

Type 8202 ELEMENT

pH- or redox-meter pH- oder Redox-Messgerät pH- ou redox-mètre

Operating Instructions

Bedienungsanleitung Manuel d'utilisation

We reserve the right to make technical changes without notice. Technische Änderungen vorbehalten. Sous réserve de modifications techniques.

© 2008-2012 Bürkert SAS

Operating Instructions 1203/3_EU-ML_560329_Original_FR

Contents

1. ABOUT THIS MANUAL		5	
	1.1.	Symbols used	5
	1.2.	Validity of the manual	5
2.	INTE	NDED USE	6
	2.1.	Restraints	6
3.	BASI	C SAFETY INFORMATION	7
4.	GEN	ERAL INFORMATION	9
	4.1.	Contact	9
	4.2.	Warranty conditions	9
	4.3.	Informations on the internet	9
5.	DES	CRIPTION	10
	5.1.	Area of application	10
	5.2.	General description	10
		5.2.1. Design	10
		5.2.2. pH or Redox probe	10
	5.3.	Description of the name plate	11
	5.4.	Available versions	11
6.	TECH	INICAL DATA	12
	6.1.	Conditions of use	
	6.2.	Conformity to standards and directives	
	6.3.	General technical data	13
		6.3.1. Mechanical data	13
		6.3.2. General technical data	15
		6.3.3. Electrical data	16
		6.3.4. Data of connectors and cables	16
		6.3.5. pH/Redox probe	17
7.	ASSE	EMBLY	
	7.1.	Safety instructions	

1

	7.2.	Unscrewing the cover	18
	7.3.	Mounting the cover	19
	7.4.	Mounting the display module	19
	7.5.	Removing the display module	20
	7.6.	Mounting the probe into the holder (without fluid)	20
	7.7.	Mounting the electronic module to the sensor holder (without fluid)	21
8.	INST	ALLATION AND COMMISSIONING	22
	8.1.	Safety instructions	22
	8.2.	Installation onto the pipe	23
	8.3.	Electrical wiring	25
		8.3.1. Assembling the male or female connector (accessories: see chap. 11)	25
		8.3.2. Equipotentiality of the installation	26
		8.3.3. Wiring a version with a single M12 fixed connector	27
		8.3.4. Wiring a version with 2 M12 fixed connectors	29
9.	OPER	ATING AND FUNCTIONS	32
	9.1.	Safety instructions	32
	9.2.	Functions	32
		Using the navigation key	33
	9.3.		
	9.3. 9.4.	Using the dynamic functions	
	9.3. 9.4. 9.5.	Using the dynamic functions Example for the input of a numerical value	
	9.3. 9.4. 9.5. 9.6.	Using the dynamic functions Example for the input of a numerical value Example for browsing in a menu	
	 9.3. 9.4. 9.5. 9.6. 9.7. 	Using the dynamic functions Example for the input of a numerical value Example for browsing in a menu Description of the display	
	9.3. 9.4. 9.5. 9.6. 9.7.	Using the dynamic functions Example for the input of a numerical value Example for browsing in a menu Description of the display 9.7.1. Description of icons and LEDs	
	9.3. 9.4. 9.5. 9.6. 9.7.	Using the dynamic functions Example for the input of a numerical value Example for browsing in a menu Description of the display 9.7.1. Description of icons and LEDs 9.7.2. When switching on the device	
	9.3. 9.4. 9.5. 9.6. 9.7. 9.8.	Using the dynamic functions Example for the input of a numerical value Example for browsing in a menu Description of the display 9.7.1. Description of icons and LEDs 9.7.2. When switching on the device Read level	
	 9.3. 9.4. 9.5. 9.6. 9.7. 9.8. 9.9. 	Using the dynamic functions Example for the input of a numerical value Example for browsing in a menu Description of the display 9.7.1. Description of icons and LEDs 9.7.2. When switching on the device Read level Accessing the Settings level	
	 9.3. 9.4. 9.5. 9.6. 9.7. 9.8. 9.9. 9.10. 	Using the dynamic functions Example for the input of a numerical value Example for browsing in a menu Description of the display 9.7.1. Description of icons and LEDs 9.7.2. When switching on the device Read level Accessing the Settings level Menu structure of the Settings level	
	 9.3. 9.4. 9.5. 9.6. 9.7. 9.8. 9.9. 9.10. 9.11. 	Using the dynamic functions Example for the input of a numerical value Example for browsing in a menu Description of the display 9.7.1. Description of icons and LEDs 9.7.2. When switching on the device Read level Accessing the Settings level Menu structure of the Settings level Parameters Menu	
	 9.3. 9.4. 9.5. 9.6. 9.7. 9.8. 9.9. 9.10. 9.11. 	Using the dynamic functions Example for the input of a numerical value Example for browsing in a menu Description of the display 9.7.1. Description of icons and LEDs 9.7.2. When switching on the device Read level Accessing the Settings level Menu structure of the Settings level 9.11.1. Transferring data from one device to another	
	 9.3. 9.4. 9.5. 9.6. 9.7. 9.8. 9.9. 9.10. 9.11. 	Using the dynamic functions Example for the input of a numerical value Example for browsing in a menu Description of the display 9.7.1. Description of icons and LEDs 9.7.2. When switching on the device Read level Accessing the Settings level Menu structure of the Settings level 9.11.1. Transferring data from one device to another 9.11.2. Setting the date and time	
	 9.3. 9.4. 9.5. 9.6. 9.7. 9.8. 9.9. 9.10. 9.11. 	Using the dynamic functions Example for the input of a numerical value Example for browsing in a menu Description of the display	

		9.11.5. Setting the data displayed in the READ level	44
		9.11.6. Displaying the lowest and highest values measured	45
		9.11.7. Setting the display contrast and brightness	45
		9.11.8. Choosing the output wiring mode	45
		9.11.9. Setting the parameters of the current outputs	46
		9.11.10. Setting the parameters of the transistor outputs	47
		9.11.11. Setting the sensor parameters	48
	9.12.	Calibration menu	49
		9.12.1. Activating/deactivating the Hold function	49
		9.12.2. Modifying the Calibration menu access code	50
		9.12.3. Adjusting the current outputs	50
		9.12.4. Calibrating the sensor	51
		9.12.5. Entering an offset for the temperature measurement	55
	9.13.	Diagnostic menu	
		9.13.1. Modifying the Diagnostic menu access code	55
		9.13.2. Monitoring the condition of the probe	55
		9.13.3. Monitoring the fluid temperature	56
	9.14.	Test menu	57
		9.14.1. Modifying the Test menu access code	57
		9.14.2. Checking the outputs functions	57
		9.14.3. Checking the outputs behaviour	58
	9.15.	Information menu	
		9.15.1. Reading the cause of events linked to icons	58
		9.15.2. Reading the software versions	59
10.	MAIN	TENANCE AND TROUBLESHOOTING	60
	10.1.	Safety instructions	60
	10.2.	Cleaning of the transmitter	
		10.2.1. Cleaning of the pH/ORP probe	
	10.3.	Replacing the probe	
	10.4.	Replace the seal of the sensor holder	
	10.5.	Troubleshooting	
11	SDVL		
• • •	JPAR		
12.	PAC	(AGING, TRANSPORT	69

З

13.	STORAGE
14.	DISPOSAL OF THE PRODUCT70

ABOUT THIS MANUAL 1.

This manual describes the entire life cycle of the device. Please keep this manual in a safe place, accessible to all users and any new owners.

This manual contains important safety information.

Failure to comply with these instructions can lead to hazardous situations.

This manual must be read and understood.

Symbols used 1.1.

DANGER

Warns you against an imminent danger.

Failure to observe this warning can result in death or in serious injury.

WARNING

Warns you against a potentially dangerous situation.

Failure to observe this warning can result in serious injury or even death.

CAUTION

Warns you against a possible risk.

Failure to observe this warning can result in substantial or minor injuries.

NOTE

Warns you against material damage.

Failure to observe this warning may result in damage to the device or system.

Indicates additional information, advice or important recommendations.

i) Refers to information contained in this manual or in other documents.

 \rightarrow Indicates a procedure to be carried out.

Validity of the manual 1.2.

The manual describes the devices from V2 software version of the acquisition / conversion module for the measured process values.

Check this sofware version on the device in the menu Info -> Software -> Versions -> Main.

2. INTENDED USE

Use of this device that does not comply with the instructions could present risks to people, nearby installations and the environment.

