
ALEVIN Software User Guide
Authors:
Michael Duelli and Daniel Schlosser (University of Wuerzburg)
Juan Felipe Botero and Xavier Hesselbach (Universitat de Catalunya)
Andreas Fischer (University of Passau)

Table of Contents
1Introduction...2
2Installation Requirements..3

2.1GLPK LP solver framework installation..3
2.1.1Unpacking the distribution file...4
2.1.2Configuring the package..4
2.1.3Compiling the package...4
2.1.4Check the package...4
2.1.5Install the package...4

3Editing..6
3.1Create, Edit, Import, Export and Manage Scenarios...............................6

3.1.1Scenario Creation From Scratch...6
3.1.2Scenario Editing...6
3.1.3Editing Nodes and Links...8
3.1.4Scenario Import and Export..9
3.1.5Scenario Generation...10

4Currently Supported Algorithms..15
4.1Algorithms brief description..15

4.1.1Virtual Node Mapping Algorithms...15
4.1.2Virtual Link Mapping Algorithms...16

4.2Algorithms and Mappings..17
4.2.1Mappings..17
4.2.2Implemented Algorithms..18

5GUI Features..25
5.1The Graph Panel..25

5.1.1Move Nodes..25
5.1.2Zoom in and out...25

5.2The Selection Panel...25
5.3The Mapping Panel..26
5.4The Console..27
5.5Menu Options..28

5.5.1File Menu..28
5.5.2View Menu..28
5.5.3Generators Menu..29
5.5.4Algorithms Menu..29
5.5.5Metrics Menu..30

1 Introduction
The focus in the development of ALEVIN is on modularity and efficient handling
of arbitrary parameters for resources and demands, and the support of
integration of new and existing virtual network embedding algorithms and
evaluation metrics.

For platform independency, ALEVIN is written in Java. ALEVIN's graphical user
interface (GUI) and multi-layer visualization component is based on the
MuLaViTo project MuLaViTo (http://mulavito.sf.net) which enables us to
visualize and handle the substrate and arbitrary virtual networks as directed
graphs.

The next figure depicts the architecture of ALEVIN and highlights the modular
interaction of parameters for substrate as well as virtual networks, algorithms,
and evaluation.

ALEVIN provides the ability to illustrate the deployment of resources in the
substrate network and demands in an arbitrary number of virtual networks as
well as the mapping of demands on resources calculated by a VNE algorithm.
Moreover, ALEVIN can be used to create VNE scenarios as well as import and
export them using an XML-based exchange format.

ALEVIN is completely modular regarding the addition of new parameters to the
VNE model. Using the java visitor design pattern in a sophisticated way, we are
able to avoid any casts to concrete demand/resource classes. Thus, the
number of parameters is not performance-relevant and a convenient
implementation of arbitrary parameters is possible.

To increase ALEVIN's modularity and to make it a flexible and extensible
platform to compare existing and upcoming algorithms, the implementation of
algorithms is kept independent of the resource/demand implementation. To
that end, a simple interface is provided defining the rough structure of an
algorithm and connecting its output to the GUI as illustrated in the previous
picture.

http://mulavito.sf.net/

2 Installation Requirements
Being implemented in Java, Alevin is platform independent and should work on
MS Windows, Mac OS X and Linux. For proper operation of Alevin, however, the
following software packages have to be installed:

• SUN Java JDK version 1.5 or later (recommended: version 6, update 21 or
later). Do not use other Runtime Environments, as they are known to create
problems!

• The GNU Linear Programming Kit (GLPK): http://www.gnu.org/software/glpk/ -
this is used by some algorithms.

2.1 GLPK LP solver framework installation

The GLPK (GNU Linear Programming Kit) package is intended for solving large-
scale linear programming (LP), mixed integer programming (MIP), and other
related problems. It is a set of routines written in ANSI C and organized in the
form of a callable library (http://www.gnu.org/software/glpk/).

Project GLPK for Java delivers a Java language binding
(http://sourceforge.net/projects/glpk-java/).

