
Emys User Guide

2010

Emys User Guide

Copyright c© 2010 by Wroclaw University of Technology

Lead Editor: Lukasz Malek

Editors Board: Jan Kedzierski, Adam Oleksy

Reviewer: Robert Muszynski

WROCLAW UNIVERSITY OF TECHNOLOGY IS THE OWNER OF THE DESIGN

AND MECHANICAL PROJECT OF EMYS ROBOTIC HEAD AND ITS COMPO-

NENTS. EMYS AND ITS PARTS CANNOT BE REPRODUCED WITHOUT WRIT-

TEN PERMISSION OF THE PROJECT OWNER.

LIREC USE ONLY

All right reserved

No part of this work may be reproduced, stored in a retrieval system, or transmitted in

any form or by any means, electronic, mechanical, photocopying, microfilming, record-

ing or otherwise, without written permission from the Publisher, with the exception of

any material supplied specifically for the purpose of being entered and executed on a

computer system, for exclusive use by the purchaser of the work.

Wybrzeze Wyspianskiego 27, 50-370, Wroclaw, Poland

Safety

Do NOT power on the robot before reading and fully understanding the

operation procedures explained in this manual. Neither the robot, nor the

program is bug free, accidents can; you have to make sure that the robot

always maintains a safe distance from people during operation.

The robot should be turn off (i.e. the power switch should be on the OFF

position) when not in used.

Robot MUST be firmly attached to fixed basis.

Robot MUST be secured from hitting obstacles.

WARNING: In case of sudden power loss robot will be not controlled and

will move freely what might lead to unexpected contact with human and/or

obstacles.

WARNING: It is highly recommended NOT to change the range of the

movements.

WARNING: Failure to follow these safety guidelines could cause serious

injury or death to a user and/or damage to the robot.

Contents

1 Introduction 1

1.1 Key features . 2

1.2 Product Contents . 3

1.3 Requirements . 4

2 Work with Emys 5

2.1 Emys Station . 5

2.2 Setting up Emys . 5

2.3 Switching on Emys . 6

2.4 Switching off Emys . 7

2.5 Emys servos . 8

2.6 Eye movement servos limited functionality 10

2.7 Camera . 11

3 Software examples 13

3.1 Windows . 13

3.1.1 very simple EMYS . 13

3.1.2 simple EMYS . 14

3.1.3 EMYS . 15

3.2 Changing port name in Windows . 17

3.3 Linux . 19

3.3.1 very simple EMYS, simple EMYS, EMYS 19

3.3.2 Dynlink library . 19

3.3.2.1 Requirements . 20

3.3.2.2 Compilation and installation 20

iii

3.3.2.3 Configuration . 20

3.3.2.4 Contents . 21

3.3.2.5 Examples . 21

4 Support 25

1

Introduction

Emys is a robotic head designed to make long-term relationship with a human. It

was initially prototyped at the Wroclaw University of The Technology in the Euro-

pean funded research project named LIREC . Unique shape of Emys was designed by

Krzysztof Kubasek. The mechanical project and parts manufacturing was done by

CadMech. Control system for Emys was created at Wroclaw University of Technology.

A head for socially aware robot plays a fundamental role in the interaction with

humans. It should be able to generate gestures and emotions easily understandable for

a human. This requires that the head should be in some way similar to the human one.

Finding a good shape of the robot head is a very crucial problem.

Generally, it is very hard to create an anthropomorphic head that is well accepted

by people. Therefore, Emys does not pretend to be similar to a human. It is technically

inspired and its shape is in some way similar to turtle comics like head that explains

the etymology of the Emys name (Emys orbicularis is latin name for European pond

turtle).

Emys head consists of three separated discs what can be seen in Figure 1.1. The

middle disc is mounted stiffly to a neck while the lower and the upper ones are able to

change their pitch angles. The head is mounted to a basis via the neck, which is able to

change the pitch and the yaw angles. In Emys middle disc two eyes are mounted, that

are able to move out of it. Each eye has an eyelid which can rotate by changing pitch

and roll angles. Please notice that Emys eyes do not allow to perceive. Emys is able

to capture images with a camera mounted in the middle disc between the eyes. Due to

the location of the camera it is usually interpreted by humans as Emys nose hole.