- The 8202 transmitter is intended solely for the measurement of:
- the pH in clean liquids or liquids containing solids, sulphides or proteins.
- or the oxidation reduction potential in clean liquids or liquids containing solids, sulphides or proteins which may present low conductivity.
- This device must be protected against electromagnetic interference, ultraviolet rays and, when installed outdoors, the effects of climatic conditions.
- This device must be used in compliance with the characteristics and commissioning and use conditions specified in the contractual documents and in the user manual.
- Requirements for the safe and proper operation of the device are proper transport, storage and installation, as well as careful operation and maintenance.
- Only use the device as intended.

2.1. Restraints

Observe any existing restraints when the device is exported.

3. BASIC SAFETY INFORMATION

This safety information does not take into account:

- any contingencies or occurrences that may arise during assembly, use and maintenance of the device.
- the local safety regulations that the operator must ensure the staff in charge of installation and maintenance observe.

Danger due to high pressure in the installation.

• Stop the circulation of fluid, cut off the pressure and drain the pipe before loosening the process connections.

Danger due to electrical voltage.

- Shut down and isolate the electrical power source before carrying out work on the system.
- Observe all applicable accident protection and safety regulations for electrical equipment.

Danger due to high fluid temperatures.

- Use safety gloves to handle the device.
- Stop the circulation of fluid and drain the pipes before loosening the process connections.

Danger due to the nature of the fluid.

Respect the regulations on accident prevention and safety relating to the use of aggressive fluids.

Various dangerous situations.

To avoid injury take care:

- to prevent any unintentional power supply switch-on.
- to carry out the installation and maintenance work by qualified and skilled staff with the appropriate tools.
- to guarantee a set or controlled restarting of the process after a power supply interruption.
- to use the device only if in perfect working order and in compliance with the instructions provided in the user manual.
- to observe the general technical rules during the planning and use of the device.
- not to use this device in explosive atmospheres.
- not to use this device in an environment incompatible with the materials from which it is made.
- not to make any external modifications to the device. Do not paint or varnish any part of the device.
- not to use fluid that is incompatible with the materials of which the transmitter is made.
- not to subject the device to mechanical loads (e.g. by placing objects on top of it or by using it as a step).

NOTE

The device may be damaged by the fluid in contact with.

• Systematically check the chemical compatibility of the component materials of the transmitter and the fluids likely to come into contact with it (for example: alcohols, strong or concentrated acids, aldehydes, alkaline compounds, esters, aliphatic compounds, ketones, halogenated aromatics or hydrocarbons, oxidants and chlorinated agents).

NOTE

Elements / Components sensitive to electrostatic discharges

- This device contains electronic components sensitive to electrostatic discharges. They may be damaged if they are touched by an electrostatically charged person or object. In the worst case scenario, these components are instantly destroyed or go out of order as soon as they are activated.
- To minimise or even avoid all damage due to an electrostatic discharge, take all the precautions described in the EN 61340-5-1 and 5-2 norms.
- Also ensure that you do not touch any of the live electrical components.

4. GENERAL INFORMATION

4.1. Contact

To contact the manufacturer of the device use following address:

Bürkert SAS

Rue du Giessen

BP 21

F-67220 TRIEMBACH-AU-VAL

The addresses of our international branches can be found on the Internet at: www.burkert.com

4.2. Warranty conditions

The condition governing the legal warranty is the conforming use of the 8202 in observance of the operating conditions specified in this manual.

4.3. Informations on the internet

You can find the user manuals and technical data sheets regarding the type 8202 at: www.burkert.com

5. DESCRIPTION

5.1. Area of application

The 8202 transmitter is intended solely for the measurement of:

- the pH in clean liquids or liquids containing solids, sulphides or proteins.
- or the oxidation reduction potential in clean liquids or liquids containing solids, sulphides or proteins which may
 present low conductivity.

Thanks to two fully adjustable transistor outputs, the transmitter can be used to switch a solenoid valve, activate an alarm and, thanks to one or two 4-20-mA current outputs, establish one or two control loops.

5.2. General description

5.2.1. Design

The 8202 transmitter comprises:

- a module for measuring process values, comprising:
 - a pH or Redox sensor measuring a potential difference (PD) in mV
 - a Pt1000 temperature sensor built in the holder of the pH or Redox sensor, measuring a resistance.
- an acquisition / conversion module for the process values measured:
 - measured PD acquisition in mV
 - conversion of the measured PD into pH units (for a transmitter with pH sensor only)
 - acquisition of the resistance measured and conversion into temperature
- a display module with browse button used to read and/or configure the parameters of the device. The display module is available as an accessory.

One version of the 8202 transmitter with two transistor outputs and a 4-20 mA output operates on a 2-wire system and requires a power supply of 14-36 V DC. For such a version, electrical connection is done via an M12, 5-point, male fixed connector.

One version of the 8202 transmitter with two transistor outputs and two 4-20 mA outputs operates on a 3-wire system and requires a power supply of 12-36 V DC. For such a version, electrical connection is done via an M12, 5-point, male fixed connector and an M12, 5-point, female fixed connector.

5.2.2. pH or Redox probe

The transmitter 8202 can be fitted with a standard probe 120 mm long, measuring the pH or the oxidation reduction potential.

It is screwed into a holder with the built-in Pt1000 temperature probe.

- The pH probe is a glass membrane with variable sensitivity according to the pH. When the pH probe is
 immersed in a solution, a difference in potential is formed, due to the hydrogen ions (H+), between the glass
 membrane and the solution. This difference in potential, measured in relation to a reference electrode, is directly
 proportional to the pH value (59.16 mV per pH unit at 25°C).
- When a Redox probe is immersed in a solution, an exchange of electrons occurs based on the oxidizing and reducing effects of an electrolyte. The resulting voltage is the oxidation reduction potential.

Description

5.3. Description of the name plate

ی سے 8202 pH/ORP Transmitter	1. Type of transmitter and parameter measured
© Supply: 14-36VDC 40W Max 2 ∴ Output: 1x4-20mA 2xTrans 1A Max 3 ∴ Cell:pH -2/16 ORP +-2000mV 120mm PG13.5 4	2. Electrical power supply and power consumption
♥ Process: Temp 0/50°C limited by cell 5 ♥ PN 16 Bar limited by cell 6	3. Output specifications
11	4. Sensor specifications
$10 - \frac{C \epsilon}{S-N:1110}$ $3:0V \bullet \bullet 1:V + 7$	5. Temperature range of the fluid, without sensor
9 00559630 4:NPN/PNP2	6. Nominal pressure of the fluid, without sensor
8	7. Allocation of the pins on the M12 fixed connectors
	8. Construction code
	9. Order code
	10.Serial number
	11. Protection rating

Fig. 1 Name plate on the 8202 transmitter

5.4. Available versions

The following versions of the 8202 pH transmitter are available. These references include the electronic module and the sensor holder including the Pt1000.

The pH/Redox sensor, the display module and the fitting for connection to the process should be ordered separately. For the pH/Redox sensor and the display module, see the list of accessories in Chapter 11

Voltage supply	Outputs	Electrical connection	Sensor	Nut material	UL	Order code
14-36 V DC	2 transistors +	Male 5-pin M12	without	PVC	no	559630
	1 x 4-20 mA	fixed connector			yes	559634
				PVDF	no	559632
					yes	559636
12-36 V DC	2 transistors +	Male 5-pin M12	without	PVC	no	559631
	2 x 4-20 mA	4-20 mA fixed connector + female 5-pin			yes	559635
	M12 fixed		PVDF	no	559633	
		connector			yes	559637

6. TECHNICAL DATA

6.1. Conditions of use

Ambient temperature	-10 to +60 °C (without pH or Redox probe)
Air humidity	< 85 %, non condensated
Protection rating	IP65 and IP67 with connectors plugged in and tightened and electronic module cover fully screwed down

6.2. Conformity to standards and directives

The device conforms to the CE directives through the following standards:

- EMC: EN 61000-6-2, EN 61000-6-3
- Vibration: EN 60068-2-6
- Shock: EN 60068-2-27
- Pressure: complying with article 3 of §3 from 97/23/CE directive. Acc. to the 97/23/CE pressure directive, the device can only be used in the following cases (depending on max. pressure, pipe diameter and fluid):

Type of fluid	Conditions
Fluid group 1, §1.3.a	only DN25
Fluid group 2, § 1.3.a	$DN \le 32$ or $DN > 32$ and $PNxDN \le 1000$
Fluid group 1, § 1.3.b	$DN \le 25$ or $DN > 25$ and $PNxDN \le 2000$
Fluid group 2, § 1.3.b	DN ≤ 125

The UL devices conform to the following standards:

- UL 61010-1
- CAN/CSA-C22.2 nº 61010-1

Type 8202 ELEMENT Technical data

6.3. General technical data

6.3.1. Mechanical data

Fig. 3 Fluid temperature / pressure dependency of the 8202 (without the probe) with a PVC nut and a metal, PVC or PP S022 adapter

