
ISE 4 User Guide Printed in U.S.A.

ISE 4 User Guide

ISE 4 User Guide
The Xilinx logo shown above is a registered trademark of Xilinx, Inc.

CoolRunner, FPGA Architect, FPGA Foundry, Spartan, Timing Wizard, TRACE, Virtex, XACT, XILINX, XC2064,
XC3090, XC4005, XC5210, and XC-DS501 are registered trademarks of Xilinx, Inc.

The shadow X shown above is a trademark of Xilinx, Inc.

All XC-prefix product designations, A.K.A Speed, Alliance Series, AllianceCore, BITA, CLC, Configurable Logic
Cell, CORE Generator, CoreLINX, Dual Block, EZTag, FastCLK, FastCONNECT, FastFLASH, FastMap, Fast
Zero Power, Foundation, HardWire, LCA, LogiBLOX, Logic Cell, LogiCORE, LogicProfessor, MicroVia,
PLUSASM, PowerGuide, PowerMaze, QPro, RealPCI 64/66, SelectI/O, SelectRAM, SelectRAM+, Silicon
Xpresso, Smartguide, Smart-IP, SmartSearch, Smartspec, SMARTSwitch, TrueMap, UIM, VectorMaze,
VersaBlock, VersaRing, WebFitter, WebLINX, WebPACK, WebPOWERED, XABEL, XACTstep, XACTstep
Advanced, XACTstep Foundry, XACT-Floorplanner, XACT-Performance, XAM, XAPP, X-BLOX, X-BLOX plus,
XChecker, XDM, XDS, XEPLD, Xilinx Foundation Series, Xilinx XDTV, XPP, XSI, and ZERO+ are trademarks of
Xilinx, Inc. The Programmable Logic Company and The Programmable Gate Array Company are service marks
of Xilinx, Inc.

All other trademarks are the property of their respective owners.

Xilinx, Inc. does not assume any liability arising out of the application or use of any product described or shown
herein; nor does it convey any license under its patents, copyrights, or maskwork rights or any rights of others.
Xilinx, Inc. reserves the right to make changes, at any time, in order to improve reliability, function or design and
to supply the best product possible. Xilinx, Inc. will not assume responsibility for the use of any circuitry described
herein other than circuitry entirely embodied in its products. Xilinx, Inc. devices and products are protected under
one or more of the following U.S. Patents: 4,642,487; 4,695,740; 4,706,216; 4,713,557; 4,746,822; 4,750,155;
4,758,985; 4,820,937; 4,821,233; 4,835,418; 4,855,619; 4,855,669; 4,902,910; 4,940,909; 4,967,107; 5,012,135;
5,023,606; 5,028,821; 5,047,710; 5,068,603; 5,140,193; 5,148,390; 5,155,432; 5,166,858; 5,224,056; 5,243,238;
5,245,277; 5,267,187; 5,291,079; 5,295,090; 5,302,866; 5,319,252; 5,319,254; 5,321,704; 5,329,174; 5,329,181;
5,331,220; 5,331,226; 5,332,929; 5,337,255; 5,343,406; 5,349,248; 5,349,249; 5,349,250; 5,349,691; 5,357,153;
5,360,747; 5,361,229; 5,362,999; 5,365,125; 5,367,207; 5,386,154; 5,394,104; 5,399,924; 5,399,925; 5,410,189;
5,410,194; 5,414,377; 5,422,833; 5,426,378; 5,426,379; 5,430,687; 5,432,719; 5,448,181; 5,448,493; 5,450,021;
5,450,022; 5,453,706; 5,455,525; 5,466,117; 5,469,003; 5,475,253; 5,477,414; 5,481,206; 5,483,478; 5,486,707;
5,486,776; 5,488,316; 5,489,858; 5,489,866; 5,491,353; 5,495,196; 5,498,979; 5,498,989; 5,499,192; 5,500,608;
5,500,609; 5,502,000; 5,502,440; 5,504,439; 5,506,518; 5,506,523; 5,506,878; 5,513,124; 5,517,135; 5,521,835;
5,521,837; 5,523,963; 5,523,971; 5,524,097; 5,526,322; 5,528,169; 5,528,176; 5,530,378; 5,530,384; 5,546,018;
5,550,839; 5,550,843; 5,552,722; 5,553,001; 5,559,751; 5,561,367; 5,561,629; 5,561,631; 5,563,527; 5,563,528;
5,563,529; 5,563,827; 5,565,792; 5,566,123; 5,570,051; 5,574,634; 5,574,655; 5,578,946; 5,581,198; 5,581,199;
5,581,738; 5,583,450; 5,583,452; 5,592,105; 5,594,367; 5,598,424; 5,600,263; 5,600,264; 5,600,271; 5,600,597;
5,608,342; 5,610,536; 5,610,790; 5,610,829; 5,612,633; 5,617,021; 5,617,041; 5,617,327; 5,617,573; 5,623,387;
5,627,480; 5,629,637; 5,629,886; 5,631,577; 5,631,583; 5,635,851; 5,636,368; 5,640,106; 5,642,058; 5,646,545;
5,646,547; 5,646,564; 5,646,903; 5,648,732; 5,648,913; 5,650,672; 5,650,946; 5,652,904; 5,654,631; 5,656,950;
5,657,290; 5,659,484; 5,661,660; 5,661,685; 5,670,896; 5,670,897; 5,672,966; 5,673,198; 5,675,262; 5,675,270;
5,675,589; 5,677,638; 5,682,107; 5,689,133; 5,689,516; 5,691,907; 5,691,912; 5,694,047; 5,694,056; 5,724,276;
5,694,399; 5,696,454; 5,701,091; 5,701,441; 5,703,759; 5,705,932; 5,705,938; 5,708,597; 5,712,579; 5,715,197;
5,717,340; 5,719,506; 5,719,507; 5,724,276; 5,726,484; 5,726,584; 5,734,866; 5,734,868; 5,737,234; 5,737,235;
5,737,631; 5,742,178; 5,742,531; 5,744,974; 5,744,979; 5,744,995; 5,748,942; 5,748,979; 5,752,006; 5,752,035;
5,754,459; 5,758,192; 5,760,603; 5,760,604; 5,760,607; 5,761,483; 5,764,076; 5,764,534; 5,764,564; 5,768,179;
5,770,951; 5,773,993; 5,778,439; 5,781,756; 5,784,313; 5,784,577; 5,786,240; 5,787,007; 5,789,938; 5,790,479;

R

ii Xilinx Development System

5,790,882; 5,795,068; 5,796,269; 5,798,656; 5,801,546; 5,801,547; 5,801,548; 5,811,985; 5,815,004; 5,815,016;
5,815,404; 5,815,405; 5,818,255; 5,818,730; 5,821,772; 5,821,774; 5,825,202; 5,825,662; 5,825,787; 5,828,230;
5,828,231; 5,828,236; 5,828,608; 5,831,448; 5,831,460; 5,831,845; 5,831,907; 5,835,402; 5,838,167; 5,838,901;
5,838,954; 5,841,296; 5,841,867; 5,844,422; 5,844,424; 5,844,829; 5,844,844; 5,847,577; 5,847,579; 5,847,580;
5,847,993; 5,852,323; 5,861,761; 5,862,082; 5,867,396; 5,870,309; 5,870,327; 5,870,586; 5,874,834; 5,875,111;
5,877,632; 5,877,979; 5,880,492; 5,880,598; 5,880,620; 5,883,525; 5,886,538; 5,889,411; 5,889,413; 5,889,701;
5,892,681; 5,892,961; 5,894,420; 5,896,047; 5,896,329; 5,898,319; 5,898,320; 5,898,602; 5,898,618; 5,898,893;
5,907,245; 5,907,248; 5,909,125; 5,909,453; 5,910,732; 5,912,937; 5,914,514; 5,914,616; 5,920,201; 5,920,202;
5,920,223; 5,923,185; 5,923,602; 5,923,614; 5,928,338; 5,931,962; 5,933,023; 5,933,025; 5,933,369; 5,936,415;
5,936,424; 5,939,930; 5,942,913; 5,944,813; 5,945,837; 5,946,478; 5,949,690; 5,949,712; 5,949,983; 5,949,987;
5,952,839; 5,952,846; 5,955,888; 5,956,748; 5,958,026; 5,959,821; 5,959,881; 5,959,885; 5,961,576; 5,962,881;
5,963,048; 5,963,050; 5,969,539; 5,969,543; 5,970,142; 5,970,372; 5,971,595; 5,973,506; 5,978,260; 5,986,958;
5,990,704; 5,991,523; 5,991,788; 5,991,880; 5,991,908; 5,995,419; 5,995,744; 5,995,988; 5,999,014; 5,999,025;
6,002,282; and 6,002,991; Re. 34,363, Re. 34,444, and Re. 34,808. Other U.S. and foreign patents pending.
Xilinx, Inc. does not represent that devices shown or products described herein are free from patent infringement
or from any other third party right. Xilinx, Inc. assumes no obligation to correct any errors contained herein or to
advise any user of this text of any correction if such be made. Xilinx, Inc. will not assume any liability for the
accuracy or correctness of any engineering or software support or assistance provided to a user.

Xilinx products are not intended for use in life support appliances, devices, or systems. Use of a Xilinx product in
such applications without the written consent of the appropriate Xilinx officer is prohibited.

Copyright 1991-2001 Xilinx, Inc. All Rights Reserved.
ISE 4 User Guide iii

ISE 4 User Guide
iv Xilinx Development System

About This Manual

This chapter contains the following sections:

• “About the ISE 4 User Guide”

• “Manual Contents”

• “Additional Resources”

About the ISE 4 User Guide
The Integrated Synthesis Environment (ISE) from Xilinx is an
integrated tool suite that enables you to produce, test, and implement
designs for Xilinx FPGAs or CPLDs. The tools cover all aspects of the
design flow, from design entry to bitstream generation and
downloading. You can directly access the Internet from many of the
ISE applications for user support and tool updates.

This ISE 4 User Guide:

• Provides an overview of ISE 4.x.

• Describes the ISE 4.x design environment.

• Explains how to create a project.

• Summarizes each of the steps in the design flow, including
design entry, constraint entry, synthesis, simulation,
implementation, and device programming.

• Briefly describes each tool in the ISE 4.x suite.

• Provides references to additional help, documentation, and
support.
ISE 4 User Guide v

ISE 4 User Guide
Manual Contents
• Chapter 1, “Introduction,” describes ISE in general, lists

supported platforms and architectures, and describes partner
tools available for use with ISE. It also includes references to
sources of additional assistance, including tutorials, books, online
help, and technical support.

• Chapter 2, “Project Navigator,”describes Project Navigator, the
primary user interface for ISE. Project Navigator integrates the
design entry, constraint entry, implementation, synthesis,
simulation, and device programming tools and processes that
facilitate design production.

• Chapter 3, “Projects,” describes projects and project management
generally, and describes the specific ISE project creation process,
which includes specifying a directory for the project, identifying
the Xilinx device you want to target for your design, choosing a
project flow, and adding and creating source files.

• Chapter 4, “Design Flow,” describes the overall design process,
including Design Entry, Constraint Entry, Synthesis, Simulation,
Implementation, and Device Programming.

• Chapter 5, “HDL,” describes HDL design sources (VHDL,
Verilog, and ABEL-HDL), the HDL Editor (a general purpose text
editor that is HDL language sensitive), and the HDL library
mapping feature.

• Chapter 6, “State Diagrams,” describes the integration of the
supported state diagram entry tools with ISE. For state machine
design entry, ISE includes integrated support for StateCAD® and
StateBench™.

• Chapter 7, “Schematic Sources,”explains how to use schematic
sources in ISE projects. It also contains an overview of the basic
concepts for using the Engineering Capture System (ECS).

• Chapter 8, “LogiBLOX,” describes LogiBLOX—a design tool for
creating high-level modules such as counters, shift registers, and
multiplexers for XC4000/XL/XLA, Spartan/XL, and 9500/XL/
XV designs.

• Chapter 9, “CORE Generator,” describes the Xilinx CORE
Generator System, a design tool that delivers parameterizeable
COREs optimized for Xilinx FPGAs.
vi Xilinx Development System

About This Manual
• Chapter 10, “Implementation,” explains the implementation
design process that converts the logical design represented in the
source file into a physical file format that can be implemented in
the selected target device.

• Chapter 11 “FPGA Implementation,” explains the
implementation process for FPGA devices, including FPGA
Implementation Flow, FPGA Implementation Reports, FPGA
Implementation Options, and FPGA Implementation Tools
(Floorplanner, FPGA Editor, and Timing Analyzer).

• Chapter 12, “CPLD Implementation,” explains the
implementation process for CPLD devices, including CPLD
Implementation Flow, CPLD Implementation Reports, CPLD
Implementation Options, and CPLD Implementation Tools
(Timing Analyzer and ChipViewer).

• Chapter 13, “Device Programming,”explains how to create a
bitstream to download to a device, and describes the
programming tools PROM File Formatter and iMPACT.

Additional Resources
For additional information, go to http://support.xilinx.com. The
following table lists some of the resources you can access from this
Web site. You can also directly access these resources using the
provided URLs.

Resource Description and URL

Tutorials Tutorials covering Xilinx design flows, from design entry to verification
and debugging
http://support.xilinx.com/support/techsup/tutorials/index.htm

Answers Data-
base

Current listing of solution records for the Xilinx software tools
Search this database using the search function at
http://support.xilinx.com/support/searchtd.htm

Application
Notes

Descriptions of device-specific design techniques and approaches
http://support.xilinx.com/apps/appsweb.htm

Data Book Pages from The Programmable Logic Data Book, which contains device-
specific information on Xilinx device characteristics, including readback,
boundary scan, configuration, length count, and debugging
http://support.xilinx.com/partinfo/databook.htm
ISE 4 User Guide vii

http://support.xilinx.com
http://support.xilinx.com/support/techsup/tutorials/index.htm
http://support.xilinx.com/support/searchtd.htm
http://support.xilinx.com/apps/appsweb.htm
http://support.xilinx.com/partinfo/databook.htm

ISE 4 User Guide
Xcell Journals Quarterly journals for Xilinx programmable logic users
http://support.xilinx.com/xcell/xcell.htm

Technical Tips Latest news, design tips, and patch information for the Xilinx design
environment
http://support.xilinx.com/support/techsup/journals/index.htm

Resource Description and URL
viii Xilinx Development System

http://support.xilinx.com/xcell/xcell.htm
http://support.xilinx.com/support/techsup/journals/index.htm

Conventions

This manual uses the following conventions. An example illustrates
most conventions.

Typographical
The following conventions are used for all documents.

• Courier font indicates messages, prompts, and program files
that the system displays.

speed grade: - 100

• Courier bold indicates literal commands that you enter in a
syntactical statement. However, braces “{ }” in Courier bold are
not literal and square brackets “[]” in Courier bold are literal
only in the case of bus specifications, such as bus [7:0].

rpt_del_net=

Courier bold also indicates commands that you select from a
menu.

File → Open

• Italic font denotes the following items.

♦ Variables in a syntax statement for which you must supply
values

edif2ngd design_name

♦ References to other manuals

See the Development System Reference Guide for more
information.
ISE 4 User Guide ix

ISE 4 User Guide
♦ Emphasis in text

If a wire is drawn so that it overlaps the pin of a symbol, the
two nets are not connected.

• Square brackets “[]” indicate an optional entry or parameter.
However, in bus specifications, such as bus [7:0], they are
required.

edif2ngd [option_name] design_name

• Braces “{ }” enclose a list of items from which you must choose
one or more.

lowpwr ={on|off}

• A vertical bar “|” separates items in a list of choices.

lowpwr ={on|off}

• A vertical ellipsis indicates repetitive material that has been
omitted.

IOB #1: Name = QOUT’

IOB #2: Name = CLKIN’

.

.

.

• A horizontal ellipsis “…” indicates that an item can be repeated
one or more times.

allow block block_name loc1 loc2 … locn;

Online Document
The following conventions are used for online documents.

• Blue text indicates cross-references within a book. Red text
indicates cross-references to other books. Click the colored text to
jump to the specified cross-reference.

• Blue, underlined text indicates a Web site. Click the link to open
the specified Web site. You must have a Web browser and
Internet connection to use this feature.
x Xilinx Development System

Contents
About This Manual
About the ISE 4 User Guide ..v
Manual Contents ...vi
Additional Resources ..vii

Conventions
Typographical ..ix
Online Document ..x

Chapter 1 Introduction

About ISE 4.x ..1-1
Xilinx Architecture Support ..1-2
Installation ...1-2
Partner Tools ...1-2
Tutorials ..1-3

ISE Tutorial ..1-3
In-Depth Tutorial ..1-3
Other Tutorials ...1-4

Online Help ...1-4
Context Sensitive Help ...1-4
Project Navigator Help Contents ..1-4
ISE Help Contents ...1-4

Design Entry ...1-5
Synthesis ..1-5
Simulation ...1-5
Implementation ...1-5
Programming ..1-6
Techniques ...1-6
Tutorials ..1-6
Application Notes ..1-6
Reference ...1-6

How to Use Help ..1-7
Online Documentation ...1-7
Xilinx on the Web ...1-7

Books ..1-8
Printed Books ...1-8
ISE 4 User Guide xi

ISE 4 User Guide
Online PDF Book Collection ..1-8
Technical Support ...1-8

Xilinx Services and Support on the Web1-8
Technical and Applications Case Support1-9

Training ...1-9
Order Management ...1-10
Software Customer Service (Licensing)1-10

Chapter 2 Project Navigator

About Project Navigator ..2-1
Project Navigator Processes ..2-1
Project Navigator Tools ..2-2

Starting Project Navigator ...2-3
Project Navigator Interface ..2-3

Project Navigator Main Window ...2-4
Sources In Project Window ..2-6

Menus ...2-7
Sources in Project Window Tabs ..2-8
Source Properties ...2-9

Processes for Current Source Window2-9
Auto-Make ..2-10
Setting Properties for Processes ..2-10
Viewing Reports ..2-11

Project Workspace ...2-11
HDL Editor Workspace ..2-11
Transcript Window ...2-12

Customizing Project Navigator ..2-12
Setting Display Preferences ...2-12

General ...2-13
Editor ..2-13
Processes ...2-13
Partner Tools and Web Browser ...2-14

Displaying and Hiding Windows and Toolbars2-14
Docking and Undocking Windows and Toolbars2-15

Snapshots and Archives ...2-15
Taking a Snapshot ...2-16
Renaming a Snapshot ...2-16
Editing a Snapshot Comment ..2-16
Deleting a Snapshot ...2-17
Viewing Snapshot Contents ...2-17
Viewing Snapshot Source Files and Reports2-18
Replacing the Current Project with a Snapshot2-18
Restoring a Snapshot or Archive with Remote Sources2-19

Chapter 3 Projects

About Projects ...3-1
Creating a Project ...3-2

Setting Project Properties ..3-3
Specifying a Project Name and Directory3-3
xii Xilinx Development System

Contents
Selecting a Device and Design Flow3-4
Selecting a Device ..3-4
Selecting a Design Flow ...3-5

Supported Devices and Design Flows3-5
Project Flow Characteristics ..3-6

Sources ...3-8
Creating a New Source ..3-9
Adding an Existing Source ...3-10
Adding a Copy of an Existing Source3-11

Source Types ..3-11
Synthesis Tool Support ..3-13
Source Type Descriptions ..3-13

State Diagram ...3-14
Schematic ...3-14
VHDL Module ...3-15
VHDL Testbench ..3-15
Testbench Waveform ..3-15
VHDL Package ...3-15
VHDL Library ..3-16
Verilog Module ..3-16
Verilog Test Fixture ...3-16
ABEL-HDL Module (CPLDs Only)3-16
ABEL Test Vector (CPLDs Only) ..3-16
CORE Generator Module ...3-16
LogiBLOX Module ...3-16

Chapter 4 Design Flow

About Design Flow ..4-1
Design Entry ..4-2

HDL Editor ...4-2
StateCAD State Machine Editor ...4-3
Engineering Capture System (ECS) ..4-3
CORE Generator ...4-3
LogiBLOX ...4-4

Constraint Entry ..4-4
Constraint Types ..4-4
Third Party Constraints ..4-5
Constraint Entry Tools ...4-5

Synthesis ...4-6
XST from Xilinx ...4-6
FPGA Express from Synopsis ..4-6
Synplify from Synplicity ...4-7
LeonardoSpectrum from Exemplar4-7

Simulation ...4-8
Simulation Points ...4-8
Simulation Tools ..4-8

Implementation ..4-9
Floorplanner ..4-9
FPGA Editor ..4-10
ISE 4 User Guide xiii

ISE 4 User Guide
Timing Analyzer ..4-10
XPower ...4-11
ChipViewer ...4-11

Device Programming ...4-12
iMPACT ..4-12
PROM File Formatter ..4-13

Chapter 5 HDL

HDL Sources ...5-1
Supported Languages ..5-1

VHDL ..5-2
Verilog ...5-2
ABEL-HDL ..5-2

Creating HDL Source Files ..5-3
New Source Wizard ..5-3
Creating New HDL Modules ...5-3
Creating a New VHDL Package ...5-4

Opening HDL Source Files ..5-5
HDL Editor ...5-6

HDL Editor Functions ...5-6
HDL Editor Online Help ..5-6
File Operations ...5-7
Window Operations ..5-7
Editing Functions ..5-8
Search Functions ..5-8
Macro Functions ...5-8

Customizing Tabs and Fonts ...5-9
Language Specific Features ..5-9
Language Templates ...5-9

Opening the Language Templates Tool5-10
Selecting an Existing Template ..5-11
Inserting Templates in HDL Sources5-11
Creating a User Template ...5-12

Creating a Schematic Symbol from an HDL Source5-13
HDL Library Mapping ..5-14

VHDL ...5-14
Verilog ..5-14
Project Navigator Source Libraries ..5-15
Named VHDL Libraries ..5-16

Adding a File to the Library ...5-16
Renaming VHDL Libraries ..5-16
Removing VHDL Libraries ..5-17

Moving Files to a Library ..5-17
Removing Files from a Library ...5-17

Chapter 6 State Diagrams

About StateCAD and StateBench ...6-1
Creating a New State Diagram ...6-2
Updating an Existing State Diagram ...6-4
xiv Xilinx Development System

Contents
Using StateBench ...6-5
Instantiating State Diagram Modules ..6-5

Chapter 7 Schematic Sources

Schematic Source Files ..7-1
Creating a Schematic Source File ...7-2
Opening a Schematic Source File ...7-4
Updating Schematic Files ..7-4
Xilinx Implementation Attributes and Constraints7-4

Instantiating HDL Sources ..7-5
Creating a Schematic Symbol ..7-5
Symbol Generator Options ..7-5
Opening the HDL Source ...7-6
Creating a Top-Level Schematic ..7-6

Simulating and Synthesizing Schematic Sources7-7
VHDL Functional Model ..7-8

Viewing the VHDL Functional Model7-8
Verilog Functional Model ...7-9
ECS (Engineering Capture System) ...7-11

The ECS Window ...7-12
Concepts Required to Use ECS ..7-15

Symbols ..7-16
Wires (Nets and Buses) ..7-18
I/O Markers ...7-20
Graphics ...7-21
Text ...7-21

ECS Menu Commands ..7-22
File Menu ..7-22
Edit Menu ..7-22
View Menu ..7-22
Add Menu ...7-23
Tools Menu ...7-23
Window Menu ...7-23
Help Menu ..7-23

Editing Schematics in ECS ...7-24
Adding a Symbol ..7-24
Adding a Wire ..7-25
Moving a Wire ..7-25

Moving a Wire Without Disconnecting7-25
Moving and Disconnecting a Wire7-26

Removing a Symbol or Other Object7-26
Panning ..7-26
Zooming ...7-27

Editing Symbols in ECS ..7-27
Opening a Symbol Window ..7-27
Symbol Types ..7-28

Block Symbols ..7-28
Graphic Symbols ..7-28
Master Symbols ..7-28
ISE 4 User Guide xv

ISE 4 User Guide
Symbol Libraries ...7-29
Modifying an Existing Symbol ..7-29
Creating a New Block Symbol ...7-30
Creating a Block Symbol from a Schematic7-31
Creating a Symbol from an HDL Source7-31
Using Symbols from Other Projects ...7-32

Guidelines for Creating Schematics ..7-33

Chapter 8 LogiBLOX

About LogiBLOX ...8-1
Starting LogiBLOX ..8-2
LogiBLOX Setup ...8-4
Creating LogiBLOX Modules ...8-5
Using LogiBLOX Modules in ISE 4.x Projects8-7

Editing LogiBLOX Modules ..8-7
Using LogiBLOX Modules in Schematic Sources8-7
Instantiating LogiBLOX Modules in an HDL Source8-8

VHDL Instantiation ..8-8
Verilog Instantiation ..8-14

Simulating LogiBLOX Components ...8-18
Constraining LogiBLOX Memory with FPGA Express8-18

Estimating the Number of Primitives Used8-19
How the RAM Primitives are Named8-19
Referencing a LogiBLOX Module or Component8-20
Referencing the Primitives of a LogiBLOX Module8-21
Verilog Example ...8-21

test.v: ..8-21
inside.v: ...8-22
test.ucf ..8-22

 VHDL Example ...8-23
test.vhd ...8-23
inside.vhd ..8-24
test.ucf ..8-25

LogiBLOX Documentation ...8-25

Chapter 9 CORE Generator

About CORE Generator ..9-1
Design Flow ..9-2
Opening the CORE Generator Main GUI9-3
Creating a CORE Component ...9-4

CORE Component Names ...9-6
Using Cores in ISE 4 Projects ...9-7

Editing Cores ...9-7
Using Cores in Schematic Sources ...9-7
Instantiating Cores in an HDL Source9-8

Simulation and Synthesis of Core Modules9-8
Synthesizing and Simulating Cores ...9-9
xvi Xilinx Development System

Contents
Chapter 10 Implementation

About Implementation ...10-1
Implementing Design Processes ...10-2
Implementing Your Design ..10-2

Complete Implementation ..10-3
Partial Implementation ...10-3
Specialized Processing ..10-3

Implementation Errors and Warnings ..10-3
Saving Implementation Results ...10-4
Deleting Results ..10-4
Changing Devices ...10-4
Viewing Implementation Reports ..10-5

Generating and Viewing a Report ..10-5
Report Descriptions ...10-5

User Constraints ...10-6
Editing the UCF File ...10-6
Opening the Xilinx Constraints Editor10-7

Chapter 11 FPGA Implementation

Flow ...11-1
Translate ..11-3
MAP ...11-4
Generate Post-Map Static Timing (Optional)11-6
Place and Route ..11-7
Generate Post-Place & Route Timing (Optional)11-9

Multi Pass Place and Route (Optional)11-9
Backannotate Pin Locations (Optional)11-11
Backannotate Pin Locs Report ...11-12
Pin Loc Constraints in the UCF ..11-12

Reports ..11-13
Properties ..11-14

Opening the Process Properties Dialog Box11-14
Accessing Advanced Properties ..11-16

Tools ...11-16
Floorplanner ...11-17
FPGA Editor ...11-19
Timing Analyzer ...11-20
XPower ..11-22

Why Estimate Power? ..11-22
XPower Prerequisites ...11-23
Features of XPower ..11-23

Chapter 12 CPLD Implementation

Implement Design ...12-1
Translate ..12-2

About the Translate Process ..12-2
Translation Report ..12-4
ISE 4 User Guide xvii

ISE 4 User Guide
Fit ...12-4
About the Fit Process ...12-4
Fitter Report ..12-6
View Fitted Design (ChipViewer) ..12-6
Analyze Power (XPower) ..12-6
Lock Pins ..12-7

Generate Timing ..12-10
Timing Report ...12-10
Analyze Post-Fit Static Timing (Timing Analyzer)12-11

Generate Post-Fit Simulation Model ..12-11
Generate IBIS Model ...12-11

Properties ..12-12
Opening the Process Properties Dialog Box12-12
Setting Options ..12-13

Translate Options ...12-13
Fit Options ..12-14
Lock Pins Options ...12-14
Timing Options ..12-14

Tools ...12-15
Timing Analyzer ...12-15
CPLD ChipViewer ..12-16

For Pin Assignments ...12-17
View Fitted Design (ChipViewer) ..12-17

Chapter 13 Device Programming

Creating FPGA Programming Files ...13-1
Launching Programming Tools ..13-2
Setting FPGA Programming File Creation Options13-2

Generating CPLD Programming Files ...13-3
Setting CPLD Programming File Creation Options13-4

Device Programming Tools ...13-5
PROM File Formatter ...13-5
iMPACT ..13-5
xviii Xilinx Development System

Chapter 1

Introduction

This chapter contains the following sections:

• “About ISE 4.x”

• “Xilinx Architecture Support”

• “Installation”

• “Partner Tools”

• “Tutorials”

• “Online Help”

• “Books”

• “Technical Support”

About ISE 4.x
ISE 4.x from Xilinx is a next-generation design environment for
programmable logic design. It offers advanced software capabilities
that enable designers to efficiently create and verify programmable
logic design. Features include:

• HDL Design Entry and Project Management Tools

• HDL Synthesis Engines from Synopsys® and Xilinx

• Incremental Design with Block Level Incremental Synthesis
(BLIS)

• Seamless integration with Synplify™ from Synplicity

• Seamless integration with LeonardoSpectrum from Exemplar

• Xilinx Ultra-fast Place and Route

• Customizable Intellectual Property Using CORE Generator
ISE 4 User Guide 1-1

ISE 4 User Guide
• Graphical State Diagram Entry Using StateCAD

• Seamless Integration with ModelSim™ HDL Simulation Tools

• Automatic Self-checking Testbench Generation Using HDL
Bencher

Xilinx Architecture Support
For a list of the most current supported device families and device
flows, see the Device Support table in the ISE online help (Help →
ISE Help Contents → Reference → Device Support).
The devices available for your design depend upon the product
configuration you purchased, and on the design flow you select for
your project.

Installation
For instructions on installing ISE 4.x, see the ISE Installation Guide and
Release Notes. This document accompanies your software, and is also
available on the Xilinx support Web site at http://
www.support.xilinx.com/ under Software Manuals. It describes
installation procedures, key features, supported devices, and the
most critical known issues.

Partner Tools
ISE 4.x supports the following partner tools to provide a complete
design environment:

• FPGA Express from Synopsys®

FPGA Express is integrated into the design flows of ISE 4.x to
provide synthesis functions as it has in earlier products.

• ModelSIM™ from Model Technology Incorporated (MTI)

ModelSIM simulators provide the simulation functions for ISE
4.x.

• LeonardoSpectrum from Exemplar

LeonardoSpectrum is a synthesis tool that synthesizes VHDL or
Verilog and creates an EDIF netlist. An interface into this tool is
provided in ISE 4.x. However, in order to use LeonardoSpectrum
1-2 Xilinx Development System

http://www.support.xilinx.com/
http://www.support.xilinx.com/

Introduction
with ISE, you must have purchased and installed the program on
your computer.

• Synplify and Synplify Pro from Synplicity

Synplify and Synplify Pro are synthesis tools designed for FPGA
synthesis with VHDL, Verilog and mixed languages to create an
EDIF netlist. In order to use either tool with ISE, you must
separately purchase and install the program on your computer.

Tutorials
Several tutorials are available to assist you in learning ISE 4.x:

• “ISE Tutorial”

• “In-Depth Tutorial”

• “Other Tutorials”

ISE Tutorial
The ISE Tutorial is a printed booklet distributed with your ISE
software. It describes the creation of a 4-bit counter module. The
tutorial includes:

• creating HDL and schematic source files for the design

• functionally simulating the design’s logic

• processing the design for device implementation

• using basic timing simulation to test the design in the device

In-Depth Tutorial
An in-depth tutorial, the Watch tutorial, is available on the Xilinx
support Web site from http://support.xilinx.com/support/techsup/
tutorials/index.htm.
ISE 4 User Guide 1-3

http://support.xilinx.com/support/techsup/tutorials/index.htm
http://support.xilinx.com/support/techsup/tutorials/index.htm

ISE 4 User Guide
Other Tutorials
The following tutorials are available from the Project Navigator
online help:

• CPLD Design Flows

• XPower FPGA Tutorial

• XPower CPLD Tutorial

Online Help
The following online help is available from Project Navigator and its
associated tools. To access the help, click the Help menu, or press F1.

• “Context Sensitive Help”

• “Project Navigator Help Contents”

• “ISE Help Contents”

• “How to Use Help”

• “Online Documentation”

• “Xilinx on the Web”

Context Sensitive Help
Context sensitive help is available for all ISE 4.x tools. To access
context sensitive help, press F1.

Project Navigator Help Contents
To access help for Project Navigator as a whole, select Help →
Project Navigator Help Contents.

