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INTRODUCTION 

The aim of the ANUSPLIN package is to provide a facility for transparent analysis and interpolation 

of noisy multi-variate data using thin plate smoothing splines.  The package supports this process by 

providing comprehensive statistical analyses, data diagnostics and spatially distributed standard 

errors.  It also supports flexible data input and surface interrogation procedures. 

The original thin plate (formerly Laplacian) smoothing spline surface fitting technique was described 

by Wahba (1979), with modifications for larger data sets due to Bates and Wahba (1982), Elden 

(1984), Hutchinson (1984) and Hutchinson and de Hoog (1985).  The package also supports the 

extension to partial thin plate splines based on Bates et al. (1987).  This allows for the incorporation 

of parametric linear sub-models (or covariates), in addition to the independent spline variables.  This 

is a robust way of allowing for additional dependencies, provided a parametric form for these 

dependencies can be determined.  In the limiting case of no independent spline variables (not 

currently permitted), the procedure would become simple multi-variate linear regression.   

Thin plate smoothing splines can be viewed as a generalisation of standard multi-variate linear 

regression, in which the parametric model is replaced by a suitably smooth non-parametric function.  

The degree of smoothness, or inversely the degree of complexity, of the fitted function is usually 

determined automatically from the data by minimising a measure of predictive error of the fitted 

surface given by the generalised cross validation (GCV).  Theoretical justification of the GCV and 

demonstration of its performance on simulated data have been given by Craven and Wahba (1979). 

An alternative criterion is to minimise the generalised maximum likelihood (GML) developed by 

Wahba (1985,1990).  This is based on a Bayesian formulation for the thin plate smoothing spline 

model and has been found to be superior to GCV in some cases (Kohn et al. 1991).  Both criteria are 

offered in this version of ANUSPLIN. 

A comprehensive introduction to the technique of thin plate smoothing splines, with various 

extensions, is given in Wahba (1990).  A brief overview of the basic theory and applications to 

spatial interpolation of monthly mean climate is given in Hutchinson (1991a).  These interpolated 

monthly mean climate surfaces have provided critical underpinning for bioclimatic analyses and 

natural resource modelling more generally (Booth et al. 2013, Xu and Hutchinson 2011,2013).  More 

comprehensive discussion of the algorithms and associated statistical analyses, and comparisons with 

kriging, are given in Hutchinson (1993) and Hutchinson Gessler (1994).  Applications to annual, 

monthly and daily climate data have been described by Hutchinson (1995, 1998ab), Price et al. 

(2000), Hutchinson et al. (2009) and McKenney et al. (2011).  The book by Schimek (2000) 

provides a good overview of the subject of smoothing and non-parametric regression with extensive 

references. 

It is often convenient, particularly when processing climate data, to process several surfaces 

simultaneously.  If the independent variables and the relative weightings of the data are the same for 

each surface, and there are no missing data values, then many surfaces can be calculated for little 

more computation than one surface.  ANUSPLIN allows for arbitrarily many such surfaces with 

significant savings in computation.  ANUSPLIN also introduces the concept of "surface independent 

variables", to accommodate independent variables that change systematically from surface to 

surface.  ANUSPLIN permits systematic interrogation of these surfaces, and their standard errors, in 

both point and grid form. 

ANUSPLIN also permits transformations of both independent and dependent variables and permits 

processing of data sets with missing data values.  When a transformation is applied to the dependent 
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variable ANUSPLIN permits back-transformation of the fitted surfaces, calculates the corresponding 

standard errors, and corrects for the small bias that these transformations induce.  This has been 

found to be particularly convenient when fitting surfaces to precipitation data and other data that are 

naturally positive or non-negative. 

A summary of the six programs that make up the ANUSPLIN package is tabulated in the following 

section, accompanied by a flow chart showing the main connections between the programs.  This is 

followed by detailed documentation for each program in the package.  The User Guide concludes 

with a comprehensive discussion of example smoothing spline analyses of uni-variate data and 

multi-variate climate data.  The data supporting these analyses are supplied with the package.  These 

analyses can be used as a tutorial on the basic concepts of data smoothing, with particular 

applications to the spatial interpolation of climate. 
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PROGRAM SUMMARY 

Table 1.  The six programs making up the ANUSPLIN package. 

PROGRAM DESCRIPTION 

SPLINE A program that fits an arbitrary number of (partial) thin plate 

smoothing spline functions of one or more independent 

variables.  Suitable for data sets with up to about 10,000 points 

although data sets can have arbitrarily many points. It uses 

knots either determined directly by SPLINE itself or from the 

output of either SELNOT or ADDNOT. The knots are chosen 

from the data points to match the complexity of the fitted 

surface. There should normally be no more than about 2000 to 

3000 knots, although arbitrarily large knot sets are permitted. 

The degree of data smoothing is normally determined by 

minimising the generalised cross validation (GCV) or the 

generalised maximum likelihood (GML) of the fitted surface. 

SELNOT Selects an initial set of knots for use by SPLINE. Now rarely 

used. It can be useful for specifying a single knot set for a very 

large data set that is to be processed by SPLINE in overlapping 

tiles.  It can also be used to select a spatially representative 

subset of a data set for spatially unbiased withheld data 

assessment of surface accuracy. 

ADDNOT Updates a knot index file when additional knots are selected 

from the ranked residual list produced by SPLINE. 

GCVGML Calculates the GCV or GML for each surface, and the average 

GCV or GML over all surfaces, for a range of values of the 

smoothing parameter.  It can be applied to optimisation 

parameters produced by SPLINE.  The GCV or GML values 

are written to a file for inspection and plotting. 

LAPPNT Calculates values and Bayesian standard error estimates of 

partial thin plate smoothing spline surfaces at points supplied in 

a file. 

LAPGRD                       Calculates values and Bayesian standard error estimates of 

partial thin plate smoothing spline surfaces on a regular 

rectangular grid. 

 

The flow chart in Figure 1 shows the main data flows through the programs described in Table 1.  

The overall analysis proceeds from point data to output point and grid files suitable for analysis and 

display by a geographic information system (GIS) and other analysis packages.  The analyses by 

SPLINE produce output files that provide statistical analyses, support detection of data errors, an 

important phase of the analysis, and facilitate determination of additional knots by ADDNOT.  The 

output surface coefficients and error covariance matrices enable systematic interrogation of the fitted 

surfaces by LAPPNT and LAPGRD.  The GCV or GML files output by GCVGML can also assist 

detection of data errors and revision of the specifications of the spline model. 
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Figure 1. Main data flows through the ANUSPLIN package. The procedure for choosing and 

updating knot sets is described in a following section.  Knot selection is also demonstrated in the 

provided annotated examples. 
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SPLINE 

SPLINE is a FORTRAN 95 program that fits partial thin plate smoothing spline surfaces to multi-

variate noisy data.  It fits partial thin plate smoothing spline surfaces, constructed from a set of knots, 

to multi-variate noisy data. The knots are chosen from the data points, either by the SPLINE program 

itself, or by SELNOT.  It is important to note that knots are only used to limit the complexity of the 

fitted surface.  No matter what size the knot set, all data points are used to calculate the fitted 

surface.  Knot sets can also be augmented by the ADDNOT program.  ADDNOT can choose 

additional knots from the largest residuals of an earlier run of SPLINE.  The computation time of 

SPLINE is proportional to the cube of the number of knots, so it is normally beneficial to limit the 

number of knots to the minimum needed to match the complexity of the fitted surface.  Limited knot 

sets can also enable robust analyses of poor quality data.  Further advice on knot selection is given in 

a later section, and is demonstrated in the annotated examples. 

User directives for the program are read from standard input and output statistics are written to 

standard output.  Users are strongly advised to either use the Menu Interface provided with 

ANUSPLIN package, or to use a command file for the user directives, so that program output can be 

saved in an output log file.  The log file provides a record of the directives supplied to the program 

and provides essential statistical analyses of the fitted surfaces, standard error estimates and a sorted 

list of the largest residuals.  The Menu Interface also permits log files to be saved. 

To run the program from a command-line shell type, for example: 

 spline  <  job.cmt  >  job.log 

where job.cmt is an input command text file and job.log is the output log file. 

Program Inputs 

These include the numbers of independent spline variables and covariates, the lower and upper limits 

for each independent variable, optional transformations of each independent variable, and of the 

dependent variable, the order of derivative to be minimised, the number of surfaces, and the method 

to be used to determine the amount of data smoothing for each surface.  Input and output file 

specifications are also required.  Data points at positions that lie outside the user supplied 

independent variable limits are ignored.  These limits can be used to fit a surface to a subset of the 

data without having to create a separate data file.  These limits may include margins to allow for the 

creation of overlapping surface patches. This can be required for very large data sets. The user-

supplied limits also give a simple check on the specified data format and the order of the independent 

variables in the data file.  An error in these specifications would be indicated if fewer than the 

expected number data points were selected.  See the annotated examples for further discussion of 

program inputs. 

With the incorporation of standard FORTRAN 95 ANUSPLIN has dynamically allocated memory 

for most data and working arrays.  Accordingly, SPLINE can accommodate arbitrarily many surfaces 

fitted to arbitrary numbers of data points.  However, it is advisable to limit the number of data points 

to no more than about 10,000 data points and to limit the number of knots to no more than 2000 to 

3000 points, provided the number of knots is sufficient to adequately approximate the fitted spline 

function.  The main storage requirement for SPLINE is proportional to the square of the number of 

knots and the processing time is proportional to cube of the number of knots.  The latter is required 

to perform a tri-diagonal decomposition of a matrix of order the number of knots.  The required 
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linear algebra routines are contained within the double precision LINPACK library (Dongarra et al., 

1979), with amendments to incorporate standard vector arithmetical routines in FORTRAN 95. 

The SPLINE program permits data sets containing coincident data points and with missing data 

values. 

Program Outputs 

Summary statistics and a list of the largest residuals, ranked in descending order, are always written 

to standard output that should always be saved in an output log file.  The ranked list of largest 

residuals is particularly useful in detecting data errors, especially when fitting a surface to a new data 

set.  A list of the data and fitted values with Bayesian standard error estimates may also be written to 

an output list file.  This can also assist in the detection of data errors.  Optimisation parameters, that 

are used to determine the optimum smoothing parameter, may also be written for input to GCVGML. 

The program can also provide cross validation residuals for the data points and summary statistics 

for points in a test data file.  These permit detailed assessment of predictive errors and overall quality 

of the fitted surfaces.  See the annotated examples for further discussion of program outputs. 

Files containing the coefficients of the fitted surfaces and the Bayesian error covariance matrices of 

the fitted surface coefficients may also be written.  These surface coefficients and error covariance 

matrices are used to calculate values and standard errors of the fitted surfaces by LAPGRD and 

LAPPNT. 

Knot Selection 

For data sets with no more than a few hundred data points it is normally recommended to select 

every data point as a knot.  This can be done by simply specifying the number of knots to be 

calculated by SPLINE to a number at least as large as the number of data points.  However for larger 

data sets, and for data sets with poor quality data, it is normally recommended to choose the knots as 

a distinct subset of the data.  This can significantly reduce computation time for larger data sets, and 

provide a robust analysis in the presence of poor quality data. 