Fig. 4 Fluid temperature / pressure dependency of the 8202 (without the probe) with a PVDF nut and a metal, PVC or PP S022 adapter

Fig. 5 Materials used in the transmitter 8202 (without the probe)

Fig. 6 Dimensions of transmitter 8202 [mm]

14

6.3.2. General technical data

Pipe diameter	DN25 to DN110 (DN15 to DN20 under specific conditions)
Type of fitting	Adapter S022
Nut between the 8202 and the fitting	G 1 1/2" internal thread
Max. fluid temperature	The fluid temperature may be restricted by the probe used (see the related instruction manual), by the pressure of the fluid and the material of the adapter S022
 with a PVDF nut (see also Fig. 2and Fig. 4) 	▪ -20 to +130 °C
 with a PVC nut (see also Fig. 2 and Fig. 3) 	• 0 to +50 °C
Max. fluid pressure	PN16
	The fluid pressure may be restricted by the probe used (see the related instruction manual), by the temperature of the fluid and the material of the adapter S022 (see Fig. 2, Fig. 3 and Fig. 4)
pH measurement	
 Measurement range 	 -2 to 16 pH or -580 to +580 mV
Resolution	• 0.001 pH or 0.1 mV
Accuracy	• ±0.02 pH or 0.5 mV
 Recommended min. divergence of the pH range associated to the 4-20 mA signal 	 0.5 pH unit or 30 mV (eg: range 6,7 to 7,2 pH or -20 mV to +10 mV associated to the 4-20 mA output current)
Redox potential measurement	
Measurement range	 -2000 mV to +2000 mV
Resolution	• 1 mV
Accuracy	• ±3 mV
 Recommended min. divergence of the redox potential range associated to the 4-20 mA signal 	 50 mV (eg: range 1550 to 1600 mV associated to the 4-20 mA output current)
Temperature measurement	
Measurement range	• -40 °C to +130 °C
Resolution	• 0.1 °C
Accuracy	• ±1 °C
 Recommended min. divergence of the temperature range associated to the 4-20 mA signal 	 10 °C (eg: range 10 to 20 °C associated to the 4-20 mA output current)
Temperature probe	Pt1000 integrated in the sensor holder
Temperature compensation	 Automatic (integrated Pt1000)
	 Reference temperature = 25°C

15

6.3.3. Electrical data

Power supply	
Version with 3 outputs	 14-36 V DC, filtered and regulated
 Version with 4 outputs 	 12-36 V DC, filtered and regulated
Characteristics of the power source (not supplied) of the UL versions	 limited energy source (in accordance to UL 61010-1, paragraph 9.3)
	 or Class 2 source (in accordance to standards 1310/1585 and 60950-1)
Current consumption	
Version with 3 outputs	• 25 mA max. (at 14 V DC)
 Version with 4 outputs 	• 5 mA max. (at 12 V DC)
Current consumption, with loads on the transistors	1 A max.
Power consumption	40 W max.
Protection against polarity reversal	yes
Protection against voltage spikes	yes
Protection against short circuits	yes, transistor outputs
Transistor output	NPN (/sink) or PNP (/source) (depending on software setting), open collector, 700 mA max., 0.5 A max. per transistor if both transistor outputs are wired. NPN output: 0.2-36 V DC PNP output: supply voltage
Current output	4-20 mA, sink ("NPN sink") or source ("PNP source") (depending on software setting)
• Response time (10 % - 90 %)	 150 ms (default value)
 Version with 1 current output 	 max. loop impedance: 1100 Ω at 36 V DC, 610 Ω at 24 V DC, 180 Ω at 14 V DC
 Version with 2 current outputs 	 max. loop impedance: 1100 Ω at 36 V DC, 610 Ω at 24 V DC, 100 Ω at 12 V DC

6.3.4. Data of connectors and cables

Number of fixed connectors	Type of connectors
1 male M12 fixed connector	5-pin female M12 connector (not supplied).
	For the M12 connector with order code 917116, use a shielded cable:
	 diameter: 3 to 6.5 mm
	 wire cross section: max. 0.75 mm²

Technical data

Number of fixed connectors	Type of connectors
1 male M12 fixed connector and 1 female M12 fixed connector	5-pin female M12 connector (not supplied) and 5-pin male M12 connector (not supplied).
	For the M12 connector with order code 917116, use a shielded cable:
	 diameter: 3 to 6.5 mm
	 wire cross section: max. 0.75 mm²

6.3.5. pH/Redox probe

The pH or redox probe must satisfies the following specifications:

- combined probe;
- length: 120 mm;
- with PG 13.5 head;
- with an S7/S8 fixed connector;
- without temperature probe.

I) The specifications of the probe can be found in the manual of the probe used.

7. ASSEMBLY

7.1. Safety instructions

Risk of injury due to non-conforming assembly.

• The device must only be assembled by qualified and skilled staff with the appropriate tools.

Risk of injury due to unintentional switch on of power supply or uncontrolled restarting of the installation.

- Avoid unintentional activation of the installation.
- Guarantee a set or controlled restarting of the process subsequent to any intervention on the device.

7.2. Unscrewing the cover

NOTE

The tightness of the transmitter is not guaranteed when the cover is removed.

• Prevent the projection of liquid inside the housing.

The transmitter may be damaged if a metal component comes into contact with the electronics.

• Prevent contact of the electronics with a metal component (screwdriver, for example).

Fig. 7 Unscrewing the cover

7.3. Mounting the cover

Fig. 8 Fitting the cover

7.4. Mounting the display module

 → Unscrew the cover (see chapter 7.2). → Set the display module at an angle of ca. 20° in relation to the desired position.
\rightarrow The module can be mounted in 4 different positions, at 90° intervals.
\rightarrow Fully push in the module and turn to the right to lock it.

Fig. 9 Mounting the display module

7.5. Removing the display module

Fig. 10 *Removing the display module*

7.6. Mounting the probe into the holder (without fluid)

H compression washer	Following instructions are valid for a Bürkert probe.
seal	instructions. \rightarrow Remove the protective plugs
U	→ Check that dimension H on the probe is between 34 and 46mm. If necessary, adjust the height of the compression washer.
	 → At first use, apply water or soapy water on the "A" seal. → Insert the seal into the groove on the holder. → Insert the probe with its seal into the holder from above.
	\rightarrow Tighten the probe head using a suitable wrench.

Type 8202 ELEMENT Assembly

7.7. Mounting the electronic module to the sensor holder (without fluid)

 \rightarrow Check that the probe is mounted into the sensor holder (see chapter 7.6).

Fig. 12 Mounting the electronic module to the holder (without fluid)

 \rightarrow Mount the display module (see chap. 7.4) to calibrate the transmitter.

 \rightarrow Calibrate the transmitter (see chap. 9.12.4).

8. INSTALLATION AND COMMISSIONING

8.1. Safety instructions

Risk of injury due to high pressure in the installation.

• Stop the circulation of fluid, cut off the pressure and drain the pipe before loosening the process connections.

Risk of injury due to electrical voltage.

- Shut down and isolate the electrical power source before carrying out work on the system.
- Observe all applicable accident protection and safety regulations for electrical equipment.

Risk of injury due to high fluid temperatures.

- Use safety gloves to handle the device.
- Stop the circulation of fluid and drain the pipes before loosening the process connections.

Risk of injury due to the nature of the fluid.

· Respect the regulations on accident prevention and safety relating to the use of aggressive fluids.

Risk of injury due to non-conforming installation.

- The electrical and fluid installation can only be carried out by qualified and skilled staff with the appropriate tools.
- Install appropriate safety devices (correctly rated fuse and/or circuit-breaker).
- · Respect the assembly instructions for the fitting used.

Risk of injury due to unintentional switch on of power supply or uncontrolled restarting of the installation.

- Avoid unintentional activation of the installation.
- · Guarantee a set or controlled restarting of the process subsequent to any intervention on the device.

Danger due to nonconforming commissioning.

Nonconforming commissioning could lead to injuries and damage the device and its surroundings.

- Before commissioning, make sure that the staff in charge have read and fully understood the contents of the manual.
- In particular, observe the safety recommendations and intended use.
- The device/installation must only be commissioned by suitably trained staff.

NOTE

Risk of damage to the device due to the environment

• Protect this device against electromagnetic interference, ultraviolet rays and, when installed outdoors, the effects of the climatic conditions.

8.2. Installation onto the pipe

Risk of injury due to high pressure in the installation.

• Stop the circulation of fluid, cut off the pressure and drain the pipe before loosening the process connections.

Risk of injury due to the nature of the fluid.

· Respect the regulations on accident prevention and safety relating to the use of aggressive fluids.

