User Guide

- We recommend using **CHAMDRILL** in rotating or stationary applications with a maximum of .0008" outer cutting points or chisel runout for optimum performance. Larger runout will influence drill performance and hole quality.
- In case of stationary applications we recommend clamping the drill in an orientation which directs both outer cutting points parallel to machine "X" axis.
- On stationary (lathe) applications, if there are misalignment problems it is recommended to use alignment devices such as the ISCAR/ETM GYRO device. Misalignment will cause poor performance of the CHAMDRILL or even tool breakage!

- If chip formation or chip evacuation problems are encountered, follow these recommendations:
 - 1. Reduce cutting speed by 10%
 - 2. Increase internal coolant pressure
 - 3. Apply a pecking cycle
- Use of internal and external coolant during drilling is recommended for achieving prolonged edge life. When only external coolant can be applied it is recommended to drill into a maximum depth of 2X the drill diameter.
- Semi-synthetic or emulsion lubricants are recommended in order to extend tool life.
- Dry machining should not be performed under any circumstances.
- The new CHAMDRILLs can be clamped in ISCAR tooling systems such as:
 - 1. Collet chucks
 - 2. Side lock adapters
 - 3. Power/hydraulic chucks

- We recommend:
 - JET 2 collet chucks for internal and external coolant jets.
 - Using **CHAMDRILL** in **SHORTIN** adaptation with collets, for achieving higher tool life and improved performance.
 - Drilling sloped surfaces of a maximum 6°. Reduce feed by 30-50% when penetrating a sloped surface. Recommended exit surface angle is a maximum of 30°. In that case feed should be reduced by 30-50%. Sloped surfaces of more than 6° require spot or pre-hole centering to avoid drill deviation or poor drill performance.
- Both options of stacked plate drilling are possible with and without gap. (A minimum gap of .08" between plates is recommended).
- Interrupted cut has direct influence on hole accuracy, quality and drill tool life.
- **CHAMDRILL** can not be used on **FITBORE** or any other radial adjustment adaptation device.
- Before clamping a new drilling head, apply some oil in the **CHAMDRILL** pocket. This practice reduces pocket wear and increases the number of indexing cycles.
- Attached is a sketch which may help in identifying the indications of a worn-out drill head (see page 11).
- A general troubleshooting guide is attached, for suggesting solutions to the most common problems. (See pages 14-15).

DCM Indexable Head Drills

Drilling Depth **3xD**

DCM

øD(1) Range	L	Designation	d	d ₁	L ₁	L,	Pocket Size	Кеу
.866901	2.60	DCM 0866-260-100A-3D	1.00	1.26	3.74	2.20	22	K DCM-22
.906941	2.71	DCM 0906-272-100A-3D	1.00	1.26	3.92	2.20	23	K DCM-23
.945980	2.83	DCM 0945-283-100A-3D	1.00	1.26	4.08	2.20	24	K DCM-24
.984-1.020	2.95	DCM 0984-295-100A-3D	1.00	1.26	4.29	2.20	25	K DCM-25

Hole tolerance: D+0.02 in average conditions, however, it can be higher or lower according to machine and tooling conditions.

DCM Indexable Head Drills

Drilling Depth 5xD

DCM

øD Range	L	Designation	d	d ₁	L ₁	L_2	Pocket Size	Key	Drilling Heads
.866901	4.33	DCM 0866-433-100A-5D	1.000	1.26	5.47	2.20	22	K DCM-22	
.906941	4.53	DCM 0906-453-100A-5D	1.000	1.26	5.72	2.20	23	K DCM-23	וחו
.945980	4.72	DCM 0945-472-100A-5D	1.000	1.26	5.97	2.20	24	K DCM-24	101
.984-1.020	4.92	DCM 0984-492-100A-5D	1.000	1.26	6.26	2.20	25	K DCM-25	

(1) Do not mount smaller drilling heads than specified range for drill body.

Hole tolerance: D+0.02 in average conditions, however, it can be higher or lower according to machine and tooling conditions.

