

WM_DEV_OAT_UGD_076

009

February 18, 2011

WIPsoft 5.41

WIP AT Commands User Guide

WM_DEV_OAT_UGD_076 Rev 009 February 18, 2011 2

WIPsoft 5.41 Introduction

Important Notice

Due to the nature of wireless communications, transmission and reception of data can never be
guaranteed. Data may be delayed, corrupted (i.e., have errors) or be totally lost. Although significant
delays or losses of data are rare when wireless devices such as the Sierra Wireless modem are used
in a normal manner with a well-constructed network, the Sierra Wireless modem should not be used
in situations where failure to transmit or receive data could result in damage of any kind to the user or
any other party, including but not limited to personal injury, death, or loss of property. Sierra Wireless
accepts no responsibility for damages of any kind resulting from delays or errors in data transmitted or
received using the Sierra Wireless modem, or for failure of the Sierra Wireless modem to transmit or
receive such data.

Safety and Hazards

Do not operate the Sierra Wireless modem in areas where blasting is in progress, where explosive
atmospheres may be present, near medical equipment, near life support equipment, or any
equipment which may be susceptible to any form of radio interference. In such areas, the Sierra
Wireless modem MUST BE POWERED OFF. The Sierra Wireless modem can transmit signals that
could interfere with this equipment. Do not operate the Sierra Wireless modem in any aircraft, whether
the aircraft is on the ground or in flight. In aircraft, the Sierra Wireless modem MUST BE POWERED
OFF. When operating, the Sierra Wireless modem can transmit signals that could interfere with
various onboard systems.

Note: Some airlines may permit the use of cellular phones while the aircraft is on the ground and the door is
open. Sierra Wireless modems may be used at this time.

The driver or operator of any vehicle should not operate the Sierra Wireless modem while in control of
a vehicle. Doing so will detract from the driver or operator’s control and operation of that vehicle. In
some states and provinces, operating such communications devices while in control of a vehicle is an
offence.

Limitations of Liability

This manual is provided “as is”. Sierra Wireless makes no warranties of any kind, either expressed or
implied, including any implied warranties of merchantability, fitness for a particular purpose, or
noninfringement. The recipient of the manual shall endorse all risks arising from its use.

The information in this manual is subject to change without notice and does not represent a
commitment on the part of Sierra Wireless. SIERRA WIRELESS AND ITS AFFILIATES
SPECIFICALLY DISCLAIM LIABILITY FOR ANY AND ALL DIRECT, INDIRECT, SPECIAL,
GENERAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR EXEMPLARY DAMAGES INCLUDING,
BUT NOT LIMITED TO, LOSS OF PROFITS OR REVENUE OR ANTICIPATED PROFITS OR
REVENUE ARISING OUT OF THE USE OR INABILITY TO USE ANY SIERRA WIRELESS
PRODUCT, EVEN IF SIERRA WIRELESS AND/OR ITS AFFILIATES HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES OR THEY ARE FORESEEABLE OR FOR CLAIMS BY ANY
THIRD PARTY.

Notwithstanding the foregoing, in no event shall Sierra Wireless and/or its affiliates aggregate liability
arising under or in connection with the Sierra Wireless product, regardless of the number of events,
occurrences, or claims giving rise to liability, be in excess of the price paid by the purchaser for the
Sierra Wireless product.

WM_DEV_OAT_UGD_076 Rev 009 February 18, 2011 3

WIPsoft 5.41 Introduction

Patents

This product may contain technology developed by or for Sierra Wireless Inc.

This product includes technology licensed from QUALCOMM
®
 3G.

This product is manufactured or sold by Sierra Wireless Inc. or its affiliates under one or more patents
licensed from InterDigital Group.

Copyright

© 2011 Sierra Wireless. All rights reserved.

Trademarks

AirCard
®
 and Watcher

®
 are registered trademarks of Sierra Wireless. Sierra Wireless™, AirPrime™,

AirLink™, AirVantage™ and the Sierra Wireless logo are trademarks of Sierra Wireless.

, ,
®
, inSIM

®
, WAVECOM

®
, WISMO

®
, Wireless Microprocessor

®
,

Wireless CPU
®
, Open AT

®
 are filed or registered trademarks of Sierra Wireless S.A. in France and/or

in other countries.

Windows
®
 and Windows Vista

®
 are registered trademarks of Microsoft Corporation.

Macintosh and Mac OS are registered trademarks of Apple Inc., registered in the U.S. and other
countries.

QUALCOMM
®
 is a registered trademark of QUALCOMM Incorporated. Used under license.

Other trademarks are the property of the respective owners.

Contact Information

Sales Desk:

Phone: 1-604-232-1488

Hours: 8:00 AM to 5:00 PM Pacific Time

E-mail: sales@sierrawireless.com

Post:

Sierra Wireless

13811 Wireless Way

Richmond, BC

Canada V6V 3A4

Fax: 1-604-231-1109

Web: www.sierrawireless.com

Consult our website for up-to-date product descriptions, documentation, application notes, firmware
upgrades, troubleshooting tips, and press releases: www.sierrawireless.com

mailto:sales@sierrawireless.com
http://www.sierrawireless.com/
http://www.sierrawireless.com/

WM_DEV_OAT_UGD_076 Rev 009 February 18, 2011 4

WIPsoft 5.41 Introduction

Document History

Version Date Updates

001 March 14 2008 Creation

002 May 30 2008 Update for WIPsoft v5.01

003 December 15, 2008 Update for WIPsoft v5.11

004 March 9, 2009 Update for WIPsoft v5.12

005 July 28, 2009 Updated definition of Error 850 and 852 definitions updated.

Added Note: If the Ethernet bearer support is defined, the Ethernet
driver is subscribed on executing (+WIPCFG = 1).

AT_WIP_NET_OPT_AUTO_SWITCH definition updated.

<bid> parameter identifier updated to ETHER.

Seven new rows added to Parameters table starting with Parameter number

23 through <netmask IP @*>.

Caution regarding WIP_BOPT_IP_NETMASK and WIP_BOPT_IP_GW

added.

Example updated starting at AT+WIPBR=1,4 through the end of the table.

Note that The Ethernet bearer can be started only in client mode

added.

Definition updated and note added to discuss that data can be transferred
using two modes.

Mode 5 added and AT+WIPFILE=4,1,5,”report.log” example enhanced to

reflect new mode.

New +WIPDATA error added.

006 February 22, 2010 Added opt num parameters WIP_BOPT_DEBUG_PKT and

WIP_BOPT_RESTART to the +WIPBR command.

007 March 24, 2010 Updated version number

008 July 20, 2010 Clarified the definition of the WIP_BOPT_PPP_CHAP option for the +WIPBR
command.

WM_DEV_OAT_UGD_076 Rev 009 February 18, 2011 5

WIPsoft 5.41 Introduction

Version Date Updates

009 February 18, 2011 Corrected erroneous syntax for mode=1 in the Service Creation
+WIPCREATE section.

Added a new <opt num> 28 and its corresponding GPRS CME Errors to the
Bearers Handling +WIPBR section.

Added new DATA Offline function including:

 New DATA Offline session +WIPDATARW section.

 New <opt num> 15 in the IP Stack Handling +WIPCFG section.

 New <mode> 6, 7, 8, and 9 in the File Exchange +WIPFILE
section.

 New <mode> 3 and <error> 836 in the Socket Data exchange
+WIPDATA section.

 New <error> 853.

 New FTP DATA Offline example.

Added new MMS function including:

 Added new MMS <mode> = 8 and details to the subsections of
the following commands:

 Service Creation +WIPCREATE

 Closing a Service +WIPCLOSE

 Service Option Handling +WIPOPT, including additional
options that can be applied to MMS sessions

 File Exchange +WIPFILE

 MMS Example

 MMS Errors 890 through 897

 Note regarding the WIP_MMS_DONE option.

Added new TCP Options function as <opt num> 16 and 17 in the IP
Stack Handling +WIPCFG section.

