancel <u>Apply</u> Help


29. Select the Gains tab. The following window appears.

The window will show new values for the position loop, velocity loop, and output compensation.

30.

lf	Then
You want to change the position loop, velocity, loop, and servo output values	 Type the new values in the appropriate fields. Go to step 31.
You do not want to change the position loop, velocity, and servo output values	Go to step 31.

31. Select the Dynamics tab. The following window appears.

This window will show new values for maximum velocity, error tolerance, maximum acceleration, and maximum deceleration.

32.

lf	Then
You want to change the dynamics values	 Type the new values in the appropriate fields. Go to step 33.
You do not want to change the dynamics values	Go to step 33.

33. Select OK. The Axis Properties window will close.

Developing a Motion Application Program

To write a motion application program, you can insert motion instructions directly into the ladder diagram application program. The motion instruction set consists of five groups of motion instructions:

- Motion state instructions
- Motion move instructions
- Motion group instructions
- Motion event instructions
- Motion configuration instructions

For more information about these instructions, refer to Chapter 5 - *Understanding Motion Instructions*.

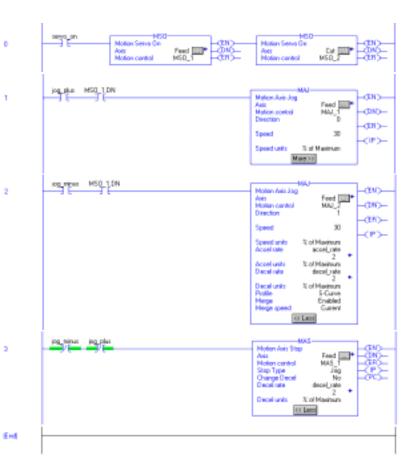
Understanding a Programming Example

The following figure shows several rungs of a motion control application program.

Rung 0:

Enables the Feed and Cut axes when you press the servo_on button.

Rung 1:


Jogs the Feed axis in the positive direction when you press the jog_plus button.

Rung 2:

Jogs the Feed axis in the reverse direction when you press the jog_minus button.

Rung 3:

Stops the Feed axis when you release with the jog_plus button or the jog_minus button.

For more information about instructions and creating application programs, refer to the Logix5550 Controller Instruction Set Reference Manual, publication 1756-6.4.1.

Adding and Configuring Your Motion Module

4-40

Understanding Motion Instructions

This chapter describes the 27 motion instructions for RSLogix 5000 programming software. The following table shows the contents of this chapter:

For information about	See page
Understanding Motion State Instructions	5-2
Understanding Motion Move Instructions	5-3
Understanding Motion Group Instructions	5-4
Understanding Motion Event Instructions	5-5
Understanding Motion Configuration Instructions	5-6

The motion instructions for the RSLogix 5000 programming software consist of five main categories:

- Motion state instructions
- Motion move instructions
- Motion group instructions
- Motion event instructions
- Motion configuration instructions

For more information about	Refer to
Motion instructions	The Logix5550 Controller Instruction Set Reference Manual, publication 1756-6.4.1
Types of motion instruction timing	Appendix E - Instruction Timing

Understanding Motion State Instructions

Motion state instructions directly control or change the operating state of an axis.

The motion state instructions are:

Instruction	Abbreviation	Description	Type of Timing	Typical Execution Time
Motion Servo On	MSO	Enables the servo drive and activates the axis servo loop	Message	195 µs
Motion Servo Off	MSF	Disables the servo drive and deactivates the axis servo loop	Message	185 µs
Motion Axis Shutdown	MASD	Forces an axis into the shutdown operating state Note: Once the axis is in the shutdown state, the controller will block any instructions that initiate axis motion.	Message	165 μs
Motion Axis Shutdown Reset	MASR	Changes an axis from an existing shutdown operating state to an axis ready operating state Note: If all of the axes of a servo module are removed from the shutdown state as a result of this instruction, the OK relay contacts for the module will close.	Message	165 μs
Motion Direct Drive On	MDO	Enables the servo drive and sets the servo output voltage of an axis	Message	270 µs
Motion Direct Drive Off	MDF	Disables the servo drive and sets the servo output voltage to the output offset voltage	Message	165 µs
Motion Axis Fault Reset	MAFR	Clears all motion faults	Message	165 µs

For more information about motion state instructions, refer to the *Motion State Instructions* chapter of the Logix5550 Controller Instruction Set Reference Manual, publication 1756-6.4.1.

Understanding Motion Move Instructions

Motion move instructions control axis motion.

The motion move instructions are:

Instruction	Abbreviation	Description	Type of Timing	Typical Execution Time
Motion Axis Stop	MAS	Initiates a controlled stop of any motion process on an axis	Immediate Process	230 µs
Motion Axis Home	МАН	Homes an axis	Message Process	60 µs
Motion Axis Jog	MAJ	Initiates a jog motion profile for an axis	Immediate Process	570 μs
Motion Axis Move	МАМ	Initiates a move profile for an axis	Immediate Process	684 µs
Motion Axis Gear	MAG	Enables electronic gearing between two axes	Immediate Process	250 µs
Motion Change Dynamics	MCD	Changes the speed, acceleration rate, or deceleration rate of a move profile or jog profile in progress	Immediate	545 μs
Motion Redefine Position	MRP	Changes the command or actual position of an axis	Message	349 µs

For more information about motion state instructions, refer to the *Motion Move Instructions* chapter of Logix5550 Controller Instruction Set Reference Manual, publication 1756-6.4.1.

Understanding Motion Group Instructions

Motion group instructions initiate action on all axes in a group.

Instruction	Abbreviation	Description	Type of Timing	Typical Execution Time
Motion Group Stop	MGS	Initiates a stop of motion on a group of axes	Process	90 µs
Motion Group Programmed Stop	MGPS	Initiates a stop of all motion on all the axes in a group using the method that you set for each axis.	Message Process	60 µs
Motion Group Shutdown	MGSD	Forces all the axes in a group into the shutdown operating state	Message	60 µs
Motion Group Shutdown Reset	MGSR	Transitions a group of axes from the shutdown operating state to the axis ready operating state	Message	60 µs
Motion Group Strobe Position	MGSP	Latches the current command and actual positions of all the axes in a group	Immediate	45 µs

The motion group instructions are:

For more information about motion state instructions, refer to the *Motion Group Instructions* chapter of Logix5550 Controller Instruction Set Reference Manual, publication 1756-6.4.1.

Understanding Motion Event Instructions

Motion event instructions control the arming and disarming of special event checking functions, such as registration and watch position.

The motion event instructions are:

Instruction	Abbreviation	Description	Type of Timing	Typical Execution Time
Motion Arm Watch Position	MAW	Arms watch-position event checking for an axis	Message Process	340 µs
Motion Disarm Watch Position	MDW	Disarms watch-position event checking for an axis	Message	165 µs
Motion Arm Registration	MAR	Arms servo module registration event checking for an axis	Message Process	480 µs
Motion Disarm Registration	MDR	Disarms servo module registration event checking for an axis	Message	165 µs

For more information about motion state instructions, refer to the *Motion Event Instructions* chapter of Logix5550 Controller Instruction Set Reference Manual, publication 1756-6.4.1.

Understanding Motion Configuration Instructions

Motion configuration instructions allow you to tune an axis and to run diagnostic tests for your control system. These tests include:

- A motor/encoder hookup test
- An encoder hookup test
- A marker test

The motion configuration instructions are:

Instruction	Abbreviation	Description	Type of Timing	Typical Execution Time
Motion Apply Axis Tuning	MAAT	Computes a complete set of servo gains and dynamic limits based on a previously executed MRAT instruction Note: The MAAT instruction also updates the servo module with the new gain parameters.	Message	870 μs
Motion Run Axis Tuning	MRAT	Commands the servo module to run a tuning motion profile for an axis	Message Process	less than the coarse update rate
Motion Apply Hookup Diagnostic	MAHD	Applies the results of a previously executed MRHD instructionNote:The MAHD instruction generates a new set of encoder and servo polarities based on the observed direction of motion during the MRHD instruction.	Message	170 μs
Motion Run Hookup Diagnostic	MRHD	Commands the servo module to run one of three diagnostic tests on an axis	Message Process	less than the coarse update rate

For more information about motion state instructions, refer to the *Motion Configuration Instructions* chapter of Logix5550 Controller Instruction Set Reference Manual, publication 1756-6.4.1.

Troubleshooting

This chapter describes how to troubleshoot your ControlLogix motion control system. The following table shows the contents of this chapter:

For information about	See page
Understanding Module Status Using the OK Indicator	6-1
Understanding Module Status Using the FDBK Indicator	6-2
Understanding Module Status Using the DRIVE Indicator	6-3

Understanding Module Status Using the OK Indicator

lf the OK LED displays	Then the module status is	Take this action
Off	The module is not operating.	 Apply chassis power. Verify the module is completely inserted into the chassis and backplane.
Flashing green light	The module has passed internal diagnostics, but it is not communicating axis data over the backplane.	 None, if you have not configured the module. If you have configured the module, check the slot number in the 1756-M02AE Properties dialog box.
Steady green light	Axis data is being exchanged with the module.The module is in the normal operating state.	None. The module is ready for action.
Flashing red light	 A major recoverable failure has occurred. A communication fault, timer fault, or NVS update is in progress. 	 Check the servo fault word for the source of the error. Clear the fault condition using the motion instructions. Resume normal operation. If the flashing persists, reconfigure the module.
Solid red light	A potential non-recoverable fault has occurred.	 Reboot the module. If the solid red persists, replace the module.

Understanding Module Status Using the FDBK Indicator

lf the FDBK LED displays	Then the module status is	Take this action	
Off	The axis is not used.	 None, if you are not using this axis. If you are using this axis, make sure you configured the module and associated an axis tag with the module. 	
Flashing green light	The axis is in the normal servo loop inactive state.	None. You can change the servo axis state by executing motion instructions.	
Steady green light	The axis is in the normal servo loop active state.	None. You can change the servo axis state by executing motion instructions.	
Flashing red light	The axis servo loop error tolerance has been exceeded.	 Correct the source of the problem. Clear the servo fault using a fault reset instruction. Resume normal operation. 	
Solid red light	An axis encoder feedback fault has occurred.	 Correct the source of the problem by checking the encoder and power connections. Clear the servo fault using the MAFR instruction. Resume normal operation. 	

Understanding Module Status Using the DRIVE Indicator

lf the DRIVE LED displays	Then the module status is	Take this action	
Off	 The axis is not used. The axis is a position-only axis type. 	 None, if you are not using the axis or have configured it as a position-only axis. Otherwise, make sure you have configured the module, associated an axis tag with the module, and configured the axis as a servo axis. 	
Flashing green light	The axis drive is in the normal disabled state.	None. You can change the servo axis state by executing a motion instruction.	
Steady green light	The axis drive is in the normal enabled state.	None. You can change the servo axis state by executing a motion instruction.	
Flashing red light	The axis drive output is in the Shutdown state.	 Check for faults that may have generated this state. Execute the shutdown reset motion instruction. Resume normal operation. 	
Solid red light	The axis drive is faulted.	 Check the drive status. Clear the drive fault condition at the drive. Execute a fault reset motion instruction. Resume normal operation. 	

Specifications and Performance

This appendix shows specifications and performance guidelines for the motion module. The following table shows the contents of this appendix:

For information about	See page
Understanding Motion Module Specifications	A-1
Understanding Coarse Update Rate Calculations	A-4

Understanding Motion Module Specifications

Number of axes per chassis	Configurable		
Motion commands	27		
Number of axes per module	2 axes maximum		
Maximum number of axes per coarse update rate Note: The coarse update rates assume that the servo is on for each axis and that each axis has an active trapezoidal move. For more information, refer to the <i>Understanding Coarse</i> <i>Update Rate Calculations</i> section.	Coarse Update Rate: 2 ms 3 ms 4 ms 5 ms 6 ms 7 ms 8 ms 9 ms 10 ms 11 ms 12 ms 13 ms 14 ms 15 ms 16 ms 17 ms 18 ms 19 ms 20 ms 21 ms 22 ms 23 ms 24 ms	Max number of axes: 2 3 4 6 7 8 10 11 13 14 15 17 18 20 21 22 24 25 26 28 29 30 32	
Servo loop			
Туре	Nested PI digital position and velocity servo		
Gain resolution	32-bit floating point		
Absolute position range	±1,000,000,000 encoder counts		
Rate	5 kHz		
Module location	1756 ControlLogix chassis		

Module keying	Electronic
Power dissipation	5.5W maximum
Backplane current	5V dc @ 700 mA
	24V dc @ 2.5 mA
Encoder input	
Туре	Incremental AB quadrature with marker
Mode	4X quadrature
Rate	4 MHz counts per second maximum
Electrical interface	Optically isolated 5V differential
Voltage range	3.4V to 5.0V differential
Input impedance	531 Ohms differential
Registration inputs	
Туре	Optically isolated, current sinking input
24V input voltage	+24V dc nominal
Maximum	26.4V
Minimum	18.5V
Maximum off	6.1V
5V input voltage	+5V dc nominal
Maximum	5.5V
Minimum	3.7V
Maximum off	2.0V
Input impedance	
24V input	1.2 kOhms
5V input	9.5 kOhms
Response time	1µs
All other inputs	
Туре	Optically isolated, current sinking input
Input voltage	+24V dc nominal
Maximum	26.4V
Maximum on	17.0V
Maximum off	8.5V
Input impedance	7.5 kOhms
Servo output	
Туре	Analog voltage
Isolation	200 kOhms
Voltage range	±10V
Voltage resolution	16 bits
Load	5.6 kOhms resistive minimum
All other outputs	
Туре	Solid-state isolated relay contacts
Operating voltage	+24V dc nominal
Maximum	26.4V
Operating current	75 mA
RTB keying	User-defined
Field wiring arm	36-position RTB (1756-TBCH or -TBS6H) ¹
RTB screw torque (cage clamp)	5lb-in. (0.5 Nm) maximum
- · · ·	

Conductors Wire size	14 gauge (2mm ²) stranded maximum ¹		
Category	3/64 inch (1.2 mm) insulation maximum 2 ^{2,3}		
Screwdriver blade width for RTB	1/8 inch (3.2 mm) maximum		
Environmental conditions Operating temperature Storage temperature Relative humidity	0 to 60°C (32 to 140°F) -40 to 85°C (-40 to 185°F) 5 to 95% noncondensing		
Agency certification (when product or packaging is marked)	Class 1 Div 2 hazardous marked for all applicable directives FM approved		

- ¹ Maximum wire size will require the extended depth RTB housing (1756-TBE).
- ² Use this conductor category information for planning conductor routing as described in the system level installation manual.
- ³ Refer to *Programmable Controller Wiring and Grounding Guidelines*, publication number 1770-4.1.

