
AONS User Guide

Application Site Map ...1
Getting Started ...3

Configuration Task Breakdown...3
Proxy Server Configuration ...4
Mail Server Configuration ...4
Plugging in to the Local Environment ...4

Common Tasks ..6
Creating Registry Connections ..6
Updating a Registry Connection..6
Deleting a Registry Connection...6
Cancelling a Registry Synchronize..7
Creating a Job Schedule on an Existing Registry ..7
Creating Repository Connections ..7

Domain Objects ...8
Repository Connections ...8

Supported Repository Types..9
Base Repository Attributes ..10
FileSystemRepository Attributes ...11
FedoraRepository Attributes..11
PandoraRepository Attributes..12
DSpaceRepository Attributes...12
ExternalUrlRepository Attributes ..12

Registries Connections...13
Description...13

Registry Connection Parameters..14
Formats ..14

Application Site Map

• Main Page / Tasks: Displays currently active tasks in the system
• Repositories: Overview of all repository connections in the system

o Create a new Repository Connection
o Repository Details: View details of a repository connection

 Update connection details
 Delete the Repository Connection
 Update/Create/Delete crawl schedule
 Cancel currently active crawl

o Go to the repository explorer for this
• Registries: Overview of all registry connections in the system

o Create a new registry connection
o Registry Details: View details of a registry connection

 Update registry connection details
 Delete registry connection
 Update/Create/Delete synchronize schedule
 Cancel currently active synchronize

• Repository Explorer: View the summary of formats found during the crawl
o Drill down through collections
o Find unidentified formats and identify them

• Global Format Summary: View the formats found within this AONS instances
repositories and their associated risk

o Identify unknown formats
o Perform risk assessments on the found formats

• Configuration
o Configure Proxy Server Details
o Configure Mail Server Details

• Notifications
o Create new email destinations

• Tools: View all currently known “useful tool” link within the application
o Create new Useful Tool
o Delete a Useful Tool
o Update a Useful Tool

Getting Started

Okay, so you’ve been told about AONS, what next?

The first step towards using AONS is downloading it. Currently, it can be found under
the AONS Sourceforge project under file releases. After downloading the next step is
to install AONS, this is covered in the Installation Guide, found under the docs folder
of the project.

So, you’ve installed AONS, and it’s not working for some reason. If AONS isn’t
loading, chances are probably on a deployment problem which can be found in the
server log files. Have a look for any stack traces, and see if there are any answers to
be found either on bugs already found with AONS on the Sourceforge project or on
the Internet abroad. Most of the time, if you’re deploying onto a known configuration
(Tomcat + PostgreSQL) bugs should be limited. However, if you are deploying to a
different configuration you may find a few issues which we will try and address;
deploying to Oracle was perhaps the most painful experience so far due to it’s table
name restrictions (31 characters!!), though even the semi-large refactoring needed
here was just a case of fixing in the daily build iterations.

AONS is currently beta software
AONS is still Beta software… we’re moving towards a completely supported release,
but for the moment, we will continue to make whatever changes are deemed
necessary and future installs may not have a guaranteed upgrade path from a previous
version. This was true when we changed the table names for Oracle, rather then
provide migration scripts, we just concentrated on getting the change implemented
and past us.

Once the user base grows and people are happy with the functionality in general, we
will “downshift” into a bit more of a slower mode and ensure that future revisions are
largely backwards compatible with clear migration paths if not.

Configuration Task Breakdown
Now the next bit: you’ve installed AONS and it is working. What next? I think we
can describe the required AONS functionality in three broad areas:

1. System Administration Tasks (setting up connections to repositories)
2. Occasional tasks
3. Core tasks which will be the mainstay of daily tasks.

Runtime vs Static Configuration
AONS favours runtime configuration over backend XML configuration where
possible. You will find that you should have almost no reason to ever go into the
underlying XML configuration files for the system – whenever you are, you are either
changing an element of configuration which we either deemed 90% of people
wouldn’t need to change or we’ve failed to make something into a runtime “knob” to
turn.

Having configuration accessible at runtime has many advantages over static
configuration – the main one being able to change the applications behaviour
dynamically.

Proxy Server Configuration
In order to connect to some of the things mentioned here, there is a good chance
you’ll need to first configure your proxy server for the deployed instance of AONS.