WM_DEV_OAT_UGD_076 Rev 009 February 18, 2011 6

Contents

1. INTRODUCTION .. 10

1.1. Abbreviations ... 10

1.2. Logos ... 11

1.3. AT Commands Presentation Rules ... 12

2. AT COMMAND SYNTAX ... 13

2.1. Command Line .. 13

2.2. Information Responses and Result Codes .. 13

3. PRINCIPLES .. 14

3.1. Sockets Identification .. 15

3.1.1. Possible Protocols .. 15

3.1.2. Number of Sockets ... 15

3.1.3. Notes .. 15

4. GENERAL CONFIGURATION ... 16

4.1. IP Stack Handling +WIPCFG .. 16

4.1.1. Description ... 16

4.1.2. Syntax .. 16

4.1.3. Parameters and Defined Values .. 18

4.1.4. Parameter Storage ... 21

4.1.5. Possible Errors ... 21

4.1.6. Examples.. 22

4.1.7. Notes .. 24

4.2. Bearers Handling +WIPBR .. 25

4.2.1. Description ... 25

4.2.2. Syntax .. 25

4.2.3. Parameters and Defined Values .. 26

4.2.4. Parameter Storage ... 29

4.2.5. Possible Errors ... 30
4.2.5.1. General CME Errors.. 30
4.2.5.2. GPRS CME Errors .. 30

4.2.6. Examples.. 31

4.2.7. Notes .. 33
4.2.7.1. For Starting a Bearer... 33

5. IP PROTOCOL SERVICES .. 35

5.1. Service Creation +WIPCREATE ... 35

5.1.1. Description ... 35

5.1.2. Syntax .. 36

5.1.3. Parameters and Defined Values .. 38

5.1.4. Parameter Storage ... 40

5.1.5. Possible Errors ... 40

5.1.6. Examples.. 40

5.1.7. Notes .. 42

WM_DEV_OAT_UGD_076 Rev 009 February 18, 2011 7

WIPsoft 5.41 Introduction

5.2. Closing a Service +WIPCLOSE .. 44

5.2.1. Description ... 44

5.2.2. Syntax .. 44

5.2.3. Parameters and Defined Values .. 44

5.2.4. Parameter Storage ... 45

5.2.5. Possible Errors ... 45

5.2.6. Examples.. 45

5.2.7. Notes .. 46

5.3. Service Option Handling +WIPOPT .. 47

5.3.1. Description ... 47

5.3.2. Syntax .. 47

5.3.3. Parameters and Defined Values .. 48

5.3.4. Parameter Storage ... 48

5.3.5. Possible Errors ... 49

5.3.6. Examples.. 49

5.3.7. Notes .. 51
5.3.7.1. Options that can be applied to UDP, TCP Client, TCP Server Sockets 51
5.3.7.2. Options that can be applied to FTP Session ... 52
5.3.7.3. Options that can be applied to HTTP Session .. 52
5.3.7.4. Options that can be applied to SMTP Session .. 53
5.3.7.5. Options that can be applied to POP3 Session .. 54
5.3.7.6. Options that can be applied to MMS sessions .. 55

6. DATA EXCHANGE FOR PROTOCOL SERVICES .. 58

6.1. File Exchange +WIPFILE .. 58

6.1.1. Description ... 58
6.1.1.1. [ETX] Escaping Mechanism .. 58
6.1.1.2. [DLE] Escaping Mechanism .. 59

6.1.2. FTP/HTTP/SMTP Session in Continuous Mode .. 60

6.1.3. FTP Session in Continuous Transparent Mode ... 61

6.1.4. Syntax .. 61

6.1.5. Parameters and Defined Values .. 63

6.1.6. Parameter Storage ... 65

6.1.7. Possible Errors ... 65

6.1.8. Examples.. 66

6.1.9. Notes .. 67

6.2. Socket Data exchange +WIPDATA ... 68

6.2.1. Description ... 68

6.2.2. Continuous Mode ... 68
6.2.2.1. TCP Sockets in Continuous mode .. 68
6.2.2.2. UDP Sockets in Continuous mode .. 68
6.2.2.3. [ETX] Escaping Mechanism .. 69
6.2.2.4. [DLE] Escaping Mechanism .. 71

6.2.3. Continuous Transparent Mode .. 72
6.2.3.1. TCP Sockets in Continuous Transparent Mode .. 72
6.2.3.2. UDP Sockets in Continuous Transparent Mode .. 72

6.2.4. Leaving Continuous /Continuous Transparent Mode .. 72

6.2.5. Resetting TCP Sockets .. 73

6.2.6. Syntax .. 73

6.2.7. Parameters and Defined Values .. 74

6.2.8. Parameter Storage ... 74

WM_DEV_OAT_UGD_076 Rev 009 February 18, 2011 8

WIPsoft 5.41 Introduction

6.2.9. Possible Errors ... 74

6.2.10. Examples.. 75

6.2.11. Notes .. 76
6.2.11.1. Continuous Mode (Non Transparent) for a TCP Mapped Socket 76
6.2.11.2. Mapping/Unmapping of a Mapped UDP and TCP Socket... 77
6.2.11.3. Time out Mechanism to know the state of the Peer TCP Socket 78
6.2.11.4. Packet Segmentation in TCP Socket .. 78
6.2.11.5. Packet Segmentation in UDP Socket .. 79

6.3. DATA Offline session +WIPDATARW ... 80

6.3.1. Restrictions... 80

6.3.2. Syntax .. 80

6.3.3. Parameters and Defined Values .. 81

6.3.4. Parameter Storage ... 81

6.3.5. Possible Errors ... 82

6.3.6. Examples.. 82

7. PING SERVICES .. 84

7.1. PING command +WIPPING .. 84

7.1.1. Description ... 84

7.1.2. Syntax .. 84

7.1.3. Parameters and Defined Values .. 85

7.1.4. Parameter Storage ... 85

7.1.5. Possible Errors ... 85

7.1.6. Examples.. 86

8. WIPSOFT LIBRARY API .. 87

8.1. Required Header File .. 87

8.2. The wip_ATCmdSubscribe Function ... 87

8.2.1. Prototype .. 87

8.2.2. Parameters ... 87

8.2.3. Returned Values .. 87

8.3. The wip_ATCmdUnsubscribe Function ... 88

8.3.1. Prototype .. 88

8.3.2. Parameters ... 88

8.3.3. Returned Values .. 88

9. EXAMPLES OF APPLICATION ... 89

9.1. TCP Socket ... 89

9.1.1. TCP Server Socket .. 89
9.1.1.1. Using GPRS bearer .. 89
9.1.1.2. Using GSM bearer .. 90

9.1.2. TCP Client Socket .. 91
9.1.2.1. Using GPRS Bearer .. 91
9.1.2.2. Using GSM Bearer .. 92

9.2. UDP Socket ... 93

9.3. PING .. 95

9.4. FTP .. 96

9.5. FTP DATA Offline .. 97

9.6. HTTP ... 98

WM_DEV_OAT_UGD_076 Rev 009 February 18, 2011 9

WIPsoft 5.41 Introduction

9.7. SMTP ... 99

9.8. POP3 ... 101

9.9. MMS .. 103

9.10. Creating a TCP Server, spawning the maximum TCP Socket (for the configured Server)
 106

9.11. Creating a Server and try to create a TCP Client/Server on a reserved index (reserved
by the Server) will fail. .. 107

9.12. Create a TCP Client and try to create a TCP Server with indexes range containing TCP
Client will fail. .. 109

9.13. Creating 8 UDP sockets, 8 TCP clients and 4 TCP servers. .. 110

9.14. Changing the MAX_SOCK_NUM option value and try to create 8 UDP sockets, 8 TCP
Client sockets and 4 TCP Server sockets. ... 113

9.15. Creating 8 UDP sockets, 8 TCP Clients, 4 TCP Servers and either one
FTP/HTTP/SMTP/POP3 ... 115

9.16. Subscribe/Unsubscribe WIPsoft AT commands using WIPsoft Library API 119

9.17. Creating TCP client and server sockets in the same Wireless CPU at the same time
mapping or unmapping the UART to exchange the data between the sockets 120

10. ERROR CODES ... 121

10.1. General CME Error Codes .. 121

10.2. GPRS CME Error Codes ... 123

WM_DEV_OAT_UGD_076 Rev 009 February 18, 2011 10

1. Introduction

The aim of this document is to provide Sierra Wireless customers with a full description of the AT
commands associated with the WIP feature.