Understanding Coarse Update Rate Calculations

To calculate the coarse update rate for the number of modules and axes in your application, you can use the following formula:

Baseline task time +	(Actions for axis 1)	+	(Actions for axis 2)	+	(Actions for axis n)	=	Execution time
-------------------------	-------------------------	---	-------------------------	---	-------------------------	---	-------------------

You can use the sample calculation worksheet in this section to determine your coarse update rate. To determine the values for your equation, refer to the following tables (Table 1 and Table 2).

Defining the Baseline Task Time (Table 1)

The baseline task time is the time to update a number of servo modules. For example, to update 3 modules requires 765 μ s.

The following table shows the baseline task times for motion modules.

Number of modules	Baseline task time (in μs)
1 (2 axes maximum)	415
2 (4 axes maximum)	590
3 (6 axes maximum)	765
4 (8 axes maximum)	940
5 (10 axes maximum)	1115
6 (12 axes maximum)	1290
7 (14 axes maximum)	1465
8 (16 axes maximum)	1640
9 (18 axes maximum)	1815
10 (20 axes maximum)	1960
11 (22 axes maximum)	2165
12 (24 axes maximum)	2340
13 (26 axes maximum)	2515
14 (28 axes maximum)	2690
15 (30 axes maximum)	2865
16 (32 axes maximum)	3040

Understanding Action Timing (Table 2)

Every action performed by an axis requires an amount of time. For example to perform a trapezoidal move requires $440 \ \mu s$.

The following table shows execution times for common motion actions.

Action	Maximum execution time (in μ s)	
Turning the servo on	60	
Performing a trapezoidal move	440	
Performing an s-curve move	180	
Performing a trapezoidal jog	70	
Performing an s-curve jog	80	
Performing an actual position gear	440	
Performing a command position gear	320	

Using the Sample Calculations Worksheet

You can use this sample calculation worksheet to determine the coarse update time for the number of modules in your application.

1. Complete the following table.

System

Describe the type of system you are using.

1	Enter the number of modules.	
2	Enter baseline task time (from Table 1)	μs

2. For each axis in your application, use the following table to determine the action value for each axis.

Actions

If you are using an action, enter its execution time shown in Table 2. If you are not using an action, enter zero (0).

3	Servo on	μs
4	Trapezoidal move	μs
5	S-curve move	μs
6	Trapezoidal jog	μs
7	S-curve jog	μs
8	Actual gear	μs
9 Command gear		μs
10	Add lines 3 through 9. Place total here.	μs

3. Calculate the coarse rate you want for your application.

Coarse ra Determin		arse rate you want.	
	11	The coarse rate you want	μs
	12	0.80 * number from line 11	μs

- 4. To calculate the coarse update rate for your application, add line 2 to the action value for each axis (line 10).
- 5. If your coarse update rate from step 4 is less than line 12, you can achieve your coarse update rate (line 11) with your current system.

Understanding Sample Calculation 1

You have the following situation:

- You have a system consisting of 2 modules and 4 axes.
- You are turning the servo on and performing a trapezoidal move for each axis.
- You want a coarse update rate of 4 ms.
- 1. Complete the following table.

System Describe the type of system you are using.

1	Enter the number of modules.	2
2	Enter baseline task time (from Table 1)	590 μs

2. For each axis in your application, use the following table to determine the action value for each axis.

Axes 1, 2, 3, and 4:

Actions

If you are using an action, enter its execution time shown in Table 2. If you are not using an action, enter zero (0).

3	Servo on	60 µs
4	Trapezoidal move	440 μs
5	S-curve move	μs
6	Trapezoidal jog	μs
7	S-curve jog	μs
8	Actual gear	μs
9	Command gear	μs
10	Add lines 3 through 9. Place total here.	500 μs

3. Calculate the coarse rate you want for your application.

Coarse rate

Determine the coarse rate you want.

11	The coarse rate you want	4000 µs
12	0.80 * number from line 11	3200 µs

4. The calculated coarse rate for this application is

Baseline task time (line 2)	590 μs
Action value for axis 1 (line 10)	500 µs
Action value for axis 2 (line 10)	500 µs
Action value for axis 3 (line 10)	500 µs
Action value for axis 4 (line 10)	500 µs
TOTAL	2590 µs

Conclusion: You can achieve the coarse update rate with your system because $2590 \ \mu s$ is less than $3200 \ \mu s$.

Understanding Sample Calculation 2

You have the following situation:

- You have a system consisting of 2 modules and 4 axes.
- You are turning the servo on and performing a trapezoidal move for each axis.
- You want a coarse update rate of 3 ms.
- 1. Complete the following table.

System
Describe the type of system you are using.

 1
 Enter the number of modules.

1	Enter the number of modules.	2
2	Enter baseline task time (from Table 1)	590 μs

2. For each axis in your application, use the following table to determine the action value for each axis.

Axes 1, 2, 3, and 4:

Actions

If you are using an action, enter its execution time shown in Table 2. If you are not using an action, enter zero (0).

3	Servo on	60 µs
4	Trapezoidal move	440 µs
5	S-curve move	μs
6	Trapezoidal jog	μs
7	S-curve jog	μs
8	Actual gear	μs
9	Command gear	μs
10	Add lines 3 through 9. Place total here.	500 μs

3. Calculate the coarse rate you want for your application.

Coarse rate

Determine the coarse rate you want.

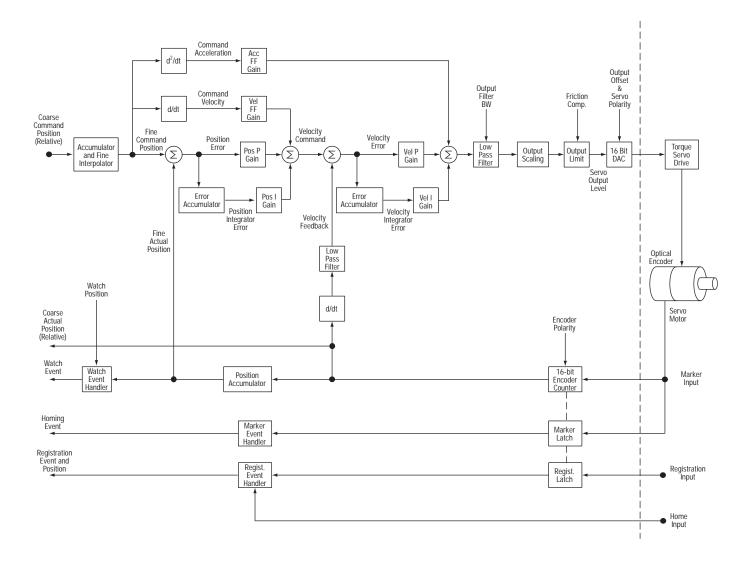
11	The coarse rate you want	3000 µs
 12	0.80 * number from line 11	2400 μs

4. The calculated coarse rate for this application is

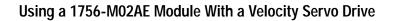
Baseline task time (line 2)	590 μs
Action value for axis 1 (line 10)	500 μs
Action value for axis 2 (line 10)	500 μs
Action value for axis 3 (line 10)	500 μs
Action value for axis 4 (line 10)	500 μs
TOTAL	2590 µs

Conclusion: You can not achieve the coarse update rate with your system because $2590 \ \mu s$ is greater than $2400 \ \mu s$.

Loop and Interconnect Diagrams


This appendix shows the loop interconnect diagrams for common motion configurations. The following table shows the contents of this appendix:

For information about	See page
Understanding Block Diagrams	B-2
Using a 1756-M02AE Module With a Torque Servo Drive	B-3
Using a 1756-M02AE Module With a Velocity Servo Drive	B-4
Understanding Wiring Diagrams	B-5
Wiring to a Servo Module RTB	B-5
Wiring to an Ultra 100 Series Drive	B-6
Wiring to an Ultra 200 Series Drive	B-7
Wiring to a 1394 Servo Drive	B-8
Wiring the 1394-SA15 Cable	B-9
Wiring Registration Sensors	B-10
Wiring the Home Limit Switch Input	B-11
Wiring the OK Contacts	B-12


Understanding Block Diagrams

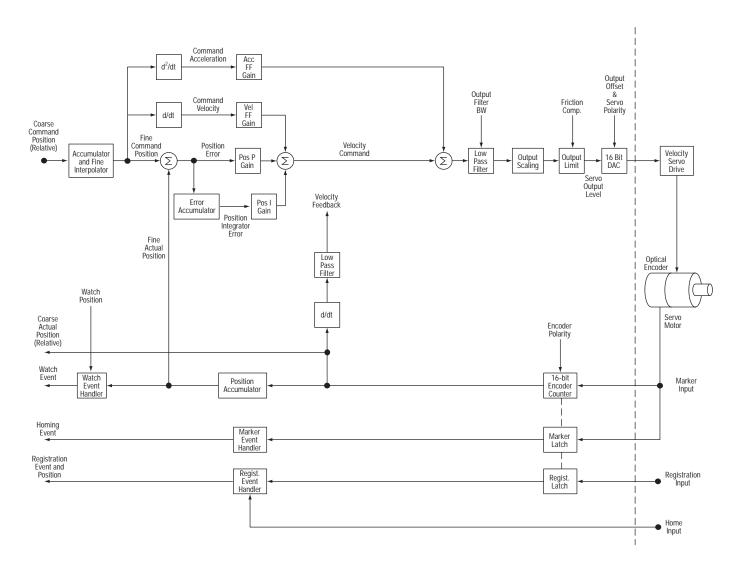
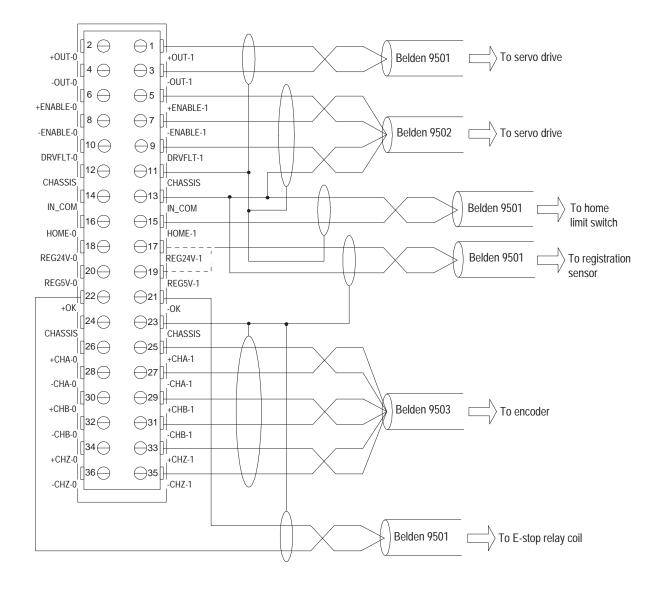
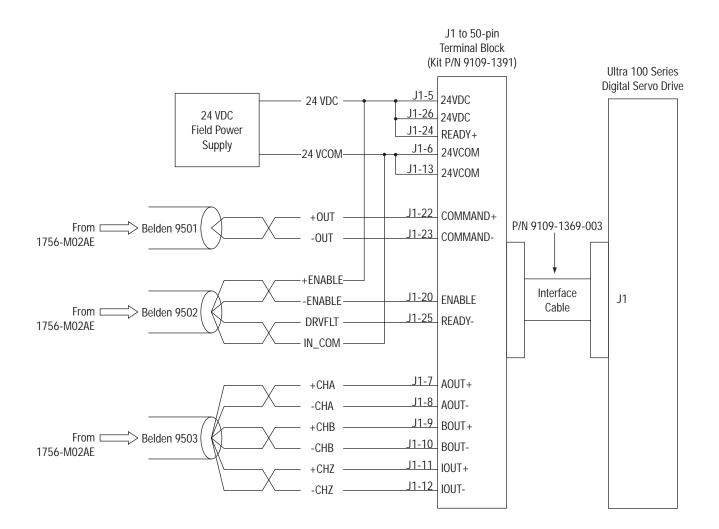
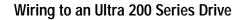

The control block diagrams in this section use the following terms for motion attributes.

