

RMU2RMU2RMU2RMU2

Linux Logic ControllerLinux Logic ControllerLinux Logic ControllerLinux Logic Controller

User Manual

Control & Information Technology Group

70 Rio Robles Drive

San Jose, CA 95134

Main: 408.750.0300

Fax: 408.750.2990

Manual Rev. 07

12/06

RMU2 User Manual

2 of 12
© MKS Instruments CIT Products 2005, All rights reserved

Copyright

This manual and the software described in it are copyrighted with all
rights reserved. Under the copyright laws, this manual and software
may not be copied, in whole or part, without the prior written consent
of MKS Instruments. The same proprietary and copyright notices must
be affixed to any permitted copies as were affixed to the original. This
exception does not allow copies to be made for others whether or not
sold, but all of the materials purchased may be sold, given, or loaned
to another person. Under the law, copying includes translating into
another language or format.

© MKS Instruments - CIT Products Group, 2006

Preface

About this manual

This manual is designed to serve as a guideline for the installation,
setup, operation and basic maintenance of the RMU device. The
information contained within this manual, including product
specifications, is subject to change without notice. Please observe all
safety precautions and use appropriate procedures when handling the
RMU product and its related software.

RMU2 User Manual

3 of 12
© MKS Instruments CIT Products 2005, All rights reserved

Table of Contents

1 INTRODUCTION.. 5

1.1 CONVENTIONS USED IN THIS USER MANUAL.. 5

2 INSTALLATION AND SETUP ... 6

2.1 SHIPPING BOX CONTENTS.. 6
2.2 RMU DESCRIPTION .. 6
2.3 MECHANICAL DESCRIPTION.. 7
2.4 INSTALLATION.. 7
2.5 WIRING AND HARDWARE CONFIGURATION .. 8
2.5.1 Power Supply Wiring ... 8
2.5.2 Analog I/O Wiring ... 9
2.5.3 Digital I/O Wiring .. 10
2.5.4 Combo I/O Wiring... 11

2.6 DIGITAL INPUTS... 12
2.7 DIGITAL INPUT INTERFACE EXAMPLE ... 13
2.8 DIGITAL OUTPUTS ... 13
2.9 DIGITAL OUTPUT INTERFACE EXAMPLE.. 13
2.10 ANALOG INPUTS .. 14
2.11 ANALOG OUTPUTS .. 14
2.12 SERIAL PORT CONNECTIONS.. 15

3 QUICK-START... 16

3.1 TELNET.. 16
3.2 SERIAL CONNECTION.. 17
3.3 CONFIGURATION ... 17
3.4 BOOTING THE RMU .. 17

4 RMU SOFTWARE USER’S GUIDE ... 18

4.1 SYSTEM COMPONENTS... 18
4.1.1 Boot Loader... 18
4.1.2 Kernel... 19
4.1.3 The built-in Initrd File System... 19
4.1.4 JFFS2 .. 20
4.1.5 Compact Flash ... 20
4.1.6 Kernel's Modules .. 20
4.1.7 Cross Platform Development Tools... 21
4.1.8 Creating my first application ... 22

4.2 RUN-TIME PLATFORM .. 23
4.2.1 Boot procedure ... 23
4.2.2 Configuration... 23
4.2.3 Storage .. 28

4.3 WEB SERVER .. 30

5 DIO API .. 30

5.1 DEVICE APIS... 31
5.1.1 Overview.. 31
5.1.2 Basic procedures ... 32
5.1.3 ASCII Interface ... 32
5.1.4 Binary Interface .. 33

5.2 FUNCTION DEFINITIONS .. 33
5.2.1 Open() .. 33
5.2.2 Close() ... 34
5.2.3 Read() .. 34
5.2.4 Write() .. 36
5.2.5 Ioctl() .. 38

RMU2 User Manual

4 of 12
© MKS Instruments CIT Products 2005, All rights reserved

6 AIO API .. 39

6.1 BASIC PROCEDURES ... 40
6.2 TRANSLATING READS & WRITES ... 41
6.3 FUNCTION DEFINITIONS .. 41
6.3.1 Open() .. 41
6.3.2 Close() ... 42
6.3.3 Read() .. 42
6.3.4 Write() .. 43

6.4 MKSAIO.H ... 44
6.5 SAMPLE CODE .. 46

7 MMI API ... 47

7.1 AT89 API.. 47
7.1.1 Function Definitions ... 48

7.2 AT89DISPLAY API.. 50
7.2.1 Function Definitions ... 50

7.3 AT89BUTTONS API .. 53
7.3.1 Function Definitions ... 53

8 RS-485 ... 56

APPENDIX A: POSIX FUNCTIONS DESCRIPTION.. 57

1. FUNCTION “OPEN” .. 57
2. FUNCTION “CLOSE” .. 61
3. FUNCTION “READ” .. 62
4. FUNCTION “WRITE”... 63
5. FUNCTION “IOCTL”.. 64

APPENDIX B: HOW TO CROSS-COMPILE TCPDUMP ... 65

APPENDIX C: HOW TO CROSS-COMPILE BOA WEB SERVER .. 66

SPECIFICATIONS.. 67

WARRANTY ... 70

RMU2 User Manual

5 of 12
© MKS Instruments CIT Products 2005, All rights reserved

1 Introduction
The RMU is an open control platform that allows customers to run MKS or customer specific
applications in Linux environment. The platform consists of a PowerPC processor, local
peripherals, and PCI IO and special function cards. All IO boards communicate using the
PCI-104 bus. This manual provides details on the installation and use of this product.

The RMU supports at maximum, the following features:

• PowerPC running at 400 MHz, 760 MIPS with support of floating point instructions
• 16 MB of on board Flash using the Linux Journaling file system.
• On Board compact flash socket for CF type 2 devices for application and data

storage.
• 128MB SDRAM
• Power Conditioning (18 – 30V)
• 4 RS232 interface. (1 port used for diagnostics port, software selectable 485 on 2 of

ports)
• 2 independent 10/100 Ethernet ports
• USB V1.1
• Up to 96 DIO Points
• Up to 64 Analog input points and 32 Output point

1.1 Conventions used in this User Manual

 Warning The WARNING sign denotes a hazard to personnel. It calls
attention to a procedure, practice, condition, or the like, which, if
not correctly performed or adhered to, could result in injury to
personnel.

 Caution The CAUTION sign higlights information that is important to the
safe operation of the RMU, or to the integrity of your files. .

 Note THE NOTE SIGN DENOTES IMPORTANT INFORMATION. IT CALLS
ATTENTION TO A PROCEDURE, PRACTICE, CONDITION, OR THE LIKE,
WHICH IS ESSENTIAL TO HIGHLIGHT.

On screen buttons or menu items appear in bold and cursive.
Example: Click OK to save the settings.

Keyboard keys appear in brackets.
Example: [ENTER] and [CTRL]

Pages with additional information about a specific topic are cross-referenced within
the text.

RMU2 User Manual

6 of 12
© MKS Instruments CIT Products 2005, All rights reserved

2 Installation and Setup

2.1 Shipping Box Contents

• RMU Module
• Power mating connector

2.2 RMU Description

The RMU is a compact, Linux controller with integrated I/O and peripherals. The CPU will
have Linux kernel 2.4.x. All required kernel drivers are preloaded to support current
hardware requirements.

There are 5 RMU packages, each to accommodate the number of I/O slots (0-4) Each I/O
card to have a D-sub 37 connector, top and bottom. Each cards connectors to be in the
same location, so enclosure cutouts are the same for a DIDO or AIAO card.

The front of the RMU provides all operators interface and status indicators. The figure below
describes the features on the front panel. These items include I/O indicators, fuses, IP
address switches, and diagnostic ports.

The following mechanical drawing is a typical 2 expansion slot model.

Figure 1 RMU Description

24 Volt Power
Connecter

Compact
Flash Bay

User
Programmable
Display

Digital IO Connector
37 Pin D-Sub

Digital IO Connector
37 Pin D-Sub

User Defined
Function
Buttons

USB Port

LAN Ports

Reset Button

Status LEDs

Digital IO
Expansion Module

Analog IO
Expansion Module

RMU2 User Manual

7 of 12
© MKS Instruments CIT Products 2005, All rights reserved

2.3 Mechanical Description

The following mechanical drawing describes a typical 2 slot configuration. Additional slots
will cause the unit to be wider but will not change height or depth. Addition mechanical
information for other configurations can be obtained through your local MKS representative

Figure 2 Mechanical Description

 Note ALL DIMENSIONS ARE METRIC

2.4 Installation

The RMU mounts on a standard 35mm DIN rail system. Make sure there is sufficient side
clearance for ventilation, to maintain an ambient operating temperature of 0°C to 50°C.

Figure 3 RMU DIN Rail Mounting

RMU2 User Manual

8 of 12
© MKS Instruments CIT Products 2005, All rights reserved

2.5 Wiring and Hardware Configuration

Ethernet and I/O cables are available from a variety of industrial sources. See table below
for orderable I/O mating connectors. Example mating connector for the RMU IO is provided
in Table 1

Table 1 Mating IO Connector Information

Description MFG Part
Number

37-pin D-SUB with Shell
(Terminal Block Connections)

Phoenix 2300986

 Caution In order to guarantee proper operation and prevent damage to
the product insure that the chasis ground is properly attached

for the application.

 Warning

Follow all applicable electrical codes when mounting and
wiring any electrical device.

2.5.1 Power Supply Wiring

Connect an external 18-30 VDC power supply to the 3-terminal Power Connector. The
connector should be wired according to the labeling on the RMU.

Pin Signal
1 18-30 VDC

2 Chassis GND

3 GND

Figure 4 Power Terminal Block

The manufacturer and ordering part number for the RMU power terminal block connector is
described in Table 3.

Table 2 Terminal Block Information

Description MFG Part Number

3-pin Terminal Block Weidmuller 1625620000

1 2 3

RMU2 User Manual

9 of 12
© MKS Instruments CIT Products 2005, All rights reserved

2.5.2 Analog I/O Wiring

The RMU analog expansion board has two D-Sub 37 connectors used to access the I/O
points. Each I/O card type has unique pin assignments; the assignments for the analog
card are shown in the following figures.

A
I1

A
G
N
D

A
I2

A
G
N
D

A
I3

A
G
N
D

A
I4

A
G
N
D

A
I5

A
G
N
D

A
I6

A
G
N
D

A
I7

A
G
N
D

A
I8

A
G
N
D

A
G
N
D

+
1
5
V

+
1
5
V

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
A
I9

A
G
N
D

A
I1
0

A
G
N
D

A
I1
1

A
G
N
D

A
I1
2

A
G
N
D

A
I1
3

A
G
N
D

A
I1
4

A
G
N
D

A
I1
5

A
G
N
D

A
I1
6

A
G
N
D

 -
1
5
V

 -
1
5
V

Analog Inputs – Differential Mode

Top Side Connector

A
I1

A
G
N
D

A
I2

A
G
N
D

A
I3

A
G
N
D

A
I4

A
G
N
D

A
I5

A
G
N
D

A
I6

A
G
N
D

A
I7

A
G
N
D

A
I8

A
G
N
D

A
G
N
D

+
1
5
V

+
1
5
V

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

A
I9

A
G
N
D

A
I1
0

A
G
N
D

A
I1
1

A
G
N
D

A
I1
2

A
G
N
D

A
I1
3

A
G
N
D

A
I1
4

A
G
N
D

A
I1
5

A
G
N
D

A
I1
6

A
G
N
D

 -
1
5
V

 -
1
5
V

Analog Inputs – Single Ended Mode

Top Side Connector

A
O
 1

A
G
N
D

A
O
 2

A
G
N
D

A
O
 3

A
G
N
D

A
O
 4

A
G
N
D

A
O
 5

A
G
N
D

A
O
 6

A
G
N
D

A
O
 7

A
G
N
D

A
O
 8

A
G
N
D

A
G
N
D

+
1
5
V

+
1
5
V

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

N
C

N
C

N
C

N
C

N
C

N
C

N
C

N
C

N
C

N
C

N
C

N
C

N
C

N
C

 N
C

 N
C

-1
5
V

-1
5
V

Analog Outputs

Bottom Side Connector

 Note ALL ANALOG POWER COMES FROM AN INTERNAL POWER
CONVERTER. EXTERNAL PINS FOR +/- 15 VOLTS SHOULD BE USED
AS REFERENCE ONLY. SUPPLIES HAVE LIMITED POWER AND
SHOULD NOT BE USED TO DRIVE EXTERNAL LOADS.

RMU2 User Manual

10 of 12
© MKS Instruments CIT Products 2005, All rights reserved

2.5.3 Digital I/O Wiring

The RMU digital expansion board has two D-Sub 37 connectors used to access the I/O
points. The +24V power must be supplied by an external source via these connectors. Each
I/O card type has unique pin assignments; the assignments for the digital card are shown in
the following figures. All the 24 GNDs are one net.

+
2
4
 I
N

D
IO

 1

2
4
 G

N
D

+
2
4
 I
N

D
IO

 2

2
4
 G

N
D

+
2
4
 I
N

D
IO

 3

2
4
 G

N
D

+
2
4
 I
N

D
IO

 4

2
4
 G

N
D

+
2
4
 I
N

D
IO

 5

2
4
 G

N
D

D
IO

 6

N
C

2
4
 G

N
D

+
2
4
 I
N

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

D
IO

 7

2
4
 G

N
D

 +
2
4
 I
N

D
IO

 8

2
4
 G

N
D

 +
2
4
 I
N

D
IO

 9

2
4
 G

N
D

 +
2
4
 I
N

D
IO

 1
0

2
4
 G

N
D

 +
2
4
 I
N

D
IO

 1
1

2
4
 G

N
D

D
IO

 1
2

N
C

N
C

R
e
fS
e
l

Digital Top Side Connector

Source/Sink Select for Digital Top Connector

Sink/Source Select
Source Short Pin 18 to 37
Sink Short Pin 19 to 37

+
2
4
 I
N

D
IO

 1
3

2
4
 G

N
D

+
2
4
 I
N

D
IO

 1
4

2
4
 G

N
D

+
2
4
 I
N

D
IO

 1
5

2
4
 G

N
D

+
2
4
 I
N

D
IO

 1
6

2
4
 G

N
D

+
2
4
 I
N

D
IO

 1
7

2
4
 G

N
D

D
IO

 1
8

N
C

2
4
 G

N
D

+
2
4
 I
N

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

D
IO

 1
9

2
4
 G

N
D

 +
2
4
 I
N

D
IO

 2
0

2
4
 G

N
D

 +
2
4
 I
N

D
IO

 2
1

2
4
 G

N
D

 +
2
4
 I
N

D
IO

 2
2

2
4
 G

N
D

 +
2
4
 I
N

D
IO

 2
3

2
4
 G

N
D

D
IO

 2
4

N
C

N
C

R
e
fS

e
l

Digital Bottom Side Connector

Source/Sink Select for Digital Bottom Connector

Sink/Source Select

Source Short Pin 18 to 37

Sink Short Pin 19 to 37

RMU2 User Manual

11 of 12
© MKS Instruments CIT Products 2005, All rights reserved

2.5.4 Combo I/O Wiring

The Combo I/O Expansion Card has two 37-pin D-Sub connectors used to access the I/O
points. The +24V power must be supplied by an external source via these connectors. The
+/- 15V power is supplied by an internal converter. The pin assignments are shown in the
following tables. All the 24 GNDs are one net.