1.1. Abbreviations

Abbreviation Definition

APN Access Point Name

ASCII American Standard Code for Information Interchange

AT ATtention

BCC Blind Carbon Copy

CC Carbon Copy

CHAP Challenge Handshake Authentication Protocol

CHV Card Holder Verification

CID Context IDentifier

CMUX Converter Multiplexer

CPU Central Processing Unit

DNS Domain Name System

GGSN Gateway GPRS Support Node

GPRS General Packet Radio Service

GSM Global System for Mobile communication

HTTP Hyper Text Transfer Protocol

IP Internet Protocol

IPCP Internet Protocol Control Protocol

M Mandatory

MS Mobile Station

N/A Not Applicable

MSCHAP MicroSoft Challenge Handshake Authentication

MSS Maximum Segment Size

NU Not Used

O Optional

OS Operating System

PAP Password Authentication Protocol

PDP Packet Data Protocol

PIN Personal Identity Number

POP3 Post Office Protocol

PPP Point-to-Point Protocol

SIM Subscriber Information Module

SMTP Simple Mail Transfer Protocol

TCP Transmission Control Protocol

TOS Type Of Service

TTL Time To Live

WM_DEV_OAT_UGD_076 Rev 009 February 18, 2011 11

WIPsoft 5.41 Introduction

Abbreviation Definition

UART Universal Asynchronous Receiver Transmitter

UDP User Data Protocol

URL Uniform Resource Locator

WIP Wavecom Internet Protocol

1.2. Logos

Logo Definition

This picture indicates the +WIND indication from which the AT command is allowed. X values
can be: 1, 3, 4, or 16.

This picture indicates that a SIM card must be inserted to support the AT command.

This picture indicates that an AT command is supported even if the SIM card is absent.

This picture indicates that the PIN 1 /CHV 1 code must be entered to support the AT command.

This picture indicates that an AT command is supported even if the PIN 1 /CHV 1 code is not
entered.

This picture indicates that the PIN 2 /CHV 2 code must be entered to support the AT command.

This picture indicates that an AT command is supported even if the PIN 2/CHV 2 code is not
entered.

WM_DEV_OAT_UGD_076 Rev 009 February 18, 2011 12

WIPsoft 5.41 Introduction

1.3. AT Commands Presentation Rules

The AT commands to be presented in the document are as follows:

 A "Description" section as Heading 3 provides general information on the AT command (or
response) behavior.

 A "Syntax" section as Heading 3 describes the command and response syntaxes and all
parameters description.

 A "Parameters and Defined Values" section as Heading 3 describes all parameters and
values.

 A "Parameter Storage" as Heading 3 presents the command used to store the parameter
value and/or the command used to restore the parameter default value.

 An "Examples" section as Heading 3 presents the real use of the described command.

 A "Note" section as Heading 3 can also be included indicating some remarks about the
command use.

Figures are provided where necessary.

WM_DEV_OAT_UGD_076 Rev 009 February 18, 2011 13

2. AT Command Syntax

This section describes the AT command format and the default value for their parameters.

2.1. Command Line

Commands always start by the standard prefix “AT+WIP” and end with the <CR> character. Optional
parameters are shown in brackets [].

Example:

AT+WIPcmd=<Param1>[,<Param2>]

<Param2> is optional. When the AT+WIPcmd is executed without <Param2> the default value of
<param2> is used.

2.2. Information Responses and Result Codes

Responses start and end with <CR><LF>, except for the ATV0 DCE response format and the ATQ1
(result code suppression) commands.

 If command syntax is incorrect, the "ERROR" string is returned.

 If command syntax is correct but transmitted with wrong parameters, the "+CME ERROR:
<Err>" or "+CMS ERROR: <SmsErr>" strings is returned with adequate error codes if CMEE
was previously set to 1. By default, CMEE is set to 0, and the error message is only
"ERROR".

 If the command line has been executed successfully, an "OK" string is returned.

In some cases, such as "AT+CPIN?" or (unsolicited) incoming events, the product does not return the
"OK" string as a response.

In the following examples <CR> and <CR><LF> are intentionally omitted.

WM_DEV_OAT_UGD_076 Rev 009 February 18, 2011 14

3. Principles

WIPsoft is an application that implements the TCP/IP protocols using custom AT commands. This
application operates in co-operative mode and must be downloaded to the Sierra Wireless embedded
module. The commands are sent from an external application and the corresponding responses are
sent back from the module to the external application. The WIPsoft uses the APIs provided by WIPlib
and provides custom AT command interface to the external application.

AT+WIP commands involve:

 a host computer, which issues AT+WIP commands

 Sierra Wireless intelligent embedded module

 the rest of the Internet / Intranet

Multiplexing: Several sockets can be operating at once. The +WIPDATA command allows to
temporarily identify the UART in data mode with a given socket. The data written on UART is
transferred through the socket. The data which arrives on the socket can be read from the UART.

In AT mode, the host receives an unsolicited event when the data arrives on the socket.

Multiple UARTs: There can be several UARTs simultaneously active at once, and different UARTs
can map a different socket simultaneously. However, it is a forbidden to map a single socket on
several UARTs simultaneously.

Sierra
Wireless
embedded

module

Host CPU
UART INTERNET

AT Commands

WM_DEV_OAT_UGD_076 Rev 009 February 18, 2011 15

WIPsoft 5.41 Principles

3.1. Sockets Identification

Sockets are identified by a pair of numbers: the first one identifies the protocol; the second one
identifies a given socket of this protocol.

3.1.1. Possible Protocols

The possible protocols are,

 1 = UDP

 2 = TCP in connect mode (Client)

 3 = TCP in listen mode (Server)

 4 = FTP

 5 = HTTP

 6 = SMTP

 7 = POP3

 8 = MMS

Two pairs with a different protocol number but the same index identify two distinct sockets.

Example: Both 1,7 and 2,7 are valid identifiers simultaneously; the former identifies a UDP socket and
the later, a TCP connected socket.

3.1.2. Number of Sockets

The number of sockets per protocol is limited.

 UDP : 8 sockets

 TCP Clients : 8 sockets

 TCP Servers : 4 sockets

3.1.3. Notes

The creation of basic sockets (TCP/UDP) is not commercial but other features are locked by a
commercial feature named "internet plug-in". The WIPsoft commands used for socket/session
creation will return a “+CME ERROR: 839” error code if the feature is not enabled. To enable the
features, you can refer to the Firmware AT Commands Interface Manual (especially the AT+WCFM
command) and we recommend you to contact your Sierra Wireless distributor or sales point for further
details.

WM_DEV_OAT_UGD_076 Rev 009 February 18, 2011 16

4. General Configuration

4.1. IP Stack Handling +WIPCFG

4.1.1. Description

The +WIPCFG command is used for performing the following operations:

 start TCP/IP stack

 stop TCP/IP stack

 configuring TCP/IP stack

 displaying version information

4.1.2. Syntax

 if<mode>=0,1

Action Command

AT+WIPCFG=<mode>

OK

 if <mode>=2

Action Command

AT+WIPCFG=<mode>,<opt num>,<value>

OK

 if <mode>=3

Action Command

AT+WIPCFG=<mode>

WIPsoft vXX.YY.ZZ on Open AT OS vA.B

MMM-DDD-YYYY HH:MM:SS <WIPlib: version number> <WIPsoft: version

number>

OK

WM_DEV_OAT_UGD_076 Rev 009 February 18, 2011 17

WIPsoft 5.41 General Configuration

 if <mode>=4

Action Command

AT+WIPCFG=<mode>,<action>

OK

Read Command

AT+WIPCFG?

+WIPCFG: <optnum>,<value>

[+WIPCFG: <optnum>,<value>[..]]

OK

Test Command

AT+WIPCFG=?

OK

WM_DEV_OAT_UGD_076 Rev 009 February 18, 2011 18

WIPsoft 5.41 General Configuration

4.1.3. Parameters and Defined Values

<mode>: requested operation

 0 stop TCP/IP stack

1

start TCP/IP stack

Note: If the Ethernet bearer support is defined, the Ethernet driver is subscribed on
executing (+WIPCFG = 1)

2 configure TCP/IP stack

3 display TCP/IP application version

4 TCP/IP stack configuration management

<opt num>: configuration option identifier

0 WIP_NET_OPT_IP_TTL – Default TTL of outgoing data grams

This option is a limit on the period of time or number of iterations or transmissions that a
unit of data can experience before it should be discarded. The time to live (TTL) is an 8-
bit field in the Internet Protocol (IP) header. It is the 9th octet of 20. The default value of
this parameter is 64. Its value can be considered as an upper bound on the time that an
IP datagram can exist in an internet system. The TTL field is set by the sender of the
datagram, and reduced by every host on the route to its destination. If the TTL field
reaches zero before the datagram arrives at its destination, then the datagram is
discarded. This is used to avoid a situation in which an undelivered datagram keeps
circulating in the network.

range: 0-255 (default value: 64)

1 WIP_NET_OPT_IP_TOS – Default TOS of outgoing parameters

The IP protocol provides a facility for the Internet layer to know about the various
tradeoffs that should be made for a particular packet. This is required because paths
through the Internet vary widely in terms of the quality of service provided. This facility
is defined as the "Type of Service" facility, abbreviated as the "TOS facility".