Number Step Screenshot
1 Go to configuration side bar
2 Click on the “Edit” configuration

for the HTTP Proxy Settings

3 Choose “Yes” to elect to use a
proxy server for external HTTP
connections. Click Next.

4 Enter in the proxy server and port
address, click next.

5 Enter whether or not this proxy
requires authentication. Click
Next. If your proxy does not
require authentication, skip to step
7.

6 If your proxy does require
authentication, enter the following
details:

- Proxy “Realm”
- Proxy Username
- Proxy Password

Click “Next”

7 Review and accept changes or go
back and change your answers.

Mail Server Configuration
If you want AONS to provide notifications via email, you will need to configure the
details for your mail server.
Number Step Screenshot
1 Go to the configuration side bar
2 Click on the “Edit” configuration

for the Mail Settings

3 Choose “No” if you want to enable

the mail server. Click Next.
4 Enter the mail server and listening

port.

5 Enter whether or not this proxy
requires authentication. Click
Next. If your proxy does not
require authentication, skip to step
7.

6 If your mail server does require
authentication, enter the following
details:

- SMTP Username
- SMTP Password

Click “Next”

7 Review and accept changes or go
back and change your answers.

Plugging in to the Local Environment
Initially, on a new AONS instance, there are a fair few system administration tasks to
get the instance integrated into the environment. I kind of thing of AONS a bit like an
Octopus – you dunk it in your new environment at it starts reaching out it’s arms to
the environment around it. This metaphorical “reaching out” is accomplished by
connecting to both external registries of format information in addition to connecting
to Repositories within your organisation (or ones exposed to you).

Common Tasks

Creating Registry Connections
Number Step Screenshot
1 Go to registries tab
2 Click on “Create” button
3 Choose type (LC-DFW and PRONOM

currently implemented)

4 Enter Name and URL:
Currently
http://www.digitalpreservation.gov/formats
for Library of Congress (USA) Registry
Adapter and
http://www.nationalarchives.gov.uk for
National Archives (UK) Registry Adapter

5 Choose Manual or Automatic for
Scheduled Updates

6 If Automatic, continue, if manual, your
registry connection should be saved.

7 Choose the schedule type
8 Enter details for type specific schedule

details (see <<Schedule types and
details>>)

Updating a Registry Connection
Number Step Screenshot
1 Go to registries tab
2 Choose registry to update
3 Now in the details for the target

registry, click on the “Update”
button.

4 Modify details as necessary.

Deleting a Registry Connection
Number Step Screenshot
1 Go to registries tab
2 Choose registry to delete
3 Now in the details page for the

target registry, click on the
“Delete” button.

4 Choose “Confirm” to really delete
the registry.

http://www.digitalpreservation.gov/formats
http://www.nationalarchives.gov.uk/

Cancelling a Registry Synchronize
Number Step Screenshot
1 Go to registries tab
2 Choose registry with running job

(as identified by the
“Running”status)

3 Click the cancel button.

Creating a Job Schedule on an Existing Registry
When you have a registry with a “manual” schedule set, you can create a schedule the
following way.
Number Step Screenshot
1 Go to registries tab
2 Choose registry you wish to add

Schedule

3 If the registry is not idle, cancel
the job

4 Click “Create Schedule”
5 Choose the schedule’s type
6 Fill in the schedule details as per

the type specific parameters,
specified <<INSERT LINK TO
SCHEDULE PARAMETER
APPENDIX>>

Creating Repository Connections
Number Step Screenshot
1 Go to repositories tab
2 Click on “Create” button
3 Choose type
4 Enter in type specific details and a

unique name (see <<Repository
types and details>>).

5 Choose Manual or Automatic for
Scheduled Updates

6 If Automatic, continue, if manual,
your registry connection should be
saved.

7 Choose the schedule type
8 Enter details for type specific

schedule details (see <<Schedule
types and details>>)

Domain Objects
AONS has a few domain objects worth understanding, both from the aspect of data
entry but also when thinking about the relationships between them.

AONS makes usage of hierarchies of object types, which utilises inheritance to add
parameters not found on a parent type. When discussing each object, we will ensure to
display the hierarchy between each of the objects.