It should be noted that the degree of data smoothing is normally optimised to minimise the predictive 

error of the fitted surfaces.  This becomes independent of the number of knots once the number of 

knots is sufficient to capture the information in the data.  Thus, knot sets cannot be increased in size 

indefinitely to “improve” the fit of the surfaces.  This is illustrated in command 7 of the first set of 

annotated examples (sine20.cmt).  In this example a spline curve calculated using just 20 knots is 

virtually indistinguishable from the spline curve calculated using all 101 data points as knots. 

The following, somewhat heuristic, procedure for knot selection has been found to work well in 

practice: 

1. Specify an initial number of knots in the SPLINE run itself, or less commonly, use SELNOT to 

select an initial knot set for a very large data set.  The knots are selected to equi-sample the 

independent spline variable space covered by the data points.  When choosing knots as a subset of 

the data points, a typical initial set of knots may be around 1/4 to 1/3 of the size of the data set.  

However the number of knots required really depends on the spatial complexity of the data being 

fitted, with more knots required for more complex surfaces.  If the signal of the fitted surface is 

found to be within 10 to 20% of the number of knots (the maximum possible signal), then the 

process should be re-started with a larger initial knot set.  The process should also be re-started with 
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a larger initial knot set if the ranked large residual list indicates large outliers for apparently valid 

data points for more than around 5% of the number of knots. These actions comprise the left hand 

option illustrated in Figure 1. 

2. Run SPLINE, with the output list of data and fitted values, and examine the largest residuals for 

data errors.  Re-fit the surface if necessary after data errors have been corrected.  If there is a 

moderate number of remaining large data residuals that appear to be associated with valid data, 

typically less than 5% of the number of knots, the ADDNOT program can be used to add to the knot 

index file the indices of the largest aberrant residuals that are not already knots.  The surface can then 

be re-fitted using these additional knots.  This is the right hand option illustrated in Figure 1.  These 

indices may be read by ADDNOT from the large residual list output by SPLINE.  The number of 

additional knots selected by ADDNOT should normally be no more than around 1-2% of the number 

of knots.  Knot indices may also be added to the knot index file by supplying knot indices directly to 

ADDNOT but this is not generally recommended.  Residuals that are already associated with a knot 

are identified by a minus sign, both in the output ranked residual list in the SPLINE log file, and in 

the output list file of data and fitted values.  ADDNOT ignores those residuals already associated 

with a knot when adding new knots. 

3. Repeat the procedure of adding to the knot list the indices of the largest aberrant residuals and 

re-fitting the surface until the solution stabilises or the variance estimates output by the program are 

in approximate agreement with a priori estimates.  This should normally be done only once or twice, 

since there is a risk of overfitting to erroneous data if it is done too many times, especially if there is 

short range correlation in the data.  For large data sets, where it becomes critical to choose knots 

carefully, two successive additions of 1% of the number of knots can make an effective choice of the 

additional knots. 

Interpretation of Output Statistics 

The output statistics are best interpreted in relation to the partial spline model for N observed data 

values zi given by 

  zi = f(xi) + b
T
yi +ei           (i =1,...,N) (1) 

where each xi is a d-dimensional vector of spline independent variables, f is an unknown smooth 

function of the xi, each yi is a p-dimensional vector of independent covariates, b is an unknown p-

dimensional vector of coefficients of the yi and each ei is an independent, zero mean error term with 

variance wi
2
, where wi is termed the relative error variance (known) and 

2
  is the error variance 

which is constant across all data points, but normally unknown (Hutchinson, 1991a). The model 

reduces, on the one hand, to an ordinary thin plate spline model when there are no covariates (p=0) 

and to a simple multivariate linear regression model, on the other hand, when f(xi) is absent.  The 

latter possibility is not currently permitted by ANUSPLIN. 

The function f and the coefficient vector b are determined by minimising  

  
 

 









 N

1i

m

i

i

T

ii fJ
w

ybxfz


2

 (2) 

where  fJ m  is a measure of the complexity of f, the "roughness penalty" defined in terms of an 

integral of mth order partial derivatives of f and   is a positive number called the smoothing 

parameter. As   approaches zero, the fitted function approaches an exact interpolant. As   
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approaches infinity, the function f approaches a least squares polynomial, with order depending on 

the order m of the roughness penalty. The value of the smoothing parameter is normally determined 

by minimising a measure of predictive error of the fitted surface given by the generalised cross 

validation (GCV). 

The vector 


z  of fitted function values can be written 

  Azz 


 (3) 

where A is an N x N matrix called the influence matrix. By analogy with linear regression (Wahba 

1990), the number of degrees of freedom of the fitted spline, or the effective number of parameters, 

is given by 

  SIGNAL = trace (A). (4) 

The number of degrees of freedom of the weighted residual sum of squares, the first term of equation 

(2), is given by 

  ERROR = trace (I -A) = N - trace (A). (5) 

The weighted mean residual sum of squares is given by 

  MSR =  
2

-1W I - A z /N  (6) 

where W is the diagonal matrix given by 

  ( )
N1 w,...,wdiag=W  (7) 

The SIGNAL degrees of freedom and the ERROR degrees of freedom for each surface add up to N 

(the number of data points).   

The GCV is calculated for each value of the smoothing parameter   by implicitly removing each 

data point and calculating the residual from the omitted data point of a surface fitted to all other data 

points using the same value of  . The GCV is then a suitably weighted sum of the squares of these 

residuals (Craven and Wahba 1979, Wahba 1990). The GCV is actually calculated by the formula 

  
 

 -

2
-1

2

W I - A z /N
GCV

tr I A /N


  

. (8) 

The surface fitting procedure is normally considered to have failed to find a genuine optimum value 

of the smoothing parameter if either the smoothing parameter is very small and the signal is the 

maximum possible (equal to the number of knots) or the smoothing parameter is very large and the 

signal is the minimum possible (a number which depends on the number of independent variables 

and the order of the roughness penalty).  Both of these conditions are flagged by an asterisk in the 

output log file. Hutchinson (1993) and Hutchinson and Gessler (1994) recommend that the signal 

should not exceed around half the number of data points. Signals larger than this can indicate 

insufficient data or positive correlation in data errors. 
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The variance 
2  of the data error 

ie  in equation (1) is estimated by 

  
 

 

2
-1W I - A z

VAR=
tr I - A

     (9) 

If 
2  is known, or estimated, an unbiased estimate of the "true" mean square error of the fitted 

function across the data points is given by 

     - -
2

-1 2 2MSE = W I A z /N 2σ tr I - A / N + σ . (10) 

Craven and Wahba (1979) have shown that under suitable conditions the formula 

  GCV =
2σ+MSE  (11) 

holds approximately. Thus minimising GCV, which does not depend on knowing 
2 , is 

approximately equivalent to minimising MSE, the true mean square error. 

The generalised cross validation (GCV), mean square residual (MSR) and the data error variance 

estimate (VAR) are written to the output log file together with their square roots (RTGCV, RTMSR, 

RTVAR) which are in the units of the data values.  VAR is the estimate of 
2
 given by equation (9).  

The mean square residual given by equation (6) is weighted according to the relative variance 

estimates wi as provided in the data file.  For the GCV calculation these relative variances are 

rescaled to have average value 1 in order to facilitate comparisons of GCV values across different 

models.  If the relative variance estimates are actual estimates of the absolute value of the error 

variance (so that 
2
 =1), then VAR and RTVAR should be approximately 1.   

The goodness of fit of the fitted model may be checked by comparing the scaled residual sum of 

squares (N.MSR/2
 where N is the number of data points) with the critical points of a  chi-square 

variable with df degrees of freedom, where df is the error degrees of freedom, given by equation (5), 

as output by the program, and 
2
 is an a priori estimate of the error variance. 

This variance corresponds to the "nugget" in standard kriging analyses. It is rarely known a priori, 

since it includes two distinct components. The first of these is error inherent in the data, such as 

measurement error. This may be known or reasonably estimated beforehand. However, the second 

component is the error in the underlying spline function. This error is essentially unknown, and 

decreases as the number of data points increases. In different situations one of these components can 

be dominant, or they can be equally important, as is often the case when interpolating climate 

statistics (Hutchinson 1995). 

When an estimate of 
2
 is available an alternative strategy is to provide the corresponding standard 

deviation estimate  to the program.  The program then minimises an unbiased estimate of the true 

mean square error, MSE given by equation (10) instead of the GCV.  This is not normally 

recommended since it depends on having a reasonably accurate estimate of 
2
.  It is generally 

preferable to minimise GCV, since this appears to be more robust and does not depend on knowing 


2
.  An a priori estimate of 

2
 can be better used to check the goodness of fit of the model as 

described above.  On the other hand, specifying the error standard derivation may be preferable when 

there is no local minimum of the GCV, as can happen when fitting surfaces to very small data sets 

(less than about 20-30 data points). 
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SPLINE provides in the output log file the coefficients of any covariates as well as the estimate of 

the mean square error of the smoothed data values (MSE).  This estimate depends on the value of 

error variance (VAR) as estimated by equation (9) or the input error standard deviation estimate when 

this has been provided by the user.  

Calculation of Standard Errors 

Using a Bayesian argument, Wahba (1983) and Silverman (1985) have adopted appropriate multi-

variate Gaussian prior distributions for the vector z of data values, so that the error covariance matrix 

of the vector 


z  of fitted values is given by 

  AW2
 (12) 

where A is the influence matrix described in equation (3) and W2
 is the assumed error covariance 

matrix of the data errors.  Here W is described by equation (7) and 2
 is estimated by equation (9). 

Spatially distributed standard errors for surfaces fitted by SPLINE are calculated using the method 

described by Hutchinson (1993).  SPLINE calculates the error covariance matrix of the coefficients 

of the fitted spline surface by expressing the surface coefficients as a linear transformation of the 

vector 


z  of fitted values.  This includes the error covariance matrix of the coefficients of any 

covariates, from which standard error estimates of the coefficients of the covariates may be directly 

calculated.  The error covariance matrices of the fitted surfaces are written by SPLINE to a separate 

binary file, as shown in Figure 1. 

The value zx of a spline surface at an arbitrary position x can be written 

  zx = ax
T
c (13) 

where ax is a vector depending on x and c is the vector of fitted surface coefficients.  The standard 

error estimate of the surface value zx is then calculated by LAPPNT and LAPGRD using the formula 

  (ax
T
Vax)

½
 (14) 

where V is the error covariance matrix of the surface coefficients calculated by SPLINE.  This 

standard error is called the model standard error, since it relates to the error in estimating the model 

given by equation (1).  The prediction standard error is calculated by LAPPNT and LAPGRD using 

the formula 

  (ax
T
Vax   +  2

)
½

 (15) 

where 2
 is the variance of the data error.  This estimate is only applicable if the values being 

predicted have a uniform variance of 2
 about the fitted spline function.  This normally occurs when 

W is the identity matrix. Non-uniform error variances, such as those for the model discussed by 

Hutchinson (1995), must be accommodated using a separate calculation.  Alternatively, non-uniform 

error variances may be directly accommodated in LAPPNT and LAPGRD using one of the 

transformations of the dependent variable described in the following section. 