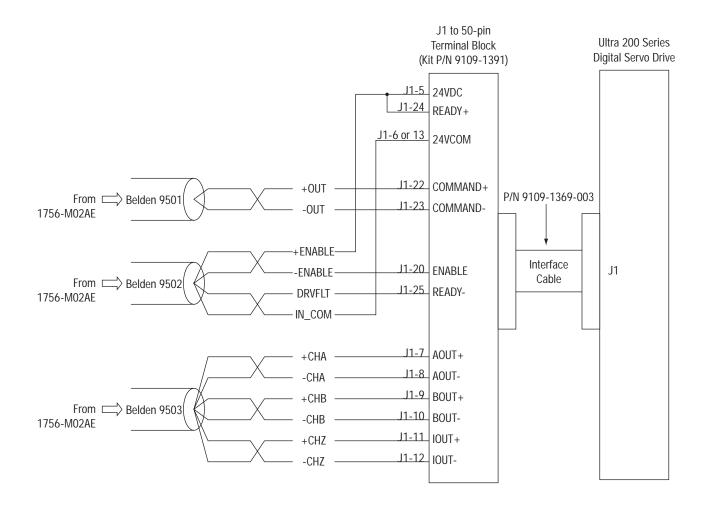
Diagram term	Motion attribute name (as used in the GSV and SSv instructions)
Acc FF Gain	AccelerationFeedforwardGain
Vel FF Gain	VelocityFeedforwardGain
Pos P Gain	PositionProportionalGain
Pos I Gain	PositionIntegralGain
Vel P Gain	VelocityProportionalGain
Vel I Gain	VelocityIntegralGain
Output Filter BW	OutputFilterBandwidth
Output Scaling	OutputScaling
Friction Comp	FrictionCompensation
Output Limit	OutputLimit
Output Offset	OutputOffset
Position Error	PositionError
Position Integrator Error	PositionIntegratorError
Velocity Error	VelocityError
Velocity Integrator Error	VelocityIntegratorError
Velocity Feedback	VelocityFeedback
Velocity Command	VelocityCommand
Servo Output Level	ServoOutputLevel
Registration Position	RegistrationPosition
Watch Position	WatchPosition

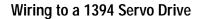


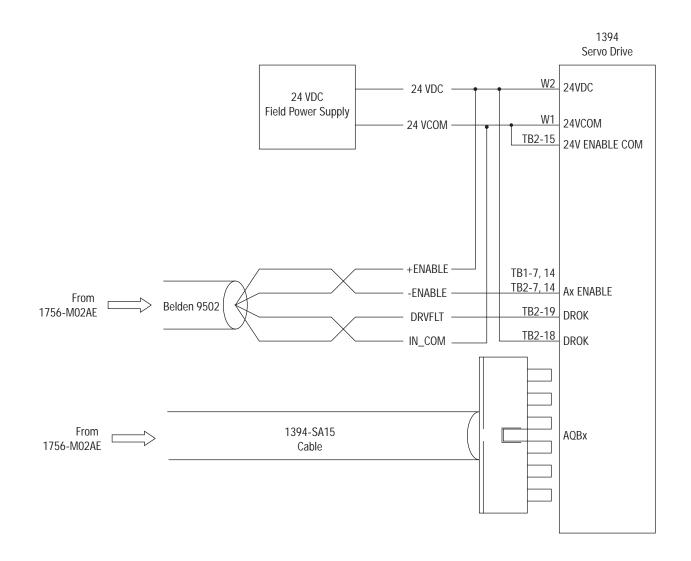
Using a 1756-M02AE Module With a Torque Servo Drive

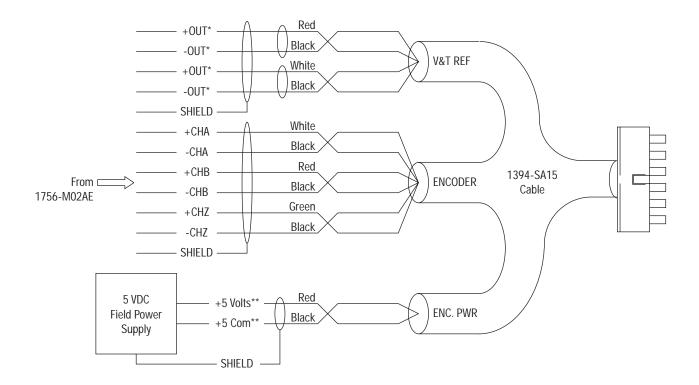

Understanding Wiring Diagrams


Wiring to a Servo Module RTB


Note: This is a general wiring example illustrating Axis 1 wiring only. Other configurations are possible with Axis 0 wiring identical to Axis 1.

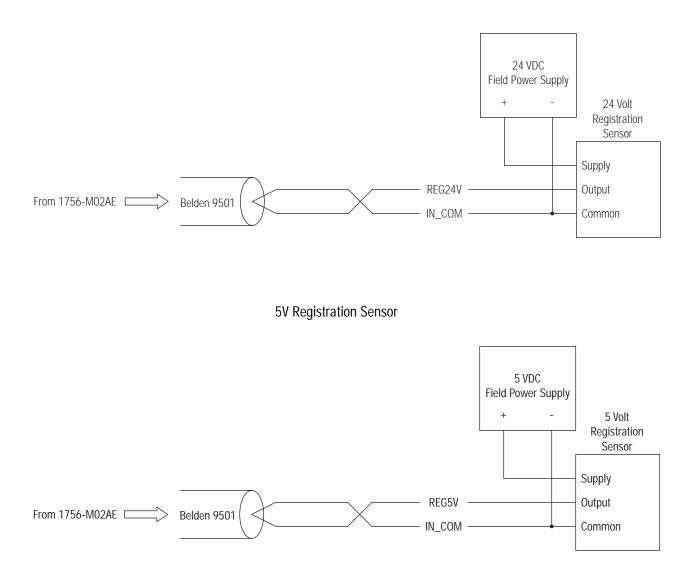



Note: This is a general wiring example only. Other configurations are possible. For more information, refer to the Ultra 100 Series Drive Installation Manual, publication number 1398-5.2.



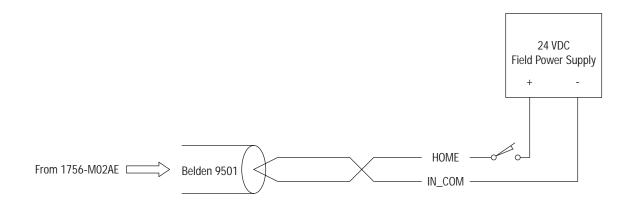
Note: This is a general wiring example only. Other configurations are possible. For more information, refer to the Ultra 200 Series Drive Installation Manual, publication number 1398-5.0.

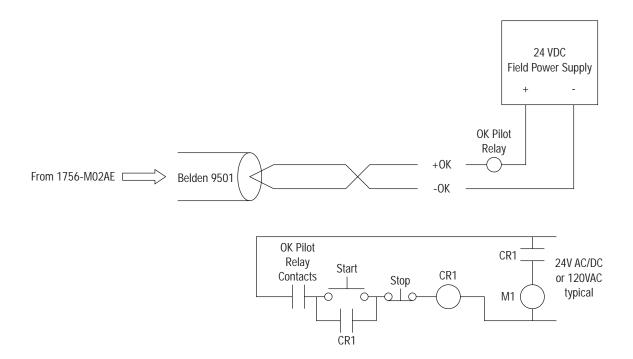
Note: This is a general wiring example only. Other configurations are possible. The x in the diagram is the 1394 axis reference number (0, 1, 2, or 3) specifying one of the four possible 1394 servo drive axes. For more information, refer to the 1394 Digital Multi-Axis Motion Control System User Manual, publication number 1394-5.0.


Wiring the 1394-SA15 Cable

- * Connect only one analog input pair to the output of the servo module. If you configured the 1394 axis as a velocity servo drive, then connect the VREF signals. If you configured the 1394 axis as a torque servo drive, then connect the TREF signals.
- ** An external +5V power supply is necessary to power the encoder driver circuit of the 1394 servo drive. The four axis encoder driver circuits share this power supply. Only one connection is needed to the +5V field supply.

Wiring Registration Sensors


The registration inputs to the servo module can support 24V or 5V registration sensors. These inputs should be wired to receive source current from the sensor. Current sinking sensor configurations are not allowed because the registration input common (IN_COM) is shared with the other 24V servo module inputs.


Wiring the Home Limit Switch Input

The home limit switch inputs to the servo module are designed for 24V nominal operation. These inputs should be wired for current sourcing operation.

Wiring the OK Contacts

A set of isolated solid-state OK relay contacts is provided for optional interface to an E-stop string, which controls power to the associated drives. The OK contacts are rated to drive an external 24V pilot relay (for example, Allen-Bradley 700-HA32Z24) whose contacts can be incorporated into the E-Stop string as shown below.

The Motion Control Structures

This appendix shows the structures for the AXIS, MOTION_GROUP, and MOTION_INSTRUCTION data tags. The following table shows the contents of this appendix:

For information about	See page
Understanding the AXIS Structure	C-2
Understanding the MOTION_GROUP Structure	C-8
Understanding the MOTION_INSTRUCTION Structure	C-11

Understanding the AXIS Structure

The AXIS structure contains status and configuration information for your motion axis. You can directly access this information in your application program. For example, if you want to use the AccelStatus attribute for Axis_X, you would use Axis_X.AccelStatus to gain access to the attribute.

Variable	Data Type	Description	
.AccelStatus	BOOL	You can use this bit to determine if the axis has been commanded to accelerate. If neither this bit nor the .DecelStatus bit is set, the axis is running at the steady-state velocity or is at rest.	
.ACAsyncConnFault	BOOL	You can use this bit to determine the status of asynchronous communication. When the controller detects that one of the servo module parameters failed to update because of an asynchronous communication failure, this bit sets. When you reestablish the connection, the bit clears.	
.ACSyncConnFault	BOOL	You can use this bit to determine the status of synchronous communication. When the controller detects that the servo module has missed several position updates in a row because of a synchronous communication failure, this bit sets. When you reestablish the connection, the bit clears.	
.AxisHomedStatus	BOOL	You can use this bit to determine the status of a homing sequence. During power-up or reconnection, the controller clears this bit. The Motion Axis Home (MAH) instruction sets this bit when a homing sequence completes successfully. After this bit sets, If the axis enters the shutdown state, the controller clears this bit.	
.Clutch Status	BOOL	You can use this bit to determine if a clutch motion profile is in progress. If this bit is set, a clutch motion profile is currently in progress. This bit is clear when the clutch process is complete.	
.DecelStatus	BOOL	You can use this bit to determine if the axis has been commanded to decelerate. If neither this bit nor the .AccelStatus bit is set, the axis is running at the steady-state velocity or is at rest.	
.DriveEnableStatus	BOOL	You can use this bit to determine the status of the drive enable output. If this bit is set, you has activated the drive enable output for your axis. This bit is clear if you have deactivated the drive enable output for your axis.	
.DriveFault	BOOL	You can use this bit to determine the status of the external drive. If this bit is set, the external drive detected a fault. This bit clears when the controller executes a Motion Axis Fault Reset (MAFR) instruction.	
.EncCHALossFault	BOOL	You can use this bit to determine the status of the encoder channel A. This bit sets if both of the differential signals are at the same level or if the servo module or encoder loses encoder power or common. The bit clears when the controller executes a Motion Axis Fault Reset (MAFR) instruction.	
.EncCHBLossFault	BOOL	You can use this bit to determine the status of the encoder channel B. This bit sets if both of the differential signals are at the same level or if the servo module or encoder loses encoder power or common. The bit clears when the controller executes a Motion Axis Fault Reset (MAFR) instruction.	
.EncCHZLossFault	BOOL	You can use this bit to determine the status of the encoder channel Z. This bit sets if both of the differential signals are at the same level or if the servo module or encoder loses encoder power or common. The bit clears when the controller executes a Motion Axis Fault Reset (MAFR) instruction.	
.EncNsFault	BOOL	You can use this bit to determine the status of encoder channels A and B. If the servo module detects simultaneous transitions of channels A and B, this bit sets. This bit is clear after the controller executes a Motion Axis Fault Reset (MAFR) instruction.	

Variable	Data Type	Description				
		The servo event bits for your servo loop.				
		Bit Number Data type Description				
		.WatchEvArmStatus	00	BOOL	watch event armed	
		.WatchEvStatus	01	BOOL	watch event	
.EventStatus	DINT	.RegEvArmStatus	02	BOOL	registration event armed	
		.RegEvStatus	03	BOOL	registration event	
		.HomeEvArmStatus	04	BOOL	home event armed	
		.HomeEvStatus	05	BOOL	home event	
		Bits 06 through 31 are rese	erved.			
.GearingStatus	BOOL	You can use this bit to determine if electronic gearing is enabled. If this bit is set, the axis is currently gearing to another axis. This bit is clear when the gearing operation stops or when another motion operation supersedes the gearing operation.				
.Hardfault	BOOL	You can use this bit to determine the status of the servo module. If this bit is set, the servo module detected a hardware problem that typically requires the replacement of the servo module.				
.HomeEvArmStatus	BOOL	You can use this bit to determine the status of a homing event. If this bit is set, a Motion Axis Home (MAH) instruction has armed a home event. This bit clears when a home event occurs.				
.HomeEvStatus	BOOL	You can use this bit to determine the status of a homing event. If this bit is set, a home event has occurred. This bit clears when another Motion Axis Home (MAH) instruction executes.				
.HomingStatus	BOOL	You can use this bit to determine if a homing profile is in progress. If this bit is set, a homing profile is currently in progress. This bit is clear when the homing operation completes or when another motion operation supersedes the homing operation.				
.JogStatus	BOOL	You can use this bit to determine if a jog profile is in progress. If this bit is set, a jog profile is currently in progress. This bit is clear when the jog completes or when another motion operation supersedes the jog operation.				
		The motion fault bits for yo				
		Bit	Number	Data type	Description	
.MotionFault	DINT	.ACAsyncConnFault	00	BOOL	asynchronous connection fault	
		.ACSyncConnFault	01	BOOL	synchronous connection fault	
		Bits 02 through 31 are rese	erved.			
		The motion status bits for	our axis.			
		Bit	Number	Data type	Description	
		.AccelStatus	00	BOOL	acceleration	
		.DecelStatus	00	BOOL	deceleration	
		.MoveStatus	01	BOOL	move	
.MotionStatus	DINT	JogStatus	02	BOOL	jog	
		.GearingStatus	04	BOOL	gear	
		.HomingStatus	05	BOOL	homing	
		.ClutchStatus	05	BOOL	clutch	
		.AxisHomedStatus	07	BOOL	homed status	
		Bits 08 through 31 are rese		DOOL		