Repository Connections
A repository represents a connection to an existing repository within your
organisation, or one which you have been tasked with oversight. For the purposes of
AONS, creating/updating/deleting repositories within AONS is about only doing so to
the connection – we do not actually ever change the underlying repository; we are
interested in reports, not administration.

AONS is interested in the aggregate contents of a repository, not the individual files.
We could move down one level of granularity to the individual file, but for now we’ll
try stay above that and focus on what each collection contains. How do we get this
information? We utilise a crawl algorithm – though as we will discuss, this crawl can
happen outside of AONS. The crawl algorithm should perform the following high
level algorithm:

1. Either manually or as scheduled, perform a crawl on a repository connection
2. Load the connection details for that repository
3. Find the appropriate handler for the repository
4. Request a crawl for the repository
5. The handler should then:

a. Process each collection recursively
i. For each file within each collection, create the file’s metadata

finger print (the unique combination of format name, extension,
mimetype etc) which can be used to link it to a Format. At this
step, we can optionally employ tools like DROID or JHove.

ii. For each finger print found, add it to the total aggregate amount
iii. For each sub-collection, process as a normal collection but add

the quantities of finger prints found to the files found in this
collection.

There is a repository base type, but the sub-types are where we put most of the details,
allowing us to put in quite diverse configuration details in order to connect to them.
Unlike registry connections which are detailed below, there is a wide variety of
parameters depending on the type of repository specified. This really just gets back to
the conflict between a simple API and a fast API. Most of these repositories have web
service based API’s… but often there is a conflict between getting as little
information as possible (to ensure fast scans) and simpler API’s. For example,
compare the two algorithms for crawling (using file-by-file analysis remotely and
locally):
 Remotely via web services:

1. Request metadata about the file under scruitiny
2. Process with DROID/JHove

a. request the entire file byte stream via web services (very
expensive)

b. DROID/JHove quickly identify the file from the first 30
characters

3. Repeat for next file in repository, until all processed.

 Locally via low level APIs:

4. Request metadata about the file under scruitiny
5. Process with DROID/JHove

a. DROID/JHove quickly identify the file from the first 30
characters

6. Repeat for next file in repository, until all processed.

The difference between these two algorithms may seem trivial, but requesting the
entire contents of the file when we only need a small part will slow down the
algorithm significantly.

There are another two potential features we could and should add to the algorithm:
usage of individual file-last-modified metadata. This would be relatively trivial to
implement – we’d just have to access within the crawl context. The other possible
improvement would be to implement a recovery mechanism should the crawl be
interrupted half way through. This type of algorithm isn’t as easy to implement since
it requires many smaller transactional commits, followed by one at the end to signify
the end of the operation. It can be done, but it isn’t as easy as you’d think – we
already have some quite confusing transaction boundaries for the scheduled work
occurring within AONS… this would be yet another bit of complexity.

Supported Repository Types
AONS currently has support for the repository types listed here:

• File System
• DSpace
• Fedora
• External URL
• Pandora (and repository system used only within the NLA)

Repository

-id : long
-name : String
-crawlfilters : List<CrawlFilter>
-schedule : Schedule
-status : String
-repositoryScans : List<RepositoryScan>
-latestRepositoryScan : RepositoryScan
-lastRun : Calendar

+allowsCrawl()() : Boolean
+getType() : String

PandoraRepository

-pandoraDirectory : String
-pandoraUrl : String

-username : String
-password : String
-url : String
-driver : String
-dspaceDirectory : String
-version : String

DSpaceRepository

-basePath : String

FedoraRepository

-username : String
-password : String
-url : String
-driver : String
-fedoraHome : String
-version : String
-fedoraUrl : String

FileSystemRepository ExternalUrl

-externalUrl : String

We also have planned support for the following repository types:

• Trim
• E-Prints
• SRB (via an effort going on from Jane Hunter at the University of

Queensland)

Implementing a new repository type is relatively easy – probably the hardest part
about implementing it is actually getting it into the GUI. The actual interface backend
handlers should be relatively easy to familiarise yourself with, as long as you have a
firm grip on the target repositories API. Also, from the creator of a repositories
perspective, it is often easier to implement the XML summary required by the
External URL adapter then to create your own handler.