ISE Help Contents
The ISE Help umbrella lists all help files available from within Project
Navigator. To access the ISE help umbrella, select Help → ISE Help
Contents. When the umbrella opens, click a link to access the
1-4 Xilinx Development System

Introduction
indicated help or other support file. The umbrella help menu
includes links to the following:

Design Entry

• Project Navigator

• HDL Editor

• StateCAD State Machine Editor

• Schematic Editor (ECS)

• LogiBLOX

• CORE Generator

• Xilinx Constraints Editor

Synthesis

• XST (Xilinx Synthesis Technology)

• FPGA Express

• Synplify

• LeonardoSpectrum

Simulation

• HDL Bencher

• ModelSim Simulator

Implementation

• Floorplanner

• FPGA Editor

• Timing Analyzer

• XPower

• ChipViewer

Note Chip Viewer help can be accessed from the Chip Viewer
window only.
ISE 4 User Guide 1-5

ISE 4 User Guide
Programming

• iMPACT

• PROM File Formatter

Techniques

• FPGA Design Techniques

• CPLD Design Techniques

• Entering Constraints

Tutorials

• ISE Tutorial

• In-Depth Tutorial

• CPLD Design Flows

• XPower FPGA Tutorial

• XPower CPLD Tutorial

For more information, see the “Tutorials” section above.

Application Notes

• ISE Application Notes

Note For current versions of ISE Application Notes, see http://
www.xilinx.com/apps/appsweb.htm

• FPGA Express Application Notes

Reference

• ISE 4.x Key Features

• Device Support

• Product Licensing

• VHDL Reference Guide

• Verilog Reference Guide

• ABEL Reference Guide
1-6 Xilinx Development System

http://www.xilinx.com/apps/appsweb.htm
http://www.xilinx.com/apps/appsweb.htm

Introduction
• CPLD Schematic Library

• CPLD Attributes

• Technical Support

How to Use Help
How to Use Help is a Microsoft Windows tutorial which explains
how to use an online help file.

Online Documentation
Click the Online Documentation link to open the book collection that
accompanies your ISE 4.x software. For more information, see the
“Books” section below.

Xilinx on the Web
To access Xilinx services on the World Wide Web, click Help →
Xilinx on the Web, then select one of the following:

• Xilinx Home Page
The Home Page for programmable logic. From this page, you can
obtain more information about Xilinx products, access online
support and services, enroll in Xilinx e-Learning, buy Xilinx
products online, and much more.

• LogiCORE PCI Solutions
The Xilinx 64-bit, 66 MHz PCI-X Solution to support next
generation communication systems and storage area networks.

• Support and Services
Support and Services takes you to the Xilinx Support page at
http://support.xilinx.com.

• Open a Support Case
Allows you to open a personal WebCase with Xilinx Support.

For more information about Xilinx support available on the Web, by
telephone and e-mail, see the “Technical Support” section below.
ISE 4 User Guide 1-7

ISE 4 User Guide
Books
Multiple printed and online books are available for use with your ISE
4.x software.

Printed Books
The following hardcopy books accompany your ISE 4.x software:

• The ISE Installation Guide and Release Notes describes installation
procedures, key features, supported devices, and the most critical
known issues.

• The ISE Tutorial provides an overview of the key features of the
ISE 4.x software. It also contains a tutorial that demonstrates the
basic design process. The tutorial includes creating HDL and
schematic source files for the design, functionally simulating the
design’s logic, processing the design for device implementation,
and using basic timing simulation to test the design in the device.

Online PDF Book Collection
The online PDF book collection is available for viewing and printing.
You can access the online book collection from the Documentation
CD or from the Xilinx support page on the Web at http://
support.xilinx.com.

Technical Support
You can contact Xilinx for additional information and assistance in a
variety of ways.

Xilinx Services and Support on the Web
Start by getting answers on the Web at http://support.xilinx.com.
The support.xilinx.com Web site contains thousands of online
technical solutions and product information for Xilinx software and
devices. The Xilinx Answers Database is updated daily with the latest
patches, problem resolutions, application notes, and data sheets.
1-8 Xilinx Development System

http://support.xilinx.com
http://support.xilinx.com
http://support.xilinx.com

Introduction
Technical and Applications Case Support
If you cannot find your answers at support.xilinx.com, open a
support case on the Web to access Xilinx Application Engineers
worldwide. You can also use telephone hotlines or e-mail to open a
support case.

Note The above telephone numbers and e-mail address are subject to
change. For the most current Technical Support contact information,
go to http://support.xilinx.com/support/services/contact_info.htm.

When e-mailing inquiries, please provide your complete name,
company name, phone number, and a complete problem description,
including your design entry software and design stage. In North
America, call 1-800-255-7778 if you cannot open a support case on the
Web.

Training

For information on training, visit the Xilinx Support Web site at
http://support.xilinx.com, or contact your local Xilinx distributor.

Get information and schedules for all courses, including recorded
and live e-Learning modules. Comprehensive introductory and
advanced courses cover Xilinx component and development system
products.

Location Phone E-Mail

North America 1-800-255-7778 or 408-
879-5199

Please open a case via WebCase

United Kingdom +44-870-7350-610 eurosupport@xilinx.com

France +33-1-34-63-01-00 eurosupport@xilinx.com

Germany +49-89-93-08-81-30 eurosupport@xilinx.com

All other Europe locations +44-870-7350-610 eurosupport@xilinx.com

Japan +81-3-5321-7750 jhotline@xilinx.com

Hong Kong (852) 2424-5200 hongkong@xilinx.com

Korea (82) 2-761-4277 korea@xilinx.com
ISE 4 User Guide 1-9

http://support.xilinx.com
http://support.xilinx.com
http://support.xilinx.com/support/services/contact_info.htm

ISE 4 User Guide
Order Management

To order Xilinx products, visit the Xilinx Support Web site at http://
support.xilinx.com, or contact your local Xilinx distributor.

Software Customer Service (Licensing)

Location Phone E-Mail

North America 1-800-624-4782 or
(408) 879-6127

 isscs@xilinx.com

Europe Contact your local
Xilinx distributor

 m1license@xilinx.com

Japan +81-3-5321-7732 cs_1@xilinx.com

All other loca-
tions

 1-800-624-4782 or
(408) 879-6127

 cs_1@xilinx.com
1-10 Xilinx Development System

http://support.xilinx.com

Chapter 2

Project Navigator

This chapter contains the following sections:

• “About Project Navigator”

• “Starting Project Navigator”

• “Project Navigator Interface”

• “Customizing Project Navigator”

• “Snapshots and Archives”

About Project Navigator
Project Navigator is the primary user interface for ISE 4.x. You create
your FPGA or CPLD design using a suite of tools accessible from
Project Navigator. Each step of the design process, from design entry
to downloading the design to the chip, is managed from Project
Navigator as part of a project. See the “Projects” chapter of this Guide
for more information.

Project Navigator Processes
Project Navigator integrates the following processes, which are
described in more detail in the “Design Flow” chapter of this Guide:

• “Design Entry”

• “Constraint Entry”

• “Synthesis”

• “Simulation”

• “Implementation”

• “Device Programming”
ISE 4 User Guide 2-1

ISE 4 User Guide
Project Navigator Tools
Project Navigator supports the following tools:

Note See the “Books” section of the “Introduction” chapter of this
Guide for information on accessing the Xilinx Constraints Guide and
the Xilinx Synthesis and Simulation Guide.

Tool Function Reference

HDL Editor create HDL files “HDL” chapter

StateCAD and StateBench state machine creation “State Diagrams” chapter

Engineering Capture
System (ECS)

schematic and symbol
creation and editing

“Schematic Sources”
chapter

LogiBLOX design entry “LogiBLOX” chapter

CORE Generator design entry “CORE Generator” chapter

Xilinx Constraints Editor constraint entry Xilinx Constraints Guide

XST (Xilinx Synthesis Tech-
nology) from Xilinx
FPGA Express from
Synopsys
LeonardoSpectrum from
Exemplar
Synplify, and Synplify Pro
from Synplicity

synthesis Xilinx Synthesis and Simula-
tion Guide

HDL Bencher automated testbench or test
fixture creation

Xilinx Synthesis and Simula-
tion Guide

ModelSim XE/PE/SE from
Model Technology Inc.

simulation Xilinx Synthesis and Simula-
tion Guide

FPGA Editor
Timing Analyzer
Floorplanner
ChipViewer
XPower

implementation “Implementation” chapter
“FPGA Implementation”
chapter
“CPLD Implementation”
chapter

PROM File Formatter
iMPACT

programming “Device Programming”
chapter
2-2 Xilinx Development System

Project Navigator
Starting Project Navigator
To start Project Navigator on personal computers:

• Double-click the Project Navigator icon on your desktop.

OR

• Click Start → Programs → Xilinx ISE Series 4.x →
Project Navigator.

Note Your startup menu path is created during installation, and may
differ from the path shown above.

To start Project Navigator on workstations:

1. Go to the UNIX command prompt.

2. Type ise.

The first time you open Project Navigator all of its windows are
empty. After that, Project Navigator opens with the last project you
worked on if you selected Edit → Preferences → General →
Window Settings → Always Open Last Project.

To begin using Project Navigator, you first create a project, then create
or add source files for the project. To create a project, click File →
New Project. See the “Projects” chapter for the steps to create a
new project and to add sources.

Project Navigator Interface
The Project Navigator interface contains the following:

• “Project Navigator Main Window”

• “Sources In Project Window”

• “Processes for Current Source Window”

• “Project Workspace”

• “HDL Editor Workspace”

• “Transcript Window”
ISE 4 User Guide 2-3

ISE 4 User Guide
Project Navigator Main Window
The following figure shows the windows, toolbars, workspaces, and
other objects in the Project Navigator main window.

Figure 2-1 Project Navigator Main Window

The Project Navigator main window contains the following:

• Title Bar

The Title bar displays the name of the application and the path of
the current project.

• Menu Bar

The Menu bar allows you to access the Project Navigator
commands. See the Project Navigator online help for a
description of all commands.
2-4 Xilinx Development System

Project Navigator
• Toolbars

The toolbars provide convenient access to frequently used
commands. There are two toolbars in the Project Navigator, a
Standard toolbar and an Editor toolbar containing commands
performed in the HDL Editor. See the Project Navigator online
help for a detailed description of the toolbars.

• “Sources In Project Window”

The Sources in Project window shows all the design files
associated with a project. It includes tabs to view the project in
Module View, Snapshot View, and Library View.

• “Processes for Current Source Window”

The Processes for Current Source window shows the available
processes for the selected source. The processes available for
other sources depend upon the device and design flow you
selected for the project, as well as the source type.

Note No processes are available for user documents.

• “Project Workspace”

The Project Workspace consists of the Sources in Project window
and the Processes for Current Source window.

• “HDL Editor Workspace”

HDL files and text files are created and edited in the HDL Editor
workspace. To expand the screen area available for the HDL
Editor Workspace, click View → Project Workspace to
toggle the Project Workspace off.

• HDL Editor Window

Each HDL file is opened in its own window within the HDL
Editor Workspace.

• “Transcript Window”

The Transcript window:

♦ Displays informational, warning, and error messages.

♦ Includes an error and warning navigation feature to help you
debug your design.
ISE 4 User Guide 2-5

ISE 4 User Guide
• Status Bar

The status bar displays command and processing information.
Place the mouse pointer over a menu item or toolbar button to
see a description of the object in the status bar.

Some tools, such as the Engineering Capture System (ECS), open in
their own windows separate from Project Navigator.

Sources In Project Window
The Sources in Project window lists all the design files associated
with a project. A source is any element that contains information
about a design definition. Sources include:

• Files necessary to describe the behavior of your design, such as
EDIF, schematics, or HDL source files

• Files needed to test your design, such as testbenches, test fixtures,
and waveforms for simulation

• General project design documentation

Icons to the left of the source file names identify the type of design
source.

There are two lines in the Sources in Project window when it is open
in Module View:

• User Document line

• Device and Design Flow line

Figure 2-2 User Document Line and Device and Design Flow
Line

Note Click the minus (-) icon to collapse the listings. Click the plus
(+) icon to expand the listings.
2-6 Xilinx Development System

Project Navigator
User Document Line

The User Document line is the first top-level line in the module
hierarchy and is identified by a document icon. It shows the project
name and lists all user documents in the project. In the example
above, it reads “watchver.”

User document is a source type used for any file that you want to
associate with a design project, but that should not or cannot be
processed by ISE 4.x. The most common use of this source type is for
text documents (such as TXT, WRI, DOC) that describe the project.

Device and Design Flow line

The Device and Design Flow line is the second top-level line in the
module hierarchy and is identified by a chip icon. It shows the name
of a device and the design flow associated with the device. In the
example above, it reads “xcv50-6bg256-XST Verilog.”

To change the Device Family, Device, and Design Flow:

1. Right-click the Device and Design Flow line.

2. Click Properties from the pull-down menu.

3. Make your changes in the Project Properties dialog box.

Menus

Use the Project menu to create, add, and copy project sources. The
sources are created or added as described in the “Creating a Project”
section of the “Projects” chapter. A source does not appear in the
Sources in Project window until it is added to the project.

Use the Source menu to manipulate the sources listed in the Sources
in Project window. Click a source to select it before accessing the
Source menu. The Source menu includes the following selections:

• Open

• Close

• Rename (snapshots and VHDL libraries only)

• Remove

• Move to Library (HDL design files only)

• Properties
ISE 4 User Guide 2-7

ISE 4 User Guide
All source editors are linked with the Project Navigator. If a source is
modified and the modification changes the hierarchy of the design,
the Sources in Project window automatically updates to reflect the
change.

Sources in Project Window Tabs

Tabs at the bottom of the Sources in Project window allow you to
select three different views of the source data:

• “Module View”

• “Snapshot View”

• “Library View”

Module View

Click Module View to see a hierarchical representation of the design
files associated with a project. These are divided into two groups in
the window: user documents and project sources.

• User documents

User documents are listed above the Device and Design Flow
line. User documents do not have any processes associated with
them. The Processes for Current Source window is blank when a
user document is selected in the Sources in Project window.

• Project sources

Project sources are listed below the Device and Design Flow line
in a manner that depicts the relationship of these sources to each
other. If you click the Device and Design Flow line or any of the
sources below it, the processes that Project Navigator associates
with the selected source type are listed in the Processes for
Current Source window.

Both groups (project sources and user documents) behave
consistently within the Sources in Project window. To view or edit a
project source or user document, double-click it.

• If the source is a schematic, the associated editor is the
Engineering Capture System (ECS).

• If the source is a VHDL source file, the associated editor is the
HDL Editor, the Project Navigator’s language sensitive text
editor.
2-8 Xilinx Development System

Project Navigator
• If the user document is a text file, the associated text editor is
opened.

Snapshot View

Click the Snapshot View tab to see a list of the snapshots you took
to preserve versions of your design. Click the Source menu to open,
rename, or remove a snapshot. See the “Snapshots and Archives”
section below for complete information on taking and using
snapshots.

Library View

Click Library View to see a list of the Libraries associated with the
project and the sources included in each one. VHDL projects can
include multiple libraries. See the “HDL” chapter later in this Guide
for information on creating named VHDL libraries and moving
modules to a library.

Source Properties

In the Sources in Project window, only the project title and the Device
and Design Flow sources have properties associated with them.

To change the project title or the Device and Design Flow:

1. Highlight the project title or the Device and Design Flow line in
the Sources in Project window.

2. Click Source → Properties.

3. Change the project title or Device and Design Flow in the Project
Properties dialog box.

Processes for Current Source Window
The Processes for Current Source window shows all the processing
tasks that apply to the module or file selected in the Sources in Project
window. Project Navigator’s context sensitive capability
automatically determines the design flow options for a source based
on the targeted device and synthesis tool. Project Navigator displays
only those processes that can be performed on a specific source.
ISE 4 User Guide 2-9

ISE 4 User Guide
Auto-Make

Project Navigator includes an auto-make feature that provides results-
oriented processing. You determine the end result of the processing
by selecting a process in the Processes for Current Source window.
When you click a process, the auto-make feature checks for
dependencies between the process you selected and any predecessor
processes that may be out of date or that may not have been run.

Auto-make automatically runs the necessary processes to bring your
design up-to-date so that it can complete the process you requested.
Auto-make reduces design errors by ensuring that each process step
operates on the most current process results and design data.

Setting Properties for Processes

Design processes execute other programs or sets of programs. Very
often you can set parameters to be passed into these programs. For
example, you can set a parameter to insert I/O buffers during
synthesis, or one to use zero or maximum delays for a simulation.
The most common properties for a given process are selected as the
defaults. You do not need to set the process properties to run a
process.

To specify properties for a process:

1. Highlight the process.

2. Click Process → Properties.

The Process Properties dialog box opens containing parameters
appropriate for the process.

If no properties can be set for that process, the Properties selection is
grayed out. If the Property Name in the dialog box cannot be fully
viewed or appears truncated, use the grabber bar to expand the
Property Name field. Click OK to preserve the new field length
settings.
2-10 Xilinx Development System

Project Navigator
Viewing Reports

In many cases, a report is the output of a process. To view a report,
double-click its name in the Processes for Current Source window. If
the report does not currently exist, it is generated. A green check
mark by the report name indicates that the report is up-to-date, and
no processing is performed.

If the report is not up-to-date, to update the report before you view it:

1. Click the report name.

2. Click Process → Run.

The auto-make process automatically runs only the necessary
processes to update the report before displaying it.

Click Process → Rerun All to re-run all processes—even those
processes that are currently up-to-date—from the top of the design to
the stage where the report would be generated before displaying the
report.

Reports on the synthesis process vary depending on the synthesis
tool you are using. Reports for the Implement Design process vary
depending on whether the target device is an FPGA or a CPLD. See
the “Implementation” chapter for descriptions of the implementation
reports.

Project Workspace
The Project Workspace consists of the Sources in Project window and
the Processes for Current Source window. These windows are
grouped together for viewing purposes. Click View → Project
Workspace to toggle the display of these two windows as one item.

HDL Editor Workspace
The HDL Editor workspace is the main text editing area for HDL
code. It is the only Project Navigator window that cannot be hidden
or undocked (see the“Docking and Undocking Windows and
Toolbars” section below).

Tabs at the bottom of the HDL Editor workspace allow easy access to
the file you want to view or edit. The Window menu provides
standard window functions, such as cascading and tiling, for
managing open windows.
ISE 4 User Guide 2-11

ISE 4 User Guide
Two toolbars are available in Project Navigator:

• The Standard toolbar (left side of the toolbar area)

• The Editor toolbar (right side of the toolbar area). The Editor
toolbar is used exclusively with the files in the HDL Editor
workspace.

See the online help for information on using the toolbars. Use the
View menu to toggle the toolbars on and off.

Transcript Window
The Transcript window contains a project log. The output of all
processes is captured here, including error and warning messages
from the synthesis and implementation tools.

If the error or warning was generated by the synthesis tool (XST or
FPGA Express), you can go to the line in the VHDL or Verilog source
file containing the error.

For all errors and warnings, you can use the search engine on the
Xilinx Web site to find a Solution Record pertaining to your problem.
For more information on navigating to a source file and navigating to
a solution record, see the Transcript window online help.

Customizing Project Navigator
You can customize Project Navigator by:

• “Setting Display Preferences”

• “Displaying and Hiding Windows and Toolbars”

• “Docking and Undocking Windows and Toolbars”

Setting Display Preferences
Click Edit → Preferences to open the Preferences dialog box.
The Preferences dialog box contains four tabs:

• “General”

• “Editor”

• “Processes”

• “Partner Tools and Web Browser”
2-12 Xilinx Development System

Project Navigator
General

From the General tab you can set:

• Window settings, including Always Open Last Project and Use
File Associations on User Documents (personal computers only)

• The default path for new sources, including Relative Paths and
Absolute Paths

• The project font (the font used in the Sources in Project and
Processes for Current Source windows)

Editor

From the Editor tab, you can select:

• Attributes for tabs

• The font used in HDL Editor windows

Processes

From the Processes tab, you can specify:

• “Property Display Level”

• “Process Tree Default”

Property Display Level

You can set process properties for processes such as simulation,
synthesis, or implementation. The available properties are displayed
in a Process Properties dialog box. You control whether to include
additional advanced properties in the Process Properties list. By
default, only the standard properties are listed.

Standard displays all of the Standard properties and their default
values in the Process Properties dialog boxes. Advanced displays all
of the Standard properties as well as any Advanced properties and
their default values in the Process Properties dialog boxes.

Process Tree Default

Determines the default hierarchical display of processes in the
Processes for Current Source window. You can choose to have all
processes expanded or collapsed.
ISE 4 User Guide 2-13

ISE 4 User Guide
Partner Tools and Web Browser

The display of the Partner Tools and Web Browser tab depends on
whether you are running ISE on a personal computer or UNIX.

Partner Tools (Personal Computers Only)

The Partner Tools tab allows you to specify the location of third party
executables.

Web Browser (UNIX Only)

The Web Browser tab allows you to specify the location of the
browser used to view Web pages. By default, it is set to Netscape.

Displaying and Hiding Windows and Toolbars
Click View to control the windows and toolbars you want to display:

Menu Item Function

Standard Toolbar Displays or hides the Standard
toolbar.

Editor Toolbar Displays or hides the Editor
toolbar.

Project Workspace Displays or hides the Project
Workspace (the Sources in Project
window and the Processes for
Current Source window)

Sources Displays or hides the Sources in
Project window

Processes Displays or hides the Processes
for Current Sources Window

Transcript Displays or hides the Transcript
window

File Names Displays or hides the display of
file names in the Module View of
the Sources in Project window
2-14 Xilinx Development System

Project Navigator
To hide the window or toolbar, right-click to display the popup-
menu, then click Hide (just below Allow Docking). To redisplay it,
click that window or toolbar from the View menu. The Hide
selection is on the source or process window context menu.

Docking and Undocking Windows and Toolbars
Project Navigator allows you to dock and undock most windows and
toolbars. You can remove windows and toolbars from the Project
Manager interface and place and size them separately. See the Project
Navigator online help for detailed information on docking and
undocking windows and toolbars.

Snapshots and Archives
To save a specific revision of your project, you can archive it or take a
snapshot of it.

When you archive a project, you create a ZIP file for that version and
place it in a specified directory. To archive a project, click Project →
Archive in Project Navigator. To open an archive or see the files in it,
unzip it.

When you take a snapshot of a project, the snapshot becomes part of
the project. It is accessible from the Snapshot View of the Sources in
Project window. You can open it at any time to view its contents. If
you replace the current project with a snapshot, you can make
changes and reprocess the snapshot version of the project as desired.
You can also replace the current version of a project with one
captured previously as a snapshot.

Refresh F5 Rebuilds the project hierarchy
and updates the Sources in
Project window

Minimize All Windows Minimizes all ISE Windows

Menu Item Function
ISE 4 User Guide 2-15

ISE 4 User Guide
Taking a Snapshot
To take a snapshot of the current version of your project:

1. Click Project → Take Snapshot.

2. Enter a name and comments in the Take a Snapshot of the Project
dialog box.

Note The default name is snap1. Snapshot names cannot contain
spaces. The name appears in the Snapshot View of the Sources in
Project window. Comments appear after the name in the Sources
in Project window if the Files Names command in the View menu
is enabled.

The snapshot is saved in a separate directory (specified by the
Snapshot Name) under the project’s snapshot directory to isolate it
from the present working project files. All the project’s snapshots are
listed on the Snapshot View tab in the Sources in Project window.

All source files that have been added to the project (including user
documents) are copied for the snapshot. The process files necessary
to recreate the state of the project when you made the snapshot are
also copied.

Renaming a Snapshot
To rename a snapshot:

1. Go to the Sources in Project window.

2. Click the Snapshot View tab.

3. Click a snapshot name.

4. Click Source → Rename from the Project Navigator.

5. Modify the name. The selected snapshot name will change so you
can edit it.

Editing a Snapshot Comment
To edit a snapshot comment:

1. Go to the Sources in Project window.

2. Click the Snapshot View tab.

3. Click a snapshot name.
2-16 Xilinx Development System

Project Navigator
4. Click Source → Rename from the Project Navigator.

5. Edit the comment.

Note You cannot add a comment after creating a snapshot. You
can only edit one that was entered when the snapshot was
created.

Deleting a Snapshot
To delete a snapshot:

1. Go to the Sources in Project window.

2. Click the Snapshot View tab.

3. Click a snapshot name.

4. Click Source → Remove from the Project Navigator.

5. Confirm the deletion of all the files.

The snapshot and all its associated files are deleted.

Viewing Snapshot Contents
To open and view the files contained in a snapshot:

1. Go to the Sources in Project window.

2. Click the Snapshot View tab.

3. Click a snapshot name.

4. Click Source → Open from the Project Navigator.

5. The sources for the selected snapshot appear in a hierarchical
display under the snapshot name in the Sources in Project
window. Highlight a source to display the processes for that
source (with check marks status) in the Processes for Current
Source window.

Note The snapshot is read-only. You can view the files and process
status but you cannot change it unless you make it the current project
as described in the “Snapshots and Archives” section.
ISE 4 User Guide 2-17

ISE 4 User Guide
Viewing Snapshot Source Files and Reports
When the hierarchical contents of a snapshot are displayed in the
Sources in Project window, double-click a source to open the file in
the HDL Editor workspace or its associated text editor. Snapshot
source files in the HDL Editor workspace are read-only files.

You can also double-click a report to open it as if it were a source file.
Because you can have multiple reports open at once, you can open
reports from multiple snapshots for comparison.

Replacing the Current Project with a Snapshot
To make changes to the project version represented in a specific
snapshot, make that snapshot version the current version of the
project.

Caution This procedure replaces the current version of the
project with the version saved in a snapshot. Your current project
will no longer exist unless you take a snapshot of it before you
replace it with a previous snapshot.

To replace the current version of a project with a previous snapshot:

1. Go to the Sources in Project window.

2. Click the Snapshot View tab.

3. Click a snapshot name.

4. Click Project → Replace with Snapshot from the Project
Navigator.

5. Click Yes to save your current project as a snapshot. Click No to
replace your current project without saving it as a snapshot.

If you click Yes, the Taking a Snapshot of the Project dialog box
opens to allow you to enter a Snapshot Name and optional
comments for the snapshot of the current project.

The current project is immediately replaced in the Module View with
the version represented in the selected snapshot. When a snapshot
becomes the current project, the snapshot version remains in the
snapshot directory and is not overridden by changes made to its
current project version.
2-18 Xilinx Development System

Project Navigator
Note To cancel this process:

1. Click Yes from the first dialog box.

2. Click Cancel on the Taking a Snapshot of the Project dialog box.

3. Click No on the next dialog box.

Restoring a Snapshot or Archive with Remote
Sources

A remote source file is a source file which resides outside the main
project directory. When a snapshot or archive is created for a project
which includes remote sources, the remote source files are copied into
the snapshot or the archive the same way a local source file would be.
However, when you make a snapshot current, or restore an archived
project, these remote source files are NOT copied back to the remote
location. Rather, they are copied into a subdirectory called
remote_sources in the main project directory. The project still maintains
the links to the remote location of the source files.

To continue working with the snapshot or archived versions of the
source files, manually copy them from the remote_sources
subdirectory back to the original remote location. The original
locations of the remote source files are still represented in the Source
Hierarchy displayed in the Source View window in the Project
Navigator (remote sources are always displayed with their full
pathnames).

For example, you have a project in C:\MyProject which contains a
remote source file named foo.vhd located at
C:\MySourceFiles\foo.vhd. When you create a snapshot for this
project, the file C:\MySourceFiles\foo.vhd is copied into the
snapshot along with the rest of the design files. When you make the
snapshot current by selecting Make Snapshot Current, the
foo.vhd file is copied to C:\MyProject\remote_sources\foo.vhd. To
continue working with this file, copy it from
C:\MyProject\remote_sources\ to C:\MySourceFiles\.

Using the same example, if you archive C:\MyProject, the remote
sources are copied to C:\MyProject\remote_sources, and the archive
is then performed. When you restore the archive from MyProject.zip,
the remote sources are restored to the C:\MyProject\remote_sources
directory. Copy them to the remote locations if desired.
ISE 4 User Guide 2-19

ISE 4 User Guide
2-20 Xilinx Development System

Chapter 3

Projects

This chapter contains the following sections:

• “About Projects”

• “Creating a Project”

• “Sources”

• “Source Types”

About Projects
ISE 4.x organizes and tracks your FPGA or CPLD design as a project.
This section discusses some of the key concepts and features of
projects.

• Project

A project is a collection of all files necessary to create and
download your design to the selected device.

• Project Properties

Each project has a directory, device family, device, and design
flow associated with it as project properties. They enable Project
Navigator to display and run only those processes appropriate
for the targeted device and design flow. See the “Setting Project
Properties” section below.

• Sources

All projects have sources. A source is any element that contains
information about a design, such as HDL files, state diagrams,
schematics, documentation files, simulation models, and test
files. You create and add the sources to your project. See the
“Sources” and “Source Types” sections in this chapter.
ISE 4 User Guide 3-1

ISE 4 User Guide
• Process

A process is an action you can perform on a source to test and
implement your design.

• Project Management

Project Navigator manages your project based on the target
device and design flow you selected when you created the
project. It organizes all the parts of your design, and keeps track
of the processes necessary to move the design from the
conceptual stage through to implementation in the targeted
Xilinx device.

• Auto-Make

Project Navigator’s auto-make feature monitors dependencies
between process steps, and automatically runs and updates the
intermediate processes when necessary. See the “Auto-Make”
section of the “Project Navigator” chapter.

• Context Sensitivity

Project Navigator is context sensitive with respect to source file
types, device types, and design flow selection. The steps listed in
the Processes for Current Source window reflect this context
sensitivity. For example, if you highlight a text file describing the
project, there is no processing to perform, and the Processes for
Current Source window is blank.

In contrast, if you select a top level module, all the processes that
can be performed from that point in the design hierarchy are
listed in the Processes for Current Source window.

Creating a Project
Creating a project consists of the following:

• “Setting Project Properties”

• “Specifying a Project Name and Directory”

• “Selecting a Device and Design Flow”

• “Supported Devices and Design Flows”

• “Project Flow Characteristics”
3-2 Xilinx Development System

Projects
Setting Project Properties
Specify the following project properties when you create a new
project:

• Project name

Give your project a unique name.

• Project directory

Specify a unique directory to store the project’s source files,
intermediate data files, and resulting files.

• Device family

Target your design for a specific Xilinx device family
(architecture). Virtex, Spartan, XC9500 are examples of device
families.

• Device

Target your design for a specific device within the selected device
family. An example of a device is S05 PC844-4, where S05
designates a specific Spartan device, PC844 specifies the package,
and -4 indicates the speed grade.

• Design flow

Specify a design flow, either EDIF or a synthesis tool. FPGA
Express and XST are the synthesis tools. VHDL, Verilog, and
ABEL versions are available for these tools.

Specifying a Project Name and Directory
Specify a project name and directory when you create a new project.
For each project, designate a separate, unique directory containing
only one project file (project_name.npl).

To create a new project:

1. Click File → New Project.

2. In the New Project dialog box, enter a name for the project in the
Project Name field.

The Project Navigator uses the name entered here to create the
project file (project_name.npl). The name you type in the Project
ISE 4 User Guide 3-3

ISE 4 User Guide
Name field appears as a subdirectory in the Project Location
field.

The project targets the default device and uses the design flow
identified in the Project Device and Design Flow field of the New
Project dialog box. See the “Selecting a Device and Design Flow”
section below.

Selecting a Device and Design Flow
The first time you create a new project, a default device and design
flow appear in the New Project dialog box. For subsequent projects,
the device and design flow you used for your last project are used as
the default for the new project. Choose the device and design flow in
the New Project dialog box when you create the project. You can
change them later.

Selecting a Device

To select or change a device:

1. Open the project.

2. Click the Device and Design Flow line in the Sources in Project
window.

3. Click Source → Properties.

The Project Properties dialog box opens with the current values
identified in the Value fields.

4. Click the scroll button on the right side of the Device Family
Value field to display the device family list.

5. Scroll through the device family list and select the device by
clicking its name.

6. When you select a device family, the Project Properties dialog box
automatically updates with a default device and appropriate
design flow for that device family.

For example, if you select Spartan for the Device Family, the
default Spartan device (S05 PC84-4) appears in the Device Value
field. The device information includes the device name (S05),
device package (PC84), and speed (-4).) FPGA Express VHDL
appears as the default Synthesis Tool for Spartan devices.
3-4 Xilinx Development System

Projects
7. Modify the defaults by placing the cursor on the right side of a
Value field and scrolling through the list that appears.

Selecting a Design Flow

The selection of a design flow is closely linked to the Xilinx device
family and the type of design (VHDL or Verilog) you chose for your
project. It also depends on the synthesis tools that are installed. You
can change the design flow at any time.