The TOS facility is one of the features of the Type of Service octet in the IP datagram
header. The Type of Service octet consists of following three fields:

0 1 2 3 4 5 6 7

+-----+-----+-----+-----+-----+-----+-----+-----+

| | | |

| PRECEDENCE | TOS | MBZ |

| | | |

+-----+-----+-----+-----+-----+-----+-----+-----+

The first field is "PRECEDENCE". It is intended to denote the importance or priority of
the datagram.

The second field is "TOS" which denotes how the network should maintain the tradeoffs
between throughput, delay, reliability, and cost.

The last field is "MBZ" (Must Be Zero"), is currently unused and is set to 0. The TOS
field can have the following values:

1000 -- minimize delay

0100 -- maximize throughput

WM_DEV_OAT_UGD_076 Rev 009 February 18, 2011 19

WIPsoft 5.41 General Configuration

0010 -- maximize reliability

0001 -- minimize monetary cost

0000 -- normal service

For more information on this field please refer to RFC1349.

range: 0-255 (default value: 0)

2 WIP_NET_OPT_IP_FRAG_TIMEO - Time to live in seconds of incomplete fragments

When a datagram’s size is larger than the MTU (Maximum Transmission Unit) of the
network, then the datagram is divided into smaller fragments. These divided fragments
are sent separately. The “WIP_NET_OPT_IP_FRAG_TIMEO” option specifies the Time
to live for these fragments.

range: 1-65535 (default value: 60)

3 WIP_NET_OPT_TCP_MAXINITWIN – Number of segments of initial TCP window

This option is used to specify the number of segments in the initial TCP window.

A TCP window specifies the amount of outstanding (unacknowledged by the recipient)
data a sender can send on a particular connection before it gets an acknowledgment
back from the receiver. The primary reason for the window is congestion control.

range: 0-65535 (default value: 0)

4 WIP_NET_OPT_TCP_MIN_MSS - Default MSS of off-link connections

This option is used by the WIPlib Plug-In internally. This parameter specifies the
maximum size of TCP segment which would be sent. By default, the value of this
parameter is set to 536. Hence WIPlib Plug-In would not send any TCP segment having
a length greater than 536 bytes without header.

range: 536-1460 (default value: 536)

5 WIP_NET_OPT_DEBUG_PORT

This option is used to specify the port on which the debug traces are to be sent.

range: 0-3 (default value: 0)

12 AT_WIP_NET_OPT_PREF_TIMEOUT_VALUE - Used for TCP sockets to configure the
packet segmentation on IP network side

This option is used to specify the maximum time to wait between two successive data
chunks received from the mapped UART/serial port (please see +WIPDATA AT
command). It allows the application to buffer a certain amount of data before writing on
IP network side.

Each unit in the range represents 100 msec. For example, value 10 for this option will
give a wait time of 1sec (10*100msec).

Default value for AT_WIP_NET_OPT_PREF_TIMEOUT_VALUE option is 0. This value
means that no specific process is done to avoid TCP packets segmentation: data are
written onto IP network without any delay after the reception of data from the mapped
UART/serial port (please see +WIPDATA AT command). In this case some TCP
packets sent on the IP network may be smaller than TCP_MIN_MSS value.

Setting e.g. a 10 value for this option will make the application to wait at least 1 second
or twice the TCP_MIN_MSS value to be reached before sending data on IP network. In
this case, TCP packets size sent on the IP network should be equal to at least
TCP_MIN_MSS (Default value = 536 bytes).

range: 0- 100 (default value: 0)

13 AT_WIP_NET_OPT_ESC_SEQ_NOT_SENT : Used to configure whether a “+++”

escape sequence should be sent as data to the peer. By default, this option is set to 0
which means that the “+++”sequence is sent to the peer as data. If set to 1,
“+++”sequence is not sent as data to the peer.

range: 0 -1(default value:0)

WM_DEV_OAT_UGD_076 Rev 009 February 18, 2011 20

WIPsoft 5.41 General Configuration

14 AT_WIP_NET_OPT_AUTO_SWITCH - Used for TCP socket, to switch back

automatically to AT command mode when the TCP connection is closed by peer entity

0: Does not switch automatically to AT mode

1: Switches automatically to AT mode

range: 0-1 (default value:0)

15 Set DATA offline (+WIPDATARW) RX and TX buffer size in bytes

range : 1 – 32000 (default value 2048)

16 WIP_NET_OPT_TCP_REXMT_MAX – Maximum timeout of TCP packets; the

maximum time between TCP retransmissions

range: 1 - 64 (default value:64 seconds)

17 WIP_NET_OPT_TCP_REXMT_MAXCNT - Max number of TCP packet retransmissions

range: 1 - 12 (default value:12)

<action>: requested operation on TCP/IP stack parameter management

0 configuration storage (when existing) is freed

1 stores the configuration parameters

<value>: value range for different configuration options

<XX.YY.ZZ >: WIPsoft release version

<A.B>: Open AT
®

 OS release version

<MM-DD-YYYY>: date of built of WIPsoft application

<HH:MM:SS>: time of built of WIPsoft application

<WIPlib: version
number>:

WIPlib version

<WIPsoft: version
number>:

internally identifying WIPsoft version

Note: (WIP_NET_OPT_SOCK_MAX + 1) sockets are reserved when UDP sockets are created (and not for
TCP sockets); one socket buffer is added to support/afford DNS accesses

Note: For <opt num> numbers 6 through 11, the AT+WIPS command must be issued. For complete details
regarding AT+WIPS, please refer the Firmware AT Commands Interface Manual.

WM_DEV_OAT_UGD_076 Rev 009 February 18, 2011 21

WIPsoft 5.41 General Configuration

4.1.4. Parameter Storage

Only one IP stack configuration set can be saved into the FLASH memory.

 “AT+WIPCFG=4,1” is used to store the TCP/IP stack configuration parameters into the
FLASH memory

 “AT+WIPCFG=4,0” is used to free the TCP/IP stack configuration storage

Executing “AT+WIPCFG=1” will apply default parameters when existing. Still it is possible to change
option values at run time using “AT+WIPCFG=2,<optnum>,<optvalue>”.

4.1.5. Possible Errors

The possible error message is displayed only if “AT+CMEE=1” is activated else “ERROR” is
displayed.

 “+CMEE” AT error code Description

800 invalid option

801 invalid option value

802 not enough memory left

820 error writing configuration in FLASH memory

821 error freeing configuration in FLASH memory

844 stack already started

850 initialization failed

852 IP stack not initialized

WM_DEV_OAT_UGD_076 Rev 009 February 18, 2011 22

WIPsoft 5.41 General Configuration

4.1.6. Examples

Command Responses

AT+WIPCFG=1

Note: Start IP Stack

OK

AT+WIPCFG?

+WIPCFG: 0,64

+WIPCFG: 1,0

+WIPCFG: 2,60

+WIPCFG: 3,0

+WIPCFG: 4,536

+WIPCFG: 5,0

+WIPCFG: 6,8

+WIPCFG: 7,32

+WIPCFG: 8,0

+WIPCFG: 9,0

+WIPCFG: 10,4

+WIPCFG: 11,4

+WIPCFG: 12,10

+WIPCFG: 13,0

+WIPCFG: 14,0

+WIPCFG: 15,2048

+WIPCFG: 16,64

+WIPCFG: 17,12

OK

AT+WIPCFG=2,0,10

Note: Configure TTL of IP Stack

OK

AT+WIPCFG?

+WIPCFG: 0,10

+WIPCFG: 1,0

+WIPCFG: 2,60

+WIPCFG: 3,0

+WIPCFG: 4,536

+WIPCFG: 5,0

+WIPCFG: 6,8

+WIPCFG: 7,32

+WIPCFG: 8,0

+WIPCFG: 9,0

+WIPCFG: 10,4

+WIPCFG: 11,4

+WIPCFG: 12,10

+WIPCFG: 13,0

+WIPCFG: 14,0

+WIPCFG: 15,2048

+WIPCFG: 16,64

+WIPCFG: 17,12

OK

WM_DEV_OAT_UGD_076 Rev 009 February 18, 2011 23

WIPsoft 5.41 General Configuration

Command Responses

AT+WIPCFG=3

WIPsoft v202 on Open AT OS v312

Mar 26 2007 11:45:46 WIPlib:v2a07

WIPsoft:v1a12

Note: Display software version OK

AT+WIPCFG=0

Note: Stop the TCP/IP Stack

OK

AT+WIPCFG=4,1

Note: Store IP configuration parameters

into FLASH

OK

AT+WIPCFG=4,0

Note: Free IP configuration parameters

stored in FLASH

OK

WM_DEV_OAT_UGD_076 Rev 009 February 18, 2011 24

WIPsoft 5.41 General Configuration

4.1.7. Notes

It is recommended to change the default settings of the WIP stack using +WIPCFG only when it is
required. Changing the parameter values especially the max number of sockets and the max TCP
buffer size with the high values lead to over consumption of the stack memory which causes the
WIPsoft to crash. Hence, care must be taken when the default settings of the stack is changed using
+WIPCFG command.

