GRMS User Guide
Gridge 1.0

Piotr Kopta <pkopt a@mn. poznan. pl >
Krzysztof Kurowski <krzyszt of . kur owski @man. poznan. pl >
Bogdan Ludwiczak <bogdanl @an. poznan. pl >
Ariel Oleksiak <ari el @nan. poznan. pl >
Tomasz Piontek <pi ont ek@rmn. poznan. pl >
Juliusz Pukacki <pukacki @man. poznan. pl >

GRMS User Guide: Gridge 1.0
by Piotr Kopta, Krzysztof Kurowski, Bogdan Ludwiczak, Ariel Oleksiak, Tomasz Piontek, and Juliusz Pukacki

Copyright © Poznan Supercomputing and Networking Center

Thisguideis part of GRIDGE documentation

Table of Contents

0 111 oo [F o 1 o) o SR 1
A €LY ST W T 1 = Y/ 2
G € S 2 . 3
Job SUBMISSIONANA CONLIOL ... e e e e e e e e e 3
Task SUDMISSION @NA CONEIOLeeieee e e e et e e e e ean s 4
Listing jobsaccording to SPeCified Criteria 4
Listing tasksaccording to SPECIfied Crteriaoovvviiiiii e e 5
=g T= o TR] = 6
Getting information aboUt thejobc..uiiiii 6
Getting information aDOUL tNETASKc..uuiiiiii e 7
FINAINGTESOUICES ... ettt ettt e et e et e e e ennens 7
[N o 1] o= (o 1S PRSP 8
AUXIIary FUNCEIONEIITY ...t e e e e e e e e et e et e e aaa e 9
4. GRM S JOb DESCIIPLION (GID) ...uietiieiiieee et e ettt e e e e e e e et e e et e e et s e e et e e et e e et e e eanaeees 10
LB RS o= ol {Tor= 1 o] ISP 11
JODDESCIIPLIONEXAMPIES ...ttt e e et e e e b 17
5. GRMSJAVACTTENL ...ttt e 26
REGUITEIMENTS ...t oot e et e et ettt e e et e et aa e e et e e et e e et e eanaees 26
Installation and configuration of GRMSCIIENEcocuniiiiiiiii e 26
GRMS commMand lINECHENEcuuniiiiii e e e e e e e 27
EXECULING GRM SCHENL ...oevteeeii ettt e e et e e e e s 27
(0] 01 = 1o 0 PSP PU PP PPPPT 27
UL o ST = PP TPPT PPN 29
EXAMPIESOf @XECULION ...t et e e e et e et e e e e eennas 30

List of Examples

4.1 TNESIMPIESECASE ... ettt ettt et e ettt e et e e et et e et et e e e b 17
4.2. HOSENAME SPECIHTICATION ...ttt ettt e e e et e e eb e eanaaees 17
G T = =S 01U ot =Y (o 1 (o) o 17
N 01V o o = 1 o] 18
S T Tor= N [T 1 o] L SR 18
A6, ATQUIMENES ..ottt ettt ettt et e et et et e ettt e et et e e et e e e 18
T L= 1 = o 1 o 1] TS SO P TSP PR 19
I 1 L==1= = o] oo Lo LU | AP PR RPRRPIN 19
e B = v (0 1= = 1 1o 1 TP 19
a0 IS =g 7= o T oL 20
TS = a0 = o o 1o | TP 20
422, ENVIFONMENEVANTADIES ... e e e e e 20
413 . GRMSVANBDIES ... 21
404, SUSPENA/RESUITIE ... ettt e et e et et et e et e e e bt et ta et et e e e et e e ean e eebn e eeeaaaennaaes 21
N = S TS = 017 =0 o) o PP 22
SN B = L= = 1 o= P 22
L7 NS .t an 23
4.18. Fil e/ DireCtOriESPIOPEITIES ...e.eve ettt ettt ettt e e e et e e e na e eeaaas 24
L O (U Toi I = S P 24
A.20. TIMECONSITAINES ...ttt ettt et ettt e et e et e e ea e ettt e et e e e e e et e e et e e et e e ebn e eeneeannas 24
N0 (Vg o= Lo 1 1 =] £ P 25

Chapter 1. Introduction

The Gridge Resource Management System (GRMS) is an open source meta-scheduling system, which allows
developers to build and deploy resource management systems for large scale distributed computing infrastruc-
tures. GRMS, based on dynamic resource selection, mapping and advanced scheduling methodology, combined
with feedback control architecture, deals with dynamic Grid environment and resource management challenges,
e.g. load-balancing among clusters, remote job control or file staging support. Therefore, the main goal of
GRMS isto manage the whole process of remote job submission to various resources such as batch queuing sys-
tems or single computational nodes. Finally, GRMS can be considered as a robust system which provides ab-
straction of the complex Grid infrastructure as well as a toolbox which helps to form and adapts to distributing
computing environments. GRMS has been designed as an independent set of components for resource manage-
ment processes which can take advantage of various low-level Core Services, e.g. GRAM, GridFTP and Gridge
Monitoring System, as well as various Grid middleware services, e.g. Gridge Authorization Service (GAS),
Gridge Data Management Service (DMS). All these services working together provide a consistent, adaptive
and robust Grid middleware layer which fits dynamically to many different distributing computing infrastruc-
tures. The GRM S implementation requires Globus software to be installed on Grid resources, and uses Globus
Core Services deployed on resources. GRAM, GridFtp, MDS (optional). GRMS supports Grid Security Infras-
tructure by providing the GSl-enabled web service interface for all clients, e.g. portals or applications, and thus
can be integrated with any other middleware Grid environment. One of the main assumptions for GRMS is to
perform remote jobs control and management in the way that satisfies Users (Job Owners) and their applications
requirements. All users requirements are expressed within XML-based resource specification documents and
sent to GRM S as SOAP requests over secure connections. Simultaneously, Resource Administrators (Resource
Owners) have full control over resources on which al jobs and operations will be performed by appropriate
GRMS setup and installation. Note, that GRM S together with Core Services reduces operational and integration
costs for Administrators by enabling Grid deployment across previously incompatible cluster and resources.
Technically speaking, GRMS is a persistent service within a Tomcat/Axis container. It is written completely in
Java so it can be deployed on various platforms. With the Gridge Authorization Service, GRMS is able to man-
age both, job grouping and jobs within collaborative environments according to predefined VO security rules
and policies. With the Data Management services from Gridge, GRMS can create and move logical files/
catalogs and deal with data intensive experiments. Gridge Monitoring Service can be used by GRMS as an addi-
tional information system. Finaly, Mobile service can be used to send notifications via SMS/emails about
events related to users jobs and as a gateway for GRM S mobile clients. GRMS is able to store all operationsin
a database. Based on this information a set of very useful statistics for both end users and administrators can be
produced. All the data are also a source for further, more advanced analysis and reporting tools.

Chapter 2. GRMS Functionality

GRMS offers complete set of capabilities to serve resource management in Grid environments. The most impor-
tant features of GRM S are:

* Job and task submission

e Job control (cancel, suspend, resume)

* Choosing the “best” resource for the Job execution, according to Job Description and chosen mapping algo-
rithm — multicriteria algorithm

* Submitting the GRM S Job according to provided Job Description to chosen resource
» Job migration
* Registering an application callback information
» Application checkpointing:

» using defined checkpoint interface implemented by application
» Complex information about submitted jobs and tasks

e List of jobs submitted by user

* Information about the Job status

« Job Description used for submission

* Information about request progress

* Name of host where the Job is running

e Submission time

e Start time on resource

e Finishtime

e History of job execution (migrations)
» Dynamic resource discovery

» Ability to use multiple information sources about Grid environment (standard Globus MDS (GIIS/GRIS in-
frastructure), iGrid, Delphoi, Mercury)

e Support for file staging — transferring input and output files and whole directories (GridFTP, GASS, Gridge
Data Management System, SRB, RFT)

* Mechanism for registering for events notification

» Notifying about status changes and request progress (e.g. viae-mail or sms)

» Time congtraints for running jobs

» Dynamically extending (during application runtime) job description by adding output data
» Support for grouping jobs in projects (notifications for project)

e Support for workflow jobs: job can consist of set of independent tasks with or without precedence con-
straints

Chapter 3. GRMS API

GRMS API provided for end users, can be divided into several groups. The following groups can be distin-
guished:

* Job submission and control,

» Task submission and contral,

» Listing jobs according to specified criteria,

» Listing tasks belonging to the given job according to specified criteria,
* Managing tasks,

e Getting information about jobs,

» Getting information about tasks,

e Getting alist of resources that meet user’ s requirements and criteria,

* Managing notifications,

e Auxiliary functionality.

Next sections describe all these functionality groups.

Job submission and control

This group of functionality allows to submit and control whole jobs. GRMS treats jobs as a sets of dependent
tasks that constitute a logical whole. Each task can be executed by GRMS only if all tasks it depends on are in
specified states. The whole job is described by XML document called “job description” containing information
about the job as awhole (job properties) and information about all its tasks needed to map tasks to resources and
to execute them in a proper way (dependencies between tasks, locations of executables, files that have to be
staged in and/or out, arguments, environment variables, checkpoint files, etc.).

The following functionality can be used for job submission and control:

e submitJob —itisthe main functionality of GRMS. Using it a user can submit ajob (a set of tasks) described
by the GRM S Job Description to be executed by GRMS. If the description is valid GRMS returns to the user
aglobally unique job identifier (GRMS_JOB_ID), which unambiguously identifies the job in the system

* conmmitJob - this functionality allows to approve for processing a job submitted with two phase commit
mechanism. The two phase commit mechanism can be used to register notifications before processing of the
job will be started by GRMS.

» suspendJob — using this functionality user is able to suspend the running job (all running tasks). It means
that each running task forming part of job will be checkpointed and all checkpoint files/directories will be
staged out. If anew job description is not defined the previous one will be used.

» resunmeJob —thisfunctionality resumes the execution of the job which was previously suspended. It is possi-
ble to define anew job description or to use the previous one.

e cancel Job —thisfunctionality allows the user to stop the running job. The difference between the suspend-
Job and cancel Job functionalities is that in case of "cancel Job" funcionality all tasks are stopped (killed)
by the system and checkpoint operation is not performed for running tasks.

e recoverJob - because experiments (jobs) controlled by GRMS can consist of huge amount of potentially
time-consuming tasks that proper execution depends not only on the correct job description, but can be also

3

GRMS API

broken due to some unpredictable event. The recover Job functionality allows to restart the job, skipping
execution of previously finished tasks, taking their results produced previously.

* refreshJobProxy - for job submission and then execution of tasks on resources GRMS uses the time-
limited user proxy, which can expire during the processing of job causing lost of control on running tasks
and making impossible to start new ones. This can happen very often specialy for long running jobs, which
finish time is hard to predict and strongly related to available resources. Addressing the issue GRMS alows
to prolong the user proxy for the whole job using r ef r eshJobPr oxy functionality.

Task submission and control

This functionality has similar meaning to the corresponding one described in previous section. The differenceis
that it concerns not the whole job but single tasks. The following functionality can be used for task submission
and control:

* nigrateTask — thisfunctionality allows the user to migrate one of tasksto a“ better” resource (if such one
exists) to improve task performance or system utilization. The task isidentified by the job identifier returned
as aresult of job submission and task identifier specified by the user in job description. To be migrateable
task has to be checkpointable. When application is checkpointable on demand (implements relatively simple
"checkpoi nt " web service interface, which location is registered in GRMS. In this case the whole process
of task migration is relatively simple. The task to be migrated is checkpointed on the resource, which it is
currently running on and then restarted on a new one pointed by the user or chosen by GRMS. GRMS is
able to migrate also applications not implementing the af orementioned interface. In this case application pe-
riodically has to perform checkpoint procedure saving files to any storage and during the migration process
itisjust killed by GRMS and then the execution is resumed from the state saved in the last checkpoint file.
Both described above cases are typical examples of application/user-level checkpointing, requiring from the
application developer to implement mechanisms for storing application data to checkpoint files, and assumes
that checkpointing procedure is hard coded in the application. The migration process can be performed by
GRMS according to a new job description passed as the parameter. If the new job description was not de-
fined GRMS tries to perform the request basing on the job description passed during the submission or the
previous migration request. The migration is done only when a better resource was found.

* commi t Task - this functionality allows to approve task submitted as demanding commitment for processing
by GRMS. Processing of every task, irrespective of precedence constraints resulting from dependencies be-
tween tasks, can be postponed until it will be approved by commitment (two phase commit mechanism).

* suspendTask — using this functionality the user is able to suspend running task. It means that the task form-
ing part of job will be checkpointed and all checkpoint files/directories will be staged out. If a new job de-
scription is not defined the previous one will be used.

» resunmeTask — thisfunctionality resumes the execution of the previously suspended task. It is possible to de-
fine anew job description or to use the previous one.

e cancel Task — alows to stop (kill) the running task. The difference between the suspendTask and can-
cel Task functionalities is that the task to be cancelled is stopped (killed) by the system and the checkpoint
operation is not performed.

* extendTaskExecutionTi me - addressing many advanced scenarios GRMS is able to handle tasks having
some time constrains and requirements, like for example specified period of time when the execution of task
must start or the duration of task execution. The ext endTaskExecut i onTi ne functionality allows to prolong
the execution of time scheduled tasks.

Listing jobs according to specified criteria

GRMS is able to return a list of jobs (their identifiers) belonging to the user that invoked the request or to a
specified project. It is possible to query for all jobs or a subset of jobsin specific state. The following operations
provide the af orementioned functionality:

GRMS API

e getJobsList —returns alist of jobs belonging to the user, optionaly it is possible to define the requested
status,

* getAllJobsList —returnsalist of al jobsin given state.
e getProjectJobsList - returns alist of jobs belonging to the specified project, optionally it is possible to
define the requested status,

Every job isin the system must be in one of the following states.

e UNCOWM TTED - the job was submitted with two phase commit option and waits to be committed,
* SUBM TTED - the job was submitted to the system and waits for the execution,

e SUSPENDED — the job was suspended,

* ACTIVE—thejobisactive,

* FI NI SHED — the job was completed,

* FAILED-—thejob (at least one crucial task belonging to the job) failed, there could be many reasons of this
(for example, GRM S was not able to find the requested resource or copy all needed files),

e CANCELED - the job was canceled by the user,

* BROKEN - one or more of crucial tasks failed, GRMS waits until active tasks will finish and change the status
of thejob to FAILED.

Listing tasks according to specified criteria

GRMSisableto return alist of tasks (identifiers) being a part of concrete job. It is possible to query for all tasks
or subset of al tasksin given state. The following method provides the aforementioned functionality:

e get TasksLi st —returnsalist of tasks, optionally it is possible to define the requested status,
Below, thereisafull list of task statuses in the system:

* UNSUBM TTED —the task cannot be started because of dependencies,
* UNCOWM TED - the task waits to be commited,
* QUEUED - the task was put into the queue and waits for execution,

e PREPROCESSI NG — GRMS makes some actions needed to start the task (looks for the resource, staging in
files),

* PENDI NG—thetask is pending in the queueing-system,
* RUNNI NG—thetask isactive,
» STOPPED —the task was finished or was checkpointed, but GRM S did not start staging out files,

* POSTPROCESSI NG — GRMS makes some actions needed to complete the task, for example staging out files,
clearing working environment, etc.,

e FI NI SHED — the task was compl eted,

* SUSPENDED — the task was suspended,

GRMS API

e FAI LED — the task failed, there could be many reasons of this (for example, GRMS was not able to find the
reguested resource or copy all needed files),

* CANCELED - the task was canceled by the user.

Managing tasks

This functionality gives the user possibility to register and unregister the task in GRMS for checkpointing and
manage these settings.

Moreover, the user is able to manage dynamically output, checkpoint files and directories.