Caution Changing the design flow after initial selection may
require changing the targeted device.

To select or change a design flow:

1. Open the project.

2. Click the Device and Design Flow line in the Sources in Project
window.

3. Click Source → Properties.

The Project Properties dialog box opens with the current values
shown in the Value fields.

4. Click the right side of the design flow value field to display a list
of the design flows supported for the selected Device Family.

5. Scroll through the design flow list and select the tool by clicking
its name. Only design flows that are appropriate for the selected
device family and that are installed are listed.

Supported Devices and Design Flows
For a list of the most current supported device families and device
flows, see the Device Support table included with the ISE online help
(Help → ISE Help Contents → Reference → Device
Support).

Note Xilinx supports LeonardoSpectrum and Synplify, but does not
provide these synthesis tools with the ISE 4.x software. These are
third party tools that you must purchase and install separately from
ISE.
ISE 4 User Guide 3-5

ISE 4 User Guide
Project Flow Characteristics
The following sections briefly describe the project flow characteristics
for each design flow. Not all devices support all project flows. For a
list of the devices supported by each project flow, click Help → ISE
Help Contents → Device Support.

XST VHDL

• Uses Xilinx Synthesis Technology (XST) for synthesis

• Can contain VHDL code only. No ABEL-HDL is allowed

• Creates a functional VHDL model for schematics prior to
synthesis

XST Verilog

• Uses Xilinx Synthesis Technology (XST) for synthesis

• Can contain Verilog code only. No ABEL-HDL is allowed

• Creates a functional Verilog model for schematics prior to
synthesis

FPGA Express VHDL

• Uses FPGA Express from Synopsys for synthesis

• Can contain mixed VHDL and Verilog code. No ABEL-HDL is
allowed.

• Creates a functional VHDL model for schematics prior to
synthesis

• Can include the Express Constraints Editor, Express Time
Tracker, and Schematic Viewer tools from Synopsys in certain
configurations

FPGA Express Verilog

• Uses FPGA Express from Synopsys for synthesis

• Can contain mixed VHDL and Verilog code. No ABEL-HDL is
allowed.

• Creates a functional Verilog model for schematics prior to
synthesis
3-6 Xilinx Development System

Projects
• Can include the Express Constraints Editor, Express Time
Tracker, and Schematic Viewer tools from Synopsys in certain
configurations

ABEL XST VHDL

• Uses Xilinx Synthesis Technology (XST) for synthesis

• Can contain only ABEL-HDL code and VHDL testbenches. No
Verilog is allowed.

• Creates a functional VHDL model for ABEL-HDL code prior to
synthesis

• Creates a functional VHDL model for schematics prior to
synthesis

ABEL XST Verilog

• Uses Xilinx Synthesis Technology (XST) for synthesis

• Can contain only ABEL-HDL code and Verilog test fixtures. No
VHDL is allowed.

• Creates a functional Verilog model for ABEL-HDL code prior to
synthesis

• Creates a functional Verilog model for schematics prior to
synthesis

LeonardoSpectrum VHDL

• Can contain VHDL code only. No ABEL VHDL allowed

• Creates an EDIF netlist

LeonardoSpectrum Verilog

• Can contain Verilog only. No ABEL-HDL allowed.

• Creates an EDIT netlist

Synplify VHDL

• Can contain mixed VHDL and Verilog code. No ABEL-HDL
allowed.

• Creates an EDIF netlist
ISE 4 User Guide 3-7

ISE 4 User Guide
Synplify Pro VHDL

• Can contain mixed VHDL and Verilog code. No ABEL-HDL
allowed.

• Creates an EDIF netlist

Synplify Verilog

• Can contain mixed VHDL and Verilog code. No ABEL-HDL
allowed.

• Creates an EDIF netlist

Synplify Pro Verilog

• Can contain mixed VHDL and Verilog code. No ABEL-HDL
allowed.

• Creates an EDIF netlist

Sources
A source is any element that contains information about a design.
After you create your project and select a device and design flow, you
can begin creating and adding source files. A project may contain the
following sources:

• The logical descriptions for programming the selected Xilinx
device, including:

♦ HDL files

♦ State diagrams

♦ Schematics

• Documentation files

• Simulation models

• Test files (testbenches or test fixtures)

The types of sources (schematic, VHDL, Verilog, ABEL) available in a
project vary depending on the selected device and design flow. See
the “Source Types” section below for information on the types of
sources supported for ISE 4.x projects.
3-8 Xilinx Development System

Projects
Creating a New Source
To create a new source file:

1. Open the project.

2. Click Project → New Source.

The New dialog box opens with a list of appropriate sources for
the project’s target device and design flow.

3. Select the source type you want to create from the list.

4. Enter a name for the new source file in the File Name field.

♦ Do not add an extension to the file name. ISE 4.x adds the
appropriate extension for the selected source type.

♦ Sources cannot have spaces or periods in their names.

♦ State diagram names are limited to eight characters and must
start with an alphabetic character.

5. Check the Add to Project box to add this source automatically
after it is created.

Note The Add to Project box does not apply to all source types.
You must manually add certain sources, such as state diagrams,
as described below in the “Adding an Existing Source” section.
Testbenches and test fixtures are added automatically.

6. Click Next.

The New Source Information window opens to summarize the
requested new source.

Note If you are adding a VHDL Module or Verilog Module, a
source wizard opens before the New Source Information
window. See the “HDL Sources” section of the “HDL” chapter for
information on using the HDL source wizard.

7. For the following source types, the Select window will open. You
are asked to select a source from a list of sources in the project to
associate the new source with.

♦ test fixture

♦ testbench
ISE 4 User Guide 3-9

ISE 4 User Guide
♦ BMM file

♦ testbench waveform

8. Click Next in the Define Sources in Project window.

9. Click Finish in the New Source Information window.

The source type you selected determines the next step. For example,
if you are creating a schematic, the Engineering Capture System
(ECS) opens. If you are creating a user document, a text editor opens.

A source file with the name specified in the File Name field is loaded
in the selected source tool ready for you to create the source. If you
checked Add to Project, the source is automatically added and is
listed in the Sources in Project window.

Adding an Existing Source
You can add an existing source to a project. The source file can reside
in the project directory or in a remote directory.

To add an existing source file:

1. Open a project.

2. Click a source in the Sources in Project window.

3. Click Project → Add Source.

4. Use the Add Existing Sources in Project dialog box to browse
through your directories and select the source you want to add.
The source you select remains in its current directory. It is not
moved or copied to the project’s directory.

5. Click open.

6. After selecting the file, the Choose Source Type dialog box may
open. If so, identify the file type you are adding. For example, a
file with the .vhd extension can be a VHDL Module, testbench, or
package.

When you click Open to select a file in the Add Existing Sources in
Project dialog box or OK in the Choose Source type dialog box, the file
appears in the Sources in Project window for the current project.

The directory path appears along with the file name for all remote
sources (sources not in the current project directory). To truncate or
3-10 Xilinx Development System

Projects
expand the path information, click Project → Toggle Paths from
the Project Navigator menu.

If the added source references other sources that are not currently in
the project, a red question mark appears beside the undefined source.

Adding a Copy of an Existing Source
You can add a copy of an existing source to a project. The source can
be in the project directory, or in a remote directory.

• If the source is in the project directory, a second copy is not made.
The original is added to the project.

• If the source is in a remote directory, a copy of the source is
created and placed in the project directory. The copy in the
project directory is added to the project.

To add a copy of an existing source to a project:

1. Click Project → Add Copy of Source.

2. Follow the procedures shown above in “Adding an Existing
Source”.

Source Types
Projects can include the source types listed in the following table.

Table 3-1 Permissible Source Types

Source Type File Extension

Project file .npl

User document (such as a
specification)

.txt, .wri, .doc, .xls, .hlp
(or any other extension not recognized
by Project Navigator)

Schematic .sch

State diagram .dia

VHDL module .vhd

VHDL package .vhd

VHDL testbench .vhd

Waveform stimulus .wdl
ISE 4 User Guide 3-11

ISE 4 User Guide
Verilog module .v

Verilog test fixture .tf

ABEL-HDL logic descrip-
tion

.abl

ABEL-HDL test vectors .abv (or .abl)

COREgen IP .xco

LogiBLOX module .mod

Testbench Waveform .tbw

Block Memory Map file .bmm

Executable CPU code
image file

.elf

EDIF Source file .edn, .edf, .edif, .sedif

Table 3-1 Permissible Source Types

Source Type File Extension
3-12 Xilinx Development System

Projects
Synthesis Tool Support

Source Type Descriptions
ISE 4.x supports the following source types:

• “State Diagram”

• “Schematic”

• “VHDL Module”

• “VHDL Testbench”

Table 3-2 Synthesis Tool Support

Source Type

Synthesis Tool

XST
VHDL

XST
Verilog

FPGA
Express

ABEL
Leonardo
Spectrum

Synplify

User document X X X X X X

Schematic X X X X X X

VHDL Module X X X X

VHDL Testbench X X X X

VHDL Package X X X X

VHDL Library X X X X X

Verilog Module X X X X

Verilog Test Fixture X X X X

ABEL HDL Module
(CPLD only)

X

ABEL Test Vector
(CPLD only)

X

State Diagram X X X X X X

COREgen IP
(FPGAs only)

X X X X X

LogiBLOX Module Spartan,
Spar-

tanXL,
CPLD

Spartan,
Spar-

tanXL,
CPLD

XC 4000,
Spartan,

Spar-
tanXL,
CPLD

CPLD XC 4000,
Spartan,

Spar-
tanXL,
CPLD

XC4000
ISE 4 User Guide 3-13

ISE 4 User Guide
• “VHDL Package”

• “VHDL Library”

• “Verilog Module”

• “Verilog Test Fixture”

• “Testbench Waveform”

• “ABEL-HDL Module (CPLDs Only)”

• “ABEL Test Vector (CPLDs Only)”

• “CORE Generator Module”

• “LogiBLOX Module”

The following sections describe the source types you can add to your
project. All sources appear in the Project Navigator Sources in Project
window. See the “Sources In Project Window” section of the “Project
Navigator” chapter for detailed information on how to access and
display source data.

State Diagram

Drawing a state diagram is one method you can use to define your
design. A state diagram is a graphical representation of a finite state
machine. The state diagram source file (.dia) can be added as a user
document. You can add the optimized HDL module (.vhd or .v)
translated from the state machine as a VHDL or Verilog source file.
After the state diagram file and its corresponding HDL file are added,
they are updated whenever modifications are made to either of them
using the state diagram tool.

ISE 4.x includes support for StateCAD for the creation and
development of state machines and their translation to HDL code.

Schematic

Schematics (.sch) are another form of design entry. Schematic
diagrams are created in the Engineering Capture System (ECS) and
automatically added to your project. Schematic sources are
automatically translated into VHDL or Verilog modules for
simulation and synthesis. The VHDL or Verilog functional modules
are not listed in the Sources in Project window.
3-14 Xilinx Development System

Projects
To view the functional module:

1. Click a schematic source.

2. Click View VHDL (or Verilog) Functional Model in the Processes
for Current Source window.

VHDL Module

A VHDL module (.vhd) is a source file that contains a single VHDL
entity and architecture pair. The architecture should be synthesizable
VHDL. You can create a VHDL module using the HDL Editor. See the
“HDL” chapter for information on creating VHDL source files.

VHDL Testbench

A VHDL testbench (<vhdl_modulename>_tb.vhd) is a source file
containing a single entity and architecture pair that provides the
stimulus for another VHDL design unit during simulation. In ISE 4.x,
VHDL Testbench sources are associated with the source file that they
instantiate. To enable ISE 4.x to automatically launch a simulation
using the installed simulator, the entity name of any testbench source
must be “testbench.”

A VHDL testbench is easy to recognize because the entity declaration
has no ports. It is the entire universe to the unit under test. Nothing
may enter or leave it.

Testbench Waveform

Use the HDL Bencher to edit this file.

VHDL Package

VHDL models may be defined using packages. Packages contain
type and subtype declarations, constant definitions, function and
procedure definitions, and component declarations.

XST also supports predefined packages; these packages are pre-
compiled and can be included in VHDL designs. These packages are
intended for use during synthesis, but may also be used for
simulation. See the Xilinx Synthesis Technology (XST) User Guide for a
list and description of supported predefined packages.
ISE 4 User Guide 3-15

ISE 4 User Guide
VHDL Library

VHDL requires all design sources to be in a library. See the “HDL”
chapter for information on creating and naming VHDL libraries.

Verilog Module

A Verilog module (.v) is a file that contains code for a single Verilog
module. See the “HDL” chapter for information on creating Verilog
source files.

Verilog Test Fixture

A Verilog test fixture (.tf) is a file containing a single module that
provides the stimulus for another Verilog design unit during
simulation. In ISE 4.x, Verilog test fixture sources are associated with
the source file that they instantiate.

ABEL-HDL Module (CPLDs Only)

An ABEL-HDL module (.abl) is a file containing ABEL code. See the
“HDL” chapter for information on creating HDL source files.

ABEL Test Vector (CPLDs Only)

An ABEL test vector (.abv or .abl) is a file containing a single module
that provides the test vectors necessary to simulate your design.

CORE Generator Module

A CORE Generator module is a module from the CORE Generator
library or one customized with the CORE Generator tool. The CORE
Generator delivers parameterizeable cores optimized for Xilinx
FPGAs. It provides a catalog or ready-made functions ranging in
complexity from simple arithmetic operators such as adders to
system-level building blocks that include filters and memories.

LogiBLOX Module

A LogiBLOX module is a module from the LogiBLOX library of
generic modules or one customized with the LogiBLOX tool.
LogiBLOX modules are high-level modules such a counters, shift
3-16 Xilinx Development System

Projects
registers, and multiplexers that are pre-optimized for XC4000,
Spartan, SpartanXL, and CPLD devices.

See the “LogiBLOX” chapter for information on using LogiBLOX in
your project.
ISE 4 User Guide 3-17

ISE 4 User Guide
3-18 Xilinx Development System

Chapter 4

Design Flow

This chapter contains the following sections:

• “About Design Flow”

• “Design Entry”

• “Constraint Entry”

• “Synthesis”

• “Simulation”

• “Implementation”

• “Device Programming”

About Design Flow
Design flow is a multi-step, iterative process that includes:

• “Design Entry”

Create your design using HDL code, schematics, Intellectual
Property such as CORE Generator, and state diagrams.

• “Constraint Entry”

Enter timing, placement, and other constraints in your design at
various stages, using a variety of tools and methods.

• “Synthesis”

Translate your design into gates and optimize it for the target
architecture.

• “Simulation”

Verify the operation of your design before you implement it as
hardware.
ISE 4 User Guide 4-1

ISE 4 User Guide
• “Implementation”

Convert the logical design file format (EDIF or NGO) created
during design entry into a physical file format for a specific
Xilinx architecture.

• “Device Programming”

Create a programming file that can be downloaded to the target
device.

Design Entry
You can create your design using HDL code, Intellectual Property
such as CORE Generator, schematics, and state diagrams. You can
create new sources or add existing sources to your project. Behavioral
simulators are available to test the logic of your designs before
continuing to the next stages.

ISE 4.x includes the following design entry tools, all of which are
accessible from Project Navigator:

• “HDL Editor”

• “StateCAD State Machine Editor”

• “Engineering Capture System (ECS)”

• “CORE Generator”

• “LogiBLOX”

HDL Editor
HDL Editor is a language-sensitive text editor for VHDL, Verilog, and
ABEL- HDL. HDL Editor is integrated into Project Navigator.

Note ABEL-HDL is supported for CPLDs only.

HDL Editor includes color coding and context sensitive help for
reserved words. The Project Navigator New Source Wizard can build
the initial text structure for your HDL file. Project Navigator also
includes a Language Template feature with pre-built language and
synthesis templates to assist with HDL entry. For more information,
see the “HDL” chapter later in this Guide.
4-2 Xilinx Development System

Design Flow
StateCAD State Machine Editor
Use StateCAD® and StateBench® to create state diagrams for state
machine designs. The Project Navigator launches StateCAD for
source creation or modification. You can add State diagrams and their
corresponding StateCAD-generated HDL source modules to your
project. Once added, they are updated automatically in Project
Navigator whenever they are modified within StateCAD. Use the
StateBench simulator to verify the behavior of your state diagram.
See the “State Diagrams” chapter later in this Guide.

Engineering Capture System (ECS)
For schematic designs, Project Navigator launches the Engineering
Capture System (ECS). ECS includes both a schematic editor and a
symbol editor. The schematic editor provides a graphical entry
method to capture designs. The symbol editor allows you to create
and customize a variety of electrical symbol types. See the “Schematic
Sources” chapter later in this Guide.

CORE Generator
CORE Generator is a design tool that delivers parameterized cores
optimized for Xilinx FPGAs. It provides you with a catalog of ready-
made functions ranging in complexity from simple arithmetic
operators such as adders, accumulators, and multipliers, to system-
level building blocks.

The CORE Generator System creates customized functional building
blocks such as FIR filters, FIFOs, and multipliers, and delivers high
levels of performance and area efficiency. This is accomplished by
taking advantage of Xilinx's core-friendly FPGA architectures and
Xilinx Smart-IP™ technology.

Xilinx Smart-IP technology provides FPGA architectural advantages
such as look-up tables (LUTs), distributed and block RAM,
embedded multipliers, and segmented routing. This technology also
enables relative location constraints, expert logic mapping, and
floorplanning to optimize performance of a given core instance in a
given Xilinx FPGA architecture.
ISE 4 User Guide 4-3

ISE 4 User Guide
The CORE Generator System produces a Electronic Data Interchange
Format (EDIF) netlist, a Verilog Output (VEO) with a Verilog (V)
wrapper file or, VHDL Output (VHO) template file with a VHDL
(VHD) wrapper file. The Electronic Data Netlist (EDN) file contains
the information for implementing the module in a Xilinx FPGA. The
.ASY, .VHX and .XSF symbol information files allow you to integrate
the CORE Generator module into a schematic design for ECS,
Innoveda, Mentor, or Foundation tools. Finally, the VEO and VHO
template files contain code that can be used as a model for
instantiating a CORE Generator module in a Verilog or VHDL design.

For detailed information, see the CORE Generator Guide and the
“CORE Generator” chapter later in this Guide.

LogiBLOX
ISE 4.x includes LogiBLOX to aid in the creation of high-level
modules, such as shift registers and counters. LogiBLOX supports
XC4000, Spartan, and SpartanXL devices only. See the “LogiBLOX”
chapter later in this Guide.

Constraint Entry
Constraints are instructions placed on components or nets through a
user constraint file (UCF), HDL code, or schematic. Constraints can
indicate such things as placement, implementation, naming,
directionality, and timing. For detailed information about constraints,
see the Xilinx Constraints Guide.

Constraint Types
The following constraints are available for use with your FPGA and
CPLD designs:

• Timing Constraints

• Placement Constraints

• Grouping Constraints

• Mapping Directives

• Routing Directives

• Modular Design Constraints
4-4 Xilinx Development System

Design Flow
• Synthesis Constraints

• Fitter Directives

• Initialization Directives

• DLL and DCM Constraints

• Logical and Physical Constraints

Caution Not all constraints are available for all devices, nor can
they be entered with every tool or method. For details, see the
Xilinx Constraints Guide, especially Appendix A which lists every
constraint and specifies its type, the devices with which it is
available, and the methods by which it can be entered.

Third Party Constraints
A third party constraint is a constraint from a company other than
Xilinx that is supported within the Xilinx technology. Xilinx supports
third party constraints from the following companies:

• Synplicity

• Synopsys

• Exemplar

For more information about third party constraints, see the Xilinx
Constraints Guide.

Constraint Entry Tools
Constraints can be entered at various stages throughout the entire
design process, using a variety of tools. Constraint entry methods
and tools include the Xilinx Constraints Editor, UCF files, FPGA
Express, and XST Constraint files, as well as several others. For more
information about using each of these tools and methods to enter
constraints, see the Xilinx Constraints Guide.
ISE 4 User Guide 4-5

ISE 4 User Guide
Synthesis
After your design has been successfully analyzed, the next step is to
translate the design into gates and optimize it for the target
architecture. This is the synthesis phase. Two synthesis tools are
included on the ISE 4.x CD-ROM:

• “XST from Xilinx”

• “FPGA Express from Synopsis”

ISE 4.x also provides integration with the following synthesis tools:

• “Synplify from Synplicity”

• “LeonardoSpectrum from Exemplar”

You choose the synthesis tool in the Design Flow option when you
create a project. For detailed information about synthesis, see the
Simulation and Synthesis Design Guide.

XST from Xilinx

XST (Xilinx Synthesis Technology) is a Xilinx tool that synthesizes
HDL designs to create an NGC file. The Project Navigator invokes
XST processing when you select a source and then select a synthesis
process for a project that has the XST synthesis tool associated with it.
An XST flow project can contain either VHDL (XST VHDL) or Verilog
(XST Verilog) modules, but not a mix of both. A functional VHDL
model (XST VHDL) or Verilog model (XST Verilog) is created for
schematics prior to synthesis. Process properties can be set to control
XST synthesis.

FPGA Express from Synopsis

FPGA Express from Synopsys, Inc., can synthesize VHDL, Verilog, or
mixed HDL designs to create EDIF netlists. The Project Navigator
invokes FPGA Express processing when you select a source and then
select a synthesis process for a project that has the FPGA Express
synthesis tool associated with it.

Depending on the ISE 4.x configuration you purchased, the Express
Constraints Editor (pre-optimization), and Time Tracker (post-
optimization) GUIs may also be available to you. A functional VHDL
model (FPGA Express VHDL) or Verilog module (FPGA Express
4-6 Xilinx Development System

Design Flow
Verilog) is created for schematics prior to synthesis. Process
properties can be set to control FPGA Express synthesis.

Both FPGA Express VHDL and FPGA Express Verilog support mixed
HDL designs. The designation VHDL or Verilog when you select an
FPGA Express synthesis tool refers to whether Verilog or VHDL
functional models are created for schematics.

For general information, see the Synopsis Web site at http://
www.synopsys.com/.

Synplify from Synplicity

Synplify is a third party synthesis tool from Synplicity, Inc., that can
effectively synthesize VHDL, Verilog, and mixed language designs to
create EDIF netlists. ISE 4.x works with Synplify and Synplify Pro 6.2
and higher. For general information, see the Synplicity Web site at
http://www.synplicity.com/. For detailed information, see the
Synplify documentation, or the online help provided with Synplify.

LeonardoSpectrum from Exemplar

LeonardoSpectrum is a third party synthesis tool from Exemplar
Logic, Inc. LeonardoSpectrum is a synthesis tool that can effectively
synthesize VHDL, Verilog, and mixed language designs to create
EDIF netlists. ISE 4.x works with LeonardoSpectrum v2000.1b and
higher. For general information, see the Exemplar Web site at http://
www.exemplar.com/. For detailed information, see the
LeonardoSpectrum documentation or the online help provided with
LeonardoSpectrum.
ISE 4 User Guide 4-7

http://www.synplicity.com/
http://www.synplicity.com/
http://www.exemplar.com/
http://www.exemplar.com/
http://www.synopsys.com/
http://www.synopsys.com/

ISE 4 User Guide
Simulation
Simulation verifies the operation of your design before you
implement it as hardware. For detailed information about simulation,
see the Simulation and Synthesis Design Guide.

Simulation Points
Several simulation points are available to test your design:

• Behavioral simulation to check the logic prior to synthesis

• Functional Simulation to check the logic post-synthesis

ModelSIM simulators are supported in Project Navigator for
functional simulation with or without a testbench or test fixture.
A testbench or test fixture template generating tool is available in
Project Navigator. For automated testbench or test fixture
creation, you can use the HDL Bencher.

• Post-MAP simulation to verify behavior post-map

• Post-route Simulation to verify that the design meets the timing
requirements you set for your design in the targeted device

You can perform post-route simulation on your design using
ModelSIM (from MTI) and a testbench or test fixture. Post-route
simulation allows you to check and correct your design before
implementing it. For post-route simulation, you can use the same
testbench or test fixture you used for functional simulation. The
post-route simulation includes timing information for the
targeted device.

Simulation Tools
ISE 4.x supports the following simulation tools:

• HDL Bencher

HDL Bencher is an automated testbench or test fixture creation
tool. The HDL Bencher is fully integrated with Project Navigator.

• ModelSIM Simulator

ModelSIM from Model Technology, Inc., is integrated in Project
Navigator for functional (RTL) simulation of your HDL source
modules. ModelSIM XE, the Xilinx Edition of Model Technology,
4-8 Xilinx Development System

Design Flow
Inc.’s ModelSIM application, can be installed from the MTI CD
included in your ISE 4.x package. For general information, see
the Model Technology Web site at http://www.model.com/.

Implementation
The implementation stage consists of taking the synthesized netlists
through translation, mapping, and place and route.

To check your design as it is implemented, reports are available for
each stage in the implementation process.

Use the Xilinx Constraints Editor to add timing and location
constraints for the implementation of your design. You can also open
the Xilinx Floorplanner, FPGA Editor, and ChipViewer as necessary.

To check that your design meets timing requirements, Static Timing
reports and the Xilinx Timing Analyzer are available.

For more information, see the “Implementation” chapter later in this
Guide.

Floorplanner

Floorplanner from Xilinx is an interactive graphical tool that allows
you to view and edit location constraints in your design. You can
manually or automatically place logic into a floorplan of the selected
FPGA. In the Xilinx modular design flow, you can use the
Floorplanner to assign location constraints for each module in your
design.

The graphical user interface has pull-down menus and toolbar
buttons that contain the commands for:

• Changing the design hierarchy

• Floorplanning

• Performing design rule checks

Dialog boxes allow you to quickly set parameters and options for
command execution.

For more information, see the “Floorplanner” section of the “FPGA
Implementation” chapter.
ISE 4 User Guide 4-9

http://www.model.com/

ISE 4 User Guide
FPGA Editor

FPGA Editor is a graphical application for displaying and
configuring Field Programmable Gate Arrays (FPGAs). Functions
you can perform on your designs in the FPGA Editor include:

• Place and route critical components before running the automatic
place and route tools.

• Finish placement and routing if the routing program does not
completely route your design.

• Add probes to your design to examine the signal states of the
targeted device. Probes are used to route the value of internal
nets to an IOB for analysis during the debugging of a device.

• Run the BitGen program and download the resulting BIT file to
the targeted device.

• View and change the nets connected to the capture units of an
ILA core in your design.

• Create an entire design by hand (recommended for advanced
users only).

For more information, see the “FPGA Editor” section of the “FPGA
Implementation” chapter.

Timing Analyzer

The Timing Analyzer performs static timing analysis of an FPGA or
CPLD design. The FPGA design must be mapped and can be
partially or completely placed, routed, or both. The CPLD design
must be completely placed and routed. A static timing analysis is a
point-to-point analysis of a design network. It does not include
insertion of stimulus vectors.

The Timing Analyzer verifies that the delay along a given path or
paths meets your specified timing requirements. It organizes and
displays data that allows you to analyze the critical paths in your
circuit, the cycle time of the circuit, the delay along any specified
paths, and the paths with the greatest delay. It also provides a quick
analysis of the effect of different speed grades on the same design.

The Timing Analyzer works with synchronous systems composed of
flip-flops and combinatorial logic. In synchronous design, the Timing
Analyzer takes into account all path delays, including clock-to-Q and
4-10 Xilinx Development System

Design Flow
setup requirements, while calculating the worst-case timing of the
design. However, the Timing Analyzer does not perform setup and
hold checks; you must use a simulation tool to perform these checks.

The Timing Analyzer creates timing analysis reports, which you
customize by applying filters with the Tab dialog box options.

For more information, see the “Timing Analyzer” section of the
“FPGA Implementation” chapter.

XPower

XPower is a post-design application tool that allows you to
interactively and automatically analyze power consumption for the
following Xilinx FPGAs and CoolRunner CPLDs:

• Virtex

• VirtexE

• Virtex II

• Spartan II

• Spartan E

• XPLA3

XPower does not support:

• Coolrunner2

• XC4000

• XC5000

• XC9000

• Virtex2Pro

For more information, see the “XPower” section of the “FPGA
Implementation” chapter.

ChipViewer

The ChipViewer provides a graphical view of the fitting report. You
can examine inputs and outputs, macrocell details, equations, and
pin assignments. You can examine both pre-fitting and post-fitting
results. The ChipViewer also accesses the Timing Analyzer Report.
ISE 4 User Guide 4-11

ISE 4 User Guide
• Pre-fitting Examination

The pre-fitting examination looks at the contents of the .ngd file,
the design netlist. In this view you can get basic I/O information
and make pin assignments, pin-lock, modify your UCF file and
prohibit pins.

• Post-Fitting Examination

The post-fitting examination looks at the contents of the .vm6 file,
the fitting result. Here you can examine final results.

For more information, see the “CPLD ChipViewer” section of the
“CPLD Implementation” chapter.

Device Programming
When your design meets all your requirements, you can create a
programming file that can be downloaded to the target device. For
more information, see the “Device Programming” chapter later in
this Guide.

Use the following tools to program a device:

• “iMPACT”

• “PROM File Formatter”

iMPACT and PROM File Formatter can be opened from Project
Navigator.

iMPACT

iMPACT, a command line and GUI based tool, allows you to:

• Configure your PLD designs using Boundary-Scan, Slave Serial,
and Select Map configuration modes.

• Download.

• Read Back and Verify design configuration data.

• Perform functional tests on any device.

For more information, see the “iMPACT” section of the “Device
Programming” chapter.
4-12 Xilinx Development System

Design Flow
PROM File Formatter

Use PROM File Formatter to:

• Format BIT files into a PROM file that is compatible with Xilinx
and third-party PROM programmers.

• Concatenate multiple bitstreams into a single PROM file for daisy
chain applications.

• Store several applications in the same PROM file (using the Xilinx
FPGA reconfiguration capability).

For more information, see the “PROM File Formatter” section of the
“Device Programming” chapter.
ISE 4 User Guide 4-13

ISE 4 User Guide
4-14 Xilinx Development System

Chapter 5

HDL

This chapter contains the following sections:

• “HDL Sources”

• “HDL Editor”

• “HDL Library Mapping”

HDL Sources
This section describes the creation of HDL design sources. You can
create your design using:

• HDL code only

OR

• A combination of HDL code, schematics, and state diagrams

Supported Languages
ISE 4.x supports the following languages for the creation of HDL
source files:

• “VHDL”

• “Verilog”

• “ABEL-HDL”

Note ABEL-HDL is supported for CPLD designs only.

The languages that can be included in your project depend on the
targeted device and design flow.
ISE 4 User Guide 5-1

ISE 4 User Guide
VHDL

VHDL is an industry-standard hardware description language. It is
recognizable as a file with a .vhd or .vhdl extension. VHDL stands for
VHSIC (Very High-Speed Integrated Circuits) Hardware Description
Language.

You can use VHDL to model a digital system at many levels of
abstraction, ranging from the algorithmic level to the gate level.
VHDL is capable of describing the concurrent and sequential
behavior of a digital system with or without timing.

See the Xilinx Synthesis Technology (XST) User Guide for information
on using VHDL in projects with the XST synthesis tool. See the
Synthesis and Simulation Design Guide for information on using VHDL
in projects with the FPGA Express synthesis tool and other tools.

Verilog

Verilog is a commonly used Hardware Description Language (HDL).
It can be used to model a digital system at many levels of abstraction,
ranging from the algorithmic level to the gate level. Verilog files have
a .v extension.

Originally developed by Cadence Design Systems, Verilog is now
maintained by OVI (Open Verilog International). For more
information, go to http://www.verilog.com.

See the Xilinx Synthesis Technology (XST) User Guide for information
on using Verilog in projects with the XST synthesis tool. See the
Synthesis and Simulation Design Guide for information on using Verilog
in projects with the FPGA Express synthesis tool and other tools.

ABEL-HDL

ABEL is a high-level language (HDL) and compilation system. In ISE
4.x, ABEL-HDL is supported for CPLD devices only. It is not
supported for FPGA devices or for CPLDs devices used with a design
flow other than ABEL XST or ABEL BLIF.
5-2 Xilinx Development System

http://www.verilog.com/
http://www.verilog.com/
http://www.verilog.com/

HDL
You can convert existing ABEL-HDL designs into VHDL or Verilog
design for use with other devices or synthesis tools. To access an HDL
Converter:

1. Click the Device and Design Flow line in the Sources in Project
window.

2. Right-click HDL Converter (under Design Utilities) in the
Processes for Current Source window, and select Properties.

3. In the Process Properties dialog box, enter the name of the ABEL
file you want to convert.

4. Choose whether to convert it to VHDL or Verilog.

Creating HDL Source Files
To create an HDL source file:

• Use any text editor to create an HDL source file, then add that file
to your project.

