
Paxos STM – User Guide
Release 1.0

Tadeusz Kobus, Maciej Kokociński,
Paweł T. Wojciechowski

www.it-soa.pl/jpaxos

January 2011

Contents

1 Overview 3
1.1 Main features . 3
1.2 System architecture . 3

2 Requirements 5

3 Compilation and configuration 7
3.1 Configuration . 7
3.2 Building the library . 8

4 Application programming interface 9
4.1 Atomic transactions . 9
4.2 Shared objects . 10
4.3 Writing an application program . 12
4.4 Handling errors and failures . 15

5 Executing an application program 17

6 Bibliography 19

Bibliography 21

i

ii

Paxos STM – User Guide, Release 1.0

Contents:

Contents 1

Paxos STM – User Guide, Release 1.0

2 Contents

CHAPTER 1

Overview

Paxos STM is a robust implementation of an object-oriented Distributed Software Transactional Memory
(DSTM) in Java, which is tolerant to machine crashes. It provides a convenient way of developing
highly available and efficient services, by replicating a service on several machines and using atomic
transactions to maintain replica consistency. Paxos STM has been inspired by two concepts: Software
Transactional Memory (STM) [ST95] [BHG87] and Distributed Shared Memory (DSM), restricted to
whole objects.

1.1 Main features

Data (objects) that are critical to the service are copied on network nodes running service replicas.
Paxos STM ensures that reads and writes to these data on a given node, are consistently propagated
to all replicas. In case of transaction conflicts, transactions are rolled back and restarted. Transaction
atomicity and isolation are guaranteed.

Non-blocking transaction certification is viewed as a request to the distributed agreement protocol imple-
mented by JPaxos. Following JPaxos’s system assumptions and guarantees, Paxos STM fully supports
the crash-recovery failure model. This is a key feature of our design.

Paxos STM employs a user friendly, error-resistant API that makes transactional objects and object
replication transparent. It shifts the burden of tracking transactional object accesses to the framework,
thus making programming easier and less error-prone. However, no language extensions have been
made.

1.2 System architecture

Paxos STM is built in modular fashion with each building block providing recovery capabilities:

At the bottom of the stack of protocols used by Paxos STM is the JPaxos [JPaxosWeb] library which
is responsible for solving distributed consensus. It provides fault-tolerance and is able to work in a

3

http://en.wikipedia.org/wiki/Software_transactional_memory
http://en.wikipedia.org/wiki/Software_transactional_memory
http://en.wikipedia.org/wiki/Distributed_shared_memory

Paxos STM – User Guide, Release 1.0

network where messages can be lost. On top of JPaxos there is the Atomic Broadcast [M06] module
which guarantees that all the nodes (also referred to as replicas) will eventually receive the same set
of messages in the same order. This delivery property is necessary for the employed in the Paxos
STM optimistic transaction certification algorithms [C09]. In the optimitic approach every transaction
is executed in a way that is invisible to all the other concurrently executed transaction. When an attempt
to commit the transaction is undertaken all the necessary information about the transaction (e.g. the sets
containing objects read and written in the transaction, logical time representing the moment of the start
of the transaction) is broadcast using atomic broadcast mechanism to all the replicas. Therefore each
node can independently and deterministically perform the transaction certification so all the replicas
eventually decide whether the transaction can be committed or it has to be rolled back and restarted.
Employing this certification scheme results in no additional synchronization between the nodes during
the execution of the transactions. In order to enhance the level of fault tolerance and to reduce the latency
in accessing the shared objects, all the shared objects are replicated on each node.

A complete description of Paxos STM appeared in the technical reports [KKW09] [KKW10].

4 Chapter 1. Overview

CHAPTER 2

Requirements

Paxos STM requires the following components to be installed on the target system:

• execution platform: Java Runtime Environment 1.6

• compilation platform: Java Software Development Kit 1.6

• additional libraries:

– JPaxos (GPL v3)

– Javassist (MPL, LGPL)

– Objenesis (Apache Licence v2.0)

5

http://www.java.com
http://www.java.com
https://www.it-soa.pl/en/resp/jpaxos/
http://www.gnu.org/licenses/gpl.html
http://www.csg.is.titech.ac.jp/~chiba/javassist/
http://www.mozilla.org/MPL/
http://www.gnu.org/licenses/lgpl.html
http://objenesis.googlecode.com/svn/docs/index.html
http://www.apache.org/licenses/LICENSE-2.0