Base Repository Attributes
The base repository has a number of attributes which are found on all repositories.
Most of these are not directly input but created when repository crawls are performed.
The table below details each attribute, it’s type, description and origin:

Attribute Name Type Description Origin
id Long Unique identifier for this

repository connection.
Generated On Creation

name String Unique name for this
repository connection.

Entered on
creation/update

crawlFilters List of
CrawlFilters

Crawl filters showing
which files to exclude

Should be entered via
GUI, currently needs to be
implemented

schedule Schedule Crawl Schedule for this
repository, if null the
repository is implicitly
manual only in operation.
See the schedule
attributes for details on
the required parameters

Entered on creation and
also specifically by
create/update/delete from
the Repository details
page.

status String Indicator of this Application controlled: all

repositories status
(Idle|Running|Cancelling)

repositories are implicitly
Idle upon startup and only
changed when either
manually invoked or
started as a part of a
schedule.

repositoryScans List of
RepositoryScan

For every repository scan
we perform, we also
generate one of these
objects.

Generated as part of a
crawl

latestRepositoryScan RepositoryScan This is a convenience
object which holds the
latest repository scan
performed.

Generated as part of a
crawl

lastRun Calendar The last run performed Generated as part of a
crawl

FileSystemRepository Attributes
Attribute Name Type Description Example
basePath String Must be a valid

folder on the file
system readable
by the AONS
server process.

/dev/workspace
Windows:
file:///C:/dev/workspace
*nix:
file:/dev/workspace

FedoraRepository Attributes
Attribute
Name

Type Description Example

username String Database
username

fedora

password String Database
password

s5w0rdpA

url String Database
URL
connection
String

jdbc:postgresql://localhost:5432/fedora

driver String Database
driver for
JDBC
connection

org.postgresql.Driver

fedoraHome String This is the
location on
disk of the
fedora home
directory

/opt/fedora
Windows: file:///C:/opt/fedora
*nix: file:/opt/fedora

version String Version of the
fedora

<<Not currently accessible via
GUI>>

installation –
currently
irrelevant
since we only
support
version 2.2

PandoraRepository Attributes
The Pandora repository makes usage of a beta Ruby service to identify collection ids.
This was seen as preferable to having it access the backed database tables (but we
always could change it if the Ruby service does not make it past beta).
Attribute Name Type Description Example
pandoraDirectory String Base

directory of
the Pandora
installation
to scan

/pandas/prod
Windows: file:///C:/pandas/prod
*nix: file:/pandas/prod

pandoraUrl String URL for
the Ruby
collection
service

http://www-
devel.nla.gov.au/rbpandora/browse/tepfeed

DSpaceRepository Attributes
Attribute
Name

Type Description Example

username String Database
username

dspace

password String Database
password

s5w0rdpA

url String Database URL
connection
String

jdbc:postgresql://localhost:5432/dspace

driver String Database
driver for
JDBC
connection

org.postgresql.Driver

ExternalUrlRepository Attributes
Please note that the ExternalURL type is expecting an XML structure which as of yet
does not have a locked down schema. For an example of it as it currently exists,
please see the Example Format Summary XML file listed in the Appendix.
Attribute
Name

Type Description Example

externalUrl String Location of
the service
providing

http://localhost:8080/aons2/ExampleFormatScan.xml

the format
scan XML
file.

Registries Connections

Description
Registries connections represent the connections to remote repositories of
information. There is a base registry type which is extended by each implementation.
Currently we have one for Library of Congress’ (USA) Digital Format Website (LC-
DFW) and one for the National Archive’s (UK) web-based technical registry
(PRONOM). We had also planned to support the Global Digital Format Registry
(GDFR) but were unable due to development time constraints.

Registry

-name : String
-url : String

+getType()

PronomRegistryLcdfwRegistry

Why do we use registries? Well, registries contain information on formats – they are,
in theory, the most up to date source of information relevant to a format and it’s
obsolescence. Our intended goal with registries is to use their quite rich data model
intelligently to help us determine which formats are at risk within our local
repositories. We have a few barriers to that:

1. The registries are quite diverse in their data structures
2. The registries do not contain all file formats – obscure “at risk” formats

are not often mentioned
3. The registries do not contain a single value we can use to look for a

risk metric – the data contained is subjective rather then quantitative.