Confidence intervals of the calculated spline values are estimated by multiplying either the model 

standard error or the prediction standard error by 1.96 corresponding to the 95 percent two-sided 

confidence interval of the standard normal distribution. 



ANUSPLIN Version 4.4  11 

The mean of an arbitrary number of fitted surface values is a linear function of the fitted surface 

coefficients.  It can be expressed in the form 

  a
T
c (16) 

where a is the mean of the vectors ax in equation (13).  The standard error of the mean is therefore 

given by 

  (a
T
Va)

1/2
.                              (17) 

This formula is used by LAPPNT and LAPGRD to calculate the standard error of the mean of the 

surface values when there is no dependent variable transformation.  It is not the mean of the standard 

errors of the individual surface values. 

Dependent Variable Transformations 

Three dependent variable transformations, the square root, the natural logarithm and an occurrence 

transformation, are currently permitted by ANUSPLIN.  Any of these transformations may be 

applied by SPLINE to the data before a spline surface is fitted.  The square root and the natural 

logarithm transformations can reduce positive skew in measured values, as can arise with data that 

are naturally non-negative or positive.  The occurrence transformation is defined by setting all 

positive data values to 1.0 and ignoring all negative data values. 

 These transformations are automatically coded into the fitted surface coefficients file so that 

LAPPNT and LAPGRD can calculate either transformed surface values or back-transformed values.  

For the square root and natural logarithm transformations, these are obtained by applying the inverse 

dependent variable transformation (square or exponential) to the calculated surface values.  When 

either of these inverse transformations is applied a correction for bias is made.  Hutchinson (1998a) 

has found that applying the square root transformation to daily rainfall data, before fitting a thin plate 

smoothing spline, could reduce interpolation error by about 10 percent. 

For the occurrence transformation, the back-transformation consists of setting output spline values to 

0.0 or 1.0 depending on whether or not the fitted spline values are respectively less than or greater 

than the threshold value of 0.5. Standard errors are not available for the back-transformed occurrence 

values. 

If the surface values are chosen to back-transformed using the inverse of the square root or natural 

logarithm transformations then standard errors are calculated by LAPPNT and LAPGRD 

accordingly.  Formulae appropriate for the square root transformation have been demonstrated by 

Hutchinson (1998a).  If the interpolated square root value is given by X, with standard error s, then 

an estimate of the standard error of X
2
 is given by 

  SE(X
2
)  = 2s(X

2
  +  s

2
/2)

½
.                        (18) 

This can be applied with s as either model standard error, or predictive standard error, as defined in 

the preceding section.  The second term in this expression is negligible except when X is close to 

zero or s
2
 is relatively large.  Relative errors are thus given approximately by the formula 

  RE(X
2
)  =  2s/X                                   (19) 

that is twice the relative error in the square root surface values. 
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For the square root transformation, absolute standard error estimates are calculated.  It can be seen 

from these two formulae that smaller surface values will be estimated with smaller absolute standard 

error, while larger surface values will be estimated with smaller relative error.  Approximate 

confidence intervals are calculated in this case by assuming that the errors of the interpolated square 

root values are distributed according to a normal distribution.  It follows that the 95 percent 

confidence interval for the squared values is given by 

  [X
2
 - CI, X

2
 + CI] (20) 

where 

  CI = 4X 1.96 s(X
2
  +  s

2
/2)

½
. (21) 

Analogous standard error estimates are calculated by LAPPNT and LAPGRD when the natural 

logarithm has been applied to the data values and the exponential transformation is applied to the 

interpolated values.  If the interpolated logarithmic value is given by X, with standard error s, then 

LAPPNT and LAPGRD calculate the standard error in the value exp(X) using the formula 

  SE(exp(X))  =  exp(X + s
2
/2) (exp(s

2
) - 1)

½
. (22) 

Relative confidence intervals, that must be applied multiplicatively, are calculated in this case by 

assuming that the errors of the interpolated logarithmic values are distributed according to a normal 

distribution.  The two-sided 95 percent confidence interval is then given by  

  [exp(X)/CI, exp(X).CI] (23) 

where 

  CI = exp(1.96s). (24) 

LAPPNT and LAPGRD provide the absolute standard error estimate given by equation (22) and the 

relative confidence interval given by equation (24). 

Fitting Climate Surfaces 

The ANUSPLIN package was primarily developed for this task.  There are normally at least two 

independent spline variables, longitude and latitude, in this order and in units of decimal degrees.  A 

third independent variable, elevation above sea-level, is normally appropriate when fitting surfaces to 

temperature or precipitation.  This is normally included as a third independent spline variable, in 

which case it should be scaled to be in units of kilometres.  Minor improvements can sometimes be 

had by slightly altering this scaling of elevation.  This scaling was originally determined by 

Hutchinson and Bischof (1983) and has been verified by Hutchinson (1995, 1998b). 

Over restricted areas, superior performance can sometimes be achieved by including elevation not as 

an independent spline variable but as an independent covariate.  Thus, in the case of fitting a 

temperature surface, the coefficient of an elevation covariate would be an empirically determined 

temperature lapse rate (Hutchinson, 1991a).  Other factors that influence the climate variable may be 

included as additional covariates if appropriate parameterizations can be determined and the relevant 

data are available.  These might include, for example, topographic effects other than elevation above 

sea-level.  Other applications to climate interpolation have been described by Hutchinson et al. 

(1984ab, 1996a, 2009), Hutchinson (1989a, 1991ab) and McKenney et al. (2011).  Applications of 

fitted spline climate surfaces to global agroclimatic classifications and to the assessment of 
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biodiversity are described by Hutchinson et al. (1992, 1996b, 2005).  They have also been used to 

develop spatially detailed climate change scenarios (Houser et al. 2004). 

To fit multi-variate climate surfaces, the values of the independent variables are needed only at the 

data points.  Thus meteorological stations should be accurately located in position and elevation.  

Errors in these locations are often indicated by large values in the output ranked residual list.  Recent 

applications have examined the utility of using elevation and variables related to slope and aspect 

obtained from digital elevation models at various horizontal resolutions (Hutchinson 1995, 1998b).  

Thin plate spline interpolation of monthly mean precipitation and temperature has been favourably 

compared with other methods by Price et al. (2000) and Hutchinson et al. (2009). 

The LAPGRD program can be used to calculate regular grids of fitted climate values and their 

standard errors, for mapping and other purposes, provided a regular grid of values of each 

independent variable, additional to longitude and latitude, is supplied. This usually means that a 

regular grid digital elevation model (DEM) is required.  A technique for calculating such DEMs from 

elevation and stream line data has been described by Hutchinson (1988, 1989b, 1996, 2001). 
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SPLINE User Directives 

User Directive Type Description 

Title of fitted 

surfaces 

60 characters Title recorded in surface coefficient file to 

document surface. 

Surface value 

units code and 

optional missing 

data value 

0–8, real number 0 - undefined 

1 - metres 2 - feet 

3 - kilometres 4 - miles 

5 - degrees 6 - radians 

7 - millimetres 8 – megajoules 

Data values less than or equal to the missing 

data value are removed from the analysis.  If 

a dependent data transformation is specified 

then data values outside the natural domain 

of the transformation are automatically 

removed. Thus negative data values are 

automatically removed if the square root 

dependent variable transformation is 

specified. 

Number of 

independent 

spline variables 

Non-negative integer May not exceed specified limit (currently 

10). 

Number of 

independent 

covariates 

Non-negative integer Limit depends on the number of spline 

variables. 

Number of 

surface 

independent 

spline variables 

Non-negative integer Surface independent variables take different 

values for each surface. 

Number of 

surface 

independent 

covariates 

Non-negative integer Surface independent variables take different 

values for each surface. 

Independent 

variable lower 

and upper limits, 

transformation 

code, units code, 

optional margins. 

Two real numbers, 

two non-negative 

integers (0-8), up to 

two real numbers for 

each independent 

variable 

Lower limit precedes upper limit.  Data 

points outside these limits, augmented by 

margins, are ignored.  One or both margins 

may be omitted. If one margin is supplied it 

is used as the common lower and upper 

margin. If both margins are omitted the 

transformation code and units code may also 

be omitted. Units code as for surface value 

units code.  
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Independent 

variable 

transformation 

parameters 

One or two real 

numbers (a,b) 

Required for each independent variable for 

which the transformation code is positive.  

The possible transformations for each 

independent variable x are: 

0 - no transformation 

1 - x/a 

2 - ax 

3 -a log (x +b) 

4 - (x/b) 
a
 

5 - a exp (x/b) 

6 - a tanh (x/b) 

7 - anisotropy angle in degrees 

8 - anisotropy factor - in the direction 

specified by the anisotropy angle. 

Dependent 

variable 

transformation 

0, 1, 2 or 5 0 - no transformation. 

1 - fit surface to natural logarithm of the 

data values. 

2 - fit surface to the square root of the data 

values. 

5 – occurrence – transform data values by 

setting all positive value to 1.0 and 

ignoring all negative values.  

Order of spline Positive integer Usually 2. 

Lower limit specified by the program.  

Number of 

surfaces 

Positive integer Any positive number of surfaces permitted. 

Number of 

relative error 

variances 

Non-negative integer 0 - data points uniformly weighted for each 

 surface.  

1 - the same weighting is applied to each  

  surface. 

Number of surfaces - a different weighting 

is  applied to each surface. 

Optimization 

directive 

0 – 2 0 - common smoothing parameter for all 

 surfaces. 

1 - common smoothing directive for all 

 surfaces (default). 

2 - different smoothing directive for each 

 surface. 

Smoothing 

directive for each 

surface 

0 – 4 
0 - fixed smoothing parameter -supply 

value. 

1 - minimise GCV (default). 

2 - minimise true mean square error using 

 supplied error standard deviation 

 estimate. 
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3 - fixed signal - supply value. 

4 - minimise GML. 

Data file name 255 characters Must be supplied. 

Maximum 

number of data 

points 

Positive integer Used to allocate memory for data and 

working arrays. Number should be at least 

as large as the number of data points. 

Number of 

characters in site 

label 

0 - 20 If positive, an alphanumeric site label is 

expected for each data point in the data file.  

These labels are printed in the output data 

list and large residual files.  Names with 

embedded blanks are permitted provided the 

data are read with a format statement. 

Data file format 255 characters If non-blank the provided FORTRAN 

format statement is used to read in order: 

the site label (if number of characters in site 

name is positive), the independent variables 

(spline variables before covariates), the 

surface independent variables (spline 

variables before covariates), the data values 

and the relative variances as specified 

above.  A uniform weighting of 1 for each 

data point may be specified by having zero 

relative variances. 

If the format is blank, the data file is read in 

list directed free format in the same order as 

for formatted reads.  Blank is not permitted 

if the site names have embedded blanks. 

Number of knots 

calculated by 

SPLINE 

Non-negative integer If positive then SPLINE selects the specified 

number of knots from the data.  If this 

number exceeds the number of data points 

then all data points are selected as knots.  

The selected knots can optionally be written 

to the output knot file. 

If zero then the knots must be read from the 

supplied input knot index file. 

Knot index file 

(input/output) 

255 characters 

(optional)  

Optional output file if the number of knots 

calculated by SPLINE is positive.  Blank if 

not required. 

Required input file if the number of knots 

calculated by SPLINE is set to zero. 