* registerTaskApplicationAccess — This functionality allows to register information needed for check-
pointing the task. To be checkpointable the task has to register itself in GRMS passing to the system its
GRMS JOB_ID and GRMS TASK_ID (both can be taken from the environment variables set up by GRMS
during the submission process) and the address of the Web Service implementing the “ checkpoint API”. Us-
ing this interface GRMS is able to send the checkpoint request to the application and triggers off the check-
pointing. Thisis example of application-level checkpointing, which requires the application developer to im-
plement mechanisms for storing all data to a checkpoint file. In other words, checkpointing is hard coded in
the application. This kind of checkpointing is obviously much more portable and more applicable in Grids.
Note that the application developer has to implement all internal mechanisms to write a checkpoint file to
the local disk when the application receives the checkpoint call from GRMS. If the task has no registered in-
formation about location of "checkpoint” web service interface GRMS performing the "migrate” request
tries to checkpoint the application using periodical checkpoint if such one exists.

* unregisterTaskApplicationAccess - this functionality gives the possibility to unregister the job for
checkpointing,

e get TaskAppl i cati onAccess - returnsinformation about settings related to the "checkpoint" functionality,

* addTaskFil eDi rs —this functionality allows to register dynamically additional output/checkpoint files and/
or directories for the task with given id. The location of file/directory can be expressed as a physical or logi-
cal path.

* get TaskFil eDirs —returnsalist of output/checkpoint files and directories registered for the given task. It is
possible to filter files according to logical type (inputs, outputs, checkpoints) and their origin (job descrip-
tion or dynamic registration),

» del et eTaskFil eDirs —alowsto unregister the set of output/checkpoint files and/or directories.

Getting information about the job

This functionality gives the user a possibility to get complex information about the job with a given identifier.

» get Jobl nf or mat i on —returns the general information about the job
e project —project, which the job belongsto,
e user Dn — user Distinguish Name,
e status — status of the job,
e waitForCommit - indicatesif the job waits for commit,
e subni ssi onTi me —submission time,
e finishTinme—finishtimeor null if thetimeis unknown,

e errorDescription—message describing the cause of last error,

6

GRMS API

taskl dentifiers - list of tasks forming the job,
t askCount - number of tasks,

j obDescri pti on —description of the job.

Getting information about the task

This functionality gives the user a possibility to get complex information about the task with a given identifier.

» get Taskl nformation —thisfunctionality returns the general information about the task

t ype - type of the task (single, multiple, mpi, mpichg),

status — status of the task,

wai t For Conmi t - indicatesif the task waits for commit,

submi ssi onTi me —submission time,

fini shTi me —finish time or null if the time is unknown,
proxylLi f eti me - lifetime of the proxy associated with this task,
request St at us - status of GRM S request,

errorDescri pti on —message describing the cause of last error,
hi st oryLengt h - length of the history of the task,

hi st ory - list of items describing history of the task's life. Every item of this history contains the follow-
ing information:

e start Ti me —time when GRMS started processing th task,

* | ocal Subni ssi onTi me —time when the task was submitted on the local resource,

* local Start Ti me —time when the task was started on the local resource

* | ocal Fi ni shTi me —time when the task was finished on the local resource,

e taskDescription - description of the task - part of job description concerning the given task,

* applicationAccess - location of the service that can be used to checkpoint the application and the
process identifier of application.

e coall ocati on - list of coallocation items. Every item contains information about one host:
* host Nare - name of the host,
e count - number of processes running on this host,

* indexes - mpichg indexes of processes running on this host.

Finding resources

GRMS is able to find a list of resources that meet user requirements expressed in the job description in the
“resources’ sections (for example, parameters connected with operating system — name, version, release, name
of hogt, local resource management system, minimal amount of memory in MB, minimal number of processors,

GRMS API

minimal speed of cpu(s), etc.).

» findResources - returns alist of resources (in the form of resource manager contact strings) that meet re-
source requirements from the job description. Because job can consist of many tasks user has to specify task,
which the system should find resources for.

Notifications

GRMS also provides support for events notifications. A notification mechanism is very general and designed to
allow clients to receive information in asynchronous way. User can register for notifications concerning the
whole job or single task. The difference except the obvious one is that in case of tasks GRMS is able to send to
the registered clients two kinds of notifications: the “status notification” connected with changes concerning a
life cycle of the task and the “request notification” related to the performed GRMS request. Jobs have only "sta-
tus notifications'. Currently GRMS is able to send notifications in two ways. using SOAP protocol and writing
to a remote file. Registered notifications can be queried according to some criteria and unregistered. For every
registered notification GRMS is able to return detailed information describing it.

The following set of functionalities can be used to manage GRMS natifications:

* registerJobStatusNotification - this functionality allows to register location of service or remote file
for notifications concerning changes of job status. GRMS is able to send natification every time when the
status of job has changed (for example from ACTI VE to FI NI SHED or FAI LED). It is possible to register only
for some subset of statuses.

» getJobStatusNotifications - thisfunctionality lists all notifications concerning given job,

e getJobStatusNotification - thisfunctionality returns information concerning notification with given id,

* unregisterJobStatusNotification - alowsthe user to unregister the notification with given id,

e registerTaskStatusNotification - hasthe same meaning as registerJobStatusNotification, but concerns
alife cycle of asingletask,

* registerTasksStatusNotification - registersinone call notifications for al tasks forming ajob,

e registerTaskRequest StatusNotification - registersfor given task notification concerning processing of
request,

» getTasksNotifications - lists descriptions of notifications registered for given task. It is possible to spec-
ify type of event (status vs. request).

* get TaskNotification - for agiven task returnsinformation concerning notification with given id,

e getTaskStatusNotification - for a given task returns information concerning "status'-notification with
givenid,

» getTaskRequest StatusNotification - for a given task returns information concerning "re-

quest"-natification with given id,
e getTaskStatusNotifications - returnslist of "status'-notifications registered for a given task,
* get TaskRequest Stat usNot i fi cati ons - returnslist of "request”-notifications registered for a given task,

* unregisterTaskNotification - allowsthe user to unregister the notification with given id.

Every notification sent by grms contains following information:

GRMS API

* jobld-GRMSjobidentifier [%]],

e notificationld - notification identifier, [%n]

e project - project which thejob or task belongs to, [%p]

* tine - time when the event occurred, t is possible to specify if the time should be in human readable format
"January 25, 2005, 17:31:10 GMT" [%c] or as anumber of milliseconds since January 1, 1970, 00:00:00
GMT [%C]

» user - user whom the job or task belongs to, [%u]

* registrator - user who registered for this notification, [%r]

* errorDescription - message describing the cause of last error, [%od]
Depending on type of notification it can contain also:

e taskld - task identifier, [%t]

* status -job or task status. In case of task the status can be life cycle or request one. [%s9]

I mportant

A letter in square brackets after the description of parameter is a mark that represents following infor-
mation in string describing format of the notification message for GASS notifications. The format
string can contains any text in which set of defined above marks will be replaced by information taken
from GrmsNotification. For example "Job %,j has changed it statusto %s at %c !".

Auxiliary functionality

The functionality listed below has no productive character, but can be useful for testing purposes.

* testJobDescription - GRMS givesthe possibility to check the correctness of the job description using the
“testJobDescription” functionality. In the case of incorrectness of description GRMS returns the diagnostic
information describing the syntax error.

» get ServiceDescription —thisfunctionality allows to get a description of GRMS Web Service interface. It
is possible to get the description in ashort or in afull version. Thefirst oneislimited only to the name of the
service and its version. The second one contains additionally some diagnostic information (locations of ser-
vice and client, user’s Distinguish Name) and the detailed description of Web Service interface.

Chapter 4. GRMS Job Description
(GJD)

As it was discussed in the previous section all information needed to execute a job including resource require-
ments have to be described in the form of the GRMS Job Description. It is an XML-based document, which al-
lows users to specify a description of ajob executable, job resource requirements, needed data, dependencies be-
tween tasks etc. Generally, the following parameters are available in the GRM S Job Description:
» tasksexecutables:

* location of executables,

e arguments,

« file arguments (files that have to be accessible in aworking directory of the running executable),

e environment variables,

e standard input,

e standard output,

e standard error,

« checkpoint definition.
* resource requirements:

« name of host for the task execution (if provided no scheduling algorithm is used),

e operating system,

« required local resource management system (Isf, pbs, condor, etc.),

* minimum memory required,

e minimum number of CPUs required,

e minimum speed of the CPU,

» required applications installed at destination hosts,

¢ network parameters (bandwidth, latency and capacity).
* congtraints:

e hard constraints,

» soft constraints
» tasksexecution times:

* task execution time,

« timedot (e.g. from 10.00 till 16.00),

o timeperiod (e.g. till 31st March except Sundays).

» workflow:

10

GRMS Job Description (GJD)

e dependencies between tasks.

Locations of files can be specified as gridFTP/GASS urls as well as logical ones using a data management sys-
tem that supports logical file names.

GJD Specification

<grmsJob>

<jobNote>

<task>

<taskNote>

<resource>

GRMS Job Description starts with the <grmsJob> element, which contains the "appid" at-
tribute that is an identifier (assigned by the user) of the application. The optional "project” at-
tribute defines a name of a project within which a job was submitted. The "commitWait" at-
tribute specifies whether a job must be committed before execution. If commitWait is set to
'true’ a submitted job will not be executed until it is committed. Otherwise it is executed with-
out waiting for a commit. The default value is 'false'. The <grmsjob> element contains an op-
tional element <jobNote> and a mandatory list of <task> elements.

contains an arbitrary job description. It can be used by users or client software to store specific
information about ajob.

this element is used for describing a single task, which is generally a definition of executable
together with a set of parameters (executable parameters, standard input, output and error
streams, environment variables etc.) and resource requirements needed for its appropriate exe-
cution. It contains one mandatory attribute and four optional ones. The mandatory "taskid" at-
tribute specifies an identifier of a task. This identifier must be unique within the job descrip-
tion document. If the "persistent” attribute is set on 'true’ GRMS does not remove task's work-
ing directory after its completion. The default value is 'false'. In the "extension” attribute one
can specify such atask that this task will be executed in its working directory. The "crucia”
attribute determines whether a falure of this task should cause a falure of the whole
job(workflow). The default valueis 'true’. The "commitWait attribute has the same meaning as
in the <grmsJob> element. If commitWait is set to true a submitted task will not be executed
until it is committed. The default value is 'false’. The <task> element has to contain the
mandatory <executable> element and optionally the following elements: <taskNote>,
<resource>, <hardConstraints>, <softConstraints>, <executionTime>, and <workflow>.

contains an arbitrary task description. It can be used by users or client software to store spe-
cific information about a task.

this element is used to describe resource requirements for execution of a single task. There
might be more than one <resource> element. The 'OR' logical operator is used for these ele-
ments during a resource discovery process. It means that resource requirements are satisfied if
a resource description matches requirements specified in at least one of <resource> elements.
Resource description can contain the following information:

<ostype> type of the operating system

<osname> name of the operating system,

<osversion> version of the operating system,

<osrelease> release of the operating system,

<hosthame> name of the host where job should be executed. It may contain one optional
"tileSize" attribute that defines how much processes of paralel application
must be executed at this host. Defining multiple <resource> elements a user
can define explicitly allocation of a parallel application among hosts.

<localrmname> loca resource management system available at the host. Acceptable values

are: "fork” (default value), "Isf", "pbs’, "sge", “condor”, "ccs’, and "queue’
(arbitrary queueing system),

11

GRMS Job Description (GJD)

<memory>
<cpucount>
<cpuspeed>

<bandwidth>

<latency>

<capacity>

<applications>

<freememory>
<diskspace>
<freediskspace>
<queue>

<freecpus>

I mportant

minimal amount of the memory in MB,

minimal number of processors,

minimal speed of CPU(s) (in MHz),

is a measure for the amount of network bandwidth that is "unused" or in
other words available between two hosts (in MBs). It contains the "host-
name" attribute which defines a second host,

denotes the minimal time required to send a message to another host (in sec-
onds). It contains the "hostname" attribute which defines a second host,

denotes capacity network between two locations determines the maximum
throughput that you can achieve (the capacity of the entire route is deter-
mined by the link with the lowest capacity) (in MBs). It contains the "host-
name" attribute which defines a second host,

is alist of required applications that have to be installed on a destination
host. Every single <application> element contains two optiona attributes:
"version" and "instanceCount".

The"version" attribute denotes arequired version of an application.

The "instanceCount" attribute defines a required number of application in-
stances that must be started in order to execute the main job. A default value
isl.

defines aminimal amount of free memory in MB,

defines aminimal amount of disk spacein MB,

definesaminimal amount of free disk spacein MB,

specifies a name of a queue to which ajob has to be submitted,

defines aminima number of free CPUs.

Please note, that if the application is not "installed" on all remote hosts, resource requirements have to
contain information at least about an operating system, which the executable was compiled for, or a
name of machine where the application should be executed.

<hardConstraints>allows defining advanced constraints. It can be used if user's requirements are too complex to
be expressed in the <resource> element. It contains alist of <constraint> elements.

<constraint>

defines a single constraint concerning computational resources (nodes, clus-
ters etc.) that must be met (e.g. number of CPUs in range <4,32>). The op-
tional "indiff Threshold" attribute defines the maximal difference between a
required value and an actual value of a parameter such that a given resource
satisfies a constraint (e.g. for the constraint: Memory > 50MB and in-
diffThreshold=5MB, a resource providing Memory=45MB satisfies this
constraint while a resource providing Memory=44MB does not)

<parameter> defines a constraint imposed on a certain parameter. The
required "name" attribute specifies a parameter on which
the constraint isimposed (e.g. CPUspeed). The name must
define a parameter supported by GRMS. It is not case sen-
sitive. It contains lists of <value> and <range> elements.

12

GRMS Job Description (GJD)

<endpoint>

The 'OR' logica

operator is used to evaluate the whole

constraint. It means that a constraint is satisfied if the re-
quired value is equal at least to one of specified values or
belongsto at least one of specified ranges.

<value>

<range>

defines the exact required value. A con-
straint is satisfied if it is equal to avalue
of a parameter provided by a particular
resource (taking into account the indif-
ference threshol d)

defines the minimum and maximum val-
ues using the optional "min" and "max"
attributes. If min or max value is not de-
fined -infinity and infinity are taken as
default respectively. Thus if neither min
nor max values are defined all real val-
ues satisfy this constraint.

defines an endpoint for network parameters. For instance,

it may be used for a definition of a minimum bandwidth
between a destination host and a host specified in this ele-

ment.

<softConstraints>expresses user's preferences needed by a resource broker to select the best resources for a task
(for example, to find a machine with the lowest CPU load and the greatest amount of free
memory assuming that CPU load is two times more important than free memory). It has one
mandatory attribute: "preferenceType".

The "preferenceType" attribute determines a method of expressing user's preferences. Two
methods are currently supported:

* PRIORITY - value of the <importance> element denotes a numeric measure of the con-
straint's importance (e.g. if this value is two times greater than for another constraint then
this constraint is two times more important)

* RANKI NG - value of the <importance> element denotes a position of this soft constraint in
the ranking of all soft constraints (e.g. CPU load is the second most important constraint)

It consists of alist of <constraint> elements.

<constraint>

defines a single soft constraint and its importance. It contains three at-
tributes. The mandatory "importance” attribute defines an importance of this
congtraint (according to the preferenceType defined in the
<softConstraints> element). The optional "indiff Threshold" attribute has the
similar meaning as for the <hardConstraints> element. It defines when val-
ues of parameters are considered equal.

soft

The "optimizationType" attribute allows a user to decide whether a given
parameter is to be minimized or maximized. The following values are sup-
ported:

GAI N - the higher value of parameter means the better resource

COST- the less value of parameter means the better resource

13

GRMS Job Description (GJD)

<executable>

<application>

<execfile>

<arguments>

The <constraint> element consists of two sub-elements. the mandatory
<parameter> and optional <endpoint> element.

<parameter> defines a name of a parameter on which the constraint is
imposed (e.g. CPUspeed). The name must define a param-
eter supported by GRMS. It is not case sensitive.