OR

• Use Project Navigator’s New Source Wizard and HDL Editor.

New Source Wizard

The New Source Wizard displays a series of dialog boxes in which
you enter information about the new source. Project Navigator uses
this information to open a skeleton file in HDL Editor using the
selected language. You choose whether you want to add the file to the
project.

Creating New HDL Modules

The following procedure describes the creation of a VHDL file. The
procedure for creating Verilog or ABEL-HDL files is similar.

To create a new HDL Module:

1. Open or create your project (see the “Creating a Project” section
of the “Projects” chapter).

2. Click Project → New Source from Project Navigator to access
the New Sources in Project window.
ISE 4 User Guide 5-3

ISE 4 User Guide
3. Select the HDL file type you want to create from the list of
available source types displayed in the New window. The HDL
source types included in the list depend on the device and design
flow you selected for your project.

4. Enter a name for the new HDL file in the File Name box. See the
“Creating a New Source” section of the “Projects” chapter for
detailed information on the New source dialog box.

5. Click Next.

For new VHDL modules, the Define VHDL Sources in Project
window opens. Use this window to create skeleton code for the
VHDL module you are describing.

6. Enter a Port Name.

7. Click in the right side of the Direction box.

8. In the drop-down list, select a direction (in, out, inout).

9. Click in the right side of the Most Significant Bit (MSB) box and
Least Significant Bit (LSB) box to access their selector arrows. Use
the up and down arrows to select the value.

Note The MSB and LSB fields define the signal on the pin name
as a bus. For example, for a pin named DATA with an MSB of 7
and an LSB of 0, the bus would be DATA[7:0]. If the signal on the
pin is not a bus (for example, a clock), leave the MSB and LSB
fields blank.

10. Click Next.

The New Source Information window opens with a summary of
the specifications made in the Define VHDL Sources in Project
window.

11. Click Finish.

The HDL Editor opens in the Project Navigator’s workspace with
the newly created skeleton code displayed in it.

12. Use the HDL Editor to continue coding from the new module.

Creating a New VHDL Package

The following procedure describes the creation of skeleton code for a
new VHDL package. The procedure to create skeleton code for a new
VHDL testbench or Verilog test fixture is similar.
5-4 Xilinx Development System

HDL
To create skeleton code for a new VHDL package:

1. Open or create your project (see the “Creating a Project” section
of the “Projects” chapter).

2. Click Project → New Source from Project Navigator to open
the New Sources in Project dialog box.

3. Click VHDL Package from the list of available source types
displayed in the New dialog box.

4. Enter a name for the new VHDL package in the File Name box.
See the “Creating a New Source” section of the “Projects” chapter
for detailed information on the New source dialog box.

5. Click Next.

The New Source Information window opens with a summary of
your request.

6. Click Finish.

The HDL Editor opens with skeleton code for a new VHDL
package.

7. Use the HDL Editor to complete the VHDL package.

Opening HDL Source Files
To open any HDL source file listed in the Sources in Project window:

1. Double-click the HDL file name.

2. The HDL file opens in the HDL Editor window of Project
Navigator.

The HDL Editor is language sensitive and identifies the language in
the file by the file extension.
ISE 4 User Guide 5-5

ISE 4 User Guide
HDL Editor
The HDL Editor is a text editor for editing HDL source files. In
addition to regular editing features, the editor provides syntax
coloring. The syntax coloring feature supports three languages:

• VHDL

• Verilog

• ABEL

To open HDL Editor:

• Click Project → New Source from the Project Navigator.
Follow the new source creation sequence. At the end of the
sequence, the new HDL file opens in the HDL Editor.

OR

• Double-click any HDL file listed in the Sources in Project
window.

OR

• Click File → New from the Project Navigator.

Note File → New does not add the new file to the project. You
must use Project → Add Source if you use File → New to
create a new HDL source.

HDL Editor Functions

HDL Editor Online Help

Detailed procedures for using the HDL editor are given in the HDL
Editor online help.

General Help

To access comprehensive HDL Editor online help:

1. Click Help → ISE Help Contents in the Project Navigator
menu.

The Xilinx ISE Online Help System menu (the help umbrella)
opens.
5-6 Xilinx Development System

HDL
2. Click HDL Editor under Design Entry.

The HDL Editor help window opens.

3. Search for your topic using the Contents, Index, or Find tabs.

Context Sensitive Help

Context sensitive online help, especially for reserved words, is
available in open HDL files. To access context sensitive online help:

1. Highlight a word or phrase.

2. Press F1.

3. A context sensitive help topic is displayed.

File Operations

Use the Project Navigator File menu to open, close, print, and save
files in the HDL Editor workspace. You can have multiple files open
at one time. Use the tabs at the bottom of the HDL Editor window to
move between files.

Window Operations

To maximize the HDL Editor workspace:

• Click the Toggle Workspace Window toolbar button to hide the
Sources in Project and Processes for Current Source windows.

• Click the Tool Transcript View toolbar button to hide the
Transcript view.

See the “Docking and Undocking Windows and Toolbars” section of
the “Project Navigator” chapter for additional information on
maximizing the HDL Editor workspace.
ISE 4 User Guide 5-7

ISE 4 User Guide
Editing Functions

The Project Navigator Edit menu contains the cursor movement,
selection, copy, cut, paste, and insert file functions that you use with
the HDL Editor. Icons on the Project Navigator Toolbar are also
available for the basic functions.

When the Language Template window is active, the Project
Navigator Edit menu changes to reflect the edit functions available
with the Language Templates tool. A separate toolbar on the
Language Template window is also available for these functions.

Note For information about Language Templates, see the “Language
Templates” section below.

Search Functions

The Project Navigator Edit menu includes search functions for the
files in the HDL Editor workspace. The Find in File function is
particularly useful for searching across multiple files. You can initiate
the search from the Project Navigator Edit menu, or from the search
input field of the Editor toolbar. The Find in Files function searches all
files currently open in the HDL Editor workspace for the specified
target. The results appear in the Transcript window. The input field
on the Editor toolbar includes a list of previous search targets.

Macro Functions

The Project Navigator Macro menu contains functions for use in
keyboard recording and playback.

The HDL Editor allows you to record your own macros for use in the
active document. You can file macros in user created directories and
recall them in future documents.

Note You are not prompted to save your macros when closing the
Project Navigator. Select Save Macros to make your recorded macros
available for future projects.
5-8 Xilinx Development System

HDL
Customizing Tabs and Fonts
To customize the tab settings and fonts used with the HDL Editor:

1. Click Edit → Preferences from the Project Navigator.

2. Click the Editor tab on the Preferences dialog box.

3. Use the Tabs and Font areas on the Editor Preferences menu to
modify these items.

Note The background color of the HDL Editor workspace is
controlled by your computer’s application background display
setting.

Language Specific Features
The HDL Editor identifies the coding language in a file based on the
extension added to the file name. See Table 3-1 of the “Projects”
chapter for source type and file extension information.

The HDL Editor includes color coding of strings, comment,
keywords, and directives as well as context sensitive help for
reserved words. The HDL editor adjusts its color-coding, help, and
keyword and reserved word identification as appropriate for the
language contained in the file. To check whether a word in an open
HDL file is a reserved word, highlight it and press F1. This opens the
HDL Editor help contents, which contains information on reserved
words.

A Language Templates tool is included to aid VHDL, Verilog and
ABEL source code entry. See the “HDL Sources” section above for
information on this tool.

Language Templates
Multiple language and synthesis templates with prepared pieces of
code are available in ISE 4.x. These templates enable easy insertion of
pre-built text structures such as common language structures or
instantiation templates for synthesis into your HDL source file. There
are four types of templates:

• Component Instantiation
For VHDL and Verilog only
ISE 4 User Guide 5-9

ISE 4 User Guide
• Language Templates
With basic language constructs

• Synthesis Templates
With synthesis-oriented implementation of basic functional
blocks, such as multiplexers, flip-flops, and counters

• User Templates
User created templates for specific constructs

Opening the Language Templates Tool

To open the Language Templates tool:

• Click Edit → Language Templates from the Project
Navigator.

OR

• Click the Language Template icon in the Editor toolbar.

Figure 5-1 Language Template Icon

The Language Template window opens in the HDL Editor window.
See the following figure.

Figure 5-2 Language Templates Window
5-10 Xilinx Development System

HDL
The Language Templates window consists of two panes:

• The left pane allows you to list the available code templates for
ABEL, Verilog, VHDL, and the CORE Generator components.

• The right pane displays the template information (text) when you
select a template.

Selecting an Existing Template

To select a template for use in your HDL code:

1. Open the Language Templates window as described in the
“Opening the Language Templates Tool” section.

2. Click the “+” symbol in front of ABEL, COREGEN, Verilog, or
VHDL to display the directories under each selection (see the
figure in the “Language Templates” section).

3. Click the directory under the selected language or COREGEN
that represents the type of template you want. Browse through
the underlying directories and files to select the template.

4. Click a template name to display the template (and example code
for Language Templates) in the right-hand pane.

You cannot edit component instantiation templates, language
templates, or synthesis templates from the Language Templates
window. You must copy them to an open file in the HDL Editor
workspace to modify template contents. After you modify the
contents or create a new template, you can add the template as a user
template for future use.

Inserting Templates in HDL Sources

Use any of the following methods to insert a template into an open
source file in the HDL Editor workspace.

Method One

1. Select a template from the left-hand pane of the Language
Templates window.

2. Drag and drop it into the HDL code.

To scroll within the HDL Editor to the correct line, continue to
hold the left mouse button down, and move to the top or bottom
ISE 4 User Guide 5-11

ISE 4 User Guide
of the Edit window. A special cursor indicates where the text will
be dropped.

Method Two

1. Place your cursor where you want to insert the text.

1. Highlight the template text.

2. Click Edit → Use in File in the Project Navigator, or click
the Use in File icon on the Language Templates toolbar.

3. The Template text is inserted into the HDL file.

Method Three

1. Highlight the template text.

2. Right-click and select copy.

3. Place your cursor where you want to insert the text.

4. Right-click.

5. Click Paste from the pull-down menu.

Method Four

1. Highlight the text you want to insert.

2. Drag-and-drop it into your document.

Creating a User Template

To create a new user template:

1. Open the Language Templates window as described in the
“Opening the Language Templates Tool” section.

2. Select ABEL, Verilog, or VHDL from the Templates window of
the Template Assistant.

3. Highlight the User Templates directory under the selected
language.

4. Click the New Template icon on the Template Assistant toolbar.

5. Enter a name for the new template in the New Template name
edit field that appears in the Language Templates window.
5-12 Xilinx Development System

HDL
6. Move the cursor to the window on the right side of the Template
Assistant and use the HDL Editor to enter the template text.

7. Click the Save Templates icon on the Template Assistant toolbar
when you are ready to save the newly entered template
information.

Use the methods described in the “Inserting Templates in HDL
Sources” section to place the template in your HDL code.

Creating a Schematic Symbol from an HDL Source
To create a schematic symbol from an HDL file for use on a schematic:

1. Highlight the HDL file in the Sources in Project window. The file
can contain underlying schematics or other HDL modules.

2. Double-click the Create Schematic Symbol process in the
Processes for Current Source window.

The symbol is created and placed in the project directory. It is named
the same as the HDL file except that it has .sym as its extension. It is
also automatically included in the Local Symbol directory of the
Engineering Capture System (ECS) symbol libraries.

To use the symbol in a schematic:

1. Open a schematic.

2. Click Add → Symbol in the Engineering Capture System (ECS).

3. Select the symbol from the Local Symbol directory for placement
on the schematic.

See the “Schematic Sources” chapter for information on the
Engineering Capture System (ECS).

To view and modify the HDL text after you add a symbol created
from a HDL source:

1. Click View → Push/Pop from the Engineering Capture System
(ECS) menu.

2. Select the HDL source symbol on the schematic.

The HDL source file opens in the HDL Editor workspace.
ISE 4 User Guide 5-13

ISE 4 User Guide
HDL Library Mapping
ISE 4.x includes an HDL library mapping feature to include HDL files
as part of an HDL library. Libraries allow sharing of design elements
between sources in a design and between designs. This feature makes
designs easier to manage and allows for design reuse. The HDL
library mapping feature allows you to identify library files, and
depending on the language, the named library they are part of. This
information is passed to the various tools that need it, such as
synthesis tools and simulators.

VHDL
VHDL requires all design sources to be in a library. VHDL also allows
named libraries that can contain one or more files. VHDL design
units can access other design units in the same and different libraries
by declaring the name of the library and design unit to make visible.

For example, take an entity called foo that wants to access a function
called foofunc that is declared in a package named foopack that is in a
library named foolib. The following declaration for foo allows you to
access everything declared in the package foopack.

library foolib;
use foolib.foopack.all;
entity foo is
...
end entity;

In all VHDL tools there is a compile order dependency between
libraries. Libraries must be created and compiled before design units
that use them can be compiled. In the above example, the library
foolib must be created and the package foopack compiled into it before
the entity foo can be compiled.

Currently you must compile the libraries manually for simulation
and synthesis.

Verilog
Verilog does not support named libraries. All modules are global and
are visible to all other modules. However, most Verilog tools support
the idea of a library as either a directory of files that each contain a
single module, or single files that contain many modules. In either
5-14 Xilinx Development System

HDL
case, when a tool is compiling the design and encounters a module
instantiation that is not resolved in the set of input files, the tool looks
in the specified library files or in the library directories to find the
module definition.

There is a distinction between design files that are part of a project
and library files. Design files are always compiled completely by the
simulator or synthesis tool. Libraries are compiled as they are
needed, and then only the required module is compiled. For example,
if the synthesis tool needs a module called foomod from a library file
that contains many modules, it compiles and uses foomod only, and
ignores the rest of the modules.

Project Navigator Source Libraries
In ISE 4.x, the default library in which the current design sources are
placed is named Work. Depending on the synthesis tool for the
project, a VHDL or Verilog library is also provided. The libraries and
elements included in these libraries are listed in the Library View of
the Sources in Project window.

The Work library contains all the design sources in the project. It
corresponds to the sources in the Module View. The Work library
cannot be deleted. Files in the work directory cannot be in other
libraries at the same time. When you use the New Source, Add
Source, or Add Copy of Source options in the Project menu, the files
created or added through these options appear in the Work library
but can be moved to other libraries. See the “Moving Files to a
Library” section below for more information.

If you are using FPGA Express, XST VHDL, or ABEL XST, the VHDL
library is included in the Library View. The VHDL library cannot be
deleted. The VHDL library contains named VHDL libraries. You can
create named libraries within the VHDL library as described in this
section and add any number of files to those libraries.

If you are using FPGA Express or XST Verilog, the Verilog library is
included in the Library View. The Verilog library contains Verilog
files. The Verilog library cannot be deleted.
ISE 4 User Guide 5-15

ISE 4 User Guide
Named VHDL Libraries
You cannot directly add a file to the VHDL library displayed in the
Library View. You must first create a named directory to hold the file.

To create named VHDL directories:

1. Open or create your project (see the “Creating a Project” section
of the “Projects” chapter).

2. Click Project → New Source from the Project Navigator.

3. Select VHDL Library from the list of available source types
displayed in the New dialog box. The VHDL Library selection is
available only with projects that use the XST VHDL, ABEL XST,
or FPGA Express synthesis tools.

4. Enter a name for the new VHDL library in the File Name box.

5. Click Next.

6. Click Finish in the New Source Information dialog box.

7. Click the Library View tab in the Sources in Project window. The
newly created VHDL library appears under VHDL.

Adding a File to the Library

To add a file to the library:

1. Right-click library in the Library View tab.

2. Select Add Source.

3. Choose the source you want to add to the library.

See the “HDL Library Mapping” section for more information.

Renaming VHDL Libraries

To rename a VHDL library:

1. Go to Library View in the Sources in Project window.

2. Click the name of the VHDL library you want to rename.

3. Click Source → Rename from the Project Navigator menu.

4. Modify the library name.
5-16 Xilinx Development System

HDL
Removing VHDL Libraries

To remove a VHDL library:

1. Go to Library View in the Sources in Project window.

2. Click the name of the VHDL library you want to remove.

3. Click Source → Remove from the Project Navigator menu.

4. A message box reminds you that removing a library may cause
the implementation data to be out of sync. Click Yes to remove
the library and all of its files from the project.

Note The library is deleted. Its files are not deleted, just removed
from the project.

5. Click Project → Delete Implementation Data after you
remove the library.

Caution After a library has been deleted there is no way to
restore it except to recreate it.

Moving Files to a Library
Files that have been added to the project can be moved from one
library to another. A file cannot be moved to a library that does not
support its file type. For example, you cannot move a Verilog file to a
VHDL library. Any file may be moved to the Work library.

To move files between libraries:

1. Go to the Library View tab.

2. Click the name of the file you want to move.

3. Click Source → Move to Library.

4. Select the library from the Choose Library dialog box.

The selected file is moved to the chosen library. The Library View
reflects the move.

Removing Files from a Library
When you click a file name in any library in the Library View and
select Source → Remove, the file is removed from the library and the
project. The file is not deleted.
ISE 4 User Guide 5-17

ISE 4 User Guide
5-18 Xilinx Development System

Chapter 6

State Diagrams

This chapter contains the following sections:

• “About StateCAD and StateBench”

• “Creating a New State Diagram”

• “Updating an Existing State Diagram”

• “Using StateBench”

• “Instantiating State Diagram Modules”

About StateCAD and StateBench
ISE 4.x includes integrated support for StateCAD® and StateBench™
for state machine design entry and verification

StateCAD automates the creation and development of state machines
and their translation to HDL code. StateCAD includes:

• A State Machine Wizard to help you develop the initial state
machine

• A Logic Wizard to create data flow structures

• An Optimization Wizard to maximize performance for the target
device

StateCAD also identifies many kinds of design problems for you.
When your design is error free, StateCAD translates it into
synthesizable VHDL, Verilog, or ABEL-HDL code that can be used in
your ISE 4.x project.

StateBench provides behavioral verification of StateCAD state
diagrams.
ISE 4 User Guide 6-1

ISE 4 User Guide
Creating a New State Diagram
To create a new state diagram source:

1. Click Project → New Source from the Project Navigator.

2. Click State Diagram from the list of sources displayed in the
New source dialog box.

3. Enter a name for the state diagram in the File Name field.

A StateCAD state diagram name has the following requirements:

♦ The name must begin with an alphabetic character.

♦ StateCAD is not case sensitive. File names are recognized
independent of case.

♦ The name can contain up to eight alphanumeric characters. It
must follow the DOS 8.3 convention. However, do not add
the three character extension. The appropriate extension
(.dia) is automatically generated.

♦ The name defaults to untitled.dia in StateCAD if the above
rules are not followed.

Note The name entered here is used by StateCAD in the module
or entity definition in the HDL code it creates from the state
diagram.

4. By default, StateCAD saves the new source in the project
directory. Specify a different directory in the Location field on the
New window if desired.

Note The Add to Project check box on the New window has no
effect on state diagrams. State Diagrams cannot be automatically
added to a ISE 4.x project.

5. Click Next.

The New Source Information dialog box opens, summarizing the
requested information for the new source.

6. Click Finish on the New Source Information dialog box to open
StateCAD.

The StateCAD main window opens with the newly specified
state diagram loaded, ready for you to begin designing the state
machine.
6-2 Xilinx Development System

State Diagrams
7. Create the state diagram. The following references and resources
are available:

♦ StateCAD online help

For help using StateCAD, see the StateCAD online help.

♦ StateCAD tutorial

 A StateCAD tutorial is available from the online help. Click
Help → Tutorial.

♦ Design Wizards

Click File → Design Wizard from the StateCAD menu to
initiate the Design Wizard. A dialog box opens asking you to
verify whether you want to use the currently opened state
diagram or a new one. Click Yes.

8. The StateCAD Design Wizard leads you through the design
process. Project information (such as synthesis tool, targeted
device) is reflected in the Design Wizard dialog boxes.

9. Click Save File to save your state diagram.

10. Click the Generate HDL button to generate HDL for your state
diagram.

11. Close StateCAD.

12. Add the state diagram .dia file and the generated HDL module to
your ISE project by clicking Project → Add Source.
ISE 4 User Guide 6-3

ISE 4 User Guide
Figure 6-1 StateCAD Main Window with Diagram Loaded

Updating an Existing State Diagram
To open existing StateCAD state diagrams (.dia files) in StateCAD
from the Project Navigator:

1. Double-click the state diagram name in the Sources in Project
window.

2. The state diagram is opened in StateCAD.

When you modify and save a valid state diagram, StateCAD prompts
you that the HDL file needs to be updated. If you select to update the
HDL file, the HDL file is regenerated automatically based on the
entered changes. If the corresponding HDL source file has been
added, it is automatically overwritten with the updated version.
6-4 Xilinx Development System

State Diagrams
Using StateBench
To open StateBench from StateCAD, click Options → StateBench
(Create Testbench). Use StateBench to verify the StateCAD
design’s behavior and validate its timing.

Figure 6-2 StateBench Diagram

You can also add and use StateBench testbenches. For help using
StateBench, see the StateBench online help. A StateBench tutorial is
also available from the online help (Help → Tutorial).

Instantiating State Diagram Modules
For information on instantiating state diagram modules in Schematic
designs, see “Creating the State Machine Macro” section of the ISE In-
Depth tutorial, available from the Xilinx support Web site at http://
support.xilinx.com/support/techsup/tutorials/. Instantiating state
diagram modules in HLD designs is the same as instantiating any
other HDL module.
ISE 4 User Guide 6-5

http://support.xilinx.com/support/techsup/tutorials/
http://support.xilinx.com/support/techsup/tutorials/

ISE 4 User Guide
6-6 Xilinx Development System

Chapter 7

Schematic Sources

This chapter contains the following sections:

• “Schematic Source Files”

• “Instantiating HDL Sources”

• “Simulating and Synthesizing Schematic Sources”

• “VHDL Functional Model”

• “Verilog Functional Model”

• “ECS (Engineering Capture System)”

• “Editing Schematics in ECS”

• “Editing Symbols in ECS”

• “Symbol Libraries”

• “Guidelines for Creating Schematics”

Schematic Source Files
This chapter:

• Describes how to use schematic sources in ISE 4.x projects.

• Discusses the basic concepts for using the Engineering Capture
System (ECS) to edit schematics and symbols.

Your ISE 4.x project can include schematics as well as HDL sources.
You initiate the creation of a schematic source from the Project
Navigator. After the source file is created, Project Navigator opens
the Engineering Capture System (ECS) for you to create and modify
the schematic design.
ISE 4 User Guide 7-1

ISE 4 User Guide
There are two principal components to ECS:

• ECS Window

The ECS window is the main interface for creating schematics
and symbols.

• HDL netlisters

The netlister programs translate a schematic into the HDL model
used for design synthesis, simulation, and implementation of the
design.

This section contains information on the Project Navigator’s
interaction with schematic source files. See the “ECS (Engineering
Capture System)” section for information on using ECS to edit
schematics and symbols. The most detailed information on using the
ECS tools is in the ECS online help (from the Help menu and F1
context sensitive help).

Creating a Schematic Source File
To create and add a schematic source (.sch):

1. Open or create your project as described in the “Creating a
Project” section of the “Projects” chapter.

2. Click Project → New Source.

3. In the New dialog box, click Schematic.

4. Enter a name for the new schematic in the File Name field. The
project location is automatically entered in the Location field.

Note Check the Add to project box to automatically add the
schematic file.

5. Click Next.

6. In the New Source Information dialog box, click Finish.

7. The Project Navigator opens ECS (Engineering Capture System).
See the following figure. ECS opens with a new schematic sheet
for the newly created schematic source file. The schematic source
file containing the schematic is named as specified in the New
source dialog box plus an .sch extension.
7-2 Xilinx Development System

Schematic Sources
If you chose to add this file to the project, the new schematic file
is automatically added and listed in the Project Navigator
Sources in Project window.

Figure 7-1 ECS Window

You can now use ECS to create the schematic module. See the online
help for details on using ECS. See the “Guidelines for Creating
Schematics” section below for important information on creating
schematics for use with the synthesis tools.
ISE 4 User Guide 7-3

ISE 4 User Guide
Opening a Schematic Source File
To open an existing schematic source (.sch):

1. In Project Navigator, go to the Sources in Project window.

2. Double-click the schematic source name.

ECS opens with the schematic you selected.

Updating Schematic Files
The schematic file database tracks dates of symbol files used in
schematics. Schematics can become out of date when symbols are
edited or updated (newer dates than those saved in the schematic).
After modifying symbols used in your schematic source files, run
Update all Schematic Files within Project Navigator to
update all the schematics in your design with the current symbols in
your symbol directories.

To update the schematic files:

1. Click the Device and Design Flow line in the Sources in Project
window.

2. Double-click Update all Schematic Files in the Processes
for Current Source window.

If you open a schematic in ECS with out-of-date symbols, a dialog
box opens to let you update these symbols within ECS. To update all
of the schematic files, you run the update from Project Navigator.

Xilinx Implementation Attributes and Constraints
It is possible to use the attribute function in ECS to pass constraint
information from your schematic to the Xilinx implementation tools.
See the ECS online help for detailed information on ECS schematic
attributes.

Certain Xilinx implementation attributes, such as the INIT attribute,
must be set on the component in the schematic for correct simulation
results. The basic procedure to set an INIT attribute on a block RAM
component (Virtex), for example, in an ECS schematic is:

1. Create a new schematic in ECS.

2. Add the block RAM components.
7-4 Xilinx Development System

Schematic Sources
3. Select a block RAM symbol in the schematic.

4. Click Edit → Object Properties.

5. In the Object Properties dialog box, select the INIT attribute you
want to set.

6. Click New.

7. In the New Attribute dialog box, enter the correct INIT string in
the Attribute Value field.

8. Click OK to close the New Attributes dialog box.

9. Click OK to close the Object Properties dialog box.

The INIT value is set for the selected schematic component.

Instantiating HDL Sources
You can instantiate HDL code sources into a schematic by first
creating a schematic symbol for the HDL source. The HDL sources
must be in the project directory.

Creating a Schematic Symbol
To create a schematic symbol for an HDL source:

1. In Project Navigator, click an HDL source file in the Sources in
Project window.

2. Double-click Create Schematic Symbol in the Processes for
Current Source window.

The symbol (.sym) is automatically added to the Local symbol library
and is available for use in ECS.

Symbol Generator Options
By default, the Create Schematic Symbol process does not
automatically overwrite an existing symbol of the same name as the
symbol being generated. A process property allows you to specify
whether or not to overwrite the existing symbol.
ISE 4 User Guide 7-5

ISE 4 User Guide
To set this property:

1. Click an HDL source file in the Sources in Project window.

2. Right-click Create Schematic Symbol in the Processes for
Current Source window.

3. Click Properties.

4. Click in the Value box for the Overwrite Existing Symbol
option to toggle this property on and off.

Opening the HDL Source
If you have instantiated HDL sources in a schematic, you can access
the HDL sources from ECS.

To access HDL sources:

1. Open the ECS window.

2. Select a symbol representing an instantiated HDL source in the
schematic.

3. Click View → Push Into Symbol or Return to Calling
Schematic.

The HDL source file opens in the HDL Editor window of the
Project Navigator.

If you modify and save the HDL source in the HDL Editor, you must
click Create Schematic Symbol in the Project Navigator
Processes for Current Source window to replace the symbol used in
the schematic with the updated source. If the ports change, you must
also reconnect the updated symbol to the schematic.

Creating a Top-Level Schematic
To use schematics in your ISE 4.x project, create a top-level schematic
and instantiate your HDL design sources into the schematic as
follows:

1. Create the HDL design sources and add them to the project.

2. To create a symbol for each HDL source, click the source in the
Sources in Project window, then click Create Schematic
Symbol in the Processes for Current Source window. The symbol
7-6 Xilinx Development System

Schematic Sources
(.sym) is automatically added to the Local symbol library used in
ECS.

3. To create a schematic source (.sch), click Project → New
Source, then select Schematic as the source type.

4. In ECS, click Add → Symbol. Select each of the symbols created
for your HDL sources from the symbol browser and place them
on the sheet.

5. Click Add → Wire and connect the HDL source symbols as
appropriate. Save the schematic (.sch) and exit ECS when you are
finished.

6. The Project Navigator automatically recognizes the design
hierarchy and moves the top-level schematic source (.sch) to the
top of the Sources in Project window’s design tree with the HDL
sources listed under it.

Note See the ISE Tutorial for an example. See the ECS online help for
instructions on adding wires, naming nets and buses, and adding I/O
markers and other items to complete the top-level schematic.

Simulating and Synthesizing Schematic Sources
An HDL netlist is created from all schematic sources and used for
simulation and synthesis.

• For projects that use the XST VHDL or FPGA Express VHDL
synthesis tools, the VHDL netlister program automatically
generates a VHDL functional model for any schematic source in a
project. See the “VHDL Functional Model” section for more
information on the generated model.

• For projects that use the XST Verilog and FPGA Express Verilog
synthesis tools, the Verilog netlister program generates a Verilog
Functional Model for schematics. See the “Verilog Functional
Model” section for more information on the generated netlist.

Simulation of schematic sources requires a testbench (VHDL) or test
fixture (Verilog). Use the HDL Bencher and the netlist generated from
the schematic to create the testbench or test fixture. See the Synthesis
and Simulation Guide for information on simulating and synthesizing
designs.
ISE 4 User Guide 7-7

ISE 4 User Guide
VHDL Functional Model
The VHDL netlister program automatically generates a VHDL model
for any schematic source in a project when a VHDL simulation
process is run. The VHDL model consists of an entity declaration and
an architecture.

The VHDL netlister uses the following conventions when generating
the VHDL functional model for a schematic:

• The name of the schematic becomes the name of the entity.

• Each net name flagged with an I/O marker is declared as a port
in the entity declaration.

• The architecture name is always schematic.

• Scalar nets become VHDL signals of type std_logic.

• Buses become VHDL signals of type std_logic_vector.

• Component declarations are generated in the architecture for
each type of symbol instantiated in the schematic.

• A component instance statement is created for each symbol
instance on the schematic. The symbol instance name becomes
the statement label.

• Each symbol pin becomes a port on the corresponding
component.

Viewing the VHDL Functional Model
After you create the schematic in ECS, the Project Navigator uses the
VHDL functional models for all further processing of the design.

To view the VHDL functional model for a schematic:

1. Click the schematic in the Sources in Project window.

2. Double-click View VHDL Functional Model in the Processes
for Current Source window.

3. The VHDL model displays in the ISE Report Viewer.
7-8 Xilinx Development System

Schematic Sources
Figure 7-2 VHDL Functional Model Example

Verilog Functional Model
The Verilog Netlister program automatically generates a Verilog
Functional Model for any schematic source in a project. After you
create the schematic in ECS, the Project Navigator uses the Verilog
Functional Model for all further processing of the design.

To view the Verilog netlist for a schematic:

1. Click the schematic in the Sources in Project window.

2. Double-click View Verilog Functional Model in the
Processes for Current Source window.

3. The Verilog netlist displays in the report window.
ISE 4 User Guide 7-9

ISE 4 User Guide
Figure 7-3 Verilog Netlist Example
7-10 Xilinx Development System

Schematic Sources
ECS (Engineering Capture System)
ECS (Engineering Capture System) is the design entry and analysis
tool for schematic sources in ISE 4.x projects. It includes the following
features:

• Schematic Capture

ECS captures your design logic in schematic form.

• Libraries

Xilinx device-specific symbol libraries are provided for schematic
creation. You can create local symbols in a symbol window as
needed, or you can access ECS symbols from other projects.

• Symbol creation

ECS can open a symbol window in which you can create your
own symbols and give them whatever characteristics you want.
Alternatively, you can convert a schematic or HDL source file
into a Block symbol to make your design easier to understand or
for reuse in other projects.

• Schematic and Symbol Check

You can check your schematics and symbols at any time for such
errors as unconnected wires or illegal pin names.

• Netlist Generation

For use in ISE 4.x project, all schematics are converted into a
VHDL or Verilog netlist depending on the synthesis tool you
selected for your project (see the “Selecting a Device and Design
Flow” section of the “Projects” chapter). When you select a
schematic source in the Sources in Project window, click the View
VHDL Functional Model or the View Verilog
Functional Model process in the Processes for Current Source
window to see how the schematic was converted.

• Simulator Interface

You can use testbenches and the ModelSIM simulators to verify
schematic designs. A testbench (VHDL) or test fixture (Verilog) is
required for simulation of the schematic’s HDL functional model.

Note Detailed information on using ECS can be found in the ECS
online help.
ISE 4 User Guide 7-11

ISE 4 User Guide
The ECS Window
The ECS window is the main interface for the ECS tools. To open the
ECS window from Project Navigator:

• Create a new schematic source for the project (see the “Creating a
Schematic Source File” section below).

