
User Manual for GNLab

Joshua W.K. Ho 1,3 and Michael A. Charleston 2,3∗

1School of Biological Sciences, and
2School of Information Technologies,

University of Sydney, Sydney, Australia,
3Sydney University Biological Informatics and Technologies Centre,

Sydney, Australia

January 17, 2007

∗Correspondent author: M.A. Charleston(mcharleston@it.usyd.edu.au)

1



Contents

1 Introduction 1

2 Network Generation 1

2.1 Modeling evolution of GRNs . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Generating Networks with GNLab . . . . . . . . . . . . . . . . . . . . . . . 3

3 Simulation of Gene Expression Dynamics 4

3.1 Microarray Dataset Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.1.1 Time-series Microarray Dataset . . . . . . . . . . . . . . . . . . . . 5

3.1.2 Gene Perturbation Microarray Dataset . . . . . . . . . . . . . . . . 6

3.1.3 Condition-specific Microarray Dataset . . . . . . . . . . . . . . . . 6

3.2 Experimental Noise Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.3 Invoking Microarray Simulation in GNLab . . . . . . . . . . . . . . . . . 7

4 Network Analysis 7

4.1 Topological Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

5 Robustness Score 9

6 Network Visualization 9

7 Network Inference 9

8 Network Comparison 9

9 GNLab Options Summary 11



1 Introduction

GNLab (stand for Gene Network virtual Laboratory) implements a computational

pipeline for large-scale analysis of gene networks. The pipeline allows iterative experi-

ments on GRNs to be designed and carried out in a simple and flexible manner. This

framework consists of distinct functional components for network generation, simulation,

analysis, visualization, inference and comparison. By piping different components together

in different ways, many types of systems biology analyses can be carried out effectively.

Although the development of such a computational pipeline was inspired to assess limita-

tions of GRN inference methods, this pipeline is designed for the general analysis of GRN

structures and dynamics.

Analogous to running various experiments in a laboratory using a range of equipments,

GNLab provides a collection of computational tools that can be used for constructing

various repeatable experiments. The design principle of GNLab is that each functional

component is invoked and controlled separately in a coherent manner. Instead of gen-

erating, analyzing and simulating a gene network in a single run, GNLab is invoked

several times and piped together by a simple user-defined script (e.g. using any scripting

language such as Perl or Python). Simple tab-delimited text files are used for commu-

nication between each component. GNLab is implemented in ASCII C++, and has a

command-line interface. Individual components of GNLab are invoked by command-line

options. For example, the command GNLab -a net1 reads in a text file net1.gnl.txt

and outputs a detailed summary of topological features in a file called net1.ana.txt. The

command line option -a specifies the action, and any parameters following this option are

the arguments of the call. A list of GNLab command options can be found in Table 1.

The first few sections of this manual explains the theoretical background of most of

tools, and the detailed usage of each option is explained in section 9.

2 Network Generation

A number of procedures have been suggested to generate networks that are topologically

similar to real GRNs. Current algorithms for generating GRNs are mostly mathematically

motivated. Since most biological networks exhibit both small-world (Watts and Strogatz,

1998) and scale-free (Barabási and Albert, 1999; Albert and Barabasi, 2000) topology, a

preferential attachment growth model has been used to generate artificial GRNs (Mendes

et al., 2003). An alternative approach is to generate a GRN by sampling a subset of genes

and interactions from experimentally validated gene networks (Van den Bulcke et al.,

2006). Despite being able to generate GRNs of the desired topology, the success of this

method depends on the validity of the source network. None of these can effectively

produce network structures that are topologically consistent with real GRNs.
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2.1 Modeling evolution of GRNs

To overcome the shortcomings of the existing approaches, a biologically motivated GRN

evolution model, comprising horizontal gene transfer, gene duplication and gene muta-

tion, is proposed. The model is referred to as the Charleston-Ho (CH) model (Ho and

Charleston, in prep.). The CH model is probabilistic in nature. Starting with a small

‘seed network’, a network is grown by iteratively performing one of the evolutionary op-

erators according to their respective probability. The growth process based on this CH

model is governed by a set of ten parameters Table 2.