1

http://www.lirec.eu
http://www.productdesign.pl
http://www.cadmech.com.pl
http://www.pwr.wroc.pl

1. INTRODUCTION

Upper
Disc

Eyelid

Eye

Middle
Disc

Camera
Lower
Disc

Servo

Supporting
Structure

Figure 1.1: Emys head

1.1 Key features

• Height 35 cm (to head connector)

• 11 degrees of freedom (3 – neck, 1 – chin, 1 – forehead, 2 – eyes, 4 – eyelids)

• 6 digital servos (Robotis Dynamixel RX-28 and RX-64)

• 4 analog RC servos (Hitec HS-65HB)

• 2 motor driven slide potentiometer (Alps RS10N11M B103)

• Outer head shells manufactured in SD fast prototyping technology

• Freescale HC9S12A64 microcontroller

• EIA-485 standard for electrical characteristics of communication interface

• Robotis Dynamixel protocol

• Logitech QuickCam Sphere AF camera

– Carl Zeiss R© optics

– Autofocus lens system

– Ultra-high resolution 2-megapixel sensor with RightLight
TM

– Color depth: 24-bit true color

– Video capture: Up to 1600 by 1200 pixels (HD quality)

– Frame rate: Up to 30 frames per second

2

1.2 Product Contents

– High-Speed USB 2.0

• Logitech 4-Port USB Hub (2 ports available for the user)

• RS-232 – EIA-485 Converter

• Manhattan Serial-USB Converter

• Power supply single phase 100 – 240 VAC. (Fused 2.6 A)

• Windows and Linux compatible

1.2 Product Contents

After the opening of Emys box please ensure that it contains all the elements presented

in Figure 1.2. If any of them is missing please contact your distributor.

User Guide
User Guide

User Guide
Driv

er
s

Driv
er

s

Emys Head Emys Station

Power Cable USB Cable

User Guides CD-ROM

Figure 1.2: Emys box content

3

1. INTRODUCTION

The package includes the following CD-ROMs:

• Emys Solution Disc,

• Manhattan Serial-USB Converter Disc,

• Logitech QuickCam Sphere AF Disc,

and documents:

• Emys User Guide,

• Emys Programmer Guide,

• Robotis Dynamixel RX-28 Manual,

• Robotis Dynamixel RX-64 Manual,

• Manhattan Serial-USB Converter User Guide,

• Logitech QuickCam Sphere AF User Guide,

• Logitech 4-Port USB Hub User Guide.

1.3 Requirements

To opperate Emys robot requires a PC computer with Windows XP/Vista/7 or Linux

system with at least one USB 1.1 or 2.0 port free.

Before operating the head must be firmly attached to a fixed basis. Emys head

must be secured from hitting hard objects.

4

2

Work with Emys

2.1 Emys Station

Emys Head is delivered with Emys Station. This part is not required by Emys Head to

opperate, but it makes work with the robot much easier. The Station part integrates

the following components:

• Power Supply,

• USB Hub,

• USB to EIA-485 Converter.

Emys Station has two functional panels, the one in the front of it and the other on its

back. The front panel is equipped with a power switch and a LED indicating power

status. The following sockets are placed on the rear panel of Emys Station: power, USB,

Emys servos network. The elements layout on the panels is illustrated with Figures 2.1

and 2.2.

2.2 Setting up Emys

This section describes how to prepare Emys head to operate. To this aim one should:

1. Firmly attach Emys Head to a fix basis (e.g. to a table with two carpenter clamps

or to a robot with screws).

2. Connect Emys servo network cable to Emys Station (Figure 2.3).

5

2. WORK WITH EMYS

O
I

POWER

Power Switch Power LED
Figure 2.1: Front panel of Emys Station

Power Socket

Emys Servos Computer Camera

Free USBFan

Figure 2.2: Rear panel of Emys Station

3. Connect Emys camera cable to Emys Station (Figure 2.3).

4. Install Manhattan Serial-USB Converter driver from the attached CD (Windows

only).