Drilling Heads for DCM Drills

IDI

Designation	D Range ⁽¹⁾	S	Pocket Size	IC908
	.866901	.366	22.0	•
IDI::::-SG	.906941	.385	23.0	•
IDI : : : -SK ⁽²⁾	.945980	.393	24.0	•
	.984-1.02	.417	25.0	•

(1) Heads are available in increments of .004.

⁽²⁾SK heads for drilling cast iron available in IC 908. Ordering examples for .524 drill head: IDI 133-SG IC528.

Power/Force Requirements

Indications of Drilling Head Wearing Out

CHAMDRILL USER GUIDE

CHAMDRILL Unlocking Change in Torque

The number of indexing changes according to machine/clamping rigidity machining conditions, workpiece material, coolant, cooling pressure and correct usage.

Torque Inspection Key Torque keys are available for checking minimal clamping torque. If a "click" is not heard while unclamping with the torque key, the drill must be replaced.

CHAMDRILL USER GUIDE

Machining Conditions

Coolant Mix

Recommended emulsion mix is 6%-8%. When drilling in stainless and high strength steels a mix of 10% is recommended.

Dry Drilling

It is possible to drill without coolant in cast iron and steel. Oil mist through the drill is then required (for 2xD max).

Troubleshooting

Cutting Edge Chipping

- 1. Check the stability of the machine spindle, tool and workpiece clamping rigidity.
- 2. Reduce feed rate, increase speed.
- 3. If the drill vibrates, reduce cutting speed and increase feed rate.
- **4.** When drilling rough, hard or sloped surface (up to 6°), reduce the feed rate by 30%-50% during entrance and exit.
- 5. Check cooling lubricant. Increase coolant pressure. In case of external coolant supply, improve jet direction and add cooling jets.

Chisel Area Chipping

- 1. Reduce feed rate.
- 2. Increase coolant pressure.
- 3. Check the adaptation. Use hydraulic clamping chuck, MAXIN power chuck or side lock systems.
- 4. Increase workpiece chucking force.

- 2. Reduce cutting speed.
- 3. Increase internal coolant pressure.

Excessive Flute Land Wear

- 1. Check that the correct geometry is used.
- 2. Check the runout and make sure it is within .001 inch T.I.R. (radial and axial).
- 3. Reduce cutting speed.
- **4.** When drilling rough, hard or sloped surface (up to 6°), reduce the feed rate by 30%-50% during entrance and exit.
- 5. Increase coolant pressure.
- **6.** Check the chisel point runout and make sure it is within .001 inch T.I.R.
- 7. Increase workpiece chucking force stability and rigidity.
- 8. If there is low pocket gripping force replace drill body.

Troubleshooting

Built-Up Edge1. Increase cutting speed.2. Increase coolant pressure.

- **1.** Check unlocking gripping torque with TK DCM torque key. If there is no click indication replace drill head.
- 2. Increase coolant pressure.

- Check the runout and make sure it is within .001 inch T.I.R. (radial and axial cutting points).
- 2. Reduce feed rate.
- **3.** Check the chisel point runout and make sure that it is within .001 inch T.I.R.
- 4. Wrong cutting edge. Replace head.
- 5. Increase workpiece chucking force.
- 6. Check the adaptation. Use hydraulic clamping chuck, MAXIN power chuck or side clamping systems.
- 7. Increase internal coolant pressure.

Ø > D nominal + .006 inch

- 1. Check the runout and make sure it is within .001 inch T.I.R. (radial and axial).
- 2. Adjust the feed for improved chip formation.
- **3.** In case of chip jamming increase the coolant flow and/or reduce the cutting speed.
- 4. Increase the coolant pressure.
- **5.** Check the chisel point runout and make sure it is within .001 inch T.I.R.
- 6. Use pecking cycle.