Some algorithms of ALEVIN use linear programming to realize the VNE. ALEVIN
implementation relies on GLPK to solve the VNE node and link mapping stages,
when they require Linear Programming. As ALEVIN is developed in java, we
have use the java biding interface provided in
http://sourceforge.net/projects/glpk-java/.

The installation instructions are placed in the /doc folder of the glpk-java
software. The file “glpk-java.pdf” explains how the installation must be done.
However, here a step by step explanation will be provided for each platform:

1. Windows: The GLPK for Java JNI library can be compiled from source code.
The build and make files are in directory w32 for 32 bit Windows and in w64
for 64 bit Windows. The name of the created library is glpk 4 45 java.dll for
revision 4.45.

Recommended: A precompiled version of GLPK for Java is provided at
http://winglpk.sourceforge.net

The library (the name of the library is glpk_4_45_java.dll) has to be in the
search path for binaries, it can be found in the w64 or w32 folder (depending of
your computer architecture) of the percompiled version
(http://winglpk.sourceforge.net). Either copy the library to a directory that is
already in the path (e.g. C:\windows\system32) or update the path in the
system settings of Windows. The jar file, needed also for the execution of
ALEVIN is stored also in the same w64 or w32 folder.

The library has to be in the CLASSPATH. Update the classpath in the system
settings of Windows or specify the classpath upon invocation of the application,
e.g. java -classpath ./glpk-java.jar;. MyApplication

1. Linux: To install the LINUX version, the original GLPK library
(http://www.gnu.org/software/glpk/) must be compiled in first place. The
GLPK for Java JNI library can be compiled from source code. The following
instructions are also contained in the file INSTALL provided in the source

http://www.gnu.org/software/glpk/
http://winglpk.sourceforge.net/
http://winglpk.sourceforge.net/
http://sourceforge.net/projects/glpk-java/
http://sourceforge.net/projects/glpk-java/
http://www.gnu.org/software/glpk/
http://www.gnu.org/software/glpk/

distribution (http://sourceforge.net/projects/glpk-java/):

2.1.1 Unpacking the distribution file

Copy the distribution file to a working directory. Check the MD5 checksum with
the following command:

 md5sum glpk-java-X.Y.tar.gz

Unpack the archive with the following command:

 tar -xzf glpk-java-X.Y.tar.gz

Now change to the new direcotry glpk-java-X.Y

2.1.2 Configuring the package

Open swig/Makefile in a text editor, e.g. with the following command

 vi swig/Makefile

Adjust the installation path “prefix”.

Adjust the include path for glpk.h.

Adjust the version information concerning GLPK.

Save the text file.

On Mac OS X jni.h is in the following path:

 /System/Library/Frameworks/JavaVM.framework/Headers

2.1.3 Compiling the package

To remove all files from prior compiling use the command

 make clean

The package is compiled with the command

 make

2.1.4 Check the package

To check if everything is built correctly use the command

 make check

2.1.5 Install the package

To install the package you must be root or a suodoer. As sudoer use the
command

 sudo make install

http://sourceforge.net/projects/glpk-java/

1. Mac Os: The process to install GLPK-java in MacOS is the same as it is in
linux. Remember that on Mac OS X jni.h is in the following path:

 /System/Library/Frameworks/JavaVM.framework/Headers

3 Editing

3.1 Create, Edit, Import, Export and Manage Scenarios

3.1.1 Scenario Creation From Scratch

To create a new, empty scenario select “New empty scenario / layers” from the
File Menu or use the “Ctrl + N” Hotkey. In the next step, you will be promted
for the number of virtual networks of the scenario to be created:

A scenario consisting of a substrate network and the desired number of virtual
networks is created and shown in the graph panel. All created layers, substrate
or virtual will be empty. To add nodes and links, follow the steps described in
the Scenario Editing section below.