The last point is probably the most crucial: until we have a quantitative measure of a
formats risk, however that is generated, the registries really only provide enough
information to help a human decide a format’s risk. We did investigate using what
data was present in a questionnaire style format to auto calculate a formats risk… but
found that this was very complicated, especially considering that much of the
information was not present (an appropriate analogy would be trying to create an
algorithm to rate how good a movie is – something which at the end of the day, has to
come from the ‘gut’). So, instead we perform a “synchronize” with external registries,

taking down all of their subjective data, creating a set of RegistryFormats. With this
data available locally (cached) we can then link this data to format metadata
fingerprints found within a repository.

So, to summarise, a registry connection within AONS represents a connection to an
external source of subjective information relevant to the assessment of risk on a
Format. Later, should external registries provide quantitative information regarding
the risk of a format, we will aim to use that in preference to asking a user to judge a
formats risk. We’ve discussed a few good possible ways to get this information –
either by extending GDFR or PRONOM, but within this iteration of the project it is
not looking likely to happen. Ideally, we’d like a system in place where an AONS
installation can perform risk assessments which are then fed upstream to a service
(GDFR or PRONM) which is then uses an active voting community judge which risk
assessments are valid and which are out of place. Still, this idea is currently just that,
an idea, but hopefully will be implemented with the next iteration of AONS.

Registry Connection Parameters
Unlike repository connections, each registry so far has required only two parameters
upon configuration: A unique name and a URL.
Parameter Name Type Description
id number The id of the registry
name text string This is the logical name of the registry.
type text string (read-

only)
This defines the type of the registry – it is
used to find the appropriate handler when
we perform our synchronize operation.

url text string This is the base URL which we use to
contact the Registry. It is context sensitive
to the type of registry: Library of Congress
(USA) is
http://www.digitalpreservation.gov/formats
and the National Archives (UK) is:
http://www.nationalarchives.gov.uk.

Formats
The AONS application deals with the risk associated with formats within a repository,
and in combination with the quantities of the formats found in the configured
repository connections, deals with the risk in a given repository. AONS has two
concepts of Formats:

1. External Formats, which are cached from format registries.
2. Internal Formats, which we apply risk assessments to.

As mentioned before, should an external format provide a risk assessment, we remove
the need to have internal formats which we apply risk assessments to. However, until
we see risk assessments being performed by an external service, we need the internal
format object.

http://www.digitalpreservation.gov/formats
http://www.nationalarchives.gov.uk/

Base Format Attributes
The base format has the following attributes.
Attribute Name Type Description Example
id number The id of

the format.
Auto-
generated
when the
format is
created.

1

name String The name
of the
format

“Graphical Interchange Format”

version String The name
of the
format’s
version

“1.0”

lastUpdated Calendar The date of
the last
update of
this format.
Not
modifiable
via human,
but
readable
via REST

“1997-07-16T19:20:30.45+01:00”

AONS Format Attributes
The AONS format represents a managed object within the system. It is on this object
which we apply risk workflows. An AONS format extends the base format and has
the following additional properties:
Attribute Name Type Description Example
id number The id of the

format. Auto-
generated
when the
format is
created.

1

nameAliases list of
NameAlias

Name alias
sub-entity
objects which
allow this
format to
have multiple
known name

See name and version on base format
and also look at REST nested object
notation section.

version
combinations.

puid String PRONOM
Identifier

fmt/000017

puidAliases list of
PuidAlias

PUID alias
sub-entity
objects which
allow this
format to
have multiple
known
PUIDs.

fmt/000017, fmt/000018

Registry Format

Schedule

Format

Format Metadata Fingerprints

REST Interface

REST Operation Conventions

REST URL Syntax
REST resources are queried via the following syntax:
${baseApplicationUrl}/rest/${restResourceName}

So as an example for an AONS deployment on local host and wanting to access all
registries (via the virtual query REST object Registries):
http://localhost:8080/aons/rest/Registries

Method Overriding
Typically, REST uses the HTTP operations PUT, GET, POST and DELETE to map
to meanings Create, Retrieve, Update and Delete respectively. This is fine and dandy
when your code is running since it should be able to manipulate the HTTP operation
via the API, but for testing, this approach is very limiting. So, to get around this, we
put in place a “methodType” parameter, which if added to a GET url can be used to
change the operation to one of the other types. What this means, is that you can do
simple testing of REST urls via a browser. Neat, huh.