2.2 Generating Networks with GNLab

The two other commonly used network growth models are the Erdös-Rényi (ER) model (Erdös

and Rényi, 1959), and the Scale-free (SF) model (Barabási and Albert, 1999). Networks

generated by these two models have been used as benchmark datasets for evaluating per-

formance of GRN inference methods (Mendes et al., 2003). Along with the CH model,

these two growth models are also implemented in GNLab. To construct a ER network

with n nodes, the model specifies that each of the e edges is randomly inserted between

a pair of nodes. The generation of a SF network relies on two parameters – the number

of nodes (n) and the probability of random edge addition (pAdd). In the Scale-free model,

either a node insertion or an edge addition event is performed in any one iteration. In

Option Description

Network Generation

-g Generate a random Charleston-Ho network
-r Generate a random Erdös-Rényi network
-f Generate a random Scale-free network
-u Add or remove a number of edges randomly
-w Produce a null-model network with the same degree distribution

Network Analysis and Visualization

-a Calculate network topological features
-n A produce a one-line summary of topological features
-b Calculate robustness score
-v Generate input files for GraphViz, GEOMI, Cytoscape or Pajek
-p Process a network (e.g. remove activation or repression)

Network Simulation

-s Simulate microarray data
-t Generate time-series expression data

Network Comparison

-c Calculate network topological differences
Others

-d Convert microarray data into ARACNe and Banjo input files
-e Provide a seed number for the random number generator

Table 1: Summary of command line options of GNLab.
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Parameter Description

n number of genes
ptrans probability of horizontal gene transfer
pdup probability of gene duplication
pig probability of interaction gain
pil probability of interaction loss
pgl probability of gene loss

mts maximum size of subgraph transferable
pdr probability of duplication of regulator
mc maximum arc weight change
pr probability of retaining a duplicate interaction

Table 2: Description of parameters for the Charleston-Ho model.

a node insertion event, the new node is inserted and linked preferentially to a highly

connected node. In an edge addition event, an edge is randomly added between a pair of

nodes which are preferentially highly connected.

In GNLab, command-line options -r, -f and -g are used to invoke the generation of

random networks using the ER, SF and CH model respectively. The randomly generated

network is written into a simple text file with extension .gnl.txt. This text file contains

information about nodes, edges and edge weights.

3 Simulation of Gene Expression Dynamics

The realistic simulation of the dynamic behaviour of an GRN is essential for simulation

of microarray datasets. Since microarray technology measures gene expression by the

amount of mRNA present, most modeling effect centred around the cellular mRNA level.

The level of mRNA molecules of a gene depends on two processes, namely its synthesis

from gene transcription and its natural breakdown. The level of mRNA synthesis is in-

fluenced by the mRNA level of other genes as described by the Hill’s kinetics (Hill, 1910;

Hofmeyr and Cornish-Bowden, 1997). Hill’s kinetics is a non-linear model of gene-to-gene

relationships. It assumes the effect of all regulator genes to the target gene to be multi-

plicative. Using the same model proposed by Mendes et al. (2003), the dynamics of the

GRN is modeled by a set of ordinary differential equations (ODEs) . Assume that X(Gi)

represents the level of mRNA of gene Gi, and it is activated by genes Ga1
, Ga2

, ..., Gam

and repressed by genes Gr1
, Gr2

, ..., Grn
. Constants Kai

and Krj
represent the expression

levels of Gai
and Grj

respectively at which the effect on the target gene is half of its

saturating value. The Hill’s constant n controls the sigmoidicity of the interaction curve.

Vi represents the basal transcriptional rate of gene Gi. The rate law for mRNA synthesis

can therefore be formulated as:

syn(Gi) = Vi ·

m∏

i=1

(1 +
X(Gai

)n

X(Gai
)n + Kn

ai

) ·
n∏

j=1

Kn
rj

X(Grj
)n + Kn

rj

(1)
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The rate mRNA degradation is assumed to only depend linearly on the current ex-

pression level. Therefore, the rate law of mRNA breakdown can be formulated as:

break(Gi) = bi · X(Gi) (2)

Overall, the change of gene expression level for a gene Gi can be modeled by the

following ordinary differential equation:

dGi

dt
= syn(Gi) − break(Gi) (3)

This is a deterministic approach to simulate a GRN. This ODE approach, however,

ignores the inherent stochasticity in the a real gene network. Moreover, solving a large

set of ODEs analytically is computationally intensive, which often requires the use of

approximation methods. In this study, Euler’s method is used to simulate the GRN due

to its simplicity. With the use of a small time-step (e.g. 0.1), Euler’s method is sufficient

to simulate the gene system.