+
2
4
 I
N

+
2
4
 I
N

2
4
 G

N
D

+
2
4
 I
N

2
4
 G

N
D

2
4
 G

N
D

+
2
4
 I
N

D
IO

 6

2
4
 G

N
D

+
2
4
 I
N

D
IO

 7

2
4
 G

N
D

+
2
4
 I
N

D
IO

 8

2
4
 G

N
D

D
IO

 9

N
C

2
4
 G

N
D

+
2
4
 I
N

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

D
IO

 1
2

2
4
 G

N
D

 D
IO

 1
1

+
2
4
 I
N

D
IO

 1
0

2
4
 G

N
D

D
IO

 5

2
4
 G

N
D

 D
IO

 4

+
2
4
 I
N

D
IO

 3

2
4
 G

N
D

D
IO

 2

+
2
4
 I
N

D
IO

 1

N
C

N
C

R
e
fS

e
l

Combo Top Side Connector

Source/Sink Select for Combo Top Connector

Sink/Source Select
Source Short Pin 18 to 37
Sink Short Pin 19 to 37

D
IO

 1
3

2
4
 G

N
D

+
2
4
 I
N

D
IO

 1
4

2
4
 G

N
D

N
C

N
C

R
e
fS

e
l

2
4
 I
N

-1
5
 V

-1
5
 V

A
I
8

A
I4

A
I
7

A
I
3

A
G
N
D

A
O
 2
 -

A
O
 2
 +

A
G
N
D

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

2
4
 G

N
D

D
IO

 1
5

+
2
4
 I
N

D
IO

 1
6

2
4
 G

N
D

N
C

+
 2
4
 I
N

+
 2
4
 I
N

2
4
 G

N
D

+
1
5
 V

+
1
5
 V

A
I
6

A
I
2

A
I
5

A
I
1

A
G
N
D

A
O
 1
 -

A
O
 1
 +

Combo Bottom Side Connector

Source/Sink Select for Combo Bottom Connector

Sink/Source Select

Source Short Pin 28 to 8

Sink Short Pin 27 to 8

RMU2 User Manual

12 of 12
© MKS Instruments CIT Products 2005, All rights reserved

D
IO

 1
3

2
4
 G

N
D

+
2
4
 I
N

D
IO

 1
4

2
4
 G

N
D

N
C

N
C

R
e
fS

e
l

2
4
 I
N

-1
5
 V

-1
5
 V

A
I4
-

A
I4
+

A
I3
-

A
I3
+

A
G
N
D

A
O
 2
 -

A
O
 2
 +

A
G
N
D

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

2
4
 G

N
D

D
IO

 1
5

+
2
4
 I
N

D
IO

 1
6

2
4
 G

N
D

N
C

+
 2
4
 I
N

+
 2
4
 I
N

2
4
 G

N
D

+
1
5
 V

+
1
5
 V

A
I2
-

A
I2
+

A
I1
-

A
I1
+

A
G
N
D

A
O
 1
 -

A
O
 1
 +

Combo Bottom Side Connector (Differential)

Source/Sink Select for Combo Bottom Connector

Sink/Source Select

Source Short Pin 28 to 8

Sink Short Pin 27 to 8

 Note ALL ANALOG POWER COMES FROM AN INTERNAL POWER
CONVERTER. EXTERNAL PINS FOR +/- 15 VOLTS SHOULD BE USED
AS REFERENCE ONLY. SUPPLIES HAVE LIMITED POWER AND
SHOULD NOT BE USED TO DRIVE EXTERNAL LOADS

2.6 Digital Inputs

Digital I/O can be ordered as either sinking (active low) or sourcing (active high) I/O. Each
input circuit includes an indicator LED in series with the detection opto-coupler. The opto-
coupler isolates the processor from the inputs. The inputs require 1.5mA in order to turn on.

Figure 4 Sinking Input

Figure 5 Sourcing Input

2.7 Digital Input Interface Example

Below is an example of how to use the digital input interface for both the sinking and
sourcing hardware configurations. The digital I/O circuitry is powered from an external +24-
volt power source via the I/O connector.

DIO1

24V GND

MicroNode

DIO1

+24 V IN

MicroNode

 Figure 6 Sinking Input Figure 7 Sourcing Input

2.8 Digital Outputs

The individual outputs will support up to a 200 mA load per channel. Each output is thermally
protected against short-circuiting (500 mA typically) and includes under voltage protection. The
output Fault State is accessible through software. External Schottky diodes are provided for
output transient protection and each I/O point is protected with a self-resetting poly fuse rated
for 500 mA. Outputs default to the OFF condition during power up and processor reset
conditions. The figure below shows the output circuitry.

24_GND

+24V

DIO X
Output
Driver

Figure 8 Digital Output

2.9 Digital Output Interface Example

Below is an example of how to interface with the digital outputs for both the sinking and
sourcing hardware configurations. The digital I/O circuitry is again powered from an external
+24-volt power source via the I/O connector.

DIO1

+24 V IN

MicroNode

+

-

DIO1

24V GND

MicroNode

+

-

 Sinking Output Sourcing Output

 Figure 9

RMU2 User Manual

14 of 58
© MKS Instruments CIT Products 2005, All rights reserved

2.10 Analog Inputs

The analog inputs are coupled directly to the processor and are implemented using 12 bit
A/D converters. The analog input range is –10V to +10V.

All analog circuitry is powered from an internal ±15 Vdc power source. The +15 V and -15 V
power is protected with a self-resetting poly fuse rated at 100 mA.

Table 3 Analog Voltage Conversion

Conversion Table

10 V 0x1FFF
5 V 0x0FFF
0.0012 V 0x0001
0 V 0x0000
-0.0012 V 0xFFFF
-5 V 0x2FFF
-10 V 0x2000

Table 4 Analog Description

Card Type Number of Inputs Type

Analog Expansion Card 16 Single ended inputs

Combo Expansion Card 8

Single ended inputs that can also be
connected in pairs to create differential
inputs. Particular pairs must be used (input
1-5, 2-6, 3-7, 4-8) if a differential input is
required.

2.11 Analog Outputs

The analog outputs are implemented using 12 bit D/A’s with a –10V to +10V output range. The
output drivers are capable of driving 2 Kohm (5 mA) output loads. Analog outputs default to 0
volts during power up and processor reset conditions.

Table 5 Analog Voltage Conversion

Conversion Table

10 V 0x0FFF
5 V 0x0BFF
0 V 0x07FF
-5 V 0x03FF
-10 V 0x0000

Table 6 Analog Description

Card Type Number of Outputs Type

Analog Expansion Card 8 Single ended outputs
Combo Expansion Card 2 Differential outputs

RMU2 User Manual

15 of 58
© MKS Instruments CIT Products 2005, All rights reserved

2.12 Serial Port Connections

The RMU2 contains 4 total serial communication ports. Connector is standard D-Sub 9 pin
male.

COM1 and COM2 are RS232 only. COM3 and COM4 are RS232/RS485 Software
selectable.

Pin Signal – RS485HD
1

2 Tx

3 Tx

4 jmp

5 GND

6 jmp

7 Rx

8 Rx

9

For RS485 half-duplex mode, pin2, pin3 (Tx) need to be tied together. Pin7,
pin8 (Rx) also need to be tied together.

Pin Signal – RS232
1

2 Rx

3 Tx

4 jmp

5 GND

6 jmp

7

8

9

Pin Signal – RS485FD
1

2 Rx-

3 Tx-

4 jmp

5 GND

6 jmp

7 Tx+

8 Rx+

9

RMU2 User Manual

16 of 58
© MKS Instruments CIT Products 2005, All rights reserved

3 Quick-Start
This quick-start guide describes the basic requirements to connect the RMU to a PC, using
Telnet and Serial interface.

Default network settings are:
Lan1 DHCP
Lan2 192.168.1.2

3.1 Telnet

The unit can be accessed by “telnet” command to bring Linux console. From Windows
Command Prompt, type “telnet <unit_ip>”:

Login: root
Password: root

RMU2 User Manual

17 of 58
© MKS Instruments CIT Products 2005, All rights reserved

3.2 Serial Connection

Basic connections to the RMU consist of a null modem connection to COM 1 and power.

• Power up RMU by attaching power connector with 24VDC source, 1A.
• Attach a null modem cable to RMU COM1 port and your PC.

3.3 Configuration

The RMU's console is accessed through the PC RS232 serial
Interface. Any terminal program will work; Hyperterminal is
used in this documentation.

Table 9 Serial Configuration

Parameter Value

Baudrate 115200
Data bits 8
Parity None
Stop bits 1

3.4 Booting the RMU

Plug the power cable into the unit to start the boot process. Once the System has booted
log in to Linux, the user is “root” and the password is “root”.

Users can use terminal program such as Microsoft® HyperTerminal or Tera Term Pro to
communicate to the diagnostics port of the RMU (on Linux boxes minicomm, c-kermit, cu,
etc)

 Note NOTE THAT SETTINGS CAN BE OVERWRITTEN BY CONFIGURATION
FILES FROM APPLICATION PARTITION (SEE BELOW).

RMU2 User Manual

18 of 58
© MKS Instruments CIT Products 2005, All rights reserved

4 RMU Software User’s Guide

The RMU contains sixteen megabytes of FLASH memory. The first six megabytes contain:

1. Boot Loader (UBoot)
2. Linux Kernel (version 2.4.25) (compressed)
3. Initrd File System and data files image (compressed)

The next ten megabytes contain the Journaling Flash File System (JFFS2) that is used to
store application programs and data.

4.1 System Components

4.1.1 Boot Loader

The major functions of the boot loader are:
1. Initialize the basic board fundamentals peripherals.
2. Hold fundamental system parameters, such as MAC address and part number.
3. Interact with the console (RMU COM1) to start the boot process
4. Uncompress and copy the Linux Kernel to the RAM
5. Uncompress and copy the Initrd File system to the RAM to be used as the root file

system (“/”). The Initrd File system will be stored in RAM as a ram disk file system
/dev/ram0.

6. Start the Kernel.

The user interface to U-Boot consists of a command line interrupter, much like a Linux shell
prompt. When connected via a serial line you can interactively enter commands and see the
results. After power on, the initial u-boot prompt looks similar to this:

U-Boot 1.1.3 (Aug 15 2005 - 15:08:45)

CPU: MPC5200 v2.1 at 396 MHz
 Bus 132 MHz, IPB 66 MHz, PCI 33 MHz
Board: Motorola MPC5200 (IceCube)
I2C: 85 kHz, ready
DRAM: 128 MB
FLASH: 16 MB
PCI: Bus Dev VenId DevId Class Int
 00 1d 1057 5809 0680 00
 01 08 0458 0228 0e00 00
 01 09 0458 0228 0e00 00
 01 0a 0458 0228 0e00 00
 01 0b 0458 0228 0e00 00
 01 0c 10ec 8139 0200 00
 00 1e 3388 0021 0604 ff
In: serial
Out: serial
Err: serial
Net: FEC ETHERNET, RTL8139#0
IDE: Bus 0: OK
 Device 0: not available

RMU2 User Manual

19 of 58
© MKS Instruments CIT Products 2005, All rights reserved

 Device 1: not available

Type "run flash_nfs" to mount root filesystem over NFS

Hit any key to stop autoboot: 0
=> <INTERRUPT>
=>

To access the U-boot prompt, stop Linux Kernel from booting by hitting any key
before the timer prompt expires.

help, printenv, setenv, saveenv and run commands are available at U-boot shell.

Use saveenv command to save changed environment variables

=> saveenv
Saving Environment to Flash...
Un-Protected 1 sectors
Erasing Flash...
 done
Erased 1 sectors
Writing to Flash... done
Protected 1 sectors
=>

Having a network connection on your boot loader is very convenient during
development. All networked boards can download and boot the same kernel image
from a centralized server, so user only needs to update a single copy of kernel on
the server and not each board individually.

4.1.2 Kernel

The kernel is the core of the system; it controls all resources and processes.
When the kernel starts, it determines which of the root file system is configured. The
system can be brought up with one of two root file systems: initrd +JFFS2 or the
Compact Flash. In both cases, the kernel will start the init process and read the
inittab for more startup instructions.

4.1.3 The built-in Initrd File System

Initrd is a ram based file system that consists of the following folders:

bin dev
lib tmp
sbin etc
mnt proc
usr var

RMU2 User Manual

20 of 58
© MKS Instruments CIT Products 2005, All rights reserved

The initrd is a volatile entity; therefore it's not the place for permanent settings. Any changes
or additions to the file system will be lost when the system is rebooted. Permanent settings
should use the Flash memory file system (JFFS2) which is mounted by the system startup to
the /mnt/ffs VFS location. The initrd startup code creates “hooks” to the JFFS2 file system
allowing permanent configuration.

4.1.4 JFFS2

Journaling Flash File System (JFFS) version 2 is a standard file system for flash memory; it
comes as a complementary sub file system to the initrd. JFFS basic directory hierarchy
includes the etc and lib sub directories. Customization configuration files are under etc
subdirectory. Additional kernel modules are under lib subdirectory. Unnecessary modules
may be removed. The rest of the JFFS sub file system can be used as the user's application
play ground.

Important files under etc:

• network.conf
• rc.application
• rc.preconfig

4.1.5 Compact Flash

The RMU supplied a self contained unit, and as such include all the necessary tools and
applications for development and maintenance. In addition, the RMU supports a compact
flash that can be used for development or additional data storage.

An alternative way to run the system is to start the system from the removable Compact
Flash. When the RMU boots-up it can be easily manipulated to continue the bootstrap
sequence from the Compact Flash. In this case, the compact flash is used as the system
root file system.