Surface Finish Too Rough

Inaccurate Hole Position

- **1.** Check the runout and make sure it is within .001 inch T.I.R. (radial and axial).
- 2. Check the stability of the machine spindle, tool and workpiece clamping rigidity.
- **3.** When drilling rough, hard or sloped surface (up to 6°), reduce the feed rate by 30%-50% during entrance.
- **4.** Drill a pre-hole with a 140° point angle for centering.
- **5.** Check the chisel point runout and make sure it is within .001 inch T.I.R.

- 1. Reduce the feed rate by 30%-50% during exit.
- 2. Replace the worn head.
- **3.** Check the adaptation. Use hydraulic clamping chuck, MAXIN power chuck or side clamping systems.

Machining Data for DCM

150	Material		Condition	Tensile Strength [Kpsi]	Hardness	Material No
		< 0.25 %C	Annealed	61	125	1
	Non-allov steel and	>= 0.25 %C		94	120	2
	cast steel, free cut-	< 0.55 %C	Ouenched and tempered	123	250	3
	ting steel	>= 0.55 %C	Annealed	109	220	4
			Quenched and tempered	145	300	5
Ρ	I ow allow steel and		Annealed	87	200	6
	cast steel		Quenched and tempered	135	275	7
	(less than 5% of			145	300	8
	alloying elements)			174	350	9
	High alloyed steel, cas	st steel,	Annealed	99	200	10
	and tool steel	,	Quenched and tempered	160	325	11
			ferritic/martens.	99	200	12
M	Stainless steel and		martensitic	119	240	13
	cast steel		austenitic	87	180	14
	Cast iron podular (CC	C)	Ferritic/pearlitic		180	15
	Cast Iron housial (GG	(0)	Pearlitic		260	16
Κ	Grev cast iron (GG)		Ferritic		160	17
			Pearlitic		250	18
	Malleable cast iron		Ferritic		130	19
			Pearlitic		230	20
	Aluminum-		Not cureable		60	21
	wrought alloy		Cured		100	22
	Aluminum-cast	<=12% Si	Not cureable		75	23
	alloyed	100/ 01	Cured		90	24
Ν		>12% Si	High temperature		130	25
	Coppor allovs	>1% PD	Pree culling		00	20
	Copper alloys		Electrolitic conner		90	27
			Duroplastics fiber plastics		100	20
	Non metallic		Hard rubber			30
		Fe based	Annealed		200	31
	High temp. alloys		Cured		280	32
			Annealed		250	33
S	Super alloys	Ni or Co based	Cured		350	34
			Cast		320	35
	The share The Herre			58		36
	litanium 11 alloys		Alpha+beta alloys cured	152		37
	Llordonod staal		Hardened		55 HRC	38
	Hardened steel		Hardened		60 HRC	39
H	Chilled cast iron		Cast		400	40
	Cast iron		Hardened		55 HRC	41
	Just non		Hardonou			

Chipformer should be selected based on our geometry recommendations, (Page K4). When using coolant supply only, reduce cutting speed by 10%. Use internal coolant supply when machining austenitic stainless steel.

Cutting	Feed vs. Drill Diameter ipr							
Speed Vc sfm	D=.268429	D=.433508	D=.512587	D=.591665	D=.669823	D=.827-1.020		
160-430								
330-390								
300-360	.005008	.006010	.008012	.010014	.010018	.010018		
300-390								
230-300								
260-430								
230-360	.005008	.006010	.008012	.010014	.012016	.012018		
200-300								
130-230								
160-260	.005008	.005009	.006010	.008011	.010013	.010014		
130-230								
70-160	.003006	.005009	.005006	.006008	.006009	.006011		
300-460								
260-430								
330-590	.008012	.010014	.012016	.014018	.016020	.016024		
300-520								
300-520								
260-390	.008-014	.010016	.012018	.014018	016-024	.016- 026		
200 070			1012 1010		10101021	10101020		
300-520								
100.1/0								
100-160								
70-130	.002004	.003005	.004006	.005007	.005008	.005009		
70-160	.002005	.004006	.005007	.006008	.006009	.006010		
70-160	.002005	.004006	.005007	.006008	.006009	.006010		