Input bad data 

flag file 

255 characters Blank if not required.  File used to remove 

particular data values from the analysis.  
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Each record has a site label followed by 

binary number (0 or 1) for each surface, 

with each 1 indicating a corresponding data 

value to be removed.  This permits removal 

of suspicious data values without altering 

the data file. 

Output bad data 

flag file 

255 characters Blank if not required.  File contains all bad 

data flags from the input bad data flag file 

augmented by a flag for each data value that 

differs from the corresponding fitted surface 

value by more than 3.6 standard deviations.  

This file can be used as an input bad data 

flag file for a subsequent run of SPLINE 

after inspection and possible changes by the 

user. 

Output large 

residual file name 

255 characters Blank if not required.  Used to check for 

data errors.  May be read directly by 

ADDNOT to add knots to an existing knot 

file. 

Output large 

cross validation 

residual file name 

255 characters Blank if not required.  Used to check for 

data errors. Can help to identify spatially 

isolated points with bad data values. 

Output 

optimisation 

parameters file 

255 characters Blank if not required.  File containing 

parameters used to calculate the optimum 

smoothing parameter(s).  This file can be 

used with GCVGML to calculate GCV or 

GML values as a function of the smoothing 

parameter.   

Output surface 

coefficients file 

255 characters Normally required but may be blank if 

surface coefficients are not required.  

Contains the coefficients defining the fitted 

surfaces. These are used to calculate values 

of the surfaces by LAPPNT and LAPGRD.   

Output error 

covariance file 

name 

255 characters Blank if not required.  Error covariance 

matrices of fitted surface coefficients. Used 

by LAPPNT and LAPGRD to calculate 

spatially distributed standard error estimates 

of fitted surfaces. 

Output data list 

file name 

255 characters Blank if not required.  List of data and fitted 

values with Bayesian standard error 

estimates.  Useful for checking for data 

errors. 
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Output cross 

validation file 

name 

255 characters Blank if not required.  Used to record the 

cross validated value at each data point. The 

cross validated value is the value that the 

surface would have if the data point was 

removed. Useful for making detailed 

assessments of surface predictive error. 

Input test data 

file name 

255 characters Blank if not supplied. If non-blank, residuals 

of the test points from the fitted surfaces are 

calculated, and summary statistics are 

written to the log file.  This file normally 

holds data points that are not in the data file 

used to fit the surface.  The test data can 

provide independent validation of the output 

surface statistics. 

Maximum 

number of test 

data points 

Positive integer     

(not required if the 

test data file name is 

blank) 

Used to allocate memory for validation data 

and working arrays. Should be at least as 

large as the number of test data points. 

Number of 

characters in test 

data site label 

0 - 20                     

(not required if the 

test data file name is 

blank) 

If positive, an alphanumeric site label is 

expected for each test data point. 

Test data file 

format 

255 characters     

(not required if the 

test data file name is 

blank) 

As for the data file format above but no 

relative variances. 

Output test data 

list file name 

255 characters        

(not required if the 

test data file name is 

blank) 

If non-blank then a list of test data and 

surface values is written to this file in 

standard format. 
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GCVGML User Directives 

GCVGML calculates values of the GCV or GML statistic for surfaces produced by SPLINE.  Values 

are tabulated as a function of the common logarithm (base 10) of the smoothing parameter and 

written in columns to an output text file, with one column for each surface, in a format suitable for 

plotting by a spreadsheet program or a commonly available plotting package.  If there is more than 

one surface, the averages of the GCV or GML values over all surfaces are written to a final column.  

The GCV is the usually recommended statistic as it is more stable over different model structures 

and knot sets. 

 
 

User Directive 

 

Type 

 

Description 

Optimisation parameters file 

name 

255 characters Name of optimisation 

parameters file produced by 

SPLINE. 

Statistic 1 or 4 1 – GCV 

4 – GML 

Output GCV or GML file 

name 

255 characters Name of output text file with 

columns of GCV or GML 

values. 
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SELNOT User Directives 

SELNOT is a program that selects an initial set of knots for use by the SPLINE program. As for 

SPLINE, multiple surfaces and multiple relative error variances are permitted.  Independent and 

dependent variables are specified exactly as for SPLINE. 

SELNOT selects knots by successively rejecting one point from the closest remaining pair of points in 

the independent spline variable space until the specified number of knots remain.  This maximises the 

minimum separation of the selected data points.  Distances in the independent spline variable space are 

calculated after any specified transformations of the independent variables have been performed.  

Overall computational cost of the procedure is proportional to the square of the number of data points. 

The procedure was first described in Hutchinson (1984) and applied to rainfall interpolation by 

Hutchinson and Bischof (1983).  It can also be used to select withheld data for testing of fitted surfaces 

(Hutchinson 1995, 1998ab; Hutchinson et al. 2009; Hopkinson et al. 2011). 

 

User Directive Type Description 

Number of 

independent 

spline variables 

Non-negative integer May not exceed specified limit (currently 

50). 

Number of 

independent 

covariates 

Non-negative integer Limit depends on the number of spline 

variables. 

Number of 

surface 

independent 

spline variables 

Non-negative integer Surface independent variables take different 

values for each surface. 

Number of 

surface 

independent 

covariates 

Non-negative integer Surface independent variables take different 

values for each surface. 

Independent 

variable lower 

and upper limits, 

transformation 

code, units code, 

optional margins. 

Two real numbers, 

two non-negative 

integers (0-8), two 

real numbers for 

each independent 

variable 

Lower limit precedes upper limit.  Data 

points outside these limits, augmented by 

margins, are ignored.  One or both margins 

may be omitted. If one margin supplied it is 

used as the common lower and upper 

margin. If margins are omitted 

transformation code and units code may be 

omitted. Units code as for surface value 

units code.  
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Transformation 

parameters 

One or two real 

numbers (a,b) 

Required for each independent variable for 

which the transformation code is positive.  

The possible transformations for each 

independent variable x are: 

0 - no transformation 

1 - x/a 

2 - ax 

3 - alog (x +b) 

4 - (x/b) 
a
 

5 - a exp (x/b) 

6 - a tanh (x/b) 

7 - anisotropy angle in degrees 

8 - anisotropy factor 

Dependent 

variable 

transformation 

0, 1, 2 or 5 0 - no transformation 

1 - natural logarithm 

2 - square root 

5 – occurrence 

Number of 

surfaces 

Positive integer Any positive number of surfaces permitted. 

Number of 

relative error 

variances 

Non-negative integer 0 - data points uniformly weighted for 

 each surface  

1 - the same weighting is applied to each 

 surface. 

Number of surfaces - a different 

 weighting is applied to each surface. 

Data file name 255 characters Must be supplied. 

Maximum 

number of data 

points 

Positive integer Used to allocate memory for data and 

working arrays. 

Number of 

characters in site 

name 

0 - 20 If positive, a site name is expected for each 

data point in the data file.  Names with 

embedded blanks are permitted provided the 

data are read with a format statement. 

Date file format 255 characters Specify format for data and relative error 

variances.  Use blank to specify list directed 

free format.  Blank is not permitted if the 

site names have embedded blanks. 

Output knot file 255 characters Name of output knot index file. 
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Rejected points 

file 

255 characters Not normally required. If non-blank, lists the 

index of each data point rejected as a knot 

together with the index of the closest knot. 

Points are listed in reverse order so the file 

begins with the last rejected point. 

Number of knots Positive integer Normally within the range, calculated by the 

program, of 1/4 to 1/3 of the number of data 

points contained within the specified 

coordinate limits. 
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ADDNOT User Directives 

The ADDNOT program adds data point indices to an existing knot file that has been initially calculated 

either by SPLINE or by SELNOT.  Knot indices may be read from standard input, but preferably are 

read from the large residual list produced by a previous run of SPLINE.  In this case the user must 

specify the number of knots to be added. 

 

User Directive Type Description 

Old knot index 

file name 

255 characters Name of old knot file 

Number of 

characters in site 

name 

0-20 If positive, a site name is expected for each 

data point.  Specifying the size of this name 

permits use of names with embedded blanks. 

Large residual 

file 

255 characters Name of large residual file, as produced by a 

previous run of SPLINB. If blank, additional 

knot indices are read from standard input. 

Number of 

additional knots 

Positive integer Required if the large residual file name is 

not blank. Number of knots to be added 

from the specified large residual file. 

New knot file 

name 

255 characters Name of new augmented knot file. 

Optional data 

point indices 

Positive integers, 

with site names 

Not normally supplied.  Site names are 

required if the number of characters in the 

site name is positive.  The lists of indices 

and site names can be supplied in an input 

command file.  If ADDNOT is run 

interactively, terminate the list with a data 

point index of 0. 
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LAPPNT User Directives 

LAPPNT calculates values and spatially distributed errors of (partial) thin plate smoothing spline 

surfaces at points whose position coordinates are provided in a file.  The spline surface coefficients 

are read from an ascii file calculated by SPLINE.  The error covariance matrices of the surface 

coefficients are read from a binary file calculated by the same run of SPLINE.  All surfaces can be 

calculated by specifying 0 for the surface number. 

Calculation time for each surface value is proportional to the number of knots.  Calculation time for 

each error value is proportional to the square of the number of knots. 

An alphanumeric label may be read from the user supplied point file and written to the output point 

file.  No alphanumeric labels are read or written if the number of characters in the label is specified 

to be 0.  Points outside the position limits in the surface coefficients file are ignored.  The position 

coordinates are optionally written to the output point file.  The program writes the number of points 

and summary statistics to standard output. 

 

User Directive Type Description 

Surface file name 255 characters Name of the surface coefficients file. 

Surface numbers Non-negative 

integers 

Surface numbers to be calculated, in 

increasing order.  Specify 0 if values of all 

surfaces are to be selected. 

Type of surface 

calculation 

0 or 1 0 - summary statistics only. 

1 - calculate surface values. 

Back-transform 

surface and error 

values 

0 or 1  

(not required if no 

surface 

transformation) 

0 - do not apply surface back-transformation 

1 - apply surface back-transformation. 

Error covariance 

file name 

255 characters Blank if there is no covariance file or if no 

errors are to be calculated. 

Type of error 

calculation 

0 - 4 

(not required if 

covariance file name 

is blank). 

0 - calculate standard error of the average 

 surface value only. 

1 - calculate model standard errors. 

2 - calculate prediction standard errors. 

3 - calculate 95% model confidence 

 intervals. 

4 - calculate 95% prediction confidence 

 intervals. 
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Maximum 

standard errors 

Blank or maximum 

standard errors for 

all selected surfaces 

(not required if 

covariance file name 

is blank). 

Surface values and error values are not 

calculated if the standard error exceeds the 

provided maximum error.  When there is a 

surface transformation then maximum errors 

are applied to the error surface fitted to the 

transformed values. 

Input position 

coordinates file 

255 characters User supplied file with position coordinates. 

Label size Non-negative integer Specifies the number of characters in the 

label attached to each set of coordinates in 

the input position file.  If label size is set to 

0, then no label is read from the file. 

Input position file 

format 

255 characters Format of coordinates in the input position 

file.  If label size is positive, then the format 

must include an initial alphanumeric format 

descriptor with number of characters set to 

the label size. 