5. Install Logitech QuickCam Sphere AF driver from attached CD. When asked to

connect camera please connect Emys Station miniUSB socket with your PC USB

socket.

2.3 Switching on Emys

After setting up Emys head one can switch it on. To this aim please

6

2.4 Switching off Emys

Emys Station

Power Emys Computer

Figure 2.3: Connecting cables to Emys Station

1. Connect Emys Station to a single phase 100 – 240 VAC (Figure 2.3).

2. Grab gently Emys head middle disc and place it in the approximately vertical

position.

3. Switch on Emys Station.

4. Release Emys head which is now ready to use.

2.4 Switching off Emys

This section describes how to finish work with Emys head.

1. Stop all Emys head servos.

2. Gently grab Emys head middle disc.

7

2. WORK WITH EMYS

Upper Disc (ID 6)

Left Eyelid (ID 2)

Lower
Disc

(ID 7)

Neck Upper
Tilt (ID 8)

Neck Lower
Tilt 2 (ID 11)

Neck Lower
Tilt 1 (ID 10)

Neck Pan (ID 9)

Right
Eyelid
(ID 1)

Left Eye
Trans (ID 4)

Left
Eyebrow

(ID 3)

Right Eye
Trans (ID 5)

Right
Eyebrow

(ID 0)

Figure 2.4: Emys joints layout

3. Turn off Emys Station.

4. Move gently Emys head to a secure position.

5. Disconnect Emys Station from power.

6. Disconnect Emys Station from PC.

2.5 Emys servos

Emys head contains 12 servos recognised by an individual number (ID), indicated below

8

2.5 Emys servos

ID 0 Right eyebrow (HS-65HB)

ID 1 Right eyelid (HS-65HB)

ID 2 Left eyelid (HS-65HB)

ID 3 Left eyebrow(HS-65HB)

ID 4 Left eye transition (RS10N11M B103)

ID 5 Right eye transition (RS10N11M B103)

ID 6 Upper disc (RX-28)

ID 7 Lower disc (RX-28)

ID 8 Upper neck (RX-28)

ID 9 Neck pan (RX-64)

ID 10 Lower neck 1 (RX-64)

ID 11 Lower neck 2 (RX-64)

Servos Placement in the head and the joints related with them are presented in Figure

2.4. All the servos are connected into one network based on EIA-485. The commu-

nication with all the servos happens via Robotis Dynamixel protocol (see Dynamixel

manual).

INFO: Please note that not all the driving the eyes fully implement Dynamixel

protocol.

The servo communication network cable consist of 4 wires. In Emys head these

wires are marked according to the convention presented in Table 2.1. Emys network is

Emys symbol Description

- GND, ground, zero

+ VCC, power supply line

A non-inverting data line

B inverting data line

Table 2.1: Emys network lines

9

2. WORK WITH EMYS

- + A B

Figure 2.5: Emys network terminal connector

terminated by a 4 pin euro style connector presented in Figure 2.5.

INFO: All the servos mounted in the head have Status Return Level (address

16 [0x10]) set to 1. It means that, the servo returns data only for the READ DATA

command.

WARNING: It is highly recommended NOT to change the range of the servos

movements.

2.6 Eye movement servos limited functionality

Servos driving the robot eyes, indicated by ID numbers from 0 to 5, do not fully

implement Dynamixel protocol. Their functionality allows for obtaining the elements

movements, but they do not support advanced Dynamixel servos features. For all these

6 servos one Freescale MC9S12A64 microcontroller is utilised to translate Dynamixel

protocol commands to the individual analog servos commands.

Servos marked as ID 0 . . . 5 implement the following Dynamixel commands:

PING (0x01) No execution. It is used when controller is ready to receive Status

Packet.

READ DATA (0x02) This command reads data from servos.

1. Parameters (start address must be 0 and number of parameters must be 19)

2. Position (address 36 [0x24], number of parameters must be 2)

3. Moving (address 46 [0x2E], number of parameters must be 1)

WRITE DATA (0x03) This command writes data to servos.