4.1.6 Kernel's Modules

All supported devices are included in the monolithic part of the RMU kernel. Other drivers
can be loaded into the kernel space by demand. These the kernel's modules are supplied as
part of the bundle and can be located on the JFFS sub file system, under
/lib/modules/2.4.25-mks-rp-XX/. It was intentionally placed on the JFFS to allow the removal
of unneeded modules to allow additional storage space.

Modules can be loaded or removed with insmod and rmmod utilities, respectively. All current
loaded modules and their dependencies are under /proc/modules file and can be seen with
command “cat /proc/modules”

The following example illustrates how to access Windows 2000/XP/2003 file share. It is
assumed that Windows computer has:

1. Shared directory called “RMU”
2. IP address: 192.168.1.3
3. Local user “rmu” with password “rmu” which has permissions to

access the share

CIFS driver must be loaded to enable Windows file share connectivity.

RMU2 User Manual

21 of 58
© MKS Instruments CIT Products 2005, All rights reserved

CIFS can be loaded with the below command sets:

insmod cifs.o
mkdir /mnt/winxp
mount -t cifs cifs /mnt/winxp -o unc=//192.168.1.3/RMU,user=rmu,pass=rmu

Note that module needs to be loaded only once. If it is required to mount more Windows file
shares, it is not necessary to run “insmod cifs.o” command.

To check if the module is loaded, use “lsmod” command:

lsmod

 Module Size Used by Tainted: GF
 rtl8150 8432 0 (unused)
 cifs 167256 0 (unused)
 usb-storage 58992 0 (unused)

Use “rmmod” to remove a module:

rmmod cifs

4.1.7 Cross Platform Development Tools

To build applications to run on the RMU, acquire the DENX Software Engineering
Embedded Linux Development Kit (ELDK) 3.1.1. The ELDK provides cross compilation tools
to allow the user to develop RMU applications on ELDK supported host platforms. The ELDK
3.1.1 Tools can be obtained from DENX at http://www.denx.de. To correctly interface with the
RMU kernel and the associated runtime libraries, it is imperative that the application code be
build with ELDK 3.1.1 tools. The relevant architecture for the RMU is the ppc_82xx. gcc
version.

Pay attention to use the right set of tools. Make sure the ppc_82xx binary directory is on the
system PATH, and export the CROSS_COMPILE environment variable to point to the
ppc_82xx- tools package.

Below is the link to obtain ELDK:

http://www.denx.de/wiki/view/DULG/ELDKAvailability

Alternative direct links to ISO image on different mirrors:

1. ftp://mirror.switch.ch/mirror/eldk/eldk/3.1.1-2005-06-07/ppc-linux-x86/iso/ppc-
2005-06-07.iso

2. http://mirror.switch.ch/ftp/mirror/eldk/eldk/3.1.1-2005-06-07/ppc-linux-
x86/iso/ppc-2005-06-07.iso

RMU2 User Manual

22 of 58
© MKS Instruments CIT Products 2005, All rights reserved

4.1.8 Creating my first application

Let’s use the following example code hello.c as our first RMU's application, hello

#include <stdio.h>

int main(int argc, char* argv[])
{
 printf("Hello World!\n");
 return 0;
}

Target associated tools have to be used for cross compilation environment. Current RMU
architecture under ELDK is the ppc_82xx, make sure to set the system PATH and the
CROSS_COMPILE environment variables accordingly.

Assuming ELDK is installed to “/opt/eldk-3.1.1”, here is what’s needed to compile the
application at the very minimum:

user@x86-pc$ export CROSS_COMPILE=ppc_82xx-
user@x86-pc$ /opt/eldk-3.1.1/usr/bin/ppc_82xx-gcc hello.c -o hello

if a static link is needed pass the -static flag to the linker. Now we can copy (FTP or NFS) the

binary to the unit and execute it:

user@rmu# ./hello

 Hello, world!

It is recommended to use special makefile to do cross-compilation. Here is an example of
such a makefile (“Makefile.82xx”):

include Makefile

export CROSS_COMPILE=ppc_82xx-

PATH += :/opt/eldk-3.1.1/usr/bin:/opt/eldk-3.1.1/bin
CC = ppc_82xx-g++
CXX = $(CC)

As you can see, this makefile includes the original makefile and overwrites the compiler
definition.

Coming back to our first application, we need to create a makeffile (“Makefile”):

hello: hello.o
clean:
 rm –f hello hello.o

RMU2 User Manual

23 of 58
© MKS Instruments CIT Products 2005, All rights reserved

Now we can compile the binary for x86 platform:

make clean; make

Or for RMU:

make clean; make -f Makefile.82xx

In order to get application to start when unit boots, its startup command needs to be added
to “/mnt/ffs/etc/rc.application” file. Please, see section 4.2.2.3 for more details.

Please, see Appendix B and C for cross-compiling 3rd party packages with “configure” script.

4.2 Run-time platform

The run time platform refers to the system running from flash; it may use the compact flash
but only as an external storage, and not as the system root file system. Usually it implies a
stable and finalize product. This is the default factory setup. The components involved are
the Linux kernel, the initialization ram-disk (InitRD), and the JFFS2 as a dynamic but non
volatile file system. The kernel and InitRD are supplied as a solid binary. The JFFS2 comes
with default content. User can choose to remove or change the JFFS' content, and what to
do with the rest of the storage place.

4.2.1 Boot procedure

Default settings configure the bootloader to invoke the Linux OS automatically. The Linux
OS will run with console on COM1 and default network configuration. The defaults are:
console 115200bps, 8N1, no flow control, network LAN1(eth0) set by a DHCP, LAN2(eth1)
192.168.1.2.

Whether it is the console or a telnet session the login shell will be activated (the console
login shell mask CTRL-C).

It is highly recommended to login first via the serial console to make sure that the system is
configured as needed before switching to the network connection.

Use telnet to log into the system, and ftp or tftp to transfer files to/from the RMU.

The factory settings for the development platform's user and password are: root and root,
respectively.

4.2.2 Configuration

4.2.2.1 Initialization

The kernel starts the init process with configuration files from InitRD rootfs. "Hooks" were
created with the system startup procedure, allowing the customization of the system
initialization.

RMU2 User Manual

24 of 58
© MKS Instruments CIT Products 2005, All rights reserved

The described flow below is part of the solid initrd image, except for the hooks which will be
emphasized.

The environment variable FFS will be used as the pointer to the location of the configuration
files on the mounted JFFS sub file system.

• Init process starts and follows the inittab instructions.
• Default configuration is loaded e.g.; IP addresses, location of the JFFS (${FFS}),

services to run. (/etc/rc.config)
• The second MAC address is set. It's striped from the kernel command line. The first

MAC address is set by the u-boot.
• Set the loopback interface
• Mount the sub-systems proc, usbfs and jffs
• [hook] if exist, invoke the script ${FFS}/etc/rc.preconfig
• [hook] if exist, load the configuration file ${FFS}/etc/network.conf
• [hook] if exist, invoke the script ${FFS}/etc/rc.network
• [hook] if exist, load the configuration file ${FFS}/etc/services.conf

Table 10 system's Initialization hooks

The hook Purpose

${FFS}/etc/rc.preconfig [script]
This should be the place to make all system adjustment
before any action has been taken.
For instance create soft/hard links, manipulate initrd files
such as the password file, loads modules etc.

${FFS}/etc/network.conf [configuration]
This should be the place to make the basic network
configuration.

HOSTNAME Unit network host name
ETH0 Network configuration for eth0.

Possible values are (including quotes):
•“dhcp”

•“auto”
•“<ip_address>”
•“<ip_address> netmask
<mask>”

Some examples:

1. ETH0=”dhcp”
2. ETH0=”auto”
3.
ETH0=”192.168.1.5”
4. ETH0=”10.10.2.12
netmask
255.255.0.0”
Note: the values
must be quoted.

ETH1 Network configuration for eth1. Format
is the same as for ETH0

GATEWAY Network default gateway. This setting
is ignored if either one of eth0 or eth1
is set to “dhcp”

RMU2 User Manual

25 of 58
© MKS Instruments CIT Products 2005, All rights reserved

DNS List of one or more DNS servers
Example: DNS="192.168.1.1
10.10.1.1"

${FFS}/etc/rc.network [script]
This is the callback that gets executed at the end of main
network configuration script. It could be used to do any
network oriented actions, such as interface manipulation
and/or setting up advanced routing, notifying needed
applications etc.

${FFS}/etc/rc.ip_change [script]
This script is a callback for IP address change. This could
happen when e.g. DHCP server gives unit the new IP
address. Such callback could be used to notify needed
application(s) and/or to display the new IP address on 4-digit
display. Interface name is supplied as the first parameter to
this callback and this NIC identifies the one with changed IP.

${FFS}/etc/services.conf [configuration]
The place to enable or disable any of the services.

SYSLOGD Defines whether “syslogd” service
needs to be started at boot up.
Service is started only if this variable
is set to lowercase “y”.

XINETD Defines whether “xinetd” service
needs to be started at boot up.
Service is started only if this variable
is set to lowercase “y”.
Warning: if you disable this service,
both telnet and ftp servers will no
longer be accessible.

PORTMAP Defines whether “portmap” service
needs to be started at boot up.
Service is started only if this variable
is set to lowercase “y”.

4.2.2.2 Network

The system has a default network configuration, [see /etc/rc.config].
However the RMU supplied with a template ${FFS}/etc/network.conf which sets the following
settings.

ETH0 (LAN 1) factory setting

Parameter RMU Setting

IP-Address of eth0 DHCP

ETH1 (LAN2) factory setting

Parameter RMU Setting

IP-Address of eth1 192.168.1.2
Subnet Mask 255.255.255.0
Default Gateway N/A

RMU2 User Manual

26 of 58
© MKS Instruments CIT Products 2005, All rights reserved

IF configuration file is missing, the units revert to the below network settings:

ETH0 (LAN1) default setting

Parameter RMU Setting

IP-Address of eth0 192.168.1.5
Subnet Mask 255.255.255.0
Default Gateway None

ETH1 (LAN2) default setting

Parameter RMU Setting

IP-Address of eth1 172.21.232.5
Subnet Mask 255.255.0.0
Default Gateway 172.21.100.1

4.2.2.2.1 Interactive configuration

When unit is inaccessible from the network and/or user interface does not provide a
functionality to change the IP address, special “net” command from serial console can be
used to setup primary network interface – LAN1. LAN2 (eth1) is not supported.

User needs to login via serial console and execute the following command at prompt:

net <ip_address>
This will permanently set LAN1 to specified <ip_address>. The full syntax of net command is

the following:
net <ip_address> [<netmask> [<default gateway>]]
where:
<ip_address> is one of
 •dhcp
 •auto
 •fixed IP address
<netmask> - subnet mask
<default gateway> - default gateway for the current network.

Note that <netmask> and <gateway> parameters are optional. Network change is taken into
effect immediately. No restart is required. If executed without arguments, net command
shows the current configuration and current IP addresses.

Below are some examples of how net command can be used (note that “user@rmu#”
represents command prompt and must not be typed in):

1. Just change the IP address and leave default gateway unchanged:

user@rmu# net 192.168.1.5

2. Provide subnet mask as well:

user@rmu# net 10.10.12.32 255.255.0.0

RMU2 User Manual

27 of 58
© MKS Instruments CIT Products 2005, All rights reserved

3. Specify default gateway:

user@rmu# net 192.168.1.5 255.255.255.0 192.168.1.1

4. Get IP address from DHCP server:

user@rmu# net dhcp

5. Get IP address automatically in unmanaged network:

user@rmu# net auto

6. Check current configuration and IP addresses:

user@rmu# net

eth0: dhcp
eth1: dhcp
Gateway: 10.112.3.2
DNS: 150.100.100.30 150.100.100.89
Current IP address(es):
inet addr:192.168.1.160 Bcast:192.168.1.255 Mask:255.255.255.0
inet addr:172.21.211.70 Bcast:172.21.255.255 Mask:255.255.0.0
inet addr:127.0.0.1 Mask:255.0.0.0
Usage:
...> net ip_address [netmask [gateway]]

4.2.2.2.2 Temporary configuration

In order to set the IP manually use the following example. Note that IP address will be
changed for the current session only. After reboot, the old IP configuration will be restored.

user@rmu# ifconfig eth1 192.168.1.3

4.2.2.3 Auto run

To automate the system operation, the init process invokes the ${FFS}/etc/rc.application
automatically whenever it sense it is not running. i.e.; the ${FFS}/etc/rc.appliaction is
invoked on system startup. In case the ${FFS}/etc/rc.appliation will crash or end
unexpectedly the init process will invoke it again [respawn].

Lets take the hello example code introduced in section 5.2.3, and make it run
automatically on system startup. Lets edit ${FFS}/etc/rc.appliaction

 user@rmu# vi /mnt/ffs/etc/rc.application

Here is the content of /mnt/ffs/etc/rc.application

#!/bin/sh

/mnt/ffs/hello

RMU2 User Manual

28 of 58
© MKS Instruments CIT Products 2005, All rights reserved

The result of this will be a constant printout of Hello World, because the hello will finish
running and the ${FFS}/etc/rc.application will exhausted, and the init process will bring it up
again and again. To run it once use the hold shell command in the script, this way the
rc.application script will still run and will be respawn only if it crashes unwontedly.

#!/bin/sh
/mnt/ffs/hello >/dev/null 2>&1 &
hold

Save the file and reboot the system, by enter the command reboot or cycle the RMU power
to reboot the RMU. You will observe the Hello World output on reboot, but only once. If you
would kill the rc.application, you should observe the Hello World output again.

It is also recommended to start the application by /bin/conti.sh script. This script will restart
the application in case it crashed:

#!/bin/sh
conti.sh /mnt/ffs/hello >/dev/null 2>&1 &
hold

4.2.3 Storage

4.2.3.1 JFFS

The JFFS file system is designed to manage Flash in the most efficient way, it’s wearable
oriented to keep the flash life cycle longer. It tolerates brutal and unexpected power cut. It’s
mounted over the /dev/mtdblock3 MTD device.

The JFFS contains basic configuration templates and kernel's modules. User can choose to
use those supplied modules or to remove them and free JFFS storage space. The JFFS file
system is mounted automatically by the init process from the InitRD's configuration file
instructions. The Factory associated configuration files are under the ${FFS}/etc sub-
directory. The Factory associated kernel's external modules are under ${FFS}/lib/modules
sub-directory. The rest of the JFFS available memory is for customer's application use.