Following option values set by +WIPCFG command are taken into consideration at the run time. The
below option values except for AT_WIP_NET_OPT_PREF_TIMEOUT_VALUE and
AT_WIP_NET_OPT_ESC_SEQ_NOT_SENT will be taken into consideration at next start up only if
these are saved in the flash before stopping the stack.

 WIP_NET_OPT_IP_TTL

 WIP_NET_OPT_IP_TOS

 WIP_NET_OPT_IP_FRAG_TIMEO

 WIP_NET_OPT_TCP_MAXINITWIN

 WIP_NET_OPT_TCP_MIN_MSS

 WIP_NET_OPT_DEBUG_PORT

 AT_WIP_NET_OPT_PREF_TIMEOUT_VALUE

 AT_WIP_NET_OPT_ESC_SEQ_NOT_SENT

 AT_WIP_NET_OPT_AUTO_SWITCH

WM_DEV_OAT_UGD_076 Rev 009 February 18, 2011 25

WIPsoft 5.41 General Configuration

4.2. Bearers Handling +WIPBR

4.2.1. Description

The +WIPBR command can be used to

 select the bearer

 start/close the bearer

 configure different bearer options such as access point name

4.2.2. Syntax

 if <cmdtype>=0,1 or 5

Action Command

AT+WIPBR=<cmdtype>,<bid>

OK

 if <cmdtype>=2

Action Command

AT+WIPBR=<cmdtype>,<bid>,<opt num>,<value>

OK

 if <cmdtype>=3

Action Command

AT+WIPBR=<cmdtype>,<bid>,<opt num>

+WIPBR: <bid>,<opt num>,<value>

OK

 if <cmdtype>=4

Action Command

AT+WIPBR=<cmdtype>,<bid>,<mode>[,<login>,<password>,[<caller

identity>]]

OK

WM_DEV_OAT_UGD_076 Rev 009 February 18, 2011 26

WIPsoft 5.41 General Configuration

 if <cmdtype>=6

Action Command

AT+WIPBR=<cmdtype>,<bid>,<mode>

OK

Read Command

AT+WIPBR?

<bid>,<state>

[<bid>,<state>[..]]

OK

Test Command

AT+WIPBR=?

OK

 if <mode>=1

Unsolicited response

+WIPBR: <bid>,<status>,<local IP @>,<remote IP @>,<DNS1 @>,

<DNS2 @>

4.2.3. Parameters and Defined Values

<cmd type>: type of command

 0 close bearer

1 open bearer

2 set value of different bearer options

3 get value of different bearer options

4 start bearer

5 stop bearer

6 bearer configuration management

<bid>: bearer Identifier

1 UART1

2 UART2

WM_DEV_OAT_UGD_076 Rev 009 February 18, 2011 27

WIPsoft 5.41 General Configuration

3 N/A

4 ETHER

5 GSM

6 GPRS

11..14 CMUX port over UART1

21..24 CMUX port over UART2

<opt num>: bearer option identifier

 0 WIP_BOPT_LOGIN – username (string)

max: 64 characters

1 WIP_BOPT_PASSWORD – password (string)

max: 64 characters

2 WIP_BOPT_DIAL_PHONENB – phone number (string)

max: 32 characters

5 WIP_BOPT_DIAL_RINGCOUNT - Number of rings to wait before sending the
WIP_BEV_DIAL_CALL event

range: 0-65535

6 WIP_BOPT_DIAL_MSNULLMODEM - Enable MS-Windows null-modem protocol
("CLIENT"/"SERVER" handshake)

range: 0-1

7 WIP_BOPT_PPP_PAP - Allow PAP authentication

range: 0-1

8 WIP_BOPT_PPP_CHAP - Allow CHAP authentication for the connection between
the PC and the Wireless CPU (UART bearer)

range: 0-1

9 WIP_BOPT_PPP_MSCHAP1 - Allow MSCHAPv1 authentication

range: 0-1

10 WIP_BOPT_PPP_MSCHAP2 - Allow MSCHAPv2 authentication

range: 0-1

11 WIP_BOPT_GPRS_APN - Address of GGSN (string)

max: 96 characters

12 WIP_BOPT_GPRS_CID - Cid of the PDP context

range: 1-4

13 WIP_BOPT_GPRS_HEADERCOMP - Enable PDP header compression

range: 0-1

14 WIP_BOPT_GPRS_DATACOMP - Enable PDP data compression

range: 0-1

15 WIP_BOPT_IP_ADDR - Local IP address (IP/string)

WM_DEV_OAT_UGD_076 Rev 009 February 18, 2011 28

WIPsoft 5.41 General Configuration

16 WIP_BOPT_IP_DST_ADDR - Destination IP address (IP/string)

17 WIP_BOPT_IP_DNS1 - Address of primary DNS server (IP/string)

18 WIP_BOPT_IP_DNS2 - Address of secondary DNS server (IP/string)

19 WIP_BOPT_IP_SETDNS - Configure DNS resolver when connection is
established

range: 0-1

20 WIP_BOPT_IP_SETGW - Set interface as default gateway when connection is
established

range: 0-1

 21 WIP_BOPT_GPRS_TIMEOUT - Define a time limit to connect GPRS bearer. For
example, value 300 for this option sets a wait time of 30s (300*100ms). Note: If
timer expires before GPRS bearer connects, error 847 is returned.

range: 300-1200 (default: 1200).

 22 WIP_BOPT_DEBUG_PKT - Enable the debug traces of NET level 10

range: 0-1

 23 WIP_BOPT_IP_DHCP - Enables auto-configuration of IP address and Netmask
with DHCP

range:0-1

 24 WIP_BOPT_IP_MAC - Reads the MAC address, functioning as a read only option

 25 WIP_BOPT_IP_NETMASK - Sets the Network mask

 26 WIP_BOPT_IP_GW - Sets address of default gateway

 27 WIP_BOPT_RESTART - Automatically restart server after connection is
terminated

 28 WIP_BOPT_GPRS_ERROR_REPORTING – report <GPRS CME errors> instead
of WIPsoft generic error

range:0-1 (default=0 for WIPsoft generic error)

<mac IP @*>: MAC address of Ethernet driver

<getway IP @*>: default gateway address

<netmask IP @*>: network mask address

<value>: range of value for different bearer options

<mode>: mode of operation

0

client

1
server

<state>: current state of the bearer

0

stopped

1
started

WM_DEV_OAT_UGD_076 Rev 009 February 18, 2011 29

WIPsoft 5.41 General Configuration

<status>: result of the connection process

0

successful

any other
value

to be matched to error code value (e.g. “814” means PPP authentication failure)

<local IP @*>: local IP address

<remote IP @*>: remote IP address. (first node in internet)

<DNS1 IP @*>: Domain Name Server address

<DNS2 IP @*>: Domain Name Server address

<login>: PPP login

<passwd>: PPP password

<caller identity>: optional ASCII string (type ascii*).

If not specified, then target will accept all DATA calls (independently of caller
identification). If specified, then target will only accept calls from <caller
identity>(which is the GSM data call number of the GSM client).

* IP @ are displayed in alpha numeric dot format. e.g. 192.168.0.1…When no IP address is known,
“0.0.0.0“ is displayed.

Caution: The options WIP_BOPT_IP_ADDR, WIP_BOPT_IP_DST_ADDR, WIP_BOPT_IP_DNS1 and
WIP_BOPT_IP_DNS2 can be read after the bearer connection is established successfully. If an
attempt is made to read the options value before the bearer connection is established successfully,
incorrect IP address will be received.

Caution: The options WIP_BOPT_IP_NETMASK and WIP_BOPT_IP_GW can be read after the bearer
connection is established successfully. If an attempt is made to read the options value before the
bearer connection is established successfully, incorrect IP address will be received.

Also the option WIP_BOPT_IP_MAC can be read after the bearer connection is open successfully. If
an attempt is made to read the options value before the bearer connection is open, incorrect IP
address will be received.

If the Ethernet bearer supported is defined, the MAC address is read from the Ethernet driver on
opening the bearer(i.e., +WIPBR=4,1).