If a pH/redox probe (with PG 13.5 head, 120 mm long and without temperature probe) from a supplier other than Bürkert is used, follow the relevant instructions on installation in the pipe.

Fig. 13 Mounting positions in the pipe

The probe must always be immersed in the fluid to prevent it drying out.

→ Once the transmitter has been calibrated, remove the electronic module from the sensor holder as shown Fig. 15.

Fig. 15 Remove the electronic module from the sensor holder

ightarrow Install the holder with its probe on the fitting as shown in Fig. 16.

Fig. 16 Installing the sensor holder with its probe on a fitting

 \rightarrow If the sensor holder is tight, insert the electronic module back onto the sensor holder as shown in Fig. 17.

Type 8202 ELEMENT

8.3. Electrical wiring

Risk of injury due to electrical voltage.

- Shut down and isolate the electrical power source before carrying out work on the system.
- Observe all applicable accident protection and safety regulations for electrical equipment.

Use a high quality electrical power supply (filtered and regulated).

Make sure the installation is equipotential. See chap. 8.3.2.

8.3.1. Assembling the male or female connector (accessories: see chap. 11)

25

5	\rightarrow Strip 20 mm of the cable.
8	\rightarrow Cut the central wire (earth) so that its length is equal to 11.5 mm.
	\rightarrow Expose 5.5 mm of the wires on the stripped cable.
ST TO	→ Insert each wire into the appropriate pin on the terminal block [5] (see chap. 8.3.3 and 8.3.4).
	\rightarrow Tighten the terminal block [5] wired to the body [4].
ed h	\rightarrow Tighten the connector nut [1].

Fig. 18 M12 multi-pin connector (not provided)

8.3.2. Equipotentiality of the installation

To ensure the equipotentiality of the installation (power supply - device - medium):

- → Connect together the various earth spots in the installation to eliminate the potential differences that may occur between different earthes.
- \rightarrow Observe faultless grounding of the shield of the power supply cable.
- → Special attention has to be paid if the device is installed on plastic pipes because there is no direct earthing possible. Proper earthing is performed by earthing together the metallic devices such as pumps or valves, that are as close as possible to the device.

Fig. 19 Equipotentiality skeleton diagram with pipes in metal

Type 8202 ELEMENT

Fig. 1 Equipotentiality skeleton diagram with pipes in plastic

8.3.3. Wiring a version with a single M12 fixed connector

Fig. 20 Pin assignment of the fixed connector on a version with a single M12 fixed connector

Pin for the female M12 connector available as an accessory (order code 438680)	Colour of the wire
1	brown
2	white
3	blue
4	black
5	grey

Fig. 21 NPN wiring of both transistor outputs (software setting "NPN/sink", see chap. 9.11.8), of a version with 1 M12 fixed connector

27

Fig. 22 PNP wiring of both transistor outputs (software setting "PNP/source", see chap. 9.11.8), of a version with 1 M12 fixed connector

Fig. 23 Possible wirings of the current output (whatever the software setting, "NPN/sink" or "PNP/source", see chap. 9.11.8), of a version with 1 M12 fixed connector

Fig. 25 PNP wiring of both transistor outputs and wiring the current output in sourcing mode (software setting " PNP/ source", see chap. 9.11.8), of a version with 1 M12 fixed connector

8.3.4. Wiring a version with 2 M12 fixed connectors

Male fixed connector

Fig. 26 Pin assignment of the male and female M12 fixed connectors

Connect the power supply for the transmitter to the male fixed connector; the supply is then transferred internally to pins 1 and 3 of the female fixed connector in order to ease wiring of the load to the female fixed connector.

Pin of the M12 female cable available as an accessory (order code 438680)	Colour of the wire
1	brown
2	white
3	blue
4	black
5	grey

Pin of the M12 male cable available as an accessory (order code 559177)	Colour of the wire
1	brown
2	white
3	blue
4	black
5	grey

Fig. 27 NPN wiring of both transistor outputs of a version with 2 fixed connectors (software setting "NPN/sink", see chap. 9.11.8)

Fig. 28 *PNP wiring of both transistor outputs of a version with 2 fixed connectors (software setting "PNP/source", see chap.* 9.11.8)

Fig. 29 Wiring of both current outputs in sinking mode, on a version with 2 fixed connectors (software setting "NPN/sink", see chap. 9.11.8)

Fig. 30 Wiring of both current outputs in sourcing mode, on a version with 2 fixed connectors (software setting "PNP/ source", see chap. 9.11.8)

Type 8202 ELEMENT

Installation and commissioning

Fig. 32 PNP wiring of both transistor outputs and wiring of both current outputs in sourcing mode, on a version with 2 fixed connectors (software setting "PNP/source", see chap. 9.11.8)

31

9. OPERATING AND FUNCTIONS

9.1. Safety instructions

Risk of injury due to nonconforming adjustment.

Nonconforming adjustment could lead to injuries and damage the device and its surroundings.

- The operators in charge of adjustment must have read and understood the contents of this manual.
- In particular, observe the safety recommendations and intended use.
- The device/installation must only be adjusted by suitably trained staff.

9.2. Functions

The device has 2 operating levels:

Read level

This level is used:

- to read the measured values of 2 process values selected in the Parameters menu,
- to read both the lowest and highest values of the chosen process value, that have been measured by the device since the latest reset (this feature is not active by default),
- to reset both the lowest and highest values of the chosen process value, if the feature has been activated,
- to read the current values emitted on the 4-20 mA outputs.

Settings level

This level comprises 5 menus:

Menu title	Relevant icon
"Param": see chap. 9.11	The is a second
"Calib": see chap. 9.12	
"Diagnostic": see chap. 9.13	
"Test": see chap. 9.14	
"Info": see chap. 9.15	Ĩ

9.3. Using the navigation key

Fig. 33 Using the navigation button

You want to	Press
browse in Read level	(III)
	 next screen: ¥
	• previous screen:
 access the Settings level 	$\overline{\mathbb{Q}}$
 display the Param menu 	b for at least 2 sec., from any screen of the Read level
browse in the menus of the Settings level	• novt monu:
	 previous menu:
access the menu displayed	
browse in the menu functions	• next function:
	• previous function:
select the highlighted function	

You want to	Press
browse in the dynamic functions bar (MEAS, BACK, ABORT, OK, YES, NO)	 next function: (=) →
	• previous function: <
confirm the highlighted dynamic function	J.
modify a numerical value	
 increment the figure selected 	
- decrement the figure selected	_ (T),
- select the previous figure	_ ~ ()
- select the next figure	_ () >
- allocate the "+" or "-" sign to the numerical value	- < to the extreme left of the numerical value
	then () until the desired sign is displayed
- move the decimal point	- (i) to the extreme right of the numerical value then (i) until the decimal point is in the desired place

9.4. Using the dynamic functions

You want to	Choose
go back to the READ level, without validating the modifica-	dynamic function "MEAS"
tions made	
validate the input	dynamic function "OK"
go back to the parent menu	dynamic function "BACK"
abort the current operation and go back to the parent menu	dynamic function "ABORT"
answer the question asked	dynamic function "YES" or "NO"

9.5. Example for the input of a numerical value

9.6. Example for browsing in a menu

9.7. Description of the display

Fig. 34 Position of the icons and description of the LEDs

The LEDs of the display module are duplicated on the electronic board that is located under the display module: these LEDs become visible when the transmitter is not equipped with the display module.

lcon	Possible cause and alternatives
9	Probe in good condition and fluid temperature within the set range.
	If the monitoring of the impedance on the electrodes and/or the fluid temperature has been activated, the alternative icons in this position are:
	• $^{\textcircled{12}}$, associated with $^{\textcircled{12}}$: see chap. 9.13.2, 9.13.3, 9.15.1 and 10.5
	• 😕, associated with 🕮: see chap. 9.13.2, 9.13.3, 9.15.1 and 10.5
7	The device is measuring.
	The alternative icons in this position are:
	 flashing: HOLD mode activated (see chap. 9.12.1)
	• T: running check that the outputs are working and behaving correctly (see chap. 9.14.2 and 9.14.3)
쪳	"maintenance" message; see chap. 9.12.4, 9.15.1 and 10.5
	"warning" message; see chap. 9.11.10, 9.12.4 9.13.2, 9.13.3, 9.15.1 and 10.5
ERR	"error" message; see chap. 9.13.2, 9.13.3, 9.15.1 and 10.5

9.7.2. When switching on the device

When the device is switched on or the display module mounted on the electronic module, the display indicates the software version of the display.

The display then shows the first screen in READ level:

Fig. 35 Display indications when powering on the device

Read level 9.8.