3.1.2 Scenario Editing

Adding Networks
To add virtual networks select “New empty scenario / networks” from the File
Menu. Next you will be promted for the number of virtual networks to add:

http://www3.informatik.uni-wuerzburg.de/research/projects/vnreal/wiki/doku.php?id=private:implementation:doc:menu_options#file_menu
http://www3.informatik.uni-wuerzburg.de/research/projects/vnreal/wiki/doku.php?id=private:implementation:doc:menu_options#file_menu
http://www3.informatik.uni-wuerzburg.de/research/projects/vnreal/wiki/doku.php?id=private:implementation:doc:menu_options#file_menu

The desired number of virtual networks is added to the graph. If we add two
more networks to our exemplary scenario, the graph will be as follows:

Note that the new networks are empty.

Creating Nodes
A node can be created in an existing network (substrate or virtual network), at
a desired position. To create a node, right-click at the desired position and
select “Create Node” from the pop-up menu:

Next you need to add a constraint to the node to be created:

and set the parameter(s) for the selected constraint:

A constraint is required for the node to be created.

After following this steps, the node will be created at the desired position and
shown in the graph panel.

Creating Links
To create a link select two nodes and right-click on the layer they belong to.
You then have to choose source and destination of the link to be created. To
make things simple, the two alternatives are displayed in the pop-up menu:

After the desired link is selected from the pop-up menu you need to add a
constraint to the link, for it to be created. For this purpose, a dialog as
described in the Creating Nodes section will be displayed. As in the case of
nodes, a constraint is required for a link to be created. After adding a
constraint, the link will be created and shown in the graph panel.

3.1.3 Editing Nodes and Links

To edit a node or a link, right-click on it. You have the following options:

Add Constraint
If you choose to add a constraint you will need to select the constraint type to
add and set it's parameter(s), as described in the Creating Nodes section. Note
that each node / link can only have a single resource of a given type.

Edit Constraint
If you select the edit constraint option, you can edit the parameter(s) of the
node's / link's constraints. First you need to select the constraint to be edited:

then you can set the new values of the parameter(s):

Remove Constraint
To remove a constraint, select it as described in the Edit Constraint section
above and click on the “Remove”-button.

Delete Node / Link
If you select this option, the network entity along with its constraints and
mappings will be deleted.

If you delete a node, all its incident links will be deleted as well.

3.1.4 Scenario Import and Export

Scenario Import
To import a scenario select “Import” from the File Menu or use the “Ctrl + O”
Hotkey. Next, select the file to import from:

Import file chooser

http://www3.informatik.uni-wuerzburg.de/research/projects/vnreal/wiki/doku.php?id=private:implementation:doc:menu_options#file_menu

The imported scenario will then be displayed in the graph panel of the GUI. For
our exemplary scenario this looks as follows:

Scenario Export
To export the current scenario, select “Export” from the File Menu or use the
“Ctrl + S” hotkey. You will then need to choose the file to export to and select
“Save”. The Scenario, including constraints and mappings will be saved as
XML-data to the file specified.

3.1.5 Scenario Generation

Network Topology Generation
ALEVIN provides a random scenario generator, the scenario wizard. For the
scenario generation the number of nodes in each network is set and the links
are added randomly using a Waxman generator. It creates edges within a 1×1
square with probability , where , , is the Euclidian distance between vertex and
vertex , and is the maximum distance between any two nodes. An increase in
the parameter alpha increases the probability of edges between any nodes in
the graph, while an increase in beta yields a larger ratio of long edges to short
edges.

For more information on the waxman generator please refer to

@article{Waxman88,
author = {Waxman, Bernard M.},
title = {Routing of Multipoint Connections},
journal = {IEEE Journal of Selected Areas in Communication},
pages = {1617--1622},
number = {9},
volume = {6},
month = dec,
year = {1988},
}

Prior to setting any parameters, the scenario wizard looks as follows.

Exemplary scenario import

http://www3.informatik.uni-wuerzburg.de/research/projects/vnreal/wiki/doku.php?id=private:implementation:doc:menu_options#file_menu

To generate a new scenario the following parameters must be set

• For the substrate network

• The number of substrate nodes.