Variable	Data Type	Description			
.MoveStatus	BOOL	You can use this bit to determine if a move profile is in progress. If this bit is set, a move profile is currently in progress. This bit is clear when the move completes or when another motion operation supersedes the move operation.			
.NOtrvlFault	BOOL	You can use this bit to determine the status of axis travel. If this bit is set, the axis has moved or has attempted to move beyond the MaximumNegativeOvertravel value. This bit is clear when the axis moves within the MaximumNegativeOvertravel values			
.OutLmtStatus	BOOL	You can use this bit to determine the status of servo loop output. If the magnitude of the servo loop output reaches or exceeds the OutputLimit value, this bit sets. This bit is clear when the magnitude of the servo loop output is within the OutputLimit value.			
.PosErrorFault	BOOL	You can use this bit to determine the status of axis position error. If this bit is set, the servo module has detected that axis position error exceeds the PositionErrorTolerance value. This bit is clear when the controller executes a Motion Axis Fault Reset (MAFR) instruction.			
.PosLockStatus	BOOL	You can use this bit to determine the status of the axis position error. If this bit is set, the magnitude of the axis position error is less than or equal to the PositionLockTolerance value. This bit is clear when the magnitude of the axis position error is greater than the PositionLockTolernce value.			
.POtrvlFault	BOOL	You can use this bit to determine the status of axis travel. If this bit is set, the axis has moved or has attempted to move beyond the MaximumPositiveOvertravel value. This bit is clear when the axis moves within the MaximumPositiveOvertravel values			
.RegEvArmStatus	BOOL	You can use this bit to determine the status of a registration event. If this bit is set, the execution of a Motion Arm Registration (MAR) instruction has armed a registration event. This bit clears when a registration event occurs or the controller executes a Motion Disarm Registration (MDR) instruction.			
.RegEvStatus	BOOL	You can use this bit to determine the status of a registration event. If this bit is set, a registration event has occurred. This bit clears when the controller executes another Motion Arm Registration (MAR) instruction or a Motion Disarm Registration (MDR) instruction.			
.ServoActStatus	BOOL	You can use this bit to dete action is currently enabled			your axis. If this bit is set, servo is disabled.
		The servo fault bits for you	ur servo loop.		
		Bit	Number	Data type	Description
		.POtrvlFault	00	BOOL	positive overtravel fault
		.NOtrvlFault	01	BOOL	negative overtravel fault
		.PosErrorFault	02	BOOL	position error fault
		.EncCHALossFault	03	BOOL	encoder channel A loss fault
.ServoFault	DINT	.EncCHBLossFault	04	BOOL	encoder channel B loss fault
		.EncCHZLossFault	05	BOOL	encoder channel Z loss fault
		.EncNsFault	06	BOOL	encoder noise fault
		.DriveFault	07	BOOL	drive fault
		.SyncConnFault	08	BOOL	synchronous connection fault
		.Hardfault	09	BOOL	servo hardware fault
		Bits 10 through 31 are res	erved.		

Variable	Data Type	Description				
		The status bits for your servo loop.				
		Bit	Number	Data type	Description	
		.ServoActStatus	00	BOOL	servo action	
		.DriveEnableStatus	01	BOOL	drive enable	
.ServoStatus	DINT	.OutLmtStatus	02	BOOL	output limit	
		.PosLockStatus	03	BOOL	position lock	
		.TuneStatus	13	BOOL	tuning process	
		.TestStatus	14	BOOL	test diagnostic	
		.ShutdownStatus	15	BOOL	axis shutdown	
		Bits 04 through 12 and bits	s 16 through 31 are	reserved.		
.ShutdownStatus	BOOL				n state. If this bit is set, the axis is in from the shutdown state to another	
.SyncConnFault	BOOL	You can use this bit to determine the status of synchronous communication. When the servo module detects that it has missed several position updates in a row because of a synchronous communication failure, this bit sets. When you reestablish the connection, the bit clears.				
.TestStatus	BOOL	You can use this bit to dete operation is in progress for		diagnostic tests	. If this bit is set, a diagnostic test	
.TuneStatus	BOOL	You can use this bit to determine the status of axis tuning. If this bit is set, an auto tuning operation is in progress for the servo module.				
		You can use these bits to determine the configuration parameters for your axis. If a bit is set, you configured the axis to update the associated attribute. For example, if the position error update bit is set, you configured your axis to update the PositionError attribute.				
		Bit	Meaning			
		00	position error	update		
		01	position integrator error update			
.UpdateStatus	DINT	02 velocity error update				
		03 velocity integrator error update				
		04	velocity comn			
		05	velocity feedb	•		
		06 servo output level update				
		Bits 07 through 31 are reserved.				
.WatchEvArmStatus	BOOL	You can use this bit to determine the status of the watch event. If this bit is set, the execution of a Motion Arm Watch (MAW) instruction has armed a watch event. This bit clears when a watch event occurs or the controller executes a Motion Disarm Watch (MDW) instruction.				
.WatchEvStatus	BOOL		hen the controller e		If this bit is set, a watch event has Motion Arm Watch (MAW) instruction	

Understanding Servo Configuration Update Status Bits attributes

You can use the servo configuration update status bits attributes to monitor the progress of servo configuration attribute updates, which are initiated by an SSV instruction in your application program.

When the SSV instruction initiates an update, the controller sets the update status bit associated with the attribute. The update status bit remains set until the servo module indicates that the data update was successful.

For example, if you use an SSV instruction to change the PositionProportionalGain attribute of an axis and follow it with logic based on the completion of the SSV instruction, you can check for the resetting of the .PosPGainStatus bit to ensure that the servo module attribute is updated.

Variable	Data Type	Description
.AccFfGainStatus	BOOL	The status of an update to the AccelerationFeedforwardGain attribute.
.AxisTypeStatus	BOOL	The status of an update to the AxisType attribute.
.DriveFaultActStatus	BOOL	The status of an update to the DriveFaultAction attribute.
.EncLossFaultActStatus	BOOL	The status of an update to the EncoderLossFaultAction attribute.
.EncNsFaultActStatus	BOOL	The status of an update to the EncoderNoiseFaultAction attribute.
.FricCompStatus	BOOL	The status of an update to the <i>FrictionCompensation</i> attribute.
.MaxNTrvIStatus	BOOL	The status of an update to the <i>MaximumNegativeTravel</i> attribute.
.MaxPTrvIStatus	BOOL	The status of an update to the MaximumPositiveTravel attribute.
.OutFiltBWStatus	BOOL	The status of an update to the OutputFilterBandwidth attribute.
.OutLimitStatus	BOOL	The status of an update to the OutputLimit attribute.
.OutOffsetStatus	BOOL	The status of an update to the OutputOffset attribute.
.OutScaleStatus	BOOL	The status of an update to the <i>OutputScaling</i> attribute.
.PosErrorFaultActStatus	BOOL	The status of an update to the <i>PositionErrorFaultAction</i> attribute.
.PosErrorTolStatus	BOOL	The status of an update to the <i>PositionErrorTolerance</i> attribute.
.PoslGainStatus	BOOL	The status of an update to the <i>PositionIntegralGain</i> attribute.
.PosLockTolStatus	BOOL	The status of an update to the <i>PositionLockTolerance</i> attribute.
.PosPGainStatus	BOOL	The status of an update to the <i>PositionProportionalGain</i> attribute.
.PosUnwindStatus	BOOL	The status of an update to the <i>PositionUnwind</i> attribute.
.POtrvIFactActStatus	BOOL	The status of an update to the SoftOvertravelFaultAction attribute.
.VelFfGainStatus	BOOL	The status of an update to the VelocityFeedforwardGain attribute.
.VellGainStatus	BOOL	The status of an update to the VelocityIntegralGain attribute.
.VelPGainStatus	BOOL	The status of an update to the VelocityProportionalGain attribute.

The following is a list of the servo configuration update status bits attributes.

Understanding the MOTION_GROUP Structure

The MOTION_GROUP structure contains status and configuration information for your motion group. You can directly access this information in your motion control program. For example, if you want to use the DriveFault attribute for Motion_Group, you would use Motion_Group.DriveFault to gain access to the attribute.

The bits in the MOTION_GROUP structure are set when any axis in the group experiences the conditions required to set the bit. For example, if one axis in a group of ten axes developed the conditions to set the .POtrvlFault bit, the controller would set the .POtrvlFault bit in the MOTION_GROUP structure.

Variable	Data Type	Description					
.ACAsyncConnFault	BOOL	You can use this bit to determine the status of asynchronous communication. When the controller detects that one of the servo module parameters failed to update because of an asynchronous communication failure, this bit sets. When you reestablish the connection, the bit clears.					
.ACSyncConnFault	BOOL	You can use this bit to determine the status of synchronous communication. When the controller detects that the servo module has missed several position updates in a row because of a synchronous communication failure, this bit sets. When you reestablish the connection, the bit clears.					
.DriveFault	BOOL	You can use this bit to determine the status of the external drive. If this bit is set, the external drive detected a fault. This bit clears when the controller executes a Motion Axis Fault Reset (MAFR) instruction.					
.EncCHALossFault	BOOL	You can use this bit to determine the status of the encoder channel A. This bit sets if both of the differential signals are at the same level or if the servo module or encoder loses encoder power or common. The bit clears when the controller executes a Motion Axis Fault Reset (MAFR) instruction.					
.EncCHBLossFault	BOOL	You can use this bit to determine the status of the encoder channel B. This bit sets if both of the differential signals are at the same level or if the servo module or encoder loses encoder power or common. The bit clears when the controller executes a Motion Axis Fault Reset (MAFR) instruction.					
.EncCHZLossFault	BOOL	You can use this bit to determine the status of the encoder channel Z. This bit sets if both of the differential signals are at the same level or if the servo module or encoder loses encoder power or common. The bit clears when the controller executes a Motion Axis Fault Reset (MAFR) instruction.					
.EncNsFault	BOOL	You can use this bit to determine the status of encoder channels A and B. If the servo module detects simultaneous transitions of channels A and B, this bit sets. This bit is clear after the controller executes a Motion Axis Fault Reset (MAFR) instruction.					
		The fault bits for your motion group.					
.GroupFault	DINT	Bit Number Data type Description					
		GroupOverlapFault 00 BOOL UNKNOWN Bits 01 through 31 are reserved.					
.GroupOverlapFault	BOOL	You can use this bit to determine the status of motion processing. This bit indicates that the motion processing in the controller does not have enough time to complete, and therefore requires an increased coarse update rate to function properly. If this bit is set, the controller requested motion processing, but it has not completed its previous two requests. You can reset this bit via direct access or by downloading to the controller.					

Variable	Data Type	Description						
		The status bits for your mo	The status bits for your motion group.					
		Bit	Number	Data type	Description			
.GroupStatus	DINT	.InhibitStatus	00	BOOL	UNKNOWN			
		.GroupSynced	01	BOOL	UNKNOWN			
		Bits 02 through 31 are rese	erved.					
.GroupSynced	BOOL	the first time all the axes in	You can use this bit to determine the status of the group connection to the controller. This bit is set the first time all the axes in a group are connected and synchronized to the controller. This bit remains set until you download a new program, clear the controller memory, or powercycle the controller.					
.Hardfault	BOOL	You can use this bit to determine the status of the servo module. If this bit is set, the servo module detected a hardware problem that typically requires the replacement of the servo module.						
.InhibitStatus	BOOL	Not used by the controller.						
		The motion fault bits for your axis.						
		Bit	Number	Data type	Description			
.MotionFault	DINT	.ACAsyncConnFault	00	BOOL	asynchronous connection fault			
		.ACSyncConnFault	01	BOOL	synchronous connection fault			
		Bits 02 through 31 are rese	erved.					
.NOtrvIFault	BOOL	You can use this bit to determine the status of axis travel. If this bit is set, the axis has moved or has attempted to move beyond the MaximumNegativeOvertravel value. This bit is clear when the axis moves within the MaximumNegativeOvertravel values						
.PosErrorFault	BOOL	You can use this bit to determine the status of axis position error. If this bit is set, the servo module has detected that axis position error exceeds the PositionErrorTolerance value. This bit is clear when the controller executes a Motion Axis Fault Reset (MAFR) instruction.						
.POtrvIFault	BOOL	You can use this bit to determine the status of axis travel. If this bit is set, the axis has moved or has attempted to move beyond the MaximumPositiveOvertravel value. This bit is clear when the axis moves within the MaximumPositiveOvertravel values						

Variable	Data Type	Data Type Description The servo fault bits for your servo loop. The servo fault bits for your servo loop.				
		Bit	Number	Data type	Description	
		.POtrvlFault	00	BOOL	positive overtravel fault	
		.NOtrvIFault	01	BOOL	negative overtravel fault	
		.PosErrorFault	02	BOOL	position error fault	
		.EncCHALossFault	03	BOOL	encoder channel A loss fault	
.ServoFault	DINT	.EncCHBLossFault	04	BOOL	encoder channel B loss fault	
		.EncCHZLossFault	05	BOOL	encoder channel Z loss fault	
		.EncNsFault	06	BOOL	encoder noise fault	
		.DriveFault	07	BOOL	drive fault	
		.SyncConnFault	08	BOOL	synchronous connection fault	
		.Hardfault	09	BOOL	servo hardware fault	
		Bits 10 through 31 are reserved.				
.SyncConnFault	BOOL	You can use this bit to determine the status of synchronous communication. When the servo module detects that it has missed several position updates in a row because of a synchronous communication failure, this bit sets. When you reestablish the connection, the bit clears.				