9.9. Accessing the Settings level

9.10. Menu structure of the Settings level

See chap. 9.9 to access the Settings level.

40

Operating and functions

9.11. **Parameters Menu**

9.11.1. Transferring data from one device to another

See chap. 9.9 to access the Parameters menu.

- The function is only possible with a display module with software version V2 and a transmitter with a V2 software version of the acquisition / conversion module for the measured process values.
- On the transmitter, check the sofware version of the acquisition / conversion module for the measured process values in the menu Info -> Software -> Versions -> Main.
- The software version of the display module is displayed when the display module is energized.

• The "DOWNLOAD" function is only available if an UPLOAD has been successfully performed.

• Never interrupt an upload or download procedure else the transmitter may be damaged.

Param	System	Up/Download Download Downl. Yes/No
This is when the device is be- ing parame-	This is when the device is be- ticy parame- tered	Upload Upload Yes/No

The following data can be transferred from one device to another device of the same type:

- user settings in the menu PARAM (except the date, the time, the contrast level and the brightness of the display),
- user settings in the menu DIAGNOSTIC,
- the access codes to the menus.

DOWNLOAD: transfer the data previously uploaded into the display module using the UPLOAD function.

The parameters transferred are used by the device as soon as the message "Download OK" is displayed. *UPLOAD:* upload data from the transmitter to the display module.

9.11.2. Setting the date and time

See chap. 9.9 to access the Parameters menu.

DATE: set the date (input format: year/month/day in the form YYYY/MM/DD)

TIME: set the time (input format: hours:minutes^{seconds})

9.11.3. Modifying the PARAM menu access code

See chap. 9.9 to access the Parameters menu.

Default access code to the Parameters menu: 0000.

9.11.4. Restoring the default parameters of the Read level and the outputs

See chap. 109 to access the Parameters menu.

Param		System	Factory Set]←	Execute	 Reset Yes/No
This who ing tere	is is the first second se	Tota di abara file decisio is be- ing parame- tered				Choose "Yes" to restore the default parameters and "No" to keep the current parameters.

9.11.5. Setting the data displayed in the READ level

See chap. 9.9 to access the Parameters menu.

Risk of injury due to wrong adjustment.

 Before setting the parameters for the display, choose the type of probe (see chap. 9.11.11) mounted on the transmitter.

PVAR: choose the process value to be displayed in the line selected. The possible choices depend on the selected sensor type, whether pH or ORP.

UNIT: choose the unit for the process value displayed.

FILTER: choose the filter level for the measurement values displayed on the line selected. Three filter levels are proposed: "slow", "fast" or "none". Fig. 36 shows the 3 filter curves.

Fig. 36 Filter curves

9.11.6. Displaying the lowest and highest values measured

See chap. 9.9 to access the Parameters menu.

STATUS: choose to display (choice "Enabled") or not display (choice "Disabled") the highest and lowest measured values (of the process value chosen in PVAR hereafter) since the latest reset.

PVAR: choose the process value which highest and lowest measured values are displayed in the Read level.

UNIT: choose the preferred unit in which the lowest and highest measured values are displayed.

9.11.7. Setting the display contrast and brightness

See chap. 9.11.1 to access the Parameters menu.

On a version with one M12 fixed connector, do not increase the default setting of the display brightness (parameter "Backlight").

Set each percentage using () and ()

CONTRAST: Choose the display contrast level (as a %).

BACKLIGHT: Choose the brightness of the display (as a %).

These settings only affect the display module. They are not factored in during a device data UPLOAD (see chap. 9.11.1).

45

9.11.8. Choosing the output wiring mode

See chap. 9.9 to access the Parameters menu.

The setting has no effect on a version with one fixed connector, if the sole current output is wired. See Fig. 23.

The wiring mode is the same for all outputs.

If you choose "sink NPN", the current outputs must be wired in sinking mode and the transistor outputs in NPN mode.8.3

If you choose "source PNP", the current outputs must be wired in sourcing mode and the transistor outputs in PNP mode.

See the wiring for the outputs in chap. 8.3.

9.11.9. Setting the parameters of the current outputs

See chap. 9.9 to access the Parameters menu.

Risk of injury due to wrong adjustment.

 Before setting the parameters for the outputs, choose the type of probe (see chap. 9.11.11) mounted on the transmitter.

The 2nd current output "AC2" is only available on a version with 2 fixed connectors.

PVAR: choose a process value associated with current output 1 or current output 2 respectively. The possible choices depend on the selected sensor type, whether pH or ORP.

4mA: choose the value of the process value (previously selected), associated with a current of 4 mA, for each current output.

20mA: choose the value of the process value (previously selected), associated with a current of 20 mA, for each current output.

Functions "4mA" and "20mA" are used to define the measurement range for the process value associated with the current on the 4-20 mA output.

 P_1 and P_2 are the values associated with a current of 4 mA or 20 mA respectively:

Fig. 37 4-20 mA current depending on the process value selected

FILTER: choose the level of damping for the fluctuations of the current value for each current output. Three damping levels are proposed: "slow", "fast" or "none". The damping for the current outputs is similar to the damping of the display. See Fig. 36.

DIAGNOSMODE: choose to emit a current of 22 mA on the current output selected when an "error" event related to diagnostics (see chap. 9.13.2 and 9.13.3) is generated by the transmitter or allow the current output to operate normally (choose "none").

See also "If you encounter problems" in chap. 10.5.

9.11.10. Setting the parameters of the transistor outputs

See chap. 9.9 to access the Parameters menu.

🔨 WARNING

Risk of injury due to wrong adjustment.

 Before setting the parameters for the outputs, choose the type of probe (see chap. 9.11.11) mounted on the transmitter.

PVAR: choose a process value associated with transistor output 1 or transistor output 2 respectively or associate the generation of a "warning" event (see chap. 9.12.4, 9.13.2, 9.13.3 and 9.15.1) to transistor output 1 or transistor output 2 respectively. The possible choices depend on the selected sensor type, whether pH or ORP.

If the selected transistor output is linked to the "warning" event, the transistor switches as soon as such an event is generated by the transmitter. See also "If you encounter problems", at chap. 10.5

MODE: choose the operating mode for transistor output 1 or transistor output 2. See Fig. 38 and Fig. 39.

LOW: enter the low switching threshold value for transistor output 1 or transistor output 2. See Fig. 38 and Fig. 39.

HIGH: enter the high switching threshold value for transistor output 1 or transistor output 2. See Fig. 38 and Fig. 39.

CONTACT: choose the type of off-position (normally open, NO, or normally closed, NC) for transistor output 1 or transistor output 2. See Fig. 38 and Fig. 39.

DELAY: choose the value of the time delay prior to switching for each transistor output.

Switching only occurs if one of the thresholds, high or low (functions "High" or "Low"), is exceeded for a duration longer than this time delay. The time delay before switching is applicable to both output thresholds.

Hysteresis operating

The change of status is done when a threshold is detected (increasing measured value: threshold high (function High) to be detected; decreasing measured value: threshold low (function Low) to be detected).

Fig. 38 Hysteresis operating

NO = Normally open ; NC = Normally closed

Window operating

The change of status occurs whenever one of the thresholds is detected.

Fig. 39 Window operating

¹⁾ NO = Normally open ; NC = Normally closed

9.11.11.Setting the sensor parameters

The monitoring (see chap. 9.13.2) of the redox ("ORP") sensor is impossible if the measurement mode is set to "asymmetrical".

See chap. 9.9 to access the Parameters menu.

Operating and functions

TYPE: choose the type of sensor used, pH or Redox ("ORP" choice)

MODE: choose the type of measurement, symmetrical (differential) or asymmetrical.

Symmetrical measurement

The symmetrical measurement is a differential measurement: in this type of measurement, the stainless steel ring on the sensor holder is used as a reference.

Fig. 40 Schematic diagram of symmetrical measurement

Asymmetrical measurement

In the asymmetrical measurement, the measurement is done in relation to the reference electrode.

Fig. 41 Schematic diagram of asymmetrical measurement

MAINS FCY: choose the frequency of your mains electricity, 50 or 60 Hz. This frequency is filtered by the transmitter to ensure stable measurements.

9.12. Calibration menu

9.12.1. Activating/deactivating the Hold function

See chap. 9.9 to access the Calibration menu.

The Hold mode is automatically deactivated when the transmitter restarts after a power interruption, if the Hold mode was activated at the moment of the power cut off.

The Hold mode is used to carry out maintenance work without interrupting the process.

To activate the HOLD mode:

 \rightarrow enter the "HOLD" function;

- \rightarrow choose "enabled";
- \rightarrow validate by "OK".