If format is blank then the site label, if 

required, and the position coordinates are 

read in free format. 

Output point file 

name 

255 characters Name of output point file. 

Include position 

coordinates 

0 or 1 0 - position coordinates are not included in 

 the output point file. 

1 - position coordinates are included in the 

 output point file. 

Output point file 

format 

255 characters Output format for writing both the input 

positions, with label when specified, and the 

output calculated surface values. 

Blank for free format. 
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LAPGRD User Directives 

LAPGRD calculates values and spatially distributed errors of a regular two-dimensional grid of a 

(partial) thin plate smoothing spline surface.  Coefficients defining the partial spline surface are read 

from an ascii file calculated by SPLINE.  The error covariance matrices of the surface coefficients 

are read from a binary format calculated by the same run of SPLINE.  Calculation time for surface 

values is proportional to the number of knots times the number of grid points.  Calculation time for 

error values is proportional to the square of the number of knots times the number of grid points. 

Values of additional independent variables required to define the spline may be set to user supplied 

constants or read from user supplied grid files with the same number of rows and columns as the grid 

being calculated by LAPGRD.  User supplied grids must be in row format, since they are read one 

row at a time to save storage space.  All grids are read and written by rows from maximum Y to 

minimum Y. 

Grid points may be specified as a grid of cells or a lattice of points.  Normal usage with modern 

packages, including ArcGIS, Grass and Idrisi, is that grid points are specified as cells.  Point lattices 

are a common option in older systems that generate vector output to display grids. 

User Directive Type Description 

Surface file 255 characters Name of the surface coefficients file. 

Surface numbers Non-negative 

integers 

Surface numbers to be calculated in increasing 

order. Specify 0 if values of all surfaces in the 

surface coefficients file are to be selected. 

Type of surface 

calculation 

0 or 1 0 - summary statistics only. 

1 - calculate surface values. 

Back-transform 

surface and error 

values 

0 or 1 Not required if there is no surface 

transformation. 

0 - do not apply surface back-transformation 

1 - apply surface back-transformation. 

Error covariance 

file name 

255 characters Blank if there is no covariance file or if no 

errors are to be calculated. 

Type of error 

calculation 

0 - 4 0 - calculate standard error of the average 

 surface value only. 

1 - calculate model standard errors. 

2 - calculate prediction standard errors. 

3 - calculate 95% model confidence intervals. 

4 - calculate 95% prediction confidence 

 intervals. 

Maximum standard 

errors 

Blank or maximum 

standard errors for 

all selected surfaces 

Surface values and error values are not 

calculated if the standard error exceeds the 

provident maximum error. When there is a 

surface transformation then maximum errors 

are applied to the errors of the surface fitted to 
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the transformed values. 

Grid position 

option 

0 or 1 0 - grid is a point lattice. 

1 - grid of cells with points at cell centres. 

Normally 1 for ArcGIS, Grass and Idrisi. 

Index of first grid 

variable 

Non-negative integer If positive, identifies the independent variable 

of the spline which increments across each row 

of the output grid - normally 1. 

If zero then values of this independent variable 

are read from a grid. The zero option can be 

used to incorporate a map projection into the 

output grid. 

Limits and spacing 

of first variable 

3 real numbers Lower limit, upper limit and spacing 

respectively of first grid independent variable. 

Index of second 

grid variable 

Non-negative integer If positive, identifies the independent variable 

of the spline which increments along each 

column of the output grid - normally 2. 

If zero then values of this independent variable 

are read from a grid. The zero option can be 

used to incorporate a map projection into the 

output grid. 

Limits and spacing 

of second grid 

variable 

3 real numbers Lower limit, upper limit and spacing 

respectively of second grid independent 

variable. 

  N.B.  The spacing of the first and second 

variable must be equal when reading or writing 

ArcGIS or Idrisi grids. 

Mode of mask grid 0 - 3 0 - mask grid not supplied. 

1 - generic mask grid. 

2 - ArcGIS mask grid. 

3 - Idrisi mask grid. 

Name of mask grid 255 characters 

(Not required if 

mode of mask grid is 

zero) 

Grid used to mask out special values. The mask 

corresponds to the no-data values of the mask 

grid. 

Mask grids in standard ArcGIS or Idrisi mode 

are recommended. If the mask grid is in generic 

mode, the row format (blank for binary format, 

non-blank for free ASCII format), no value 

indicator (0 or 1) and the no data value (real 

number) are also required. 
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Specify for each remaining independent variable (if spline has more than two independent variables 

or if the first and second grid variable indices not both positive.):- 

Mode of the 

independent 

variable 

0 – 3 0 - user supplied constant. 

1 - user supplied grid in generic row format 

 with the same size as the grid being 

 calculated. 

2 - user supplied ArcGIS grid with same 

 size as the grid being calculated. 

3 - user supplied Idrisi image with the same 

 size as the grid being calculated. 

Constant Real number 

(Only required if 

mode is 0) 

Independent variable grid is set to this 

constant. 

Input grid file 

name 

255 characters 

(Required if mode is 

not 0.) 

File name of user supplied grid.  If the 

independent variable is a surface 

independent variable then a separate file 

name is required for each surface being 

calculated. 

Input grids in standard ArcGIS or Idrisi 

mode are recommended. If the input grid is 

in generic mode, the row format (blank for 

binary format, non-blank for free ASCII 

format), no value indicator (0 or 1) and the 

no data value (real number) are also 

required. 

 

 

If the surface calculation type is 1 then specify:-  

Mode of output 

surface value 

grids 

0 – 3 
0 - grid written in X,Y,Z format. 

1 - generic grid written by rows. 

2 - ArcGIS grid. 

3 - Idrisi image. 

Output grids in standard ArcGIS or Idrisi 

mode are recommended. 

Special value of 

output grid 

Real number 

(Must be supplied) 

Indicates no data value in output grid. 

Output grid file 

names 

255 characters File names of all output surface value grids. 

Output grid 

format 

255 characters Must be consistent with the format mode of 

the output grids specified above.  If blank 
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then output grid is written as an unformatted 

binary file.  This is normally recommended 

as it saves time and storage space.  Use an 

ASCII formatted grid when the grid is to be 

moved between DOS and UNIX platforms. 

 

 

If the error calculation type is positive then specify:- 

Mode of output 

error grids 

0 – 3 
0 - grid written in X,Y,Z format. 

1 - generic grid written by rows. 

2 - ArcGIS grid. 

3 - Idrisi image. 

Output grids in standard ArcGIS or Idrisi 

mode are recommended. 

Special value of 

output grid 

Real number 

(Must be supplied) 

Indicates no data value in output grid. 

Output grid file 

names 

255 characters File names of all output error surface grids. 

Output grid 

format 

255 characters Must be consistent with the format mode of 

the output grids specified above.  If blank 

then output grid is written as an unformatted 

binary file.  This is normally recommended 

as it saves time and storage space.  Use an 

ASCII formatted grid when the grid is to be 

moved between DOS and UNIX platforms. 
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ANNOTATED EXAMPLES 

In order to test and demonstrate the 6 programs in ANUSPLIN, test data and example command files 

have been provided in four groups in four separate sub-directories. The example data sets, command 

files and reference outputs can be found under the test directory in the ANUSPLIN installation 

root directory.  The ANUSPLIN installation root directory is the directory specified when the 

package was installed and will vary from system to system. 

The first group illustrates the basic principles of data smoothing by applying SPLINE to simulated 

noisy uni-variate data, obtained by randomly perturbing points from a sine curve.  Every data point is 

initially selected as a knot. The fitted spline curves are interrogated using LAPPNT and using the 

four different options for standard errors and 95% confidence intervals of the fitted spline values.  A 

spline is also fitted using just 20 knots to illustrate the effectiveness of small knot sets when the fitted 

function is not very complex. 

The second group illustrates smoothing of monthly mean temperature data using a tri-variate partial 

spline function of longitude, latitude and elevation. The analyses are performed by SPLINE with 

every data point selected as a knot and then with the knots selected as a distinct subset of the data 

points.  The fitted surfaces are interrogated in regular grid form using LAPGRD. 

The third group illustrates smoothing of monthly mean precipitation data using a full tri-variate 

spline function of longitude, latitude and elevation.  Analyses with SPLINE using knots are 

illustrated because precipitation data sets are often large.  Use of independent variable margins and 

of the square root transformation of the dependent precipitation values is also illustrated. 

The fourth group illustrates smoothing of monthly mean solar radiation data using a bivariate spline 

function of longitude and latitude and using a tri-variate spline function with precipitation as a third 

"surface independent variable". 

The examples are intended to test the installation of ANUSPLIN and to provide canonical examples 

of applications to uni-variate data and multi-variate climate data.  Each group of examples contains a 

table showing all commands and input and output files.  Each table is followed by explanatory notes 

for each command in the proceeding table  
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Spline smoothing of uni-variate data 

To illustrate the basic concepts and procedures for data smoothing, two data files are supplied in the 

test/math subdirectory: 

sine.dat - 101 noisy data values obtained by perturbing points from a single sine curve 

by random values from a zero mean normal variable with standard deviation 0.2 

sine.val - 101 values of the true sine curve 

These data are displayed in Figure 2 below. 

Seven ANUSPLIN command files for processing these data files are provided in the test\math 

subdirectory and listed in the table below.  Each command and its outputs are discussed in the notes 

following the table.  All output files are provided in the test\math\out subdirectory. 

Command Input Files Output Files 

1. spline < sine.cmt > sine.log sine.dat sine.res 

 sine.val sine.rcv 

sine.opt 

  sine.sur 

  sine.cov 

  sine.lis 

sine.crv 

  sine.out 

2. gcvgml < sinegcv.cmt > sinegcv.log sine.opt sine.gcv 

3. lappnt < sinepnt1.cmt > sinepnt1.log sine.sur sinepnt1.out 

 sine.cov  

 sine.val  

4. lappnt < sinepnt3.cmt > sinepnt3.log sine.sur sinepnt3.out 

 sine.cov  

 sine.val  

5. lappnt < sinepnt2.cmt > sinepnt2.log sine.sur sinepnt2.out 

 sine.cov  

 sine.val  

6. lappnt < sinepnt4.cmt > sinepnt4.log sine.sur sinepnt4.out 

 sine.cov 

sine.val 

 

 

7. spline < sine20.cmt > sine20.log sine.dat sine20.res 

 sine.val sine20.rcv 

sine20.opt 

sine20.sur 

sine20.cov 

sine20.lis 

sine20.crv 

sine20.out 
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Notes 

1. This command uses SPLINE to fit a second order smoothing spline to the noisy data points shown 

in Figure 2.  Every data point is chosen as a knot by specifying the number of knots to be calculated 

to SPLINE to 150. Optimisation parameters in the output file sine.opt are used by command 2. 

Surface coefficients are generated in the output file sine.sur and error covariances are generated 

in the output file sine.cov for use by commands 3-6. The command also produces an output large 

residual file in sine.res and an output list file in sine.lis, which lists the data and fitted 

values, together with Bayesian standard error estimates. These files are normally used, in conjunction 

with summary statistics in the output log file to aid detection and correction of data errors, as 

indicated in Figure 1. The largest data residual from the fitted spline is the 61st data point, as listed 

under the ranked root mean square residuals in the output log file, and in the output file sine.res. 