1. Enable/Disable torque (address 24 [0x18] , number of parameters must be

1)

10

2.7 Camera

2. Enable/Disable LED (address 25 [0x19], number of parameters must be 1)

3. Set Position (address 30 [0x1E], number of parameters must be 2)

4. Set Position and Velocity (address 30 [0x1E], number of parameters must

be 4)

5. Set Velocity (address 32 [0x20], number of parameters must be 2)

2.7 Camera

The camera mounted inside Emys middle disc has been rotated along the roll angle

by 90 degrees from its regular position. Therefore, the image from the camera has

to be transformed by 90 degrees to the right. This can bee easily achieved with use

of OpenCV library. The transformation in C/C++ language can be done with the

following code:

Listing 2.1: Image rotation with OpenCV in C++

IplImage∗ frame1 = cvQueryFrame(capture) ;

IplImage∗ correct = CvCreateImage(CvSize(image−>height ,

image−>width) ,

IPL_DEPTH_8U , 3) ;

CvFlip(image , image , −1) ;

CvTranspose(image , correct) ;

To perform the image transformation in C# language it is useful to apply cvlib –

OpenCV wrapper.

Listing 2.2: Image rotation with OpenCV in C#

IplImage image = cvlib .CvQueryFrame(ref capture) ;

IplImage correct = cvlib .CvCreateImage(new CvSize(image .height ,

image .width) ,

(int)cvlib .IPL_DEPTH_8U ,

3) ;

cvlib .CvFlip(ref image , ref image , −1) ;

cvlib .CvTranspose(ref image , ref correct) ;

11

3

Software examples

Emys joints movements are realized by servos that are able to communicate via Dy-

namixel protocol. Therefore any software able to control such kind of servos will be

able to control Emys. Dynamixel protocol is based on EIA-485 and is completely de-

scribed in Dynamixel Servo Manual. To give a new users a quick start in application

development, Emys is provided with working examples for Windows and Linux. Ex-

amples illustrate both how to communicate with single servo and how to perform series

of actions on many servos concurrently.

3.1 Windows

For Windows environment five examples are provided. Two examples are written in

C++ and three in C#.

3.1.1 very simple EMYS

Info: very simple EMYS is a command line application that shows how to use serial

port for sending motion parameters to EMYS head.

Langauage: This example is delivered both in C++ and C#.

Compiler: Microsoft Visual Studio 2008

Usage:

>> very_simple_EMYS.exe COM ID position velocity

13

3. SOFTWARE EXAMPLES

COM — name of the serial port

ID — identification number of the servo that will operate (see Figure 2.4)

position — goal position [0, . . . , 1023]

velocity — maximum velocity during movement [0, . . . , 1023]

Example:

>> very_simple_EMYS.exe COM1 0 512 100

3.1.2 simple EMYS

Info: simple EMYS application allows for moving a single joint to a given position

with given velocity. It is very similar to very simple EMYS, but it is extended

by a graphical interface.

Language: This example is delivered both in C++ and C#.

Compiler: Microsoft Visual Studio 2008

Usage:

>> simple_EMYS.exe

Choose port name that Emys is connected to. Click OPEN button to open the

port. Select desired joint from JOINT combobox (see Figure 2.4). Control joint

position and velocity with sliders.

14

3.1 Windows

3.1.3 EMYS

Info: EMYS is the most complex example . This application allows for reproduction

of movement series. It provides graphical interface that allows to set desired

configuration of Emys joints. Operator can modify for each joint both position

and velocity. Positions can be stored in memory and reproduced step by step.

Language: This example is developed in C#.

Compiler: Microsoft Visual Studio 2008

Usage:

>> Emys.exe

Example: The typical work with this application is described by the following steps.

1. Use Load state from the top menu to load a clear state sheet from base

folder (Note the base folder has to be in the same directory as Emys.exe).

2. Choose the port that Emys is connected to via PORT combobox. Open the

chosen port.

3. Set the desired positions and velocities for each of the head joints. Change

the desired position for each joint by clicking light gray box near the joint.