Understanding the MOTION_INSTRUCTION Structure

The controller uses the MOTION_INSTRUCTION tag (structure) to store status information during the execution of motion instructions. Every motion instruction has a motion control parameter that requires a MOTION_INSTRUCTION tag for this purpose.

ATTENTION: Tags used for the motion control attribute of instructions should only be used once. Re-use of the motion control attribute in other instructions can cause unintended operation of the control variables.

The structure of the motion instruction tag is shown below:

MOTION_INSTRUCTION structure

bit number	31	30	29	28	27	26	16	15	0
	ΕN		DN	ER	IP	PC			
			e	ror o	:ode	(.ER	R) (16 bits)	message status (.STATUS) (8 bits)	execution state (.STATE) (8 bits)

Mnemonic	Data Type	Description
.EN	BOOL	The enable bit indicates that the instruction is enabled.
.DN	BOOL	The done bit indicates that the operation is complete.
.ER	BOOL	The error bit indicates when the operation generates an error.
.IP	BOOL	The in process bit indicates that a process is being executed.
.PC	BOOL	The process complete bit indicates that the operation is complete. Note: The .DN bit sets after an instruction has completed execution. The .PC bit sets when the initiated process has completed.
.ERR	DINT	The error value contains the error code associated with a motion function.
.STATUS	DINT	The message status value indicates the status condition of any message associated with the motion function.
.STATE	DINT	The execution status value indicates the execution state of a function. Many motion functions have several steps and this value tracks these steps.

Understanding Error Codes (.ERR)

Error Code	Description
3	The instruction tried to execute while another instance of this instruction was executing. This can occur when the controller executes a messaging instruction without checking the .DN bit of the preceding instruction.
4	The instruction tried to execute on an axis with a closed servo loop.
5	The instruction tried to execute on an axis with a servo loop that is not closed.
6	The axis drive is enabled.
7	The axis is in the shutdown state.
8	The axis is not configured as a servo axis type.
9	The instruction tried to execute in a direction that aggravates the current overtravel condition.
10	The master axis reference is the same as the slave axis reference.
11	The axis is not configured.
12	Messaging to the servo module failed.
13	The instruction tried to use a parameter that is outside the range limit.
14	The instruction cannot apply the tuning parameters because of an error in the run tuning instruction.
15	The instruction cannot apply the diagnostic parameters because of an error in the run diagnostic test instruction.
16	The instruction tried to execute with homing in progress.
17	The instruction tried to execute a rotary move on an axis that is not configured for rotary operation.
18	The axis type is configured as unused.
19	The motion group is not in the synchronized state. This could be caused by a missing servo module or a misconfiguration.
20	The axis is in the faulted state.
21	The group is in the faulted state.
22	An MSO (Motion Servo On) or MAH (Motion Axis Home) instruction was attempted while the axis was in motion.
23	An instruction attempted an illegal change of dynamics, such as a merging on an S-curve or changing the acceleration of an S-curve.

Understanding Message Status (.STATUS)

Message Status	Description				
0x0	The message was successful.				
0x1	The module is processing another message.				
0x2	The module is waiting for a response to a previous message.				
0x3	The response to a message failed.				
0x4	The module is not ready for messaging.				

Understanding Execution Status (.STATE)

The execution status is always set to 0 when the controller sets the .EN bit for a motion instruction. Other execution states depend on the motion instruction.

The Motion Control Structures

The Motion	Attributes
------------	------------

This appendix describes the motion attributes, their data types, and their access rules.

The Logix5550 controller stores motion status and configuration information in the AXIS and MOTION_GROUP objects. To directly access this information, you can select the object (AXIS or MOTION_GROUP) and select the attribute. You can also use the GSV and SSV instructions to access these objects. See *Input/Output Instructions* in the Logix5550 Controller Instruction Set Reference Manual, publication 1756-6.4.1 for more information about the GSV and SSV instructions.

Motion Instance VariablesTo use the motion instance variables, choose AXIS from the object
list of the GSV and SSV instructions.

When an attribute is marked with an asterisk (*), it means that the attribute is located in both the ControlLogix controller and in the motion module. When you use an SSV instruction to write one of these values, the controller will automatically update the copy in the module. However, this process is not immediate. To be sure that the new value has been updated in the module, use an interlock mechanism using the boolean bits in the Servo Configuration Update Status Bits of the AXIS structure.

For example, if you perform an SSV instruction on the PositionLockTolerance, the PositionLockTolStatus of the Axis tag will be set until an update to the module is successful. Therefore, the logic following the SSV could wait on this bit resetting before continuing in the program.

Variable	Data Type	Access	Description
* AccelerationFeedforwardGain	REAL	GSV SSV	The value used to provide the torque command output to generate the command acceleration.
ActualPosition	REAL	GSV	The actual position of your axis.
			The actual velocity of your axis.
ActualVelocity	REAL	GSV	The internal resolution limit of the actual velocity is 1 encoder count per coarse update.
AverageVelocity	REAL	GSV	The average velocity of your axis.
AverageVelocityTimebase	REAL	GSV SSV	The timebase of the average velocity of your axis.
AxisConfigurationState	SINT	GSV	The state of the axis configuration.
* AxisType	INT	GSV SSV	The type of axis that you are using.Value:Meaning:0unused axis1position-only axis2servo axis
CommandPosition	REAL	GSV	The command position of your axis.
CommandVelocity	REAL	GSV	The command velocity of your axis. The internal resolution limit on the command velocity is 0.00001 encoder counts per coarse update.
ConversionConstant	REAL	GSV SSV	The conversion factor used to convert from your units to feedback counts.
DampingFactor	REAL	GSV SSV	The value used in calculating the maximum position servo bandwidth during the execution of the Motion Run Axis Tuning (MRAT) instruction.
* DriveFaultAction	SINT	GSV SSV	The operation performed when a drive fault occurs.Value:Meaning:0shutdown the axis1disable the drive2stop the commanded motion3change the status bit only
EffectiveInertia	REAL	GSV	The inertia value for the axis as calculated from the measurements the controller made during the last Motion Run Axis Tuning (MRAT) instruction.
* EncoderLossFaultAction	SINT	GSV SSV	The operation performed when an encoder loss fault occurs.Value:Meaning:0shutdown the axis1disable the drive2stop the commanded motion3change the status bit only

Variable	Data Type	Access	Description
* EncoderNoiseFaultAction	SINT	GSV SSV	The operation performed when an encoder noise fault occurs.Value:Meaning:0shutdown the axis1disable the drive2stop the commanded motion3change the status bit only
* FrictionCompensation	REAL	GSV SSV	The fixed output level used to compensate for static friction.
GroupInstance	DINT	GSV	The instance number of the motion group that contains your axis.
HomeMode	SINT	GSV SSV	The homing mode for your axis.Value:Meaning:0passive homing1active homing (default)
HomePosition	REAL	GSV SSV	The homing position of your axis.
HomeReturnSpeed	REAL	GSV SSV	The homing return speed of your axis.
HomeSequenceType	SINT	GSV SSV	The homing sequence type for your axis.Value:Meaning:0immediate homing1switch homing2marker homing3switch-marker homing (default)
HomeSpeed	REAL	GSV SSV	The homing speed of your axis.
INSTANCE	DINT	GSV	The instance number of the axis.
MapTableInstance	DINT	GSV	The I/O map instance of the servo module. This attribute can only be set if you did not assign the axis to a group or if you assigned it to a group in the group inhibit mode.
MaximumAcceleration	REAL	GSV SSV	The maximum acceleration of your axis. The controller automatically sets the maximum acceleration value to approximately 85% of the tuning acceleration determined by the Motion Apply Axis Tune (MAAT) instruction.
MaximumDeceleration	REAL	GSV SSV	The maximum deceleration of your axis. The controller automatically sets the maximum deceleration value to approximately 85% of the tuning deceleration determined by the Motion Apply Axis Tune (MAAT) instruction.
* MaximumNegativeTravel	REAL	GSV SSV	The maximum negative travel limit. This value is always less than the MaximumPositiveTravel value.
* MaximumPositiveTravel	REAL	GSV SSV	The maximum positive travel limit. This value is always greater than the MaximumNegativeTravel value.

Variable	Data Type	Access	Description		
		GSV	The maximum speed of your axis.		
MaximumSpeed	REAL	SSV	The controller automatically sets the maximum speed value to the tuning speed determined by the Motion Apply Axis Tune (MAAT) instruction.		
			The module channel of your servo module.		
ModuleChannel	SINT	GSV	This attribute can only be set if you did not assign the axis to a group or if you assigned it to a group in the group inhibit mode.		
			The motion configuration bits for your axis.		
MotionConfigurationBits	DINT	GSV	Bit: Meaning: 0 home direction reverse		
Motoricoringurationalis	DINI	SSV	1 home switch normally closed		
			2 home marker edge negative		
			The motion fault bits for your axis.		
MotionFaultBits	DINT	AXIS structure	Bit: Bit Name: Meaning:		
		Siluciule	0 ACAsyncConnFault asynchronous connection fault 1 ACSyncConnFault synchronous connection fault		
			The motion status bits for your axis.		
			Bit: Bit Name: Meaning:		
			0 AccelStatus acceleration		
		AXIS	1 DecelStatus deceleration 2 MoveStatus move		
MotionStatusBits	DINT	structure	3 JogStatus jog		
			4 GearingStatus gear		
			5 HomingStatus homing		
			6 ClutchStatus clutch 7 AxisHomedStatus homed status		
MotorEncoderTestIncrement	REAL	GSV SSV	The amount of motion that is necessary to initiate the Motion Run Hookup Diagnostic (MRHD) test.		
* OutputFilterBandwidth	REAL	GSV SSV	The bandwidth of the servo low-pass digital output filter.		
* OutputLimit	REAL	GSV	The value of the maximum servo output voltage of your axis.		
		SSV			
* OutputOffset	REAL	GSV SSV	The value used to offset the effects of the cumulative offsets of the servo module DAC output and the servo drive input.		
		551	The value used to convert the output of the servo loop into the equivalent		
			voltage to the drive.		
			For a velocity servo drive, the output scaling is:		
* OutputScaling	REAL	GSV	$\frac{10Volts}{Speedat10Volts \times ConversionConstant}$		
		SSV			
			For a torque servo drive, the output scaling is: 10Volts		
			$\frac{10Volts}{Accelerationat10Volts \times ConversionConstant}$		
			The difference between the actual and command position of an axis.		
PositionError	REAL	GSV	You can use this value to drive the motor to where the actual positon equals the command position.		

D-4

Variable	Data Type	Access	Description	
* PositionErrorFaultAction	SINT	GSV SSV	The operation performed when a position error fault occurs.Value:Meaning:0shutdown the axis1disable the drive2stop the commanded motion3change the status bit only	
* PositionErrorTolerance	REAL	GSV SSV	The amount of position error that the servo tolerates before issuing a position error fault.	
* PositionIntegralGain	REAL	GSV SSV	The value used to achieve accurate axis positioning despite disturbances such as static friction and gravity.	
PositionIntegratorError	REAL	GSV	The sum of the position error for an axis. You can use this value to drive the motor to where the actual positon equals the command position.	
PositionLockTolerance	REAL	GSV SSV	The amount of position error that the servo module tolerates when giving a true position locked status indication.	
* PositionProportionalGain	REAL	GSV SSV	The value the controller multiples with the position error to correct for the position error.	
PositionServoBandwidth	REAL	GSV SSV	The unity gain bandwidth that the controller uses to calculate the gains for a Motion Apply Axis Tuning (MAAT) instruction.	
* PositionUnwind	DINT	GSV SSV	The value used to perform the automatic unwind of the rotary axis.	
ProgrammedStopMode	SINT	GSV SSV	The type of stop to perform on your axis.Value:Meaning:0fast stop1fast shutdown2hard shutdown	
RegistrationPosition	REAL	GSV	The registration position for your axis. You can use the following equation to determine the maximum registration position error based on your axis speed: $MaximumSpeed\left(\frac{PositionUnits}{Seconds}\right) = \frac{Accuracy(PositionUnits)}{0.000001Seconds}$	
* ServoConfigurationBits	DINT	GSV SSV	The servo configuration bits for your servo loop.Bit:Meaning:0rotary axis1external velocity servo drive2encoder polarity negative3servo polarity negative4soft overtravel checking5position error checking6encoder loss fault checking7encoder noise fault checking8drive fault checking9drive fault normally closed	

Variable	Data Type	Access	Description	I	
			The servo configuration status bits for your servo loop.		
			Bit:	Bit Name:	Meaning:
			0	AxisTypeStatus	axis type
			1	PosUnwndStatus	position unwind
			2	MaxPTrvIStatus	maximum positive travel
			3	MaxNTrvIStatus	maximum negative travel
			4	PosErrorTolStatus	position error tolerance
			5	PosLockTolStatus	position lock tolerance
			6	PosPGainStatus	position proportional gain
			7	PoslGainStatus	position integral gain
			8	VelFfGainStatus	velocity feedforward gain
ServoConfigurationUpdateBits	DINT	AXIS	9	AccFfGainStatus	acceleration feedforward gain
Servocoringurationopuateons	DINI	structure	10	VelPGainStatus	velocity proportional gain
			11	VellGainStatus	velocity integral gain
			12	OutFiltBwStatus	output filter bandwidth
			13	OutScaleStatus	output scaling
			14	OutLimitStatus	output limit
			15	OutOffsetStatus	output offset
			16	FricCompStatus	friction compensation
			17	POtrvlFaultActStatus	soft overtravel fault action
			18	PosErrorFaultActStatus	position error fault action
			19		encoder loss fault action
			20	EncNsFaultActStatus	encoder noise fault action
			21	DriveFaultActStatus	drive fault action
			The servo event bits for your servo loop.		
			Bit:	Bit Name:	Meaning:
			0	WatchEvArmStatus	watch event armed
ServoEventBits	DINT	AXIS	1	WatchEvStatus	watch event
Servoevenilbits	DINT	structure	2	RegEvArmStatus	registration event armed
			3	RegEvStatus	registration event
			4	HomeEvArmStatus	home event armed
			5	HomeEvStatus	home event
			The servo fa	ult bits for your servo loop.	
			Bit:	Bit Name:	Meaning:
			0	POtrvIFault	positive overtravel fault
			1	NOtrvlFault	negative overtravel fault
			2	PosErrorFault	position error fault
ServoFaultBits	DINT	AXIS	3	EncCHALossFault	encoder channel A loss fault
JEI VUL AUILDILS		structure	4	EncCHBLossFault	encoder channel B loss fault
			5	EncCHZLossFault	encoder channel Z loss fault
			6	EncNsFault	encoder noise fault
			7	DriveFault	drive fault
			8	SyncConnFault	synchronous connection fault
			9	HardFault	servo hardware fault
ServoOutputLevel	REAL	GSV	İ	voltage level for your axis se	