4.2.3.2 Compact Flash

In the Runtime platform the compact flash is used for general storage. It is not mounted
automatically, it should be mounted manully, or by adjusting the hooks to do it automatically.
Usually a new compact flash comes preformatted with a FAT file system.

4.2.3.2.1 Accessing CompactFlash

From within the RMU, CompactFlash is accessible as “/dev/hda”.

This command mounts Compact flash (assuming a single partition) into file system:

user@rmu# mount /dev/hda1 /mnt/data

RMU2 User Manual

29 of 58
© MKS Instruments CIT Products 2005, All rights reserved

Example for expected console's messages for the ext3 file system

hda: hda1
 hda: hda1
kjournald starting. Commit interval 5 seconds
EXT3 FS 2.4-0.9.19, 19 August 2002 on ide0(3,1), internal journal
EXT3-fs: mounted filesystem with ordered data mode.
user@rmu#

To check is the compact flash already mounted to /mnt/data:

user@rmu# if mountpoint -q /mnt/data; then echo “Yes”; else echo “No”; fi

 Yes

4.2.3.2.2 Formatting CompactFlash

As mentioned above, most of brand-new CompactFlash cards come pre-formatted as FAT.
In order to format it to EXT3, simply unmount it (if mounted) and run mkfs.etx3:

user@rmu# umount /mnt/data
user@rmu# mkfs.ext3 /dev/hda1
user@rmu# tune2fs -i 0 -c -1 /dev/hda1

4.2.3.3 USB

Basic USB support is included monolithically in the Linux kernel. But to support an USB as a
storage device, a particular kernel module should be loaded. The kernel modules are
supplied as an external package located on the JFFS sub file system. User has the flexibility
to remove these modules for storage space if found not useful.

Preloading the usb storage driver

insmod usb-storage.o

Expected console messages

Initializing USB Mass Storage driver...
usb.c: registered new driver usb-storage
USB Mass Storage support registered.

Messages similar to below are observed when an USB device is inserted:

hub.c: new USB device 0-1, assigned address 6
hub.c: USB hub found
hub.c: 1 port detected
hub.c: new USB device 0-1.1, assigned address 7

RMU2 User Manual

30 of 58
© MKS Instruments CIT Products 2005, All rights reserved

scsi0 : SCSI emulation for USB Mass Storage devices
 Vendor: Corsair Model: Flash Voyager Rev: 1.00
 Type: Direct-Access ANSI SCSI revision: 02
Attached scsi removable disk sda at scsi0, channel 0, id 0, lun 0
SCSI device sda: 507904 512-byte hdwr sectors (260 MB)
sda: Write Protect is off
 sda: sda1

The following message signifies that an USB storage was detected but the driver was not
loaded into the kernel. Use insmod procedure to look for the usb-storage module from
/proc/modules.

hub.c: USB hub found
hub.c: 1 port detected
hub.c: new USB device 0-1.1, assigned address 3
usb.c: USB device 3 (vend/prod 0x67b/0x2517) is not claimed by any active driver.

Example for loading a disk-on-key

user@rmu# mkdir /mnt/usb
user@rmu# mount /dev/sda1 /mnt/usb/

4.3 Web Server

RMU does not have a web server application in the files system as a default. However, any
web server application, such as BOA, may be loaded onto internal or external flash. BOA
web server documentation can be found at http://www.boa.org/. BOA web server needs to be
configured and started. See Appendix C for the procedure of how to create a binary for
RMU.

See section [TBD] for details about how to add applications to startup sequence.

5 DIO API

The Digital IO Expansion Module is a PCI104 compatible device. The PCI interface for the
Digital IO board is PCI 2.1 compatible. The PCI Connector is PC104 Compliant. The slot
addresses for the PCI bus are determined by jumper settings. The RMU Digital IO Module’s
Driver is included with the Linux distribution or is available upon request. The API for the
Driver is standard POSIX format.

The I/O module is configurable; each of the modules has Digital IO points can be configured
as inputs or outputs. Units can be configured for sink or source, a jumper is used to activate
the I/O configuration on the connector pins. See section for DIDO connection.

RMU2 User Manual

31 of 58
© MKS Instruments CIT Products 2005, All rights reserved

PCI Controller

DIO 0-11
D-SUB 37pin

DIO 12-23
D-SUB 37pin

Digital
Output

Drivers (2)

Digital Input
Opto(3)

PCI
Bus

33MHz

Digital Input
Opto(3)

Digital
Output

Drivers (2)

5.1 Device APIs

5.1.1 Overview

The API utilizes the standard POSIX interface to provide the user access to the devices
functionality. As a POSIX compliant API, the DIO driver supports the standard operations:
open(), close(), read(), write() and ioctl(). The use of open(), close(), read() and write()
doesn’t rely on any explicit definitions, it relies only on the standard POSIX definition
standard. In order to use the ioctl(), an explicit protocol definition needs to be declared; it’s
done in the form of include file, which describes and defines the type of commands
available.

The DIO are accessed via the VFS character device node. Its major should be 240.
The DIO supports two interfaces: ASCII and Binary. Both have the same basic
functionalities. The later includes some enhancements, such as get the previous output IOs
states when setting a new ones and getting a timestamp indication with the read response.
More on these enhancements are shown below.

The RMU supports up to four DIO cards. The cards are accessed via the special files:

• /dev/mksdio[0-3] (non-blocking ASCII reads would be used to poll the IO)
• /dev/mksbio[0-3] (blocking ASCII reads is interrupt change of state based)
• /dev/mksbiob[0-3] (blocking and non-blocking binary reads is interrupt change of

state based)

Two basic methods can by used to get input information from the DIO card, polling and

RMU2 User Manual

32 of 58
© MKS Instruments CIT Products 2005, All rights reserved

interrupt. When polling method is used, the application will read the DIO card status
periodically. This method uses non-blocking mechanism. If the interrupt approach is
preferred, then the blocking mechanism should be used. The reader will be blocked from
listening to the DIO inputs and is released only when a relevant event occurs. A relevant
event may be an IO's rising or/and falling edge condition that the driver was preset to notify
the application. The notification is done by releasing the blocking device.

When a channel is opened for listening, it’s immediately sent a status message. If it's using a
blocking mechanism then it waits for any event that may appear.

NOTE: Non-blocking reads will always report the current IO states, where the blocking reads
may report a time drifted IO states in case the application delayed the interrupt reading
sequence

5.1.2 Basic procedures

The basic procedures are configuration, read and write.

Configuration
The default configuration sets all DIO as input channels, and interrupts are disabled.
If different configuration is desired, e.g., setting output channels or using blocking for waiting
on rising edge events, user must send a configuration message before using the IOs. The
configuration can be changed at any time, but be aware of change in behavior. The
configuration commands are sent to the cards by write() or ioctl() API functions according to
the chosen Interface, i.e., ASCII or Binary.

Reading
Reading operation can be done by polling or by waiting on an event, i.e., blocking. By
configuring the DIOs channels properly, the read operation may selectively notify you on
events of interest and ignore the rest, for example rising edge occurrences in DIO3 & DIO5
in addition to falling edge occurrences in DIO3 & DIO6.

The default driver behavior is to queue-up events until the application take action, the main
reason is to prevent event lost. But when real-time comes into consideration, the use of the
queuing characteristic may be suppressed. The suppression can be done only once per
system run. The tool to control it, mksdio_config, resides on the initrd.

A standard POSIX select function can be used for the blocking approach. Select function
allows application to handle more then a single device, i.e. a card, at a time. More than one
devices could be read in blocking mode and set to notify the application on interrupt events.
The application will be notified for any of the events no matter what card causes it. The
application can even use this function with a time out period.

Writing
A DIO must be set as output channels before a write can take place, otherwise the output
command will be ignored. In Binary mode, the sent buffer should be writable i.e., not a
constant variable or one containing a reusable information, since the content will be
overwritten after the return from the system call. The system call will write the previous DIO
state into that buffer.

RMU2 User Manual

33 of 58
© MKS Instruments CIT Products 2005, All rights reserved

5.1.3 ASCII Interface

The ASCII API is associated with two sets of minors, minors 0-3 for operating in none
blocking manner and minors 4-7 for operating in blocking manner, /dev/mksdio[0-3],
/dev/mksbio[0-3], respectively .

Messages written to/reading from the device are in pure text. The configuration commands
passed to the driver are in-bound; changing IO output states is just one of the available
commands. There is only one type of received message: one that reports the IO states.

5.1.4 Binary Interface

The binary API is associated with its minors 8-11. For example, in order to access the first
DIO card via the binary API, the VFS should include an entry like /dev/mksdiob0 with major
240 and minor 8, the second will be with minor 9 etc.

Messages written to/reading from the device are in binary code. The configuration
commands passed to the driver are out-of-bound. The only in-bound command is the
command to change the IO output states. All out-of-bound commands are sent to the driver
by using the ioctl POSIX API. There are three kinds of message types: configuration
commands, write IO output states, and read IO input states.

Two methods are available to manipulate the output IOs: Snapshot or Selective. The
Snapshot method sets all the 24 IOs at once, The Selective method only sets a selective
group of IOs; the selection is done by an additional IOs mask.

The only user defined types are the IOCTL commands codes and are supplied as an include
file mksdio_ioctl.h and also in this document

5.2 Function Definitions

The following API functions are supported

 Open() - is used to open a node to a specific Digital espansion module

Close() – is used to release the node resource of a specific Digital expansion module
Write()- is used to write to the digital outputs of a card
Read() is used to read the input channels of the card

5.2.1 Open()

open a connection to a physical Digital IO module. The open function for the dio opens a data channel to the
DIO card, handing a file descriptor to the application allows the invocation of the read,write and ioctl commands.

int open(const char* pathname, int flags);

Parameters

Type Name Description
Char Pathname the path name to the DIO device file (e.g.

/dev/mksdiob0)
int flags one of the O_RDONLY, O_WRONLY or O_RDWR

options to open the file. Usually it would be O_RDWR ,
for reading and writing.

RMU2 User Manual

34 of 58
© MKS Instruments CIT Products 2005, All rights reserved

Return Value

Type Values
Int • The file descriptor if successful

• -1 if an error occurred.

REMARK: use to open both ASCII and Binary interface, the device name will
associated the application handler with the ASCII or the Binary interface.

5.2.2 Close()

Close an open connection to a physical Digital IO module. The close function for the dio will
close the connection to a DIO module. Release any unnecessary system resources.

int close (int fd);

Parameters

Type Name Description
Char fd file descriptor to be closed

Return Value

Type Values
int • 0 if successful

• -1 if an error occurred.

5.2.3 Read()

Read status of the physical Digital IO.

size_t read (int fd, void* buf, size_t count);

Parameters

Type Name Description
Int fd file descriptor to read from.

void* buf pointer to buffer in memory that will contain the data + the time
indication.[only in binary mode]

Size_t Count number of bytes to be read.

Return Value

Type Values
int 8 - indicating the succesful load of 8 bytes into the buffer (Binary Driver)

26 - indicating the succesful load of 26 bytes into the buffer (ASCII Driver)
-1 if an error occurred.(Binary Driver)
-1 if an error occurred.(ASCII Driver)

RMU2 User Manual

35 of 58
© MKS Instruments CIT Products 2005, All rights reserved

Using ASCII Interface
The syntax of the messages is ASCII based and as such it can be manipulated both by a
shell script and by an execution. See [Examples].

Message syntax Table:
Syntax Description

1 Channel on value
0 Channel off value

The received message contains a 26th characters long, 24 character each per channel, and
characters 25-26 are new line followed by a NULL character. The message dumps the IO
state into a character string indicating the IO current status. It always dumps all of the 24
channels.

Using Binary Interface
Read status of the physical Digital IO as a 32-bit word, or 4 bytes. Each bit represents the
DIO status. The DIO occupies the first 24 bits of the message for the 24 DIO channels. the
second 32-bit word will be attached to the return data including the event’s time indication,
the time indication is the number of 10ms ticks occurred since system startup.

The read() operation could be invoked as a blocked or non-blocked operation. This behavior
could be controlled by using the ioctl command (MKS_IOCTL_SET_NONBLOCK).

Example:
Assuming the following LEDS output on the front panel.
2 24
1 0 1 0 0 0 0 0 0 0 0 1
1 1 0 1 1 1 0 0 1 1 0 1
1 23

DIO channels 1-3, 6-7, … , 23-24 are ON
DIO channels 4-5,8, …, 20-22 are OFF

ASCII : "111001101010000010100011\n\0"
Binary: bytes order 1->4 [0x00][0xc5][0x05][0x67]

NOTE: few clarifications for the use of blocking mode.

1. The first read will always be none blocked and the return buffer content will be a snapshot
of the DIOs states.

2. in order to get notified for any DIO change, the mask for Rising and Falling edges should be
adjusted [see ioctl for binary mode and the write for the ASCII mode]

RMU2 User Manual

36 of 58
© MKS Instruments CIT Products 2005, All rights reserved

5.2.4 Write()

Write status of the physical Digital IO module

size_t write (int fd, const void* buf, size_t len);

Parameters

Type Name Description
Int Fd file descriptor to be write to
Void* buf pointer to the send data: see how to use ASCII and

Binary interfaces below for more details
Size_t len number of bytes to be write. For ASCII 1<=Len<=24, for

Binary 4 or 8 Bytes, see how to use ASCII and Binary
interfaces below for more details

Return Value

Type Values
Int • Successful in Selective mode: 8 (Binary Driver)

• Successful in Snapshot mode: 4 (Binary Driver)
• 27 bytes if Successful (ASCII Driver)
• 1 if an error occurred.(Binary Driver)
• 1 if an error occurred.(ACSII Driver)

Using the ASCII Interface
The syntax of the messages is ASCII's based and as such it can be manipulated both by a
shell script and by an execution. See [Examples]. As mentioned above the ASCII interface
send all commands in-bounds, an ASCII message is build out of a appended characters
each represent an operation, the location of the character implies on which DIO its should be
delivered. The first character will be relate to DIO1 the second to the DIO2 etc. therefore a
message may be short as a single character or as long as 24 characters, any additional
characters append on the end of the message are being ignored.

Message syntax Table:
Syntax Description

m Mask interrupt
U

unmask interrupt

I Mark as an input
O Mark as an output
X A don’t care sign
1 Channel on value
0 Channel off value
R Filters only rise
f Filters only fall

The message can be described as a vector of commands, up to the number of addressable
DIOs, which is 24 (per card). Each offset in the vector address to a specific DIO with the

RMU2 User Manual

37 of 58
© MKS Instruments CIT Products 2005, All rights reserved

same index. Vector[1] addresses DIO1, vector[2] addresses DIO2 and so on.(the vector
first element index is 1).