To incorporate stochasticity into the simulation, the deterministic model is extended

into a stochastic model using an approach recently described by Tian and Burrage (2006).

The key is to replace each state variable x in equation 3 by a Poisson random variate with

mean x. The expression of a gene Gi (measured in mRNA molecular number) is simulated

as:

X(Gi, t + τ) = X(Gi) + P (syn(Gi)) − P (break(Gi)) (4)

The variable X(Gi, t) denotes the molecular number of mRNA of Gi, and τ denotes

the time elapsed. P (x) generates a Poisson random variate with mean x. Using this

technique, the level of mRNA of a gene is affected by Poisson noise, which is consistent

with the chance event in transcription and translation (Thattai and van Oudenaarden,

2001).

3.1 Microarray Dataset Synthesis

There are three main types of microarray datasets available, namely time-series, gene

perturbation, and condition-specific datasets. A summary of how each type of dataset is

generated is shown as follows:

3.1.1 Time-series Microarray Dataset

1. Initialize the gene system, and simulate 1000×τ rounds to bring the system to a

steady state

2. Knockout one gene (i.e. set concentration = 0, and V = 0)

3. Simulate the system, and repeatedly take the expression level at certain intervals
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3.1.2 Gene Perturbation Microarray Dataset

1. Initialize the gene system, and simulate 1,000×τ rounds

2. Knockout one gene (i.e. set concentration=0, and V=0)

3. Repeatedly, simulate the system for 1,000×τ rounds

4. Obtain gene expression level after each iteration

3.1.3 Condition-specific Microarray Dataset

1. Initialize the gene system, and simulate 1,000×τ rounds

2. randomly select a set of n genes, each gene is randomly assigned to undertake one

of the following actions:

• conc=0, V=0 (i.e. down regulate)

• conc=conc*2 and V=V*4 (i.e. up regulate)

3. Repeatedly, simulate the system 1,000×τ rounds

4. Obtain the gene expression level after each iteration

3.2 Experimental Noise Model

Microarray is an inherently noisy technology. Being able to incorporate a realistic amount

of noise into the simulated microarray data is essential for a range of microarray analysis

experiments. By studying the structure of microarray noise at the DNA hybridization

and the preparation level, the noise in an oligonucleotide microarray has been shown to

be signal intensity dependent (Tu et al., 2002). In general, the stronger the signal, the less

the signal is affected by noise. In this work, a normal distribution of noise with standard

deviation of β ˙e−|θ| is applied to each signal with log intensity θ. The term β is the noise

coefficient, which can be varied. The higher the β, the more ‘noisy’ the data becomes.

3.3 Invoking Microarray Simulation in GNLab

In GNLab, network simulation can be carried out using option -t, which generates a

time-series of gene expression. Simulation results are written into a .data file. Time-

series, gene perturbation, and condition-specific microarray datasets can be simulated

from a network using the option -s. The number of technical and biological replicates can

be specified as arguments. The resulting data resemble the microarray data generated by a

one-channel oligonucleotide array. The microarray data can optionally be log-transformed

and mean normalized per array. The microarray data is stored in a .ma.txt file.
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4 Network Analysis

4.1 Topological Features

A set of 11 commonly used topological features are calculated to characterize a GRN in

GNLab (see Table 3). These features are used to describe the global and local network

properties. For global network statistics, one can extract the number of gene (n), number

of interactions per genes (inter), proportion of genes with self-loops (loop), proportion of

regulator genes (reg), number of disjoint network components (comp), proportion of the

maximum component size (mcs), longest path length (lpl; longest directed path between

a regulator and any other gene), proportion of activation amongst all interactions (act)

and hub dominance (hubDom; defined as the proportion of arcs connected to the top 5%

of most connected genes compared to the total number of arcs). For local properties,

they can be characterized by the average clustering coefficient (cc) and the number of

feed-forward loops per gene (ffl).