The adequate slider will pop up and enable to control joint portioning. To

modify the joint velocity click the dark gray box – the control slider will pop

up.

15

3. SOFTWARE EXAMPLES

Figure 3.1: EMYS application graphical interface

4. Set the desired duration of the expression in the Time execution box

located in the upper left corner.

INFO: If movement duration is too short the robot will skip it to the next

expression without reaching the set positions.

5. Input the sequence number in the upper section of the screen. The numbers

have to be consecutive integers.

INFO: If the application reaches a gap in the section numbers (e.g. 3,5) it

stops executing the program.

6. It is possible to add sound to choose expressions with SOUND MANAGEMENT

section. To load a file click LOAD button and choose the *.WAV file. To

stop playing previous sound press Set Stop button .

7. To add the current face expression to the list click Add in the BASE MANAGEMENT

16

3.2 Changing port name in Windows

section.

8. Repeat steps 4–7 to add more face expressions.

9. Start face expressions performance by clicking PLAY in the STATE TESTER

section.

10. Individual expressions can be modified or removed via the BASE MANAGEMENT

section.

INFO: When an expression is removed from the list, a gap in the section

numbers might occur, which will cause the robot to stop executing the pro-

gram.

3.2 Changing port name in Windows

If is often observed in the case of Windows, that after connecting a new USB–Serial

Converter it is installed as a COM device with very high number. In such a case it is

advised to assign a fixed name to such the device. The following instruction describes

how to do this.

• Right click My Computer and select Properities

• Select the Device Manager tab.

17

3. SOFTWARE EXAMPLES

• Find the device group Ports(COM & LPT). Select the newly installed device.

In this case it will be Profilic USB-to-Serial Comm Port. Click the right

mouse button over selected device and choose Properities.

• Choose Port Settings tab and select Advanced button

18

3.3 Linux

• In this window it is possible to select desired port name for this device.

Note: Sometimes system marks ports as (in use). This does not have to mean

that this name is reserved. Moreover it does not mean that this device in deed

in use. If we are sure that such a device is not connected at the moment to the

computer we can select it.

3.3 Linux

3.3.1 very simple EMYS, simple EMYS, EMYS

Programs very simple EMYS, simple EMYS, EMYS compiled by the C# compiler

in Windows can be run directly in Linux after installing mono library. After in-

stalling monodevelop it is also possible to compile C# examples directly in Linux

and using them both in Windows and Linux. Note that it might be essential to install

mono-winforms library. The only important difference in usage of those applica-

tions in Linux is the name of the port. Instead of COM[number] they are named

/dev/ttyUSB[number].

3.3.2 Dynlink library

Additionally for Linux system there is provided a C++ library named Dynlink and

examples of its application. This library allows for communication with Dynamixel

19

3. SOFTWARE EXAMPLES

servos. It allows both, servos control and configuration. This library is described in

detail in separate document.

3.3.2.1 Requirements

The Dynlink library requires the Boost library in version 1.36.0. The current package

has not been tested with higher versions of Boost. The home download page of Boost

is: http://www.boost.org/

The Dynlink need CMake to build binaries from sources. The home download page

of CMake project is: http://www.cmake.org/

To build documentation you need Doxygen which is available in home page of

Doxygen project: http://www.stack.nl/ dimitri/doxygen/index.html

Those packages are usually available in all Linux distributions and for Windows

platforms.

3.3.2.2 Compilation and installation

The simplest way to build the Dynlink is a sequence of commands in root of project

directory:

>> mkdir build

>> cd build

>> cmake ../ (see configuration)

>> make

>> make doc (optional)

>> make install (optional)

3.3.2.3 Configuration

Before compilation you are able to configure some parameters of this project. To do

this use ccmake or cmake-gui tool. The most important parameters are:

CMAKE INSTALL PREFIX – location where Dynlink library will be installed

CMAKE BUILD TYPE – (available in advanced mode) you can choose between

Release or Debug.