Basic Messages Examples:

• "oi" - the 'o' is being sent to DIO1 and the 'I' is being sent to DIO2, respectively. The
commands are 'o' mark as an output channel, 'I' mask as an input channel. The result
for that message will be marking DIO1 as an output channel and marking DIO2 as a
input channel.

• "xxi" – the 'x' means an operation don't care, its propose is to be a place-holder
saying the DIO[index] has a NOP command, a command to do nothing. It's needed
to keep the order. The result leaves DIO1 and DIO2 unchanged and mark DIO3 as
an input channel

• "xxxx1xx0" – set DIO5 to ON and DIO8 to OFF by ignoring any other change.
• "r1f" – enable notification on rising edge event for DIO1, sets DIO2 to ON, enable

notification on falling edge event for DIO3.

Using the Binary Interface

The syntax of the message is Binary, which means working with a base unit of 32 bits.

There are two kinds of messages in the binary interface: snapshot and selective. Snapshot
sets all the 24 DIOs at once. Selective may set only a subset of the DIOs leaving the other
untouched.

Each DIO represented as a bit in the 32-bits word. There are 24 DIOs, bits 0 to 23 will
represent the state of DIO 1 to 24, respectively. This representation is used for both types
of messages. For the selective message type, an extra mask is appended to the DIOs
states, it marks the DIO that should be affected by the assignment. It's also constructed of a
bit-set representing the DIO channels in the same manner the states field represents the
DIOs states. In any of the methods, the write() function will copy the card's DIOs states into
the supplied buffer just before the write execution.

Input

Snapshot: 1 x 32bits word [4 bytes]

Selective: 2 x 32bits word [8 bytes]

The length of the message indicates which type of message was sent, so no other indication
is needed.

Example:

// assuming all DIOs configured to be outputs and there states is off.

U32 message[2];

message[0] = 0x00ffffff;

message[1] = 0x00000003;

// device configuration at this place.

// now lets use the Snapshot message, the length

RMU2 User Manual

38 of 58
© MKS Instruments CIT Products 2005, All rights reserved

// was set to 4, the message[1] will be ignored,

// and all the card's DIOs will be effected by the

// value in message[0]. All DIOs should be light up,

// the value will be 0x00ffffff

write (fd, message, 4);

// print the return of the previous states of all DIOs.

printf("pevious states %x\n", message[0]);

// that will set back the DIOs to the initial states

// which is 0x00000000

write (fd, message, 4);

//message[0] and message[1] will be send.

// and DIOs states will be (0x00000003) =

// (message[0](0x00ffffff) & message[1](0x00000003))

write (fd, message, 8);

// message[0] contains the previous value.

Message syntax Table:
Syntax Description

1 Channel on value

0 Channel off value

5.2.5 Ioctl()

Control the behavior of the physical Digital IO + the driver behavior.

int ioctl (int fd, int request, …);

Parameters

Type Name Description
Int Fd file descriptor to be write to

int Request One of the operations mentioned below. Basically there are two type
of operations, a set command and a get command. The set
command uses the associated parameters as input data to the
driver. The get command uses the associated parameter as a place
holder for the output information coming from the driver. Therefore
usually the type of parameter associated with a set command will be
of type value and the one associated with a get command will be
pointer to a place holder that eventually should hold the output for
the specific command.

…

The associated parameters, goes with the ioctl command. Each command defines its own
associated parameters type and behavior.

RMU2 User Manual

39 of 58
© MKS Instruments CIT Products 2005, All rights reserved

List of Set/Get command pairs:

Command Description
MKS_IOCTL_GET_NONBLOCK
MKS_IOCTL_SET_NONBLOCK

Set the blocking/non-blocking read behavior

Associated parameter:

Type: unsigned long

� Value: 1– blocking

� Value: 0 – Non-blocking

MKS_IOCTL_GET_OUTPUT_MASK

MKS_IOCTL_SET_OUTPUT_MASK

Set the output mask, defines the behavior of the
particular DIOx when IO status will be send to the
driver by the write command, prevent writing 1s on
unwanted DIOs

Associated parameter:

Type: unsigned long

� Value: 0x00000000 – 0x00ffffff
(default 0x00000000)

MKS_IOCTL_GET_RISE_MASK

MKS_IOCTL_SET_RISE_MASK

Set a software/hardware interrupt mask, defines
which DIO will trigger a interrupt on a rising edge.

Associated parameter:

Type: unsigned long

� Value: 0x00000000 – 0x00ffffff
(default 0x00000000)

MKS_IOCTL_GET_FALL_MASK

MKS_IOCTL_SET_FALL_MASK

Set a software/hardware interrupt mask, defines
which DIO will trigger a interrupt on a falling edge.

Associated parameter:

Type: unsigned long

� Value: 0x00000000 – 0x00ffffff
(default 0x00000000)

Return Value

Type Values
Int 0 on Success

-1 if an error occurred.

6 AIO API
The AIO (Analog IO Card) can be approached via the Linux VFS just as any regular file. The
message commands structure and codes are supplied as an include file mksaio.h and also
in this document.

RMU2 User Manual

40 of 58
© MKS Instruments CIT Products 2005, All rights reserved

The AIO input and output differ in their presentation. Input is represented by a 14 bits and
output is represented by a 12 bits.

6.1 Basic procedures

The basic procedures are configuration, read and write. The configuration and write
operation both use the same message structure in order to pass a command. Read uses a
different message structure, it loads each read not only the AIO states but rather all the AIO
status information.

Configurations
The default configuration is 16 single-ended, watchdog interrupt disabled.

Mode – can be changed at any time, the options are single-ended (16 channels) and
differential mode (8 channels).
Watchdog – Internal watchdog can be enabled or disabled. When enabled, it’s up to the
application to reset its ticks counter.

Reading
Each read operation fetches all the information from the AIO card packed into a structure
defined in a supplementary include file mksdio.h. It includes all 16 AIO channels' readings,
Watchdog information, output readiness indicator flag and the mode flag i.e; whether it's a
16 single-ended or a 8 differential. The AIO channel's read is unprocessed i.e.; 14 bits
samples in 2's compliments format (see translate_input function from 5.2).

Writing
Setting a new value to an AIO is done by creating a message that includes the channel
number and the VDC value in [0..4095] range proportionally corresponding to [-10..10] range
(see translate_output function from 5.2).

The POSIX function to be used for the configuration and writing procedures is the function
write with the mksaio_cmd structure. The POSIX function to be used for the reading
procedure is the function read with the mksaio_info structure.

RMU2 User Manual

41 of 58
© MKS Instruments CIT Products 2005, All rights reserved

6.2 Translating reads & writes

Translating the reads to the range of +10-(-10)V is done by to following logic.

// the following code can be a one liner macro as well, it is not an optimal code, for matter, of
readiness and clarity.

float translate_input(unsigned short orig_val)
{
 float fValue = (float)(orig_val & 0x1FFF) / 819.2 - 10.0;
 if ((orig_val & 0x2000) == 0) fValue += 10.0;

 return fValue;
}

Translating the writes to the 12bits 2's compliments

unsigned short Translate_output(float volts)
{
 // boundries check can be added
 return (unsigned short)((orig_val + 10.0) / 204.8);
}

6.3 Function Definitions

The following API functions are supported

 Open() - is used to open a node to a specific Analog expansion module

Close() – is used to release the node resource of a specific Analog
expansion module

Write()- is used to write to the digital outputs of a card
Read() is used to read the input channels of the card

6.3.1 Open()

open a connection to a physical Analog IO module

int open(const char* pathname, int flags);

Parameters

Type Name Description
Char Pathname the path name to the AIO device file (e.g. /dev/mksaio0

)
int flags one of the O_RDONLY, O_WRONLY or O_RDWR

options to open the file. Usually it would be O_RDWR ,
for reading and writing.

RMU2 User Manual

42 of 58
© MKS Instruments CIT Products 2005, All rights reserved

Return Value

Type Values
Int • The file descriptor if successful

• 1 if an error occurred.

Discussion
The open function for the AIO opens a data channel to the AIO card, handing a file
descriptor to the application allows the invocation of the read and write.

6.3.2 Close()

close an open connection to a physical Analog IO module

int close (int fd);

Parameters

Type Name Description
Char Fd file descriptor to be closed

Return Value

Type Values
Int • 0 if successful

• 1 if an error occurred.

Discussion

The close function for the dio will close the connection to a AIO module. Release any
unnecessary system resources.

6.3.3 Read()

read status of the physical Analog IO and the companion card information.

ssize_t read (int fd, void* buf, size_t count);

Parameters

Type Name Description
Int fd file descriptor to read from.
Void* Buf pointer to buffer in memory that will contain the data

Of a struct mksaio_info
Size_t Count number of bytes to be read.(size of struct mksaio_info)

Return Value

Type Values
Int • Sizeof(struct mksaio_info) if

successful
• -1 if an error occurred.

RMU2 User Manual

43 of 58
© MKS Instruments CIT Products 2005, All rights reserved

Discussion
The definition of the mksaio data structure can be found in the file mksaio.h.
Getting Information from the AIO driver should be done by using the mksaio_info structure.
This structure contains 4 sections:

• The ADC – a vector of the AIO channel current values in 2's compliment values
• Watch_dog – information regarding the watch dog, such as is it enabled or disabled,

time for expiration and indication whether or not an interrupt occurred. The
parameters names in the structure are is_int_enabled and is_int_occured
respectively.

• DAC – an indicator field that indicates whether AIO card is ready to digest a new
output channel update. The parameter's name is is_ready. There is an additional
remanded parameter is_int_enabled it's mapped to the same parameter describe
under the watch_dog structure.

• AI_conf – mode of operation. i.e; shows the mode a differential mode or a single-
ended mode. Its value also implies on the number of valid ADC channels, whether it
8 or 16.

6.3.4 Write()

write status of the physical Analog IO module

ssize_t write (int fd, const void* buf, size_t len);

Parameters

Type Name Description
Int fd file descriptor to be write to

Void* buf pointer to buffer in memory that will contain the data
Of struct mksaio_cmd

Size_t Len Sizeof(struct mksaio_cmd)

Return Value

Type Values
Int • Sizeof(struct mksaio_cmd) if

successful
• -1 if an error occurred.

Discussion
The definition of the mksaio data structure can be found in the file mksaio.h.
As mentioned above the write function serves both for configuration and for AIO value
settings. It's done by sending a command using the mksaio_cmd structure.

RMU2 User Manual

44 of 58
© MKS Instruments CIT Products 2005, All rights reserved

Command Description
MKSAIO_CMD_SET_MODE Sets 16 single-emded mode or a 8

differential mode. Options are:
MKSAIO_MODE_8_DIFFERENTIAL
MKSAIO_MODE_16_SINGLE_ENDED
via the structure data.value field.

MKSAIO_CMD_OUTPUT Set output values per channel. Two
associated parameters, the channel and
the value. The channel is set to the
structure's data.output.channel field.
The value goes to the data.output.val
field.
NOTE: the value is a 12bits 2's
compliment

MKSAIO_CMD_WD_INT_CTL Enable/Disable the watch dog
Options:
MKSAIO_ENABLE/MKSAIO_DISABLE
Via the structure's data.value field

MKSAIO_CMD_WD_RESET Reset the watchdog, and load the
the ticks counter to a new value.
The new value is set to the
structure's data.value field the value
range from 1 to 127, each tick is a
10ms

6.4 MKSAIO.H

#ifndef _MKSAIO_H_
#define _MKSAIO_H_

#ifdef __cplusplus
extern "C" {
#endif

/*
 * List of available commands
 */
#define MKSAIO_CMD_SET_MODE (1) /* sets single-ended and differential */
#define MKSAIO_CMD_OUTPUT (2) /* Set Output values per channel*/
#define MKSAIO_CMD_WD_INT_CTL (3) /*Enable/Disable watch dog */
#define MKSAIO_CMD_WD_RESET (4) /* Reset the watch dog and enable */
 /* it with a selected value*/

/* Options for AI Configurations (MKSAIO_CMD_SET_MODE) */
#define MKSAIO_MODE_8_DIFFERENTIAL (1)
#define MKSAIO_MODE_16_SINGLE_ENDED (0)

/* General Options (MKSAIO_CMD_WD_INT_CTL,etc.)*/
#define MKSAIO_ENABLE (1)
#define MKSAIO_DISABLE (0)

RMU2 User Manual

45 of 58
© MKS Instruments CIT Products 2005, All rights reserved

/* output format to be used by the user's application */

struct mksaio_info{
 unsigned short ADC[16];
 struct {
 unsigned char ticks_left:7; // ticks in 10msec
 unsigned char is_int_enabled:1;
 unsigned char is_int_occured:1;
 unsigned char unused:7;
 }watch_dog;

 struct {
 unsigned char is_int_enabled:1;
 unsigned char is_ready:1;
 unsigned char unused:6;
 }DAC;

 unsigned char AI_conf;
};

union mksaio_cmd_data{
 struct{
 unsigned long val:12;
 unsigned long channel:3;
 unsigned long unused:17;
 }output;
 unsigned long value;
};

struct mksaio_cmd
{
 unsigned long code;
 union mksaio_cmd_data data;
};

#ifdef __cplusplus
}
#endif

#endif /*_MKSAIO_H_*/

RMU2 User Manual

46 of 58
© MKS Instruments CIT Products 2005, All rights reserved

6.5 Sample Code

Here is sample code to set analog output to a specific voltage:

/*
 * nFD – descriptor of open device file (e.g. “/dev/mksaio1”)
 * nInput – input number to be changed
 * fValue – voltage (-10..10)
*/
bool SetAnalogOut(int nFD, int nInput, double fValue)
{
 struct mksaio_cmd cmd;

 double fRange = (fValue + 10.0) * 204.8;

 cmd.code = MKSAIO_CMD_OUTPUT;
 cmd.data.output.val = (int)fRange;
 cmd.data.output.channel = nInput;

 return sizeof(cmd) == write(nFD, &cmd, sizeof(cmd));
}

Sample code to switch between singe ended and differential mode:

/*
 * nFD – descriptor of open device file (e.g. “/dev/mksaio1”)
 * bDiff – true: differential, false: single ended
*/
void SetDifferential(int nFD, bool bDiff)
{
 struct mksaio_cmd cmd;

 cmd.code = MKSAIO_CMD_SET_MODE;
 cmd.data.value = bDiff ? MKSAIO_MODE_8_DIFFERENTIAL :

MKSAIO_MODE_16_SINGLE_ENDED;

 return sizeof(cmd) == write(nFD, &cmd, sizeof(cmd));
}

RMU2 User Manual

47 of 58
© MKS Instruments CIT Products 2005, All rights reserved

7 MMI API
The MMI driver supplies services to the RMU’s 4-digits ASCII display, 2 push buttons and
the 3 LEDS on the panel (NET,MOD and STAT). The driver communicates with a single
peripheral, a PIC controller [AT89S8253], located on the power board along with the digits
ASCII display and 2 push buttons.