In practice, when the device is in Hold mode:

icon is displayed in place of the *icon*; the

- the current emitted on each 4-20 mA output is fixed at the value of the last measurement of the process value associated with each output;
- each transistor output is fixed at the status acquired at the moment the Hold function is activated;
- the device is in Hold mode until the HOLD function is deactivated.
- To deactivate the HOLD mode:
- \rightarrow enter the "HOLD" function;
- \rightarrow choose "disabled";
- \rightarrow validate by "OK".

9.12.2. Modifying the Calibration menu access code

See chap. 9.9 to access the Calibration menu.

Default access code to the Calibration menu: 0000.

9.12.3. Adjusting the current outputs

WARNING

Risk of injury due to non-conforming adjustment. • Make sure the Hold mode is disabled (see chap. 9.12.1).

See chap. 9.9 to access the Calibration menu.

4mA: adjust the current output 1 or current output 2 for 4 mA.

When the "4mA" function is selected, the transmitter generates a current of 4 mA: measure the current emitted by the 4-20 mA output using a multimeter and enter the value given by the multimeter in the function "AC1.4mA" or "AC2.4mA".

20mA: adjust the current output 1 or current output 2 for 20 mA.

When the "20mA" function is selected, the transmitter generates a current of 20 mA: measure the current emitted by the 4-20 mA output using a multimeter and enter the value given by the multimeter in the function "AC1.20mA" or "AC2.20mA".

9.12.4. Calibrating the sensor

MAN 1000111231 EN Version: D Status: RL (released | freigegeben) printed: 19.01.2015

Risk of injury due to electrical voltage

• Observe all applicable accident protection and safety guidelines for electrical equipment.

Risk of injury due to the nature of the fluid.

• Respect the regulations on accident prevention and safety relating to the use of aggressive fluids.

See chap. 9.9 to access the Calibration menu.

Choose the type of probe (see chap. 9.11.11) the transmitter is fitted with before calibrating the sensor.

CALIB TEMPERAT: choose the type of temperature compensation for the calibration process: either the temperature measured (select "Auto") or a fixed value (select "constant" then enter reference temperature).

 \rightarrow Calibrate the sensor using one of the following methods:

- CALIBRATION: calibrate the pH sensor in 1 or 2 points or the Redox sensor in 1 point. See details on following pages. A calibration process updates the last calibration date ("Last cal. date" function of the CALIB INTERVAL sub-menu hereafter).
- *PROBE CONSTANTS*: enter the offset and/or span values indicated on the pH / Redox sensor certificate, if supplied. This input replaces a calibration made by the "Calibration" function above but does not update the last calibration date ("Last cal. date" function of the CALIB INTERVAL sub-menu hereafter).

CALIB INTERVAL: read the date of the last calibration (function "Last cal. date") and set the periodicity of calibrations, in days (function "Interval"): the transmitter generates a "maintenance" event by displaying the ^(TT) icon and a "warning" event, each time a calibration is due. Set function "Interval" to "0000 days" to ignore the function.

• See also "If you encounter problems" at chap. 10.5

Calibrate the pH / Redox sensor ("Calibration" function in the "Probe" menu)

- The pH sensor can be calibrated according to a 1-point or a 2-point procedure.
- The Redox sensor can be calibrated according to a 1-point procedure.

- In order not to interrupt the process, activate the HOLD function (see chap. 9.12.1).
- Before each calibration, correctly clean the electrode with a suitable product.
- In a 2-point calibration, the buffer solutions used must be at the same temperature.
- Set the periodicity of calibrations in the "Interval" function in the sub-menu "Calib interval" (see previous page): each time a calibration is due, the transmitter generates a "maintenance" event and a "warning" event.

1-point calibration

The 1-point calibration procedure is used for quick calibration by adjusting the offset of the measurement graph with a buffer respectively a calibration solution with a known pH (to calibrate a pH sensor: see page 54) respectively a known oxidation reduction potential (to calibrate a Redox sensor: see page 53).

2-point calibration

The 2-point calibration procedure for a pH sensor is used for the precise calibration of the offset and the gradient ("span") of the sensor measurement graph.

This operation requires 2 buffer solutions: in general a first solution with a pH of 7 and a second solution with a pH very close to that of the process value to be measured. See page 54.

At the end of calibration of the pH sensor, two types of messages may be displayed:

Message	"span" value	"offset" value	Possible cause	Recommended action
"Warning:Span/ offset out of range"	50 mV/pH < span < 53 mV/pH or	-60 mV < Offset < -35 mV or	Error in the buffer solution.	→ Use the correct buffer solution.
	63 mV/pH < span < 65 mV/pH	35 mV < Offset < 60 mV	The probe has reached halfway in its lifespan	→ The values can be saved or not.
"Error:Span/ offset out of range"	< 50 mV/pH or > 65 mV/pH	< -60 mV or > 60 mV	The probe must be replaced.	 → Replace the probe. → Calibrate the transmitter again when the new probe is in place

 Table 1:
 Warning and error messages during pH sensor calibration

Detailed procedure for the 1-point calibration of the oxidation reduction potential sensor

At the end of calibration of the oxidation reduction potential probe, two types of message may be displayed:

"No".

Message	"offset" value	Possible cause	Recommended action
warning: "Warning:Span/	-60 mV < Offset < -35 mV	Error in the buffer solution.	→ Use the correct buffer solution.
offset out of range"	35 mV < Offset < 60 mV	The probe has reached halfway in its lifespan	→ The values can be saved or not.
error: "Error:Span/ offset out of range"	< -60 mV or > 60 mV	The probe must be replaced.	 → Replace the probe. → Calibrate the transmitter again when the new probe is in place

Table 2: Warning and error messages when calibrating an oxidation reduction potential probe

Detailed procedure for the 1- or 2-point calibration of the pH probe

9.12.5. Entering an offset for the temperature measurement

See chap. 9.9 to access the Calibration menu.

The temperature transmitted by the Pt1000 probe may be corrected. This correction value is the temperature offset.

9.13. Diagnostic menu

9.13.1. Modifying the Diagnostic menu access code

See chap. 9.9 to access the Diagnostic menu.

Default access code to the Diagnostic menu: 0000.

9.13.2. Monitoring the condition of the probe

See chap. 9.9 to access the Diagnostic menu.

Too low or too high an impedance value of one or the other electrode of the measuring probe may indicate that the probe is broken or used.

Measurement	Monitoring of the impedance								
mode (see	рН р	robe	ORP probe						
chap. 9.11.11)	Glass electrode	Reference electrode	Glass electrode	Reference electrode					
Symmetrical	Possible	Possible	Impossible	Possible					
Asymmetrical	Possible	Impossible	Impossible	Impossible					

 Table 3:
 Possible combinations of electrode monitoring depending on the measurement mode, symmetrical or asymmetrical

To be warned when an electrode has too low or too high an impedance:

 \rightarrow activate monitoring on this electrode in the function "activate", then

- \rightarrow set an impedance range (in M Ω for the pH electrode and in k Ω for the reference electrode of the pH/ORP probe) outside of which the transmitter generates a "warning" event and displays the ⁽²⁾ and \triangle icons.
- → set an impedance range (in M Ω for the pH electrode and in k Ω for the reference electrode of the pH/ORP probe) outside of which the transmitter generates an "error" event and displays the ^(R) and ^(R) icons.

55

When the transmitter generates a "warning" or "error" event:

- ightarrow go into the "Info" menu to read the cause of the event generation.
- → and/or go into the "Sensor" function of the Diagnostic menu to read the impedance values for each electrode in order to identify the cause of an out of range impedance.
- ightarrow if necessary, clean then recalibrate the measurement probe or replace it.
 - The "warning" event may also be associated with one or other or both transistor outputs. See chap. 9.11.10, function "Output.TR1" or "Output.TR2".

• The "error" event may also be associated with one or other or both current outputs. See chap. 9.11.9, function "Output.AC1" or "Output.AC2".

• See also "If you encounter problems" at chap. 10.5

ACTIVATE: choose whether or not to activate monitoring of the impedance of the selected electrode.

IMPEDANCE: read the impedance measured of the selected electrode.

WARN HI: enter the impedance value above which a "warning" event is generated.

WARN LO: enter the impedance value below which a "warning" event is generated.

ERR HI: enter the impedance value above which an "error" event is generated.

ERR LO: enter the impedance value below which an "error" event is generated.

9.13.3. Monitoring the fluid temperature

See chap. 9.9 to access the Diagnostic menu.

A malfunction in your process or the built-in temperature probe may be indicated either by too low or too high a fluid temperature or by an incorrect temperature measurement.

The function allows for monitoring the fluid temperature and configure the behaviour of the device if the parametered ranges are exceeded.