Paxos STM – User Guide, Release 1.0

6 Chapter 2. Requirements

CHAPTER 3

Compilation and configuration

3.1 Configuration

Paxos STM relays on JPaxos library; configuration of Paxos STM is largely determined by the configu-
ration of JPaxos. Therefore the first thing that has be done to run an application employing Paxos STM
is to set up is JPaxos parameters (paxos.properties file in the projects main directory). For details
of JPaxos configuration please check JPaxos’ documentation. However, the most important parameters
are:

network configuration

IP addresses and ports on which JPaxos will run on each replica, e.g.:

process.0 = 192.168.1.100:2021:3001

process.1 = 192.168.1.101:2022:3002

process.2 = 192.168.1.102:2023:3003

This entry defines three replicas identified by numbers 0, 1 and 2. These numbers are
used during execution of an application utilizing Paxos STM (see Running an application
employing Paxos STM for details). Each instance of JPaxos requires two available ports.

failure model configuration

There are a number of different failure models Paxos STM can work with. Some are not yet
available due to the undergoing development of JPaxos library, as noted below):

• crash-stop - the process which crashes ceases communication with other processes
and never recovers; calling the commit primitive does nothing; very fast but does not
provide any guarantees concerning fault tolerance

• full stable storage - on each node each message passed by JPaxos is logged to the
stable storage so upon crash and recovery all the missed messages will be delivered
to the recovered process; the performance is limited by the performance of the sta-
ble storage, however there is no upper limit to the number of processes which can
simultaneously crash

• storage-in-ram for homogeneous applications running on all nodes [not yet fully
implemented] - this setting may be used for transactional replication of a service.
Since the copies of the same application run on each node and Paxos STM is used to
ensure consistent state across all the replicas upon crash the process can retrieve and

7

Paxos STM – User Guide, Release 1.0

apply the state of one of the other working processes. Since processes use snapshots of
other processes in order to recover there is no need for creating ordinary checkpoints.
Therefore calling the commit primitive does nothing. When all the processes function
correctly the performance of Paxos STM in such settings is approximately the same as
in case of crash-stop failure model. However the number of processes that can crash
simultaneously have to be lower than the half of the number of the processes.

• storage-in-ram for heterogeneous applications [to be implemented] - processes save
the history of exchanged messages in the volatile memory and from time to time they
flash the logs to the stable storage. In the moments when all the processes are op-
erational the logs can be shortened. The process may recover from the checkpoint
made earlier or from the state of other process running the same application if it is
operational. When all the processes are operational the performance of Paxos STM
in such a setting should be similar to the performance in crash-stop model. The num-
ber of processes that can crash simultaneously depends on the model of distributed
computing implemented in the applications.

Choosing suitable failure model requires setting the FailureModel property in JPaxos’ con-
figuration file:

FailureModel = CrashStop

for crash-stop failure model and:

FailureModel = FullStableStorage

for full stable storage failure model.

3.2 Building the library

The compilation of Paxos STM requires all of the listed in Requirements. libraries. Appropriate jar
archives are placed in the lib directory.

The project can be build using Apache Ant. The follwing ant targets are available:

• [default] - compiles sources, generates documentation (see below) and creates jar archive,

• build - compiles source to the bin directory,

• clean - removes bin, dist, javadoc directories,

• docs - generates the documentation (sphinx in html format, javadocs); documenation to the project
is placed in the docs directory whereas the javadoc documentation is located in the javadoc

directory,

• jar - creates jar archive and places it in the dist directory,

• zip - creates the zip archive of the project and places it in the project’s main directory,

• zipnosource - creates the zip archive of the project with jar archive but no sources and places it
in the project’s main directory.

In order to run a target execute the ant <target> command in the project’s base directory. Calling ant

without any arguments invokes the default target.

8 Chapter 3. Compilation and configuration

http://ant.apache.org/

CHAPTER 4

Application programming interface

There are four basic aspects of DSTM system’s API:

• ‘Transactions‘_ - how to perform a transaction and how to change the control flow inside a
transaction,

• Shared Objects - what can act as an object shared between the nodes and how it has to be defined,

• ‘Incorporating Paxos STM framework into an application‘_ - how to start the framework,
utilize the recovery capabilities and make use of other features of Paxos STM,

• ‘Paxos STM’s behavior on error occurrence‘_ - how does Paxos STM behave when the trans-
actional code misbehaves, what happens when a/some replicas crash.

4.1 Atomic transactions

In Paxos STM framework transactions are defined as objects of classes derived from the abstract
Transaction class. The Transaction class consists of the abstract atomic() method which has to
be implemented by the programmer and is supposed the transaction’s operation set.