OR

• Double-click an existing schematic source file (.sch) in the
Sources in Project window.

You edit both schematics and symbols in the ECS window. You edit a
schematic in a schematic window and a symbol in a symbol window
within the ECS window. An ECS window containing both a
schematic and a symbol is shown in the following figure.
7-12 Xilinx Development System

Schematic Sources
Figure 7-4 ECS Window with Schematic and Symbol

The ECS main window contains the following:

• Title Bar

The title bar displays the name of the application and the name of
the schematic or symbol you are editing.

• Menu Bar

The menu bar contains the drop-down menus that control the
operation of ECS. The menu items in the drop-down menus
perform the ECS commands. ECS has seven menus: File, Edit,
View, Add, Tools, Window, and Help.
ISE 4 User Guide 7-13

ISE 4 User Guide
Some menu items change depending on whether you are editing
a schematic or a symbol. Most menu commands can be
performed on either a schematic or a symbol.

• Toolbars

This area contains six separate toolbars:

♦ File

♦ Edit

♦ View

♦ Window

♦ Tools

♦ Options

The File, Edit, View, Window, and Tools toolbars contain buttons
that provide access to frequently used commands. The options
toolbar, which changes depending on the command you are
performing, contains options for the current command.

• Workspace

The workspace contains the schematic and symbol drawings that
you edit using ECS. Each drawing appears in its own window in
the workspace.

You can have multiple schematic windows and multiple symbol
windows in the workspace. You can also have schematic
windows and symbol windows in the workspace at the same
time. Tabs at the bottom of the workspace show all of the
windows in the workspace and allow you to select the window to
view.

• Schematic Windows

Schematic windows contain the schematic drawings you edit in
ECS.

Tabs at the left side of each schematic window show all of the
pages in the schematic and allow you to select the page to view.

• Symbol Windows

Symbol windows contains the symbol drawings you edit in ECS.
7-14 Xilinx Development System

Schematic Sources
• Symbol Browser

The symbol browser allows you to select symbols to instantiate
into a schematic. You can select symbols from the Xilinx symbol
libraries supplied with ECS, or from symbol libraries you create.

The symbols are divided into categories (for example, decoders
and shift registers) to make it easier to find the symbol you want.

• Status bar

The status bar displays command and processing information.

Concepts Required to Use ECS
A schematic created in ECS is composed of the following items:

• Symbols
These can be symbols from the standard Symbol libraries,
symbols representing other schematics you have drawn (Block
symbols), or symbols you have created from scratch.

• Wires
Wires connect the symbols. They can be single-signal (nets) or
multiple-signal (buses).

• I/O Markers
I/O markers show where signals enter or exit the schematic, and
the direction (polarity) of the signal (that is, whether it’s an input,
output, or bidirectional).

• Graphics & Text
Graphics and text are usually added to display explanatory data.
They are optional and have no electrical meaning.

A valid schematic must contain at least the first three components:
symbols, wires, and I/O markers. For instance, a single, isolated
component symbol cannot be the only element in a schematic. The
schematic must include I/O markers for the external connections to
the schematic, and these markers must be connected to the symbol
with wires.

Note HDL keywords cannot be used for names of items on a
schematic.
ISE 4 User Guide 7-15

ISE 4 User Guide
Symbols

Symbols are graphic representations of components. The term symbol
usually refers to an electrical symbol, such as a gate or a subcircuit.
You can also create graphic-only symbols (such as title blocks) in ECS,
but these have no electrical meaning.

Each schematic symbol is stored in a file ending with a .sym
extension, or may be included in a library file with a .lib extension.
The symbol contains four types of information:

• “Graphics”

• “Text”

• “Pins”

• “Attributes”

Graphics

Graphics are pictures of the symbols.They tell ECS how to draw the
symbol. Symbol graphics have no electrical meaning, showing only
the position of the component in the circuit. The electrical behavior of
a symbol is defined by its attributes and pins, not the graphics that
represent it. Explanatory or descriptive text displayed with a symbol
is also considered graphic information without electrical meaning.

Text

Text labels the symbol, or adds supplemental information.

Pins

Pins provide electrical connection between the symbol and the
schematic's wiring. Symbol pins are the connecting points between
the symbol and the schematic wiring. If the symbol represents an
individual component, the symbol pin represents the physical pin
where a conductor can be attached. If the symbol is a block symbol,
the symbol pin represents a connection to an internal net of the
design unit represented by the block symbol.

Pins can either represent a single electrical connect point (a scalar pin)
or multiple electrical connect points (a bus pin).

Note You can add only one kind of pin (using Add → Pin in a symbol
window). Whether it is a scalar pin or a bus pin depends on the name
7-16 Xilinx Development System

Schematic Sources
you give the pin using the pin name attribute. Bus pins are named as
busname[numberlist] where busname is the name of the bus and
numberlist is a list of numbers separated by:

• commas
example: [1,3,5]

• a range of numbers separated by a colon
example: [8:15]

• both
example: [1,3,5,8:15]

Attributes

Attributes describe the symbol’s electrical behavior, the symbol’s
component parts (for example, its pins), and other characteristics.
Each symbol has a number of predefined attributes that describe its
symbol name, symbol type, and other unchanging characteristics.
Other attributes can be given values after the symbol is placed in the
schematic. These attributes can have different values for each symbol
instance, which permits detailed customization of a design.

A symbol’s attribute set is the most important part of the Symbol.
Without attributes, simulation and modeling programs would know
nothing about the electrical behavior of the symbol.

Attributes associate data with symbols, pins, and nets. (Nets are
schematic wiring.) The data describe the electrical characteristics (or
other properties) of the symbols and their pins.

An attribute has a name and a value. You can assign or change the
values of most attributes at any point in the development process.
You can assign some attributes fixed values that cannot change. You
can assign, change, or override other attributes later in development.
If an attribute value is assigned to a symbol, it becomes the default
value and is used with every instance of that symbol.

ECS attributes can also be set on schematic components for
implementation processing. See the “Xilinx Implementation
Attributes and Constraints” section for information.
ISE 4 User Guide 7-17

ISE 4 User Guide
Wires (Nets and Buses)

Wires are the lines that electrically connect the symbol pins. Symbol
pins are the only connection points for wires. You cannot connect
wires to the symbol body itself.

Wire Types

There are two types of wires:

• Scalar, which represent a single electrical connection

• Buses, which represent multiple electrical connections

Click Add → Wire to add wires to schematics.

Bus Taps

Bus taps can be added using the Add → Bus Tap command. A bus
tap allows you to extract an individual net of a bus and connect it to a
scalar pin on a symbol. Alternatively, you can connect multiple nets
from a bus or an entire bus to a bus pin on a symbol, assuming that
the size of the tapped bus and the size of the bus pin (that is, the
number of nets that they contain) is the same.

Buses are most often used to group related signals. However, a bus
can be any combination of signals, related or not. Buses are especially
useful for routing a large number of signals from one side of the
schematic to the other.

Buses also make it possible for a single I/O marker to connect more
than one signal to a Block symbol. The signal names don’t have to
match, but both pins must carry the same number of signals.

You can add only one kind of wire (using Add → Wire). Whether it is
a net or a bus depends on how you name the wire (using the Add →
Net Name).

Buses are named as busname(numberlist) where:

• busname is the name of the bus

• numberlist is a list of numbers separated by:

♦ commas
example: (1,3,5)

♦ a range of numbers separated by a colon
example: (8:15)
7-18 Xilinx Development System

Schematic Sources
♦ both commas and a colon
example: (1,3,5,8:15)

Wires and Net Names

Wires are used to connect symbol pins on a schematic. Every wire has
a net name, which serves to identify the wire to ECS and netlister
programs. ECS automatically supplies a name when you add the first
wire of a net to the schematic. This default name is of the form
XLXN_n (where n is an integer), and you can change this name later.

Two or more wires may have the same net name. Each wire that
shares a common net name becomes part of a single net, and all
symbol pins connected to these wires are electrically connected.

To illustrate this concept, consider the following schematic fragment.

Figure 7-5 Schematic Fragment

In this example, a single wire, with the net name of CLK, is
connecting the pins CLK of symbol instances U1 and U2. And two
wires, with the common name of DATA[7:0], are being used to
connect the bus pins named D[7:0] on U1 and U2 (this is also an
example of buses and bus pins).

You would normally rename all wires that connect to inputs or
outputs and any internal nets with signals you want to view during
simulation. You can use any name you like, but you usually choose a
name that suggests the name or function of the signal carried by that
wire.
ISE 4 User Guide 7-19

ISE 4 User Guide
Net Attributes

Like symbols and symbol pins, nets can also have attributes. Net
attributes can describe characteristics associated with nets. Good
examples are the KEEP and SAVE attributes.

Note Nets are the wiring that connects symbols to each other and
makes external connections.

I/O Markers

I/O markers are used to flag the nets that are inputs, outputs, or
bidirectional signals in the schematic. If a net name appears multiple
times on a schematic, only one instance of the net name needs to be
flagged with an I/O marker.

I/O markers are added to schematics using the Add → I/O Marker
command. When you execute Add → IO Marker, the options toolbar
displays these choices.

Figure 7-6 Options Menu for Add I/O Markers Command

Click the radio button corresponding to the type of I/O marker you
wish to add. You can then add I/O markers by:

• Clicking the ends of individual nets that you wish to flag

• Dragging a box around the net ends

I/O Markers and Block Symbols

If the schematic has a corresponding block symbol, each net flagged
with an I/O marker should also have a corresponding pin on the
block symbol for the schematic.

The following conditions would cause errors when you try to create
an HDL model for the schematic:

• The block symbol has a pin with a given name, but the schematic
for that symbol does not have a net with that same name.

• The schematic has a net with the appropriate name, but the net is
not flagged with an I/O marker.
7-20 Xilinx Development System

Schematic Sources
Graphics

Although symbols, wires, and I/O markers are visible, graphical
items, they also have a functional or electrical meaning. In the context
of this section, graphics refers to the non-functional graphical parts of
the schematic.

For example, you might add graphics showing the expected
waveforms at different points in the circuit. Alternatively, you could
draw the company’s logo and add it to each schematic for
identification.

The most common use of graphics is to create a title block. The block
shows the name and address of your company, and can include your
company logo and blank spaces for the project name, schematic sheet
number, and other items.

The title block is a symbol. A title block template (the tblock symbol) is
located in the General symbol library. See the online Help for detailed
information on title blocks.

Text

Text, like graphics, can provide additional information about the
schematic or its project. Text can be placed anywhere on a schematic,
even if it overlaps symbols or wires. Use Add → Text to add text to
schematics and symbols.
ISE 4 User Guide 7-21

ISE 4 User Guide
ECS Menu Commands
The following list describes each ECS menu. To view detailed help
information for each menu item:

1. Click a menu.

2. Move the cursor to highlight a menu item in the menu.

3. Press F1.

File Menu

Use the File menu to:

• Create, open, and save schematics and symbols

• Print a schematic or symbol drawing

• Exit ECS

Edit Menu

Use the Edit menu to:

• Undo and Redo commands

• Cut, copy, paste, and delete objects

• Open a symbol window to edit a symbol

• Update obsolete symbols

• Rename buses

• Select objects

• Find nets and instances

• Define, edit, and view attributes for pins, symbols and nets

• Set ECS preferences

View Menu

Use the View menu to:

• Control the display of toolbars and screen areas

• Zoom and pan the display

• Push and Pop
7-22 Xilinx Development System

Schematic Sources
Add Menu

Use the Add menu to:

• Add wires, net names, bus taps, and I/O markers

• Add and modify symbols and symbol instances

• Display attributes on instances and nets

• Add graphics (arcs, circles, lines, rectangles, and text) to a
schematic

Tools Menu

Use the Tools menu to:

• Check a schematic or symbol for errors

• Automatically create a symbol representing a schematic

• Automatically generate a symbol drawing in a symbol window

• Automatically generate I/O markers in a new schematic

• Get information about objects by running a query

Window Menu

Use the Window menu to:

• Open and close editing windows

• Display windows in different ways

Help Menu

Use the Help menu to:

• View the help contents

• Open the online document collection

• View ECS revision information
ISE 4 User Guide 7-23

ISE 4 User Guide
Editing Schematics in ECS
The following sections demonstrate some basic ECS schematic entry
tasks.

Adding a Symbol
To add an existing symbol to your schematic:

1. Click Add → Symbol.

2. In the symbol browser, click a library or symbol category in the
Categories box to display its symbol list in the Symbols box.

The local library contains the symbols you created in ECS for the
project. The Xilinx supplied libraries are divided into component
categories. Click All Symbols to view an alphabetical list of all
available symbols; this includes the Xilinx-supplied libraries and
the local library. See the “Using Symbols from Other Projects”
section for information on making more symbols available in the
symbol browser.

3. Click the symbol in the symbol browser and drag it to the
schematic for placement.

Note To make it easier to locate the symbol you are looking for,
type the first few letters of the symbol name in the Symbol Name
Filter box. The Symbols box is updated to show only the symbols
that begin with those letters, and you can select the symbol you
want from this shorter list.

4. Click to place the symbol.

You can continue to select and place symbols or press Esc to exit
the Add Symbol mode.

As you place each symbol, ECS automatically gives the symbol a
unique instance name of the form XLXI_nn (where nn is an integer).
The instance name identifies the symbol to ECS and netlister
programs. To change the instance name, use Add → Instance
Name. ECS does not allow you to repeat an existing name.

ECS lets you define an iterated instance in which a single symbol
represents many instances of that symbol. An iterated instance is
created by giving a symbol instance an instance name that includes a
7-24 Xilinx Development System

Schematic Sources
[numberlist]. For example, the instance name IA[7:0] creates eight
instances of the corresponding symbol.

Adding a Wire
To add a wire:

1. Click Add → Wire.

2. In the options toolbar, select Automatic.

3. Click the wire’s start point.

A wire can start and end at a symbol pin, another wire, or an
empty point in the schematic. For some points (for example,
symbol pins and wire corners) four red squares appear to help
you locate the exact point.

4. Move the cursor to the wire’s end point in the schematic and click
the desired end point.

A wire segment is automatically routed between the two points.
If the second point was a red square point, the Add Wire
command ends.

5. If the second point was not a red square point, continue clicking
points to draw additional connected wire segments.

6. Double-click the last point to connect.

You can continue to add wires, or press Esc to exit the Add Wire
mode.

Moving a Wire
You can move a wire with or without disconnecting it, depending on
whether you select Keep Connections or Break Connections
in the options toolbar.

Moving a Wire Without Disconnecting

To move a wire without disconnecting it:

1. Click Edit → Select.

2. In the options toolbar, click Select Wires in the first box and
Keep Connections in the second box.
ISE 4 User Guide 7-25

ISE 4 User Guide
3. Move the cursor to the wire.

4. Click and hold the left mouse button.

5. Drag the wire to its new location.

Moving and Disconnecting a Wire

To disconnect a wire when you move it:

1. Click Edit → Select.

2. In the options toolbar, click Select Wires in the first box and
Break Connections in the second box.

3. Move the cursor to the wire.

4. Click and hold the left mouse button.

5. Drag the wire to its new location.

Removing a Symbol or Other Object
To remove a symbol or other object from a schematic:

1. Select the symbol or object.

2. Click Edit → Delete.

Panning
Use the following commands or keyboard shortcuts to pan a
schematic or symbol window.

Table 7-1 Panning

Pan ... Menu Command Arrow key

Left View → Pan → Left left (←)
Right View → Pan → Right right (→)
Up View → Pan → Up up (↑)
Down View → Pan → Down down (↓)
7-26 Xilinx Development System

Schematic Sources
Zooming
Use the following commands or keyboard shortcuts to zoom the
display in a schematic or symbol window.

Editing Symbols in ECS
Use ECS to create and edit symbols and symbol attributes. Many of
the operations performed in a symbol window are initiated in a
schematic window.

Opening a Symbol Window
To open a symbol window:

1. In a schematic window, select an instance of the symbol you want
to modify.

2. Click Symbol → Edit.

A symbol window opens with the selected symbol.

Note If you selected a symbol from the read-only Xilinx-supplied
libraries, a dialog box opens before the symbol window opens to

Table 7-2 Zooming

Zoom ... Menu Command Function Key

In View → Zoom → In F8

Out View → Zoom → Out F7

Full View (display
the entire schematic
or symbol drawing in
the window)

View → Zoom →
Full View

F6

Box (fill the window
with an area that you
select by drawing a
box around it)

View → Zoom → To
Box

None

Selected (center the
selected objects in the
window and display
them at the highest
magnification)

View → Zoom → To
Selected

None
ISE 4 User Guide 7-27

ISE 4 User Guide
allow you to confirm copying the symbol to the Local library for
modification.

To open a symbol window to create a new block symbol, click File
→ New and specify that you want to create a new symbol.

Symbol Types
ECS creates three different kinds of symbols:

• “Block Symbols”

• “Graphic Symbols”

• “Master Symbols”

Block Symbols

Block symbols are the basic symbols you use to build your design.
The symbols in the Xilinx-provided libraries are mainly Block
symbols. A Block symbol represents both primitives and macros
(schematics at the next-lower level of the hierarchy). Pins are
permitted only on Block symbols.

All Block symbols have the same basic design: a rectangle with pin
leads extending outward. The rectangle's height and width are
automatically scaled according to the number of pins and the length
of their names. The input pins are placed on the left side and the
output pins are placed on the right side.

A Block symbol has an attribute window near the top for displaying
the name, and a window near the bottom for displaying the instance
name.

Graphic Symbols

Graphic symbols add information that is not part of the circuitry.
Graphic symbols are typically used for tables and notes. Pins are not
associated with Graphic symbols. Graphic symbols are never
included in the design hierarchy or netlists.

Master Symbols

Master symbols are used for title blocks, logos, revision blocks, and
other standardized graphic symbols. You can add text to a Master
7-28 Xilinx Development System

Schematic Sources
symbol to display the company name, address, and project
description, date, and other items.

Master symbols do not have pins. They are never included in the
design hierarchy or netlists.

Symbol Libraries
ECS automatically includes the symbol libraries specific to the
targeted Xilinx device. Symbols that you create are added to the
project’s Local symbol library. You can also access the Local symbol
libraries from other projects to use those symbols in your project.

All libraries and symbols available for schematic entry are listed in
the symbol browser opened from Add → Symbol.

Modifying an Existing Symbol
You can modify symbols in the Symbol libraries only if they are in the
Local directory.

To modify a symbol in the Local directory:

1. In a schematic window, select an instance of the symbol you want
to modify.

2. Click Symbol → Edit.

A symbol window opens with the selected symbol.

Note If you selected a symbol from the read-only Xilinx-supplied
libraries, a dialog box opens before the symbol window opens to
allow you to confirm copying the symbol to the Local library for
modification.

3. Edit the symbol.

4. Save the symbol.

5. Exit the symbol window.

When you return to the schematic window containing the symbol
you edited, a dialog box appears to allow you to update the symbol
in the schematic window.
ISE 4 User Guide 7-29

ISE 4 User Guide
Creating a New Block Symbol
ECS automatically creates a new Block symbol in an empty symbol
window.

To create a new Block symbol:

1. Open a new symbol window.

2. Click Tools → Create Symbol.

3. In the Create Symbol dialog box, enter pin names (separated by
commas) in the Inputs, Outputs, and Bidirection fields. You can
use bus notation (D[7:0], for example) when entering a pin name,
as shown in the following figure.

Figure 7-7 Create Symbol Dialog Box

4. Click OK to create the new symbol.

ECS creates the symbol, as shown in the following figure. Bus
pins are drawn with rectangles around the wires between the
symbol body and the pins.
7-30 Xilinx Development System

Schematic Sources
Figure 7-8 New Block Symbol

5. When you save the new symbol, you will have to specify the file
name for the symbol. The file name becomes the name of the
symbol.

Creating a Block Symbol from a Schematic
To create a new block symbol representing a schematic in the ECS
window:

1. Click Tools → Create Symbol.

A Create Symbol dialog box opens. The schematic name is
automatically placed in the Name field. The pins created in the
schematic are automatically entered in the appropriate pin fields
(Inputs, Outputs, and Bidirection).

2. Click OK to create the new symbol and add it to the Local library.

Creating a Symbol from an HDL Source
To create a schematic symbol for an HDL source:

1. In Project Navigator, click the HDL module in the Sources in
Project window.

2. Double-click the Create Schematic Symbol process in the
Processes for Current Source window.

3. The symbol file (.sym) is automatically created and added to the
Local symbol library for placement on a schematic.
ISE 4 User Guide 7-31

ISE 4 User Guide
Using Symbols from Other Projects
You can add a search path to another project to have the local
symbols in that project added to the symbol browser. You include the
project’s symbols in the symbol browser on a device basis. The
symbols are available only for projects that target a specified device.
Only symbols created in ECS are available for use in other projects.

To add the local symbols created in an ISE 4.x project to the symbol
browser for all projects that target a specified device family:

1. In ECS, click Edit → Preferences.

2. In the Device Families page of the Preferences dialog box, click
the plus sign next to the name of the device family for which you
will add symbols.

3. For the selected device family, click Symbol Library Files
and Paths.

4. Click the Edit button.

A dialog box appears for you to locate the desired directories and
files.

5. In the File or Path to Add field, enter the path to the project
whose local symbols are to be added to the symbol browser.

OR

Click the Browse Directory or Browse File button and use
the dialog box that appears to browse to the project containing
the symbols you want to make available to other projects
targeting the same device. Then click the OK button to return to
the previous dialog box.

The full path to the selected project appears in the Path field of
the dialog box.

6. Click the Add and OK buttons to add the local symbols for the
selected project (specified in the File or Path to Add field)
to the search path for all projects that use the specified device (for
example, Virtex).

The symbols in the selected project are now available in the symbol
browser for all projects that use the selected device.
7-32 Xilinx Development System

Schematic Sources
Note When you use symbols from other projects, be sure to edit the
symbol and use the Save As command to place it in the Local
library of the current project.

Guidelines for Creating Schematics
All schematics are netlisted to VHDL or Verilog structural netlists,
then processed by either the XST or FPGA Express synthesis engine.
Because of this, you must follow these guidelines when creating
schematic sources:

• Do not use HDL keywords for net or instance names.

• Use I/O primitives only.

Use I/O primitives such as IBUF, OBUF, IFD, IFDX, OFD, OFDX
only. Do not use I/O macros such as IBUF4, IFD_1. If I/O macros
are used, the synthesis engine inserts an additional IBUF or
OBUF at the port causing errors in the MAP process.

• (For VHDL Only) All input pins of the Xilinx unified library
components must be connected.

Failure to connect all inputs pins of library components results in
errors during synthesis due to the discrepancy between the
library component declaration and the actual use.

• (For FPGA Express Only) Do not use Carry Logic primitives on
schematics in the FPGA Express flow.

Carry Logic is re-optimized by FPGA Express. This may result in
different logic than intended for the design.

• (For FPGA Express Only) Specify global buffers pins via Express
Constraints Editor rather than via the schematic.

Use a generic IBUF on clock pins. Then use the Express
Constraints Editor to select a global buffer for the desired ports.
Failure to use this method causes errors in MAP due to the clock
pin being left unconnected.

To open the Express Constraints Editor, click Edit Constraints
under Synthesis in the Processes for Current Source window.
ISE 4 User Guide 7-33

ISE 4 User Guide
7-34 Xilinx Development System

Chapter 8

LogiBLOX

This chapter contains the following sections:

• “About LogiBLOX”

• “Starting LogiBLOX”

• “LogiBLOX Setup”

• “Creating LogiBLOX Modules”

• “Using LogiBLOX Modules in ISE 4.x Projects”

• “Simulating LogiBLOX Components”

• “Constraining LogiBLOX Memory with FPGA Express”

• “LogiBLOX Documentation”

About LogiBLOX
LogiBLOX is an onscreen design tool for creating high-level modules
such as counters, shift registers, and multiplexers for XC4000,
Spartan, and SpartanXL FPGA designs and 9500/XL/XV CPLD
designs.

LogiBLOX includes both a library of generic modules and a set of
tools for customizing these modules. LogiBLOX modules are pre-
optimized to take advantage of Xilinx architectural features such as
Fast Carry Logic for arithmetic functions and on-chip RAM for dual-
port and synchronous RAM. With LogiBLOX, you can create high-
level LogiBLOX modules that fit into your schematic-based design or
HDL-based design.
ISE 4 User Guide 8-1

ISE 4 User Guide
Note LogiBLOX is not available for use with Virtex, VirtexE, Virtex2,
Spartan2, and Spartan2E devices. The CORE Generator supports
those devices. See the “CORE Generator” section of the “Design
Flow” chapter.

Starting LogiBLOX
You can start LogiBLOX as a standalone program or as an integrated
design entry tool in Project Navigator.

To start LogiBLOX as a standalone program, click Start →
Programs → ISE 4.x → Accessories → LogiBLOX from your
PC’s desktop.

Note Your startup path is set during installation, and may differ from
the path shown above.

Within an ISE 4.x project, start LogiBLOX to create a core for use in a
design as follows:

1. Open Project Navigator.

2. Click Project → New Source.

3. In the New dialog box, click LogiBLOX Module.

4. Enter a file name for the new module.

5. Click Next.

6. In the New Source Information dialog box, click Finish.

7. LogiBLOX opens. See the following figure.
8-2 Xilinx Development System

LogiBLOX
Figure 8-1 LogiBLOX Module Selector - Accumulators
ISE 4 User Guide 8-3

ISE 4 User Guide
LogiBLOX Setup
When you open LogiBLOX from an ISE 4.x project, the project
information is automatically entered in the LogiBLOX Setup menu.
The Vendor Name, Project Directory, and Device Family information
are all entered based on that project. To open the LogiBLOX Setup
dialog box, click Setup on the LogiBLOX Module Selector dialog
box.

You can instantiate a LogiBLOX module in VHDL or Verilog code. By
default, the language designated in the project’s synthesis tool
determines which template (VHDL or Verilog) LogiBLOX creates for
the project. To change this, use the Options tab to select the type of
simulation netlist and component declaration template (VHDL or
Verilog) you need. For VHDL, click VHDL template and
Behavioral VHDL netlist.See the following figure. For Verilog,
click Verilog template and Structural Verilog netlist.

Figure 8-2 LogiBLOX Setup Window
8-4 Xilinx Development System

LogiBLOX
Creating LogiBLOX Modules
After you have opened LogiBLOX from your ISE 4.x project, create a
new module as follows:

1. The name you entered in the Project Navigator’s New source
appears in the Module Name field. You need not enter a name.

The Module Name shown here is used as the name of the
instantiation in the HDL code.

2. Select the type of module from the Module Type list box. The
initial LogiBLOX window shows the fields necessary for creating
an accumulator module. See the following figure. Click the down
arrow in the Module type field to display the list of module types
you can create.

Following is a list of the LogiBLOX modules:

♦ Accumulator

♦ Adder/Subtracter

♦ Clock Divider

♦ Comparator

♦ Constant

♦ Counter

♦ Data Register

♦ Decoder

♦ Input/Output (schematic only)

♦ Memory

♦ Multiplexer

♦ Pad (schematic only)

♦ Shift Register

♦ Simple Gates

♦ 3-state Buffers

3. Select a module type and define its attributes. The following
figure shows the LogiBLOX dialog box for Module Type =
Memories.
ISE 4 User Guide 8-5

ISE 4 User Guide
Figure 8-3 LogiBLOX Dialog Box for Module Type = Memories

4. Select the bus width for the module from the Bus width list box.

5. Select or deselect optional pins of the module symbol displayed
in the Details box by clicking the appropriate check boxes.

6. Click OK. The LogiBLOX module and its related files are created,
and the LogiBLOX .mod file is automatically added to the ISE 4.x
project as a user document.

The LogiBLOX module is a collection of several files including those
listed below. The files are located in your ISE 4.x project directory.

Note Whether the VHDL files (.vhi, .vhd) or Verilog files (.vei, .v) are
created depends on the setting in the LogiBLOX Setup Options tab.

component_name.ngc Netlist used during the Translate
phase of Implementation

component_name.vei Instantiation template used to add a
LogiBLOX module into your
Verilog source code

component_name.v Verilog file used for functional
simulation
8-6 Xilinx Development System

LogiBLOX
The component name is the name given to the LogiBLOX module in
the LogiBLOX Module Selector GUI. The port names are the names
provided in the instantiation template file.

Using LogiBLOX Modules in ISE 4.x Projects
If you initiated LogiBLOX from the Project Navigator New window,
the LogiBLOX module and its related files are placed in the current
ISE 4.x project directory. The related files include schematic, VHDL,
and Verilog templates that can be used in your project. The
LogiBLOX module file (.mod) is added as a user document and
appears in the Sources in Project window.

Editing LogiBLOX Modules
To edit a LogiBLOX module:

1. Double-click the module name in the Sources in Project window.

2. The LogiBLOX Module Selection window opens with the
selected module loaded.

Using LogiBLOX Modules in Schematic Sources
You can use LogiBLOX components in schematics as well as HDL
designs for FPGAs and CPLDs. Once you are in the LogiBLOX GUI,
you can customize standard modules and process them for insertion
into your design.

To use LogiBLOX in schematic sources:

1. Add the logiblox_module.v (Verilog) or .vhd (VHDL) file using
Project → Add Source.

component_name.vhi Instantiation template used to add a
LogiBLOX module into your VHDL
source code

component_name.vhd VHDL file used for functional simu-
lation

component_name.mod Configuration information for the
module

logiblox.ini LogiBLOX configuration for the
project
ISE 4 User Guide 8-7

ISE 4 User Guide
2. Click the newly added logiblox_module.v or .vhd file in the
Sources in Project window.

3. Click Create Schematic Symbol in the Processes for Current
Source window.

A symbol (logiblox_module.sym) is created for the logiblox_module.
v or .vhd module.

The logiblox_module symbol is added to the local Symbol Library
of the Engineering Capture System (ECS) for use in schematic
sources.

For synthesis, FPGA Express treats the LogiBLOX modules in
schematic sources as black boxes because of the synopsys
translate off directive in the .v and .vhd files generated by
LogiBLOX.

Note Once a LogiBLOX module is created, do not change parameters
for the module on the schematic. Any changes to the module
parameters must be made through the LogiBLOX GUI and a new
module created.

Instantiating LogiBLOX Modules in an HDL Source
You can instantiate the LogiBLOX components in your HDL code to
take advantage of their high-level functionality. Define each
LogiBLOX module in HDL code with a component declaration,
which describes the module type, and a component instantiation,
which describes how the module is connected to the other design
elements.

LogiBLOX modules may be generated in ISE and then instantiated in
the VHDL or Verilog code. This flow may be used for any LogiBLOX
component, but it is especially useful for memory components such
as RAM. Never describe RAM behaviorally in the HDL code, because
combinatorial feedback paths will be inferred.

VHDL Instantiation

When you instruct LogiBLOX to create a VHDL component in an ISE
4.x project, a VHDL instantiation template file is automatically placed
in the project directory when the LogiBLOX module is saved. The
template (.vhi file) is then available to use to instantiate the
LogiBLOX module into a VHDL source for the project.
8-8 Xilinx Development System

LogiBLOX
To instantiate a LogiBLOX module into a VHDL source in an ISE 4.x
project:

1. Open Project Navigator.

Note The example used in this section is for a LogiBLOX
RAM48X4S memory component named logib1.

2. Click File → Open

3. In the Open dialog box, select the VHDL instantiation template
(.vhi file) for the LogiBLOX module from the project directory.

4. The VHDL instantiation template opens in the HDL Editor
workspace.

The following figure shows an example for a LogiBLOX memory
module named logib1.
ISE 4 User Guide 8-9

ISE 4 User Guide
Figure 8-4 Example for a LogiBLOX Memory Module Named
“logib1”

The complete text of the LogiBLOX VHDL instantiation template
for logib1.vhi is as follows.

--

-- LogiBLOX SYNC_RAM Module “logib1”

-- Created by LogiBLOX version D.17

-- on Fri. Mar 03 13:08:10 2000

-- Attributes

-- MODTYPE = SYNC_RAM
8-10 Xilinx Development System

LogiBLOX
-- BUS_WIDTH = 4

-- DEPTH = 48

-- STYLE = MAX_SPEED

-- USE_RPM = FALSE

--

--

-- Component Declaration

--

component logib1

 PORT(

 A: IN std_logic_vector(5 DOWNTO 0);

 DI: IN std_logic_vector(3 DOWNTO 0);

 WR_EN: IN std_logic;

 WR_CLK: IN std_logic;

 DO: OUT std_logic_vector(3 DOWNTO 0));

end component;

--

-- Component Attributes

--

-- FPGA Express / FPGA Compiler II black box

-- attribute definitions

attribute fpga_dont_touch: string;

attribute fpga_dont_touch of logib1:component is
“true”;

-- XST black box attribute definitions

attribute box_type: string;
ISE 4 User Guide 8-11

ISE 4 User Guide
attribute box_type of logib1:component is
“black_box”;

--

-- Component Instantiation

--

instance_name : logib1 port map

(A => ,

 DI => ,

 WR_EN => ,

 WR_CLK => ,

 DO =>);

5. Click File → Open on the Project Navigator menu to open the
VHDL file in which the LogiBLOX component is to be
instantiated.