To be warned when the fluid temperature is too low or too high:

- \rightarrow activate monitoring of the fluid temperature in the function "activate", then
- \rightarrow set a temperature range (in °C) outside of which the transmitter generates a "warning" event and displays the ⁽²⁾ and \triangle icons.
- → set a temperature range (in °C) outside of which the transmitter generates an "error" event and displays the 🔄 and 🕅 icons.

When the transmitter generates a "warning" or "error" event:

 \rightarrow go into the "Info" menu to read the cause of the event generation.

 \rightarrow and/or go into the "Sensor" function of the Diagnostic menu to read the measured temperature value.

- \rightarrow then check whether the built-in Pt1000 is working correctly by measuring a fluid with a known temperature. If the Pt1000 is faulty, return the device to Bürkert.
- \rightarrow if the Pt1000 is not the cause of the problem, check the process.
 - The "warning" event may also be associated with one or other or both transistor outputs. See chap. 9.11.10, function "Output.TR1" or "Output.TR2".
- 1) The "error" event may also be associated with one or other or both current outputs. See chap. 9.11.9,
 - See also "If you encounter problems" at chap. 10.5

function "Output.AC1" or "Output.AC2".

ACTIVATE: choose whether or not to activate monitoring of the fluid temperature.

TEMPERATURE: read the fluid temperature measured in real time through the built-in Pt1000.

WARN HI: enter the fluid temperature value above which a "warning" event is generated.

WARN LO: enter the fluid temperature value below which a "warning" event is generated.

ERR HI: enter the fluid temperature value above which an "error" event is generated.

ERR LO: enter the fluid temperature value below which an "error" event is generated.

9.14. Test menu

9.14.1. Modifying the Test menu access code

See chap. 9.9 to access the Test menu.

Default access code for the Test menu: 0000.

9.14.2. Checking the outputs functions

See chap. 9.9 to access the Test menu.

The \square icon is displayed in place of the \square icon as soon as the check for the correct working of an output has started. During the check the related output does not react according to the measured physical value.

AC1: check that current output 1 is working correctly by entering a current value and then selecting "OK".

AC2: check that current output 2 is working correctly by entering a current value and then selecting "OK".

TR1: check that transistor output 1 is working correctly by selecting the status of the transistor ("ON" or "OFF") then "OK".

TR2: check that transistor output 2 is working correctly by selecting the status of the transistor ("ON" or "OFF") then "OK".

9.14.3. Checking the outputs behaviour

See chap. 9.9 to access the Test menu.

The \square icon is displayed in place of the \square icon as soon as the check for the correct working of an output has started. During the check the related output does not react according to the measured physical value.

The feature allows for simulating the measurement of the process value to check if the outputs are correctly configured.

PVAR: choose the process value to be tested.

VALUE: enter a process value selected from the "PVAR" function above to check output behaviour.

9.15. Information menu

9.15.1. Reading the cause of events linked to icons

See chap. 9.9 to access the Info menu.

The function allows for reading a short description of the reason why the following icons are displayed by the transmitter:

- ERROR: ®
- WARNING: 🛆
- MAINTENANCE: 🕅
- SMILEY: 🙂 or 😌

See also "If you encounter problems" at chap. 10.5

9.15.2. Reading the software versions

See chap. 9.9 to access the Info menu.

The function allows for reading the software version ("Main") of the acquisition / conversion board for the process values and of the sensor board ("Sensor").

10. MAINTENANCE AND TROUBLESHOOTING

10.1. Safety instructions

Risk of injury due to high pressure in the installation.

• Stop the circulation of fluid, cut off the pressure and drain the pipe before loosening the process connections.

Risk of injury due to electrical voltage.

- Shut down and isolate the electrical power source before carrying out work on the system.
- Observe all applicable accident protection and safety regulations for electrical equipment.

Risk of injury due to high fluid temperatures.

- Use safety gloves to handle the device.
- Stop the circulation of fluid and drain the pipes before loosening the process connections.

Risk of injury due to the nature of the fluid.

· Respect the regulations on accident prevention and safety relating to the use of aggressive fluids.

Risk of injury due to non-conforming maintenance.

- Maintenance must only be carried out by qualified and skilled staff with the appropriate tools.
- Ensure that the restart of the installation is controlled after any interventions.

10.2. Cleaning of the transmitter

The device can be cleaned with a cloth dampened with water or a detergent compatible with the materials the device is made of.

Please feel free to contact your Bürkert supplier for any additional information..

10.2.1. Cleaning of the pH/ORP probe

Refer to the instruction manual delivered with the probe used.

10.3. Replacing the probe

Risk of injury due to high pressure in the installation.

• Stop the circulation of fluid, cut off the pressure and drain the pipe before loosening the process connections.

Risk of injury due to electrical voltage.

- Shut down and isolate the electrical power source before carrying out work on the system.
- Observe all applicable accident protection and safety regulations for electrical equipment.

Risk of injury due to high fluid temperatures.

- Use safety gloves to handle the device.
- Stop the circulation of fluid and drain the pipes before loosening the process connections.

Risk of injury due to the nature of the fluid.

• Respect the regulations on accident prevention and safety relating to the use of aggressive fluids.

NOTE

The transmitter loses the IP67 and IP65 protection ratings when dismounted.

- Protect the inside of the dismounted transmitter.
- \rightarrow Remove the probe as shown below.

Fig. 42 Removing the probe from the holder

 \rightarrow Fit a new probe into the holder as shown in chap. 7.6

 \rightarrow Charge the pipe to check that the mounting is tight.

 \rightarrow Refit the electronic module to the holder as shown in chap. 7.7

10.4. Replace the seal of the sensor holder

Risk of injury due to electrical voltage.

- Shut down and isolate the electrical power source before carrying out work on the system.
- Observe all applicable accident protection and safety regulations for electrical equipment.

The seal can be replaced without dismounting the holder from the pipe.

ightarrow Unscrew the nut between the sensor holder and the electronic module.

Type 8202 ELEMENT

Maintenance and troubleshooting

→ Remove the electronic module by pulling it straight out. There may be a slight resi- stance due to the seal.
\rightarrow Remove the used seal "A" from the holder. \rightarrow Place the new seal "A" into the groove of the holder.

Fig. 43 *Replacing the seal of the sensor holder*

 \rightarrow Charge the pipe to check that the mounting is tight.

 \rightarrow Refit the electronic module to the holder as shown in Fig. 17of chap. 8.2.

10.5. Troubleshooting

Red LED	Current output	Transistor output	lcon	Message dis- played in the Info menu	Possible cause	Recommended action
ON	22 mA	depending on thresholds	err + [©]	"E:Sat. ORP Stage" "E:Sat. pH Stage"	The pH or redox value is not being correctly measured due to the saturation of the input stage of the measuring board.	 → Check the correct wiring of the earth points. → Check the equipo- tential surfaces of the installation.
ON	22 mA	depending on thresholds	err + *	"Sensor not found"	The connection to the measurement module is interrupted.	 → Switch the power supply off then on again. → If the error persists, return the device to Bürkert.
ON	22 mA	depending on thresholds	€RR + [©]	"S EE Fact Read" "S EE Fact Write"	Factory data is lost. The process continues but the accuracy of the device is modified.	 → Switch the power supply off then on again. → If the error persists, return the device to Bürkert.

Red LED	Current output	Transistor output	lcon	Message dis- played in the Info menu	Possible cause	Recommended action
ON	22 mA	depending on thresholds	€R9 + ☺	"S EE User Read" "S EE User Write"	User data for the sensor is lost (eg. type of sensor).	 → Switch the power supply off then on again. → Check the sensor param- eters in all the "Sensor" menus then save them again. → If the error persists, return the device to Bürkert.
ON	22 mA	depending on thresholds	ERR + 🙂	"S PT Missing"	The connection to the Pt1000 probe is lost.	 → Check that the nut between the sensor holder and the elec- tronic module is correctly screwed. → If the error persists, return the device to Bürkert.
ON	22 mA	depending on thresholds	ERR + *	"S PT Regulation"	The fluid temperature is not being correctly measured. The process is stopped.	 → Switch the power supply off then on again. → If the error persists, return the device to Bürkert.
ON	22 mA	depending on thresholds	err + ©	"S RTC Clock"	The clock is faulty. The process continues.	→ Return the device to Bürkert if the clock is essential.
ON	22 mA	depending on thresholds	+ ©	"TR COM Measure"	The acquisition/con- version module of the process values is faulty. The process is stopped.	 → Switch the power supply off then on again. → If the error persists, return the device to Bürkert.