This data point has an x value of 216 degrees and can be seen clearly in Figure 3.  

The fitted spline curve is plotted in Figure 3, showing good agreement with the original sine curve in 

Figure 2. This command also calculates values of the fitted spline function compared with the true 

sine values provided in the input file sine.val.  The true and fitted values are written to the output 

file sine.out, and summary validation statistics are written to the output log file. The largest 

residual of the true sine values from the fitted spline is the 38th point, as listed under the validation 

statistics in the output log file. This point has an x value of 133.2 degrees and can also be seen clearly 

in Figure 3.  Indvividual cross validated values are generated in the output file sine.crv and summary 

statistics of the differences of these values from the data values are also written to the log file. 

Unlike common applications of SPLINE to higher dimensional data, there are no site labels in the 

data file. In this case each data point is labelled by the program to be its sequence number in the data 

file. No units are specified for the data values, and no transformations are applied to either the 

independent variable or the dependent variable. No margins are specified for the independent 

variable. No weighting is applied to the data values. 

The order of the spline is specified to be 2, giving rise to a minimum curvature smoothing spline. 

This spline can be represented, in the uni-variate case only, by a piece-wise cubic polynomial. This 

representation is not provided by the ANUSPLIN package, which is primarily designed for general 

applications to multi-variate data. Efficient “order (n)” cubic spline smoothing of uni-variate data, 

using a piece-wise cubic representation, can be obtained using the procedure CUBGCV (Hutchinson 

and de Hoog 1985, Hutchinson 1986). 

The amount of data smoothing is determined in this example by minimising the generalised cross 

validation (GCV). The log file shows that the fitted spline has 8.4 degrees of freedom, or 8.4 

effective parameters, as given by the trace of the influence matrix associated with the fitted spline 

(Wahba 1990). The number of degrees of freedom of the residual is 92.6. These two numbers sum to 

101, the number of data points. The signal to noise ratio of this smoothing analysis is 8.4/92.6=0.09. 

The size of the signal is much less than the half the number of data points, in line with the heuristic 

recommendation in Hutchinson (1993) and Hutchinson and Gessler (1994). Equivalently, the signal 

to noise ratio is less than 1.0. The square root of the GCV, or “root mean square predictive error”, is 

listed under RTGCV as 0.183. The root mean square residual of the spline from the data is listed 

under RTMSR as 0.168, and the estimate of the standard deviation of the noise in the spline model is 

listed under RTVAR as 0.175. This estimate is reasonably close to the known standard deviation of 

the noise in the data of 0.2. Further examples of smoothing spline analyses of uni-variate noisy data 

have been given by Craven and Wahba (1979). 
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Figure 2. Sine curve and 101 noisy data points perturbed from the sine curve by values from a zero 

mean normal variable with standard deviation 0.2. 

 

 

 

Figure 3. Fitted spline curve with the 101 noisy data points. 
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The root mean square error estimate of 0.0504, listed under RTMSE, is an estimate of the error in the 

fitted function after the effects of the noise in the data have been removed from the RTGCV. This is 

reasonably close to the root mean square residual from the true sine curve, which has been obtained 

from the values in the file sine.val and is listed under RMS as 0.0432. In this example the 

variance of the error of the fitted spline is dominated by the variance of the noise in the data values. 

In many applications, such as the interpolation of rainfall (Hutchinson 1995), error in the spline itself 

contributes significantly to the estimated error variance. In such cases the error estimate listed under 

RTMSE would be optimistic. In general, the standard deviation of the true error of the fitted spline 

will lie somewhere between RTMSE and RTGCV, depending on the relative magnitudes of the error 

in the noise and the error in the fitted spline. 

2. This command uses GCVGML to calculate values of the GCV as a function of the logarithm to 

base 10 of the smoothing parameter. GCVGML uses the optimisation parameters, as calculated by 

SPLINE in the file sine.opt, and writes the table of GCV values to the output file sine.gcv. 

These values are plotted in Figure 4. The GCV normally has a unique local minimum value, which in 

this case occurs when the logarithm of the value of the smoothing parameter is 4.4. The 

corresponding value listed under RHO in the SPLINE log file is 0.255E+5. Multiple local minima in 

GCV curves can indicate significant errors in the data or significant mis-specification of the spline 

model. SPLINE normally selects the smoothest local minimum when there are multiple local 

minima, in order to choose the model with the least number of effective parameters. 

 

 

Figure 4. Plot of the GCV as a function of the logarithm of the smoothing parameter. 
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3. This command uses LAPPNT to calculate values of the fitted spline, and corresponding Bayesian 

standard error estimates, using surface coefficients provided in the input data file sine.val and 

error covariances in the input data file sine.cov. The error covariance matrix of the spline 

coefficients are calculated according to the method described by Hutchinson (1993). Spline values 

and standard errors are calculated at the x values provided in the first column of the input data file 

sine.val and are written to the output file sinepnt1.out. The output spline values are plotted 

as the curve in Figure 3. 

The Bayesian standard error estimates are plotted in Figure 5. In this case, model standard errors are 

calculated (error calculation type = 1). These standard errors correspond to standard errors of the 

fitted parameters of a linear regression model. They are essentially functions of local data density, 

being approximately 0.05 for most interior points, but rapidly increasing towards 0.1 as points 

approach the boundary of the data points. The Bayesian standard errors increase without bound at 

positions beyond the limits of the original data points. 

4. This command uses LAPPNT to calculate values of the fitted spline, and corresponding Bayesian 

95% confidence intervals, using the same input files as for command 3. Model confidence intervals 

are specified (error calculation type = 3). Output spline values and confidence intervals are written to 

the output file sinepnt3.out. The confidence intervals are plotted in Figure 6, together with 101 

values of the true sine curve. The 95% confidence intervals are calculated as 1.96 times the model 

standard errors calculated by command 3. This assumes that the errors are distributed according to a 

normal distribution. Just 3 of the 101 true sine values lie beyond the 95% confidence intervals, 

acceptably close to the expected number of about 5. 
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Figure 5. Plot of Bayesian model standard errors of the fitted spline. 

 

 

 

Figure 6. Plot of 95% model confidence intervals together with 101 true sine values. 
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5. This command uses LAPPNT to calculate values of the fitted spline, and corresponding Bayesian 

standard error estimates, using the same input files as for command 3. Prediction standard errors are 

calculated (error calculation type = 2). Output spline values and prediction standard errors are written 

to the output file sinepnt2.out. These standard errors correspond to standard errors in estimating 

data from the spline model. The prediction standard errors are obtained from the model standard 

errors calculated by command 3 using the formula 

 p   =  (m
2
  +   2

)
½

 

where p   is the prediction standard error, m is the model standard error, and =0.175 is the 

estimated standard deviation of the data errors. The prediction standard error estimates are plotted in 

Figure 7. Since the data errors in this case dominate the model standard errors, the prediction 

standard errors increase only slightly at positions close to the boundary of the data points. However, 

as for the standard model errors, the prediction standard errors would increase without bound at 

positions beyond the limits of the original data points. 

6. This command uses LAPPNT to calculate values of the fitted spline, and corresponding two-sided 

Bayesian 95% confidence intervals, using the same input files as for command 3.  Prediction 

confidence intervals are specified (error calculation type = 4). Output spline values and confidence 

intervals are written to the output file sinepnt4.out. The confidence intervals are plotted in 

Figure 8, together with 101 data values obtained in a separate simulation from the original data 

values. The 95% prediction confidence intervals are calculated as 1.96 times the prediction standard 

errors calculated by command 5. This assumes that the prediction errors are distributed according to 

a normal distribution. Seven of the 101 simulated noisy data values lie beyond the 95% confidence 

intervals, acceptably close to the expected number of about 5. 

 

 

Figure 7. Plot of prediction standard errors of the fitted spline. 
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Figure 8. Plot of 95% prediction confidence intervals together with 101 simulated data values 

distinct from the original data values. 

 

7. The final command illustrates the use of a small number of knots to provide an effective analysis 

when the fitted function is relatively simple.  Since the spline fitted by command 1 using 101 knots 

has a signal of just 8.4, the function can be well approximated by a much smaller number of knots. 

The command file sine20.cmt specifies just 20 knots and the output statistics in sine20.log 

and the other output files are virtually identical to those in sine.log and the other output files 

from command 1.  However, the output surface coefficient file sine20.sur and the output error 

covariance file sine20.cov are much smaller than sine.sur and sine.cov.  This can lead to 

significant computational savings when interrogating the fitted spline and calculating standard error 

estimates. 
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Partial spline smoothing of monthly mean temperature data 

To illustrate the tri-variate partial spline smoothing of monthly mean temperature data, five data files 

are supplied in the test\temp subdirectory: 

tmaxa.dat - monthly mean temperature data with elevation errors 

tmaxb.dat - monthly mean temperature data with corrected elevation values 

tas4.asc   - small DEM in ArcGIS ascii grid format 

tas4x.asc   - X coordinates of the small DEM in ArcGIS ascii grid format 

tas4y.asc   - Y coordinates of the small DEM in ArcGIS ascii grid format 

Eight ANUSPLIN command files for processing these data files are provided in the test\temp 

subdirectory and listed in the table below. Each command and its outputs are discussed in the notes 

following the table. All output files are provided in the test\temp\out subdirectory. 

 

Command Input Files Output Files 

1. spline < tmaxa.cmt > tmaxa.log tmaxa.dat tmaxa.res 

  tmaxa.rcv 

  tmaxa.opt 

  tmaxa.sur 

  tmaxa.cov 

  tmaxa.lis 

tmaxa.crv 

tmaxa.out 

2. gcvgml < tmaxagcv.cmt > tmaxagcv.log tmaxa.opt tmaxa.gcv 

   

3. lappnt < tmaxapnt.cmt > tmaxapnt.log tmaxa.sur tmaxapnt.out 

 tmaxa.cov  

 tmaxa.dat  

4. lapgrd < tmaxasum1.cmt > tmaxasum1.log tmaxa.sur 

tmaxa.cov 

- 

 tmaxa.cov  

 tas4.asc  

5. lapgrd < tmaxasum2.cmt > tmaxasum2.log tmaxa.sur - 

 tmaxa.cov  

 tas4x.grd  

 tas4y.grd  

 tas4.dem  

6. lapgrd < tmaxagrd.cmt > tmaxagrd.log tmaxa.sur tmaxa01.asc 

 tmaxa.cov tmaxa07.asc 

 tas4.dem tcova01.asc 

  tcova07.asc 
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7. spline < tmaxb.cmt > tmaxb.log tmaxb.dat tmaxb.res 

  tmaxb.rcv 

  tmaxb.opt 

  tmaxb.sur 

  tmaxb.cov 

  tmaxb.lis 

tmaxb.crv 

8. lapgrd < tmaxbgrd.com > tmaxbgrd.log tmaxb.sur tmaxb01.asc 

 tmaxb.cov tmaxb07.asc 

 tas4.asc tcovb01.asc 

  tcovb07.asc 

 

Notes  

1. This command uses SPLINE to fit a partial thin plate smoothing spline, with linear dependence on 

elevation, to monthly mean values of daily maximum temperature data in the file tmaxa.dat.  Every 

data point is selected as a knot by specifying a suitably large number of knots to be calculated by 

SPLINE.  The data have the same uniform weight for each surface.  The data are read using a 

FORTRAN format.  This could have been omitted in this case since the required items are provided 

in the correct order in the data file. 