<endpoint> defines an endpoint for network parameters. For instance,
it may be used for a definition of a minimum bandwidth
between a destination host and a host specified in this ele-
ment.

describes the executable. It contains “type”, “count” and "checkpointable" attributes and must
contain either <application> or <execfile> element. Optionally, it can contain the following
single elements. <arguments>, <stdin>, <stdout>, <stderr>, <environment>, and
<checkpoint>.

The “type” attribute specifies an executable type - a way in which the job-manager submits
the job. The following values are available:

» single- evenif the count > 1, only 1 process or thread will be started,
« multiple - runs a number of processes or threads defined by the "count" attribute,

* mpi - uses an appropriate method to run a task compiled with a vendor-provided MPI li-
brary. A task is started at a number of nodes defined by the "count" attribute.

e mpichg - runs a task across multiple sites using MPICH-G library. A task is started at a
number of nodes defined by the "count™ attribute.

The “count” attribute denotes a number of processes of the executable. A default valueis 1.

The "checkpointable” attribute determines whether ajob can be checkpointed or not. A default
valueis false.

defines an application that is to be executed. This application must be available (installed ear-
lier) on adestination host. It may contain the "version" attribute.

this element describes a file that is to be used as an executable. To this end, it contains, the
"name" attribute, four additional attributes describing an operating system. The "name" at-
tribute denotes a local name of a file after staging in. The remaining optional attributes "os-
name", "ostype", "osversion”, "osrelease" defines an operating system that a given executable
is designed for. It has to contain either <logicalld> or <url> element and may contain an op-

tional "reference” element.

<logicalld> specifiesalogical fileidentifier. GRMS uses this identifier to get afile from
data management system. A user do not need to know URL location of a
file. The system GRMS uses depends on GRMS configuration. It contains
an optional "user" attribute that specifies an owner of afile in a data man-

agement system,
<url> denotes URL location of afile (gass http, grid ftp),
<reference> specifies alogical file reference to afile that is output of other task of this

job. In thisway a user do not need to specify exact file locations and names
to use output of one task as an executable in another.

defines arguments for a task execution. Each argument must be either <file>, <value>, or

14

GRMS Job Description (GJD)

<stdin>

<stdout>

<stderr>

<environment>

<checkpoint>

<directory> element.

<file>

<vaue>

<directory>

this element describes a file that is input or output argument for this exe-
cutable. It contains, two mandatory attributes. "name" and "type", three ad-

ditional ones: "required”, "append”, and "permissions’. The logical path is
the concatenation of the “name” attribute and the value of tag.

* "name" - denotes alocal name of afile after staging in or before staging
out,

» "type" - specifies a type of afile that can have one of the values: "in"
(for input file), "out" (for output file),

* "required" - specifies whether this file is required to run this task. A de-
fault is'true’ (e.g. atask will not be executed if thisfile is not available),

» "append" - determines if existing file with the same name should be
overwritten or appended. A default is 'false’ (e.g. a file will be overwrit-
ten),

e "permissions' - defines unix-like permissions that will be given to this
file during creation

<logicalld> specifies a logical file identifier. GRMS uses this identi-
fier to get this file from or put it to a data management
system. A user do not need to know URL location of a
file. The system GRMS uses depends on GRMS configu-
ration. It contains an optional "user" attribute that speci-
fies an owner of afilein a data management system,

<url> denotes URL location of afile (gass http, grid ftp),

<reference> specifies a logical file reference to afile that is output or
input of other task of this job. In this way a user do not
need to specify exact file locations and names to use out-
put of one task as an input in another.

describes command line arguments of the executable.
can be used to describe a directory, which is needed for the execution of this

task or has to be transferred after this task is done. It contains the same set
of attributes and elements as the <file> element.

denotes standard input for the executable. It contains the same elements as the <file> element,

denotes standard output for the executable. It contains the same elements as the <file> ele-

ment,

denotes standard error for the executable. |t contains the same el ements as the <file> element,

can be used to describe environment variables for a task execution. Each <variable> element
contains a variable's value while the attribute "name" denotes a name of this variable,

has to be used for ajob description for the migration call. It describes application's checkpoint
files and directories. It has to contain one or more <file> or <directory> elements (for details
see description of these elements for <execfile> element).

<executionTime>defines time constraints that are taken into account during job scheduling. It must contain the
<execDuration> element and it may contain the <timeSlot> and <timePeriod> elements.

15

GRMS Job Description (GJD)

<workflow>

<timeSlot>

defines a dot within a day when a job must be executed (e.g. between
10.00AM and 4.00PM). It must include the <dotStart> element and either
the <slotEnd> or <slotDuration> elements.

<dotStart> specifies start time of the dot (as time of a day). A task
must be started after that time.

<slotEnd> specifies end time of the slot (as time of a day). A job
must be started before that time.

<dlotDuration> specifies duration time of aslot. A task must be started be-
fore slot duration time ends.

<execDuration> specifies execution time of atask in minutes (i.e. it defines length of the pe-

<timePeriod>

riod when aresource reservation is needed for atask).

defines a time period when a task must be executed (e.g. between Monday
and Friday). It must contain either the <periodEnd> or <periodDuration> €l-
ements. It may aso include the following optional elements. <periodStart>,
<excluding>, and <including>.

<periodStart> specifies start time of a period during which a task must
be started (e.g. 31st January 10.00AM).

<periodend> specifies the end of a period (e.g. 12th February 2005
16:00PM).

<periodDuration>specifies duration of the time period (e.g. one week). If
<periodStart> is not specified a default value of a period
start timeisacurrent time.

<including> restricts a period when a task can be executed to certain
days of a week (using the <weekDay> element) and/or
dates (using the <dateDay> element), e.g. execute a job
only on Fridays.

<excluding> excludes certain days of aweek (using the <weekDay> el-
ement) and/or dates (using the <dateDay> element) from a
period when a task can be executed, e.g. do not execute
jobs on Sunday.

defines aworkflow of tasks. It must contain alist of parents. It can also have the optional "par-
entStates” attribute which specifies whether this task has to be run after all parents meet re-
quired states ("AND" value) or any of parents meets arequired state ("OR" value). "AND" isa

default value.

<parent>

specifies a parent of this task. It can have two optional attributes: "trigger-
State”" and "runSameHost". The former defines such a parent state that if ob-
tained by the parent this task can be started. A default value is 'FINISHED'
which means that a task can be executed when its parent finishes. The latter
specifies whether this task has to be run at the same host as its parent. A de-
fault value is 'false’.

GRMSS supports the following environment variables that can be used in GRM S Job Description and will be re-
placed by system with proper values:

HOME

JOB_ID

the job identifier,

the user’s HOME directory on the remote host,

16

GRMS Job Description (GJD)

TASK_ID the task identifier,
TASK_DIR the task's working directory
JAVA _HOME thelocation of the Java on the remote host.

HOSTNAME name of the host which the job is/was executed on.

JobDescription examples

Example 4.1. The simplest case

The simplest example of ajob that can be executed by GRMS, is the job consisting of one task, which describes
an application that does not need any arguments, has no resource requirements and its user is not interested in
catching stdout and/or stderr. Let’s assume it is the /bin/date program, which should be available on each unix/
linux platform. Please take a note of the number of slashes in the file url. The amount of slashesis caused by in-
consistency between RFC 1738, which defines the file:// url, and the GlobusURL class, which implements this
norm. In RFC, the root directory is accessible by typing 3 dashes, but the GlobusURL needs four ones.

<grnsJob appi d="exanpl el">
<task taski d="date">
<execfil e name="exec-file">
<url>file:////bin/date</url>
</ execfil e>
</ execut abl e>
</task>
</ gr msJob>

Example 4.2. Host name specification

If the /bin/date should be executed on a specific machine the GRMS Job Description has to be extended by
adding <resource> and <hostname> tags.

<grnsJob appi d="exanpl e2" >
<task taski d="date">
<r esour ce>
<host nane>r agel. man. poznan. pl </ host nane>
</ resource>
<execut abl e type="single" count="1">
<execfil e name="exec-file">
<url>file:////bin/date</url>
</ execfil e>
</ execut abl e>
</task>
</ gr msJob>

In this case, /bin/date will be executed on the host r agel. nan. poznan. pl .

Example 4.3. Resour ce description

If the /bin/date should be executed on any linux machine, which has at least 2 CPUs. The jobDescription should
look as follow:

<grnsJob appi d="exanpl e3">
<task taskid="date">
<resour ce>
<osnane>Li nux</ osnane>
<cpucount >2</ cpucount >
</resource>
<execut abl e type="single" count="1">

17

GRMS Job Description (GJD)

<execfil e nane="exec-file">
<url>file:////bin/date</url>
</ execfil e>
</ execut abl e>
</t ask>
</ grmsJob>

Example 4.4. Physical location

If the execution of task should be preceded by getting an executable file from a specific location (defined by the
user), the <url> tag should be used appropriately. Let’'s assume that the file has the name “date” and it is placed
in the “examples’ directory, which is the subdirectory of the home directory of the user. The example <url>
looks as follows; gsi ftp: //ragel. man. poznan. pl / ~/ exanpl es/ dat e. (“~" denotes your working directory).
You can aso specify the whole gsiftp path to your executable
(gsiftp://ragel. man. poznan. pl // hore/ user 1/ exanpl es/ dat e). Note that there are two slashes after the
address of machine.

<grnsJob appi d="exanpl e4" >
<task taski d="date">
<execut abl e type="single" count="1">
<execfil e name="exec-file">
<url >gsiftp://ragel. man. poznan. pl / ~/ exanpl es/ date</url >
</ execfile>
</ execut abl e>
</ task>
</ grnsJob>

Example 4.5. Logical location

If the execution of task should be preceded by getting an executable file from the Gridge Data Management Sys-
tem, the <logicalld> tag should be used to specify logical identifier of file.

<grnsJob appi d="exanpl e5" >
<task taskid="data">
<execut abl e type="single" count="1">
<execfil e name="exec-file">
<l ogi cal 1 d>382</ | ogi cal | d>
</ execfil e>
</ execut abl e>
</ task>
</ gr msJob>

Example 4.6. Arguments

If the executable needs some input arguments (typically passed as command line arguments) they can be passed
as <vaue>s in the <arguments> section. GRM S Job Description for “/bin/echo Hel | o Wor | d” looks as follow:

<grnsJob appi d="exanpl e6" >
<task taski d="echo">
<execut abl e type="single" count="1">
<execfil e name="exec-file">
<url>file:////bin/echo</url>
</ execfil e>
<ar gunent s>
<val ue>Hel | o </val ue>
<val ue>Wor | d</ val ue>
</ argunent s>
</ execut abl e>
</task>
</ gr mrsJob>

18

GRMS Job Description (GJD)

Example 4.7. Filesstagingin

If aprogram needs for its proper execution some filesto be copied into aworking directory it can be done by us-
ing files of the “in” type. Let’s assume the user wants to execute “/bin/cat file.log”, wherefilelog isthefile
which should be copied first. It can be specified in the following way:

<grnsJob appi d="exanpl e7" >
<task taskid="cat">
<execut abl e type="single" count="1">
<execfil e name="exec-file">
<url>file:///lbin/cat</url>
</ execfil e>
<ar gunent s>
<val ue>file.l og</val ue>
<file name="file.log" type="in">
<url >gsiftp://ragel. man. poznan. pl / ~/ exanpl es/file.l og</url >
</[file>
</ ar gunent s>
</ execut abl e>
</ task>
</ grnsJob>

Example 4.8. Files staging out

If a program generates, as aresult of its execution, files that have to be transferred to some locations they can be
defined in the <arguments> section as files of the “out” type. Let's assume that we want to compress the file
“report” using tar and then the created archive should be copied to the location:
“gsiftp://fury. man. poznan. pl / ~/ exanpl es/ report.tar”.

<grnsJob appi d="exanpl e8" >
<task taskid="tar">
<execut abl e type="single" count="1">

<execfil e name="exec-file" type="in">
<url>file:///lbin/tar</url>

</ execfil e>

<ar gunent s>
<val ue>cfv</val ue>
<val ue>file.tar</val ue>
<val ue>report </ val ue>
<file nanme="report" type="in">

<url >gsiftp://ragel. man. poznan. pl / ~/ exanpl es/ report</url >
</[file>
<file name="report.tar" type="out">
<url >gsiftp://ragel. man. poznan. pl / ~/ exanpl es/report.tar</url >

</file>

</ ar gunent s>

</ execut abl e>
</ task>
</ grmsJob>

Example 4.9. Directoriesstaging in

If an application for its execution needs a directory to be staged in the location (logical or physical) can be ex-
pressed using <directory> section.

<grnsJob appi d="exanpl e9" >
<task taskid="dir" persistent="true">
<execut abl e type="single" count="1">

<execfil e name="exec-file">
<url>file:////bin/ls</url>

</ execfil e>

<ar gunent s>
<val ue>-1 a</ val ue>
<val ue>exanpl es</ val ue>
<directory name="exanpl es" type="in">

<url >gsiftp://fury. man. poznan. pl / ~/ exanpl es</ ur| >

19

GRMS Job Description (GJD)

</directory>
</ ar gunent s>
<st dout >
<url >${TASK_DI R}/ DI R txt </ url >
</ st dout >
</ execut abl e>
</ task>
</ gr msJob>

Example 4.10. Standard input

If aprogram needs to read some data from afileto stdin it can be specified by the <stdin> tag. Let’s assume that
we want to execute the /bin/cat reading stdin from the logical file with id 383, the output should be stored in
"stdout _fil e". Inthis case contents of logical file should be copied to "st dout _file".

<grnsJob appi d="exanpl e10" >
<task taskid="cat">
<execut abl e type="single" count="1">
<execfil e name="exec-file">
<url>file:///lbin/cat</url>
</ execfil e>
<stdi n>
<l ogi cal 1 d>383</ 1 ogi cal | d>
</ st di n>
<st dout >
<url >gsiftp://fury. man. poznan. pl / ~/ exanpl es/ stdout _file</url >
</ st dout >
</ execut abl e>
</ task>
</ gr msJob>

Example 4.11. Standard output

If a standard output (stdout) of executed application should be stored in a location defined by the user, it can be
done by using the <stdout> tag. Let's assume that we want to execute the application (e.g. grep), which findsin
agiven input file all lines containing the string “GRMS” and puts them to the logical file.

<grnsJob appi d="exanpl ell">
<task taski d="grep">
<execut abl e type="single" count="1">
<execfil e name="exec-file">
<url>file:////bin/grep</url>
</ execfil e>
<ar gunent s>
<val ue>CRMB</ val ue>
<val ue>grep_i nput </ val ue>
<file name="grep_i nput" type="in">
/fsrrl>gsiftp://fury.nan.poznan.pI/~/exaanes/grep_input</ur|>
<, 1le>
</ ar gunent s>
<st dout >
<l ogi cal 1 d>384</ | ogi cal | d>
</ st dout >
</ execut abl e>
</ task>
</ gr msJob>

Example 4.12. Environment variables

If a program requires some environment variables to be setup first, it can be done by using <environment> and
<variable> tags. Let's assume that we want to set GRMS environment variable to the “GRMS Example” and
then display it using a script containing the “/bin/echo $GRvs". Additionally the <stdout> should be redirected
to the specified file. In this case, an example of GRMS Job Description might look as follow:

20

GRMS Job Description (GJD)

<grnsJob appi d="exanpl e12" >
<task taskid="echo">
<execfil e name="exec-file">
<url >gsiftp://fury. man. poznan. pl / ~/ exanpl es/ echo. sh</url >
</ execfile>
<st dout >
<url>gsiftp://fury. man. poznan. pl / ~/ exanpl es/ echo_out </ url >
</ stdout >
<envi ronnment >
<vari abl e nane="GRM5">GRM5 Exanpl e</vari abl e>
</ envi ronnent >
</ execut abl e>
</ task>
</ grnsJob>

Example 4.13. GRM Svariables

This example presents the usage 0 GRMS environment variables. Output of the date command will be stored in
file that name contains job and task identifiers.