6. Cut and paste the Component Declaration from the LogiBLOX
component’s .vhi file to your project’s VHDL source, placing it
after the architecture statement in the VHDL code.

7. Cut and paste the Component Instantiation from the LogiBLOX
component’s .vhi file to your VHDL source code after the “begin”
line. Give the inserted code an instance name. Edit the code to
connect the signals in the design to the ports of the LogiBLOX
module.

Following is an example of VHDL source code with the
LogiBLOX instantiation for the component named logib1. For
each NGC file from LogiBLOX, you may have one or more VHDL
files with the NGC file instantiated. In this example, there is only
one black box instantiation of memory, but multiple calls to the
same module may be done.

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_arith.all;
8-12 Xilinx Development System

LogiBLOX
entity top is

port (D: in STD_LOGIC; CE: in STD_LOGIC;

 CLK: in STD_LOGIC; Q: out STD_LOGIC;

 Atop: in STD_LOGIC_VECTOR (5 downto 0);

 DOtop: out STD_LOGIC_VECTOR (3 downto 0);

 DItop: in STD_LOGIC_VECTOR (3 downto 0);

 WR_ENtop: in STD_LOGIC;

 WR_CLKtop: in STD_LOGIC);

end top;

architecture inside of top is

component userff

port (D: in STD_LOGIC; CE: in STD_LOGIC;

 CLK: in STD_LOGIC; Q: out STD_LOGIC);

end component;

component memory

port (A: in STD_LOGIC_VECTOR (5 downto 0);

 DI: in STD_LOGIC_VECTOR (3 downto 0);

 WR_EN: in STD_LOGIC;

 WR_CLK: in STD_LOGIC;

 DO: out STD_LOGIC_VECTOR (3 downto 0));

end component;

begin
ISE 4 User Guide 8-13

ISE 4 User Guide
UO:userff port map (D=>D, CE=>CE, CLK=>CLK,
Q=>Q);

U1:memory port
map(A=>Atop,DI=>DItop,WR_EN=>WR_ENtop,

 WR_CLK=>WR_CLKtop, DO=>DOtop);

end inside;

8. Save the VHDL source file. The design with the instantiated
LogiBLOX module can now be checked for syntax errors and
synthesized.

Note When the design is synthesized, a warning is generated that
the LogiBLOX module is unlinked. Modules instantiated as black
boxes are not elaborated and optimized. The warning message is
just reflecting the black box instantiation.

Verilog Instantiation

When you instruct LogiBLOX to create a Verilog component in an ISE
4.x project, a Verilog instantiation template file is automatically
placed in the project directory when the LogiBLOX module is saved.
The template (.vei file) is then available to use to instantiate the
LogiBLOX module into a Verilog source for the project.

Use the following procedure to instantiate a LogiBLOX module into a
Verilog source in an ISE 4.x project. The example used in this section
is for a LogiBLOX RAM48X4S memory component named logib1.

1. Click File → Open from the Project Navigator menu.

2. In the Open dialog box, select the Verilog instantiation template
(.vei file) for the LogiBLOX module from the project directory.

The VHDL instantiation template opens in the HDL Editor
workspace.

The complete text of the LogiBLOX Verilog instantiation template
for logib1.vei is as follows.

//--

// LogiBLOX SYNC_RAM Module “logib1”
8-14 Xilinx Development System

LogiBLOX
// Created by LogiBLOX version D.17

// on Fri. Mar 03 14:26:15 2000

// Attributes

// MODTYPE = SYNC_RAM

// BUS_WIDTH = 4

// DEPTH = 48

// STYLE = MAX_SPEED

// USE_RPM = FALSE

//---

logib1 instance_name

(.A(),

 .DO(),

 .DI(),

 .WR_EN(),

 .WR_CLK());

// FPGA Express / FPGA Compiler II black box

// attribute definitions

// synopsys attribute fpga_dont_touch “true”

// synthesis attribute fpga_dont_touch of
instance_name is “true”

// XST black box attribute definitions

// box_type “black_box”

// synthesis attribute box_type of instance_name
is “black_box”

module logib1(A, DO, DI, WR_EN, WR_CLK);

// synthesis “black_box”
ISE 4 User Guide 8-15

ISE 4 User Guide
// Synplicity black box declaration

input [5:0] A;

output [3:0] DO;

input [3:0] DI;

input WR_EN;

input WR_CLK;

endmodule

3. Use File → Open on the Project Navigator menu to open the
Verilog file in which the LogiBLOX component is to be
instantiated.

4. Cut and paste the module declaration from the LogiBLOX
component’s .vei file into the Verilog design code, placing it after
the endmodule line in the architecture section or the Verilog design
code.

5. Cut and paste the component instantiation from the .vei file into
the design code. Give the added code an instance name and edit
it to connect the ports to the signals.

Following is an example of Verilog source code with the
LogiBLOX instantiation for the component named logib1. For
each NGC file from LogiBLOX, you may have one or more
Verilog files with the NGC file instantiated. In this example, there
is only one black box instantiation of memory, but multiple calls
to the same module may be done.

module top (D,CE,CLK,Q,

 Atop, DOtop, DItop, WR_ENtop, WR_CLKtop);

input D;

input CE;

input CLK;

output Q;

input [5:0] Atop;
8-16 Xilinx Development System

LogiBLOX
output [3:0] DOtop;

input [3:0] DItop;

input WR_ENtop;

input WR_CLKtop;

userff U0 (.D(D),.CE(CE),.CLK(CLK),.Q(Q));

memory U1 (.A(Atop),

 .DO (DOtop),

 .DI (DItop),

 .WR_EN (WR_ENtop),

 .WR_CLK (WR_CLKtop));

endmodule

Note An alternate method is to place the module declaration
from the .vei file into a new, empty Verilog file (MEMORY.V) and
add the new file (shown below) to the project.

//---

// LogiBLOX SYNC_RAM Module “memory”

// Created by LogiBLOX version C.16

// on Wed Jun 01 10:40:25 1999

// Attributes

// MODTYPE = SYNC_RAM

// BUS_WIDTH = 4

// DEPTH = 48

// STYLE = MAX_SPEED

// USE_RPM = FALSE

//---

module MEMORY (A, DO, DI, WR_EN, WR_CLK);

input [5:0] A;
ISE 4 User Guide 8-17

ISE 4 User Guide
output [3:0] DO;

input [3:0] DI;

input WR_EN;

input WR_CLK;

endmodule

6. Save the Verilog source file. The design with the instantiated
LogiBLOX module can now be checked for syntax errors and
synthesized.

Note When the design is synthesized, a warning is generated that
the LogiBLOX module is unlinked. Modules instantiated as black
boxes are not elaborated and optimized. The warning message is
just reflecting the black box instantiation.

Simulating LogiBLOX Components
For simulation of LogiBLOX-created VHDL components, add the
component_name.vhd file created by LogiBLOX to the project. This
step is not necessary for Verilog components.

Constraining LogiBLOX Memory with FPGA
Express

In the XSI (Xilinx Synopsys Interface) HDL methodology, whenever
large blocks of memory are needed, LogiBLOX RAM or ROM
modules are instantiated in the HDL code. With LogiBLOX RAM or
ROM modules instantiated in the HDL code, you can specify in a
UCF file the timing and placement constraints on these modules, and
the primitives that comprise these modules.

To create timing or placement constraints for LogiBLOX memory
modules, you must know:

• how many primitives will be used

• how the primitives and LogiBLOX modules are named
8-18 Xilinx Development System

LogiBLOX
Estimating the Number of Primitives Used
When memory is specified with LogiBLOX, the memory depth and
width are specified. If the RAM or ROM depth is divisible by 32, then
32x1 primitives are used. If the RAM or ROM depth is not divisible
by 32, then 16x1 primitives are used instead. In the case of dual-port
RAMs, 16x1 primitives are always used. Based on whether 32x1 or
16x1 primitives are used, the number of RAMs or ROMs can be
calculated.

For example, if a RAM48x4 is required for a design, RAM16x1
primitives are used. Based on the width, there are four banks of
RAM16x1s. Based on the depth, each bank has three RAM16x1s.

How the RAM Primitives are Named
Using the example of a RAM48x4, the RAM primitives inside the
LogiBLOX are named as follows.:

• MEM0_0

• MEM1_0

• MEM2_0

• MEM3_0

• MEM0_1

• MEM1_1

• MEM2_1

• MEM3_1

• MEM0_2

• MEM1_2

• MEM2_2

• MEM3_2

Each primitive in a LogiBLOX memory module has an instance name
of MEMx_y, where:

• y represents the primitive position in the bank of memory

• x represents the bit position of the memory output
ISE 4 User Guide 8-19

ISE 4 User Guide
For the next two items, see the Verilog and VHDL examples included
at the end of this section. The Verilog and VHDL example instantiates
a RAM32x2S, which is in the bottom of the hierarchy. The RAM32x2S
is implemented with LogiBLOX. The next two items are written
within the context of the Verilog examples but also apply to the
VHDL examples as well.

Referencing a LogiBLOX Module or Component
This section discusses referencing a LogiBLOX module or component
in an HDL source.

You constrain LogiBLOX memory modules in the HDL Flow using a
UCF file. You can reference LogiBLOX memory modules instantiated
in the HDL with the full-hierarchical instance name. If a LogiBLOX
memory module is at the top level of the HDL code, the instance
name of the LogiBLOX memory module is just the instantiated
instance name.

In the case of LogiBLOX memory, which is instantiated within the
hierarchy of the design, the instance name of the LogiBLOX module
is the concatenation of all instances which contain the LogiBLOX
memory. The concatenated instance names are separated by a “_”. In
the example, the RAM32X1S is named memory. The module memory
is instantiated in the Verilog module inside with an instance name
U0. The module inside is instantiated in the top-level module test.
Therefore, you can reference the RAM32X1S in a UCF file as U0/U0.
For example, to attach a TNM to this block of RAM, use the following
line in the UCF file.

INST U0_U0 TNM=block1 ;

Because U0/U0 is composed of two primitives, a Timegroup called
block1 is created; block1 TNM can be used throughout the UCF file as
a Timespec end or start point, or U0/U0 can have a LOC area
constraint applied to it. If the RAM32X1S is instantiated in the top-
level file, and the instance name used in the instantiation is U0, this
block of RAM can just be referenced by U0.
8-20 Xilinx Development System

LogiBLOX
Referencing the Primitives of a LogiBLOX Module
This section discusses referencing the primitives of a LogiBLOX
module in an HDL source.

Sometimes it is necessary to apply constraints to the primitives that
compose the LogiBLOX memory module. For example, if you choose
a floorplanning strategy to implement your design, it may be
necessary to apply LOC constraints to one or more primitives inside a
LogiBLOX memory module.

Returning to the RAM32x2S example above, suppose that each of the
RAM primitives must be constrained to a particular CLB location.
Based on the rules for determining the MEMx_y instance names and
using the example from above, you can reference each of the RAM
primitives by concatenating the full-hierarchical name to each of the
MEMx_y names. The RAM32x2S created by LogiBLOX would have
primitives named MEM0_0 and MEM1_0. So, for an HDL Flow
project, CLB constraints in a UCF file for each of these two items
would be:

INST U0_U0/MEM0_0 LOC=CLB_R10C10 ;
INST U0_U0/MEM0_1 LOC=CLB_R11C11 ;

Verilog Example
Following is a Verilog example.

test.v:

module test(DATA,DATAOUT,ADDR,C,ENB);

input [1:0] DATA;
output [1:0] DATAOUT;
input [4:0] ADDR;
input C;
input ENB;
wire [1:0] dataoutreg;
reg [1:0] datareg;
reg [1:0] DATAOUT;
reg [4:0] addrreg;
ISE 4 User Guide 8-21

ISE 4 User Guide
inside U0 (.MDATA(datareg),.MDATAOUT(dataoutreg),
 .MADDR(addrreg),.C(C),.WE(ENB));

always@(posedge C) datareg = DATA;
always@(posedge C) DATAOUT = dataoutreg;
always@(posedge C) addrreg = ADDR;

endmodule

inside.v:

module inside(MDATA,MDATAOUT,MADDR,C,WE);

input [1:0] MDATA;
output [1:0] MDATAOUT;
input [4:0] MADDR;
input C;
input WE;

memory U0 (.A(MADDR), .DO(MDATAOUT),
 .DI(MDATA), .WR_EN(WE), .WR_CLK(C));

endmodule

test.ucf

INST “U0_U0” TNM = usermem;
TIMESPEC TS_6= FROM : FFS :TO: usermem: 50;
INST “U0_U0/mem0_0” LOC=CLB_R7C2;
8-22 Xilinx Development System

LogiBLOX
 VHDL Example
Following is a VHDL example.

test.vhd

library IEEE;
use IEEE.STD_LOGIC_1164.all;
use IEEE.STD_LOGIC_UNSIGNED.all;

entity test is
port(

DATA: in STD_LOGIC_VECTOR(1 downto 0);
DATAOUT: out STD_LOGIC_VECTOR(1 downto 0);
ADDR: in STD_LOGIC_VECTOR(4 downto 0);
C, ENB: in STD_LOGIC);

 end test;

architecture details of test is
signal dataoutreg,datareg: STD_LOGIC_VECTOR(1 downto 0);
signal addrreg: STD_LOGIC_VECTOR(4 downto 0);

component inside
port(

MDATA: in STD_LOGIC_VECTOR(1 downto 0);
MDATAOUT: out STD_LOGIC_VECTOR(1 downto 0);
MADDR: in STD_LOGIC_VECTOR(4 downto 0);
C,WE: in STD_LOGIC);

end component;

begin

U0: inside port
map(MDATA=>datareg.,MDATAOUT=>dataoutreg.,MADDR=>addrreg,C=>C,WE=>
ENB);

process(C)
begin

if(Cevent and C=1) then
datareg <= DATA;
ISE 4 User Guide 8-23

ISE 4 User Guide
end if;
end process;

process(C)
begin

if(Cevent and C=1) then
DATAOUT <= dataoutreg;

end if;
end process;

process(C)
begin

if(Cevent and C=1) then
addrreg <= ADDR;

end if;
end process;

end details;

inside.vhd

entity inside is
port(

MDATA: in STD_LOGIC_VECTOR(1 downto 0);
MDATAOUT: out STD_LOGIC_VECTOR(1 downto 0);
MADDR: in STD_LOGIC_VECTOR(4 downto 0);
C,WE: in STD_LOGIC);

end inside;

architecture details of inside is component memory
port(

A: in STD_LOGIC_VECTOR(4 downto 0);
DO: out STD_LOGIC_VECTOR(1 downto 0);
DI: in STD_LOGIC_VECTOR(1 downto 0);
WR_EN,WR_CLK: in STD_LOGIC);

end component;

begin
U0: memory port map(A=>MADDR,DO=>MDATAOUT,

DI=>MDATA,WR_EN=>WE,WR_CLK=>C);
8-24 Xilinx Development System

LogiBLOX
end details;

test.ucf

INST “U0_U0” TNM = usermem;
TIMESPEC TS_6= FROM : FFS :TO: usermem: 50;
INST “U0_U0/mem0_0” LOC=CLB_R7C2;

LogiBLOX Documentation
The LogiBLOX Guide is available with the Xilinx online book
collection on the CD-ROM supplied with your software or from
Xilinx at http://support.xilinx.com.

You can access LogiBLOX online help from LogiBLOX or from the
Project Navigator online help system.
ISE 4 User Guide 8-25

http://support.xilinx.com

ISE 4 User Guide
8-26 Xilinx Development System

Chapter 9

CORE Generator

This chapter contains the following sections:

• “About CORE Generator”

• “Opening the CORE Generator Main GUI”

• “Creating a CORE Component”

• “Using Cores in ISE 4 Projects”

• “Simulation and Synthesis of Core Modules”

About CORE Generator
The Xilinx CORE Generator is a design tool that delivers
parameterizeable cores optimized for Xilinx FPGAs. It provides a
catalog of ready-made functions ranging in complexity from simple
arithmetic operators such as adders, accumulators, and multipliers,
to system-level building blocks including filters, transforms,
memories.

Here are some of the enhancements in the integration between CORE
Generator and ISE:

• Menu Selection Enhancements

The menu selection File Save → Save Project As has
been enhanced to copy any cores in the project as well as their
associated files. This includes the XCO, SYM, VHO, VEO, EDN, and
MIF files for each core. In addition, the CORE Generator project
files are copied including coregen, crp, coregen.pfj, and
core.tpl.
ISE 4 User Guide 9-1

ISE 4 User Guide
The menu selection Project → Add Copy of Source has
also been enhanced to copy cores from other directories and their
associated files. This includes the XCO, SYM, VHO, VEO, EDN,
and MIF files for each core.

• New HDL flow improvements.

Design Flow
The CORE Generator System produces an Electronic Data
Interchange Format (EDIF) netlist, and may also produce a schematic
symbol, and/or a Verilog Output (VEO) with a Verilog (V) wrapper
file, or VHDL Output (VHO) template file with a VHDL (VHD)
wrapper file. The Electronic Data Netlist (EDN) file contains the
information for implementing the module.

The schematic allows you to integrate the CORE Generator module
into an ECS schematic. Finally, the VEO and VHO template files
contain code that can be used as a model to instantiate a CORE
Generator module in a Verilog or VHDL design so that it can be
simulated and integrated into a design.

Note Verilog and VHDL wrapper files are used to pass information to
the Xilinx CoreLib Simulation models. VHDL wrapper files are used
only by ISE during simulation. Only Verilog wrapper files are used
by ISE during Verilog synthesis to provide Port direction information
to the Synthesizer.

You can download new cores from the Xilinx Web site and add these
cores to the CORE Generator. The URL for downloading cores is
http://www.xilinx.com/ipcenter. Check this Web site to verify that
you have the latest version of each core and core data sheet.
9-2 Xilinx Development System

http://www.xilinx.com/ipcenter

CORE Generator
Opening the CORE Generator Main GUI

Figure 9-1 CORE Generator Main GUI (Sample)

In ISE 4, you can open the CORE Generator main GUI as a standalone
program, or as an integrated design entry tool in the Project
Navigator.

To open the CORE Generator as a standalone program, click Start
→ Programs →Xilinx → ISE 4 → CORE Generator System
from your PC’s desktop.

The CORE Generator is an integrated design entry tool within ISE. To
open the CORE Generator main GUI from Project Navigator:

1. Select a CORE Generator source by clicking it in the Sources in
Project window.

2. Click the plus sign (+) to expand the COREgen toolbox in the
Processes for Current Source window.

3. Double-click Manage Cores.

The CORE Generator main window opens.

Note This procedure assumes an existing core. To create a new
core, see “Creating a CORE Component” below.
ISE 4 User Guide 9-3

ISE 4 User Guide
Creating a CORE Component
To create a CORE component:

1. Click Project → New Source.

2. Click Coregen IP from the New dialog box.

3. Enter a file name for the new core.

4. Verify that the information for the core (source name and source
type) is correct.

5. Click Finish to launch the CORE Generator interface.

6. Click Next.

7. At the New Source Information window, click Finish.

The CORE Generator Main Window opens.

Figure 9-2 CORE Generator Main Window, Cores Selected

To access the project setup options, click Project → Project
Options from the CORE Generator menu. However, if you opened
the CORE Generator from an ISE 4 project, the Project Options are
automatically set to the appropriate values for the project.

To select a core, double-click its name in the “Contents of” section of
the CORE Generator window. A new window opens where you can
9-4 Xilinx Development System

CORE Generator
customize the core for your use, view its data sheet, and get other
information concerning the core. The items that can be customized
for a particular core depend on what the core is.

The next figure shows the CORE Generator window that opens when
you select the accumulator core for a Virtex project.

Figure 9-3 CORE Generator Window, Accumulator CORE

Note The Component Name field is blank on the CORE Generator
customization screens.The name entered in the ISE 4 Project
Navigator New window is not passed to the CORE Generator.
ISE 4 User Guide 9-5

ISE 4 User Guide
CORE Component Names
You must manually enter a name in the Component Name field.
CORE component names have the following requirements:

• Must begin with a lower case alphabetic character a-z.

• No extensions or uppercase letters are allowed.

• After the first character, may include 0-9, _ (underscore).

• No HDL reserved words, for example:

♦ Verilog - Do not use module, input, output.

♦ VHDL - Do not use component, function, configuration, port,
signal.

Click the Data Sheet button to view detailed information on the core.
You must have the Adobe Acrobat Reader version 4.0 or above
installed on your PC to view the data sheet.

After you customize the core, click the Generate button to generate
the new core. When the core is successfully generated, the new core
and its related files are placed in the project directory. When finished,
close the CORE Generator windows.

The customized core component is a collection of several files
including those listed below. The files are located in your ISE 4 project
directory.

component_name.coe ASCII data file defining the coeffi-
cient values for FIR filters and
initialization values for memory
modules

component_name.xco CORE Generator file containing the
parameters used to generate the
customized core

component_name.edn EDIF implementation netlist for the
core

component_name.veo Verilog template file

component_name.vho VHDL template file

component_name.mif Memory Initialization Module for
Virtex Block RAM modules
9-6 Xilinx Development System

CORE Generator
The component name is the name given to the core in the
customization window. The port names are the names provided in
the template (.veo or .vho) files.

Using Cores in ISE 4 Projects
If you initiated the CORE Generator from the Project Navigator New
window, the new core and its related files are placed in the current
ISE 4 project directory. The related files include schematic, VHDL,
and Verilog templates that can be used in your project. The core is
added as a user document and appears in the Sources in Project
window.

Editing Cores
To edit a core in an ISE 4 project, double-click its name in the Sources
in Project window. This opens the CORE Generator’s customization
window for that core. After you make changes and click the Generate
button, the files related to that core are updated and the ISE project is
marked out of date.

Using Cores in Schematic Sources
The CORE Generator automatically creates a schematic symbol for
any core component. When you create a core in an ISE 4 project, its
schematic symbol is automatically added to the Engineering Capture
System (ECS) local symbol library for use in schematic designs for
that project.

To select a core for use in a schematic in an ISE 4 project:

1. Open the Engineering Capture System (ECS) either by double-
clicking an existing schematic source in the Sources in Project
window, or click Project → New source, then Schematic to
create a new schematic source.

2. When the Engineering Capture System (ECS) is open, click Add
→ Symbol.

3. Select the core from the Local Symbol library for placement on
the open schematic.

component_name.vhd VHDL wrapper file

component_name.v Verilog wrapper file
ISE 4 User Guide 9-7

ISE 4 User Guide
Instantiating Cores in an HDL Source
The CORE Generator automatically creates a VHDL template and
Verilog template for each core component. When you create a core in
an ISE 4 project, the HDL templates are automatically added to the
Language Templates tool. These templates are then available for
instantiation in VHDL or Verilog sources for the project.

To access the core component HDL instantiation templates for a
project:

1. Click Edit → Language Templates from the Project
Navigator menu.

The Language Template window opens in the HDL Editor
workspace.

2. Click the “+” icon beside COREGEN in the Language Templates
window to access the directories under COREGEN.

3. For VHDL projects, click the “+” icon beside VHDL Component
Instantiation directory to display the list of available VHDL
instantiation templates. For Verilog projects, click the “+” icon
beside Verilog Component Instantiation.

4. Double-click the core to display its instantiation template in the
right pane of the Language Templates window.

5. To use the template, cut and paste the template text from the
Language Templates window to a new or open HDL file.

Simulation and Synthesis of Core Modules
See the Schematic and HDL Design Flows chapter of the CORE
Generator Guide accessed from the CORE Generator Help → Online
Documentation for detailed information on general simulation and
synthesis of CORE modules. See the “Synthesizing and Simulating
Cores” section below for specific information on ISE and Coregen
flows.
9-8 Xilinx Development System

CORE Generator
Synthesizing and Simulating Cores
This section discusses synthesizing and simulating cores with ISE
integrated tools.

The CORE Generator now outputs VHDL or Verilog wrapper files
when a core is created or modified. These wrapper files contain
parameters important for simulation, including VHDL configuration
statements. The wrapper methodology eliminates the necessity to
specify configurations in your VHDL testbench because these are
now fully contained within the wrapper file. Therefore, these files are
necessary for correct behavioral simulation of CORE Generator cores.

In some cases, these wrapper files can be useful for synthesis as well.
ISE will automatically use the wrapper file at the appropriate time.
The table below is a list of flows and describes if the wrapper files are
used by ISE in each flow. The simulation processes are those that are
visible when a testbench is selected in the Sources In Project window.

These wrapper files require the XilinxCoreLib library, so make sure
that this library is mapped in your simulator project.

Flows Synthesis
Simulate

Behavioral Model
Process

Simulate Post-
Translate, -MAP,

and Place & Route
Processes

All VHDL flows Not Used Used Not Used (Not
Necessary)

All Verilog Flows Used (For module
statement and port
directions)

Used Not Used (Not
Necessary)
ISE 4 User Guide 9-9

ISE 4 User Guide
9-10 Xilinx Development System

Chapter 10

Implementation

This chapter contains the following sections:

• “About Implementation”

• “Implementing Design Processes”

• “Implementing Your Design”

• “Implementation Errors and Warnings”

• “Saving Implementation Results”

• “Deleting Results”

• “Changing Devices”

• “Viewing Implementation Reports”

• “User Constraints”

About Implementation
After you create a design source, the Implement Design processes
convert the logical design represented in that source (and all sources
in the hierarchy from that source down) into a physical file format
that can be implemented in the selected target device. You can
implement the design multiple times using different implementation
process properties or target devices.

For detailed information about implementation in FPGAs and
CPLDs, see the following chapters later in this Guide:

• “FPGA Implementation”

• “CPLD Implementation”
ISE 4 User Guide 10-1

ISE 4 User Guide
Implementing Design Processes
After design entry, use the processes in the Implement Design section
of the Processes for Current Source window to:

• Implement the design for a specific target device

• Generate reports showing the status of the design

• Perform a timing analysis for design verification

• Export the design for timing simulation and programming

Note The Implement Design processes for your design depend on
whether your design is for an FPGA or CPLD device. The synthesis
tool selection does not affect the implementation flow.

Implementing Your Design
To implement your design:

1. Click a source file (HDL file, schematic, or EDIF file) in the
Sources in Project window representing the design that you want
to implement in the device. That source and all sources in the
design hierarchy below it are included in the implementation
processing.

2. Implementation processing is automatically customized for the
targeted device. You can, however, try different processing
options as necessary to meet your design requirements by setting
processing properties. Right-click Implement Process and select
Properties. See the “Properties” section of the “FPGA
Implementation” chapter or the “Properties” section of the
“CPLD Implementation” chapter for more information.

Note Implementation process properties affect all sources in the
project. They cannot be set for (or associated with) only certain
sources.

3. Use the Implement Design processes in the Processes for Current
Source window to select the implementation processing you
want performed on the selected source (from that source down
through the design hierarchy). You can implement your design
completely, or request that only necessary processing be done to
produce a specific implementation report.
10-2 Xilinx Development System

Implementation
Complete Implementation
For complete implementation processing, double-click Implement
Design in the Processes for Current Source window. The Project
Navigator checks the state of your project. It automatically initiates
the processing necessary to completely implement the selected
source. For example, it synthesizes your design, if necessary, before it
starts the implementation process. When processing is complete, an
icon indicates the results. A green check mark indicates that the
design implemented without errors.

Partial Implementation
You can also request a partial implementation. For example, to view a
report on the design only through a certain implementation stage,
double-click the name of a report listed under the various processes
in the Implement Design section of the Processes for Current Source
window (Map Report, for example). If necessary, click the “+” box
beside the Implement Design process to expand the Implement
Design process list. If the report does not currently exist, the
necessary processing is done to produce the report. If the report
exists, it is opened immediately.

Specialized Processing
Click any of the Implement Design specialized processes to access
them. These processes include: locking pins, multi-pass Place and
Route, and launching advanced implementation tools. The User
Constraint processes listed in the Design Entry Utilities section can be
used for editing the UCF file or accessing the Constraints Editor GUI
to add constraints to your design.

Implementation Errors and Warnings
As a source is implemented, the processes being run and their status
are shown in the Transcript window. The processing status is also
indicated by icons beside the process or report name in the Processes
for Current Source window.

When processing is complete, an icon appears to the left of the
Implement Design process, and to the left of any other processing it
did.
ISE 4 User Guide 10-3

ISE 4 User Guide
• A green check mark indicates that the process was successfully
completed.

• A red X indicates that errors were detected preventing successful
completion of the process.

• A yellow exclamation point indicates a warning.

Saving Implementation Results
To preserve a specific version of the implementation:

• Archive a version of the project as a .zip file.

• Take a snapshot to preserve a project version for later reference
and easy reactivation. See the “Snapshots and Archives” section
of the “Project Navigator” chapter for detailed information on
snapshots.

Deleting Results
To delete the implementation results of synthesis and
implementation, click Project→ Delete Implementation
Data from the Project Navigator menu. This function will delete all
of the files and directories generated by the synthesis and
implementation tools. In the case of an EDIF Design Flow, only the
results of implementation are deleted.

Changing Devices
You may need to change device families to get the best results from
your design. Implementation is automatically performed on the
device set for the project in the Project Properties dialog box.

To change the device:

1. Double-click the Device and Design Flow line in the Sources in
Project window.

2. In the Project Properties dialog box, select a new device or device
family from the drop-down menus.

If you select a new device family, the implementation results (and
synthesis results) become out-of-date. Click Implement Design or
the report you want to view to implement the design with the new
device.
10-4 Xilinx Development System

Implementation
Note If you change devices, you may need to use a different synthesis
tool. See the “Creating a Project” section of the “Projects” chapter for
detailed information on changing devices and synthesis tools.

Viewing Implementation Reports
The implementation reports provide information on:

• Logic trimming

• Logic optimization

• Timing constraint performance

• I/O pin assignment

Generating and Viewing a Report
To generate or view a report:

1. Click a design source in the Sources in Project window.

2. Double-click the report name in the Processes for Current Source
window Implement Design section.

♦ If the report currently exists (from previous processing), it is
immediately opened. If the existing report is out-of-date (no
green check mark beside it), click the report name, then click
Process → Run (or Process → Rerun All) to update it
before viewing it.

♦ If the report does not currently exist, ISE 4.x runs the
necessary processes to produce an up-to-date report and then
displays it.

Note The reports produced depend on whether your design targets a
CPLD or FPGA device.

Report Descriptions
For descriptions of each of the reports listed in the Implement Design
section of the Processes for Current Source window, see the “FPGA
Implementation” chapter and the “CPLD Implementation” chapter.
ISE 4 User Guide 10-5

ISE 4 User Guide
User Constraints
You can control the implementation of a design by defining
constraints that affect the mapping and layout of the physical circuit.
The User Constraints section under Design Entry Utilities in the
Processes for Current Source window provides access to the
mechanisms you can use to enter or modify constraints on the
implementation of your design.

Editing the UCF File
The User Constraints File (UCF) is an ASCII file specifying
constraints on the logical design. Enter constraints in the file with a
text editor. These constraints affect how the logical design is
implemented in the target device. The file can also be used to
override constraints specified during design entry, earlier in the
design flow.

A default UCF file is produced automatically when you create the
project. This default UCF is named top_source_name.ucf where
project_name is the name entered to create the project. To create or use
a different UCF file, identify the UCF file in the Translate Options tab
of the Implement Design Process Properties dialog box for FPGA
designs (see the “FPGA Implementation” chapter). For CPLDs, the
UCF file for the project is specified in the Design tab (see the “CPLD
Implementation” chapter).

To edit the current UCF file:

1. Select a source in the Sources in Project window.

2. Double-click Edit Implementation Constraints File in
the Design Entry Utilities section of the Processes for Current
Source window.

3. The current UCF file opens in your text editor for viewing,
printing, or modification.

See the Xilinx Constraints Guide for information on constraints that
can be entered in the UCF file.

Whenever the UCF file is modified and saved, a message box
reminds you that the implementation processes are not automatically
updated when the UCF is changed.
10-6 Xilinx Development System

Implementation
Click Reset to have the implementation processing rerun with the
new design source netlist and UCF file.

Opening the Xilinx Constraints Editor
Use the Xilinx Constraints Editor to place constraints (instructions)
on symbols or nets in an FPGA or CPLD schematic or textual entry
file such as VHDL or Verilog. Changes or additions to constraints
through the Xilinx Constraints Editor are automatically added into
the User Constraints File (UCF).