The log file tmaxa.log contains summary statistics for the analysis, including the number of 

points read by the program, the generalised cross validation for each monthly surface, the standard 

error of each fitted monthly mean maximum temperature elevation lapse rate and a ranked list of the 

largest residuals from the fitted surfaces.  The log file should always be carefully inspected.  Large 

residuals from the fitted surface often indicate errors in data positions or values.  The ranked list of 

large residuals is also written to tmaxa.res. 

The fitted surface coefficients are stored in tmaxa.sur. The error covariance matrices of the 

surface coefficients for each surface are stored in tmaxa.cov in binary form only.  This file cannot 

be moved between Windows and Unix platforms.  The surface coefficients and the error covariance 

matrices are used to calculate values of the fitted surfaces and spatially distributed standard errors by 

LAPPNT and LAPGRD in commands 3,4,5 and 6. 

The list of data and fitted values is stored in tmaxa.lis. This file also contains a Bayesian 

standard error estimate for each fitted value.  This file can assist detection of data errors when used 

in conjunction with the large residual list.  The optimisation parameters in tmaxa.opt can be used 

by GCVGML to calculate the GCV as a function of different values of the smoothing parameter, as 

in command 2. 

The log file shows that the signals of the fitted surfaces vary between 6 and 39.  Almost all of these 

values are less than half the number of data points, in agreement with the general recommendation.  

A signal much larger than half the number of data points indicates either significant data errors or 

that there are insufficient data to fit the surface model.  There is a generally systematic progression in 

the signals from month to month, although the higher signal in June (surface number 6) indicates 

some instability in the determination of the smoothing parameter which, in this case, is probably due 

to data errors. 
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The square root of the GCV (RTGCV) varies between 0.74 degrees in June and 1.2 degrees in 

February.  These are conservative estimates of overall standard prediction error because they include 

the data error, as estimated by the procedure.  The root mean square model error (RTMSE) is an 

estimate of standard error after the estimated data error has been removed.  This may be likened to a 

standard error estimate of a fitted coefficient of a parametric model.  It is a somewhat optimistic 

estimate of surface error because the procedure includes deficiencies in the model in the estimated 

data error.  The RTMSE varies between 0.23 degrees in June and 0.57 degrees in February.  Standard 

error estimates less than 0.5 degrees are typical when fitting splines to monthly mean maximum 

temperature data. 

The coefficients of the parametric sub-model, which can be interpreted as temperature lapse rates, 

are approximately 8 degrees per 1000 metres.  This agrees with known process controls on this 

value.  The free air dry adiabatic lapse rate is 10 degrees per 1000 metres.  The elevation lapse rate 

for minimum temperature is generally less than 8 degrees per 1000 metres (Hutchinson 1991a).  Note 

that elevation, the third independent variable, has been scaled to be in kilometres.  The standard error 

estimates of the lapse rates for the 12 surfaces ranges between 0.35 and 0.58, consistent with a priori 

expectations, and with the month to month variation in the fitted covariate values. 

The stations with the four largest residuals all have significant elevation errors.  The four elevation 

values for the corresponding points in the data file are 700, 305, 145 and 200 metres.  The correct 

values are 1250, 40, 5 and 80 metres respectively.  The departures of the fitted temperature values, as 

can be seen in the file tmaxa.lis, are consistent with the fitted temperature elevation lapse rates.  

The fifth largest residual in the large residual list is associated with a point on the coast, where close 

proximity to the ocean can significantly reduce maximum temperatures. 

Fitting temperature with a partial spline dependence on elevation provides a robust analysis of 

elevation dependence that is very useful for flagging elevation errors in the data. These errors have 

been corrected in the data file tmaxb.dat used by command 7.  Once data errors are corrected it is 

generally recommended to fit a full trivariate spline function of longitude, latitude and elevation to 

temperature to account for variations in lapse rates over space.  This is not done in these examples. 

2. Uses GCVGML to calculate values and model standard errors for the GCV for each month, as a 

function of the smoothing parameter, in the file tmaxa.gcv.  The optimisation parameters required 

for this calculation have been obtained from the optimisation parameters file tmaxa.opt, as 

produced by command 1. 

3. Uses LAPPNT to calculate values of the 12 fitted surfaces, fitted by command 1, at positions 

specified in the file tmaxa.dat.  Since this is the same data file used in command 1, the calculated 

surface values should be identical to the fitted values in the file tmaxa.lis.  In this case the data 

file tmaxa.dat is read using a FORTRAN format statement.  The surface coefficients are read from 

the file tmaxa.sur and the error covariance matrices of the surface coefficients are read from the 

file tmaxa.cov.  The log file includes summary statistics for the output surface and standard error 

values. 

4. Uses LAPGRD to calculate summary statistics of grids of mean daily maximum temperature and 

standard errors for the four mid-season months. LAPGRD uses the surface coefficients and error 

covariance matrices calculated by command 1 and the DEM in ArcGIS ascii format in tas4.asc.  

The actual surface and standard error grids are not calculated, hence there are no output files apart 

from the log file.  The summary statistics are written to the log file.  They consist of, for each month, 
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the number of valid grid points, the mean of the grid of valid surface values and the standard error of 

the grid mean.  Note that this is NOT the mean of the grid of standard errors. 

5. Uses LAPGRD to calculate the same summary statistics of grids as calculated by command 4 but 

uses X and Y coordinates supplied separately as grids in tas4x.grd and tas4y.grd and 

elevations supplied as a grid in tas4.dem.  This option can be useful in modelling situations where 

the X or Y coordinates used to fit the spline surface are not the standard X or Y coordinates but are 

instead functions of position.  This option can also support the calculation of regular grids according 

to a map projection other than the coordinates used to fit the spline surface. 

6. Uses LAPGRD to calculate grids of values of mean daily maximum temperature and prediction 

standard errors for the months of January and July.  The grids of surface values depend on the 

surface coefficients tmaxa.sur calculated by SPLINE in command 1 and the small DEM provided 

as tas4.asc.  The standard error grids also depend on the error covariance matrices in 

tmaxa.cov calculated by SPLINE.  By specifying maximum standard errors of 0.8, surface values 

and errors are not calculated if the prediction standard error exceeds these values.  This reduces the 

number of grid points calculated from 148 to 80 in January and from 148 to 43 in July.  This facility 

is useful in preventing calculation of grid values with very large estimated errors. 

The file tas4.asc is in standard ArcGIS ascii GRID format.  LAPGRD reads the elevation data 

from this file, in units of metres, without further specification of format.  Special or NODATA 

values, as specified in the header of this file, are recognised by LAPGRD.  Surface values are not 

calculated by LAPGRD for such values.  Binary ArcGIS grid files, with accompanying standard ascii 

header files, are also recognised by LAPGRD, provided the ascii header file is provided with the 

standard file extension ".hdr".  The position limits and grid spacing in the ArcGIS header file are 

checked for compatibility with the position limits and grid spacing specified in the command file 

tmaxagrd.cmt. 

7. Uses SPLINE to fit an approximate partial thin plate spline, with linear dependence on elevation, 

to the corrected monthly mean daily maximum temperature data in the data file tmaxb.dat.  The 

approximate spline is constructed by specifying 40 knots to be calculated by SPLINE.  Other 

specifications are the same as specified for SPLINE in command 1.  The signals of the fitted surfaces 

are all well less than the number of knots, indicating that the specified number of knots is sufficient. 

The log file tmaxb.log contains summary statistics for the analysis, including the number of 

points read by the program, the cross validation for each monthly surface and a ranked list of the 

largest outliers from the fitted surfaces.  The predictive errors obtained from using the corrected data 

are considerably reduced from those obtained by command 1, with the RTGCV now varying 

between 0.40 in September to 0.90 in February.  The log file should always be carefully inspected.  

Large outliers from the fitted surface often indicate errors in data positions or values.  In this case the 

use of the corrected data has removed all large outliers. 

The fitted elevation lapse rates for this analysis are very similar to the lapse rates for the analysis 

produced by command 1 but the standard errors have been halved because of the corrected data.  The 

use of knots saves computer time, both in fitting the surfaces and in subsequent interrogation of the 

fitted surfaces.  Moreover, it has helped to stabilise the values of the signal, which now show 

systematic variation throughout the year. 

The fitted surface coefficients are stored in tmaxb.sur.  The error covariance matrices of the 

surface coefficients are stored in tmaxb.cov.  The list of data and fitted values is stored in 
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tmaxb.lis. The optimisation parameters in tmaxb.opt can be used by GCVGML to calculate 

the GCV as a function of different values of the smoothing parameter, as in command 2. 

7. Uses LAPGRD to calculate grids of values of mean daily maximum temperature and prediction 

standard errors for January and July. The grids depend on the surface coefficients tmaxb.sur, the 

error covariance matrices in tmaxb.cov calculated by SPLINE in command 1 and the small DEM 

in standard ArcGIS ascii format, provided as tas4.asc.  As for command 6, surface values and 

errors are not calculated if the prediction standard error exceeds the value 0.8.  Since the data have 

been corrected the standard errors of the fitted surfaces have all been reduced and now all gridded 

surface values have standard errors less than 0.8 so that surface values and standard errors are 

calculated for all 148 valid DEM points.  
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Tri-variate spline smoothing of monthly mean precipitation data using knots and the square 

root transformation 

To illustrate the tri-variate spline smoothing of monthly mean precipitation data, two data files are 

supplied in the test\rain subdirectory: 

rain.dat    - monthly mean precipitation data 

rain.val    - test monthly mean precipitation data 

tas4.asc   - small DEM in ArcGIS ascii grid format 

Six ANUSPLIN command files for processing these data files are provided in the test\rain 

subdirectory and are listed in the table below.  Each command and its outputs are discussed in the 

notes following the table.  All output files are provided in the test\rain\out subdirectory. 

 

Command Input Files Output Files 

1. spline < rain1.cmt > rain1.log rain.dat rain1.not 

 rain.val rain1.res 

rain1.rcv 

  rain1.opt 

  rain1.sur 

  rain1.cov 

  rain1.lis 

  rain1.crv 

  rain1.out 

2. addnot < rainadd.cmt > rainadd.log rain1.res 

rain1.not 

rain2.not 

3. spline < rain2.cmt > rain2.log rain.dat 

rain2.not 

rain.val 

rain2.res 

rain2.rcv 

rain2.opt 

rain2.sur 

rain2.cov 

rain2.lis 

rain2.crv 

rain2.out 

4. gcvgml < rainadd.cmt > rainadd.log rain2.opt rain2.gcv 

5. lapgrd < raingrd.cmt > raingrd.log rain2.sur rain01.asc 

 rain2.cov rain07.asc 

 tas4.asc rcov01.asc 

  rcov07.asc 

6. selnot < rainsel.cmt > rainsel.log rain.dat rain.not 
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Notes  

1. Uses SPLINE to fit 12 approximate thin plate smoothing spline functions to 12 sets of monthly 

mean precipitation data in the file rain.dat.  There are 246 data points in rain.dat of which 

243 lie within the specified X,Y limits.  An approximate spline is calculated by specifying 150 knots 

to be selected from the data points.  Positive margins of 3.0 for longitude and 2.0 for latitude are also 

specified. 