• The value of the alpha and beta parameters.

• The number of virtual networks.

• The default number of virtual nodes per network.

• For each virtual network

• The number of nodes, if different from the default.

• The value of the alpha and beta parameters.

To set parameters for a specific virtual network, just click on the respective
table row. If the mouse stands still over one of the table columns, a short info
about the parameter is displayed, as shown in the graphic below.

After setting the parameters as needed, the aspect of the scenario wizard
changes slightly.

Constraints Generation
Generating constraints is possible using the constraints generator.

It consists of two sections, one for the resources and one for the demands. The
most important component of the constraints generator is the table used for
selecting the constraints to add and setting the required parameters. The
resources panel contains one such table, while the demands panel cosists of
one table for each virtual network, the tables being packed in different tabs.

For constraints generation, a constraint needs to be selected for the desired
network (substrate or virutal) and the corresponding parameters set, if needed.
This is done using the tables described above. Currently only CPU and
bandwidth constraints have parameters to set. All other constraints need no
further user action to be generated correctly. Demand genration can be done
individually on a per virtual network basis.

After selecting some constraints and setting the needed parameters, the
constraints generator will look as seen below. Notice that, as described above,

Constraints Generator

setting additional parameters is not required for all resource/demand types.

Removing All Constraints
It is also possible to remove all constraints of the current scenario, for example
in order to regenerate them.

Constraints Generator with selected constraints and
parameter set

4 Currently Supported Algorithms

4.1 Algorithms brief description

In this section, a brief description of the virtual node and link mapping existing
algorithms is given. The explanation will separate the virtual node mapping and
link mapping.

4.1.1 Virtual Node Mapping Algorithms

Greedy Stress Approach (GS)
To understand the objective of this approach. Figure 2 defines the term stress.

Figure 2

The numbers above the links an nodes are the respective stresses. The
objective of this approach is to minimize the balanced stress (weigthed sum of
node and link stresses) in the network. To reach this objective, the virtual node
mapping stage is performed by assigning the nodes with greater degree in
virtual network to the nodes with greater potential (for each node in the SN,
the potential is the multiplication of the node stress by the sum of adjacent link
stresses) in the substrate network.

Greedy Available Resources (GAS)
This virtual node mapping approach is very similar to the GS. The available
resources concept is defined in Figure 3.

Figure 3

The virtual node mapping GAS is a greedy algorithm. Nodes with greater
demand are assigned with greater available resources.

Mixed Integer Programming Solution
Substrate Network Graph is augmented creating Meta-nodes (representing the
virtual nodes) and meta-edges (joining meta-nodes with the candidate nodes to
be mapped in the SN), they are added to the SN graph as indicated in Figure 4.

Figure 4

In figure 4, a will be mapped to either A or C. (A and C are the candidates
nodes to map a). After the following steps, the map is decided.

1. The problem is solved using linear programming (LP) –> The relaxed BIP
formulation is solved.

2. The LP solution contains rational value for each of the meta-edges (joining
the meta-nodes with nodes in the substrate network). A randomized or
deterministic rounding is performed, among the meta-edges of each meta-
node, to choose one of them; the SN connected to the chosen meta-edge is
then chosen as the mapped node in the SN.

4.1.2 Virtual Link Mapping Algorithms

It is very important to state that the virtual link mapping stage starts after
virtual node mapping.

http://www3.informatik.uni-wuerzburg.de/research/projects/vnreal/wiki/doku.php?id=private:integer

K-Shortest Paths Algorithm (KSP)
This algorithm calculates, for each virtual link, the k-shortest paths from one
mapped virtual node to the other end (in the substrate network). The mapping
is performed by assigning, to each virtual link, the first shortest path that
accomplishes the bandwidth and CPU demands.

Multi-Path Algorithm (MP)
This algorithm solves a LP formulation of the virtual link mapping stage (the
same formulation as the relaxed BIP). This formulation is equivalent to the
multi-commodity flow problem and is solved using the traditional LP methods
(SIMPLEX, IPM, etc.) A example of this approach is shown in Figure 6.