After configuration you can start build the project by typing

20

http://www.boost.org/
http://www.cmake.org/
http://www.stack.nl/~dimitri/doxygen/index.html

3.3 Linux

>> make

After build the Dynlink in build directory you can find subdirectories doc, exam-

ple, src.

3.3.2.4 Contents

doc/html – this directory contains documentation of Dynlink library in html format.

example – this directory contains two examples which show how to use Dynlink class.

src – this directory contains static library with header which can be used in your

projects.

3.3.2.5 Examples

Dynlink library is delivered with two examples. First one presents how to open

connection with serial port and how to add several actuators to Dynlink network.

The source code of this example is illustrated in Listing 3.1.

This example starts from defining the serial port parameters like device name

/dev/ttyUSB0 and baudrate 57600. The program creates main Dynlink object

name dynlink and open communication with it. After establishing communication it

tries to add 6 servos with ID number from 0 to 5.

Listing 3.1: Dynlink library connection initialization example

/∗ example1 . cpp

∗
∗ Created on : 30−11−2010

∗ Author : ao l eksy

∗/
/∗∗
∗ This example shows how to open connect ion with s e r i a l port

∗ and add s e v e r a l a c tua to r s to ob j e c t o f Dynlink c l a s s .

∗/
#include "Dynlink.h" //Main header o f Dynlink c l a s s

#include <boost / c s t d i n t . hpp> // De f ines u i n t 8 t and u i n t 1 6 t

// used in Dynlink c l a s s .

#include <s t r i ng>

#include <iostream>

21

3. SOFTWARE EXAMPLES

#include <c s t d l i b >

using namespace std ;

using namespace dynlink ;

string deviceName = "/dev/ttyUSB0" ; // S e r i a l dev i c e .

int baudrate = 57600 ; //Baud ra t e o f s e r i a l dev i c e .

uint8_t fromID = 0x00 ; // F i r s t id

uint8_t toID = 0x05 ; // Last id

int main(int argc , char∗ argv []) {
Dynlink dynlink ; //Main ob j e c t o f Dynlink c l a s s .

if (argc != 1 && argc != 3 && argc != 4 && argc != 5) {
cerr << "Wrong number of arguments" << endl ;

cout << "Usage:\n\texample1 [fromID toID [pathtodevice [←↩
baudrate]]]" << endl ;

exit(−1) ;

}
if (argc >= 3) {

fromID = static_cast<uint8_t>(atoi(argv [1])) ; // get f i r s t id

toID = static_cast<uint8_t>(atoi(argv [2])) ; // get l a s t id

}
if (argc >= 4)

deviceName = argv [3] ; // get dev i ce path

if (argc == 5)

deviceName = argv [4] ; // get baud ra t e

if (!dynlink .open(deviceName , baudrate)) { //open s e r i a l dev i c e

cerr << "Can’t open device " << deviceName << ". " << endl ;

exit(−1) ;

}
Data8 ids (0) ; //Empty array o f ac tua to r s id .

/∗ Add ac tua to r s with id from 0x00 to 0x05 . ∗/
for (uint8_t id = fromID ; id <= toID ; ++id) {

cout << "Try to add actuator id=" << static_cast<int>(id) << ←↩
endl ;

if(dynlink .addServo(id)) { // i f ac tuator e x i s t s

cout << "Found actuator at id=" << static_cast<int>(id) << ←↩
endl ;

ids .push_back(id) ; // C o l l e c t found ac tua to r s

}
}

22

3.3 Linux

cout << ids .size () << " actuator(s) are found." << endl ;

dynlink .close () ; // Close connect ion

return 0 ;

}

The second example presents how to control a single servo. Similar to the previous

example it opens serial port /dev/ttyUSB0 with baudrate 57600. Next it adds to

Dynlink network a servo with ID specified by user. After success in adding the servo

program sets a servo speed. After setting new servo position the motor should start

acting. Finally program waits until the servo finishes its movement.

Listing 3.2: Dynlink library servo control example

/∗
∗ example2 . cpp

∗
∗ Created on : 07−12−2010

∗ Author : ao l eksy

∗/
/∗∗
∗ This example shows how to communicate with the ac tua to r s .