To open the Constraints Editor:

1. Click a source in the Sources in Project window.

2. Go to the Processes for Current Source window.

3. Click Design Entry Utilities.

4. Click User Constraints.

5. Double-click Edit Implementation Constraints
(Constraints Editor).

The Constraints Editor opens with the design loaded.

The UCF file is changed when constraints are added or edited
through the Xilinx Constraints Editor. You must run the
implementation process (click Reset in the Notice window that
appears) using the new UCF file and design source netlist to have the
Implement Design process reflect the change.

See the Constraints Editor online help for detailed information on
using the Constraints Editor.
ISE 4 User Guide 10-7

ISE 4 User Guide
10-8 Xilinx Development System

Chapter 11

FPGA Implementation

This chapter contains the following sections:

• “Flow”

• “Reports”

• “Properties”

• “Tools”

Flow
This section discusses FPGA implementation flow. The FPGA
implementation flow contains the following steps:

• “Translate”

• “MAP”

• “Generate Post-Map Static Timing (Optional)”

• “Place and Route”

• “Generate Post-Place & Route Timing (Optional)”

The following figure shows the implementation portion of the
Processes for Current Source window for a design that targets an
FPGA device. The implementation processes are under “Implement
Design.”
ISE 4 User Guide 11-1

ISE 4 User Guide
Figure 11-1 FPGA Implement Design Processes

Select a source and double-click Implement Design to perform the
necessary processing to implement the design in the targeted device.
Default implementation processing properties are used unless you
modify them as described in the “Properties” section of this chapter.

Xilinx implementation tools are used to process your design. During
the implementation, the design is converted from the logical design
file format created in the design entry stage into a physical file format
contained in an NCD (Native Circuit Description) file.

Implementation processing for FPGAs involves three basic phases:
Translate, Map, and Place and Route. Processes to check and verify
timing requirements are also included. Also included are processes to
generate simulation models after each of these three implementation
11-2 Xilinx Development System

FPGA Implementation
phases. At the end of these phases, a programming file can be
created. With the programming file you can optionally program a
PROM or EPROM for subsequent programming of your Xilinx
device, or directly download the programming file into the Xilinx
device.

Translate
During the first step of design implementation, the translate process
merges all of the input netlists and design constraint information and
outputs a Xilinx NGD (Native Generic Database) file. The output
NGD file can then be mapped to the targeted device family.

The following file types are input files for the translation process:

• Design file netlists (EDN, EDF, EDIF, or SEDIF files)

• User Constraints File (UCF File)

The User Constraints File is an ASCII file that you create with a
text editor or the Xilinx Constraints Editor. Its default name is
modulename.ucf. The file contains timing and layout constraints
that affect how the logical design is implemented in the target
device. The constraints in the file are added to the information in
the output NGD file.

• Netlist Constraints File (NCF file)

The Netlist Constraints File (modulename.ncf) contains constraints
specified within the Engineering Capture System (ECS) and
synthesis tool. The netlist reader invoked by the Translate process
adds the constraints to an intermediate NGO file and the output
NGD file.

• Physical Macros (NMC files)

The NMC files are binary files containing the implementation of a
physical macro instantiated in the design. The Translate process
reads the NMC file to create a behavioral simulation model for
the macro.

• Module definition files (NGC files)

NGC files are binary files containing the implementation of a
module in the design. LogiBLOX creates an NGC file to define
each module.
ISE 4 User Guide 11-3

ISE 4 User Guide
The following file types are output files for the translate process:

• Xilinx Native Generic Database (NGD file)

The NGD file (modulename.ngd) is a binary file containing a
logical description of the design expressed both in terms of the
hierarchy used when the design was first created and in terms of
lower-level Xilinx primitives to which the hierarchy resolves. The
file also contains all of the constraints applied to the design
during design entry or entered in a UCF (User Constraints File).

• Translation Report (BLD file)

The Translation Report (modulename.bld file) contains
information about the Translate (NGDBuild) run and its
subprocesses. See the “Viewing Implementation Reports” section
of the “Implementation” chapter for more information.

For a complete description of the Translate process, see the
Development System Reference Guide.

MAP
The MAP process first performs a logical DRC (Design Rule Check)
on the design in the NGD file produced by the Translate process.
MAP then maps the logic to the components (logic cells, I/O cells,
and other components) in the target Xilinx FPGA. The output design
is an NCD (Native Circuit Description) file physically representing
the design mapped to the components in the Xilinx FPGA. The NCD
file can then be placed and routed.

The following file types are input files for the mapping process:

• Native Generic Database (NGD) file

The Translate process outputs the NGD file (modulename.ngd) for
mapping to the target device during the map process.

• Physical Macros (NMC files)

The NMC files are binary files containing the implementation of a
physical macro instantiated in the design. The Translate process
reads the NMC file to create a behavioral simulation model for
the macro.
11-4 Xilinx Development System

FPGA Implementation
• (Optional) Guide Design File (NCD file)

A Guide Design File is an output NCD file from a previous MAP
run that is used as an input to guide a later MAP run. You must
identify the NCD file to be used in the Use Guide Design File
(.ncd) option on the Map Properties tab of the implement Design
Process properties dialog box (see the“Properties” section) before
implementing the design.

• (Optional) Map Floorplanner File (MFP file) - Optional

A Map Floorplanner File, previously generated by the
Floorplanner, can be specified as an input file. The MFP file is
essentially used as a guide file for mapping. You must identify
the MFP file to be used in the Use Floorplanner File option on the
Map Properties tab of the Implement Design Process properties
dialog box (see the“Properties” section) before implementing the
design.

• (Optional) MAP Directive File (MDF file) -- Optional

The MAP Directive File (MDF) is an optional input file used for
guided mapping. The MDF file describes how logic was
decomposed when the guide design was mapped. MAP uses the
hints in the MDF as a guide for logic decomposition in the guided
mapping run.

The following file types are output files for the mapping process:

• Native Circuit Description (NCD file)

The NCD file (modulename_map.ncd) contains a physical
description of the design in terms of the components in the target
Xilinx device.

• Physical Constraints File (PCF)

The PCF file (modulename.pcf) is an ASCII text file containing the
constraints specified during design entry expressed in terms of
physical elements. The physical constraints in the PCF file are
expressed in Xilinx's constraint language. See the Xilinx Libraries
Guide for a description of this file.

• Native Generic Map File (NGM file)

An NGM file (modulename.ngm) is a binary design file containing
all of the data in the input NGD file as well as information on the
physical design produced by the mapping. The NGM file is used
ISE 4 User Guide 11-5

ISE 4 User Guide
to correlate the back-annotated design netlist to the structure and
naming of the source design.

• MAP Directive File (MDF file)

The MDF file describes how logic was decomposed when the
design was mapped. In guided mapping, MAP uses the hints in
the MDF as a guide for logic decomposition.

• MAP Report (MRP file)

The Map Report (modulename.mrp) contains information about
the Map run and its subprocesses. See the “Viewing
Implementation Reports” section of the “Implementation”
chapter for more information.

For a detailed description of the MAP process, see the Development
System Reference Guide.

Generate Post-Map Static Timing (Optional)
The Generate Post-Map Static Timing process (the Xilinx TRACE
program) creates timing simulation data. Use this data to determine if
the timing requirements and functionality of your design are correct
before implementing the place and route process.

The following files are input files for the Pre-Route Static Timing
process:

• A mapped design file (NCD file)

The NCD file (modulename_map.ncd) contains a physical
description of the design in terms of the components in the target
Xilinx device.

• (Optional) Physical Constraints file (PCF file)

The PCF file (modulename.pcf) is an ASCII text file containing the
constraints specified during design entry expressed in terms of
physical elements. The physical constraints in the PCF file are
expressed in Xilinx's constraint language. See the Xilinx Libraries
Guide for a description of this file.

Constraints can indicate such things as clock speed for input
signals, the external timing relationship between two or more
signals, absolute maximum delay on a design path, or a general
timing requirement for a class of pins.
11-6 Xilinx Development System

FPGA Implementation
The post-map static timing process outputs the Static Timing Report.
The Static Timing Report (modulename_preroute.tw1) contains
information about how well the timing constraints for the design
have been met. See the “Viewing Implementation Reports” section of
the “Implementation” chapter for more information.

For a complete description of the timing processes, see the
Development System Reference Guide.

Place and Route
After an FPGA design has undergone the necessary processing to
bring it into the mapped NCD format, it is ready to be placed and
routed. This phase is done by PAR (Xilinx's Place and Route
program). PAR takes a mapped NCD file, places and routes the
design, and produces an NCD file to be used by the programming file
generator (BitGen). The output NCD file can also act as a guide file
when you place and route the design again after you make minor
changes to it.

In the Xilinx Development System, PAR places and routes a design
using a combination of two methods:

• Cost-based placement and routing are performed using various
cost tables which assign weighted values to relevant factors such
as constraints, length of connection and available routing
resources.

• Timing-driven PAR places and routes a design based upon your
timing constraints.

The following file types are input files for the Place and Route process:

• A mapped design file (NCD file)

The mapped NCD file (modulename_map.ncd) contains a physical
description of the design in terms of the components in the target
Xilinx device.

• Physical Constraints File (PCF)

The Physical Constraints File (modulename.pcf) is an ASCII file
containing constraints specified during design entry expressed in
terms of physical elements. The physical constraints in the PCF
file are expressed in Xilinx's constraint language. See the Xilinx
Libraries Guide for a description of this file.
ISE 4 User Guide 11-7

ISE 4 User Guide
• (Optional) Native Circuit Description Guide file (NCD file)

You can optionally specify a template NCD file for placing and
routing the design. You must identify the template file in the
“Use Guide Design File” field of the Place and Route Options tab
on the Implement Design Process Properties dialog box.

The following file types are output files for the Place and Route
process:

• Placed and Routed Design File (NCD file)

The NCD file (modulename.ncd) is a placed and routed design file.
It may contain placement and routing information in varying
degrees of completion. This file can be used by the programming
file creation program (BitGen) to produce a bitstream file for
downloading.

• Place-and-Route Report (PAR file)

The Place-and-Route Report (modulename.par) includes summary
information of all placement and routing iterations. See the
“Viewing Implementation Reports” section of the
“Implementation” chapter for more information.

• Asynchronous Delay Report (DLY file)

The Delay File (modulename.dly) contains delay information for
each net in the design. See the “Viewing Implementation
Reports” section of the “Implementation” chapter for more
information.

• Pad Report (PAD file)

The PAD Report (modulename.pad) contains I/O pin assignments.
See the “Viewing Implementation Reports” section of the
“Implementation” chapter for more information.

• Guide Report File

A Guide Report File is created if you identified a guide file in the
“Use Guide Design File” field on the Place and Route Options
tab.

• Intermediate Failing Timespec Summary (XPI file)

The Intermediate Failing Timespec Summary is a report
generated for failing timing specifications Xilinx Par Information.
11-8 Xilinx Development System

FPGA Implementation
This report appears regardless whether the design was routed
and the timing specifications were met.

For a complete description of PAR, see the Development System
Reference Guide.

Generate Post-Place & Route Timing (Optional)
The Post-Place & Route Timing process (the Xilinx TRACE program)
can be run after Place and Route to create timing simulation data. Use
this data to determine if the timing requirements and functionality of
your design have been met after routing.

The following files are input files for the post-route timing process:

• A placed and routed design file (NCD file)

The NCD file (modulename.ncd) contains a physical description of
the design in terms of the components in the target Xilinx device.

• (Optional) Physical Constraints file (PCF file)

The PCF file (modulename.pcf) is an ASCII text file containing the
constraints specified during design entry expressed in terms of
physical elements. The physical constraints in the PCF file are
expressed in Xilinx’s constraint language. See the Xilinx Libraries
Guide for a description of this file.

Constraints can indicate such things as clock speed for input
signals, the external timing relationship between two or more
signals, absolute maximum delay on a design path, or a general
timing requirement for a class of pins.

Output from the post-route timing process is the Post-Route Timing
Report (modulename .twx). The Post-Place & Route Static Timing
Report contains information about how well the timing constraints
for the design have been met. There are two different types of timing
reports: the error report and verbose report.

For a complete description of the pre-Route Static Timing process, see
the Development System Reference Guide.

Multi Pass Place and Route (Optional)

Running multiple place and route passes allows you to automatically
generate multiple place and route solutions for a design to find the
best possible placement for the design. Optimal placement results in
ISE 4 User Guide 11-9

ISE 4 User Guide
shorter routing delays and faster designs. The Multi-Pass Place and
Route process offers both the ability to generate a determinate,
repeatable solution by using the same starting point, or cost table.
The Multi-Pass Place and Route process also has the ability to
generate a range of unique solutions by using different cost tables.

Multiple iterations of placement and routing produce an output
design file, a PAR file, a DLY file, and a PAD file for each iteration.
When multiple iterations are run they are placed in mppr_results.dir
under the project directory. When the Multi Pass Place and Route
process is performed, PAR records a summary of all placement and
routing iterations in one PAR file in the mppr_results directory, then
places the output files (in NCD format) in that directory. The output
NCD files are named based on the placer level, router level, and cost
table used. For example, the NCD file mppr_results.dir/5_5_1.ncd
indicates placer level 5, router level 5, cost table 1 were used.

The Multi-Pass Place and Route process scores each place and route
pass and uses the score to determine the best passes to save. Scores
are based on factors such as the number of unrouted nets, the delays
on nets, and conformity to your timing constraints. Once this process
is completed, the best result is determined by finding the lowest score
and the corresponding design files are copied back to the project
directory.

On average, design speed from an arbitrary multiple pass place and
route varies plus or minus 5 to 10 percent from the median design
speed across all cost tables. About 1/3 of the cost tables result in
speeds within 5 percent of the median, 1/3 in the 5 to 10 percent
range, and 1/3 in the 10 to 15 percent range. When comparing
performance from the absolute worst cost table to the absolute best, a
spread of 25 to 30 percent is possible.

Note Ranges are narrower for Virtex devices and higher for XC4000
devices.

Use the Multi-Pass Place & Route process in the following situations:

• You want to evaluate whether worse than expected results are
due to a poor starting point or cost table.

In this case, run multiple place and route passes at any time
during the design cycle by running 3 or 4 cost tables.
11-10 Xilinx Development System

FPGA Implementation
• You made small changes to a design at the end of the design cycle
and performance falls 5 to 10 percent as a result of these changes.

In this case, run 5 to 10 cost tables.

Note Using the Multi-Pass Place & Route process is not
recommended for every design iteration. If you need the top
performing cost tables to meet design performance, modify your
design to remove one or more logic levels.

To run Multi Pass Place & Route on an FPGA design:

1. Click a top-level source in the Sources in Project window.

2. Double-click Multi Pass Place & Route in the Processes for
Current Source window.

You can elect to use the Multi Pass Place & Route defaults or set your
own property values in the Multi Pass Place & Route Options dialog
box.

Backannotate Pin Locations (Optional)

Each time you implement a design, a file is created which contains
the pin locations and logical pad names information. For FPGAs, pin
locations and logical pad names are read from a placed NCD file
(modulename.ncd).

When you are ready to commit an FPGA design pinout, click the top-
level source file in the Sources in Project window, then double-click
the Backannotate Pin Locs process under Implement Design
→ Place-and-Route. If no conflicts are found, the pinout
information stored in the .ncd file (FPGAs) is appended to the end of
the User Constraint File for your design (modulename.ucf or the .ucf
file specified in the Implement Design Process Properties dialog box).
This pinout is applied to all subsequent design implementations that
you run.

The Notice dialog box opens whenever the pin locking process is
successful.

Whenever changes are made to a UCF file, implementation needs to
rerun beginning with the translate process to incorporate the changes
into the project. Click Reset in the Notice window if you want to
rerun implementation to read to the new UCF file. However, if you
want to keep the current implementation report files valid and
available for viewing, and also keep any post-implementation
ISE 4 User Guide 11-11

ISE 4 User Guide
processes valid so that you can proceed without rerunning
implementation, click Retain.

Backannotate Pin Locs Report

For FPGAs, double-click Backannotate Pin Locs Report in the
Processes for Current Source window to generate and view this
report. The Backannotate Pin Locs Report (modulename.lck for
FPGAs) is displayed in the report window.

The Backannotate Pin Locs Report has two sections: Constraint
Conflicts Information and List of Errors and Warnings.

The Constraints Conflicts Information section does not display if
there are fatal input errors; for example, missing inputs or invalid
inputs. However, the created report file contains the List of Errors
and Warnings. The Constraints Conflicts Information section has two
subsections: Net name conflicts on the pin and Pin name conflicts on
the nets. If there are no conflicting constraints, both subsections
under the Constraint Conflicts Information section contain a single
line indicating that there are no conflicts.

The List of Errors and Warnings displays only if there are errors or
warnings.

Pin Loc Constraints in the UCF

Pin locking constraints are written to a PINLOCK section in the UCF
file. The PINLOCK section begins with the statement #PINLOCK
BEGIN and ends with the statement #PINLOCK END. By default,
conflicting constraints are not written to the UCF file. Before creating
a PINLOCK section in the UCF, if the conflicting constraints are
discovered, this information is reported.

User-specified pin locking constraints are never overwritten in a UCF
file. However, if the user-specified constraints are exact matches of
pin-locked generated constraints, a pound sign (#) is added in front of
all matching user-specified location constraint statements. The pound
sign indicates that a statement is a comment. To restore the original
UCF file (the file without the PINLOCK section), remove the
PINLOCK section and delete the pound sign from each of the user-
specified statements.

The pin locking process does not check if existing constraints in the
UCF file are valid pin locking constraints. Comments inside an
11-12 Xilinx Development System

FPGA Implementation
existing PINLOCK section are never preserved by a new run of the
pin locking process. If the pin locking process finds a CSTTRANS
comment, it equates “INST name” to “NET name”, then checks for
comments.

The pin locking process writes to an existing UCF file under the
following conditions:

• The contents in the PINLOCK section are all pin lock matches
and there are no conflicts between the PINLOCK section and the
rest of the UCF file.

• The PINLOCK section contents are all comments and there are no
conflicts outside the PINLOCK section.

• There is no PINLOCK section and no other conflicts in the UCF
file.

Reports
This section briefly summarizes FPGA implementation reports. For
detailed information about the reports, see the Project Navigator online help.
The following reports provide information on the implementation
processing of your FPGA design:

• Translation Report
The Translation Report contains warning and error messages
from the three translation processes: conversion of the EDIF or
XNF style netlist to the Xilinx NGD netlist format, timing
specification checks, and logical design rule checks.

• MAP Report
The MAP report contains warning and error messages detailing
logic optimization and problems in mapping logic to physical
resources.

• Place & Route Reports
Place & Route Reports include:

♦ PAR Report

♦ PAD Report

♦ Asynchronous Delay Report
ISE 4 User Guide 11-13

ISE 4 User Guide
• Post-Map Static Timing Report
The Post-Map Static Timing Report gives you a calculated worst-
case timing for all signal paths in your design. It optionally
includes a complete listing of all delays on each individual path
in the design. It does not include insertion of stimulus vectors.
The FPGA design must be mapped and can be partially or
completely placed, routed, or both.

• Post-Place & Route Static Timing Report
The Post-Place & Route Static Timing Report process gives you a
calculated worst-case timing for all signal paths in your design. It
optionally includes a complete listing of all delays on each
individual path in the design.

Properties
This section briefly summarizes FPGA implementation properties.
For detailed information about implementation properties, see the Project
Navigator online help. You can set multiple properties to control the
implementation processes for the design. For FPGAs, the
implementation process properties specify how a design is translated,
mapped, placed, and routed. Reporting options are also available.
Open the Process Properties dialog box to modify implementation
options.

Opening the Process Properties Dialog Box
To open the Process Properties dialog box:

1. Click a design source file in the Sources in Project window for a
project that targets an FPGA device.

Note Implementation properties are set for the whole design, not
for the selected module file only.

2. Right-click Implement Design in the Processes for Current
Source window.

3. Click Properties from the pull-down menu.

The Process Properties dialog box for the Implement Design
processes opens. See the following figure.
11-14 Xilinx Development System

FPGA Implementation
Figure 11-2 Sample Process Properties Dialog Box - Standard
Display

Note This figure is a sample only. The actual content of the dialog box
may vary depending on the type of process you are running, whether
you have selected Standard or Advanced display, and other factors.

4. Click the tab corresponding to the type of options you want to set
to display the available properties. Click F1 to display detailed
descriptions of the options on each tab.

Note You can also right-click the processes listed under the
Implement Design process to display the Process Properties
dialog box for that process only

You can customize whether you want to display the Standard or
Advanced list of properties in the Process Properties dialog boxes.
Use the procedure described in the following section to display the
Advanced properties.
ISE 4 User Guide 11-15

ISE 4 User Guide
Accessing Advanced Properties
The options listed in the Process Properties dialog boxes depend on
whether you are using the Standard or Advanced display level. By
default, only the Standard options are listed on each Process Property
tab.

To access the Advanced options, do the following before you access
the Implement Design Process Properties dialog box:

1. Click Edit → Preferences from the Project Navigator menu.

2. Click the Processes tab in the Preference dialog box.

3. Click Advanced for the Property Display Level.

Note The set of advanced properties is a true superset of standard
properties. Accordingly, all the standard properties are also shown in
advanced mode.

Tools
This section discusses FPGA Implementation Tools. The FPGA
implementation tools include:

• “Floorplanner”

• “FPGA Editor”

• “Timing Analyzer”

• “XPower”

Processes available from these tools include:

• Analyze Post-Map Static Timing (Timing Analyzer)

• Floorplan Design (Floorplanner)

• Manually Place & Route (FPGA Editor)

• Analyze Post-Place & Route Static Timing (Timing Analyzer)

• View/Edit Placed Design (Floorplanner)

• View/Edit Routed Design (FPGA Editor)

• Analyze Power (XPower)

For detailed information on these processes, see the online help for
the respective tool.
11-16 Xilinx Development System

FPGA Implementation
Floorplanner

Figure 11-3 Floorplanner

The Floorplanner is a graphical placement tool that gives you control
over placing a design into a target FPGA. You drag and drop
elements of your design into the floorplan of the target device
displayed in the Floorplanner window. The Floorplanner displays a
hierarchical representation of the design in its Design Hierarchy
window using hierarchy structure lines and colors to distinguish the
different hierarchical levels.
ISE 4 User Guide 11-17

ISE 4 User Guide
To open the Floorplanner:

1. Click a design source in the Sources in Project window.

2. Double-click Floorplanner in the Processes for Current Source
window.

The Floorplanner opens and automatically loads the project’s
NGD file.

Floorplanning is particularly useful on structured designs and data
path logic. With the Floorplanner, you see where to place logic in the
floorplan for optimal results, placing data paths exactly at the desired
location on the die.

You can use the Floorplanner at multiple points in the design
implementation flow. The Floorplanner can be used:

• Prior to Mapping

• Prior to Place and Route

• After Place and Route

An NCD file is no longer a prerequisite for using the Floorplanner,
and you can now output a UCF file. Invoking the Floorplanner after
the design has been placed and routed allows you to view and
possibly improve the results of the automatic implementation. In an
interactive floorplan design flow, you floorplan and place and route,
interactively. You can modify the logic placement in the Floorplan
window as often as necessary to achieve your design goals. You can
save the iterations of your floorplanned design to use later as a
constraints file (MFP file) for MAP.

With the Floorplanner, you can floorplan your design before or after
Place and Route. Invoking the Floorplanner after the design has been
placed and routed allows you to view and possibly improve the
results of the automatic implementation. In an iterative floorplan
design flow, you floorplan and place and route, interactively. You can
modify the logic placement in the Floorplan window as often as
necessary to achieve your design goals. You can save the iterations of
your floorplanned design to use later as a constraints file (MFP file)
for PAR.

The Floorplanner generates an MFP file that contains mapping and
placement information. You can use this file as a guide for mapping
an implementation revision for FPGA devices.
11-18 Xilinx Development System

FPGA Implementation
For detailed information on using the Floorplanner, see the
Floorplanner online help.

FPGA Editor
The FPGA Editor is a graphical application for displaying and
configuring FPGAs. The FPGA Editor provides a graphic view of
your placed and routed FPGA design, allowing you to make
modifications. Use the FPGA Editor to place and route critical
components before running the automatic place and route tools on
your designs. You can also use the FPGA Editor to manually finish
placement and routing if the routing program does not completely
route your design. In addition, the FPGA Editor reads from and
writes to the Physical Constraints File (PCF).

To open the FPGA Editor:

1. Click a design source in the Sources in Project window.

2. Double-click FPGA Editor in the Processes for Current Source
window.

The FPGA Editor opens and automatically loads the project’s
NCD file.
ISE 4 User Guide 11-19

ISE 4 User Guide
The following figure shows an example of the FPGA Editor.

Figure 11-4 FPGA Editor Main Window

For detailed information on using the FPGA Editor, see the FPGA
Editor online help.

Timing Analyzer
Use the Timing Analyzer program to perform static timing analysis
on an FPGA or CPLD design. The Timing Analyzer:

• Verifies that the delay along a given path or paths meets your
specified timing requirements.

• Creates timing analysis reports that you customize by applying
filters.

• Organizes and displays data that allows you to analyze the
critical paths in your circuit, the cycle time of the circuit, the delay
along any specified paths, and the paths with the greatest delay.

• Provides a quick analysis of the effect of different speed grades
on the same design.
11-20 Xilinx Development System

FPGA Implementation
To open the Timing Analyzer:

1. Click a design source in the Sources in Project window.

2. Double-click Timing Analyzer in the Processes for Current
Source window.

The Timing Analyzer opens and automatically loads the project’s
NGD file.

The FPGA design must be mapped and can be partially or completely
placed, routed or both. The CPLD design must be completely placed
and routed. A static timing analysis is a point-to-point analysis of a
design network. It does not include insertion of stimulus vectors.

The Timing Analyzer works with synchronous systems composed of
flip-flops and combinatorial logic. In synchronous design, the Timing
Analyzer takes into account all path delays, including clock-to-Q and
setup requirements, while calculating the worst-case timing of the
design. However, the Timing Analyzer does not perform setup and
hold checks; you must use a simulation tool to perform these checks.

For a complete description of the Timing Analyzer, see the Timing
Analyzer’s online help.
ISE 4 User Guide 11-21

ISE 4 User Guide
XPower

Figure 11-5 XPower Main Window

XPower is a graphical user tool that gives you power consumption
information for specific designs. The XPower Summary Bar displays
a representation of total estimated power consumed by a specific
device.

Note The following sections are from the XPower Release Notes. See
those notes for additional information. For in-depth information on
how to use XPower, see its online help.

Why Estimate Power?

Power estimation is an optional methodology to help you estimate
the power consumption of a digital design. It allows you to deter-
mine if your design will meet your power constraints. It also gives
you detailed information about how much power specific compo-
nents of a design will consume. Power estimation is particularly
useful for power sensitive designs.

With XPower, you can estimate the power consumption of your
design after running PAR. You may then identify power hungry parts
of the design and make changes according to power constraints. In an
11-22 Xilinx Development System

FPGA Implementation
iterative design flow, one can power estimate and Floorplan, interac-
tively. You can modify the power consumption in XPower as often as
necessary to achieve your design goals. This may include, but is not
limited to: reducing clock rates, reducing loads on FPGA outputs,
redesigning critical sections of the design to consume less power, or
reusing sections of the design for multiple purposes. XPower allows
you to calculate power consumption of a particular design file based
on frequency, toggle rate, enable rate, voltage, and load assignments.
In the XPower application, power calculations are displayed on
screen.

XPower Prerequisites

XPower is specifically intended to assist those users who require
some degree of handcrafting for their designs. You must understand
both the details of the device architectures and how power estimation
can be used to refine a design. Successful power estimation is very
much an iterative process and it can take time to develop a power
level that outperforms an automatically processed design.

Because of the nature of XPower’s interaction with the automatic
MAP and PAR tools, several prerequisites are necessary in order to
power estimate your design successfully.

• Detailed knowledge of the specifics of the target architecture and
part

• Detailed knowledge of the specifics of the design being imple-
mented

• A willingness to iterate power consumption to achieve the
desired results

• Realistic performance and density goals

Features of XPower

XPower provides an easy-to-use graphical interface that offers the
following features:

• Interacts at a high level of the design hierarchy, as well as with
low-level elements such as I/Os, function generators, 3-state
buffers, flip-flops, and RAM/ROM

• The Outputs view provides output power for OBUFS from both
clocked and unclocked logic.
ISE 4 User Guide 11-23

ISE 4 User Guide
• Estimates power consumption for a design before it is down-
loaded.

• Considers the design resource usage, toggle rates, Input/Output
power, and many other factors in estimation.

• Formulae used for calculations in the application are based on the
classic power equation P=CFV2, where P=power, C=capacitance,
V=voltage and F=frequency.

• Because XPower is an estimation tool, results may not precisely
match actual power consumption.

• In the absence of simulation information, the user is required to
enter a clock frequency and estimated toggle rate percentage to
be applied to all the signals in each path. The toggle rate will be a
default value unless changed by the user. Even when toggle rates
are available, clock paths are still a valid organization of the data,
allowing the user to identify paths that consume a large amount
of power. Clock enable signals are used to divide all the logic in a
clock path into smaller collections of logic. This will help the user
assign appropriate toggle rates for sections of logic and help
them identify logic paths that may have power problems.
11-24 Xilinx Development System

Chapter 12

CPLD Implementation

This chapter contains the following sections:

• “Implement Design”

• “Properties”

• “Tools”

Implement Design
This section discusses CPLD implementation flow, which includes:

• “Translate”

• “Fit”

• “Generate Timing”

• “Generate Post-Fit Simulation Model”

• “Generate IBIS Model”

The following figure shows the implementation portion of the
Processes for Current Source window for a design that targets a
CPLD device. The implementation processes are under “Implement
Design.”
ISE 4 User Guide 12-1

ISE 4 User Guide
Figure 12-1 CPLD Implement Design Processes

When you select a source and click Implement Design, the
necessary processing to implement the design in the targeted CPLD
device is performed. Default implementation processing properties
are used unless you modify them as described in the “Properties”
section.

During implementation, the design is converted from the logical
design file format created in the design entry stage into a physical file
format contained in a JED file. Implementation processing for CPLDs
involves two basic phases: Translate and Fit.

Translate
This section contains the following topics:

• “About the Translate Process”

• “Translation Report”

About the Translate Process

CPLD designs go through the same translate process that FPGA
designs do. During the first step of design implementation, the
translate process merges all of the input netlists and design constraint
information and outputs a Xilinx NGD (Native Generic Database)
12-2 Xilinx Development System

CPLD Implementation
file. The output NGD file can then be mapped to the targeted device
family.

The following file types are input files for the translate process:

• Design file EDIF netlists (EDN files)

• User Constraints File (UCF File)

The User Constraints File (default name is project_name.ucf) is an
ASCII file that you create with a text editor or using the Xilinx
Constraints Editor. The file contains timing and layout
constraints that affect how the logical design is implemented in
the target device. The constraints in the file are added to the
information in the output NGD file.

• Netlist Constraints File (NCF file)

The Netlist Constraints File (top_source_name.ncf) contains
constraints specified within the Engineering Capture System
(ECS) and synthesis tool. The netlist reader invoked by the
Translate process adds the constraints to an intermediate NGO
file and the output NGD file.

• Module definition files (NGC files)

NGC files are binary files containing the implementation of a
module in the design. Some compilers like XST create an NGC
file to represent a design module together with its constraints.

The following file types are output files for the translate process:

• Xilinx Native Generic Database (NGD file)

The NGD file (top_source_name.ngd) is a binary file containing a
logical description of the design expressed both in terms of the
hierarchy used when the design was first created and in terms of
lower-level Xilinx primitives to which the hierarchy resolves. The
file also contains all of the constraints applied to the design
during design entry or entered in a UCF (User Constraints File).

• Translation Report (BLD file)

The Translation Report (top_source_name.bld file) contains
information about the Translate (NGDBuild) run and its
subprocesses. See the “Viewing Implementation Reports” section
of the “Implementation” chapter and the “Translation Report”
section below for more information.
ISE 4 User Guide 12-3

ISE 4 User Guide
For a complete description of the Translate process, see the
Development System Reference Guide.