Figure 6

Rounding Multi-Path (RMP)
The problem is formulated as the multi-commodity flow problem and is solved
using optimal linear programming algorithms (SIMPLEX, IPM, etc.). Then, the
multi-path solution, each path will have a rational percentage of the demand, is
rounded (in a deterministic or randomized way) and just one directed path is
used to map each virtual link.

Subgraph isomorphism detection heuristic (SID)
The mapping in nodes and links is done simultaneously by trying to find a
subgraph inside the substrate network being isomorphic to the virtual network
request. Graph isomorphism is explained in figure 5.

4.2 Algorithms and Mappings

4.2.1 Mappings

Compute Mappings
To compute mappings for the current scenario you need to run an algorithm
from the Algorithms Menu. To do so, just select it from the menu. Algorithms
can not be run on scenarios that already have mappings.

To better understand the input parameters requested by each algorithm, see a
brief and detailed explanation of the algorithms.

http://www3.informatik.uni-wuerzburg.de/research/projects/vnreal/wiki/doku.php?id=private:integer

While an algorithm is running, a progress dialog is shown:

4.2.2 Implemented Algorithms

Until now, there are five algorithms available:

• Simple Dijkstra: Test virtual link mapping algorithm (with node mapping
assumed as performed) mapping each virtual link to the shortest path.

• Greedy Available with K-Shortest Path: Virtual node and link mappings for
each VNR are performed separately. Node mapping is performed using a
greedy algorithm that maps virtual nodes with higher revenues to SN nodes
with higher “available resources” (GAS). Link mapping is accomplished by
mapping each virtual link to the shortest-path, accomplishing capacity
constraints, between the corresponding mapped nodes in the SN.

• Greedy Available with Path Splitting: Virtual node and link mappings for each
VNR are performed separately. Node mapping is also performed witha greedy
available resources (GAS). Link mapping is accomplished with a multi- path
(MP) optimal solution that avoids the NP-completeness of the problem.

• Coordinated Node and link mapping with Path Splitting: The node mapping
stage is performed by defining an augmented graph over the substrate
network; introducing a set of meta-nodes, one per virtual node, each
connected to a cluster of candidate SN nodes obeying location and capacity
constraints. The algorithm solves the VNE problem by using a Mixed Integer
Programming (MIP). Its objective is to minimize the cost, i.e. the weighted
sum of the bandwidth and CPU allocated in the SN links to fulfill VNR
demands, of embedding a VNR. To avoid the NP-completeness of the MIP, its
linear programming relaxation is solved, and the obtained solution is rounded
in two ways: deterministically or randomly. The link mapping stage is
performed using a Multi-Path approach (MP).

• Coordinated Node and link mapping with k-Shortest Path: The same virtual
node mapping stage is performed in the same way (MIP) as the previously
described algorithms. The link mapping stage is performed using a K-Shortest
paths approach.

Input Parameters
Each algorithm has different input parameters. For the implemented
algorithms, the parameters are as follows:

• Greedy Available Resources (Node Mapping) + k-Shortest paths
(Link Mapping): The only parameter needed in this algorithm is the number
of shortest paths to be calculated (the parameter k). An input wizard is

Algorithms progress dialog

shown:

The parameters presented in the algorithm's wizard are the following:

k: Is the number of shortest-paths (in terms of hops) used in the algorithms for
the virtual link mapping stage.

Distance Considered: The default value of this boolean value is “No”. This is
not a value presented in the original algorithm. This value is included to
provide the possibility of comparing this algorithm with subsequent proposals.
If the value is chosen to “No” the normal behavior of the algorithm is
presented. The value refers to the maximum distance that a substrate node
can be from a virtual node to be considered a candidate node to be mapped.
This value must be between 0 and 100 (the area of the space where each
network is plotted is 100×100).