Three device nodes should be set:

1. AT89 : /dev/at89
2. Display : /dev/at89display
3. Buttons: /dev/at89buttons

All 3 nodes interface the MMI driver with different minor number.

To monitor the AT89 configuration there is an entry in the proc subsystem /proc/mks/at89.

mksmmi_ioctl.h is an associated file that contains the definitions of the various MMI
commands – those commands that invoked by using the out-of-bound ioctl POSIX function.

7.1 AT89 API

This part of the driver supports the AT89 update mechanism and controls the LEDs colors.
The AT89 FW can be uploaded and downloaded by using the read and write commands, the
operation is transparent in a sense its detects the operation, stop the running of the AT89,
reads it's content or in case of writing, it cleans up the internal E2PROM, then it writes its
content; finally when the session is been closed the AT89 running mode return to it's
previous state.

The LEDs color control done by using ioctl . each LED could be in one of the following 4
colors: no active(dark), green,red and amber. The setting is done by supplying the function
with the LEDs index as the operation code and the color code as the accompany
parameter's value. The codes are taken from the definition file mksmmi_ioctl.h.

RMU2 User Manual

48 of 58
© MKS Instruments CIT Products 2005, All rights reserved

7.1.1 Function Definitions

The following API functions are supported

 open() - is used to open a node to the at89 module

close() - is used to release the node resource of a specific to the at89 module
write() - is used to write to the fw image to the AT89's E2PROM
read() - is used to read the fw image from the AT89's E2PROM

 ioctl() – is used to manipulate the LEDS

7.1.1.1 Open()

open a connection to the AT89 device.

int open(const char* pathname, int flags);

Parameters

Type Name Description
Char Pathname the path name to the DIO device file (in this case

/dev/at89)
int flags one of the O_RDONLY, O_WRONLY or O_RDWR

options to open the file. Usually it would be O_RDWR ,
for reading and writing.

Return Value

Type Values
Int The file descriptor if successful

-1 if an error occurred.

Discussion

The open function for the at89 opens a data channel to the AT89 controller.

7.1.1.2 Close()

close an open connection to the AT89

int close (int fd);

Parameters

Type Name Description
Char fd file descriptor to be closed

Return Value

Type Values
Int 0 if successful

-1 if an error occurred.

RMU2 User Manual

49 of 58
© MKS Instruments CIT Products 2005, All rights reserved

Discussion
Close function for the AT89 module

7.1.1.3 Write()

Writes the incoming data to the AT89's E2PROM sequentially (lseek is not supported) , it
transparently handle the erasing of blocks in the E2PROM. No recovery support in case of
malfunction after the erase. In this case the session should be closed and repeat the
attempt. Any length of data chunk can be used. For optimal operation use chunks of 64
bytes.

ssize_t write (int fd, const void* buf, size_t len);

Parameters

Type Name Description
Char Fd file descriptor to be write to

Void* Buf pointer to buffer in memory that contains the data to be written to the
E2PROM.

Size_t Len Number of bytes to be write

Return Value

Type Values
ssize_t • number of actual bytes written.

• -1 if an error occurred.

7.1.1.4 Read()

Read the AT89's E2PROM content sequentially (lseek is not supported)

ssize_t read (int fd, const void* buf, size_t len);

Parameters

Type Name Description
Char Fd file descriptor to be write to

Void* Buf Pointer to buffer in memory that will contain the data from the
E2PROM.

Size_t Len Number of bytes to be

Return Value

Type Values
ssize_t • number of actual bytes written.

• -1 if an error occurred.

RMU2 User Manual

50 of 58
© MKS Instruments CIT Products 2005, All rights reserved

7.1.1.5 Ioctl()

The LEDs' behavior is controlled by this function.

int ioctl (int fd, int request, …);

Parameters

Type Name Description
int fd file descriptor to be used.

Int* Request The options are
IOCTL_MKS_SET_LED1,
IOCTL_MKS_SET_LED2,
IOCTL_MKS_SET_LED3,
IOCTL_MKS_GET_LED1,
IOCTL_MKS_GET_LED2,
IOCTL_MKS_GET_LED3,
Each one of them as its name points to a specific LED whether for
fetching it state or to set it's state. Its accompany to the value
parameters that can be the value 1-4 , no light, green, red and
amber respectively

…

Return Value

Type Values
Int • 0 if successful

• -1 if an error occurred.

7.2 AT89Display API

4-digits ASCII display, it located on the power board.
Support:

1. scrolling
2. blinking
3. display text up to 40 characters (a support for up to 64 chars will be support shortly)

The default behavior is to scroll the text on the display whenever the sent text is longer then
the physical 4 digits display. The scroll and blinking features are controlled via ioctl
command. The write command is used to send text to the display. There is no read
command for this device.

7.2.1 Function Definitions

The following API functions are supported

 Open() - is used to open a node to the at89 module

close() - is used to release the node resource of a specific to the at89 module
Write() - is used to write text string to the 4-digits di splay

 Ioctl() – is used to manipulate the 4-digits display behavior

RMU2 User Manual

51 of 58
© MKS Instruments CIT Products 2005, All rights reserved

7.2.1.1 Open()

Open a connection to the display device.

int open(const char* pathname, int flags);

Parameters

Type Name Description
Char Pathname the path name to the DIO device file (in this case

/dev/at89display)
int flags one of the O_RDONLY, O_WRONLY or O_RDWR

options to open the file. Usually it would be O_RDWR ,
for reading and writing.

Return Value

Type Values
Int The file descriptor if successful

-1 if an error occurred.

Discussion
Open a data channel to the display controller.

7.2.1.2 Close()

Close an open connection to the display

int close (int fd);

Parameters

Type Name Description
Char fd file descriptor to be closed

Return Value

Type Values
Int 0 if successful

-1 if an error occurred.

Discussion
Close function for the display.

7.2.1.3 Write()

Writes the text string contained in the buffer to the display

ssize_t write (int fd, const void* buf, size_t len);

Parameters

Type Name Description
Char Fd file descriptor to be write to

Void* Buf pointer to buffer in memory that contains the text string to be display

Size_t Len number of bytes to be write

RMU2 User Manual

52 of 58
© MKS Instruments CIT Products 2005, All rights reserved

Return Value

Type Values
ssize_t • number of actual bytes written.

• -1 if an error occurred.

7.2.1.4 Ioctl()

Control the behavior of the display’s scroll and blink.

int ioctl (int fd, int request, …);

Parameters

Type Name Description
int fd file descriptor to be used.

Int* Request there are two control options fro the scroll, the scroll speed, and
scroll step. The scroll speed is the time gap between each display
scroll refresh (not internal display screen refresh). Scroll step is the
number on character to shift per each refresh.
Blink is the effect in which appearance and disappearance of the
entire content on the display is toggled. Value 0 stop the blink any
other positive value is the number of 10ms delay between each
toggle

The associated parameters, goes with the ioctl command. Each command defines its own
associated parameters type and behavior.

List of Set/Get command pairs:

Command Description
MKS_IOCTL_GET_SCROLL_SPEED
MKS_IOCTL_SET_SCROLL_SPEED

Set/get the display scroll refresh in units of
milliseconds, zero value disables the scrolling.

Associated parameter:

 Type: unsigned long

� Value: 0 – disable scrolling

� any other value is legal.

MKS_IOCTL_GET_SCROLL_STEP
MKS_IOCTL_SET_SCROLL_STEP

Set/get the display scroll step size in characters, zero
value disables the scrolling.

Associated parameter:

Type: unsigned char

� Value: 0 – disable scrolling

� any other value is legal

MKS_IOCTL_GET_BLINK
MKS_IOCTL_SET_BLINK

Set/get the display blink delay , zero value disables
the blinking.

RMU2 User Manual

53 of 58
© MKS Instruments CIT Products 2005, All rights reserved

Associated parameter:

Type: unsigned char

� Value: 0 – disable blinking

� any other value is legal

Return Value

Type Values
Int • 0 if successful

• -1 if an error occurred.

7.3 AT89Buttons API

There are two push buttons on the power board. There status can be fetched by reading the
/dev/at89buttons device. The read operation could be blocked or non-blocked. Both
techniques trigger a communication message to the AT89 in order to retrieve the current
buttons states. The caller will be informed whether the buttons were not pushed, were
pushed or were pushed and released.

NOTE: An interrupt driven mechanism is in development; it will be combined with the
operation of the block mode.

NOTE: Currently, the blocking mode is implemented without the support of an interrupt, but
based on the driver being updated regarding the buttons states each time the driver
communicate with the AT89. It’s not recommended to use the blocking mode without the
support of a hardware interrupt. Support for hardware interrupt is in development.

7.3.1 Function Definitions

The following API functions are supported

 Open() - is used to open a node to the AT89 buttons module

close() – is used to release the node resource of AT89 buttons module
Read() is used to read the input channels of the card

 Ioctl() - used for a blocking / nonblocking configuration

7.3.1.1 Open()

Open a connection to the AT89 buttons module.

int open(const char* pathname, int flags);

Parameters

Type Name Description
Char Pathname the path name to the DIO device file (e.g.

/dev/at89buttons)

RMU2 User Manual

54 of 58
© MKS Instruments CIT Products 2005, All rights reserved

int flags one of the O_RDONLY, O_WRONLY or O_RDWR
options to open the file. Usually it would be O_RDWR ,
for reading and writing.

Return Value

Type Values
Int The file descriptor if successful

-1 if an error occurred.

Discussion
The open function for the AT89buttons opens a data channel.

7.3.1.2 Close()

Close an open connection to the AT89buttons

int close (int fd);

Parameters

Type Name Description
Char fd file descriptor to be closed

Return Value

Type Values
Int 0 if successful

-1 if an error occurred.

Discussion
Close function closes the channel to the AT89buttons.

7.3.1.3 Read()

Reads the buttons status register, the size to be reading should be 1 byte.

ssize_t read (int fd, const void* buf, size_t len);

Parameters

Type Name Description
Char Fd file descriptor to be write to

Void* Buf pointer to buffer in memory that will contain the data from the
buttons register

Size_t Len number of bytes to be

Discussion
For now the only working mechanism is polling, therefore the read will be a non-block by
default. Each time the key status is read, the driver clears the status register for the next

RMU2 User Manual

55 of 58
© MKS Instruments CIT Products 2005, All rights reserved

read. The read register (1byte). Hold the information for both buttons. Each button state is
represented by 2 bits. Bits 0-1 are the first button state, the following bits 2-3 are the second
button state.

 Button's state values

State Value
not pressed 0

Pressed 1

Released 2

Pressed &
Released

3

7.3.1.4 Ioctl()

Control the behavior of the buttons blocking / non blocking working mode.
At this point only a non block mode is enabled. When the blocking working mode will be
handy this characteristic will be controlled be the ioctl's IOCTL_MKS_SET_NONBLOCK
code.

int ioctl (int fd, int request, …);

Parameters

Type Name Description
int fd file descriptor to be used.

Int* Request there are two control options fro the scroll, the scroll speed, and
scroll step. The scroll speed is the time gap between each display
scroll refresh (not internal display screen refresh). Scroll step is the
number on character to shift per each refresh.

Return Value

Type Values
ssize_t • number of actual bytes written.

• 1 if an error occurred.

List of Set/Get command pairs:

Type Values
IOCTL_MKS_SET_NONBLOCK 0 – blocking mode

1- non blocking mode

RMU2 User Manual

56 of 58
© MKS Instruments CIT Products 2005, All rights reserved

8 RS-485
Two (2) optional COM ports (COM3 and COM4) can operate in both RS232 and RS485
modes. From application side, appropriate mode is chosen by accessing different device file
from under ‘/dev/’.

~ $ ls -la /dev/ttyS2 /dev/ttyS3 /dev/ttyS2_485 /dev/ttyS3_485

crw------- 1 root root 4, 66 Jun 7 2005 /dev/ttyS2
crw------- 1 root root 4, 67 Jun 7 2005 /dev/ttyS3
crw------- 1 root root 4, 202 Jun 7 2005 /dev/ttyS2_485
crw------- 1 root root 4, 203 Jun 7 2005 /dev/ttyS3_485

By accessing /dev/ttyS2 or /dev/ttyS2_485, COM3 will be running in RS-232 or RS-485
mode respectively. Please, note that once port is opened in a specific mode, the access to
the other device file will be blocked for as long as the original device is open. For example, if
an application opens /dev/ttyS2, attempts from other applications to open /dev/ttyS2_485 will
result in “device does not exist” error.

RMU2 User Manual

57 of 58
© MKS Instruments CIT Products 2005, All rights reserved

Appendix A: POSIX Functions Description

For more details, please refer to Linux manual pages

1. Function “open”

NAME

open, creat - open and possibly create a file or device

SYNOPSIS

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

int open(const char *pathname, int flags);
int open(const char *pathname, int flags, mode_t mode);
int creat(const char *pathname, mode_t mode);

DESCRIPTION

Given a pathname for a file, open() returns a file descriptor, a small, non-negative integer for use in subsequent system calls
(read(2), write(2), lseek(2), fcntl(2), etc.). The file descriptor returned by a successful call will be the lowest-numbered file

descriptor not currently open for the process.

The new file descriptor is set to remain open across an execve(2) (i.e., the FD_CLOEXEC file descriptor flag described in

fcntl(2) is initially disabled). The file offset is set to the beginning of the file (see lseek(2)).

A call to open() creates a new open file description, an entry in the system-wide table of open files. This entry records the file
offset and the file status flags (modifiable via the fcntl() F_SETFL operation). A file descriptor is a reference to one of these

entries; this reference is unaffected if pathname is subsequently removed or modified to refer to a different file. The new open

file description is initially not shared with any other process, but sharing may arise via fork(2).

The parameter flags must include one of the following access modes: O_RDONLY, O_WRONLY, or O_RDWR. These request

opening the file read-only, write-only, or read/write, respectively.