<grnsJob appi d="exanpl el3">
<task taskid="date">
<resource>
<host name>f ury. man. poznan. pl </ host nane>
</resource>
<execut abl e type="single" count="1">
<execfil e name="date">
<url>file:////bin/date</url>
</ execfil e>
<st dout >
<url >gsiftp://fury. man. poznan. pl / ~/ exanpl es/ dat e- ${JOB_| D} - ${ TASK | D} </ ur | >
</ st dout >
</ execut abl e>
</ task>
</ gr nsJob>

Example 4.14. Suspend/Resume

This example shows details connected with suspend/resume and migrate task functionalities. Task has to be
marked as checkpointable and checkpoint section has to contain information needed to stage out files during
task suspending and to stage them in before resuming the task..

<grnsJob appi d="exanpl el4">
<t ask taski d="suspend">
<resour ce>
<host nanme>f ury. man. poznan. pl </ host nane>
</resource>
<execut abl e type="singl e" count="1" checkpoi ntabl e="true">
<execfil e name="chkpt _test">
<url>gsiftp://fury. man. poznan. pl / ~/ exanpl es/ chkpt _test</url >
</ execfile>
<ar gunent s>
<val ue>6000</ val ue>
</ ar gunent s>
<checkpoi nt >
<file nane="checkpoi nt" type="out">
, <Fr|>gsiftp://fury.an.poznan.p|/~/exanples/checkpoint-${JCB_ID}</urI>
</[file>
<fil e name="checkpoint" type="in">
<url >gsiftp://fury. man. poznan. pl / ~/ exanpl es/ checkpoi nt -${JOB_I D} </ url >
</[file>
</ checkpoi nt >
</ execut abl e>
</ task>
</ gr msJob>

21

GRMS Job Description (GJD)

Example 4.15. Per sistent/Extension

This example presents the usage of "persistent" and "extension" attributes. L et assume that we want to pack (tar)
the output of "/bin/ps - ef " command and copy the obtained archive to specified location. To avoid transferring
data the second task should be executed in the same directory as the first one was. The whole experiment will be
divided into two parts: first task will execute aforementioned command and catch its output to specified file (the
task will be specified as a persistent one, so grms will not remove its directory when it finished), then next task
will pack the file and copy to remote location (the second task will be specified as a extension of the fist one, so
will be executed in the same directory as the first one). The second task can start only when the first one will be
finished.

<grnsJob appi d="exanpl el5" >
<task taskid="ps" persistent="true">
<resour ce>
<host nanme>f ury. man. poznan. pl </ host nane>
</resource>
<execut abl e type="single" count="1">
<execfil e name="ps">
<url>file:///]/bin/ps</url>
</ execfil e>
<ar gunent s>
<val ue>- ef </ val ue>
</ ar gunent s>
<st dout >
<ur| >${ TASK_DI R}/ ps. out </ ur| >
</ st dout >
</ execut abl e>
</ task>
<task taskid="tar" extension="ps">
<execut abl e type="single" count="1">
<execfile name="tar">
<url>file:///Ibin/tar</url>
</ execfil e>
<ar gunent s>
<val ue>cf z</ val ue>
<val ue>ps. out .t gz</val ue>
<val ue>ps. out </ val ue>
<file nane="ps.out.tgz" type="out">
<url >gsiftp://fury. man. poznan. pl / ~/ exanpl es/ ps. out .t gz</ url| >
</[file>
</ ar gunent s>
</ execut abl e>
<wor kf | ow>
<parent triggerState="FI N SHED' >ps</ par ent >
</ wor kf | ow>
</t ask>
</ gr msJob>

Example 4.16. Datareferences

Let's imagine a more complicated experiment. Let assume that we want to execute " /bin/ps - ef " command on
ragel and r age2 machines (tasks: ragel ps and rage?2 ps) and then pack caught outputs on r age3, where the
tar application is installed. Final archive file should be copied to the specified location on r age4 machine. The
simplest way to express this experiment is to use data references functionality that give the user possibility to
express that output data generated by one task can be the input data for the other one. In this case execution of
ragel ps and rage2 _ps tasks can be done simultaneously and the task rage3_tar can be executed only when "ps"
tasks will finish.

<grnsJob appi d="exanpl el6" >
<task taskid="ragel_ps">
<resour ce>
<host nane>r agel. man. poznan. pl </ host nane>
</resource>
<execut abl e type="single" count="1">
<execfil e name="ps">
<url>file:////bin/lps</url>
</ execfil e>
<ar gunent s>
<val ue>- ef </ val ue>

22

GRMS Job Description (GJD)

</ ar gunent s>
<st dout >
<r ef erence>ragel_ps_out put </ref erence>
</ st dout >
</ execut abl e>
</ task>
<task taski d="rage2_ps">
<resour ce>
<host nanme>r age2. man. poznan. pl </ host nane>
</resource>
<execut abl e type="single" count="1">
<execfil e name="ps">
<url>file:////bin/ps</url>
</ execfil e>
<ar gunent s>
<val ue>- ef </ val ue>
</ ar gunent s>
<st dout >
<ref erence>rage2_ps_out put </ ref erence>
</ st dout >
</ execut abl e>
</ task>
<task taskid="fury_tar" persistent="true">
<resour ce>
<host name>f ury. man. poznan. pl </ host nane>
</resource>
<execut abl e type="single" count="1">
<execfile name="tar">
<url>file:///Ibin/tar</url>
</ execfil e>
<ar gunent s>
<file name="ragel ps.out" type="in">
<ref erence>ragel_ps_out put </ reference>
</[file>
<file name="rage2_ps.out" type="in">
<r ef erence>rage2_ps_out put </ r ef erence>
</[file>
<val ue>cf z</ val ue>
<val ue>exanpl el5. t gz</ val ue>
<val ue>ragel_ps. out </ val ue>
<val ue>rage2_ps. out </ val ue>
<fil e name="exanpl el5.tgz" type="out">
<url >gsiftp://fury. man. poznan. pl / ~/ exanpl es/ exanpl e15-${JOB_I D} . t gz</ ur| >
</[file>
</ ar gunent s>
<st dout >
<url >gsiftp://fury. man. poznan. pl / ~/ exanpl es/ st dout - ${JOB_| D} </ url >
</ st dout >
<stderr>
<url>gsiftp://fury. man. poznan. pl / ~/ exanpl es/ stderr-${JOB_| D} </ url >
</stderr>
</ execut abl e>
<wor kf | ow par ent St at es="AND" >
<parent triggerState="FIN SHED'>r agel_ps</ par ent >
<parent triggerState="FIN SHED'>r age2_ps</ par ent >
</ wor kf | ow>
</ task>
</ gr mrsJob>

Example 4.17. Notes

The whole job as well as each task can have human readable descriptions inside <JobNote> and <taskNode>
sections.

<grnsJob appi d="exanpl e17" >

<j obNot e>
job description
</ | obNot e>
<task taski d="date">
<t askNot e>

task description
</ t askNot e>
<execut abl e type="single" count="1">
<execfil e nanme="exec-file">
<url>file:////bin/date</url>
</ execfil e>
</ execut abl e>

23

GRMS Job Description (GJD)

</ task>
</ grmsJob>

Example 4.18. Files/Directories properties

For every fileto be staged in or out it is possible to specify if it isrequired, if it should be appended to the exist-
ing file or should overwrite it and file permissions.

<grnsJob appi d="exanpl el8" >
<task taskid="date">
<execut abl e type="single" count="1">
<execfile name="exec-file">
<url>file:////bin/date</url>
</ execfil e>
<ar gunent s>
<file name="date.out" type="out" required="fal se" append="true" perm ssions="666">
<url>gsiftp://fury. man. poznan. pl / ~/ exanpl es/ dat e. append</ url| >
</[file>
</ ar gunent s>
<st dout >
<url >${TASK_DI R}/ dat e. out </ ur| >
</ st dout >
</ execut abl e>
</ task>
</ gr msJob>

Example 4.19. Crucial tasks

Using the "crucial" attribute it is possible to mark some tasks as "unimportant” from the job's point of view
(setting this property to "false"). Failure of such task doesn't cause the failure of the whole job.

<grnsJob appi d="exanpl e19" >
<task taskid="ps">
<resour ce>
<host name>f ury. man. poznan. pl </ host nane>
</resource>
<execut abl e type="single" count="1">
<execfil e name="ps">
<url>file:////bin/ps</url>
</ execfil e>
<ar gunent s>
<val ue>- ef </ val ue>
</ ar gunent s>
<st dout >
<ur| >${TASK_DI R}/ ps. out </ ur| >
</ st dout >
</ execut abl e>
</ task>
<task taskid="date" crucial ="fal se">
<execut abl e type="single" count="1">
<execfil e name="date">
<url>file:////bin/tar</url>
</ execfil e>
<ar gunent s>
<file nane="unnecessary_i nput" type="in">
<url >gsiftp://fury. man. poznan. pl / ~/ exanpl es/ UNEXI STI NG_FI LE</ ur| >
</[file>
</ argunent s>
</ execut abl e>
</ task>
</ gr mrsJob>

Example 4.20. Time constraints

If a user is available only in a certain time period he/she can express higher time constraints using the

24

GRMS Job Description (GJD)

<executionTime> element. In this example a task will be executed after 11th August 2006 and before 15th Au-
gust 2006, with exception of Sundays, between 10am and 4pm.

<execut i onTi me>
<ti meSl ot >
<s|l ot Start>10: 00: 00</sl ot Start >
<sl| ot End>16: 00: 00</ sl ot End>
</tinmeSlot>
<execDur at i on>PT30M</ execDur ati on>
<ti mePeri od>
<peri odStart>2006- 08-11T00: 00: 00. 000+02: 00</ peri odSt art >
<peri odEnd>2006- 08- 15T00: 00: 00. 000+02: 00</ per i odEnd>
<excl udi ng>
<weekDay>Sunday</ weekDay>
</ excl udi ng>
</timePeriod>
</ executionTi ne>

Example 4.21. Advanced constraints

In addition to simple resource requirements defined in the <resource> section, a user can also express more
complex requirements (hard constraints) and preferences concerning a selection of the best resources (soft con-
straints). In this example a user requires a resource that provides either 4 or 8 or any number within the range
[16;32] processors. Another requirement is at least 100MB of free memory. Moreover a user asks a resource
broker to select a resource so that amount of free memory is maximized and CPU load minimized. Large
amount of free memory is two times more important that CPU load for this task.

<har dConst r ai nt s>
<constraint>
<par anmet er nanme="cpuCount ">
<val ue>4</val ue>
<val ue>8</ val ue>
<range m n="16" max="32"/>
</ par anet er >
</ constraint>
<constraint>
<par armet er name="freeMenory" >
<range ni n="100"/>
</ par anet er >
</ constraint>
</ hardConstrai nt s>
<sof t Constraints preferenceType="PRI ORI TY">
<constraint inportance="2" optim zati onType="GAl N'>
<par anet er >f r eeMenor y</ par anet er >
</ constraint>
<constraint inportance="1" optim zati onType="COST">
<par anet er >cpuLoad</ par anet er >
</ constraint>
</ sof t Constrai nt s>

25

Chapter 5. GRMS java client

Requirements

* Ingtallation

* sed

* perl (optionally Term::ReadLine perl module)
* Usage

+ Java- JRE 1.4.x

Installation and configuration of GRMS client

Grms client doesn't need any extra privileges and can be installed for all users by administrator or every user can
have his own instance.

Toinstall and configure the grms client please follow the procedure described bellow:

1. download "grms-install-client.pl" from www. gri dge. or g/ gr ns
2. dtart installation replacing grms-client-path with real path you want grms client to be installed
$> grms-install-client.pl - - dest <grns-cli ent - pat h>

3. Answer all questions needed to configure the client

pi ont ek@rui d-bis ~/GRMB-client $./grns-install-client.pl --dest .

directory '/hone/piontek/ GRV5-client/.' already exists, do you want to continue (y/n)? vy
do you want to remove directory '/hone/piontek/ GRMS-client/.' first (y/n) ? n
extracting distribution ...

setup files ...

Enter default GRMS server URL [https://druid-bis.man.poznan. pl: 8753/ axis/services/grns]: \
https://druid-bis. man. poznan. pl : 8342/ axi s/ servi ces/ grns
Enter default GRMS server distinguished nane []: \
/ C=PL/ O=GRI D/ O=PSNC/ CN=gr nrs/ dr ui d- bi s. man. poznan. pl
Enter default GRMS server del egation type [FULL|LIM TED| NOQ [FULL]: FULL
Enter default CGRMS server tineout (mn) [5]:
installation successfully conpl eted

Global configuration of grms client can be changed by modifying properties set in
<gr ms- ¢l i ent - pat h>/ bi n/ gr ms-cl i ent script

Please modify following linesif necessary:

GRVS_URL="htt ps://druid-bis. man. poznan. pl : 8342/ axi s/ servi ces/ grns”
GRVS_DN="/ C=PL/ O=GRI D/ O=PSNC/ CN=gr ns/ dr ui d- bi s. man. poznan. pl "
GRVS_DELEG TYPE=FULL

CRMVS_TI MEQUT=5

* GRMS_URL describeslocation of GRMS service.

e GRM5_DN describes the expected by the client distinguish name of the service. If GRMS DN is empty
the client doesn't authorize the service and is not able to delegate user proxy to the service,

* GRVB_TI MEQUT property sets the timeout (in minutes) for service response.

26

GRMSjavaclient

* GRVB_DELEG TYPE — determines the type of proxy delegation. Following values are allowed: FULL,
LIMITED, NO.

5. Every user before launching grms client has to configure CoG library creating or modifying
cog. properties filein~/. gl obus directory. Please change values of properties according to your config-
uration

#Java CoG Kit Configuration File

user cert =/ hone/ pi ont ek/ . gl obus/ usercert. pem
user key=/ hore/ pi ont ek/ . gl obus/ user key. pem
proxy=/tnp/ x509up_u501
cacert=/etc/grid-security/certificates/

For details please visit: CoG Home Page [?77]
6. If you doesn't want to install your own instance of client but you prefer to use a common one with your
own configuration you can do this using profiles. Every GRMS user can do define set of profiles (different

client configurations) storing them in ~/.grms_profiles file. Every profile has to be in separate line with pa-
rameters separated by tabulators. Every line has to follow the format:

profile name GRVB_ URL GRMS DN GRVS DELEG TYPE GRVS_TI MEOUT

: -bi s. man. poznan. pl : 8343/ axi s/ servi ces/grms \
C=PL/ O=CGRI DY C=PSNC/ CN=gr s/ dr ui d- bi s. man. poznan. pl FULL 5

GRMS command line client
Executing GRMS Client

1. sourcethe <grms-cli ent - pat h>/ grms- env. sh file to setup needed environment variables,

2. make sure that the user's proxy exists. If it doesn't please create or download it using one of following
methods:

* run$G.OBUS_LOCATI oN/bin/grid-proxy-init command to create user’s proxy

* run $GLOBUS_LOCATI oN/bin/myproxy-get-delegation command to download user’s proxy from
Myproxy-server

3. runtheclient
grms-client [-Sprofil e_nane] operati on [argunent ...]

If the optional profileis not specified the global client configuration will be used.

eg.
./grms-client -s nyprofile submt_job ../exanpl es/ exanpl el. xm

./grms-client submt_job ../exanpl es/exanpl el. xm

Operations

27

url(???)
url(???)
url(???)