D-6

Variable	Data Type	Access	Description	
ServoStatusBits	DINT	AXIS structure	The status bits for your servo loop.Bit:Bit Name:Meaning:0ServoActStatusservo action1DriveEnableStatusdrive enable2OutLmtStatusoutput limit3PosLockStatusposition lock13TuneStatustuning process14TestStatustest diagnostic15ShutdownStatusaxis shutdown	
ServoStatusUpdateBits	DINT	gsv Ssv	The servo status update bits for your axis.Bit:Meaning:0position error update1position integrator error update2velocity error update3velocity integrator error update4velocity command update5velocity feedback update6servo output level update	
* SoftOvertravelFaultAction	SINT	GSV SSV	The operation performed when a soft overtravel fault occurs.Value:Meaning:0shutdown the axis1disable the drive2stop the commanded motion3change the status bit only	
StartActualPosition	REAL	GSV	The actual position of your axis when new commanded motion starts for the axis. You can use this value to correct for any motion occuring between the detection of an event and the action initiated by the event.	
StartCommandPosition	REAL	GSV	The command position of your axis when new commanded motion starts for the axis. You can use this value to correct for any motion occuring between the detection of an event and the action initiated by the event.	
StrobeActualPosition	REAL	GSV	The actual position of an axis when the Motion Group Strobe Position (MGSP) instruction executes.	
StrobeCommandPosition	REAL	GSV	The command position of an axis when the Motion Group Strobe Position (MGSP) instruction executes.	
TestDirectionForward	BOOL	GSV	The direction of axis travel during the Motion Run Hookup Diagnostic (MRHD) instruction as seen by the servo module. Value: Meaning: 0 negative (reverse) direction 1 positive (forward) direction	
TestStatus	UINT16	GSV	The status of the last Motion Run Hookup Diagnostic (MRHD) instruction.Value:Meaning:0test process successful1test in progress2test process aborted by the user3test exceeded 2-second time-out4test process failed due to servo fault5insufficient test increment	

Variable	Data Type	Access	Description
TuneAcceleration	REAL	GSV	The acceleration value measured during the last Motion Run Axis Tuning (MRAT) instruction.
TuneAccelerationTime	REAL	GSV	The acceleration time in seconds measured during the last Motion Run Axis Tuning (MRAT) instruction.
TuneDeceleration	REAL	GSV	The deceleration value measured during the last Motion Run Axis Tuning (MRAT) instruction.
TuneDecelerationTime	REAL	GSV	The deceleration time in seconds measured during the last Motion Run Axis Tuning (MRAT) instruction.
TuneRiseTime	REAL	GSV	The axis rise time in seconds measured during the last Motion Run Axis Tuning (MRAT) instruction.
плектоеттте	KEAL	631	This value only applies to axes that you configure to work with an external velocity servo drive.
TuneSpeedScaling	REAL	GSV	The axis drive scaling factor measured during the last Motion Run Axis Tuning (MRAT) instruction.
Tunespeeuscanng	KEAL	631	This value only applies to axes that you configure to work with an external velocity servo drive.
TuneStatus	UINT16	GSV	The status of the last Motion Run Axis Tuning (MRAT) instruction.Value:Meaning:0tune process successful1tuning in progress2tune process aborted by user3tune exceeded 2-second time-out4tune process failed due to servo fault5axis reached tuning travel limit6axis polarity set incorrectly7tune speed is too small to make measurements
TuneVelocityBandwidth	REAL	GSV	The bandwidth of the drive as calculated from the measurements made during the last Motion Run Axis Tuning (MRAT) instruction.
TuningConfigurationBits	DINT	GSV SSV	The tuning configuration bits for your axis.Bit:Meaning:0tuning direction (0=forward, 1=reverse)1tune position error integrator2tune velocity error integrator3tune velocity feedforward4acceleration feedforward5tune velocity low-pass filter
TuningSpeed	REAL	GSV SSV	The maximum speed reached by the Motion Run Axis Tuning (MRAT) instruction.
TuningTravelLimit	REAL	GSV SSV	The travel limit used by the Motion Run Axis Tuning (MRAT) instruction to limit the action of the axis during tuning.
VelocityCommand	REAL	GSV	The current velocity reference to the velocity servo loop for an axis.
VelocityError	REAL	GSV	The difference between the commanded and actual velocity of a servo axis. You can use this value to drive the motor to where the velocity feedback equals the velocity command.

Variable	Data Type	Access	Description
			The actual velocity of your axis as estimated by the servo module.
VelocityFeedback	REAL	GSV	To estimate the velocity, the servo module applies a 1 kHz low-pass filter to the change in actual position in one update interval.
* VelocityFeedforwardGain	REAL	GSV SSV	The value used to provide the velocity command output to generate the command velocity.
* VelocityIntegralGain	REAL	GSV SSV	The value that the controller multiplies with the VelocityIntegratorError value to correct the velocity error.
VelocityIntegratorError	REAL	GSV	The sum of the velocity error for a specified axis. You can use this value to drive the motor to where the velocity feedback equals the velocity command.
* VelocityProportionalGain	REAL	GSV SSV	The value that the controller multiplies with the VelocityError to correct the velocity error.
WatchPosition	REAL	GSV	The watch position of your axis.

The Motion Attributes

D-10

Instruction Timing

This appendix describes motion instruction timing types. The following table shows the contents of this appendix:

For information about	See page
Understanding Immediate Type Instructions	E-1
Understanding Message Type Instructions	E-3
Understanding Process Type Instructions	E-5

Motion instructions use three types of timing sequences

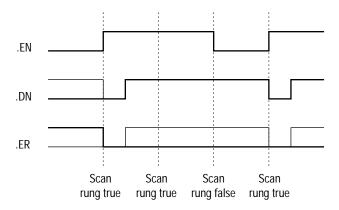
Timing type	Description
Immediate	The instruction completes in one scan.
Message	The instruction completes over several scans because the instruction sends messages to the servo module.
Process	The instruction could take an indefinite amount of time to complete.

Understanding Immediate Type Instructions

Immediate type motion instructions execute to completion in one scan. If the controller detects an error during the execution of these instructions, the error status bit sets and the operation ends.

Examples of immediate type instructions include the:

- Motion Change Dynamics (MCD) instruction
- Motion Group Strobe Position (MGSP) instruction


Immediate instructions work as follows:

- 1. When the rung that contains the motion instruction becomes true, the controller:
 - Sets the enable (EN) bit.
 - Clears the done (DN) bit.
 - Clears the error (ER) bit.
- 2. The controller executes the instruction completely.

3.

If the controller	Then	
Does not detect an error when the instruction executes	The controller sets the .DN bit.	
Detects an error when the instruction executes	The controller sets the .ER bit and stores an error code in the control structure.	

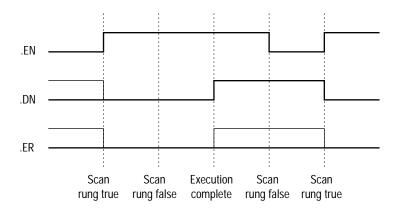
- 4. The next time the rung becomes false after either the .DN or .ER bit sets, the controller clears the .EN bit.
- 5. The controller can execute the instruction again when the rung becomes true.

Understanding Message Type Instructions

Message type motion instructions send one or more messages to the servo module.

Examples of message type instructions include the:

- Motion Direct Drive On (MDO) instruction
- Motion Redefine Position (MRP) instruction


Message type instructions work as follows:

- 1. When the rung that contains the motion instruction becomes true, the controller:
 - Sets the enable (EN) bit.
 - Clears the done (DN) bit.
 - Clears the error (ER) bit.
- 2. The controller begins to execute the instruction by setting up a message request to the servo module.
 - Note: The remainder of the instruction executes in parallel to the program scan.
- 3. The controller checks if the servo module is ready to receive a new message.
- 4. The controller places the results of the check in the message status word of the control structure.
- 5. When the module is ready, the controller constructs and transmits the message to the module.
 - Note: This process may repeat several times if the instruction requires multiple messages.

6.

If the controller	Then	
Does not detect an error when the instruction executes	The controller sets the .DN bit.	
Detects an error when the instruction executes	The controller sets the .ER bit and stores an error code in the control structure.	

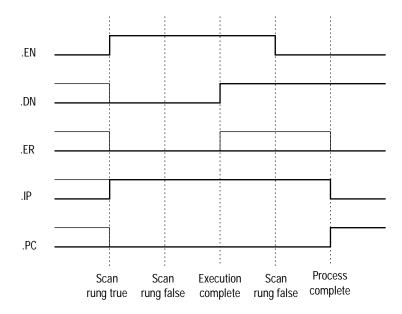
- 7. The next time the rung becomes false after either the .DN or .ER bit sets, the controller clears the .EN bit.
- 8. When the rung becomes true, the controller can execute the instruction again.

Understanding Process Type Instructions

Process type motion instructions initiate motion processes that can take an indefinite amount of time to complete.

Examples of process type instructions include the:

- Motion Arm Watch Position (MAW) instruction
- Motion Axis Move (MAM) instruction


Process type instructions work as follows:

- 1. When the rung that contains the motion instruction becomes true, the controller:
 - Sets the enable (.EN) bit.
 - Clears the done (.DN) bit.
 - Clears the error (.ER) bit.
 - Clears the process complete (.PC) bit.
- 2. The controller initiates the motion process.

3.

lf	Then the controller		
The controller does not detect an error when the instruction executes	Sets the .DN bit.Sets the in process (.IP) bit.		
The controller detects an error when the instruction executes	 Sets the .ER bit. Stores an error code in the control structure. Does not change the .IP and .PC bits. 		
The controller detects another instance of the motion instruction	Clears the .IP bit for that instance.		
The motion process reaches the point where the instruction can be executed again	Sets the .DN bit. Note: For some process type instructions, like MAM, this will occur on the first scan. For others, like MAH, the .DN bit will not be set until the entire homing process is complete.		
 One of the following occurs during the motion process: The motion process completes Another instance of the instruction executes Another instruction stops the motion process A motion fault stops the motion process 	Sets the .DN bit.Sets the .PC bit.Clears the .IP bit.		

- 4. Once the initiation of the motion process completes, the program scan can continue.
 - Note: The remainder of the instruction and the control process continue in parallel with the program scan.
- 5. The next time the rung becomes false after either the .DN bit or the .ER bit sets, the controller clears the .EN bit.

6. When the rung becomes true, the instruction can execute again.

Instruction Timing

E-8

Fault Handling

This appendix describes motion errors and faults. The following table shows the contents of this appendix:

For information about	See page
Handling Motion Faults	F-1
Understanding Errors	F-1
Understanding Minor/Major Faults	F-2

Handling Motion Faults

Two types of motion faults exist.

Туре	Description	Example
Errors	 Do not impact controller operation Should be corrected to optimize execution time and ensure program accuracy 	A Motion Axis Move (MAM) instruction with a parameter out of range
Minor/Major	 Caused by a problem with the servo loop Can shutdown the controller if you do not correct the fault condition 	The application exceeded the PositionErrorTolerance value

Understanding Errors

Executing a motion instruction within an application program can generate errors. The MOTION_INSTRUCTION tag has a field that contains the error code (any number from 1 to 23 depending on the error). For more information on error codes for individual instructions, refer to the motion instruction chapters in the Logix5550 Controller Instruction Set Reference Manual, publication 1756-6.4.1.

Understanding Minor/Major Faults

Several faults can occur that are not caused by motion instructions. For example, a loss of encoder feedback or actual position exceeding an overtravel limit will cause faults. The motion faults are considered Type 11 faults with error codes from 1 to 32. For more information about motion error codes, refer to *Handling Controller Faults* in the Logix5550 Controller User Manual, publication 1756-6.5.12.

Note: You can configure a fault as either minor (non major) or major by using the Axis Wizard-Group window.

For more information about handling faults, see *Handling Controller Faults* in the Logix5550 Controller User Manual, publication 1756-6.5.12. The terms in this glossary are specific to the ControlLogix line. For a a complete guide to Rockwell Automation technical terms, refer to the Industrial Automation Glossary, publication AG-7.1.