The code inside the atomic() method can call several methods to alter the transaction’s flow:

• commit() - ends the transaction earlier than the end of the atomic() method,

• retry() - restarts the transaction,

• rollback() - aborts the transaction,

class CustomTransaction extends Transaction {

private MySharedObject sharedObject;

public CustomTransaction(MySharedObject sharedObject) {

this.sharedObject = sharedObject;

}

@Override

protected void atomic() {

sharedObject.foo();

// commit();

// retry();

// rollback();

9

Paxos STM – User Guide, Release 1.0

}

}

The transaction is started when an instance of the class is created:

new CustomTransaction(sharedArray);

The Transaction class contains also a parametrized constructor which allows to delay the execution of a
newly created transaction. In such a case the transaction needs to be started manually by the programmer
by calling the execute() method on the instance of the class.

It is most convenient to use Java’s anonymous classes to define transactions as shown on the example
below:

final MySharedObject sharedObject = new MySharedObject();

new Transaction() {

protected void atomic() {

sharedObject.foo();

// commit();

// retry();

// rollback();

}

};

Notice the use of the final keyword in the declaration of shared objects. This is required by the Java
semantics in order to pass variables to the anonymous class’ methods.

4.2 Shared objects

There are three kinds of objects that can be shared between the nodes:

instances of classes marked with the @TransactionObject annotation

Marking a class definition with the @TransactionObject annotation advices Paxos STM framework to
alter the class definition when loading it to JVM. This allow automatic tracking of changes performed
to the objects in transactions.

Instances of classes marked with the @TransactionObject annotation are created normally with the new
operator:

@TransactionObject

class MySharedObject {

public int value;

public void foo() {

...

}

...

}

MySharedObject sharedObject = new MySharedObject();

10 Chapter 4. Application programming interface

Paxos STM – User Guide, Release 1.0

Objects of classes marked with the @TransactionObject annotation can be accessed inside the transac-
tion directly, that is as ordinary Java objects in native Java code:

final MySharedObject sharedObject = new MySharedObject();

new Transaction() {

protected void atomic() {

...

sharedObject.value = 5;

...

sharedObject.foo();

...

}

};

instances of ObjectWrapper class

The @TransactionObject annotation can be added to the definition of the class only when the program-
mer has the control over it. It cannot be done with system classes or classes from third-party libraries. It
is due the way classes are loaded to JVM in Paxos STM and the Java license which forbids performing
modification to the system classes (for details see [KKW10]). Therefore, in order to allow using objects
of system classes or classes from external libraries as objects shared between the nodes, the solution
based on ObjectWrappers is provided. Objects of any class can become shared objects as long as they
are wrapped inside the ObjectWrapper:

Vector<String> vector = new Vector<String>();

vector.add("foo");

vector.add("bar");

ObjectWrapper<Vector<String>> sharedVector = new

ObjectWrapper<Vector<String>>(vector);

Objects wrapped inside the ObjectWrappers has to be accessed by calling the get() method on the
ObjectWrapper object:
...

final ObjectWrapper<Vector<String>> sharedVector = new

ObjectWrapper<Vector<String>>(vector);

new Transaction() {

protected void atomic() {

sharedVector.get().add("foo and bar");

System.out.println(sharedVector.get().size());

System.out.println(sharedVector.get().get(0));

}

};

instances of ArrayWrapper class

Arrays cannot be treated as ordinary objects therefore they have to be handled differently. Similarly to
objects of system classes or classes from external libraries, arrays have to be stored inside wrappers in
order to use them inside transactions. The array-specific wrapper is called ArrayWrapper:

int[] array = new int[] {2, 3, 5};

ArrayWrapper<Integer> sharedArray = new

ArrayWrapper<Integer>(array);

4.2. Shared objects 11

Paxos STM – User Guide, Release 1.0

Array elements have to be accessed by calling the T get(int index) and void set(int index, T

value) methods. The array stored inside the ArrayWrapper can be temporarily released by calling the
release() method so elements of the array can be modified directly. The array can be again locked
inside the ArrayWrapper object by calling the hold() method:

int[] array = new int[] {2, 3, 5};

final ArrayWrapper<Integer> sharedArray = new

ArrayWrapper<Integer>(array);

new Transaction() {

protected void atomic() {

int firstValue = sharedArray.get(0);

sharedArray.set(1, firstValue);

int []a = sharedArray.release();