GRMSjavaclient

The GRMS client supports following list of operations:

* submit_j ob - submits new job to the system,

e conmit_j ob - commits job submitted with two phase commit property,

* recover_j ob - recoversjab after failure, skips previously completed tasks,

* suspend_j ob - suspends job suspending all running tasks,

* resunme_j ob - resumes previously suspended job,

» cancel _j ob - cancelswholejob (running tasks are killed),

* refresh_j ob - refreshes user's proxy associated with job,

* mgrate_task - migrates simpletask to better resource,

* suspend_t ask - suspends single task,

* resunme_t ask - resumes single task,

» cancel_task - cancels single task,

e list_all -listsal jobsinthe system in specified state,

* list_jobs -listaljobsorjobsin specified state belonging to the user,

* list_tasks - listsal tasks or tasksin specified state,

e list_project -listsal jobsor jobsbelonging to given project,

* register_access - registerslocation of web service interface that can be used to checkpoint specific task,
* unregister_access - unregistersinterface for checkpoining,

* get_access - returnslocation of registered interface for checkpointing,

* job_info - returns complex information about given job,

» task_i nfo - returns complex information about given task,

* resources - listsresources that meet user's requirements,

* test -testssyntax and logical correctness of job description,

* add_job_notif - registers notification concerning changes of status of given job,

» del _job_notif -unregisters notification concerning changes of status of given job,
* get_job_notif -listsnotification registered for given job,

» add_task_notif - registers notification concerning changes of status of given task or request processing,
» del _task_notif - unregisterstask notification,

* get_task_notif - listsinformations concerning registered notifications or returns description of given noti-
fication,

e add_file_dir -foragiventask allowsto register dynamically additional file or directory,

e del _file_dir - foragiven task allows to unregister file or directory, concerns as well dynamically added
files and directories as ones specified in job description,

28

GRMSjavaclient

e get_file_dir -foragiventask returnslist of registered files and directories that meet specified criteria,
* extend_execution - extendstime of execution specified in job description,

e description - returns service description.

Usage syntax

JOB_STATUS = UNCOW TED | SUBM TTED | ACTIVE | FIN SHED | SUSPENDED | FAILED | CANCELED | BROKEN

TASK_STATUS = UNSUBM TTED | UNCOWM TTED | QUEUED | PREPROCESSI NG | PENDI NG | RUNNI NG | STOPPED |
POSTPROCESSI NG | FI NI SHED | SUSPENDED | FAILED | CANCELED

TASK_REQUEST_STATUS = TASK_UNSUBM TTED | TASK_UNCOMM TED | TASK_QUEUED | TASK_RESOQURCE |
TASK_RESOURCE_DONE | TASK_STAGE IN | TASK STAGE | N DONE | TASK SUBM T |
TASK_SUBM T_DONE | TASK_EXEC | TASK_EXEC PENDI NG | TASK_EXEC ACTI VE |
TASK_EXEC DONE | TASK_STAGE OUT | TASK_STAGE OUT_DONE | TASK_DONE |
TASK_FAI LED | TASK_CANCEL | TASK_CANCEL DONE | TASK CANCEL FAI LED |
M GRATE_QUEUED | M GRATE_EXEC SUSPEND | M GRATE_EXEC_SUSPEND DONE |
M GRATE_RESOURCE | M GRATE_RESOURCE DONE | M GRATE STAGE IN |
M GRATE_STAGE | N DONE | M GRATE_SUBM T | M GRATE DONE | M GRATE_FAI LED |
M GRATE_STAGE_OUT | M GRATE_STAGE_OUT_DONE | REQUEST FAI LED

FILE DIR LOG CAL_TYPE = ARGUMENT N | ARGUMENT OUT | CHECKPOI NT_IN | CHECKPO NT_OUT
FILE_DIR ORI G N_TYPE = DESCRI PTION | ADDED

grns-client submt_job <jobDescriptionFile>
grms-client commt_job <jobl D>

grms-client recover_job <joblD> [<jobDescriptionFile>]
grms-client suspend_job <jobld>

grims-client resunme_job <jobld> [<jobDescriptionFile>]
grns-client cancel _job <jobld>

grns-client refresh_job <jobld>

grne-client migrate_task <jobld> <taskld> [<jobDescriptionFile>]
grns-client suspend_task <jobld> <taskld>

grns-client resume_task <jobld> <taskld> [<jobDescriptionFile>]
grms-client cancel _task <jobld> <taskld>

grme-client commit_task <] obld> <taskld>

grms-client list_all <JOB_STATUS>

grims-client list_jobs [<JOB_STATUS>] [<limt>]

grns-client |ist_tasks <jobld> [<TASK_STATUS>]

grns-client |ist_project <project> [<JOB_STATUS>] [<limit>]
grims-client register_access <jobld> <taskld> <service_l ocation> <pid>

grne-client unregister_access <jobid> <taskld>
grms-client get_access <jobld> <taskld>

grns-client job_info <jobld>
grns-client task_info <jobld> <taskld> [<history_limt>]

grns-client resources <taskld> <jobDescriptionFile>
grms-client test <jobDescriptionFile>

grne-client add_job_notif <jobid> SOAP <destination> [<JOB STATUS>[, <JOB_STATUS>] *]
grims-client add_j ob_notif <jobid> GASS <desti nati on> TRUE| FALSE \
<format> [<JOB_STATUS>[, <JOB_STATUS>] * 1]
grnms-client del _job_notif <jobid> <notificationld>
grns-client get_job_notif <jobid>
grns-client get_job_notif <jobid> <notificationld>

grns-client add_task_notif <jobid> <taskld> STATUS SOAP <desti nation> \
[<TASK_STATUS>[, <TASK_STATUS>] *]]

grms-client add_task_notif <jobid> <taskld> STATUS GASS <desti nati on> TRUE| FALSE \
[<format> [<TASK_STATUS>[, <TASK_STATUS>] *]]

29

GRMSjavaclient

grms-client add_task_notif <jobid> <taskld> REQUEST SOAP <desti nati on> \
[<TASK REQUEST STATUS>[, <TASK REQUEST STATUS>] *]

grims-client add_task_notif <jobid> <taskld> REQUEST GASS <desti nati on> TRUE| FALSE \
[<format> [<TASK REQUEST_ STATUS>[, <TASK_REQUEST STATUS>] *]]

grns-client add_tasks_notif <jobid> STATUS SQAP <destination> [<TASK STATUS>[, <TASK_STATUS>] *]]

grims-client add_tasks_notif <jobid> STATUS GASS <destinati on> TRUE| FALSE \
[<format> [<TASK STATUS>[, <TASK STATUS>] *]]

grims-client add_tasks_notif <jobid> REQUEST SOAP <desti nation> \
[<TASK_REQUEST STATUS>[, <TASK_REQUEST STATUS>] *]

grns-client add_tasks_notif <jobid> REQUEST GASS <desti nati on> TRUE| FALSE
[<format> [<TASK _REQUEST_STATUS>[, <TASK_REQUEST_STATUS>] *]]

grns-client del _task notif <jobid> <taskld> <notificationld>
grme-client get_task_notif <jobid> <taskld> [STATUS| REQUEST]
grme-client get_task_notif <jobid> <taskld> <notificationld> [STATUS| REQUEST]

grims-client add_file_dir <jobld> <taskld> <overwite> FILE DIR LOGd CAL_FI LE <nanme> \
PHYSI CAL| LOG CAL <pat h> <user> FI LE| DI RECTORY \
<append> <requi red> [<perm ssi ons>]

grns-client get _file_dirs <jobld> <taskld> [FILE DIR LOd CAL_TYPE [, FILE DI R _LOG CAL_TYPE] *
FI LE_DI R ORI G N_TYPE[, FILEDIRO?IG!NTYPE]]

grne-client del _file_dir <jobld> <taskld> ARGUVENT_I N| ARGUMENT_QUT| CHECKPO NT_I N| CHECKPOI NT_QUT \
<name> PHYSI CAL| LOG CAL <pat h> <user> Fl LE| DI RECTORY

grims-client del _file_dirs <jobld> <taskld> FILE DIR LOG CAL_TYPE [, FILE_ DIR LOG CAL_TYPE] * \
FI LE_DIR ORI G N_TYPH, FILEDIRO?IGNTYPE]*

grms-client extend_execution <jobld> <taskld>\)
+| - <years> <nont hs> <days> <hour s> <m nut es> <seconds>

grns-client description SHORT| FULL

I mportant

All parameters in square brackets are optional and can be omitted.
Examples of execution
General issues

I mportant

To simplify the syntax of some commands following definitions are used:

JOB_STATUS = UNCOWM TED | SUBM TTED | ACTIVE | FINI SHED | SUSPENDED | FAILED |
CANCELED | BROKEN

TASK_STATUS = UNSUBM TTED | UNCOWM TTED | QUEUED | PREPROCESSI NG | PENDI NG |
RUNNI NG | STOPPED | POSTPROCESSI NG | FI NI SHED | SUSPENDED |
FAI LED | CANCELED

TASK_REQUEST_STATUS = TASK_UNSUBM TTED | TASK_UNCOWM TED | TASK_QUEUED |
TASK_RESOURCE | TASK _RESOURCE DONE | TASK_STAGE I N |
TASK_STAGE_| N DONE | TASK SUBM T | TASK SUBM T _DONE | TASK_EXEC |
TASK_EXEC_PENDI NG | TASK_EXEC ACTI VE | TASK_EXEC DONE |
TASK_STAGE _OUT | TASK STAGE_OUT DONE | TASK_DONE | TASK_FAI LED |
TASK_CANCEL | TASK_CANCEL _DONE | TASK_CANCEL FAI LED |
M GRATE_QUEUED | M GRATE_EXEC SUSPEND | M GRATE_EXEC SUSPEND DONE |
M GRATE_RESOURCE | M GRATE_RESOURCE_DONE | M GRATE STAGE IN |
M GRATE_STAGE | N DONE | M GRATE _SUBM T | M GRATE_DONE |
M GRATE_FAI LED | M GRATE_STAGE _OUT | M GRATE_STAGE_OUT_DONE |
REQUEST_FAI LED

FILE DIR LOG CAL_TYPE = ARGUMENT N | ARGUMVENT OUT | CHECKPOI NT_IN | CHECKPO NT_OUT

30

GRMSjavaclient

FILE_DIR ORI G N_TYPE = DESCRI PTI ON | ADDED

If the client is invoked with wrong parameters the information about the usage is displayed.

If the user is not authorized to perform the requested operation the proper message is displayed and the re-
quest is not performed.

Your DN: /C=PL/ O=GRI DY O=PSNC/ CN=Tomasz Pi ont ek

Service URL: https://druid-bis.mn.poznan. pl: 8442/ axi s/ servi ces/ grns
Job suspending fail ed!

GRMS response was:

error Code: 501

[pi ont ek@Ir ui d-bi s]$ grns-client suspend_job 1085556664951 appi d_1620
- errorMessage: User is not authorized to performthis operation

If the service is not able to perform the authorization the proper message is displayed and the service doesn't
serve the request.

Your DN: /C=PL/ O=CGRI D/ O=PSNC/ CN=Tonasz Pi ont ek

Service URL: https://druid-bis.man.poznan. pl: 8442/ axi s/ servi ces/ grns
Cancel ling of job fail ed!

GRMS response was:

error Code: 500

[pi ont ek@ir ui d-bi s]$ grns-client cancel job 1085556664951 appi d_1620
- errorMessage: Authorization failed. Cannot contact Authorization Service: Connection refused

If the user tries to perform the operation on non-existing job or task the proper error message is displayed.

[pi ont ek@ir ui d-bi s]$ grns-client job_info non-existing-job-I1D

Your DN: /C=PL/ G=GRI D/ O=PSNC/ CN=Tonesz Pi ont ek

Service URL: https://druid-bis.nmn.poznan. pl: 8442/ axi s/ servi ces/ grns
Getting job info fail ed!

GRMS response was:

error Code: 114

errorMessage: No such job in Job Repository

Your DN: /C=PL/ O=CGRI D/ O=PSNC/ CN=Tonasz Pi ont ek

Service URL: https://druid-bis.man.poznan. pl: 8442/ axi s/ servi ces/ grns
Getting job info failed!

GRMS response was:

errorCode: 117

[pi ont ek@r ui d-bis]$ grms-client task_info 1085556664951 appi d_1620 non-exi sting-task-1D
- errorMessage: No such task in Task Repository

I mportant

If the GRMS service is configured to use GAS as an authorization decision point the service response
in case of operation on unexisting job or task will be "User is not authorized to perform this operation”.

If the user tries to perform any operation on the job or task, which doesn’'t belong to him, the proper error
message is displayed.

[pi ont ek@ir ui d-bi s]$ grnms-client task_info 1083844628098_appi d_2377

- Your DN /C=PL/ O=CRI D/ O=PSNC/ CN=Tormasz Pi ont ek

- Service URL: https://druid-bis.nan.poznan. pl: 8442/ axi s/ services/ grmns

- Getting job info failed!

- GRMS response was:

error Code: 154
error Message: User not authorized to performoperation - internal authorization

I mportant
For GAS authorization the response will be "User is not authorized to perform this operation".

If the GRM S Job Description contains syntax error, the proper error message is displayed.

[pi ont ek@r ui d-bis]$ grns-client submt_job ./exanples/error.xm

31

GRMSjavaclient

Your DN: /C=PL/ O=CRI D/ O=PSNC/ CN=Tonasz Pi ont ek

Service URL: https://druid-bis.mn.poznan. pl: 8442/ axi s/ servi ces/ grns

Job submi ssion failed!

GRMS response was:

error Code: 101

error Message: Job description syntax error: The el enent type "val ue"
nmust be termi nated by the natching end-tag "</val ue>".

submit_job
grms-client submit_jobj obDescription-file

Submits new job described by job description stored in file with given location. If the GRMS Job Description
does not contain any syntax and logical errors, the identifier of the submitted job is displayed.

[pi ontek@Ir ui d-bi s]$ grms-client submt_job ./exanpl es/ exanpl e2. xm

- Your DN /C=PL/C=CGRI D O=PSNC/ CN=Tormesz Pi ont ek

- Service URL: https://druid-bis.nman. poznan. pl : 8442/ axi s/ servi ces/ grms
- Job submitted successfully, jobld=1085556664951_appi d_1620

commit_job
grms-client commit_jobj obld

Commits job submitted with two phase commit option (commitWait attribute)

[pi ont ek@lr ui d-bi s]$ grms-client commit_job 1084456104272_appi d_0728

- Your DN /C=PL/C=CGRI D O=PSNC/ CN=Tormasz Pi ont ek

- Service URL: https://druid-bis.nman. poznan. pl: 8442/ axi s/ servi ces/ grms
- job commtted successfully

If the job doesn't wait for commit, the proper error message is displayed.

[pi ont ek@irui d-bis]$ grns-client commit_job 1085141911671 appi d_3916
Your DN: /C=PL/ O=GRI D O=PSNC/ CN=Tonasz Pi ont ek

Service URL: https://druid-bis.nman. poznan. pl: 8442/ axi s/ servi ces/ grms
Job committing failed!

GRMS response was:

errorCode = 176

errorMessage = Job already conmitted

recover_job
grms-client recover_jobjobl d [j obDescription-file]

Recovers job after the failure resubmiting it and skipping previously finished tasks. Optionaly it is possible to
specify new job description. If the description is valid new identifier of job is returned.

[pi ont ek@Ir ui d-bi s]$ grms-client recover_job 1085141911671_appi d_3916 ./exanpl es/ exanpl e2b. xm
- Your DN: /C=PL/ O=GRI D/ O=PSNC/ CN=Tonmasz Pi ont ek

- Service URL: https://druid-bis.nman. poznan. pl : 8442/ axi s/ servi ces/ grms

- Job recovery in progress. New job identifier is: 1085556984375 _appi d_1210

suspend_job
grns-client suspend jobj obl d

Suspends whol e job suspending all running tasks.

I mportant

This functionality is not implemented yet.

[pi ont ek@lr ui d-bi s]$ grms-client suspend_job 1085141911671_appi d_3916
Your DN: /C=PL/ O=GRI D O=PSNC/ CN=Tonasz Pi ont ek

Service URL: https://druid-bis.man. poznan. pl : 8442/ axi s/ servi ces/ grns
CRMS response was:

Job suspending fail ed!

error Code = 156

error Message = Not inplenented yet

32

GRMSjavaclient

resume_job
grms-client resume jobjobl d [j obDescription-file]

Resumes execution of previously suspended job.

I mportant

This functionality is not implemented yet.