Node Overload: As the previous parameter the node overload is not a value
presented in the original algorithm. Current algorithms do not allow that more
than one virtual node, belonging to a virtual network, are mapped in one
substrate node. This value modifies the algorithm to avoid this constraint.
Again, If the “No” option is chosen, the algorithm will have its normal behavior.

• Greedy Available Resources with Path Splitting (Link Mapping): To
realize the link mapping algorithm it is needed to provide the weight that
user gives to the CPU and BW.

The parameters presented in the algorithm's wizard are the following:

Cpu and Bandwidth Weigths: This values allow to give more revenue value
to Cpu or Bw when the virtual network embedding is being performed. i.e., if
Cpu weight is higher than bandwidth weight, the algorithm will perform a
mapping trying to minimize the CPU consume in the substrate network.

Distance Considered: It has the same meaning than in the previous
algorithm

Node Overload: It has the same meaning than in the previous algorithm

Previous two algorithms are proposed in:

@article{Yu08,
 author = {Yu, Minlan and Yi, Yung and Rexford, Jennifer and Chiang, Mung},
 title = {Rethinking virtual network embedding: substrate support for path
splitting and migration},
 journal = {SIGCOMM Comput. Commun. Rev.},
 volume = {38},
 issue = {2},
 month = {March},
 year = {2008},
 issn = {0146-4833},
 pages = {17--29},
 numpages = {13},
 url = {http://doi.acm.org/10.1145/1355734.1355737},
 doi = {http://doi.acm.org/10.1145/1355734.1355737},
 acmid = {1355737},
 publisher = {ACM},
 address = {New York, NY, USA},
 keywords = {network virtualization, optimization, path migration, path
splitting, virtual network embedding},
}

• Coordinated Node (Node Mapping) and Link Mapping with k-Shortest
Paths (Link Mapping): This solution uses the heuristic solution of the Mixed
Integer Programming approach in the node mapping phase and the k-

shortest path approach in the link mapping phase.

The parameters presented in the algorithm's wizard are the following:

k: Is the number of shortest-paths (in terms of hops) used in the algorithms for
the virtual link mapping stage.

Cpu and Bandwidth Weigths: This values allow to give more revenue value
to Cpu or Bw when the virtual network embedding is being performed. i.e., if
Cpu weight is higher than bandwidth weight, the algorithm will perform a
mapping trying to minimize the CPU consume in the substrate network.

Distance Considered: It refers to the maximum distance that a substrate
node can be from a virtual node to be considered a candidate node to be
mapped. This value must be between 0 and 100 (the area of the space where
each network is plotted is 100×100).

Node Overload: The node overload is not a value presented in the original
algorithm. Current algorithms do not allow that more than one virtual node,
belonging to a virtual network, are mapped in one substrate node. This value
modifies the algorithm to avoid this constraint. Again, If the “No” option is
chosen, the algorithm will have its normal behavior.

Algorithm Type: This algorithm work, in the node mapping phase, by solving
a relaxed version of the NP-Complete Unsplittable Flow Problem (UFP). After
that, the relaxed solution is rounded by two method (deterministic or
randomized). This parameter contains the rounding type.

• Coordinated Node (Node Mapping) and Link Mapping with Path
Splitting (Link Mapping): This solution uses the heuristic solution of the
Mixed Integer Programming approach in the node mapping phase and a path
splitting approach in the link mapping phase.

The parameters presented in the algorithm's wizard are the following:

Cpu and Bandwidth Weigths: This values allow to give more revenue value
to Cpu or Bw when the virtual network embedding is being performed. i.e., if
Cpu weight is higher than bandwidth weight, the algorithm will perform a
mapping trying to minimize the CPU consume in the substrate network.

Distance Considered: It refers to the maximum distance that a substrate
node can be from a virtual node to be considered a candidate node to be
mapped. This value must be between 0 and 100 (the area of the space where
each network is plotted is 100×100).

Node Overload: The node overload is not a value presented in the original
algorithm. Current algorithms do not allow that more than one virtual node,
belonging to a virtual network, are mapped in one substrate node. This value
modifies the algorithm to avoid this constraint. Again, If the “No” option is
chosen, the algorithm will have its normal behavior.