<u>A</u>	
Active homing	A homing mode that allows you to choose a specific homing sequence. The active homing mode uses the trapezoidal velocity profile to perform the homing operation. See <i>Home</i> , <i>Passive homing</i> .
Actual position	The current position of a physical or virtual axis as measured by the encoder or other feedback devices. See <i>Command position</i> .
Alias tag	 A tag that references another tag. An alias tag can refer to: Another alias tag or a base tag. Memory within another tag by referencing a member of a structure, an array element, or a bit within a tag or member. See <i>Base tag</i>, <i>Tag</i>.
Application	The combination of routines, programs, tasks, and I/O configuration used to define the operation of a single controller. See <i>Project</i> .
Application program	See Program.
Array	A numerically indexed sequence of elements, each of the same data type. In ControlLogix, an index starts at 0 and extends to the number of elements minus 1 (zero based). An array can have as many as three dimensions, unless it is a member of a structure where it can have only one dimension. An array tag occupies a contiguous block of memory in the controller, each element in sequence. See <i>Atomic data type</i> , <i>Structure</i> .
Atomic data type	The basic definition used to allocate bits, bytes, or words of memory and to define their numeric interpretation, including BOOL, SINT, INT, DINT, and REAL data types. See <i>Application</i> , <i>Structure</i> .

Axis faulted operating state	An axis operating state in which a servo fault is present. The status of the drive enable output, the action of the servo, and the condition of the OK contact depend on the faults and fault actions that are present.
Axis ready operating state	An axis operating state that is the normal power-up state of an axis. In this operating state:
	• The servo module drive enable output is inactive.
	• Servo action is disabled.
	• No servo faults are present.
В	
Base tag	A tag that defines the memory where a data element is stored. See <i>Alias tag</i> , <i>Tag</i> .
Binary	Integer values displayed and entered in base 2 (each digit represents a single bit). Binary numbers are:
	• Prefixed with 2#.
	• Padded out to the length of the boolean or integer (1, 8, 16, or 32 bits).
	When a binary number is displayed, every group of four digits is separated by an underscore for legibility. See <i>Decimal</i> , <i>Hexadecimal</i> , <i>Octal</i> .
Bit	Binary digit. The smallest unit of memory, which is represented by the digits 0 (cleared) and 1 (set).
BOOL	An atomic data type that stores the state of a single bit (0 or 1).
Byte	A unit of memory consisting of 8 bits.

Command position	The position of the servo as generated by motion instructions. See <i>Actual position</i> .
Compatible module	An electronic keying protection mode. To establish a connection with a module in this mode, you must match the following attributes of the physical module and the module configured using the programming software:
	• Vendor
	Catalog number
	Major revision
	See Disable keying, Exact match.
Continuous task	A task that runs continuously, restarting the execution of its programs when the last program finishes. If your application requires a continuous task, you can use only one continuous task. See <i>Periodic task</i> .
ControlBus	The backplane used by the 1756 chassis.
Controller scope	Data accessible anywhere in the controller. Each controller contains a collection of tags that can be accessed by:
	Routines in any program.
	Alias tags in any program.
	• Other aliases in the controller scope.
	See Program scope.
Coordinated system time (CST)	A synchronized time value for all the modules within a single ControlBus chassis. To determine the relative time between data samples, you can compare samples that are timestamped with CST data from modules within a single ControlBus chassis.

G-4

D

Damping factor	An attribute that controls the dynamic response of a servo axis. The controller uses the damping factor attribute to calculate the maximum position servo bandwidth attribute.
Data type	A definition of the memory size and the layout of memory that the controller allocates when you use a tag of a specific data type. Data types can be atomic, structures, or arrays.
Decimal	Integer values displayed and entered in base 10. Decimal values:Do not use a prefix.Are not padded to the length of the integer.
	See Binary, Hexadecimal, Octal.
Description	A field that allows to enter a brief description of a tag or module. In a description, you can use any printable character, including carriage returns, tabs, and spaces.
	• Descriptions for tags are a maximum of 128 characters long.
	• Descriptions for modules are a maximum of 120 characters long.
Dimension	Specification of the size of an array. Arrays can have a maximum of three dimensions.
DINT	An atomic data type that stores a 32-bit signed integer value (-2,147,483,648 to +2,147,483,647).
Direct drive control operating state	An axis operating state that allows the servo module DAC to directly control an external drive. In this operating state:
	• The servo module drive enable output is active.
	• Servo action is disabled.

• No servo faults are present.

Disable keying	An electronic keying protection mode. To establish a connection with a module in this mode, you do not have to match any of the attributes of the physical module and the module configured in the programming software. See <i>Compatible module</i> , <i>Exact match</i> .
Download	The process of transferring the contents of a project on a workstation into a controller. See <i>Upload</i> .
E	
Electronic keying	A feature of the 1756 I/O line where modules perform an electronic check to insure that the physical module is consistent with what you configured using the programming software. By using this feature, you can prevent the use of incorrect modules or incorrect revisions of modules. See <i>Compatible module</i> , <i>Disable keying</i> , <i>Exact match</i> .
Element	An addressable unit of data that is a sub-unit of a larger unit of data. An element is a single unit in an array. See <i>Array</i> .
Error	A malfunction caused by a motion instruction. For example, a Motion Axis Move (MAM) instruction with a parameter out of range would cause an error. This malfunction does not impact controller operation. To optimize execution time and ensure program accuracy, you should correct errors. See <i>Fault</i> .
Exact match	An electronic keying protection mode. To establish a connection with a module in this mode, you must match the following attributes of the physical module and the module configured using the programming software:
	• Vendor
	Catalog number
	Major revision
	Minor revision
	See Compatible module, Disable keying.

Execution time	The total time required for the execution of an instruction.
Exponential	Real values displayed and entered in scientific or exponential format. An exponential number is always displayed with one digit to the left of the decimal point, followed by the decimal portion, and then by the exponent.
<u>F</u>	
Fault	Any malfunction that interferes with normal system operation. See <i>Error</i> .
Float	Real values displayed and entered in floating point format. The number of digits to the left of the decimal point varies according to the magnitude of the number.
G	
Gear	A type of axis motion that allows the controller to synchronize any axis to the actual or command position of another axis.
Н	
Hexadecimal	Integer values displayed and entered in base 16 (each digit represents four bits). Hexadecimal numbers are:
	• Prefixed with 16#.
	• Padded out to the length of the boolean or integer (1, 8, 16, or 32 bits).
	When a hexadecimal number is displayed, every group of four digits is separated by an underscore for legibility. See <i>Binary</i> , <i>Decimal</i> , <i>Octal</i> .

Home	A type of axis motion that calibrates the actual position of an axis.
Hookup diagnostics	A set of three tests you can use to check encoder and marker connections.
	• The motor/encoder test verifies the motor/encoder hookup for an axis.
	• The encoder test verifies the encoder hookup for an axis.
	• The marker test verifies the marker hookup for an axis.
<u>I</u>	
Immediate type timing	A type of instruction timing in which the instruction completes in one scan. See <i>Message type timing</i> , <i>Process type timing</i> .
Immediate value	A 32-bit signed integer value (-2,147,483,648 to +2,147,483,647). An immediate tag does not store a value.
Index	A reference used to specify an element within an array.
INT	An atomic data type that stores a 16-bit integer value (-32,768 to +32,767).
J	
Jog	A type of axis motion that continuously moves (jogs) an axis.
К	
Keying	A process of marking two devices with equivalent marking connectors. When you key devices, you can identify which devices connect to each other. For example, you can use keying pattern to identify which removable terminal block belongs with each module.

M	_
Major fault	A malfunction, either hardware or instruction, that sets a major fault bit and processes fault logic to try to clear the fault condition. If the fault logic cannot clear the fault, then:
	Logic execution stops.
	• The controller shuts down.
	• The outputs go to their configured shutdown state.
	See Minor (non-major) fault.
Major revision	A revision indicator in the 1756 line of modules. The major revision is updated any time there is a functional change to the module. See <i>Minor revision</i> .
Master axis	An axis that controls the slave axis during a gearing operation. See <i>Slave axis</i> .
Master controller (CST)	A controller designated as the Coordinated System Time (CST) master. All other modules in the system synchronize their CST values to this master. Within a single chassis, one and only one controller must be designated as the master.
Master coordinated system time	See Coordinated system time (CST).
Member	An element of a structure that has its own data type and name. Members can be structures as well, creating nested structure data types. Each member within a structure can be a different data type. See <i>Structure</i> .
Message type timing	A type of instruction timing in which the instruction completes over several scans because the instruction sends messages to the servo module. See <i>Immediate type timing</i> , <i>Process type timing</i> .
Minor (non-major) fault	A malfunction, either hardware or instruction, that sets a minor fault bit, but allows the logic scan to continue. See <i>Major fault</i> .
Minor revision	A revision indicator in the 1756 line of modules. The minor revision is updated any time there is a change to a module that does not affect its function or interface. See <i>Major revision</i> .
Move	A type of axis motion that moves a physical axis to a new position.

Name

Ν

A title that identifies tags and modules. The naming conventions are IEC-1131-3 compliant. A name:

- must begin with an alphabetic character (A-Z or a-z) or an underscore (_).
- can contain only alphabetic characters, numeric characters, and underscores.
- can have as many as 40 characters.
- must not have consecutive or trailing underscore characters (_).

0

Object

Octal

A structure of data that stores status information. When you enter a GSV/SSV instruction, you specify the object and its attribute that you want to access. In some cases, you might also have to specify the object name because more than one instance of the same type of object exists. For example, your application can contain several tasks, and each task has its own TASK object that you access by the task name.

Integer values displayed and entered in base 8 (each digit represents three bits). Octal numbers are:

- Prefixed with 8#.
- Padded out to the length of the boolean or integer (1, 8, 16, or 32 bits).

When a octal number is displayed, every group of three digits is separated by an underscore for legibility. See *Binary*, *Decimal*, *Hexadecimal*.

G-10

Ρ

Passive homing	A homing mode that redefines the current absolute position on the next occurrence of the encoder marker. See <i>Active homing</i> .
Periodic task	A task that is triggered at a specific time interval. Whenever the time interval expires, the task is triggered and its programs are executed. Each controller can have as many as 32 periodic tasks. See <i>Continuous task</i> .
Position error	The difference between the actual position and the command position of an axis.
Position-only axis	A type of axis in which you use the axis to monitor axis position. See <i>Servo axis</i> .
Process type timing	A type of instruction timing in which the instruction could take an indefinite amount of time to complete. See <i>Immediate type timing</i> , <i>Message type timing</i> .
Program	A set of related routines and a collection of tags. When a program is executed by a task, execution of logic starts at the configured main routine. That main routine can execute subroutines using the JSR instruction. If a program fault occurs, execution jumps to a configured fault routine for the program. Any of the routines in a program can access the program tags, but routines in other programs cannot access these tags. See <i>Routine</i> , <i>Task</i> .
Program scope	Data accessible only within the current program. Each program contains a collection of tags that can only be referenced by the routines and alias tags in that program. See <i>Controller scope</i> .
Project	The file that the programming software uses to store a controller's logic and configuration. See <i>Application</i> .

<u></u>	
REAL	An atomic data type that stores a 32-bit IEEE floating-point value.
Removal and insertion under power (RIUP)	A ControlLogix feature that allows a user to install and remove a module while chassis power is applied.
Routine	A set of logic instructions in a single programming language, such as a ladder diagram. Routines provide the executable code for the project in a controller. A routine is similar to a program file in a PLC or SLC processor. See <i>Program</i> , <i>Task</i> .
S	
S-curve profile	A motion profile in which uses a controlled jerk to perform motion. The s-curve motion profile produces the least motor stress. See <i>Trapezoidal profile</i> .
Scope	Defines where you can access a particular set of tags. See <i>Controller scope</i> , <i>Program scope</i> .
Servo axis	A type of axis in which you can use the axis as a full closed-loop servo. See <i>Position-only axis</i> .
Servo control operating state	An axis operating state that allows the servo module to perform closed loop motion. In this operating state:
	• The servo module drive enable output is active.
	• Servo action is enabled.
	• No servo faults are present.
	• The axis is forced to maintain the commanded servo position.
Shutdown operating state	An axis operating state that allows the OK relay contacts to open a set of contacts in the E-stop string of the drive power supply. In this operating state:
	• The servo module drive enable output is inactive.
	• Servo action is disabled.
	• The OK contact is open.

R

G-12	
SINT	An atomic data type that stores an 8-bit signed integer value $(-128 \text{ to } +127)$.
Slave axis	An axis that follows the master axis during a gearing operation. See <i>Master axis</i> .
Structure	An object that stores a group of data, each of which can be a different data type. The controller and each I/O module you configure have their own predefined structures. You can also create specialized user-defined structures, using any combination of individual tags and most other structures. See <i>Member</i> , <i>User-defined structure</i> .
<u>T</u>	
Тад	A named area of the controller's memory where it stores data. Tags are the basic mechanism for allocating memory, referencing data from logic, and monitoring data. See <i>Alias tag</i> , <i>Base tag</i> .
Task	A scheduling mechanism for executing a program. A task can be configured to run as a continuous task or a periodic task.
	• You can create a maximum of 32 tasks to schedule programs.
	• You can execute a maximum of 32 programs when a task is triggered.
	See Continuous task, Periodic task.
Timestamp	A relative time reference that a ControlLogix process records when a change in input data occurs.
Trapezoidal profile	A motion profile in which the velocity-vstime profile resembles a trapezoid. This profile is characterized by constant acceleration, constant velocity, and constant acceleration. If you want the fastest acceleration and deceleration times, use the trapezoidal motion profile. See <i>S</i> -curve profile.

U

User-defined structure

The process of transferring the contents of the controller into a project file on a workstation. See *Download*.