4.2.4. Parameter Storage

Several bearer configuration set can be saved.

Calling twice AT+WIPBR=6,<bid>,1 with the same <bid> will store the last configuration set.

 “AT+WIPBR=6,<bid>,1” is used to store the bearer configuration parameters set associated
with the bearer <bid> into the FLASH memory.

 “AT+WIPBR=6,<bid>,0” is used to free the bearer configuration parameters set associated
with the bearer <bid>.

Executing “AT+WIPBR=1,<bid>” will open bearer <bid> with default parameters of the bearer when
existing.

WM_DEV_OAT_UGD_076 Rev 009 February 18, 2011 30

WIPsoft 5.41 General Configuration

4.2.5. Possible Errors

4.2.5.1. General CME Errors

The possible error message is displayed only if “AT+CMEE=1” is activated else “ERROR” is
displayed.

 “+CMEE” AT
error code

Description

800 invalid option

801 invalid option value

802 not enough memory left

803 operation not allowed in the current WIP stack state

804 device already open

807 bearer connection failure : line busy

808 bearer connection failure : no answer

815 bearer connection failure : PPP authentication failed

816 bearer connection failure : PPP IPCP negotiation failed

820 error writing configuration in FLASH memory

821 error freeing configuration in FLASH memory

847
bearer connection failure: WIP_BOPT_GPRS_TIMEOUT time limit expired before GPRS
bearer connected

848 impossible to connect to the bearer

849
connection to the bearer has succeeded but a problem has occurred during the data flow
establishment

4.2.5.2. GPRS CME Errors

GPRS CME errors are listed in the table below.

Error
code

Meaning Resulting from the following
commands

103 Incorrect MS identity.(#3) +CGATT

132 service option not supported (#32) +CGACT +CGDATA ATD*99

133 requested service option not subscribed (#33) +CGACT +CGDATA ATD*99

134 service option temporarily out of order (#26, #34,
#38)

+CGACT +CGDATA ATD*99

148 unspecified GPRS error All GPRS commands

149 PDP authentication failure (#29) +CGACT +CGDATA ATD*99

150 invalid mobile class +CGCLASS +CGATT

WM_DEV_OAT_UGD_076 Rev 009 February 18, 2011 31

WIPsoft 5.41 General Configuration

4.2.6. Examples

Command Responses

AT+WIPBR?

1,0

6,1

OK

Note: Bearer UART1 is open but not started bearer

GPRS is open and started

AT+WIPBR?
OK

Note: No bearer has been opened yet

AT+WIPBR=1,6

Note: Open GPRS bearer

OK

AT+WIPBR=2,6,11,”APN name”

Note: Set APN of GPRS bearer

OK

AT+WIPBR=3,6,11 +WIPBR: 6,11,”APN name”

Note: Get APN of GPRS bearer OK

AT+WIPBR=2,6,21,600

Note: set GPRS connection timeout value to

60s

OK

AT+WIPBR=4,6,0

Note: Start GPRS bearer

OK

AT+WIPBR=5,6

Note: Stop GPRS bearer

OK

AT+WIPBR=0,6

Note: Close GPRS bearer

OK

AT+WIPBR=1,5

Note: Open GSM bearer

OK

AT+WIPBR=2,5,0,”login”

Note: Set the login for GSM bearer

OK

AT+WIPBR=2,5,1,”password”

Note: Set the password for GSM bearer

OK

AT+WIPBR=2,5,2,”phonenumber”

Note: Set the phone number for GSM bearer

OK

AT+WIPBR=2,5,15,”1.1.1.1”

Note: Set the local IP address for GSM bearer

OK

AT+WIPBR=2,5,16,”2.2.2.2”

Note: Set the destination IP address for GSM

bearer

OK

WM_DEV_OAT_UGD_076 Rev 009 February 18, 2011 32

WIPsoft 5.41 General Configuration

Command Responses

AT+WIPBR=3,5,15 +WIPBR: 5,15,”0.0.0.0”

 OK

Note: Read the local IP address for GSM bearer
Note: Local IP address is not set as GSM bearer is

still not connected

AT+WIPBR=3,5,16 +WIPBR: 5,16,”0.0.0.0”

 OK

Note: Read the destination IP address for GSM

bearer

Note: Destination IP address is not set as GSM bearer

is still not connected

AT+WIPBR=4,5,0

Note: Start the GSM bearer as a client

OK

AT+WIPBR=3,5,15 +WIPBR: 5,15,”1.1.1.1”

Note: Read the local IP for GSM bearer OK

AT+WIPBR=3,5,16 +WIPBR: 5,16,”2.2.2.2”

Note: Read the destination IP for GSM bearer OK

AT+WIPBR=5,5

Note: Stop the GSM bearer

OK

AT+WIPBR=0,5

Note: Close the GSM bearer

OK

AT+WIPBR=1,4

Note: Opens the Ethernet bearer.

OK

AT+WIPBR=4,4,0

Note: Starts the Ethernet bearer in client mode.

OK

AT+WIPBR=5,4

Note: Stops the Ethernet bearer.

OK

AT+WIPBR=0,4

Note: Closes the Ethernet bearer.

OK

AT+WIPBR=2,4,23,”1”

Note: Sets the DHCP to TRUE. Default: TRUE.

OK

AT+WIPBR=3,4,24

Note: Reads the MAC address.

+WIPBR: 4,24,”1.1.1.1”

OK

AT+WIPBR =2,4,25,” <getway IP

@*>”

Note: Sets the Default gateway address.

OK

AT+WIPBR=2,4,26,” <netmask IP

@*>”

Note: Sets the Network mask address.

OK

WM_DEV_OAT_UGD_076 Rev 009 February 18, 2011 33

WIPsoft 5.41 General Configuration

Command Responses

AT+WIPBR=3,4,23

Note: Reads the DHCP value.

+WIPBR: 4,23,1

OK

AT+WIPBR=3,4,25

Note: Reads the Default gateway address.

+WIPBR: 4,25,”10.66.67.193”

OK

AT+WIPBR=3,4,26

Note: Reads the Network mask address.

+WIPBR: 4,26,”255.255.255.192”

OK

4.2.7. Notes

4.2.7.1. For Starting a Bearer

The mandatory parameters to start a bearer in

 server mode: <cmdtype>, <bid>, <mode>, <login> and <password>

 client mode: <cmdtype>, <bid> and <mode>

Depending on the mode and the bearer type, additional parameters are required or forbidden:

Bid Mode Other Parameters

1,3,11,14,21,24 0 None

1,3,11,14,21,24 1 <PPP login>, <PPP password>

5 0 None

5 1 <login>,<password>[,<caller identity>]

6 0 None

Starting bearer as a server requires additional parameters as mentioned in the above table.

 For PPP server, only parameters <login> and <password> are required. They will be
compared with remote PPP client login and password.

 For GSM server, <login> and <password> will be used for PPP over GSM establishment
(same behavior as described for PPP server).

The <caller identity> is an optional ASCII string (type ASCII*). If not specified, then target will accept
all DATA calls (independently of caller identification). If specified, then target will only accept calls
from <caller identity> (which is the GSM data call number of the GSM client.

Opening bearer only consists in associating the IP protocol stack with the specified bearer. The
corresponding bearer setup has to be done through the adequate already existing AT commands
(please refer to +WMFM commands for UART1 and UART2, +CMUX command for CMUX virtual
ports and GSM/GPRS AT commands).

Several bearers can be opened at the same time but only one bearer can be started at a time.

If both DNS1 and DNS2 are displayed as “0.0.0.0” in the unsolicited message when bearer is opened
in server mode, it means that connecting to a remote IP host through an URL will fail.

The options WIP_BOPT_DIAL_REDIALCOUNT and WIP_BOPT_DIAL_REDIALDELAY will not be
implemented through AT commands. Nevertheless, for future compatibility reason, Opt num 3 and 4
are kept as reserved.

WM_DEV_OAT_UGD_076 Rev 009 February 18, 2011 34

WIPsoft 5.41 General Configuration

For GSM bearer, the options WIP_BOPT_IP_ADDR and WIP_BOPT_IP_DST_ADDR will display
valid addresses only when the bearer is started and connected, else it will display an address
“0.0.0.0”.

The Ethernet bearer can be started only in client mode.

WM_DEV_OAT_UGD_076 Rev 009 February 18, 2011 35

5. IP Protocol Services

5.1. Service Creation +WIPCREATE

5.1.1. Description

The +WIPCREATE command is used to create UDP, TCP client and TCP server sockets associated
with the specified index and FTP/HTTP/SMTP/ POP3 service. Only one
FTP/HTTP/SMTP/POP3/MMS session at a time is available.