In addition, zero or more file creation flags and file status flags can be bitwise-or'd in flags. The file creation flags are
O_CREAT, O_EXCL, O_NOCTTY, and O_TRUNC. The file status flags are all of the remaining flags listed below. The
distinction between these two groups of flags is that the file status flags can be retrieved and (in some cases) modified using

fcntl(2). The full list of file creation flags and file status flags is as follows:

O_APPEND

The file is opened in append mode. Before each write(), the file offset is positioned at the end of the file, as if with
lseek(). O_APPEND may lead to corrupted files on NFS file systems if more than one process appends data to a file
at once. This is because NFS does not support appending to a file, so the client kernel has to simulate it, which can't

be done without a race condition.

O_ASYNC
Enable signal-driven I/O: generate a signal (SIGIO by default, but this can be changed via fcntl(2)) when input or

output becomes possible on this file descriptor. This feature is only available for terminals, pseudo-terminals,

sockets, and (since Linux 2.6) pipes and FIFOs. See fcntl(2) for further details.

O_CREAT
If the file does not exist it will be created. The owner (user ID) of the file is set to the effective user ID of the

process. The group ownership (group ID) is set either to the effective group ID of the process or to the group ID of

the parent directory (depending on filesystem type and mount options, and the mode of the parent directory, see,
e.g., the mount options bsdgroups and sysvgroups of the ext2 filesystem, as described in mount(8)).

O_DIRECT

Try to minimize cache effects of the I/O to and from this file. In general this will degrade performance, but it is

useful in special situations, such as when applications do their own caching. File I/O is done directly to/from user

space buffers. The I/O is synchronous, i.e., at the completion of a read(2) or write(2), data is guaranteed to have
been transferred. Under Linux 2.4 transfer sizes, and the alignment of user buffer and file offset must all be

multiples of the logical block size of the file system. Under Linux 2.6 alignment to 512-byte boundaries suffices.

A semantically similar (but deprecated) interface for block devices is described in raw(8).

O_DIRECTORY

RMU2 User Manual

58 of 58
© MKS Instruments CIT Products 2005, All rights reserved

If pathname is not a directory, cause the open to fail. This flag is Linux-specific, and was added in kernel version

2.1.126, to avoid denial-of-service problems if opendir(3) is called on a FIFO or tape device, but should not be used

outside of the implementation of opendir.
O_EXCL

When used with O_CREAT, if the file already exists it is an error and the open() will fail. In this context, a symbolic

link exists, regardless of where it points to. O_EXCL is broken on NFS file systems; programs which rely on it for

performing locking tasks will contain a race condition. The solution for performing atomic file locking using a lockfile

is to create a unique file on the same file system (e.g., incorporating hostname and pid), use link(2) to make a link
to the lockfile. If link() returns 0, the lock is successful. Otherwise, use stat(2) on the unique file to check if its link

count has increased to 2, in which case the lock is also successful.

O_LARGEFILE

(LFS) Allow files whose sizes cannot be represented in an off_t (but can be represented in an off64_t) to be opened.
O_NOATIME

(Since Linux 2.6.8) Do not update the file last access time (st_atime in the inode) when the file is read(2). This flag

is intended for use by indexing or backup programs, where its use can significantly reduce the amount of disk

activity. This flag may not be effective on all filesystems. One example is NFS, where the server maintains the access
time.

O_NOCTTY

If pathname refers to a terminal device --- see tty(4) --- it will not become the process's controlling terminal even if

the process does not have one.
O_NOFOLLOW

If pathname is a symbolic link, then the open fails. This is a FreeBSD extension, which was added to Linux in version
2.1.126. Symbolic links in earlier components of the pathname will still be followed.

O_NONBLOCK or O_NDELAY
When possible, the file is opened in non-blocking mode. Neither the open() nor any subsequent operations on the

file descriptor which is returned will cause the calling process to wait. For the handling of FIFOs (named pipes), see

also fifo(7). For a discussion of the effect of O_NONBLOCK in conjunction with mandatory file locks and with file
leases, see fcntl(2).

O_SYNC

The file is opened for synchronous I/O. Any write()s on the resulting file descriptor will block the calling process

until the data has been physically written to the underlying hardware. But see RESTRICTIONS below.
O_TRUNC

If the file already exists and is a regular file and the open mode allows writing (i.e., is O_RDWR or O_WRONLY) it will

be truncated to length 0. If the file is a FIFO or terminal device file, the O_TRUNC flag is ignored. Otherwise the

effect of O_TRUNC is unspecified.
Some of these optional flags can be altered using fcntl() after the file has been opened.

The argument mode specifies the permissions to use in case a new file is created. It is modified by the process's umask in the

usual way: the permissions of the created file are (mode & ~umask). Note that this mode only applies to future accesses of

the newly created file; the open() call that creates a read-only file may well return a read/write file descriptor.

The following symbolic constants are provided for mode:

S_IRWXU

00700 user (file owner) has read, write and execute permission
S_IRUSR

00400 user has read permission

S_IWUSR

00200 user has write permission
S_IXUSR

00100 user has execute permission

S_IRWXG

00070 group has read, write and execute permission
S_IRGRP

00040 group has read permission

S_IWGRP

00020 group has write permission
S_IXGRP

00010 group has execute permission

S_IRWXO

00007 others have read, write and execute permission
S_IROTH

00004 others have read permission

S_IWOTH

00002 others have write permission
S_IXOTH

00001 others have execute permission

mode must be specified when O_CREAT is in the flags, and is ignored otherwise.

creat() is equivalent to open() with flags equal to O_CREAT|O_WRONLY|O_TRUNC.

RETURN VALUE

open() and creat() return the new file descriptor, or -1 if an error occurred (in which case, errno is set appropriately).

NOTES

Note that open() can open device special files, but creat() cannot create them; use mknod(2) instead.

RMU2 User Manual

59 of 58
© MKS Instruments CIT Products 2005, All rights reserved

On NFS file systems with UID mapping enabled, open() may return a file descriptor but e.g. read(2) requests are denied with

EACCES. This is because the client performs open() by checking the permissions, but UID mapping is performed by the server

upon read and write requests.

If the file is newly created, its st_atime, st_ctime, st_mtime fields (respectively, time of last access, time of last status change,

and time of last modification; see stat(2)) are set to the current time, and so are the st_ctime and st_mtime fields of the
parent directory. Otherwise, if the file is modified because of the O_TRUNC flag, its st_ctime and st_mtime fields are set to the

current time.

ERRORS

EACCES

The requested access to the file is not allowed, or search permission is denied for one of the directories in the path

prefix of pathname, or the file did not exist yet and write access to the parent directory is not allowed. (See also

path_resolution(2).)
EEXIST

pathname already exists and O_CREAT and O_EXCL were used.

EFAULT

pathname points outside your accessible address space.
EISDIR

pathname refers to a directory and the access requested involved writing (that is, O_WRONLY or O_RDWR is set).

ELOOP

Too many symbolic links were encountered in resolving pathname, or O_NOFOLLOW was specified but pathname
was a symbolic link.

EMFILE

The process already has the maximum number of files open.

ENAMETOOLONG
pathname was too long.

ENFILE

The system limit on the total number of open files has been reached.

ENODEV
pathname refers to a device special file and no corresponding device exists. (This is a Linux kernel bug; in this

situation ENXIO must be returned.)

ENOENT
O_CREAT is not set and the named file does not exist. Or, a directory component in pathname does not exist or is a
dangling symbolic link.

ENOMEM

Insufficient kernel memory was available.

ENOSPC
pathname was to be created but the device containing pathname has no room for the new file.

ENOTDIR

A component used as a directory in pathname is not, in fact, a directory, or O_DIRECTORY was specified and

pathname was not a directory.
ENXIO

O_NONBLOCK | O_WRONLY is set, the named file is a FIFO and no process has the file open for reading. Or, the file

is a device special file and no corresponding device exists.

EOVERFLOW
pathname refers to a regular file, too large to be opened; see O_LARGEFILE above.

EPERM

The O_NOATIME flag was specified, but the effective user ID of the caller did not match the owner of the file and

the caller was not privileged (CAP_FOWNER).
EROFS

pathname refers to a file on a read-only filesystem and write access was requested.
ETXTBSY

pathname refers to an executable image which is currently being executed and write access was requested.
EWOULDBLOCK

The O_NONBLOCK flag was specified, and an incompatible lease was held on the file (see fcntl(2)).

NOTE

Under Linux, the O_NONBLOCK flag indicates that one wants to open but does not necessarily have the intention to read or

write. This is typically used to open devices in order to get a file descriptor for use with ioctl(2).

CONFORMING TO

SVr4, 4.3BSD, POSIX.1-2001. The O_NOATIME, O_NOFOLLOW, and O_DIRECTORY flags are Linux-specific. One may have

to define the _GNU_SOURCE macro to get their definitions.

The (undefined) effect of O_RDONLY | O_TRUNC varies among implementations. On many systems the file is actually

truncated.

The O_DIRECT flag was introduced in SGI IRIX, where it has alignment restrictions similar to those of Linux 2.4. IRIX has also
a fcntl(2) call to query appropriate alignments, and sizes. FreeBSD 4.x introduced a flag of same name, but without alignment

restrictions. Support was added under Linux in kernel version 2.4.10. Older Linux kernels simply ignore this flag. One may

have to define the _GNU_SOURCE macro to get its definition.

BUGS

RMU2 User Manual

60 of 58
© MKS Instruments CIT Products 2005, All rights reserved

"The thing that has always disturbed me about O_DIRECT is that the whole interface is just stupid, and was probably designed

by a deranged monkey on some serious mind-controlling substances." --- Linus

Currently, it is not possible to enable signal-driven I/O by specifying O_ASYNC when calling open(); use fcntl(2) to enable
this flag.

RESTRICTIONS

There are many infelicities in the protocol underlying NFS, affecting amongst others O_SYNC and O_NDELAY.
POSIX provides for three different variants of synchronised I/O, corresponding to the flags O_SYNC, O_DSYNC and

O_RSYNC. Currently (2.1.130) these are all synonymous under Linux.

SEE ALSO

close(2), dup(2), fcntl(2), link(2), lseek(2), mknod(2), mount(2), mmap(2), openat(2), path_resolution(2), read(2),

socket(2), stat(2), umask(2), unlink(2), write(2), fopen(3), fifo(7), feature_test_macros(7)

RMU2 User Manual

61 of 58
© MKS Instruments CIT Products 2005, All rights reserved

2. Function “close”

NAME

close - close a file descriptor

SYNOPSIS

#include <unistd.h>

int close(int fd);

DESCRIPTION

close() closes a file descriptor, so that it no longer refers to any file and may be reused. Any record locks (see fcntl(2)) held

on the file it was associated with, and owned by the process, are removed (regardless of the file descriptor that was used to
obtain the lock).

If fd is the last copy of a particular file descriptor the resources associated with it are freed; if the descriptor was the last

reference to a file which has been removed using unlink(2) the file is deleted.

RETURN VALUE

close() returns zero on success. On error, -1 is returned, and errno is set appropriately.

ERRORS

EBADF
fd isn't a valid open file descriptor.

EINTR

The close() call was interrupted by a signal.

EIO
An I/O error occurred.

CONFORMING TO

SVr4, 4.3BSD, POSIX.1-2001.

NOTES

Not checking the return value of close() is a common but nevertheless serious programming error. It is quite possible that

errors on a previous write(2) operation are first reported at the final close(). Not checking the return value when closing the
file may lead to silent loss of data. This can especially be observed with NFS and with disk quota.

A successful close does not guarantee that the data has been successfully saved to disk, as the kernel defers writes. It is not

common for a filesystem to flush the buffers when the stream is closed. If you need to be sure that the data is physically
stored use fsync(2). (It will depend on the disk hardware at this point.)

SEE ALSO

fcntl(2), fsync(2), open(2), shutdown(2), unlink(2), fclose(3)

RMU2 User Manual

62 of 58
© MKS Instruments CIT Products 2005, All rights reserved

3. Function “read”

NAME

read - read from a file descriptor

SYNOPSIS

#include <unistd.h>

ssize_t read(int fd, void *buf, size_t count);

DESCRIPTION

read() attempts to read up to count bytes from file descriptor fd into the buffer starting at buf.

If count is zero, read() returns zero and has no other results. If count is greater than SSIZE_MAX, the result is unspecified.

RETURN VALUE

On success, the number of bytes read is returned (zero indicates end of file), and the file position is advanced by this number.

It is not an error if this number is smaller than the number of bytes requested; this may happen for example because fewer

bytes are actually available right now (maybe because we were close to end-of-file, or because we are reading from a pipe, or

from a terminal), or because read() was interrupted by a signal. On error, -1 is returned, and errno is set appropriately. In
this case it is left unspecified whether the file position (if any) changes.

ERRORS

EAGAIN
Non-blocking I/O has been selected using O_NONBLOCK and no data was immediately available for reading.

EBADF

fd is not a valid file descriptor or is not open for reading.
EFAULT

buf is outside your accessible address space.

EINTR

The call was interrupted by a signal before any data was read.

EINVAL
fd is attached to an object which is unsuitable for reading; or the file was opened with the O_DIRECT flag, and

either the address specified in buf, the value specified in count, or the current file offset is not suitably aligned.

EIO

I/O error. This will happen for example when the process is in a background process group, tries to read from its
controlling tty, and either it is ignoring or blocking SIGTTIN or its process group is orphaned. It may also occur when
there is a low-level I/O error while reading from a disk or tape.

EISDIR

fd refers to a directory.
Other errors may occur, depending on the object connected to fd. POSIX allows a read() that is interrupted after reading some

data to return -1 (with errno set to EINTR) or to return the number of bytes already read.

CONFORMING TO

SVr4, 4.3BSD, POSIX.1-2001.

RESTRICTIONS

On NFS file systems, reading small amounts of data will only update the time stamp the first time, subsequent calls may not do
so. This is caused by client side attribute caching, because most if not all NFS clients leave st_atime (last file access time)
updates to the server and client side reads satisfied from the client's cache will not cause st_atime updates on the server as

there are no server side reads. UNIX semantics can be obtained by disabling client side attribute caching, but in most

situations this will substantially increase server load and decrease performance.

Many filesystems and disks were considered to be fast enough that the implementation of O_NONBLOCK was deemed
unnecessary. So, O_NONBLOCK may not be available on files and/or disks.