[pi ont ek@Ir ui d-bi s]$ grnms-client resunme_job 1085141911671_appi d_3916 ./exanpl eas/ resune. xni
Your DN: /C=PL/ O=GRI D O=PSNC/ CN=Tonasz Pi ont ek

Service URL: https://druid-bis.man. poznan. pl : 8442/ axi s/ servi ces/ grns

Job resum ng failed!

error Code = 156

error Message = Not inplenented yet

refresh_job
grms-client refresh jobjobld

Refreshes user proxy used to starts new tasks and also proxies for all running tasks.

[pi ont ek@Irui d-bi s]$ grms-client refresh_job 1085141911671_appi d_3916
- Your DN: /C=PL/ O=GRI D/ O=PSNC/ CN=Tonmasz Pi ont ek

- Service URL: https://druid-bis.nman.poznan. pl : 8442/ axi s/ servi ces/ grns
- Job refreshed successfully.

cancel_job
grms-client cancel_jobj obl d

Cancelsjob cancelling all running tasks.

[pi ont ek@lr ui d-bi s]$ grms-client cancel _job 1085141911671_appi d_3916
- Your DN /C=PL/O=GRI DY O=PSNC/ CN=Tormasz Pi ont ek
- Service URL: https://druid-bis.nman.poznan. pl : 8442/ axi s/ servi ces/ grns
- Job 1085141911671 appi d_3916 has been cancel | ed successfully

If the current state of the job doesn't allow canceling it, the proper error message is displayed.

pi ont ek@Irui d-bi s]$ grms-client cancel _job 1085141911671_appi d_3916
Your DN /C=PL/ O=GRI DY O=PSNC/ CN=Tormesz Pi ont ek

Service URL: httpg://ragel. man. poznan. pl : 8443/ axi s/ servi ces/ grms
Canceling of job failed!

CRMS response was:

error Code: 313

error Message: Job can not be canceled in current state

migrate_task
grms-client migrate task j obl d t askl d [j obDescription-file]

Migrates task to a better resource if such one exists. It is possible to specify new job description that will be
used to restart task on a hew resource.

[piontek@irui d-bis]$ grns-client mgrate_task 1084456104272 _appid_0728 taskid_1 \
. I exanpl es/ exanpl e2. xmnl
- Your DN /C=PL/O=CGRI D O=PSNC/ CN=Tormesz Pi ont ek
- Service URL: https://druid-bis.nman. poznan. pl : 8442/ axi s/ servi ces/ grms
- Mgration in progress. Invoke “grms-client task_info” to check the status of the operation.

If the migration cannot be performed because the current state of the task does not allow to migrate it, the proper
error message is displayed.

[pi ontek@lrui d-bis]$ grnms-client migrate_task 1085141911671 appid_3916 taskid_1 \
. [exanpl es/ exanpl e2. xm

- Your DN: /C=PL/ O=GRI DY O=PSNC/ CN=Tonmasz Pi ont ek

- Service URL: https://druid-bis.nman. poznan. pl : 8442/ axi s/ servi ces/ grms

- Job migration fail ed!

33

GRMSjavaclient

- CGRMS response was:
- errorCode: 142
- errorMessage: Task in current state can not be nigrated

suspend_task
grms-client suspend task j obl d t askl d

Suspends execution of running task.

[pi ont ek@lr ui d-bi s]$ grms-client suspend_task 1085141911671 _appi d_3916 taskid_1
- Your DN: /C=PL/ O=GRI D/ O=PSNC/ CN=Tonmasz Pi ont ek
- Service URL: https://druid-bis.nman.poznan. pl : 8442/ axi s/ servi ces/ grns
- Suspending in progress.
I nvoke “grnms-client task _info” to check the status of the operation.

resume_task
grms-client resume task j obl d t askl d [j obDescription-file]

Resumes execution of previously suspended task. It is possible to specify new job description that will be used
to "restart” task.

[pi ontek@Irui d-bi s]$ grms-client resume_task 1085141911671_appi d_3916 taskid_1 \
. I exanpl eas/ resune. xm
- Your DN: /C=PL/ O=CGRI DY O=PSNC/ CN=Tomasz Pi ont ek
- Service URL: https://druid-bis.man.poznan. pl : 8442/ axi s/ servi ces/ grns
- Resuming in progress.
I nvoke “grms-client task _info” to check the status of the operation.

cancel_task
grms-client cancel taskjobldtaskld

Cancels given task.

[pi ont ek@lr ui d-bi s]$ grms-client cancel _task 1085141911671_appi d_3916 taskid_1
- Your DN /C=PL/O=GRI D O=PSNC/ CN=Tormasz Pi ont ek
- Service URL: https://druid-bis.nman.poznan. pl : 8442/ axi s/ servi ces/ grns
- Task has been cancel |l ed successfully

If the current state of the task doesn’t allow to cancel it, the proper error message is displayed.

pi ont ek@Ir ui d-bi s]$ grms-client cancel _job 1085141911671_appi d_3916 taskid_1
Your DN /C=PL/ O=GRI D O=PSNC/ CN=Tormesz Pi ont ek

Service URL: https://druid-bis.man. poznan. pl : 8442/ axi s/ servi ces/ grms
Canceling of job fail ed!

CRMS response was:

error Code: 314

errorMessage: Task can not be canceled in current state

commit_task
grms-client commit_jobj obl dtaskld

Commits task submitted with two phase commit option (commitWait attribute)

[pi ont ek@Ir ui d-bi s]$ grms-client commit_task 1084456104272_appi d_0728
- Your DN /C=PL/CO=GRI D O=PSNC/ CN=Tormesz Pi ont ek

- Service URL: https://druid-bis.nman.poznan. pl : 8442/ axi s/ servi ces/ grns
- job committed successfully

If the job doesn't wait for commit, the proper error message is displayed.

[pi ont ek@Ir ui d-bi s]$ grms-client commit_job 1085141911671_appi d_3916
Your DN. /C=PL/ G=GRI DY O=PSNC/ CN=Tormesz Pi ont ek

Service URL: https://druid-bis.man. poznan. pl: 8442/ axi s/ servi ces/ grns
Job committing fail ed!

CRMS response was:

errorCode = 176

errorMessage = Job already conmmitted

GRMSjavaclient

list_all
grms-client list_al UNCOMMITED | SUBMITTED | ACTIVE | FINISHED | SUSPENDED | FAILED |
CANCELED | BROKEN

Displayslist of al jobs (regardless of the owner) in given state.

[pi ont ek@r ui d-bis]$ grms-client list_all canceled
- Your DN: /C=PL/ O=GRI DY O=PSNC/ CN=Tonasz Pi ont ek

- Service URL: https://druid-bis.nman. poznan. pl : 8442/ axi s/ servi ces/ grms
- List of jobs got successfull

j obsLi st[0] =1084282948921 appi d_8937

j obsList[1] =1084360041571_appi d_1513

j obsList[2] =1085051139315_appi d_7937

j obsLi st [3] =1085054010026_appi d_4949

j obsLi st [4] =1085142249476_appi d_2322

j obsLi st [5] =1085167896526_appi d_3682

j obsLi st [6] =1086472467834_appi d_4461

list_jobs
grms-client list_jobs [UNCOMMITED | SUBMITTED | ACTIVE | FINISHED | SUSPENDED | FAILED |
CANCELED |BROKEN] [l nit]

Returns list of jobs belonging to the user invoking the command. It is possible to specify optionally the status of
job the user isinterested in. In such case only jobs in given state will be listed additionally it is possible to limit
list to some number of last submitted jobs.

[pi ont ek@Ir ui d-bi s]$ grms-client list_jobs cancel ed

- Your DN /C=PL/C=CGRI D O=PSNC/ CN=Tormasz Pi ont ek

- Service URL: https://druid-bis.nman. poznan. pl: 8442/ axi s/ servi ces/ grms
Li st of jobs got successfull

j obsLi st[0] =1084282948921_appi d_8937

J obsLi st[1] =1084360041571_appi d_1513

If the status is not specified all jobs belonging to the user are listed.

[pi ontek@Irui d-bis]$ grms-client |ist_jobs

- Your DN: /C=PL/ O=GRI DY O=PSNC/ CN=Tonasz Pi ont ek

- Service URL: https://druid-bis.nman. poznan. pl : 8442/ axi s/ servi ces/ grms
Li st of jobs got successfully

j obsList[0] =1084282948921_appi d_8937

j obsList[1] =1084360041571_appi d_1513

j obsList[2] =1085051139315_appi d_7937

j obsLi st [3] =1085054010026_appi d_4949
j obsLi st [4] 1085142249476 _appi d_2322

[pi ont ek@lrui d-bis]$ grns-client |list_jobs 2

- Your DN /C=PL/C=CGRI D O=PSNC/ CN=Tormasz Pi ont ek

- Service URL: https://druid-bis.nan. poznan. pl: 8442/ axi s/ services/ grms
- List of jobs got successfully

- jobsList[0]=1084282948921 appi d_8937

- JjobsList[1] =1084360041571 appi d_1513

list tasks

grns-client list_tasks jobld [UNSUBMITTED | UNCOMMITTED | QUEUED | PREPROCESSING |
PENDING | RUNNING | STOPPED | POSTPROCESSING | FINISHED | SUSPENDED | FAILED | CAN-
CELED]

Liststasks of given job. It is possible to limit list only to tasks in specified state.

[pi ontek@lrui d-bis]$ grms-client |ist_tasks failed

- Your DN: /C=PL/ O=GRI D/ O=PSNC/ CN=Tonmasz Pi ont ek

- Service URL: https://druid-bis.man.poznan. pl : 8442/ axi s/ servi ces/ grns
- List of tasks got successfully

- tasksList[0] =task_3

- tasksList[1]=task_5

If the status is not specified all tasks belonging to the job are listed.

[pi ont ek@ir ui d-bi s]$ grms-client |ist_jobs
- Your DN: /C=PL/ O=GRI DY O=PSNC/ CN=Tonmasz Pi ont ek

35

GRMSjavaclient

Service URL: https://druid-bis.man. poznan. pl: 8442/ axi s/ servi ces/ grns
Li st of tasks got successfully

tasksList[0] =task_1

tasksList[1] =task_2

tasksList[2] =task_3

tasksLi st[3] =task_4

t asksLi st[4] =task_5
list_project

grms-client list_project [UNCOMMITED | SUBMITTED | ACTIVE | FINISHED | SUSPENDED | FAILED
| CANCELED | BROKEN] [1i mi t]

List jobs belonging to the given project. Optionally it is possible to specify state we are interested in and/or limit
list to only some number of last jobs.

[pi ontek@lrui d-bis]$ grms-client |ist_project gridge_project

Your DN: /C=PL/ O=GRI D O=PSNC/ CN=Tonasz Pi ont ek

Service URL: https://druid-bis.man. poznan. pl: 8442/ axi s/ servi ces/ grns
Li st of jobs got successfully

jobsList[0] =1084282948921_appi d_8937

J obsList[1] =1084360041571_appi d_1513

J obsLi st [2] =1085051139315_appi d_7937

| obsLi st [3] =1085054010026_appi d_4949
J obsLi st[4] =1085142249476_appi d_2322

[pi ontek@Irui d-bi s]$ grms-client |ist_project gridge_project active
Your DN: /C=PL/ O=GRI D O=PSNC/ CN=Tonasz Pi ont ek

Service URL: https://druid-bis.man. poznan. pl : 8442/ axi s/ servi ces/ grnms
Li st of jobs got successfully

j obsLi st[0] =1084282948921_appi d_8937

J obsLi st[1] =1084360041571_appi d_1513

[pi ontek@Irui d-bis]$ grms-client |ist_project gridge_project active 1
- Your DN: /C=PL/ O=GRI D O=PSNC/ CN=Tomasz Pi ont ek

Service URL: https://druid-bis.man. poznan. pl : 8442/ axi s/ servi ces/ grms
Li st of jobs got successfully

j obsLi st[0] =1084282948921_appi d_8937

register_access
grms-client register_accessj obl d t askl d servi ce-1ocati on pid

Registers information needed to checkpoint application using web service interface.

[pi ont ek@irui d-bi s]$ grns-client register_access 1084367864146_appi d_1408 task_1 \
http://ragel. man. poznan. pl : 4567 1234

- Your DN /C=PL/O=CGRI D O=PSNC/ CN=Tormesz Pi ont ek

- Service URL: https://druid-bis.nman. poznan. pl : 8442/ axi s/ servi ces/ grms

- Task Application Access registered successfully

I mportant
In current version the correctness of the passed url is not checked.

get_access
grms-client get_accessj obl dtaskld

Returnsinformation registered by "r egi st er _access" command.

[pi ont ek@ir ui d- bi s-bi s]$ grms-client get_access 1084367864146_appi d_1408 task_1
Your DN: /C=PL/ O=GRI D O=PSNC/ CN=Tonasz Pi ont ek

Service URL: https://druid-bis.man. poznan. pl: 8442/ axi s/ servi ces/ grnms

Task Application Access got successfully

Servi ceLocation = http://ragel. man. poznan. pl : 4567

PID = 1234

unregister_access
grms-client unregister_accessj obl d t askl d

36

GRMSjavaclient

Unregisters location of service implementing web service checkpoint interface.

[pi ont ek@Ir ui d-bi s]$ grms-client unregi ster_access 1084367864146_appi d_1408 task_1
- Your DN: /C=PL/ O=GRI D/ O=PSNC/ CN=Tonmasz Pi ont ek

- Service URL: https://druid-bis.nman.poznan. pl : 8442/ axi s/ servi ces/ grns

- Task Application Access unregi stered successfully

job_info
grms-client job_infoj obld

Returns complex information about the given job.

[pi ontek@Irui d-bi s]$ grms-client info 1152877900969_exanpl el3_3744
- Your DN /C=PL/C=GRI D O=PSNC/ CN=Tormasz Pi ont ek
- Service URL: https://druid-bis.nman.poznan. pl : 8442/ axi s/ servi ces/ grns
- joblnfo[1152877900969 _exanpl e13_3744] is:
Projectld = Cuide
User DN = / C=PL/ O=GRI D/ O=PSNC/ CN=Tomasz Pi ont ek
Status = FI Nl SHED
Submi ssionTime = Fri Jul 14 13:51:41 CEST 2006
FinishTime = Fri Jul 14 14:02:34 CEST 2006
ErrorDescription =
tasksldentifiers = mgration
tasksCount =1
wai t ForCommit = fal se
JobDescription =
<grnsJob appi d="exanpl e13" project="Cui de">
<task taskid="m gration">
<resour ce>
<host name>f ury. man. poznan. pl </ host nane>
</resource>
<execut abl e type="singl e" count="1" checkpoi ntabl e="true">
<execfil e name="chkpt _test">
<url>gsiftp://fury. man. poznan. pl / ~/ exanpl es/ chkpt _test</url >
</ execfile>
<ar gunent s>
<val ue>6000</ val ue>
</ ar gunent s>
<st dout >
<ur| >${TASK_DI R}/ st dout </ ur| >
</ st dout >
<stderr>
<url >${TASK DI R}/ stderr</url >
</stderr>
<checkpoi nt >
<fil e name="checkpoi nt" type="out">
/fs;JrI >gsi ftp://fury. man. poznan. pl / ~/ exanpl es/ checkpoi nt-${JOB_| D} </ url >
< 1l e>
<file nane="checkpoi nt" type="in">
<url >gsiftp://fury. man. poznan. pl / ~/ exanpl es/ checkpoi nt - ${JOB_I D} </ url >
</[file>
</ checkpoi nt >
</ execut abl e>
</ task>
</ gr msJob>

task_info
grms-client task infojobldtasklid/[linit]

Returns complex information about the given task. It is possible to limit information concerning history of task

[pi ontek@Irui d-bi s]$ grms-client task_info 1152877900969_exanpl e13_3744 migration
- Your DN /C=PL/C=GRI D O=PSNC/ CN=Tormesz Pi ont ek