The rainfall mean data values are first transformed by the square root transformation.  This should 

only be applied to data with naturally non-negative values.  The square root rainfall means are 

weighted uniformly in the spline fitting process. The square root transformation reduces the skew in 

the data and this has been found by Hutchinson (1998b) to reduce overall error when interpolating 

daily precipitation data.  The effect of using the square root transformation is to apply more 

smoothing to large rainfall data values, and less smoothing to small rainfall data values. 

The log file shows that the signals of the fitted surfaces vary slightly over the year between 92 and 

116.  These values well less than the number of knots, indicating that the initial choice of the number 

of knots is sufficient to capture the spatial variability in the rainfall data. Summary statistics in the 

log file are calculated in terms of the square root analysis. The log file also includes summary 

statistics for individually cross validated values.  These are calculated in terms of both the square 

root rainfall values and the untransformed rainfall values.  The summary error statistics of the test 

data are calculated in the untransformed units of the data.  The cross validation and the test data 

statistics both indicate mean absolute predictive errors (MAE) of around 10% of the network means.  

The MAE statistic is more appropriate for significantly skewed data such as rainfall.  It is also 

recommended to quote standard errors of rainfall in terms of percentages, because of the skewed 

nature of the distribution of rainfall. 

2. The ranked residual list output by command 1 indicates a modest number of large outliers, again 

confirming the appropriateness of the initial choice of 150 knots.  This file lists each large residual 

together with the closest neighbouring site.  The neighbouring site name is accompanied by its root 

mean square residual and its distance from the large residual site in the final column.  These 

neighbours can help to assess whether a large residual is due to a data problem associated with the 

site itself or possibly due to a data problem with its closest neighbour.  In this case the neighbours of 

the largest residual sites all have relatively small residuals, indicating that they are consistent with 

the fitted surface and that the largest residuals either have less accurate data values or are just poorly 

represented by the fitted surface.  Assuming the latter, Command 2 uses ADDNOT to add just 5 

knots to the initial knot set.  These are selected from the top of the ranked residual list in 

rain1.res to produce the augmented knot set in rain2.not.  Since sites 092052 and 096001 

are already knots, as indicated by the minus sign in the ranked residual list, the fifth additional knot 

included in rain2.not is site 095009. 

3. Uses SPLINE to fit approximate thin plate smoothing spline functions to the same 12 sets of 

monthly mean precipitation data in the file rain.dat but now using the input knot data set in 

rain2.not.  The fits are slightly improved, with the average signal increasing from 108 to 116 and 

the root mean GCV over all 12 months slightly improving from 0.447 to 0.435.  The average MAEs 

of the individually cross validated data barely improves from 7.23 to 7.21 and the average MAEs of 

the test data improves from 6.29 to 6.13.  The magnitudes of the largest residuals are also slightly 

improved.  Thus in this case the additional knots have yielded a marginal improvement in the fit and 

predictive error of the fitted spline and no further knots should be added to the knot set. 

4. Uses GCVGML to calculate values of the GCV for each month for the fit by command 3, as a 

function of the logarithm to base 10 of the smoothing parameter.  The optimisation parameters 
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required for this calculation are read from the file rain2.opt produced by command 3.  The 

output GCV values are tabulated in the output text file rain.gcv.  The GCV values in this table 

show unimodal minimums for each surface.  This in part reflects the robustness of SPLINE analyses 

with knots. 

5. Uses LAPGRD to calculate the grid files rain01.asc, rain07.asc, rcov01.asc and 

rcov07.asc, in ArcGIS ascii grid format.   These files contain grids of mean precipitation and 

standard errors for the months January and July.  The grids depend on the surface coefficients in the 

file rain2.sur and the covariance matrices in rain2.cov as produced by command 3 and the 

small DEM in ArcGIS ascii grid format in the file tas4.asc.  The log file concludes with 

summary statistics of the output grid files. 

6. Uses SELNOT to select 150 knots from the 243 data points in rain.dat that lie within the specified 

coordinate limits.  The selected knots are written to the output rain.not.  This file is identical to 

the output knot file rain1.not produced by SPLINE under command 1.  This verifies that the 

knot selection processes for SPLINE and SELNOT are identical.  SELNOT is now not commonly 

used.  As noted in Table 1, it can be useful for specifying a single knot set for a very large data set 

that is to be processed by SPLINE in overlapping tiles.  It can also be used to select a spatially 

representative subset of a data set for spatially unbiased withheld data assessment of surface 

accuracy (Hutchinson et al. 2009, Hopkinson et al. 2011). 

The SELNOT program can output two files.  The output knot file rain.not has two columns 

containing the sequence number in the data file and the site name of each selected knot.  These are 

listed in order of increasing sequence number.  The optional output file rain.rej provides a list of 

the data points rejected as knots in the reverse order of their rejection.  The sequence number of each 

rejected point is accompanied by the sequence number of the closest remaining data point which 

gave rise to the rejection of the data point. This is followed by the site names of the rejected data 

point and its neighbour.  The final column gives the Euclidean distance in the independent variable 

space between the two points.  These naturally increase from the first rejected point at the bottom of 

the file to the last rejected point at the top of the file.  The minimum separation of the selected knots 

exceeds the largest distance at the top of the rejected point file. 
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Bi-variate and tri-variate spline smoothing of monthly mean solar radiation data using surface 

independent variables 

To illustrate bi-variate and tri-variate spline smoothing of monthly mean solar radiation data, five 

data files are supplied in the test/rad subdirectory: 

rainrad.dat  - monthly mean solar radiation and precipitation data 

rainrad.val  - validation monthly mean solar radiation and precipitation data 

tas4.asc   - small DEM in ArcGIS ascii grid format 

rain01.asc - precipitation grid in ArcGIS ascii grid format 

rain07.asc - precipitation grid in ArcGIS ascii grid format 

The two precipitation grids are as calculated in the test\rain\out subdirectory by command 5 

of the preceding set of examples.  Five ANUSPLIN command files are provided in the test\rad 

subdirectory and are listed in the table below.  Each command and its outputs are discussed in the 

notes following the table.  All output files are provided in the test\rad\out subdirectory. 

Command Input files Output files 

1. spline < rad.cmt > rad.log rainrad.dat rad.res 

 rainrad.val rad.rcv 

  rad.opt 

  rad.sur 

  rad.cov 

  rad.lis 

rad.crv 

  rad.out 

2. lapgrd < radgrd.cmt > radgrd.log rad.sur rad01.asc 

 rad.cov rad07.asc 

 tas4.asc raderr01.asc 

  raderr07.asc 

3. spline < rainrad.cmt > rainrad.log rainrad.sur rainrad.res 

 rainrad.val rainrad.rcv 

  rainrad.opt 

rainrad.sur 

  rainrad.cov 

  rainrad.lis 

  rainrad.crv 

  rainrad.out 

4. gcvgml < rradgcv.cmt > rradgcv.log rainrad.opt rradgcv.log 

  rainrad.gcv 

5. lapgrd < rradgrd.cmt > rradgrd.log rainrad.sur rrad01.asc 

 rainrad.cov rrad07.asc 

 rain1.grd rraderr01.asc 

 rain7.grd rraderr07.asc 
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Notes 

1. Uses SPLINE to fit 12 bi-variate thin plate smoothing spline functions to 12 sets of 98 monthly 

mean solar radiation data points in the file rainrad.dat.  All data points have been selected as 

knots.  Surface coefficients are written to the file rad.sur.  Error covariance matrices of the 

surface coefficients are written to the file rad.cov.  The signals of the fitted surfaces are 

acceptably less than the number of knots.  Separate test data have been provided in the input file 

rainrad.val and root mean square residuals from the surfaces of the test data are shown under 

RMS in the output log file.  These residuals are in good agreement with the square roots of the GCV, 

especially in the winter months.  Fitted values at the test points are written to the file rad.out in a 

standard format. 

2. Uses LAPGRD to calculate the surface grid files rad01.asc and rad07.asc, and prediction 

standard error grids in raderr01.asc and raderr07.asc for the mid-summer and mid-winter 

months January and July.  All grids are written in ArcGIS ascii grid format.  The grids depend on the 

surface coefficients in the file rad.sur and the error covariance matrices in the file rad.cov, as 

produced by command 1.  Since the bi-variate solar radiation surfaces do not depend on elevation, 

the DEM in ArcGIS ascii grid format in the file tas4.asc is used to mask the output grids so that 

points are only calculated over land.  The log file concludes with summary statistics of all output grid 

files. 

3. Uses SPLINE to fit 12 tri-variate partial thin plate smoothing spline functions to 12 sets of 

monthly mean solar radiation data in the file rainrad.dat.  Monthly mean rainfall, transformed 

by the tanh function, is used as a surface independent covariate.  This variable varies systematically 

from month to month so separate input rainfall values need to be provided for each month in the data 

file.  Surface coefficients are written to the file rainrad.sur.  Error covariance matrices of the 

surface coefficients are written to the file rainrad.cov.  Separate test data have been provided in 

the input file rainrad.val.  The root mean square residuals from the surfaces of the test data are 

shown under RMS in the output log file.  The RTGCV and RMS values show agreement similar to 

that for the bi-variate analysis in command 1.  Fitted values at the test points are written to the file 

rainrad.out in a standard format. 

The dependence on transformed rainfall allows for the known dependence of solar radiation on cloud 

associated with rainfall, giving rise to more complex solar radiation patterns in areas with complex 

terrain (Hutchinson et al. 1984a).  Signals of the fitted surfaces are mostly smaller than the signals 

for the bivariate analysis, and show a more consistent progression over the months.  Test data 

residuals in the summer months are slightly less than corresponding test data residuals for the bi-

variate analysis, while test data residuals in the winter months are slightly larger.  Some remaining 

data errors may affect these comparisons. There is some minor inconsistency in the coefficients of 

the covariates for different months. 

4. Uses GCVGML to calculate values of the GCV for each month, as a function of the logarithm, to 

base 10, of the smoothing parameter. The optimisation parameters required for this calculation are 

read from the file rainrad.opt produced by command 3. The output GCV values are tabulated in 

the output text file rainrad.gcv. The GCV values in this table show multi-modal behaviour for 

some months, indicative of remaining data errors, and perhaps deficiencies in the modelled 

dependence on rainfall. 

5. Uses LAPGRD to calculate the surface grid files rrad01.asc and rrad07.asc, and 

prediction standard error grids in rraderr01.asc and rraderr07.asc for the mid-summer 

and mid-winter months January and July. All grids are written in ArcGIS ascii grid format. The grids 
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depend on the surface coefficients in the file rainrad.sur and the error covariance matrices in 

the file rainrad.cov, as produced by command 3, as well as the rainfall grids rain01.asc and 

rain07.asc for the months of January and July. The rainfall grids are the grids produced by 

command 5 of the preceding group of examples of rainfall analyses. Since the rainfall grids 

automatically depend on elevation, there is no need to use a mask grid in this case to ensure that grid 

points are only calculated over land.  The log file concludes with summary statistics of all output grid 

files. 
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