A single named entity that groups different types of data. A user-defined structure contains one or more data definitions called members. Creating a member in a user-defined structure is just like creating an individual tag. The data type for each member determines the amount of memory allocated for the member. The data type for each member can be:

- An atomic data type
- A product-defined structure
- A user-defined structure
- A single dimension array of an atomic data type
- A single dimension array of a product-defined structure
- A single dimension array of a user-defined structure

Numerics

1756-M02AE servo module 1-1 Adding to a program 4-1, 4-5 Adding an axis 4-7 Additional modules and axes 4-27 Auto tuning 4-28 Block diagrams Torque servo drive B-3 Velocity servo drive B-4 Coarse update rate calculations A-4 Components 2-2 Configuring a motion axis 4-1, 4-8 Features 1-2 Getting started 3-1 to 3-36 Hookup diagnostics 4-28 Installing 2-1 to 2-16 Before installing your module 2-1 Removable terminal block (RTB) 2-12 Keying your module 2-8 LED indicators 2-14 Loop and interconnect diagrams B-1 Removable terminal block (RTB) 2-3 Removing Module from the chassis 2-16 Removable terminal block (RTB) 2-15 Specifications A-1 Troubleshooting 6-1 Wiring diagrams 1394 drive B-8 1394-SA15 cable B-9 24V registration sensor B-10 5V registration sensor B-10 Home limit switch B-11 OK contacts B-12 Servo module RTB B-5 Ultra 100 drive B-6 Ultra 200 drive B-7

А

Adding to a program A ladder rung 3-29 A motion module 3-6, 4-1 to 4-39 An MSO instruction 3-30 An XIC instruction 3-29 Assigning an axis 4-7 Application program Creating 3-29, 3-34 to 3-35 Developing 1-4, 4-1, 4-38 Downloading 4-29 Entering ladder logic 3-29 to 3-35 Example 3-29, 4-39 Main routine 3-19, 3-29 Assigning in an application program Additional modules and axes 4-27 Master controller 4-2 Auto tuning 3-19 to 3-28, 4-28 to 4-37 Starting 3-25, 4-34 Tune bandwidth window 3-26, 4-34 AXIS control structure C-2 Axis Properties window 3-21, 3-23, 3-24, 3-27, 4-30 Dynamics 3-28, 4-36 Gains 3-27, 4-36 Hookup 3-22, 4-30, 4-32 Tune servo 3-25, 4-33 Axis Wizard Dynamics 3-17, 4-26 Fault action 3-15, 4-18 Feedback 3-12, 4-13 Gains 3-17, 4-24 General 3-9, 4-8 Group 3-9, 3-11, 4-9, 4-12 Axis assignment 3-10, 4-10 Update rates 3-11, 4-11 Homing 3-13, 4-15

Hookup 3-16, 4-22 Overtravels 3-14, 4-17 Positioning 3-13, 4-14 Servo 3-14, 4-17 Tune 3-16, 4-23 Units 3-12, 4-12

В

Block diagrams for a 1756-M02AE module B-2 With a torque servo drive B-3 With a velocity servo drive B-4

С

Cage clamp RTB, wiring 2-11 Configuring a motion axis 3-9 to 3-18, 4-8 to 4-27 Control structures C-1 AXIS C-2 MOTION_GROUP C-8 MOTION_INSTRUCTION C-11 Error codes C-12 Execution status C-13 Message status C-13 Controller Properties window 3-4, 4-3 ControlLogix motion control 1-1 Components 1-2 Features 1-2 Conventions used in this manual P-3 Course update rate calculations A-4 Action timing A-5 Baseline task time A-4 Calculation worksheet A-6 Sample calculation A-7, A-9

D

Diagnostic tests Marker test 3-24 Motor/encoder test 3-22 Diagrams Block B-2 Wiring B-5 Documentation P-3 Downloading a program 3-20, 4-28, 4-29 DRIVE LED indicator 6-3

E

Electrostatic discharge, preventing 2-4 Errors F-1 European Union Directive Compliance 2-5 EMC directive 2-5 Low voltage directive 2-5

F

Fault handling F-1 Errors F-1 Minor/major faults F-2 Motion faults F-1 Faults F-1 Types 1-6 FDBK LED indicator 6-2

G

Getting started with your motion module 3-1 to 3-36 Adding a 1756-M02AE module 3-6 Configuring your axis 3-9 Control system components 3-2 Entering an application program 3-29 Naming an axis 3-8 Running hookup diagnostics and auto tuning 3-19 Setting master system time 3-3 Steps before beginning 3-1 Tasks 3-2 Greyed-out fields P-3, 4-8

```
GSV instruction D-1
Reading status and configuration parameters 1-6
```

Η

Hookup diagnostics 3-19 to 3-28, 4-28 to 4-37

I

Immediate instruction timing E-1 Installing your motion module 2-1 to 2-16

К

Keying Module 2-8 Pattern 2-8 Removable terminal block 2-8, 2-9

L

LED indicators 2-14 Logix5550 controller 1-1 Features 1-2

Μ

Main routine 3-19, 3-29 Major faults F-2 Manual Conventions P-3 Purpose P-2 Who should use P-1 Marker test Starting 3-24, 4-32 Master coordinated system time 4-2 Message instruction timing E-3 Minor faults F-2 Module Properties window 3-18, 3-21, 4-27, 4-29 Motion attributes D-1 Changing configuration parameters 1-6 Motion instance variables D-1 Understanding status and configuration parameters 1-6 Motion configuration instructions 5-6 Motion Apply Axis Tuning (MAAT) 5-6 Motion Apply Hookup Diagnostic (MAHD) 5-6 Motion Run Axis Tuning (MRAT) 5-6 Motion Run Hookup Diagnostic (MRHD) 5-6 Motion event instructions 5-5 Motion Arm Registration (MAR) 5-5 Motion Arm Watch Position (MAW) 5-5 Motion Disarm Registration (MDR) 5-5 Motion Disarm Watch Position (MDW) 5-5 Motion group instructions 5-4 Motion Group Programmed Stop (MGPS) 5-4 Motion Group Shutdown (MGSD) 5-4 Motion Group Shutdown Reset (MGSR) 5-4 Motion Group Stop (MGS) 5-4 Motion Group Strobe Position (MGSP) 5-4 Motion instance variables D-1 Motion instructions 5-1 Motion Apply Axis Tuning (MAAT) 5-6 Motion Apply Hookup Diagnostic (MAHD) 5-6 Motion Arm Registration (MAR) 5-5 Motion Arm Watch Position (MAW) 5-5 Motion Axis Fault Reset (MAFR) 5-2 Motion Axis Gear (MAG) 5-3 Motion Axis Home (MAH) 5-3 Motion Axis Jog (MAJ) 5-3 Motion Axis Move (MAM) 5-3 Motion Axis Shutdown (MASD) 5-2 Motion Axis Shutdown Reset (MASR) 5-2 Motion Axis Stop (MAS) 5-3 Motion Change Dynamics (MCD) 5-3 Motion configuration instructions 5-6 Motion Direct Drive Off (MDF) 5-2 Motion Direct Drive On (MDO) 5-2 Motion Disarm Registration (MDR) 5-5 Motion Disarm Watch Position (MDW) 5-5 Motion event instructions 5-5 Motion group instructions 5-4

Motion Group Programmed Stop (MGPS) 5-4 Motion Group Shutdown (MGSD) 5-4 Motion Group Shutdown Reset (MGSR) 5-4 Motion Group Stop (MGS) 5-4 Motion Group Strobe Position (MGSP) 5-4 Motion move instructions 5-3 Motion Redefine Position (MRP) 5-3 Motion Run Axis Tuning (MRAT) 5-6 Motion Run Hookup Diagnostic (MRHD) 5-6 Motion Servo Off (MSF) 5-2 Motion Servo On (MSO) 5-2 Motion state instructions 5-2 Timing E-1 Immediate E-1 Message E-3 Process E-5 Motion module. See 1756-M02AF servo module. Motion move instructions 5-3 Motion Axis Gear (MAG) 5-3 Motion Axis Home (MAH) 5-3 Motion Axis Jog (MAJ) 5-3 Motion Axis Move (MAM) 5-3 Motion Axis Stop (MAS) 5-3 Motion Change Dynamics (MCD) 5-3 Motion Redefine Position (MRP) 5-3 Motion state instructions 5-2 Motion Axis Fault Reset (MAFR) 5-2 Motion Axis Shutdown (MASD) 5-2 Motion Axis Shutdown Reset (MASR) 5-2 Motion Direct Drive Off (MDF) 5-2 Motion Direct Drive On (MDO) 5-2 Motion Servo Off (MSF) 5-2 Motion Servo On (MSO) 5-2 MOTION_GROUP control structure C-8 MOTION_INSTRUCTION control structure C-11 Error codes C-12 Execution status C-13 Message status C-13 Understanding 1-5 Motor/encoder test Starting 3-22, 4-30

Ν

New Module window 3-7, 4-6 New Tag window 3-31 AXIS 3-8 MOTION_GROUP 3-10, 4-9

0

Offline 3-29 OK LED indicator 6-1

Р

Performance guidelines A-1 Power requirements, determining 2-3 Process instruction timing E-5 Program. See Application program. Purpose of this manual P-2

R

Related documentation P-3 Removable terminal block (RTB) 2-3 Assembling 2-12 Cage clamp 2-11 Installing into module 2-12 Keying 2-8, 2-9 Removing from module 2-15 Spring clamp 2-10 Wiring 2-10 Removing and Inserting Under Power (RIUP) 2-4 Rockwell Automation support P-4 Local product support P-4 Technical product assistance P-4 RSLogix 5000 programming software 1-1 Adding a motion module 4-1 Adding a rung 3-29 Adding an MSO instruction 3-30

Adding an XIC instruction 3-29 Application program Developing 4-1, 4-38 Example 4-39 Main routine 3-19 Configuring a motion module 4-1 Control structures C-1 Creating an application program 3-34 to 3-35 Creating tags 3-31 to 3-33 Downloading an application program 3-20, 4-28, 4-29 Entering a variable 3-29 Example program 3-29 Fault handling F-1 Features 1-3 Going offline 3-29 GSV/SSV instructions D-1 Instruction timing E-1 Main routine 3-29 Motion attributes D-1 Motion instructions 5-1

RUIP. See Removing and Inserting Under Power (RUIP).

S

Sample program 3-29 Select Module Type window 3-6, 4-5 Setting the master coordinated system time 3-3 to 3-5, 4-2 to 4-4 Specifications A-1 Spring clamp RTB, wiring 2-10 SSV instruction D-1 Changing configuration parameters 1-6

Т

Tags Creating 3-31 to 3-33 New Tag window AXIS 3-8 MOTION_GROUP 3-10, 4-9 Troubleshooting 6-1 DRIVE LED indicator 6-3 FDBK LED indicator 6-2 OK LED indicator 6-1 Tune Bandwidth window 3-26 Tuning. See Auto tuning.

U

Unavailable fields P-3, 4-8

V

Variables, using 3-29

W

Who should use this manual P-1 Windows Axis properties 3-21, 3-23, 3-24, 3-27, 4-30 Dynamics 3-28 Gains 3-27 Hookup 3-22 Tune servo 3-25 Axis Wizard-Dynamics 3-17, 4-26 Axis Wizard-Fault action 3-15, 4-18 Axis Wizard-Feedback 3-12, 4-13 Axis Wizard-Gains 3-17, 4-24 Axis Wizard-General 3-9, 4-8 Axis Wizard-Group 3-9, 3-11, 4-9, 4-12 Axis assignment 3-10, 4-10 Update rates 3-11, 4-11 Axis Wizard-Homing 3-13, 4-15 Axis Wizard-Hookup 3-16, 4-22 Axis Wizard-Overtravels 3-14, 4-17 Axis Wizard-Positioning 3-13, 4-14 Axis Wizard-Servo 3-14, 4-17 Axis Wizard-Tune 3-16, 4-23 Axis Wizard-Units 3-12, 4-12 Controller properties 3-4, 4-3

Module properties 3-18, 3-21, 4-27, 4-29 New module 3-7, 4-6 New tag 3-8, 3-10, 3-31, 4-9 Select module type 3-6, 4-5 Tune bandwidth 3-26, 4-34 Wiring diagrams B-5 1394 drive B-8 1394-SA15 cable B-9 24V registration sensor B-10 5V registration sensor B-10 Home limit switch B-11 OK contacts B-12 Servo module RTB B-5 Ultra 100 drive B-6 Ultra 200 drive B-7

Rockwell Automation helps its customers receive a superior return on their investment by bringing together leading brands in industrial automation, creating a broad spectrum of easy-to-integrate products. These are supported by local technical resources available worldwide, a global network of system solutions providers, and the advanced technology resources of Rockwell.

Worldwide representation.

Argentina • Australia • Australia • Bahrain • Belgium • Bolivia • Brazil • Bulgaria • Canada • Chile • China, People's Republic of • Colombia • Costa Rica • Croatia • Cyprus Czech Republic • Denmark • Dominican Republic • Ecuador • Egypt • El Salvador • Finland • France • Germany • Ghana • Greece • Guatemala • Honduras • Hong Kong Hungary • Iceland • India • Indonesia • Iran • Ireland • Israel • Italy • Jamaica • Japan • Jordan • Korea • Kuwait • Lebanon • Macau • Malaysia • Malta • Mexico Morocco • The Netherlands • New Zealand • Nigeria • Norway • Oman • Pakistan • Panama • Peru • Philippines • Poland • Portugal • Puerto Rico • Qatar • Romania • Russia Saudi Arabia • Singapore • Slovakia • Slovenia • South Africa, Republic of • Spain • Sweden • Switzerland • Taiwan • Thailand • Trinidad • Tunisia • Turkey • United Arab Emirates United Kingdom • United States • Unuguay • Venezuela

Rockwell Automation Headquarters, 1201 South Second Street, Milwaukee, WI 53204 USA, Tel: (1) 414 382-2000, Fax: (1) 414 382-4444 Rockwell Automation European Headquarters SA/NV, avenue Herrmann Debrouxlaan, 46, 1160 Brussels, Belgium, Tel: (32) 2 663 06 00, Fax: (32) 2 663 06 40 Rockwell Automation Asia Pacific Headquarters, 27/F Citicorp Centre, 18 Whitfield Road, Causeway Bay, Hong Kong, Tel: (852) 2887 4788, Fax: (852) 2506 1846