Algorithm Type: This algorithm work, in the node mapping phase, by solving
a relaxed version of the NP-Complete Unsplittable Flow Problem (UFP). After
that, the relaxed solution is rounded by two method (deterministic or
randomized). This parameter contains the rounding type.

To see more details of previous two algorithms, please refer to:

@INPROCEEDINGS{CH09,
author={Chowdhury, N.M.M.K. and Rahman, M.R. and Boutaba, R.},
booktitle={INFOCOM 2009, IEEE}, title={Virtual Network Embedding with
Coordinated Node and Link Mapping},
year={2009},
month={april},
volume={},
number={},
pages={783 -791},
keywords={Internet;coordinated node;heuristic-based algorithms;link
mapping;mixed integer program;multiple heterogeneous virtual networks;network
virtualization;substrate network augmentation;virtual network
embedding;Internet;embedded systems;virtual machines;},

doi={10.1109/INFCOM.2009.5061987},
ISSN={0743-166X},}

• Coordinated Node (Node Mapping) and Rounding Multipath (Link
Mapping): This solution uses the heuristic solution of the Mixed Integer
Programming approach in the node mapping phase and a new approach in
link mapping to realize the virtual link mapping using single path. Single path
is reached by rounding the multi-path solution in the same way than in the
previous proposal (Deterministically or randomly).

k: Is the number of shortest-paths (in terms of hops) used in the algorithms for
the virtual link mapping stage in case that rounded paths do not accomplish
the virtual link demands.

Cpu and Bandwidth Weigths: This values allow to give more revenue value
to Cpu or Bw when the virtual network embedding is being performed. i.e., if
Cpu weight is higher than bandwidth weight, the algorithm will perform a
mapping trying to minimize the CPU consume in the substrate network.

Distance Considered: It refers to the maximum distance that a substrate
node can be from a virtual node to be considered a candidate node to be
mapped. This value must be between 0 and 100 (the area of the space where
each network is plotted is 100×100).

Node Overload: The node overload is not a value presented in the original
algorithm. Current algorithms do not allow that more than one virtual node,
belonging to a virtual network, are mapped in one substrate node. This value
modifies the algorithm to avoid this constraint. Again, If the “No” option is
chosen, the algorithm will have its normal behavior.

Algorithm Type: This algorithm work, in the node mapping phase, by solving
a relaxed version of the NP-Complete Unsplittable Flow Problem (UFP). After
that, the relaxed solution is rounded by two method (deterministic or

randomized). This parameter contains the rounding type.

Hidden Hops Selection
In the next step, you can select the hidden hop demands that are to be
considered when computing the mapping. This is done using the Hidden Hops
Dialog.

It consists of a table that enables you to select the HH Demands to use and set
the factor used for computing them.

Output Parameters
After termination some information messages are displayed in the Console. If
the algorithm finishes normally, the computed mappings are added to the
scenario and displayed in the Mapping Panel.

Remove All Mappings
To remove all mappings of the current scenario, select the “Remove all
mappings” option from the Algorithms Menu. This action will also free up all
resources in the substrate network.

Hidden Hops Dialog

5 GUI Features

5.1 The Graph Panel

The graph panel showing our exemplary scenario.

The graph panel is taken from MuLaViTo and is the central part of the GUI,
where the scenarios are visualized. For each layer of the scenario, substrate or
virtual, the graph of the network is displayed.

The graph panel enables you to:

5.1.1 Move Nodes

To move nodes, simply drag them with the mouse. Note that this action will
have an effect on the node's coordinates.

5.1.2 Zoom in and out

To zoom in or out hold the “Ctrl” key and use the mouse wheel.