System.out.println("[" + a[0] + ", " + a[1] + ", " + a[2] + "]");

a[2] = 7;

sharedArray.hold();

sharedArray.set(2, 77);

}

};

4.3 Writing an application program

Using Paxos STM in an application is not only related to creating shared objects and performing trans-
actions. Firstly, the Paxos STM framework has to be overtly started by the application. Secondly, the
application has to implement a set of interfaces in order to profit from the Paxos STM recovery capabil-
ities. Thirdly, the programmer can use the so called Shared Object Registry (SOR) to associate labels (of
the type of java.util.String) with shared object so they can be easily accessed.

starting the Paxos STM framework

Starting Paxos STM requires invoking the start() method on the instance of the Paxos STM class which
is implemented using the singleton pattern:

PaxosSTM.getInstance().start();

providing recovery capabilities for the whole application

In order to provide recovery capabilities for the whole application the programmer is required to do the
following:

• select crucial data that constitute the application’s state and provide methods for storing and re-
trieving them from the stable storage,

• synchronize the process of storing/retrieving the data from the stable storage with analogue pro-
cesses in the Paxos STM framework.

To illustrate how it should be performed let us consider the following example. The whole program is
confined in ExampleClass. The processing of the application is reduced to incrementing a value in an

12 Chapter 4. Application programming interface

Paxos STM – User Guide, Release 1.0

infinite loop; to shorten the example it is not even performed transactionally. After each incrementation
the program saves its state to the stable storage.

public class ExampleClass implements CommitListener, RecoveryListener

{

private Storage storage;

private Object recoveryLock = new Object();

private boolean ready = false;

private int counter;

public ExampleClass()

{

PaxosSTM.getInstance().addCommitListener(this);

PaxosSTM.getInstance().addRecoveryListener(this);

this.storage = PaxosSTM.getInstance().getStorage();

}

@Override

public void onCommit(Object commitData)

{

int commitNumber = (Integer) commitData;

int logVersion = commitNumber % 2;

try

{

storage.log("Counter_" + logVersion, counter);

}

catch (StorageException e)

{

e.printStackTrace();

}

}

@Override

public void recoverFromCommit(Object commitData)

{

int commitNumber = (Integer) commitData;

int logVersion = commitNumber % 2;

try

{

counter = (Integer) storage.retrieve("Counter_" + logVersion);

}

catch (StorageException e)

{

counter = commitNumber;

}

}

@Override

public void recoveryFinished()

{

synchronized (recoveryLock)

{

ready = true;

recoveryLock.notifyAll();

}

4.3. Writing an application program 13

Paxos STM – User Guide, Release 1.0

}

public void start()

{

try

{

PaxosSTM.getInstance().start();

}

catch (StorageException e)

{

e.printStackTrace();

System.exit(1);

}

synchronized (recoveryLock)

{

while (!ready)

{

try

{

recoveryLock.wait();

}

catch (InterruptedException e)

{

e.printStackTrace();

}

}

}

while (true)

{

// do some processing

counter++;

PaxosSTM.getInstance().commit(counter);

}

}

public static void main(String[] args)

{

ExampleClass instance = new ExampleClass();

instance.start();

}

}

Paxos STM framework provides a set of interfaces which have to be implemented so the process of
creating checkpoints/recovering could be coordinated throughout the whole application:

• CommitListener - defines the method onCommit() which consists of the code necessary to save
to the stable storage the application’s state

• RecoveryListener - defines two methods: recoverFromCommit() which consists of code neces-
sary to restore from stable storage application’s state and recoveryFinished() which signalizes
that the process of recovering is finished and the application can resume its duties.

The programmer can use the Storage interface provided by Paxos STM in order to save necessary data:

14 Chapter 4. Application programming interface

Paxos STM – User Guide, Release 1.0

Storage storage = PaxosSTM.getInstance().getStorage();

MyClass obj = new MyClass();

storage.log("label", obj);

MyClass obj2 = (MyClass) storage.retrieve("label");

// obj.equals(obj2) == true

The application can trigger the process of creating a checkpoint by calling the commit() method:

Object commitData; // application snapshot or counter variable

...

PaxosSTM.getInstance().commit(commitData);

The argument of the commit() method should be the number of checkpoint to be created. This guar-
antees that the consecutive commits will be numbered consistently also in case of a crash and recovery.
The interface providing checkpoint capabilities is designed in a way so the checkpoints can be also
created by passing a snapshot of the application to the Paxos STM, thus the Object as the type of the
commitData. In order to guarantee consistency at all times at least the last two checkpoints have to be
preserved on the stable storage.