∗/
#include "Dynlink.h"

#include <boost / c s t d i n t . hpp>

#include <s t r i ng>

#include <iostream>

#include <c s t d l i b >

using namespace std ;

using namespace dynlink ;

/∗ Path or name o f s e r i a l dev i c e . ∗/
string deviceName = "/dev/ttyUSB0" ; //Path or name o f s e r i a l ←↩

dev i c e .

int baudrate = 57600 ; //Baud ra t e o f s e r i a l dev i c e .

uint8_t id ; // Id o f ac tuator

uint16_t speed ; // Speed o f movement

uint16_t position ; // Goal p o s i t i o n

int main(int argc , char∗ argv []) {
Dynlink dynlink ; //Main ob j e c t o f Dynlink c l a s s .

23

3. SOFTWARE EXAMPLES

if (argc < 4 | | argc > 6) { // Control numbers o f arguments

cerr << "Wrong number of arguments." << endl ;

cout << "Usage:\n\texample2 id position speed [pathtodevice [←↩
baudrate]]" << endl ;

exit(−1) ;

}
id = static_cast<uint8_t>(atoi(argv [1])) ; // Get id number

position = static_cast<uint16_t>(atoi(argv [2])) ; // Get p o s i t i o n

speed = static_cast<uint16_t>(atoi(argv [3])) ; // Get speed

if (argc > 4)

deviceName = argv [4] ; // Get path to dev i c e

if (argc == 6)

baudrate = atoi(argv [5]) ;

if (!dynlink .open(deviceName , baudrate)) { // try open s e r i a l ←↩
dev i c e

cerr << "Can’t open device " << deviceName << ". " << endl ;

exit(−1) ;

}
if (!dynlink .addServo(id)) { // try to add actuator with id

cout << "Actuator with id " << static_cast<int>(id) << " does ←↩
not exist." << endl ;

dynlink .close () ;

exit(−1) ;

}
dynlink .setMovingSpeed(id , speed) ; // Set speed

dynlink .setGoalPosition(id , position) ; // Set p o s i t i o n

cout << "Actuator " << static_cast<int>(id)

<< " is moving to position " << static_cast<int>(position)

<< " with speed " << static_cast<int>(speed) << endl ;

uint8_t moving = 0 ;

do {
dynlink .getMoving(id , &moving) ;

} while(moving) ;

cout << "Actuator has reached the target position." << endl ;

dynlink .close () ;

return 0 ;

}

24

4

Support

More information about Emys can be found on Emys webpage

http://emys.lirec.ict.pwr.wroc.pl

After login on this page 4.1 a section Support will appear. In this section one can

find drivers, manual, examples and libraries related with Emys.

Figure 4.1: Emys webpage login section

25

http://emys.lirec.ict.pwr.wroc.pl

4. SUPPORT

Each user has its individual login and password. Your login and password for Emys

webpage can be found bellow:

For support please contact with authors of Emys prototype at Wroclaw University

of Technology. The contact persons are:

jan.kedzierski@pwr.wroc.pl for hardware related questions.

adam.oleksy@pwr.wroc.pl for software related questions.

26

mailto:jan.kedzierski@pwr.wroc.pl
mailto:adam.oleksy@pwr.wroc.pl

	1 Introduction
	1.1 Key features
	1.2 Product Contents
	1.3 Requirements

	2 Work with Emys
	2.1 Emys Station
	2.2 Setting up Emys
	2.3 Switching on Emys
	2.4 Switching off Emys
	2.5 Emys servos
	2.6 Eye movement servos limited functionality
	2.7 Camera

	3 Software examples
	3.1 Windows
	3.1.1 very_simple_EMYS
	3.1.2 simple_EMYS
	3.1.3 EMYS

	3.2 Changing port name in Windows
	3.3 Linux
	3.3.1 very_simple_EMYS, simple_EMYS, EMYS
	3.3.2 Dynlink library
	3.3.2.1 Requirements
	3.3.2.2 Compilation and installation
	3.3.2.3 Configuration
	3.3.2.4 Contents
	3.3.2.5 Examples

	4 Support