Create Operations
To create a REST resource, you need to remember that you are performing a HTTP
PUT operation. This PUT operation should not include the identifier since, well, there
isn’t one yet. This identifier is only created when the object is saved into the system.

For example, if we wanted to create a new Library of Congress registry, we would
perform a HTTP PUT with the following URL and attributes:
URL: http://localhost:8080/aons/rest/Registry
Attributes:
 name=Test Registry
 url=http://www.digitalpreservation.gov/formats
 type=LC-DFW

You’ll notice we needed to specify the type of the registry to demonstrate which
actual connection handler we’ll use to process this registry. These values are detailed
below for each REST resource with multiple implementations.

Now, I hear you ask, if we don’t give it an identifier when we create it, how do we
know what to retrieve for a query? Well part of the creation of the resource is to
generate this identifier. This identifier is then returned back after the REST call has
completed in a successful response. Here is an example:

<?xml version="1.0" encoding="UTF-8"?>
<success-response>
 <domain-object-type>Registry</domain-object-type>
 <method-type>PUT</method-type>
 <id>182</id>
</success-response>

Retrieve Operations
When performing a retrieve operation, you will need to know the REST resources
identifier (id). So for example, to perform a retrieve on a registry with Id 10, you
would perform a HTTP GET with the following URL:
http://localhost:8080/aons/rest/Registry?id=182

This would return the following output:
<?xml version="1.0" encoding="UTF-8"?>
<registry>
 <id>182</id>
 <name>Test</name>
 <url>http://www.digitalpreservation.gov/formats</url>
 <type>LC-DFW</type>
 <latest-statistic-historical>
 <id>183</id>
 <change-amount>0</change-amount>
 <character-count>0</character-count>
 <number-added>0</number-added>
 <number-deleted>0</number-deleted>
 <number-of-formats>0</number-of-formats>
 <validFrom>2007-10-23T11:44:05.351+10:00</validFrom>
 </latest-statistic-historical>
 <latest-usage-historical>
 <id>184</id>

http://localhost:8080/aons/rest/Registry

 <number-utilised>0</number-utilised>
 <validFrom>2007-10-23T11:44:05.351+10:00</validFrom>
 </latest-usage-historical>
 <statistic-historicals>
 <id>183</id>
 <change-amount>0</change-amount>
 <character-count>0</character-count>
 <number-added>0</number-added>
 <number-deleted>0</number-deleted>
 <number-of-formats>0</number-of-formats>
 <validFrom>2007-10-23T11:44:05.351+10:00</validFrom>
 </statistic-historicals>
 <usage-historicals>
 <id>184</id>
 <number-utilised>0</number-utilised>
 <validFrom>2007-10-23T11:44:05.351+10:00</validFrom>
 </usage-historicals>
 <status>Idle</status>
</registry>

Update Operations
Updates are based on a create operation but have one fundamental difference, they
require the identifier and don’t return the identifier after the operation is completed.
One point to note with the updates is that the update will only change the attributes
specified; if you omit an attribute, the bind operation will not over write all other
attributes with null. This means that your update URLs can be quite concise.

So, continuing the example from before, if we wanted to update the name of the
registry, we’d perform the following operation via a HTTP POST:
URL: http://localhost:8080/aons/rest/Registry
Attributes:
 - id=182
 - name=Changed Name

You should see a response message like so:
<?xml version="1.0" encoding="UTF-8"?>
<success-response>
 <domain-object-type>Registry</domain-object-type>
 <method-type>POST</method-type>
</success-response>

Delete Operations
This is the simplest part of a REST call, and these are just the combination of a HTTP
DELETE call along with the URL and an attribute with the identifier.