5.2 The Selection Panel

The selection panel shows the network entities currently selected as well as
their constraints in a tree structure. Here is an example using our exemplary
scenario. Note that some elements of the selection tree are not shown because
their parent element are not popped up.

http://mulavito.sf.net/

5.3 The Mapping Panel

The mapping panel shows the mappings of the current scenrio in a tree
strucure. If no mappings exist, the virtual links will be the leaf elements of the
tree:

If mappings do exist, they are shown as child elements of the virtual links.
When selecting a virtual link from the mappings tree, it is highlighted along
with the substrate links it is mapped to. Hidden hops are displayed using a
different color (magenta).

Selection panel example

Mapping panel showing only
the virtual links as no

mappings exist

Note that the “Virtual Network (2)” node is not popped up in this example.

The Mapping panel also enables reverse highlighting. If you select a substrate
link, the virtual network entities mapped on the link, or its incident nodes are
highlighted.

5.4 The Console

The Console is taken from MuLaViTo and displays information, debug and error
messages.

The Console can be cleared or redirected to the normal terminal console.

It can also be closed and then restored by using the “Hidden Panels” option in
the Views Menu.

Mapping panel with mappings and highlighting

Mapping panel with mappings and highlighting

5.5 Menu Options

5.5.1 File Menu

File Menu

From the File Menu you can select one of the following options

• Creating a new empty scenario or adding new layers to an existing scenario

• Importing a scenario

• Exporting a scenario

• Closing the Scenario

• Exiting the Application

5.5.2 View Menu

view menu
without hidden

panels

You can check the “Show node labels” or “Show link labels” options. This will
display the labels of nodes / links in the graph panel.

The “Hidden Panels” menu entry provides a means to restore closed or hidden
GUI components. Currently only the console can be closed and restored. This
functionality is provided by MuLaViTo and is only available if there are closed
GUI components available for restoration.

view menu with hidden
console

5.5.3 Generators Menu

Generators Menu

The Generators Menu provides the following three options

• Generate a scenario using the Scenario Wizard.

• Generate constraints for an existing scenario.

• Remove all constraints of the current scenario.

5.5.4 Algorithms Menu

Algorithms Menu

From the algorithm menu you can either select an algorithm to be rum or
remove all mappings of the current scenario.

Run an Algorithm
You can run an algorithm in order to create mappings between demands and
resources.

See the graphics above for a list of the currently available algorithms.

An algorithm can only be run if the current scenario has no mappings.

Remove all Mappings
This option removes all existing mappings of the current scenario and frees up
all resources in the substrate network.

5.5.5 Metrics Menu

Metrics Menu

The Metrics Menu enables the evaluation of the current scenario using one of
the available metrics. It is generated automaticly using reflection, to ensure
that all available evluations are displayed.

To perform an evaluation on the current scenario select it from the menu. The
result will be displayed in a dialog that also enables copying it. An exaple for
the average node stress is shown below.

Metrics Dialog

	1 Introduction
	2 Installation Requirements
	2.1 GLPK LP solver framework installation
	2.1.1 Unpacking the distribution file
	2.1.2 Configuring the package
	2.1.3 Compiling the package
	2.1.4 Check the package
	2.1.5 Install the package

	3 Editing
	3.1 Create, Edit, Import, Export and Manage Scenarios
	3.1.1 Scenario Creation From Scratch
	3.1.2 Scenario Editing
	3.1.3 Editing Nodes and Links
	3.1.4 Scenario Import and Export
	3.1.5 Scenario Generation

	4 Currently Supported Algorithms
	4.1 Algorithms brief description
	4.1.1 Virtual Node Mapping Algorithms
	4.1.2 Virtual Link Mapping Algorithms

	4.2 Algorithms and Mappings
	4.2.1 Mappings
	4.2.2 Implemented Algorithms

	5 GUI Features
	5.1 The Graph Panel
	5.1.1 Move Nodes
	5.1.2 Zoom in and out

	5.2 The Selection Panel
	5.3 The Mapping Panel
	5.4 The Console
	5.5 Menu Options
	5.5.1 File Menu
	5.5.2 View Menu
	5.5.3 Generators Menu
	5.5.4 Algorithms Menu
	5.5.5 Metrics Menu