In particular, hub dominance is a new topological feature used in GNLab. Normally,

the importance of hub genes is characterized by the slope of a power-law curve. However,

fitting a power-law curve to the out-degree of a GRN may not be appropriate, thus a

new method of measuring hub usage is needed. The idea of measuring the proportion

of arcs connected to the top 5% of hub genes compared to the total number of arcs was

used by Basso et al. (2005). This work formally adopts this measurement as a topological

feature for network analysis.

Topological features can be calculated using option -a, which calculates a range of

topological features such as degree distribution, clustering coefficient distribution, length

of longest path. The results are stored into a file with an .ana.txt extension. The

command-line option -n can be used to print a one-line summary of the 11 topological

features onto the console display. The analysis results from the file can easily be parsed

into statistical analysis packages such as R (Ihaka and Gentleman, 1996).

5 Robustness Score

The dynamic behaviour of a GRN can also be measured by a novel robustness score

devised in this studied. The network robustness can be estimated by the ability of a

network to tolerate random gene perturbation using an in silico simulation procedure. To

calculate the robustness score, a set of k genes is initially labeled as essential genes. One

thousand rounds of simulations are initially performed to bring the system to its steady

state. Then, k mutant genomes are created by systematically knocking out one gene per

mutant genome (i.e. set X(Gi) = 0) and V (Gi) = 0). Each mutant genome is further

simulated for 1,000 iterations. If the expression of any essential gene in a mutant genome

is dropped by more than 50%, the mutant is non-viable. The robustness score is the

proportion of viable mutant genomes over all possible single gene mutants. In GNLab,
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Feature Description

n number of nodes.
inter average number of interactions per node.
loop proportion of nodes with self-loop (e.g. A−→A).
reg proportion of regulator genes (i.e. nodes with out-degree ≥ 1).
comp number of disjoint network components.
msc proportion of the maximum component size.
lpl longest path length. It represents the longest directed path between a regulator and any

other gene. An lpl of one means any regulator in the network can at most influence the
expression of one other gene.

cc average clustering coefficient. A high clustering coefficient signifies a high local edge density,
and therefore a dense local gene regulation.

act proportion of activation amongst all interactions. E.g. if act is greater than 0.5, than
activation is a more important type of regulation compared to repression.

hubDom hub dominance, which is defined as the proportion of arcs connected to the top 5% of most
connected genes compared to the total number of arcs. The higher the hub dominance, the
more important the hub genes are.

ffl number of feed-forward loops per gene.

Table 3: Descriptions of the 11 topological features used in GNLab.
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robustness scores can be calculated by -b. The robustness scores are then summarized in

a file with an .rob.txt extension.

6 Network Visualization

Network visualization is not explicitly performed in GNLab. GNLab generates data

files for other visual analysis programs. Using GNLab command option -v, a network

can be converted into a .dot, .xwg, .sif and .net file, which can then be parsed into

GraphViz (Gansner and North, 1999), GEOMI (Ahmed et al., 2005), Cytoscape (Shannon

et al., 2003) and pajek Batagelj and Mrvar (1998) respectively.

7 Network Inference

Although GNLab does not contain network inference functionality, it provides util-

ity (command option -d) to convert a .ma.txt file into an input file of other infer-

ence programs, currently only available for ARACNe (Margolin et al., 2006) and Banjo

(http://www.cs.duke.edu/∼amink/software/banjo).

8 Network Comparison

A network comparison method is implemented in GNLab to measure GRN inference

reliability. The objective of this network comparison step is to quantify how different two

networks are (e.g. the original and the inferred network). The two networks are assumed

to contain the same set of nodes (Sharan and Ideker, 2006). A set of machine learning

performance metrics can be used to quantify how well a GRN is inferred from the data.