If a local port is specified while creating a socket, the created socket will be assigned to this port; if
not, a port will be assigned dynamically by WIP application. If peer IP and peer port is specified, the
created socket will be connected to the specified IP and port.

TCP server cannot be used to transfer data. To transfer data, it creates a local TCP client socket. This
process of creating local socket is referred as “spawning”. When a server socket is created using,
socket passively listens on a specified port for incoming connections. The below mentioned diagram
shows different states managed for TCP server.

On reception of a connection request from a remote client socket, a server socket does the following,

 spawns a new socket (client) to connect to the remote socket

 data transfer is done between the spawned socket and the remote socket

 server socket remains in the listening mode and is ready to accept the request from other
clients

Below mentioned diagram shows connection establishment procedure.

Closed

Listen

Server Socket
Creation

Server listening to the
remote socket for connect

request

Close Server
Socket channel

WM_DEV_OAT_UGD_076 Rev 009 February 18, 2011 36

WIPsoft 5.41 IP Protocol Services

5.1.2. Syntax

 if <mode>=1

Action Command

AT+WIPCREATE=<mode>,<communication index>,<local port> [,<peer

IP>,<peer port>]

OK

 if <mode>=2

Action Command

AT+WIPCREATE=<mode>,<communication index>,<peer IP>,<peer port>

OK

Server Socket Client Socket

Client Socket Spawned
By Server

Connect request

Spawn a new
socket

Connected

Transfer data

Socket Closed

WM_DEV_OAT_UGD_076 Rev 009 February 18, 2011 37

WIPsoft 5.41 IP Protocol Services

 if <mode>=3

Action Command

AT+WIPCREATE=<mode>,<server index>,<local port>,<from idx>,<to

idx>

OK

 if <mode>=4

Action Command

AT+WIPCREATE=<mode>,<index>,<server>[,<peer_port>],<username>,

<password>[,<account>]

OK

 if <mode>=5

Action Command

AT+WIPCREATE=<mode>,<index>,[<server>[,<peer

port>]][,<username>,<password>][,<header list>[...]]]

OK

 if <mode>=6 or 7

Action Command

AT+WIPCREATE=<mode>,<index>,<server>[,<peer

port>][,<username>,<password>]

OK

 if <mode>=8

Action Command

AT+WIPCREATE=<mode>,<index>,<server>,<peer port>,<url>

OK

Read Command

AT+WIPCREATE?

NONE

WM_DEV_OAT_UGD_076 Rev 009 February 18, 2011 38

WIPsoft 5.41 IP Protocol Services

Test Command

AT+WIPCREATE=?

OK

 if <mode>=1 or 2

Unsolicited response

+WIPREADY: <mode>,<communication index>

 if <mode>=3

Unsolicited response

+WIPACCEPT: <server index>,<communication idx>

 if <mode>=5, 6 or 7

Unsolicited response

+WIPREADY: <mode>,<index>

5.1.3. Parameters and Defined Values

<mode>: specifies type of socket

1 UDP

2 TCP Client

3 TCP server

4 FTP

5 HTTP Client

6 SMTP Client

7 POP3 Client

8 MMS Client

<index>: TCP/UDP/FTP/HTTP/SMTP/POP3/MMS session identifier

<local port>: local TCP/UDP port

<peer IP>: peer IP address; a string between quotes

indicating an address either in numeric form (e.g. “85.12.133.10”)
or as a DNS entry (e.g. “www.sierrawireless.com”)

WM_DEV_OAT_UGD_076 Rev 009 February 18, 2011 39

WIPsoft 5.41 IP Protocol Services

<peer port>: peer port or the server port

For TCP/UDP, this parameter is the port of the peer socket.

For FTP,HTTP,SMTP, POP3, and MMS, this parameter is the
server port

range: 1-65535 (default value for FTP: 21

 default value for HTTP: 80

 default value for SMTP: 25

 default value for POP3: 110

 default value for MMS: 8080)

<from idx>: minimum index for spawned TCP sockets

range: 1-8

<server index>: TCP server socket identifier

range: 1-4

<to idx>: maximum index for spawned TCP sockets

range: 1-8

<communication index>: indexes reserved for spawned sockets

It cannot be used by other sockets even if the spawned sockets
are not created yet.

range: 1-8

<server>: server address or proxy address

This parameter is the server address for FTP, SMTP and POP3
protocol and for HTTP it is proxy server address.

It can either be a 32 bit number in dotted-decimal notation
(“xxx.xxx.xxx.xxx”) or an alpha numeric string format for hostname.

<user name>: username for the authentication in string format

Authentication is disabled when this parameter is not specified for
HTTP, SMTP and POP3.

<password>: password for the authentication in string format

Authentication is disabled when this parameter is not specified for
HTTP, SMTP and POP3.

<account>: account information of the user in string format

This is required by some FTP server during authentication phases.

<header list>: HTTP header message (name-value pair)

The first string in the message header field is the name of the
header and the second string is the value of the header.

<url>: URL of the MMS server

This is an alphanumeric string format for hostname starting with
“http://”.

<…> additional HTTP message header fields

more pairs(name, value) of HTTP message header field can be
added

WM_DEV_OAT_UGD_076 Rev 009 February 18, 2011 40

WIPsoft 5.41 IP Protocol Services

5.1.4. Parameter Storage

None

5.1.5. Possible Errors

“+CMEE” AT error code Description

3 operation not allowed

800 invalid option

803 operation not allowed in the current WIP stack state

830 bad index

832 bad port number

834 not implemented

836 memory allocation error

837 bad protocol

839 error during channel creation

840
UDP/TCP socket or FTP/HTTP/SMTP/POP3 session is already
active

842
destination host unreachable (whether host unreachable, Network
unreachable, response timeout)

845
attempt is made to reserve/create a client socket which is already
reserved/opened by TCP server/client

851 incorrect number of parameters submitted

860 protocol undefined or internal error

861 user name rejected by server

862 password rejected by server

865 authentication error

866 server not ready error

5.1.6. Examples

Command Responses

AT+WIPCREATE=1,1,80 OK

Note: Create the UDP socket on local port 80 with

communication index = 1  embedded module

acts as an UDP server awaiting for incoming

datagram on local port 80

Note: An unsolicited event +WIPREADY: 1,1

will be received once the UDP socket is ready

for usage

AT+WIPCREATE=1,1,”www.sierrawire

less.com”,80
OK

WM_DEV_OAT_UGD_076 Rev 009 February 18, 2011 41

WIPsoft 5.41 IP Protocol Services

Command Responses

Note: Create the UDP socket on arbitrary free local

port with peer IP and peer port 80 with

communication index = 1  embedded module

acts as a UDP client that can send datagram

towards the remote entity

Note: An unsolicited event +WIPREADY: 1,1

will be received once the UDP socket is ready

for usage

AT+WIPCREATE=1,1,80,”www.sierraw

ireless.com”,80
OK

Note: Create the UDP socket on local port 80 with

peer IP and peer port 80 with communication index

= 1  embedded module acts as a UDP client and

an UDP server : it can send datagram towards the

remote entity and receiving datagram on the

specified local port.

Note: An unsolicited event +WIPREADY: 1,1

will be received once the UDP socket is ready

for usage

AT+WIPCREATE=3,1,80,5,8 OK

Note: Create the TCP server on port 80 with server

index=1  embedded module

acts as a TCP server

: it will from now on spawn TCP client socket from

communication index 5 to 8

Note: An unsolicited event +WIPACCEPT: 1,5

will be received once the TCP server is ready

for usage

AT+WIPCREATE=2,1,”IP ADDR”,80 OK

Note: Create the TCP client on port 80 with

index=1  embedded module

acts as a TCP client :

it can from now on communicate with the remote

specified entity through communication index 1

Note: An unsolicited event +WIPREADY: 2,1

will be received once the TCP client is ready for

usage

AT+WIPCREATE=4,1,”ftp.wavecom.co

m”,”admin”,”123456”

Note: Create a FTP session  towards the remote

specified FTP server. Communication index to be

used then is 1

OK

AT+WIPCREATE=5,1,”proxyaddress”,

,”user name”,”password”,”User-

Agent”,”WIP-HTTP-Client/1.0”

OK

+WIPREADY: 5, 1

Note: HTTP session with proxy and 1 message

header field

Use default 80 proxy port number

1 message header field:

Message header field name is “User-Agent”

Message header field value is “WIP-HTTTP-

Client/1.0”