Type 8202 ELEMENT

Maintenance and troubleshooting

Red LED	Current output	Transistor output	lcon	Message dis- played in the Info menu	Possible cause	Recommended action
ON	22 mA	depending on thresholds	€R\$ + [⊕]	"TR EE Fact Read" "TR EE User Read"	Parameter reading error.	 → Switch the power supply off then on again. → If the error persists, set the device back to the default settings (chap. 9.11.4). → If the error persists, return the device to Bürkert.
ON	22 mA	depending on thresholds	€R} + ☺	"TR EE UserWrite"	Parameter saving error.	 → Switch the power supply off then on again. → Save the settings again. → If the error persists, set the device back to the default settings (chap. 9.11.4). → If the error persists, return the device to Bürkert.
OFF	4-20 mA	depending on thresholds	▲ + ③	"S Buff Diff ORP" "S Buff Diff pH" "S Buff pH ORP"	The pH or redox value is not being correctly measured due to the saturation of the input stage of the measuring board (common mode).	 → Check the wiring. → Check the equipotential surfaces of the installation.
OFF	4-20 mA	depending on thresholds	▲ + ©	"S RTC Reinit"	The date and time are lost because the device has not been powered up for at least 5 days. The message is only displayed at the first powering up	 → Set the date and time (see chap. 9.11.2). → Energize the transmitter for at least 4 hours so that the date and time are battery fed for 5 days.

Red LED	Current output	Transistor output	lcon	Message dis- played in the Info menu	Possible cause	Recommended action
ON	22 mA ¹⁾	depending on thresholds	+	"E:Impedance Ref"	The impedance of the reference electrode is out of range. The message is dis- played if the monitoring of the impedance of the reference electrode has been activated, depending on the set thresholds ERR LO and ERR HI (see chap. 9.13.2).	 → Go into the "Sensor" function of the Diag- nostic menu to read the impedance value of the reference elec- trode (chap. 9.13.2). → If necessary, clean then recalibrate the measurement sensor or replace it.
ON	22 mA ¹⁾	depending on thresholds	₽₽ + ⁽²⁾	"E:Imped.Glass	The impedance of the pH electrode is out of range. The message is dis- played if the monitoring of the impedance of the pH electrode has been activated, depending on the set thresholds ERR LO and ERR HI (see chap. 9.13.2).	 → Go into the "Sensor" function of the Diag- nostic menu to read the impedance value of the pH electrode (chap. 9.13.2). → If necessary, clean then recalibrate the measurement sensor or replace it.
ON	22 mA ¹⁾	depending on thresholds	€R9 + [©]	"E:Temperature"	The fluid temperature is out of range. The message is dis- played if the moni- toring of the fluid temperature has been activated, depending on the set thresholds ERR LO and ERR HI (see chap. 9.13.3).	 → Go into the "Sensor" function of the Diagnostic menu to read the measured fluid temperature (chap. 9.13.3). → If necessary, check whether the built-in Pt1000 is working correctly by meas- uring a fluid with a known temperature. → If the Pt1000 is faulty, return the device to Bürkert. → If the Pt1000 is not the cause of the problem, check the process.

¹⁾ if the DIAGNOSMODE function of the "Output.AC1" or "Output.AC2" menu is set to "22 mA" (see chap. 9.11.9); else, the current output delivers a standard current between 4 and 20 mA

Type 8202 ELEMENT

Maintenance and troubleshooting

Red LED	Current output	Transistor output	lcon	Message dis- played in the Info menu	Possible cause	Recommended action
OFF	4-20 mA	Switched ²⁾	▲ + ☺	"W:Impedance Ref"	The impedance of the reference electrode is out of range. The message is dis- played if the monitoring of the impedance of the reference electrode has been activated, depending on the set thresholds WARN LO and WARN HI (see chap. 9.13.2).	 → Go into the "Sensor" function of the Diag- nostic menu to read the impedance value of the reference elec- trode (chap. 9.13.2). → If necessary, clean then recalibrate the measurement sensor or replace it.
OFF	4-20 mA	Switched ²⁾	▲ +	"W:Imped. Glass"	The impedance of the pH electrode is out of range. The message is dis- played if the monitoring of the impedance of the pH electrode has been activated, depending on the set thresholds WARN LO and WARN HI (see chap. 9.13.3).	 → Go into the "Sensor" function of the Diag- nostic menu to read the impedance value of the pH electrode (chap. 9.13.3). → If necessary, clean then recalibrate the measurement sensor or replace it.
OFF	4-20 mA	Switched ²⁾		"W:Temperature"	The fluid temperature is out of range. The message is dis- played if the monitoring of the fluid temperature has been activated, depending on the set thresholds WARN LO and WARN HI (see chap. 9.13.3).	 → Go into the "Sensor" function of the Diagnostic menu to read the measured fluid temperature (chap. 9.13.3). → If necessary, check whether the built-in Pt1000 is working correctly by meas- uring a fluid with a known temperature. → If the Pt1000 is faulty, return the device to Bürkert. → If the Pt1000 is not the cause of the problem, check the process.

²⁾ If the "PVAR" function of the "Output.TR1" and/or "Output.TR2" menus is set to "warning" (see chap. 9.11.10); else, the transistor outputs are operating depending on the set thresholds.

67

Red LED	Current output	Transistor output	lcon	Message dis- played in the Info menu	Possible cause	Recommended action
OFF	4-20 mA	Switched ²⁾	m	"M:Calib. Date"	A calibration is due. The periodicity of the cal- ibrations is set within the "INTERVAL" function of the "CALIB INTERVAL" menu (see chap. 9.12.4).	→ Calibrate the sensor (chap. 9.12.4).

²⁾ If the "PVAR" function of the "Output.TR1" and/or "Output.TR2" menus is set to "warning" (see chap. 9.11.10); else, the transistor outputs are operating depending on the set thresholds.

11. SPARE PARTS AND ACCESSORIES

Risk of injury and/or damage caused by the use of unsuitable parts.

Incorrect accessories and unsuitable replacement parts may cause injuries and damage the device and the surrounding area.

• Use only original accessories and original replacement parts from Bürkert.

Spare part	Orde code
Seal in EPDM, Ø 46x2 mm, for the sensor holder	559169
Accessory	Order code
Display module	559168
Black blank cover with EPDM seal	560948
Transparent cover with EPDM seal	561843
pH probe, 014 pH, 0+80 °C, 06 bar, FLATRODE pH 120 mm	561025
pH probe, 014 pH, -10+60 °C, 06 bar, LOGOTRODE pH 120 mm	427114
pH probe, 014 pH, 0+130 °C, 06 bar, UNITRODE PLUS pH 120 mm	560376
pH probe, 014 pH, 0+130 °C, 016 bar, CERATRODE pH 120 mm	418319
pH probe, 014 pH, -10+40 °C, 06 bar, PLASTRODE pH 120 mm	560377
ORP probe, -2000+2000 mV, 0+80 °C, 06 bar, FLATRODE Redox 120 mm	561027
ORP probe, -2000+2000 mV, -10+50 °C, 06 bar, LOGOTRODE Redox	560379
	500050
ORP probe, -2000+2000 mV, 0+130 °C, 06 bar, UNITRODE Redox 120 mm	560378
Storage solution for pH/ORP probe (KCl 3M), 500 ml	418557
Buffer solution, 500 ml, pH = 4.01	418540
Buffer solution, 500 ml, $pH = 7$	418541
Buffer solution, 500 ml, pH = 10.01	418543
Reference solution, ORP = 475 mV, 500 ml	418555
Cleaning solution set for pH/ORP probes, 3x500 ml	560949
5-pin female M12 connector, to be wired	917116
5-pin female M12 female connector, moulded on shielded cable (2 m)	438680
5-pin male M12 connector, to be wired	560946
5-pin male M12 connector, moulded on shielded cable (2 m)	559177

12. PACKAGING, TRANSPORT

NOTE

Damage due to transport

Transport may damage an insufficiently protected device.

- Transport the device in shock-resistant packaging and away from humidity and dirt.
- Do not expose the device to temperatures that may exceed the admissible storage temperature range.
- · Protect the electrical interfaces using protective plugs.

13. STORAGE

NOTE

Poor storage can damage the device.

- Store the device in a dry place away from dust.
- Storage temperature of the device without probe: -10 to +60°C.
- Storage temperature of the device with probe: refer to the instruction manual delivered with the probe used.

14. DISPOSAL OF THE PRODUCT

 \rightarrow Dispose of the device and its packaging in an environmentally-friendly way.

NOTE

Damage to the environment caused by products contaminated by fluids.

• Keep to the existing provisions on the subject of waste disposal and environmental protection.

Comply with the national and/or local regulations which concern the area of waste disposal.

MAN 1000111231 EN Version: D Status: RL (released | freigegeben) printed: 19.01.2015

www.burkert.com