Four quantities are essentials in these metrics: true positive count (TP; number of edges

that are correctly inferred), true negative edges count (TN; number of non-interacting

relationships inferred), false positive count (FP; number of inferred edges that are not

present in the original network), and false negative count (FN; number of true edges

that are not inferred). A combination of some machine learning metrics (sensitivity,

specificity and precision) and the topological distance (the one similar to Trusina et al.,

2005) is used to measure network similarity in GNLab. A brief description of the four

similarity measures can be found at Table 4. Sensitivity, specificity and precision are

the commonly used criteria for assessing network inference reliability. The topological

distance is essentially a ratio of number of non-matching edges (false positive and false

negative) over all possible edge positions. For example, let’s assume we are comparing

the original graph A with an inferred graph B, both having n nodes. If there are two false

positive arcs (two arcs appeared in B, but not in A) and one false negative arc (one arc

appeared in A, but not in B), the number of non-matching arcs is three. The total number

of all possible arc is n2. Therefore, the topological distance is 3
n2 . The total number of
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arcs for an undirect graph is different from an directed graph. However, it is expected that

two randomly generated networks would have a non-zero topological distance. Therefore

the theoretical topological distance for any two random networks are calculated and used

as a base-line for meaningful comparisons of network differences (detailed calculation

omitted for simplicity). If a topological distance is larger than this expected distance, it

implies that the existence of systematic bias in the inference algorithm. Two networks

(in .gnl.txt format) can be compared through the command option -c in GNLab. A

one-line summary of network difference are printed onto the standard output.

Reliability Measure Description

Topological Distance (directed graph) FP+FN
n2

Topological Distance (undirected graph) 2(FP+FN)
n(n−1)

Sensitivity/Recall TP
TP+FN

Specificity TN
TN+FP

Precision TP
TP+FP

Table 4: Summary of reliability metrics of network inference methods. TP=true positive,
TN=true negative, FP=false positive, FN=false negative, n=number of nodes.
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9 GNLab Options Summary

Parameter Description

-e: seeding the random number generator
seed an integer to seed the random number generator

-g: generating random network based on the CH model
n number of genes
ptrans ptrans: prob. of horizontal gene transfer
pdup pdup: prob. of gene duplication
pig pig: prob. of ineteraction gain
pil pil: prob. of interaction loss
pgl pgl: prob. of gene loss
mst mts: maximum size of subgraph transferable
pdr pdr:probability of duplication of regulator
mc mc: maximum arc weight change
pr pr: probability of retaining a duplicate interaction
fileBase base name of the input file

-r: generating random network based on the ER model
fileBase base name of the input file
numNodes number of nodes
numArcs number of arcs

-f: generating random network based on the SF model
fileBase base name of the input file
numNodes number of nodes
pAdd probability of adding an arc between existing nodes

-u: random perturbation of arcs
fileBase base name of the input file
add number of arcs to be added
del number of arcs to be deleted
outBase base name of the output file

-w: produce random null network model by re-wiring
fileBase base name of the input file
numRewire number of rewiring steps
outBase base name of the output file

-a: calculate network topological features
fileBase base name of the input file

-n: calculate network topological features (for command-line)
fileBase base name of the input file

-b: calculate robustness score
fileBase base name of the input file
nKnock number of genes to be knocked out
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Parameter Description

-v:produce files for visualization
fileBase base name of the input file
format type of visualization file format

— dot for GraphViz, xwg for GEOMI, sif for Cytoscape and
net for Pajek

analysisOpt type of network analysis options
— inD for in degree and outD for out degree

-p: decomposing a network
fileBase base name of the input file
type type of decomposition

— pos for positive arcs only, neg for negative arcs only and
undir for undirected graph
-s: simulate microarray dataset from a GRN

fileBase base name of the input file
type type of microarray data
numRep number of technical replicates
numSample number of samples
gapTime time gap between each time point
tau τ : time step interval in the Euler’s method
noise microarray noise coefficient
deter deterministic or stochastic simulation

— d for deterministic and s for stochastic
analysisOpt preprocessing options

— combination of l for log-transformation and na for normal-
ization by array
-t: simulate time-series of gene expression

fileBase base name of the input file
type type of microarray data

— d for deterministic or s for stochastic
iter number of iteration
tau τ : time step interval in the Euler’s method
perturbTime time of gene perturbation

-c: simulate time-series of gene expression
fileBase1 base name of the input file 1
fileBase2 base name of the input file 2
direct direct or indirect edges

— direct or undirect
-d: microarray data file conversion

fileBase base name of the input file
type inference method

— aracne or banjo
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