Notice that the ExampleClass in its constructor adds itself as Paxos STM Commit- and
RecoveryListener thus allowing the Paxos STM to coordinate the process of creating checkpoints and
recovering. The simple synchronization present in the example above is necessary so the application do
not compute in the recovery phase.

adding/removing a shared object to/from Shared Object Registry

Operations on Shared Object Registry (SOR) are performed by appropriate methods on the instance of
the PaxosSTM class. In the example below a process on one node (node1) adds an object to the registry
by the label of MyObjectA. Then any other process can retrieve the reference to this object by calling the
registry and passing the appropriate label (MyObjectA) as the argument:

// on node1

MySharedClass sharedObjectA = new MySharedClass();

PaxosSTM.getInstance().addToRegistry("MyObjectA", sharedObjectA);

// any process

MySharedClass sharedObjectA = (MySharedClass)

PaxosSTM.getInstance().getFromRegistry("MyObjectA");

A reference to an object can be removed from the registry:

// any process

MySharedClass sharedObjectA =

PaxosSTM.getInstance().removeFromRegistry("MyObjectA");

4.4 Handling errors and failures

handling exception in transactional code

The programmer should secure the transactional code so there are no unhandled exceptions. However,
if by any chance an unhandled exception is thrown inside the atomic() method it is caught by the Paxos

4.4. Handling errors and failures 15

Paxos STM – User Guide, Release 1.0

STM and the whole transaction is rolled back.

crash of a/some replicas

JPaxos, on top of which Paxos STM is built, to be able to operate correctly requires at least one more of
the half of all the nodes to be up and running. So if there are three replicas all together, if one crashes,
Paxos STM can still function normally. On the other hand if two crash simultaneously, the other replica
withholds performing commit attempts on any currently executed transaction. Operating on Shared
Object Registry is also suspended. Paxos STM resumes all its duties once at least one of the crashed
replicas recovers.

16 Chapter 4. Application programming interface

CHAPTER 5

Executing an application program

Let us assume there is an application samplepackage.App that employs Paxos STM. The invocation of
the program should look as below:

$ java -cp "JPaxos.jar:PaxosSTM.jar:javassist.jar:objenesis-1.2.jar:

<path to the App jar archive or directory with compiled classes>"

soa.paxosstm.dstm.Main

samplepackage.App <replica number> [samplepackage.App arguments]

In order to disable showing log information on the console the following system property should be
defined (logging_none.properties file is in the project’s main directory):

-Djava.util.logging.config.file=logging_none.properties

In the utils/unix and utils/windows directories there is a bunch of useful scripts (cygwin scripts for
the windows platform), e.g. one that helps to start an application employing Paxos STM:

$./run.sh samplepackage.App <replica number> [samplepackage.App arguments]

Other scripts are provided only for testing purposes.

17

Paxos STM – User Guide, Release 1.0

18 Chapter 5. Executing an application program

CHAPTER 6

Bibliography

19

Paxos STM – User Guide, Release 1.0

20 Chapter 6. Bibliography

Bibliography

[ST95] Nir Shavit and Dan Touitou. Software transactional memory. In Proceedings of PODCS ‘95: the
14th ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing, August 1995.

[BHG87] Philip A. Bernstein, Vassco Hadzilacos, and Nathan Goodman. Concurrency control and re-
covery in database systems. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
1987.

[M06] Sergio Mena de la Cruz. Protocol composition frameworks and modular group communication.
PhD thesis, EPFL, EPFL, 2006.

[KKW09] Tadeusz Kobus & Maciej Kokocinski & Pawel T. Wojciechowski (2009): Distributed Soft-
ware Transactional Memory in Crash-recovery Failure Model. Technical Report TR-ITSOA-OB2-
1-PR-09-7, Instytut Informatyki, Politechnika Poznanska.

[KKW10] Tadeusz Kobus & Maciej Kokocinski & Pawel T. Wojciechowski (2010): Paxos STM. Tech-
nical Report TR-ITSOA-OB2-1-PR-10-4, Instytut Informatyki, Politechnika Poznanska.

[JPaxosWeb] http://jpaxos.org

[C09] M. Couceiro. Cache coherence in distributed and replicated transactional memory systems, 2009.

21

http://jpaxos.org

	Overview
	Main features
	System architecture

	Requirements
	Compilation and configuration
	Configuration
	Building the library

	Application programming interface
	Atomic transactions
	Shared objects
	Writing an application program
	Handling errors and failures

	Executing an application program
	Bibliography
	Bibliography