SEE ALSO

close(2), fcntl(2), ioctl(2), lseek(2), open(2), pread(2), readdir(2), readlink(2), readv(2), select(2), write(2), fread(3)

RMU2 User Manual

63 of 58
© MKS Instruments CIT Products 2005, All rights reserved

4. Function “write”

NAME

write - write to a file descriptor

SYNOPSIS

#include <unistd.h>

ssize_t write(int fd, void *buf, size_t count);

DESCRIPTION

write() writes up to count bytes to the file referenced by the file descriptor fd from the buffer starting at buf. POSIX requires

that a read() which can be proved to occur after a write() has returned returns the new data. Note that not all file systems
are POSIX conforming.

RETURN VALUE

On success, the number of bytes written are returned (zero indicates nothing was written). On error, -1 is returned, and errno
is set appropriately. If count is zero and the file descriptor refers to a regular file, 0 may be returned, or an error could be

detected. For a special file, the results are not portable.

ERRORS

EAGAIN

Non-blocking I/O has been selected using O_NONBLOCK and the write would block.

EBADF

fd is not a valid file descriptor or is not open for writing.
EFAULT

buf is outside your accessible address space.

EFBIG

An attempt was made to write a file that exceeds the implementation-defined maximum file size or the process' file
size limit, or to write at a position past the maximum allowed offset.

EINTR

The call was interrupted by a signal before any data was written.

EINVAL
fd is attached to an object which is unsuitable for writing; or the file was opened with the O_DIRECT flag, and either

the address specified in buf, the value specified in count, or the current file offset is not suitably aligned.

EIO

A low-level I/O error occurred while modifying the inode.
ENOSPC

The device containing the file referred to by fd has no room for the data.
EPIPE

fd is connected to a pipe or socket whose reading end is closed. When this happens the writing process will also
receive a SIGPIPE signal. (Thus, the write return value is seen only if the program catches, blocks or ignores this

signal.)

Other errors may occur, depending on the object connected to fd.

CONFORMING TO

SVr4, 4.3BSD, POSIX.1-2001.

Under SVr4 a write may be interrupted and return EINTR at any point, not just before any data is written.

NOTES

A successful return from write() does not make any guarantee that data has been committed to disk. In fact, on some buggy
implementations, it does not even guarantee that space has successfully been reserved for the data. The only way to be sure is

to call fsync(2) after you are done writing all your data.

SEE ALSO

close(2), fcntl(2), fsync(2), ioctl(2), lseek(2), open(2), pwrite(2), read(2), select(2), writev(3), fwrite(3)

RMU2 User Manual

64 of 58
© MKS Instruments CIT Products 2005, All rights reserved

5. Function “ioctl”

NAME

ioctl - control device

SYNOPSIS

#include <sys/ioctl.h>

ssize_t ioctl(int d, int request, ...);

DESCRIPTION

The ioctl() function manipulates the underlying device parameters of special files. In particular, many operating characteristics

of character special files (e.g. terminals) may be controlled with ioctl() requests. The argument d must be an open file
descriptor.

The second argument is a device-dependent request code. The third argument is an untyped pointer to memory. It's

traditionally char *argp (from the days before void * was valid C), and will be so named for this discussion.

An ioctl() request has encoded in it whether the argument is an in parameter or out parameter, and the size of the argument

argp in bytes. Macros and defines used in specifying an ioctl() request are located in the file <sys/ioctl.h>.

RETURN VALUE

Usually, on success zero is returned. A few ioctl() requests use the return value as an output parameter and return a

nonnegative value on success. On error, -1 is returned, and errno is set appropriately.

ERRORS

EBADF
d is not a valid descriptor.

EFAULT
argp references an inaccessible memory area.

EINVAL

Request or argp is not valid.

ENOTTY
d is not associated with a character special device.

ENOTTY

The specified request does not apply to the kind of object that the descriptor d references.

NOTE

In order to use this call, one needs an open file descriptor. Often the open(2) call has unwanted side effects, that can be

avoided under Linux by giving it the O_NONBLOCK flag.

CONFORMING TO

No single standard. Arguments, returns, and semantics of ioctl(2) vary according to the device driver in question (the call is

used as a catch-all for operations that don't cleanly fit the Unix stream I/O model). See ioctl_list(2) for a list of many of the
known ioctl() calls. The ioctl() function call appeared in Version 7 AT&T Unix.

SEE ALSO

execve(2), fcntl(2), ioctl_list(2), open(2), mt(4), sd(4), tty(4)

RMU2 User Manual

65 of 58
© MKS Instruments CIT Products 2005, All rights reserved

Appendix B: How to Cross-Compile tcpdump
Note: you do not need super-user privileges in order to be able to build the utility.

Download and unpack libcap and tcpdump (in this example, to /home/rmu/tcpdump/):

 cd /home/rmu; mkdir tcpdump; cd tcpdump
 wget http://www.tcpdump.org/release/tcpdump-3.9.5.tar.gz
 wget http://www.tcpdump.org/release/libpcap-0.9.5.tar.gz

The environment variables need to be set for the console where we are going to build both
libpcap and tcpdump:

 export PATH=$PATH:/opt/eldk-3.1.1/usr/bin:/opt/eldk-3.1.1/bin
 export CROSS_COMPILE=ppc_82xx-

export CC=ppc_82xx-gcc
export ARCH=ppc
export ac_cv_func_setvbuf_reversed=no
export ac_cv_linux_vers=2

libcap:
 cd /home/rmu/tcpdump
 tar zxf libpcap-0.9.5.tar.gz

cd libpcap-0.9.5

./configure --target=powerpc-linux --host=i686-pc-linux-gnu
--build=powerpc-linux --prefix=`pwd`/_install --exec-
prefix=`pwd`/_install-bin --with-pcap=linux

make; make install

tcpdump:
 cd /home/rmu/tcpdump
 tar zxf tcpdump-3.9.5.tar.gz

cd tcpdump-3.9.5

./configure --target=powerpc-linux --host=i686-pc-linux-gnu
--build=powerpc-linux --prefix=`pwd`/_install --exec-
prefix=`pwd`/_install-bin LDFLAGS=-L/home/rmu/tcpdump/libpcap-
0.9.5-ppc/_install-bin/lib CFLAGS=-I/home/rmu/tcpdump/libpcap-
0.9.5-ppc/_install/include --without-crypto

make; make install

As a result of successful configuration and build you get ready-to-run binary:

~ $ ls -al /home/rmu/tcpdump/tcpdump-3.9.5/_install-bin/sbin
-rwxr-xr-x 1 mm users 730077 2007-01-15 12:31 tcpdump

To reduce some space, the binary could be stripped:

~ $ ppc_82xx-strip /home/rmu/tcpdump/tcpdump-3.9.5/_install-
bin/sbin/tcpdump
~ $ ls -al /home/rmu/tcpdump/tcpdump-3.9.5/_install-bin/sbin
-rwxr-xr-x 1 mm users 655036 2007-01-15 12:31 tcpdump

RMU2 User Manual

66 of 58
© MKS Instruments CIT Products 2005, All rights reserved

Appendix C: How to Cross-Compile Boa Web Server
Note: you do not need super-user privileges in order to be able to build the utility.

Download and unpack sources (in this example, to /home/rmu/boa/):

 cd /home/rmu; mkdir boa; cd boa

 wget http://www.boa.org/boa-0.94.14rc21.tar.gz

The environment variables need to be set for the console:

 export PATH=$PATH:/opt/eldk-3.1.1/usr/bin:/opt/eldk-3.1.1/bin
 export CROSS_COMPILE=ppc_82xx-

export CC=ppc_82xx-gcc
export ARCH=ppc
export ac_cv_func_setvbuf_reversed=no
export ac_cv_linux_vers=2

boa:
 cd /home/rmu/boa
 tar zxf boa-0.94.14rc21.tar.gz

cd boa-0.94.14rc21

./configure --target=powerpc-linux --host=i686-pc-linux-gnu
--build=powerpc-linux --prefix=`pwd`/_install --exec-
prefix=`pwd`/_install-bin

make

As a result of successful configuration and build you get ready-to-run binary:

~ $ ls -al /home/rmu/boa/boa-0.94.14rc21/src/boa

-rwxr-xr-x 1 mm users 656910 2007-01-15 17:11 boa

To reduce some space, the binary could be stripped:

~ $ ppc_82xx-strip /home/rmu/boa/boa-0.94.14rc21/src/boa
~ $ ls -al /home/rmu/boa/boa-0.94.14rc21/src/boa

-rwxr-xr-x 1 mm users 77800 2007-01-15 17:12 boa

Please, note significant reduction of binary size.

RMU2 User Manual

67 of 58
© MKS Instruments CIT Products 2005, All rights reserved

Specifications

Physical Specifications

Criteria Specifications

Dimensions 4” H x 4” W x 1.5”D plus 0.7” per I/O slot
I/O Connector 37-pin male D-sub
Ethernet Connector 100 BaseT, RJ45 with EMI filter,LED indicators

RS-232 Connector DB9 male connector

Weight 600g (1.32 lb)

Environmental Specifications

Criteria Specifications

Operating
Temperature

0 to +55°C

Storage -40 to +85 °C
Humidity 5 to 95% non-condensing

Functional Specifications

Criteria Specifications

PowerPC 400 MHz, 760 MIPS with support of floating point
instructions

On board Flash 16 MB

SDRAM 128 MB

CompactFlash Port Type II, currently tested up to 4GB

RS232 4 RS232 interface. (1 port used for diagnostics
port, software selectable 485 on 2 of ports)

BUS Interface 2 isolated Ethernet ports – Modbus/TCP or
Ethernet/IP

CAN Port DB9 Connector, Isolated CAN2.0 port.

USB USB 1.1 port
Front Panel
Indicators

Network Status, Module Status, LINK, 100MB

Rotary Switches IP address, operating mode

Power Specifications

Criteria Specifications

Input Powered from I/O connector
+24VDC@120 mA min

Isolation DC/DC Isolation

Input/Output Specifications per Card

Criteria Specifications

DIDO Card

Number of Digital I/O 24 points (input or output)

Response Time 50µsec
Digital Input
 Current sinking
 Current sourcing

 Active Low- 1.5 mA min,
 Active High-1.5 mA min,

Digital Output
 Current sinking
 Current sourcing
 Current max

Active low, 200 mA max / channel
Active high, 200 mA max / channel
750 mA per 6 DO

AIAO Card

RMU2 User Manual

68 of 58
© MKS Instruments CIT Products 2005, All rights reserved

Analog Accuracy 0.1% Full scale (-10V to 10V)
Analog Response
Time

200 µsec

Analog Input 16 single-ended points or 8 differential points
(s/w selectable)
14 bit
1Khz RC filter

Analog Output 8 single-ended points
12 bit
Range (–10 to +10V)
5mA / channel into a 2 KΩ load

COMBO Card

Number of Digital I/O 16 points (input or output)
Response Time 50 µsec
Digital Input
 Current sinking
 Current sourcing

 Active Low- 1.5 mA min,
 Active High-1.5 mA min,

Digital Output
 Current sinking
 Current sourcing
 Current max

Active low, 200 mA max / channel
Active high, 200 mA max / channel
750 mA per 6 DO

Analog Accuracy 0.1% Full scale (-10V to 10V)
Analog Response
Time

200 µsec

Analog Input 8 single-ended points or 4 differential points
(s/w selectable)
14 bit
1khz RC filter

Analog Output 2 differential points
12 bit
Range (–10 to +10V)
5mA / channel into a 2 KΩ load

RMU2 User Manual

69 of 58
© MKS Instruments CIT Products 2005, All rights reserved

Model Code Description

The Model code of RMU defines the features of the Unit for Hardware, software and other
options:

BASE OPTIONS
SLOT
1

SLOT
2

SLOT
3

SLOT
4

Format: RMU2 - C - DIDO - DIDO - DIDO - DIDO
 D AIAO AIAO AIAO AIAO
 CF AI AI AI AI
 AH AH AH AH
 AC AC AC AC
 COMB COMB COMB COMB

Options
 -E With CAN and (2) additional RS232/485 ports

-D With Display and Function Keys
-CF CompactFlash, range 64MB to 4GB

Slot Designations
 -DIDO 24 Channel Digital I/O Card
 -AIAO 16 Channel Analog In, 8 Channel Analog Out
 -AI 16 Analog Inputs (Voltage Type Inputs)
 -AH 16 Analog Inputs (High impedance, 1Mohm)
 -AC 8 Analog Inputs (Current Type Inputs)
 -COMB Combination: 16DIDO, 4AI-DIF, 2AO-DIF

RMU2 User Manual

70 of 58
© MKS Instruments CIT Products 2005, All rights reserved

WARRANTY

MKS Instruments, Inc. (MKS) warrants that for one year from the date of shipment the
equipment described above (the “equipment”) manufactured by MKS shall be free from
defects in materials and workmanship and will correctly perform all date-related operations,
including without limitation accepting data entry, sequencing, sorting, comparing, and
reporting, regardless of the date the operation is performed or the date involved in the
operation, provided that, if the equipment exchanges data or is otherwise used with
equipment, software, or other products of others, such products of others themselves
correctly perform all date-related operations and store and transmit dates and date-related
data in a format compatible with MKS equipment. THIS WARRANTY IS MKS’ SOLE
WARRANTY CONCERNING DATE-RELATED OPERATIONS.

For the period commencing with the date of shipment of this equipment and ending one year
later, MKS will, at its option, either repair or replace any part which is defective in materials
or workmanship or with respect to the date-related operations warranty without charge to the
purchaser. The foregoing shall constitute the exclusive and sole remedy of the purchaser for
any breach by MKS of this warranty.

The purchaser, before returning any equipment covered by this warranty, which is asserted
to be defective by the purchaser, shall make specific written arrangements with respect to
the responsibility for shipping the equipment and handling any other incidental charges with
the MKS sales representative or distributor from which the equipment was purchased or, in
the case of a direct purchase from MKS, with the MKS-CIT home office in San Jose, CA

This warranty does not apply to any equipment, which has not been installed and used in
accordance with the specifications recommended by MKS for the proper and normal use of
the equipment. MKS shall not be liable under any circumstances for indirect, special,
consequential, or incidental damages in connection with, or arising out of, the sale,
performance, or use of the equipment covered by this warranty.

THIS WARRANTY IS IN LIEU OF ALL OTHER RELEVANT WARRANTIES, EXPRESSED
OR IMPLIED, INCLUDING THE IMPLIED WARRANTY OF MERCHANTABILITY AND THE
IMPLIED WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE, AND ANY
WARRANTY AGAINST INFRINGEMENT OF ANY PATENT.