Translation Report

The Translation Report (top_source_name.bld) contains warning and
error messages from the three translation processes: conversion of the
EDIF netlist to the Xilinx NGD netlist format, timing specification
checks, and logical design rule checks. The report lists the following:

• Missing or untranslatable hierarchical blocks

• Invalid or incomplete timing constraints

• Output contention, loadless outputs, and sourceless inputs

Fit
This section includes the following topics:

• “About the Fit Process”

• “Fitter Report”

• “View Fitted Design (ChipViewer)”

• “Analyze Power (XPower)”

• “Lock Pins”

About the Fit Process

The NGD file output by the Translate process is input to the Fit
process. During Fit, the CPLD Fitter minimizes and collapses the
combinatorial logic of your design so that it requires the least number
of macrocell and product term resources. It also partitions and maps
your design to fit within the architecture of the CPLD. You can
control aspects of this step by setting implementation options using
properties included on the Basic tab in the CPLD Implement Design
Process Properties dialog box.
12-4 Xilinx Development System

CPLD Implementation
Fit Process Output Files

The following file types are output files for the Fit process:

• Fitter Report (RPT file)

The Fitter Report (top_source_name.rpt) shows information such
as the type and quantity of device resources used and the
resulting pinout. See the “Viewing Implementation Reports”
section of the “Implementation” chapter and the “Fitter Report”
section below for more information.

• Guide file (GYD file)

The Guide file (top_source_name.gyd) contains all resulting pinout
information. The pinout information stored in the Guide file is
copied into the User Constraint File (UCF) when the “Lock Pins”
process is run. During subsequent design iterations, the
information copied into the UCF is written only upon successful
completion of the fitter.

• Design Database File (VM6 file)

The Design Database file (top_source_name.vm6) is a binary file
containing the physical mapping of your design into the target
CPLD resulting from the Fitter process.

For detailed information about implementing CPLD designs, see
CPLD Design Flows tutorial in the online help (Help → ISE Help
Contents from the Project Navigator).

Delete Implementation Data

The feature Delete Implementation Data deletes the following files:

• deleting file(s): __projnav.log

• deleting file(s): _chipview.pl

• deleting file(s): ngdbuild.rsp _”filename”_sch2vhf_exewrap.rsp
_ngdbld.rsp __”filename”_2prj_exewrap.rsp

• __filesAllClean_exewrap.rsp

• deleting file(s): “filename”.vhf

• deleting file(s): xst

• deleting file(s): “filename”.prj
ISE 4 User Guide 12-5

ISE 4 User Guide
• deleting file(s): “filename”.xst

• deleting file(s): “filename”.syr

• deleting file(s): “filename”.cup

• deleting file(s): “filename”._prj

• deleting file(s): _cpldfit.tcl

For specific information, see the topic “Cleanup Project Files” in the
ISE online help.

Fitter Report

The Fitter Report (top_source_name.rpt) lists summary and detailed
information about the logic and I/O pin resources used by the
design, including the pinout, error and warning messages, and
Boolean equations representing the implemented logic.

View Fitted Design (ChipViewer)

This process runs the ChipViewer. The View Fitted Design
(ChipViewer) process provides a graphical view of the CPLD fitting
report. With this tool you can examine inputs and outputs, macrocell
details, equations, and pin assignments. See the“View Fitted Design
(ChipViewer)” section below.

Analyze Power (XPower)

This process runs XPower. XPower is a graphical user tool that gives
you power consumption information for specific designs. See the
“XPower” section of the “FPGA Implementation” chapter for more
information about using XPower to estimate power consumption.

The CPLD fitter also provides a CXT file used by the XPower
software tool. The CXT file contains all of a specific CPLD design's
architectural elements related to power consumption. The CXT file is
used by XPower to estimate the power consumed by a specific
design. It is recommended to use a VCD (Value Change Dump) file
which is exported from a simulation using ModelSimXE (TM) to
facilitate accurate power estimation.
12-6 Xilinx Development System

CPLD Implementation
Lock Pins

Lock Pins is optional. Each time you implement a design, a file is
created which contains the pin locations and logical pad names
information. For CPLDs, this information is saved in a Guide file
(top_source_name.gyd).

When you are ready to commit a CPLD design pinout:

1. Click the top-level source file in the Sources in Project window.

2. Double-click the Lock Pins process under Implement Design
→ Fitter.

3. If no conflicts are found, the pinout information stored in the
.gyd file (CPLDs) is appended to the end of the User Constraint
File for your design (top_source_name.ucf or the .ucf file specified
in the Implement Design Process Properties dialog box). This
pinout is applied to all subsequent design implementations that
you run.

For CPLDs, you can use an external guide file to lock pins. To specify
the location of the external guide file:

1. Right-click the Lock Pins process.

2. Click Properties.

3. Enter the file path in the Use External GYD File field in the
Process Properties dialog box.

4. Click OK.

5. Double-click Lock Pins to run that process with the specified
GYD file.

A Notice information window appears whenever the pin locking
process is successful.

Whenever changes are made to a UCF file, implementation needs to
rerun beginning with the translate process to incorporate the changes
into the project. Click Reset in the Notice window if you want to
rerun implementation to read to a new UCF file. However, if you
want to keep the current implementation report files valid and
available for viewing and also keep any post-implementation
processes valid so that you can proceed without rerunning
implementation, click Retain.
ISE 4 User Guide 12-7

ISE 4 User Guide
ChipViewer can be used to graphically enter pin locking constraints
into the UCF file. Using this method, you need not know the specific
UCF file syntax.

If you originally implemented your design targeting a device selected
automatically by the Fitter (“AUTO” in the targeted device name),
you should change your targeted device selection to the specific
device and package combination selected by the fitter when you are
ready to lock your pinout. Pinout constraints may become invalid if
you continue to target an AUTO device and the fitter chooses a
different device or package.

Lock Pins Report

After running the Lock Pins process, the report file can be viewed by
double-clicking on the Lock Pins Report process. The report will
show any pin assignment conflicts that may have occurred. The Lock
Pins Report is named top_source_name_lcr.

Pin Loc Constraints in the UCF

For both FPGAs and CPLDs, pin locking constraints are written to a
PINLOCK section in the UCF file. The PINLOCK section begins with
the statement #PINLOCK BEGIN and ends with the statement
#PINLOCK END. By default, conflicting constraints are not written to
the UCF file. Before creating a PINLOCK section in the UCF, if the
conflicting constraints are discovered, this information is reported.

User-specified pin locking constraints are never overwritten in a UCF
file. However, if the user-specified constraints are exact matches of
pin-locked generated constraints, a pound sign (#) is added in front of
all matching user-specified location constraint statements. The pound
sign indicates that a statement is a comment. To restore the original
UCF file (the file without the PINLOCK section), remove the
PINLOCK section and delete the pound sign from each of the user-
specified statements.

The pin locking process does not check if existing constraints in the
UCF file are valid pin locking constraints. Comments inside an
existing PINLOCK section are never preserved by a new run of the
pin locking process. If the pin locking process finds a CSTTRANS
comment, it equates “INST name” to “NET name”, then checks for
comments.
12-8 Xilinx Development System

CPLD Implementation
The pin locking process writes to an existing UCF file under the
following conditions:

• The contents in the PINLOCK section are all pin lock matches
and there are no conflicts between the PINLOCK section and the
rest of the UCF file.

• The PINLOCK section contents are all comments and there are no
conflicts outside the PINLOCK section.

• There is no PINLOCK section and no other conflicts in the UCF
file.

Constraint Conflicts Information

Following is a sample pin2ucf Report file:

pin2ucf Report File
Copyright (c) 1995-2001 Xilinx, Inc. All rights

reserved.
 Created : Fri Jun 29 11:01:10 2001

Constraint Conflicts Information
================================

 This section provides information on the
constraint conflicts

 if pin2ucf were to write a ucf file using the
provided design and

 the existing ucf file. There are 2 types of
conflicts that can

 occur.

 1. Multiple pins could be constrained on the same
net

 2. Same pin could have multiple nets

 pin2ucf provides a list each for both.

 Note:- “New NET” and “New PIN” indicates the Net
and Pin

 locations found suitable by pin2ucf for pin
locking, while
ISE 4 User Guide 12-9

ISE 4 User Guide
 “Old Net” and “Old PIN” indicates the Net and Pin
locations

 already set by the user in the ucf file, which
were left

 untouched by pin2ucf.

Net name conflicts on the pins

PIN Location New NET
Old NET

“No net name conflicts were found on pins”

Pin name conflicts on the nets

NET Name New PIN Old PIN

“No pin name conflicts were found on nets”

PinLocking Successful. Constraints written to UCF
File

Generate Timing
You can run the Timing process to verify that your design meets your
timing requirements. A timing report is generated with input
constraint timing violations.

Timing Report

The Timing Report Format property under the Timing process selects
between a Summary report (default) and a Detailed report. The
Summary report provides the net worst-case timing between all pairs
12-10 Xilinx Development System

CPLD Implementation
of connected points (pads and registers) in the design. The Detailed
report shows a breakdown of all internal path delay parameters
comprising each point-to-point path in the design.

The Timing Report (top_source_name.tim) shows a summary report of
worst-case timing for all paths in the design. It optionally includes a
complete listing of all delays on each individual path in the design.

Analyze Post-Fit Static Timing (Timing Analyzer)

This process runs the Timing Analyzer. The Timing Analyzer
performs static timing analysis of an FPGA or CPLD design. The
CPLD design must be completely placed and routed. A static timing
analysis is a point-to-point analysis of a design network. It does not
include insertion of stimulus vectors. See the “Timing Analyzer”
section below and the Timing Analyzer online help for detailed
information.

Generate Post-Fit Simulation Model
This process runs synthesis and ngdbuild, map and fit to generate a
NCD file. The NCD file is then used to generate a NGA file using
NGDANNO. The NGA file is then used to generate the Simulation
Model using NGD2VHDL or NDGD2VER.

To generate a Post-Fit Simulation Model:

1. Select the appropriate source file (ABEL) from the Sources in
Project window.

Note In a VHDL flow, only a VHDL model can be generated. In a
Verilog flow, only a Verilog model can be created.

2. Select the Generate Post-Fit Simulation Model from the Processes
for Current Source window and double-click.

Generate IBIS Model
IBISWriter is a batch tool that can be run from the GUI or the
command line. It takes a Xilinx physical design (.ncd) file as input
and writes an IBIS (.ibs) file as output. An IBIS file produced by
IBISWriter primarily consists of a list of pins used by the design, the
signals internal to the device that connect to those pins, and the IBIS
buffer model that applies to the IOB that is connected to that pin. IBIS
(Input Output Buffer Information Specification) provides Input/
ISE 4 User Guide 12-11

ISE 4 User Guide
Output device characteristics through V/I data (buffer models). It
does not disclose any circuit/process information. It is a behavioral
modeling specification suitable for transmission line simulation of
digital systems. It is applicable to most digital components.

Properties
This section discusses CPLD Implementation Properties. You can set
multiple properties to control the implementation process for the
design. For CPLDs, they control how a design is translated and fit.
Implementation options are specified in the Process Properties dialog
box.

Note For detailed information on CPLD Implementation Properties,
see the Project Navigator online help.

Opening the Process Properties Dialog Box
To set CPLD implementation properties:

1. Click a design source file in the Sources in Project window for a
project that targets a CPLD device.

Note Implementation properties are set for the whole design, not
for the selected source file only.

2. Right-click Implement Design in the Processes for Current
Source window.

3. Click Properties from the pull-down menu for Implement
Design.

The Process Properties dialog box for Implement Design opens.

4. Click a tab to access the list of properties you can set for the
implementation options.
12-12 Xilinx Development System

CPLD Implementation
Figure 12-2 Sample Process Properties Dialog Box (CPLD)

The options listed in the CPLD Implement Design Process Properties
dialog boxes are the same regardless of whether you are using the
Standard or Advanced display level. The Display Level is set in the
Processes tab of the Preferences dialog box (Edit → Preferences
from the Project Navigator menu).

Setting Options
You can set the following options:

• “Translate Options”

• “Fit Options”

• “Lock Pins Options”

• “Timing Options”

Translate Options

To open a Process Properties dialog box with options specific to the
Translate process:

1. Click a top-level source in the Sources in Project window.

2. Right-click Translate in the Processes for Current Source
window.

3. Click Properties from the pull-down menu.

4. The Design tab displays with only translation-related properties.
ISE 4 User Guide 12-13

ISE 4 User Guide
See the “Setting Options” section for information on the User
Constraints File option.

Fit Options

To open a Process Properties dialog box with options specific to the
Fit process:

1. Click a top-level source in the Sources in Project window.

2. Right-click Fit in the Processes for Current Source window.

3. Click Properties from the pull-down menu.

The Implement Design Properties dialog box opens.

Lock Pins Options

To open the Lock Pins Process Properties dialog box:

1. Click a top-level source in the Sources in Project window.

2. Right-click Lock Pins in the Processes for Current Source
window.

3. Click Properties from the pull-down menu.

The Lock Pins Process Properties dialog box opens.

4. In the Value field, enter the file path of the external guide file to
use with the Lock Pins process. See the “Fit” section for
information on the Lock Pins process.

Timing Options

To open the Timing Process Properties dialog box:

1. Click a top-level source in the Sources in Project window.

2. Right-click Timing in the Processes for Current Source window.

3. Click Properties from the pull-down menu.

The Timing Report Process Properties dialog box opens.

The Timing Report Format property allows you to select the level of
detail in the Timing Report. By default, a Summary report is
produced containing summary timing information and design
statistics. You can set the value to Detail to have the Timing Report
include timing delay information for all nets and paths.
12-14 Xilinx Development System

CPLD Implementation
Tools
This section discusses CPLD Implementation Tools. Advanced
implementation tools are available under the Launch Tools section of
the Implement Design process. These tools are specifically intended
to assist those users who require some degree of handcrafting for
their designs. You must understand both the details of the device
architectures and how the tool can be used to refine a design.

The CPLD implementation tools include:

• “Timing Analyzer”

• “CPLD ChipViewer”

Timing Analyzer
Timing Analyzer provides a powerful, flexible, yet easy way to
perform static timing analysis on your design. Analysis may be
performed immediately after mapping, or after placing and routing
the design.

Timing Analyzer may be controlled through GUI features or its
comprehensive macro facility. The user can analyze the same design
against different physical constraint (PCF) files. Timing Reports have
a hierarchical browser to quickly jump to different sections of reports.
Timing paths in reports can be crossprobed to Synthesis tools
(Exemplar and Synplicity) and Floorplanner. Timing Analyzer uses
Timing Wizard for all FPGA analysis functions, ensuring consistency
with PAR.

You can use the Timing Analyzer program to perform static timing
analysis on both FPGA and CPLD designs. The Timing Analyzer is
used to verify that the delay along a given path or paths meets your
specified timing requirements. It creates timing analysis reports that
you customize by applying filters. It organizes and displays data that
allows you to analyze the critical paths in your circuit, the cycle time
of the circuit, the delay along any specified paths, and the paths with
the greatest delay. It also provides a quick analysis of the effect of
different speed grades on the same design.

While an FPGA design must be mapped and can be partially or
completely placed, routed or both, a CPLD design must be
completely placed and routed. A static timing analysis is a point-to-
ISE 4 User Guide 12-15

ISE 4 User Guide
point analysis of a design network. It does not include insertion of
stimulus vectors.

The Timing Analyzer works with synchronous systems composed of
flip-flops and combinatorial logic. In synchronous design, the Timing
Analyzer takes into account all path delays, including clock-to-Q and
setup requirements, while calculating the worst-case timing of the
design. However, the Timing Analyzer does not perform setup and
hold checks; you must use a simulation tool to perform these checks.

To open the Timing Analyzer:

1. Click a design source in the Sources in Project window.

2. Double-click Timing Analyzer in the Processes for Current
Source window.

The Timing Analyzer opens and automatically loads the project’s
NGD file.

For a complete description of the Timing Analyzer, see the Timing
Analyzer online help.

CPLD ChipViewer

Figure 12-3 CPLD ChipViewer
12-16 Xilinx Development System

CPLD Implementation
The ChipViewer provides a graphical view of the CPLD fitting
report. With this tool you can examine inputs and outputs, macrocell
details, equations, and pin assignments.

For Pin Assignments

Before running the Fitter, you can use the ChipViewer to control pin
assignments for implementation. To open the ChipViewer for pin
assignment:

1. Click the top-level design source in the Sources in Project
window.

2. Double-click Pin Assignment, ChipViewer in the User
Constraint section under Design Entry Utilities.

Note This command provides a graphical way to enter pin
locking constraints for your design.

The ChipViewer opens with the complete netlisted source design
loaded.

The Pin Assignment ChipViewer process is available only if you have
a specific CPLD device and package selected for your project.

Note This process is available under Design Entry Utilities
→ User Constraints → Assign Pins (ChipViewer). To
use this feature, you must select a specific device. Auto device
selection is not supported with this feature.

View Fitted Design (ChipViewer)

After implementation is complete, you can use the ChipViewer to
examine the physical mapping resulting from the Fitter. To open the
ChipViewer to examine Fitter results:

1. Click a top-level design source.

2. Double-click View Fitted Design, ChipViewer in the
Launch Tools section under Implement Design.

Note This command provides a graphical view of a subset of the
CPLD Fitter report, plus additional information on the fitted
design not available in the report. You can view pin placement,
slew rates, macrocell power modes, specific pin-to-pin timing,
and the connections between macrocells and pins.
ISE 4 User Guide 12-17

ISE 4 User Guide
The ChipViewer opens with the completely mapped design
loaded.

For more information on using the CPLD ChipViewer, see its online
help.
12-18 Xilinx Development System

Chapter 13

Device Programming

This chapter contains the following sections:

• “Creating FPGA Programming Files”

• “Generating CPLD Programming Files”

• “Device Programming Tools”

When the design meets your requirements, the final step is to
program the target device.

Creating FPGA Programming Files
After the design has been completely routed, you must configure the
device so that it can execute the desired function. Xilinx's bitstream
generation program, BitGen, takes a fully routed NCD (Native
Circuit Description) file as its input and produces a configuration
bitstream—a binary file with a .bit extension.

The BIT file contains all of the configuration information from the
NCD file defining the internal logic and interconnections of the
FPGA, plus device-specific information from other files associated
with the target device. The binary data in the BIT file can then be
downloaded into the FPGA’s memory cells, or it can be used to create
a PROM file.

To create a configuration bitstream file:

1. Click the top-level source for the project in the Sources in Project
window.

2. Click Generate Programming File in the Processes for
Current Source window.

3. Click Process → Run in the Project Navigator menu.
ISE 4 User Guide 13-1

ISE 4 User Guide
The programming file creation process runs. If there are no
errors, the top_source_name.bit file is created.

4. To view the Programming File Report in the report window,
double-click View Programming File Generation
Report in the Processes for Current Source window.

The Programming File Report contains information about the
BitGen run.

For a complete description of BitGen, see the Development System
Reference Guide.

Launching Programming Tools
Select a programming tool to configure the target device. See the
“Device Programming Tools” section below for a short overview of
each tool.

To launch a programming tool:

1. Click the top-level source file in the Sources in Project window.

2. Double-click the programming tool name in the Processes for
Current Source window.

The selected programming tool opens in its own window with
the bitstream file loaded.

Setting FPGA Programming File Creation Options
You can set before programming file creation options before creating
the programming file. To open the Process Properties dialog box
containing these options:

1. Click the top-level design source file in the Sources in Project
window for a project that targets an FPGA device.

2. Right-click Generate Programming File in the Processes for
Current Source window.

3. Click Properties from the pull-down menu.

The Process Properties dialog box for the Generate Programming
File process appears.
13-2 Xilinx Development System

Device Programming
4. Click the tab for the options you want to set. You can set
properties for the following options:

♦ General Options

♦ Configuration Options

♦ Startup Options

♦ Readback Options

These options are described in detail in the Project Navigator
online help.

Note You can specify whether to display the Standard or
Advanced list of properties in the Process Properties dialog
boxes.

Generating CPLD Programming Files
At the end of a successful CPLD implementation, a design database
file (top_source_name.vm6) is created. From this, a JEDEC
programming file can be generated. The iMPACT configuration tool
uses this JED file to configure XC9500/XL/XV and XPLA3
(Coolrunner) CPLD devices.

Note For more information, see CPLD Design Flow Tutorials,
accessible from the Project Navigator online help.

To create a JED programming file:

1. Click the top-level source for the project in the Sources in Project
window.

2. Click Generate Programming File in the Processes for
Current Source window.

3. Click Process → Run in the Project Navigator menu.

The programming file creation process runs. If there are no
errors, the top_source_name.jed file is created.
ISE 4 User Guide 13-3

ISE 4 User Guide
Setting CPLD Programming File Creation Options
This section describes the programming options you can set before
creating the programming file. To open the Process Properties dialog
box containing these options:

1. Click the top-level design source file in the Sources in Project
window for a project that targets a CPLD device.

2. Right-click Generate Programming File in the Processes for
Current Source window.

3. Click Properties from the pull-down menu.

4. The Process Properties dialog box for the Generate Programming
File process appears.

You can set the following options for CPLD programming file
creation:

• Signature/User Code

Values: Blank (default) / Four-character text string

Enters a unique text string in the Value field to identify the
configuration data. You can enter a string of up to four
alphanumeric characters. The device programmer can read the
signature, and the person running the device programmer can
verify that the correct configuration data file is loaded. Use the
iMPACT configuration tool to identify the configuration data
signature (usercode) of a programmed XC9500 or XC9500XL
device. The default is to use the top_source_name.

• Jedec Test Vector File

Includes a TMV file in your JEDEC file. The TMV file is a test
vector file generated when ABEL compiles a design containing
user test vectors.

• Disable BUSHOLD Circuitry (9500XL/XV Only)
Disables bus-hold keepers for all device I/Os.
13-4 Xilinx Development System

Device Programming
Device Programming Tools
After creating the programming file, use one of the following
programming tools to configure your device:

• “PROM File Formatter”

• “iMPACT”

PROM File Formatter
An FPGA or daisy chain of FPGAs can be configured from serial or
parallel PROMs. The PROM File Formatter can create MCS, EXO, or
TEK style files. The files are read by a PROM programmer that turns
the image into a PROM.

A HEX file can also be used to configure an FPGA or a daisy chain of
FPGAs through a microprocessor. The file is sorted as a data structure
in the microprocessor boot-up code.

The PROM File Formatter is available for FPGA designs only. The
PROM File Formatter provides a graphical user interface that allows
you to:

• Format BIT files into a PROM file compatible with Xilinx and
third-party PROM programmers

• Concatenate multiple bitstreams into a single PROM file for daisy
chain applications

• Store several applications in the same PROM file

iMPACT
The iMPACT configuration tool, a command line and GUI based tool,
allows you to configure your PLD designs using Boundary-Scan,
Slave Serial, and Select MAP configuration modes. iMPACT supports
both the Parallel (JTAG) and MultiLINX cables.

iMPACT also allows you to:

• ReadBack and Verify design configuration data

• Run Boundary-Scan TAP debug operations

• Create SVF and STAPL Files

See the iMPACT User Guide and the iMPACT online help for details.
ISE 4 User Guide 13-5

ISE 4 User Guide
13-6 Xilinx Development System

	Software Manuals Online
	ISE 4 User Guide
	About This Manual
	About the ISE 4 User Guide
	Manual Contents
	Additional Resources

	Conventions
	Typographical
	Online Document

	Table of Contents
	Introduction
	About ISE 4.x
	Xilinx Architecture Support
	Installation
	Partner Tools
	Tutorials
	ISE Tutorial
	In-Depth Tutorial
	Other Tutorials

	Online Help
	Context Sensitive Help
	Project Navigator Help Contents
	ISE Help Contents
	Design Entry
	Synthesis
	Simulation
	Implementation
	Programming
	Techniques
	Tutorials
	Application Notes
	Reference

	How to Use Help
	Online Documentation
	Xilinx on the Web

	Books
	Printed Books
	Online PDF Book Collection

	Technical Support
	Xilinx Services and Support on the Web
	Technical and Applications Case Support
	Training
	Order Management
	Software Customer Service (Licensing)

	Project Navigator
	About Project Navigator
	Project Navigator Processes
	Project Navigator Tools

	Starting Project Navigator
	Project Navigator Interface
	Project Navigator Main Window
	Sources In Project Window
	User Document Line
	Device and Design Flow line
	Menus
	Sources in Project Window Tabs
	Module View
	Snapshot View
	Library View

	Source Properties

	Processes for Current Source Window
	Auto-Make
	Setting Properties for Processes
	Viewing Reports

	Project Workspace
	HDL Editor Workspace
	Transcript Window

	Customizing Project Navigator
	Setting Display Preferences
	General
	Editor
	Processes
	Property Display Level
	Process Tree Default

	Partner Tools and Web Browser
	Partner Tools (Personal Computers Only)
	Web Browser (UNIX Only)

	Displaying and Hiding Windows and Toolbars
	Docking and Undocking Windows and Toolbars

	Snapshots and Archives
	Taking a Snapshot
	Renaming a Snapshot
	Editing a Snapshot Comment
	Deleting a Snapshot
	Viewing Snapshot Contents
	Viewing Snapshot Source Files and Reports
	Replacing the Current Project with a Snapshot
	Restoring a Snapshot or Archive with Remote Sources

	Projects
	About Projects
	Creating a Project
	Setting Project Properties
	Specifying a Project Name and Directory
	Selecting a Device and Design Flow
	Selecting a Device
	Selecting a Design Flow

	Supported Devices and Design Flows
	Project Flow Characteristics
	XST VHDL
	XST Verilog
	FPGA Express VHDL
	FPGA Express Verilog
	ABEL XST VHDL
	ABEL XST Verilog
	LeonardoSpectrum VHDL
	LeonardoSpectrum Verilog
	Synplify VHDL
	Synplify Pro VHDL
	Synplify Verilog
	Synplify Pro Verilog

	Sources
	Creating a New Source
	Adding an Existing Source
	Adding a Copy of an Existing Source

	Source Types
	Synthesis Tool Support
	Source Type Descriptions
	State Diagram
	Schematic
	VHDL Module
	VHDL Testbench
	Testbench Waveform
	VHDL Package
	VHDL Library
	Verilog Module
	Verilog Test Fixture
	ABEL-HDL Module (CPLDs Only)
	ABEL Test Vector (CPLDs Only)
	CORE Generator Module
	LogiBLOX Module

	Design Flow
	About Design Flow
	Design Entry
	HDL Editor
	StateCAD State Machine Editor
	Engineering Capture System (ECS)
	CORE Generator
	LogiBLOX

	Constraint Entry
	Constraint Types
	Third Party Constraints
	Constraint Entry Tools

	Synthesis
	XST from Xilinx
	FPGA Express from Synopsis
	Synplify from Synplicity
	LeonardoSpectrum from Exemplar

	Simulation
	Simulation Points
	Simulation Tools

	Implementation
	Floorplanner
	FPGA Editor
	Timing Analyzer
	XPower
	ChipViewer

	Device Programming
	iMPACT
	PROM File Formatter

	HDL
	HDL Sources
	Supported Languages
	VHDL
	Verilog
	ABEL-HDL

	Creating HDL Source Files
	New Source Wizard
	Creating New HDL Modules
	Creating a New VHDL Package

	Opening HDL Source Files

	HDL Editor
	HDL Editor Functions
	HDL Editor Online Help
	General Help
	Context Sensitive Help

	File Operations
	Window Operations
	Editing Functions
	Search Functions
	Macro Functions

	Customizing Tabs and Fonts
	Language Specific Features
	Language Templates
	Opening the Language Templates Tool
	Selecting an Existing Template
	Inserting Templates in HDL Sources
	Method One
	Method Two
	Method Three
	Method Four

	Creating a User Template

	Creating a Schematic Symbol from an HDL Source

	HDL Library Mapping
	VHDL
	Verilog
	Project Navigator Source Libraries
	Named VHDL Libraries
	Adding a File to the Library
	Renaming VHDL Libraries
	Removing VHDL Libraries

	Moving Files to a Library
	Removing Files from a Library

	State Diagrams
	About StateCAD and StateBench
	Creating a New State Diagram
	Updating an Existing State Diagram
	Using StateBench
	Instantiating State Diagram Modules

	Schematic Sources
	Schematic Source Files
	Creating a Schematic Source File
	Opening a Schematic Source File
	Updating Schematic Files
	Xilinx Implementation Attributes and Constraints

	Instantiating HDL Sources
	Creating a Schematic Symbol
	Symbol Generator Options
	Opening the HDL Source
	Creating a Top-Level Schematic

	Simulating and Synthesizing Schematic Sources
	VHDL Functional Model
	Viewing the VHDL Functional Model

	Verilog Functional Model
	ECS (Engineering Capture System)
	The ECS Window
	Concepts Required to Use ECS
	Symbols
	Graphics
	Text
	Pins
	Attributes

	Wires (Nets and Buses)
	Wire Types
	Bus Taps
	Wires and Net Names
	Net Attributes

	I/O Markers
	I/O Markers and Block Symbols

	Graphics
	Text

	ECS Menu Commands
	File Menu
	Edit Menu
	View Menu
	Add Menu
	Tools Menu
	Window Menu
	Help Menu

	Editing Schematics in ECS
	Adding a Symbol
	Adding a Wire
	Moving a Wire
	Moving a Wire Without Disconnecting
	Moving and Disconnecting a Wire

	Removing a Symbol or Other Object
	Panning
	Zooming

	Editing Symbols in ECS
	Opening a Symbol Window
	Symbol Types
	Block Symbols
	Graphic Symbols
	Master Symbols

	Symbol Libraries
	Modifying an Existing Symbol
	Creating a New Block Symbol
	Creating a Block Symbol from a Schematic
	Creating a Symbol from an HDL Source
	Using Symbols from Other Projects

	Guidelines for Creating Schematics

	LogiBLOX
	About LogiBLOX
	Starting LogiBLOX
	LogiBLOX Setup
	Creating LogiBLOX Modules
	Using LogiBLOX Modules in ISE 4.x Projects
	Editing LogiBLOX Modules
	Using LogiBLOX Modules in Schematic Sources
	Instantiating LogiBLOX Modules in an HDL Source
	VHDL Instantiation
	Verilog Instantiation

	Simulating LogiBLOX Components
	Constraining LogiBLOX Memory with FPGA Express
	Estimating the Number of Primitives Used
	How the RAM Primitives are Named
	Referencing a LogiBLOX Module or Component
	Referencing the Primitives of a LogiBLOX Module
	Verilog Example
	test.v:
	inside.v:
	test.ucf

	VHDL Example
	test.vhd
	inside.vhd
	test.ucf

	LogiBLOX Documentation

	CORE Generator
	About CORE Generator
	Design Flow
	Opening the CORE Generator Main GUI
	Creating a CORE Component
	CORE Component Names

	Using Cores in ISE 4 Projects
	Editing Cores
	Using Cores in Schematic Sources
	Instantiating Cores in an HDL Source

	Simulation and Synthesis of Core Modules
	Synthesizing and Simulating Cores

	Implementation
	About Implementation
	Implementing Design Processes
	Implementing Your Design
	Complete Implementation
	Partial Implementation
	Specialized Processing

	Implementation Errors and Warnings
	Saving Implementation Results
	Deleting Results
	Changing Devices
	Viewing Implementation Reports
	Generating and Viewing a Report
	Report Descriptions

	User Constraints
	Editing the UCF File
	Opening the Xilinx Constraints Editor

	FPGA Implementation
	Flow
	Translate
	MAP
	Generate Post-Map Static Timing (Optional)
	Place and Route
	Generate Post-Place & Route Timing (Optional)
	Multi Pass Place and Route (Optional)
	Backannotate Pin Locations (Optional)
	Backannotate Pin Locs Report
	Pin Loc Constraints in the UCF

	Reports
	Properties
	Opening the Process Properties Dialog Box
	Accessing Advanced Properties

	Tools
	Floorplanner
	FPGA Editor
	Timing Analyzer
	XPower
	Why Estimate Power?
	XPower Prerequisites
	Features of XPower

	CPLD Implementation
	Implement Design
	Translate
	About the Translate Process
	Translation Report

	Fit
	About the Fit Process
	Fit Process Output Files
	Delete Implementation Data

	Fitter Report
	View Fitted Design (ChipViewer)
	Analyze Power (XPower)
	Lock Pins
	Lock Pins Report
	Pin Loc Constraints in the UCF
	Constraint Conflicts Information

	Generate Timing
	Timing Report
	Analyze Post-Fit Static Timing (Timing Analyzer)

	Generate Post-Fit Simulation Model
	Generate IBIS Model

	Properties
	Opening the Process Properties Dialog Box
	Setting Options
	Translate Options
	Fit Options
	Lock Pins Options
	Timing Options

	Tools
	Timing Analyzer
	CPLD ChipViewer
	For Pin Assignments
	View Fitted Design (ChipViewer)

	Device Programming
	Creating FPGA Programming Files
	Launching Programming Tools
	Setting FPGA Programming File Creation Options

	Generating CPLD Programming Files
	Setting CPLD Programming File Creation Options

	Device Programming Tools
	PROM File Formatter
	iMPACT