So, to delete the registry we’ve used as an example up until now, we perform this
operation:
URL: http://localhost:8080/aons/rest/Registry
Attributes:

- id=182

http://localhost:8080/aons/rest/Registry

You should see a response like this:
<?xml version="1.0" encoding="UTF-8"?>
<success-response>
 <domain-object-type>Registry</domain-object-type>
 <method-type>DELETE</method-type>
</success-response>

Search Operations
Often, you will want to search for all of a type of domain object. For example, you
may want to list all registries in the system. To do this, we use a virtual domain object
– not all REST resources have them, but they will be specified in the REST Domain
Object section if they do. So, to list all registries, you could put in this HTTP GET
URL:
http://localhost:8080/aons/rest/Registries

Sometimes, the volume of these domain objects is so large you will want to also
include a filter. For example, you may wish to filter formats based on a search string:
http://localhost:8080/aons/rest/Formats?searchString=JPEG

It is important to note that the structure of the result returned from a search group is
often only a subset of the attributes available when performing a normal retrieve. It
should be viewed that a search is a summary of domain objects whilst a retrieve with
an identifier returns the complete view.

The search may also return a relevance ranking for the search results if a search filter
was used.

REST Error Messages
We have tried to be relatively verbose with the error messages returned from AONS
to ensure that calling code can handle them well. To do this, we have adopted the best
practice of:

- Sending back a HTTP error response of 500 on errors
- A standard template for errors including:

o A code
o An error status value
o A detailed message

Here is a typical error:
<?xml version="1.0" encoding="UTF-8"?>
<failure-response>
 <code>GeneralException</code>
 <message>Can not perform method [PUT] on [Format], available
methods [GET]</message>
</failure-response>

For the following types of errors, we also have additional attributes available:

- Invalid parameter (also includes the invalid parameter and it’s value)
- Missing parameter (also includes the missing parameter)

http://localhost:8080/aons/rest/Formats?searchString=JPEG

REST Domain Objects
AONS set out from the beginning to allow usage via REST interfaces. Almost all
domain objects can be created, retrieved, updated and deleted directly via simple
REST methods. This section covers over the various REST “resources”, including
what AONS object they map to and what REST methods they allow out of the create,
retrieve, update and delete stack. Further we also discuss searching, since some
domain objects allow querying via a virtual REST object.

AONS Resource
Name

Registry

REST Resource Registry
Available CRUD
Methods

All

Searching Virtual
Resource

Registries

Notes Also requires an extra attribute called “type” which dictates
what entity type the Registry is (National Archives (UK) or
Library of Congress(USA)). These types are either PRONOM
or LC-DFW respectively.

AONS Resource
Name

Repository

REST Resource Repository
Available CRUD
Methods

All

Searching Virtual
Resource

Repositories

Notes Also requires an extra attribute called “type” which dictates
what entity type the Registry is (National Archives (UK) or
Library of Congress(USA))

AONS Resource
Name

Format

REST Resource Format
Available CRUD
Methods

Retrieve Only

Searching Virtual
Resource

Formats

Notes In addition to providing explicity access to the two subtypes
of BaseFormat (Internal and External Format) we have also
provided this REST resource so as to allow people to perform
a query on both at the same time.

AONS Resource
Name

Internal/AONS Format

REST Resource AonsFormat
Available CRUD All

Methods
Searching Virtual
Resource

AonsFormats

Notes This provides access to all the CRUD operations on internal
formats.

AONS Resource
Name

Log Message

REST Resource LogMessage
Available CRUD
Methods

Retrieve Only

Searching Virtual
Resource

LogMessages

Notes Allows access to the log messages within AONS. Can search
upon the following fields:

- logLevel (must be one of “Debug”, “Information”,
“Warning”, “Error” or “Fatal”)

-

	Application Site Map
	 Getting Started
	Configuration Task Breakdown
	Proxy Server Configuration
	Mail Server Configuration
	
	Plugging in to the Local Environment
	 Common Tasks
	Creating Registry Connections
	Updating a Registry Connection
	Deleting a Registry Connection
	Cancelling a Registry Synchronize
	Creating a Job Schedule on an Existing Registry
	Creating Repository Connections

	 Domain Objects
	Repository Connections
	Supported Repository Types
	Base Repository Attributes
	FileSystemRepository Attributes
	FedoraRepository Attributes
	PandoraRepository Attributes
	DSpaceRepository Attributes
	ExternalUrlRepository Attributes

	
	Registries Connections
	Description

	Registry Connection Parameters
	Formats
	Base Format Attributes
	AONS Format Attributes

	REST Interface
	REST Operation Conventions
	REST URL Syntax
	Method Overriding
	Create Operations
	Retrieve Operations
	Update Operations
	Delete Operations
	Search Operations
	REST Error Messages

	REST Domain Objects