- Service URL: https://druid-bis.man.poznan. pl : 8442/ axi s/ servi ces/ grns

Taskl nformati on[1152877900969 _exanpl el3_3744, m gration] =

Type = SINGLE

Status = FI Nl SHED

Submi ssionTime = Fri Jul 14 13:51:41 CEST 2006

FinishTime = Fri Jul 14 14:02: 34 CEST 2006

ProxyLifeti me = POYOMODOHOMIS

Request St at us = TASK_DONE

ErrorDescription =

wai t ForCommt = fal se

hi storyLength = 1

Hi story:

H story[O] =

StartTime = Fri Jul 14 13:51:41 CEST 2006

37

GRMSjavaclient

Local Subm ssionTinme = Fri Jul 14 13:51:45 CEST 2006
Local StartTine = Fri Jul 14 13:51:46 CEST 2006
Local Fini shTine = Fri Jul 14 14:02:34 CEST 2006
TaskDescription = <?xm versi on="1.0" encodi ng="UTF- 8" ?>
<task taskid="mgration">
<resour ce>
<host nane>f ury. man. poznan. pl </ host nane>
</resource>
<execut abl e type="singl e" count="1" checkpoi ntabl e="true">
<execfil e nanme="chkpt test">
<url>gsiftp://fury. man. poznan. pl / ~/ exanpl es/ chkpt _test</url >
</ execfil e>
<ar gunent s>
<val ue>6000</ val ue>
</ ar gunment s>
<checkpoi nt >
<fi1le nane="checkpoi nt" type="out">
<url >gsiftp://fury. man. poznan. pl / ~/ exanpl es/ checkpoi nt-${JOB_I D} </ url >
</[file>
<fil e name="checkpoint" type="in">
<url >gsiftp://fury. man. poznan. pl / ~/ exanpl es/ checkpoi nt-${JOB I D} </ url >
</[file>
</ checkpoi nt >
</ execut abl e>
</t ask>

No Applicati onAccess

Coal | ocation[0] =

Host Name = fury. man. poznan. p
Count =0

| ndexes =

[pi ont ek@Ir ui d-bi s]$ grms-client task_info 1152877900969_exanpl e13_3744 nmigration 0
- Your DN: /C=PL/ O=GRI D/ O=PSNC/ CN=Tonmasz Pi ont ek

- Service URL: https://druid-bis.nman. poznan. pl : 8342/ axi s/ servi ces/ grms

- Tasklnformation[1152877900969_exanpl e13_3744, m grati on] =

Type = SI NGLE

Status = FI NI SHED

Submi ssionTime = Fri Jul 14 13:51:41 CEST 2006

FinishTime = Fri Jul 14 14:02:34 CEST 2006

ProxylLifetime POYOMDDOHOMDS

Request St at us TASK_DONE

ErrorDescripti =
wai t For Comm t
hi storyLength
Hi story:

n

Inimoin

fal se
1

resources
grms-client resourcest askl d j obDescription-file

Returns list of resources that meet requirements specified for given task in job description.

[pi ontek@Irui d-bi s]$ grms-client resources task_1 ./exanpl es/ exanpl el. xni
Your DN: /C=PL/ O=GRI D O=PSNC/ CN=Tonasz Pi ont ek
Service URL: https://druid-bis.man. poznan. pl: 8442/ axi s/ servi ces/ grms
Li st of resources got successfully
Li st of resources
el toro. pcz. pl:2119/j obmanager-fork:/ C=PL/ O=GRI D/ O=Techni cal University of Czestochowa
/ CN=host/eltoro. pcz.p
- packcs-e0. scai . fraunhof er. de: 2119/ j obmanager - f or k: / C=DE/ O=Fr aunhof er / OU=SCAI
/ OU=Ser vi ces/ CN=packcs- €0. scai . f raunhof er. de
bouscat . cs. cf. ac. uk: 2119/ /j obmanager - f or k
onyx3. zi b. de: 2119/ j obmanager: / O=G'i d/ O=Gri dLab/ CN=onyx3. zi b. de
sr8000. | rz- nuenchen. de: 2119/ /j obmanager - f or k
hel i x. bcvc. | su. edu: 2119/ j obmanager - fork: / O=Gri d/ O=Gr i dLab/ CN=hel i x. bcvc. | su. edu
peyot e. aei . npg. de: 2119/ /] obmanager - f or k
litchi.zib.de:2119/j obmanager-fork:/O=Gid/ O=GridLab/CN=litchi. zib. de
n0. hpcc. szt aki . hu: 2119/ /j obmanager - f or k
skirit.ics.nmuni.cz:2119/) obmanager-f ork: / O=CESNET/ O=Masar yk Uni versity
/ CNchost/skirit.ics.muni.cz
- hitcross.|rz-nuenchen. de: 2119/ /j obmanager - f ork
- fs0.das2.cs.vu.nl:2119/j obmanager - f or k: / O=dut chgri d/ O=host s/ OU=cs. vu. nl / CN=f s0. das2. cs. vu. n

test
grns-client testjobDescription-file

Checks the correctness of job description

38

GRMSjavaclient

[pi ont ek@lr ui d-bi s]$ grns-client test ./exanples/exanple2.xm

- Your DN: /C=PL/ O=GRI DY O=PSNC/ CN=Tonmasz Pi ont ek

- Service URL: https://druid-bis.nan.poznan. pl: 8442/ axi s/ services/grms
- Job description is correct

[pi ontek@lr ui d-bi s]$ grms-client test ./exanples/error.xnl

Your DN: /C=PL/ O=GRI D/ O=PSNC/ CN=Tonasz Pi ont ek

Service URL: https://druid-bis.man. poznan. pl : 8442/ axi s/ servi ces/ grnms

Incorrect job description!

CRMS response was:

- errorCode: 101

- errorMessage: Job description syntax error: The el enment type "val ue" nust be term nated
by the matching end-tag "</val ue>".

add_job_notif
grns-client add_job notif j obl d SOAP dest i nati on [JOB_STATUS [, JOB_STATUS...]]

Registers SOAP notification concerning changes of job's status. It is possible to register only for some subset of
statuses.

[pi ontek@Irui d-bi s]$ grms-client add_job_notif 1107243045980_ps_ext ensi on_3879 soap \
http://ragel. man. poznan. pl : 1222
- Your DN: /C=PL/ O=GRI D/ O=PSNC/ CN=Tonasz Pi ont ek
- Service URL: https://druid-bis.man.poznan. pl : 8442/ axi s/ servi ces/ grns
- Notification registered successfully.
Notificationld = 1107243045980_ps_ext ensi on_3879: 1107246112047

[pi ont ek@Ir ui d-bi s]$ grms-client add_job_notif 1107243045980_ps_ext ensi on_3879 soap \
http://ragel. man. poznan. pl : 1222 active, fi ni shed
- Your DN /C=PL/O=CGRI D O=PSNC/ CN=Tormesz Pi ont ek
- Service URL: https://druid-bis.nman. poznan. pl : 8442/ axi s/ servi ces/ grms
- Notification registered successfully.
Noti ficationld = 1107243045980_ps_ext ensi on_3879: 1107246123423

add_job_notif
grns-client add job notif jobld GASS destination TRUE | FALSE [format [JOB_STATUS
[, JoB_STATUS...]]]

Registers GASS notification concerning changes of job's status. It is obligatory to specify jobld, location of re-
mote file and choose if each notification should be appended to the file or should overwrite it. Optionally it is
possible to specify format of message and list of statuses.

[pi ontek@Ir ui d-bi s]$ grms-client add_job_notif 1107243045980_ps_ext ensi on_3879 gass \
http://fury. man. poznan. pl : 55616/ hone/ pi ont ek/ exanpl es/ notif.txt false
- Your DN: /C=PL/ O=GRI DY O=PSNC/ CN=Tonmasz Pi ont ek
- Service URL: https://druid-bis.nman.poznan. pl : 8442/ axi s/ servi ces/ grns
- Notification listener was regi stered successfully.
notificationld = 1107243045980_ps_ext ensi on_3879: 1107246124547

[pi ont ek@Ir ui d-bi s]$ grms-client add_job_notif 1107243045980_ps_ext ensi on_3879 gass \
http://fury. man. poznan. pl : 55616/ hore/ pi ont ek/ exanpl es/notif.txt false \
"job 9% changed status to %!" active,finished
- Your DN: /C=PL/ O=GRI DY O=PSNC/ CN=Tomasz Pi ont ek
- Service URL: https://druid-bis.nman.poznan. pl : 8442/ axi s/ servi ces/ grns
- Notification listener was regi stered successfully.
notificationld = 1107243045980_ps_ext ensi on_3879: 1107246112632

get_job_notif
grns-client get_job_notif jobld

Lists natifications registered for the given job.

[pi ontek@irui d-bis] ~/GRMS-client $ grns-client get_job_notif 1153129223646_append_8646
- Your DN /C=PL/C=GRI D O=PSNC/ CN=Tormasz Pi ont ek

- Service URL: https://druid-bis.nman. poznan. pl : 8342/ axi s/ servi ces/ grms

- List of notifications got successfully.

- JobStatusNotification[0] =

Notificationld = 1153129223646_append_8646: 1153291880082

Protocol = GASS

Destination = http://fury.man. poznan. pl : 2222

HasMask = true

39

GRMSjavaclient

AppendMode = true

Format = Job % changed state to %

Mask = CANCELED FAI LED

- JobStatusNotification[1] =

Notificationld = 1153129223646_append_8646: 1153291809189
Prot ocol = SCAP

Destination = http://fury. man. poznan. pl: 12345

HasMask = true

Mask = FI NI SHED ACTI VE

get_job_notif

grns-client get_job_notif jobldnotificationld

Returns description of notification with given identifier.

pi ont ek@irui d-bi s]$ grns-client get_job_notif 1153129223646_append_8646 \
1153129223646_append_8646: 1153291809189

GRVS_URL [https://fury. man. poznan. pl : 8342/ axi s/ servi ces/ grns]

GRMS_DN [/ C=PL/ O=GRI D/ O=PSNC/ CN=gr ns/ f ury. man. poznan. pl]

GRVS_DELEG TYPE [FULL]

GRVB_TI MEQUT [5]

- Your DN: /C=PL/ O=GRI D/ O=PSNC/ CN=Tonmasz Pi ont ek

- Service URL: https://fury.man. poznan. pl : 8342/ axi s/ servi ces/ grns

- Notificationlnfornation:

Notificationld = 1153129223646_append_8646: 1153291809189

Prot ocol = SCAP

Destination = http://fury. man. poznan. pl : 12345

HasMask = true

Mask = FI NI SHED ACTI VE

If the wrong Notificationld was used the proper error message is displayed.

[pi ontek@irui d-bis]$ grns-client get_job_notif 1107243045980_ps_ext_3879 wong_notif_id
Your DN: /C=PL/ O=GRI D O=PSNC/ CN=Tonasz Pi ont ek

Service URL: https://druid-bis.nan. poznan. pl: 8442/ axi s/ servi ces/ grms

Getting Notification info failed!

GRMS response was:

error Code: 165

errorMessage: Failed to get notification - no such notification

del_job_notif

grns-client del _job_notif jobldnotificationld

Unregisters notification with given identifier

[pi ont ek@lr ui d-bi s]$ grns-client del _job_notif 1107243045980_ps_ext 3879 \
1107243045980_ps_ext _3879: 1107246248349

- Your DN: /C=PL/ O=GRI DY O=PSNC/ CN=Tonmasz Pi ont ek

- Service URL: https://druid-bis.nman. poznan. pl : 8442/ axi s/ servi ces/ grms

- Notification unregistered successfully.

add_task_notif
grms-client add_task notif j obl d t askl d STATUS SOAP desti nati on [TASK_SATUS [, TASK_STATUS...]]

For the given task registers SOAP notification concerning changes of task's status. It is possible to specify sub-
set of statuses.

[pi ont ek@Irui d-bi s]$ grms-client add_task_notif 1153129223646_append_8646 date status soap \
https://fury. man. poznan. pl : 3333 runni ng, fi ni shed, cancel ed

- Your DN: /C=PL/ O=GRI D/ O=PSNC/ CN=Tonasz Pi ont ek

- Service URL: https://fury.man. poznan. pl: 8342/ axi s/ servi ces/ grns

- Notification registered successfully. Notificationld = 1153129223646_append_8646: 1153296496709

add_task_notif
grns-client add task notif jobld taskld STATUS GASS destination TRUE | FALSE [format
[TASK_STATUS [, TASK_STATUS...]]]

For the given task registers GASS notification concerning changes of task's status. It is possible to specify sub-
set of statuses.

40

GRMSjavaclient

pi ont ek@ir ui d-bi s]$ grns-client add_task notif 1153129223646_append_8646 date status gass \
https://fury. man. poznan. pl : 3333 true \
"Task %, % changed status to %" \
runni ng, fi ni shed, cancel ed

GRNS_U L [https://fury. man. poznan. pl : 8342/ axi s/ servi ces/ grns]

, DN [/ C=PL/ O=GRI D/ O=PSNC/ CN=gr ns/ f ury. man. poznan. pl]

GRNB_DELEG TYPE [FULL]

GRVB_TI MEQUT [5]

- Your DN: /C=PL/ O=GRI D/ O=PSNC/ CN=Tonmasz Pi ont ek

- Service URL: https://fury.man. poznan. pl : 8342/ axi s/ servi ces/ grns

- Notification registered successfully. Notificationld = 1153129223646_append_8646: 1153296965301

add_task_notif
grns-client add_task notif jobld taskld REQUEST SOAP destination [TASK REQUEST_SATUS
[, TASK_REQUEST_STATUS...]]

For the given task registers SOAP noatification concerning changes of request processing. It is possible to spec-
ify subset of statuses.

[pi ontek@irui d-bis]$ grms-client add_task_notif 1153129223646_append_8646 date request soap \
https:7/fury. man. poznan. pl : 1234 t ask_r esource, t ask_exec_acti ve
- Your DN: /C=PL/ O=GRI DY O=PSNC/ CN=Tonmasz Pi ont ek
- Service URL: https://fury.man. poznan. pl: 8342/ axi s/ servi ces/ grns
- Notification registered successfully.
Notificationld = 1153129223646_append_8646: 1153296497634

add_task_notif
grms-client add task notif jobld taskld REQUEST GASS destination TRUE | FALSE [format
[TASK_REQUEST_STATUS [, TASK_REQUEST_STATUS...]]]

For the given task registers GASS notification concerning changes of request processing. It is possible to spec-
ify subset of statuses.

[pi ontek@Irui d-bis]$ grms-client add_task_notif 1153129223646_append_8646 date request gass \
https://fury. man. poznan. pl : 1236 fal se \
"Task % ,% changed status to %" task_resource,task _exec_active
- Your DN: /C=PL/ O=GRI D/ O=PSNC/ CN=Tonasz Pi ont ek
- Service URL: https://fury.man. poznan. pl: 8342/ axi s/ servi ces/ grns
- Notification registered successfully.
Notificationld = 1153129223646_append_8646: 1153296503562

add_tasks_notif
grms-client add tasks notif j obl d STATUS SOAP dest i nati on [TASK_STATUS [, TASK_STATUS...]]

For all tasks of given job registers SOAP notifications concerning changes of statuses of tasks. It is possible to
specify subset of statuses.

[pi ontek@Irui d-bi s]$ grms-client add_tasks_notif 1153129223646_append_8646 status soap \
https://fury. man. poznan. pl : 3333 runni ng, fi ni shed, cancel ed

- Your DN: /C=PL/ O=GRI D/ O=PSNC/ CN=Tonmasz Pi ont ek

- Service URL: https://fury.man. poznan. pl : 8342/ axi s/ servi ces/ grns

- Notifications registered successfully

add_tasks_notif
grms-client add tasks notif j obl d STATUS GASS destination TRUE | FALSE [format [TASK_STATUS
[, TASK_STATUS...]]]

For all tasks of given job registers GASS notifications concerning changes of statuses of tasks. It is possible to
specify if notifications should be appended to the file or overwrite it, format of message and subset of statuses.

pi ont ek@ir ui d-bi s]$ grns-client add_tasks notif 1153129223646 append_8646 status gass \
https://fury. man. poznan. pl : 3333 true \
"Task % ,% changed status to %" \
runni ng, fini shed, cancel ed

- Your DN /C=PL/O=GRI D O=PSNC/ CN=Tormasz Pi ont ek

- Service URL: https://fury.man. poznan. pl: 8342/ axi s/ servi ces/ grns

- Notifications registered successfully

41

GRMSjavaclient

add_tasks_notif
grms-client add tasks notif jobld REQUEST SOAP destination [TASK_REQUEST STATUS
[, TASK_REQUEST_STATUS...]]

For al tasks of given job registers SOAP natifications concerning processing of requests. It is possible to spec-
ify subset of statuses.

[pi ont ek@lr ui d-bi s]$ grns-client add_tasks_notif 1153129223646 _append_8646 request soap \
https://fury. man. poznan. pl : 1234 task_resource, task_exec_active

- Your DN: /C=PL/ O=GRI DY O=PSNC/ CN=Tonmasz Pi ont ek

- Service URL: https://fury.man. poznan. pl: 8342/ axi s/ servi ces/ grns

- Notifications registered successfully

add_tasks_notif
grns-client add tasks notif jobld REQUEST GASS destination TRUE | FALSE [format
[TASK_REQUEST STATUS [, TASK_REQUEST STATUS...]]]

For al tasks of given job registers GASS notifications concerning processing of requests. It is possible to spec-
ify if notifications should be appended to the file or overwrite it, format of message and subset of statuses.

[pi ontek@Irui d-bi s]$ grms-client add_tasks_notif 1153129223646_append_8646 request gass \
https://fury. man. poznan. pl : 1236 fal se \
"Task % ,% changed status to %" task_resource,task_exec_active
- Your DN: /C=PL/ O=GRI D/ O=PSNC/ CN=Tonmasz Pi ont ek
- Service URL: https://fury.man. poznan. pl : 8342/ axi s/ servi ces/ grns
- Notifications registered successfully

get_task_notif
grme-client info_task_notif jobldtaskld[STATUS|REQUEST]

Returns descriptions of notifications registered for given task. Optionally it is possible to specify type of notifi-
cations we are interested in.

pi ont ek@irui d-bi s]$ grns-client get_task notif 1153129223646_append_8646 date
- Your DN /C=PL/O=GRI D O=PSNC/ CN=Tormesz Pi ont ek

- Service URL: https://druid-bis.nman. poznan. pl : 8342/ axi s/ servi ces/ grms
- List of notifications got successfully.

- notification[0]=

Notificationld = 1153129223646_append_8646: 1153309627232
Protocol = GASS

Destination = https://fury.man. poznan. pl : 3333

HasMask = true

AppendMbde = true

Format = Task %, % changed status to %

Event = REQUEST

- notification[1]=

Notificationld = 1153129223646_append_8646: 1153307794500
Protocol = GASS

Destination = https://fury.man. poznan. pl : 3333

HasMask = true

AppendMode = true

Format = Task %, % changed status to %

Event = STATUS

- notification[2]=

Notificationld = 1153129223646_append_8646: 1153296965301
Protocol = GASS

Destination = https://fury. man. poznan. pl : 3333

HasMask = true

AppendMbde = true

Format = Task %, % changed status to %

Event = STATUS

- notification[3]=

Notificationld = 1153129223646_append_8646: 1153296496709
Prot ocol = SCAP

Destination = https://fury.man. poznan. pl : 3333

HasMask = true

Event = STATUS

pi ont ek@irui d-bi s]$ grns-client get_task_notif 1153129223646 _append_8646 date request
GRVS_URL [https://fury. man. poznan. pl : 8342/ axi s/ servi ces/ grns]

- Your DN /C=PL/O=GRI D O=PSNC/ CN=Tormesz Pi ont ek

- Service URL: https://fury.man. poznan. pl : 8342/ axi s/ servi ces/ grns

- List of notifications got successfully.

42

GRMSjavaclient

- notification[0]=

Notificationld = 1153129223646_append_8646: 1153309627232
Protocol = GASS

Destination = https://fury. man. poznan. pl : 3333

HasMask = true

AppendMode = true

Format = Task %, % changed status to %

Event = REQUEST

get_task_notif
grms-client get_task_notif jobldtaskldnotificationld[STATUS|REQUEST]

Returns description of notification with given identifier. Optionally it is possible to specify type of notification.

pi ont ek@irui d-bi s]$ grns-client get_task notif 1153129223646_append_8646 date \
1153129223646_append_8646: 1153309627232

- Your DN: /C=PL/ O=GRI Y O=PSNC/ CN=Tonasz Pi ont ek

- Service URL: https://druid-bis.nman. poznan. pl : 8342/ axi s/ servi ces/ grms

- Notificationlnformation:

Notificationld = 1153129223646_append_8646: 1153309627232

Prot ocol = GASS

Destination = https://fury.man. poznan. pl : 3333

HasMask = true

AppendMbde = true

Format = Task %, % changed status to %

Event = REQUEST

pi ontek@Irui d-bi s]$ grms-client get_task_notif 1153129223646_append_8646 date \
1153129223646_append_8646: 1153309627232 request

- Your DN /C=PL/ O=GRI DY O=PSNC/ CN=Tonmasz Pi ont ek

- Service URL: https://druid-bis.nman.poznan. pl : 8342/ axi s/ servi ces/ grns

- Notificationlnfornation:

Notificationld = 1153129223646_append_8646: 1153309627232

Protocol = GASS

Destination = https://fury.man. poznan. pl : 3333

HasMask = true

AppendMode = true

Format = Task %, % changed status to %

Event = REQUEST

Mask = TASK_UNCOWM TTED

If the wrong type is specified for notification, the proper error message will be displayed

pi ontek@ruid-bis ~/GRMS-client $ grns-client get_task notif 1153129223646_append_8646 \
date 1153129223646_append_8646: 1153309627232 st at us

- Your DN: /C=PL/ O=GRI DY O=PSNC/ CN=Tonasz Pi ont ek

- Service URL: https://fury.man. poznan. pl: 8342/ axi s/ servi ces/ grns

- CGetting notification information fail ed!

- grms.services.gridge.grnms. exceptions. Get TaskSt atusNoti fi cati onExcepti on

error Code = 165

errorMessage = Failed to get notification - no such notification

del _task_notif
grns-client del _task notif jobldtaskldnotificationld

For a given task unregisters notification with given identifier.

[pi ontek@Irui d-bi s]$ grms-client del _task_notif 1153129223646_append_8646 date \
1153129223646_append_8646: 1153309627232

- Your DN /C=PL/O=CGRI D O=PSNC/ CN=Tormesz Pi ont ek

- Service URL: https://fury.man. poznan. pl: 8342/ axi s/ servi ces/ grns

- Notification unregistered successfully.

add_file_dir
grms-client add_file dirjobldtaskld overwite FILE DIR LOG CAL_TYPE name PHYSICAL | LOGICAL
pat h user FILE | DIRECTORY append r equi r ed [per i ssi ons]

Dynamically adds file or directory for a given task. It is possible to add argument as well as checkpoint files and
directories, specify if in case of presence of such file it should be overwritten or cause failure. Additionally user
can specify if during the transfer the contents of file/directory should be appended or overwrite the destination,
if thefile or directory is required and if its lack should cause failure. Optionally it is possible to specify permis-

43

GRMSjavaclient

sions.

[pi ontek@Irui d-bis]$ grms-client add_file_dir 1153129223646_append_8646 date \
fal se argunent _in file_nanme physical \
gsiftp://fury. man. poznan. pl / ~/ exanpl es/input.txt "" \
file false true 766

- Your DN: /C=PL/ O=GRI D/ O=PSNC/ CN=Tonasz Pi ont ek

- Service URL: https://fury.man. poznan. pl: 8342/ axi s/ servi ces/ grns

- Operation finished successfully

If thefile or directory to be registered already existsand "overwri t e" parameter is set to "false" the proper error
message is displayed.

[pi ontek@Irui d-bis]$ grms-client add_file_dir 1153129223646_append_8646 date \
fal se argunent _in file_name physical \
gsiftp://fury. man. poznan. pl / ~/ exanpl es/i nput.txt "" \
file false true 766

- Your DN: /C=PL/ O=GRI D/ O=PSNC/ CN=Tonasz Pi ont ek

- Service URL: https://fury.man. poznan. pl : 8342/ axi s/ servi ces/ grns

- Adding file/dir failed!

Number of errors: 1
Resul t[0] errorCode=420 errorMessage=File/Dir already exists

If the file or directory definition isincorrect the proper error message is displayed.

pi ontek@ruid-bis ~/GRVMS-client $ grns-client add _file_dir 1153129223646 _append_8646 date \
fal se argunent_in "" physi cal
gsiftp://fury. man. poznan. pl / ~/ exanpl es/input.txt "" \
file false true 766

Your DN:. /C=PL/ O=GRI D O=PSNC/ CN=Tormesz Pi ont ek

Service URL: https://fury. man. poznan. pl : 8342/ axi s/ servi ces/ grns

Addi ng output file/dir failed!

Number of errors: 1

Resul t[0] errorCode=422 errorMessage=l ncorrect definition

get_file_dirs
grme-client get file dirs jobld taskld [FILE DIR LOG CAL_TYPE [, FILE DI R LOG CAL_TYPE...]]
[FILE_.DIR_ ORIG N_TYPE[, FILE_DIR ORI G N_TYPE...]]

For the given task returns list of files and directories. Optionally it is possible to specify list of logical types and
origins.

[p| ontek@irui d-bis]$ grms-client get file dirs 1153392145921 exanpl el4_3397 tar
Your DN: /C=PL/ O=GRI D/ O=PSNC/ CN=Tonasz Pi ont ek
- Service URL: https://fury.man. poznan. pl : 8342/ axi s/ servi ces/ grns
- List of files/directories got successfully
- FileDir[O]:
Logi cal Type = ARGUVMENT_OUT
Narre = ps.out.tgz
Path = gsiftp://fury. man. poznan. pl / ~/ exanpl es/ ps-${JOB_I D}.tgz
Append = fal se
Perm ssions = NOT SET
Required = true
St oreType = PHYSI CAL
Physi cal Type = FILE
O ginType = DESCRI PTI ON
- FileDir[1]:
- Logi cal Type = ARGUMENT_I N
Name = ps_in
Path = gsiftp://fury. man. poznan. pl/~/ ps-${JOB_ID}.tgz
Append = true
Perm ssions = rwrwrw
Required = fal se
StoreType = PHYSI CAL
Physi cal Type = FILE
Oigi nType = DESCRI PTI ON
- FileDr[2]:
- Logical Type = ARGUMVENT_I N
Narme file_name
Pat h 12345
User GRVSB
Append = fal se
Perm ssions = rwr--r--
Required = true
StoreType = LOd CAL
Physi cal Type = FILE

GRMSjavaclient

OriginType = ADDED

[piontek@iruid-bis]$ grns-client get_file_dirs 1153392145921 exanpl el4_3397 tar argument _in \
descri pti on, added

Your DN: /C=PL/ O=GRI D/ O=PSNC/ CN=Tonasz Pi ont ek

Service URL: https://fury. man. poznan. pl : 8342/ axi s/ servi ces/ grns

List of files/directories got successfully

FileDir[0]:

- Logi cal Type = ARGUVENT_I N

Name = ps_in

Path = gsiftp://fury. man. poznan. pl/~/ ps-${JOB_ID}.tgz

Append = true

Perm ssions = rwrwrw

Required = fal se

St oreType = PHYSI CAL

Physi cal Type = FI LE

O'igi nType = DESCRI PTI ON

- FileDr[1]:

- Logi cal Type = ARGUVENT_I N

Narme = fil e_nane

Path = 12345

User = GRMB

Append = fal se

Perm ssions = rwr--r--

Required = true

StoreType = LOG CAL

Physi cal Type = FILE

Origi nType = ADDED

[pl ontek@irui d-bis]$ grms-client get_file_dirs 1153392145921 _exanpl el4_3397 tar argunent_in added
Your DN: /C=PL/ O=GRI D/ O=PSNC/ CN=Tomasz Pi ont ek

- Service URL: https://fury.man. poznan. pl : 8342/ axi s/ servi ces/ grns

- List of files/directories got successfully

- FileDir[O]:
Logl cal Type = ARGUMENT_I N

Nane = file_nanme

Path = 12345

User = GRVB

Append = fal se

Perm ssions = rwr--r--

Required = true

StoreType = LOd CAL

Physi cal Type = FILE

Origi nType = ADDED

del_file_dir
grnms-client del_file dir jobld taskld FILE_DIR LOG CAL_TYPE name PHYSICAL | LOGICAL path user
FILE | DIRECTORY

Unregistersfile or directory.

[piontek@iruid-bis]$ grns-client del _file_dir 1153392145921 exanpl el4_3397 tar ar gunent _ in\
ile_name |ogical 12345 "GRMS" file

- Your DN /C=PL/O=CGRI D O=PSNC/ CN=Tormesz Pi ont ek

- Service URL: https://druid-bis.nman. poznan. pl : 8342/ axi s/ servi ces/ grms

- Operation finished successfully

If the file or directory to be unregistered doesn't exist the proper error message is displayed.

[pi ont ek@Ir ui d-bi s]$ grms-client del _output 1088499660886_appi d_1622 taskid_1 paramfile \
gsi ftp://ragel. man. poznan. pl / ~/ exanpl es/ param fil e physical file

Your DN. /C=PL/ O=GRI D/ O=PSNC/ CN=Tormasz Pi ont ek

Service URL: https://druid-bis.man. poznan. pl : 8442/ axi s/ servi ces/ grms

The operation finished with result:

error Code= 421

errorMessage= No such file or directory

del file_dirs
grme-client del_file dirs jobld taskld [FILE DIR LOG CAL_TYPE [, FILE DI R LOG CAL_TYPE...]]
[FILE_.DIR_ ORIG N_TYPE[, FILE_DIR ORI G N_TYPE...]]

Unregistersfiles or directories of specific type.

[pi ontek@irui d-bis]$ grns-client del _file_dirs 1153392145921 _exanpl el4_3397 tar argunment_in \

45

GRMSjavaclient

descri pti on, added
- Your DN: /C=PL/ O=GRI DY O=PSNC/ CN=Tonmasz Pi ont ek
- Service URL: https://fury.man. poznan. pl: 8342/ axi s/ servi ces/ grns
- Operation finished successfully

extend_execution
grms-cli ent extend_execution j obl d t askl d +|- year s mont hs days hour s ni nut es seconds

For atime schedul ed tasks extends its time of execution.

[pi ont ek@ir ui d-bi s]$ grms-client extend_execution 1088499660886_appi d_1622 taskid_1 + 0 0 0 2 30 O
- Your DN: /C=PL/ O=GRI D/ O=PSNC/ CN=Tonasz Pi ont ek

- Service URL: https://druid-bis.nman. poznan. pl : 8443/ axi s/ servi ces/ grms

- ExecutionTinme extended successfully

description
grms-client description SHORT | FULL

Returns description of service.

[pi ont ek@Ir ui d-bi s]$ grms-client description short

- Your DN: /C=PL/ O=GRI D/ O=PSNC/ CN=Tonmasz Pi ont ek

- Service URL: https://druid-bis.man.poznan. pl : 8442/ axi s/ servi ces/ grns
- Gridge Resource Managenent System (GRMS) 1.0

[pi ont ek@irui d-bi s]$ grns-client description full

- Your DN /C=PL/C=CGRI D O=PSNC/ CN=Tormasz Pi ont ek

- Service URL: https://druid-bis.nan. poznan. pl: 8442/ axi s/ services/ grms
- Gidge Resource Managenment System (GRVS) 1.0

Service URL: https://fury. man. poznan. pl : 8342/ axi s/ servi ces/ grns
Client host name: druid-bis.nman. poznan. pl

Your DN: /C=PL/ O=CRI D/ O=PSNC/ CN=Tonasz Pi ont ek

Your Proxy: WAS DELEGATED SUCCESSFULLY

For nore details please see: ww. gridge. org

46