AT+WIPCREATE=5,1,”proxyaddress”,

,”user name”,”password”,”User-

Agent”,”WIP-HTTP-

Client/1.0”,"Accept-

Encoding","gzip","Accept-

Language","en-US"

OK

+WIPREADY: 5, 1

ftp://ftp.wavecom.com/
ftp://ftp.wavecom.com/

WM_DEV_OAT_UGD_076 Rev 009 February 18, 2011 42

WIPsoft 5.41 IP Protocol Services

Command Responses

Note: HTTP session with proxy and 3 message

header fields

Use default 80 proxy port number

3 message header fields:

Message header field name is “User-Agent”

and header field value is “WIP-HTTTP-

Client/1.0”

Message header field name is “Accept-

Encoding” and header field value is “gzip”

Message header field name is “Accept-

Language” and header field value is “en-US”

AT+WIPCREATE=5,1,“proxyaddress“,

,”user”,”pass”

OK

+WIPREADY: 5, 1

Note: Authentication connection on default

proxy server port 80

AT+WIPCREATE=6,1,"smtp.mail.yaho

o.fr","587","user","pass"

OK

+WIPREADY: 6, 1

Note: Connect to SMTP server port 587 with

given username and password

AT+WIPCREATE=7,1,"192.168.1.4","

110","user","pass"

OK

+WIPREADY: 7, 1

 Note: Connect to POP3 server port 110 with

given username and password

AT+WIPCREATE=7,1,

"pop.mail.server.com"

OK

+WIPREADY: 7, 1

 Note: Connect to the default port 110 of POP3

server, with no authentication required

AT+WIPCREATE=8,1,

"192.168.10.200",8080,"http://mm

s.orange.fr"

OK

+WIPREADY: 8, 1

 Note: Connect to the MMS server, with no

authentication required

5.1.7. Notes

The maximum number of sockets can be set to 23 so that WIPsoft can handle in the same time either
one FTP session (in passive mode)/HTTP/SMTP/POP3, 8 UDP sockets, 8 TCP client sockets and 4
TCP servers.

Starting a TCP server requires to specify the maximum number of communication sockets that can be
spawned. This can be done using <from idx> and <to idx> parameters. Note that the value set for <to
idx> should be equal or more than <from idx>.

The maximum communication socket that can be created using WIPsoft is 8. Hence, the range for
<communication index> and <from idx>, <to idx> is 1-8. Note that the spawned communication socket
and the TCP client socket share the same communication index.

WM_DEV_OAT_UGD_076 Rev 009 February 18, 2011 43

WIPsoft 5.41 IP Protocol Services

It is not possible to create a client socket with AT+WIPCREATE=2, x, y, z when x is already reserved
by a server with AT+WIPCREATE=3,<server idx>, <local port>,a,b where a≤x≤b. Similarly, it is not
possible to reserve a range with AT+WIPCREATE=3, <server idx>, <local port>, a, b if one of the
TCP client socket indexes between a and b is already reserved, be it by a client or a server range

The <from idx> and <to idx> are reserved for the server socket till the server socket and the spawned
sockets are closed explicitly. So when trying to create a new TCP server socket, the <from idx> and
<to idx> should be different from what was used earlier. A parameter used as <from_idx> can’t be
used as <to_idx> anymore for other TCP server socket creation until spawned sockets with specified
<from_idx> and <to_idx> are closed along with the TCP server socket explicitly and vice versa.

When no more communication index is available in the TCP server’s range (or no more resources to
accept new incoming connections), any peer trying to connect to the server will receive an accept ()
immediately followed by a shutdown () (“peer close”).

It is possible to have a TCP client and TCP server sockets running at the same time in the same
Wireless CPU. In this scenario, when the connection is established between the TCP server and TCP
client sockets, it is necessary to unmap the mapped socket on one index in order to send/receive data
on socket which is created on another index. It is possible to use CMUX logical ports and can have an
interface connection (like UART connection) for each socket for e.g. TCP client socket on one logical
port and TCP server socket on another. In this case, it is not necessary to map or unmap the UART
connections to send or receive the data from the socket.

The +WIPCREATE command causes the connection and authentication to the FTP server. If several
file uploads and retrievals are required to/from the same server, a single connection with
+WIPCREATE is needed. Then, each file operation will be done (one +WIPFILE command per
operation), and the FTP connection will be released with +WIPCLOSE.

SIM card is required only if FTP session is established through GSM or GPRS. An FTP session upon
an UART will work without a SIM card.

WM_DEV_OAT_UGD_076 Rev 009 February 18, 2011 44

WIPsoft 5.41 IP Protocol Services

5.2. Closing a Service +WIPCLOSE

5.2.1. Description

The +WIPCLOSE command is used to close a socket or FTP/HTTP/SMTP/POP3/MMS session.
When one serial port (UART or CMUX DLCI) is used to map a socket for read/write operations, [ETX]
character can also be used to close the socket.

An unsolicited event is generated, when socket or FTP/HTTP/SMTP/POP3/MMS session is closed.

5.2.2. Syntax

Action command

AT+WIPCLOSE=<protocol>,<idx>

OK

Read Command

AT+WIPCLOSE?

NONE

Test Command

AT+WIPCLOSE=?

OK

Unsolicited response

+WIPPEERCLOSE: <protocol>,<idx>

5.2.3. Parameters and Defined Values

<protocol>: protocol type

1 UDP

2 TCP client

3 TCP server

4 FTP

WM_DEV_OAT_UGD_076 Rev 009 February 18, 2011 45

WIPsoft 5.41 IP Protocol Services

5 HTTP

6 SMTP

7 POP3

8 MMS

<idx>: socket identifier or FTP/HTTP/SMTP/POP3 session identifier

This parameter is the index of the socket or FTP/HTTP/SMTP/POP3 session created
with +WIPCREATE command.

5.2.4. Parameter Storage

None

5.2.5. Possible Errors

“+CMEE” AT error code Description

802 not enough memory

803 operation not allowed in the current WIP stack state

830 bad index

831 bad state

834 not implemented

837 bad protocol

5.2.6. Examples

Command Responses

AT+WIPCLOSE=1,1 OK

Note: Close UDP socket with communication

index 1

AT+WIPCLOSE=2,1 OK

Note: Close TCP client with communication

index 1

AT+WIPCLOSE=3,1 OK

Note: Close TCP server with communication

index 1

AT+WIPCLOSE=4,1 OK

Note: Close FTP session with index 1
Note: An unsolicited event +WIPPEERCLOSE: 4,1 is

received once the FTP session is closed

AT+WIPCLOSE=5,1 OK

Note: Close HTTP session with index 1

WM_DEV_OAT_UGD_076 Rev 009 February 18, 2011 46

WIPsoft 5.41 IP Protocol Services

Command Responses

AT+WIPCLOSE=6,1 OK

Note: Close SMTP session with index 1

AT+WIPCLOSE=7,1 OK

Note: Close POP3 session with index 1

AT+WIPCLOSE=8,1 OK

Note: Close MMS session with index 1

5.2.7. Notes

After issuing +WIPCLOSE command, no more data can be sent and received over the
socket/session. In case of FTP protocol, the closure of FTP session is indicated by +WIPEERCLOSE
unsolicited response when +WIPCLOSE command is used for closing the session.

In case of TCP and UDP sockets, response “OK” is returned when the +WIPCLOSE command is
executed irrespective of whether the socket is active or not. But in case of FTP/HTTP/SMTP/POP3
session, “OK” response is returned if +WIPCLOSE command is executed when the session is active
else “+CME ERROR: 831” error code is returned.

WM_DEV_OAT_UGD_076 Rev 009 February 18, 2011 47

WIPsoft 5.41 IP Protocol Services

5.3. Service Option Handling +WIPOPT

5.3.1. Description

The +WIPOPT command is used to read and/or to configure different parameters on sockets and
FTP/HTTP/SMTP/POP3/MMS service.

5.3.2. Syntax

 if <action>=1

Action Command

AT+WIPOPT=<protocol>,<idx>,<action>,<optnum>

OK

 if <action>=2 and <protocol> does not equal 8

Action Command

AT+WIPOPT=<protocol>,<idx>,<action>,<optnum>,<optval>

OK

 if <action>=2 and <protocol>=8

Action Command

AT+WIPOPT=<protocol>,<idx>,<action>,<optnum>,<optval>

[,<optval2>,[<optval3>],[<optval4>]]

OK

Read Command

AT+WIPOPT?

NONE

Test Command

AT+WIPOPT=?

OK

WM_DEV_OAT_UGD_076 Rev 009 February 18, 2011 48

WIPsoft 5.41 IP Protocol Services

 if <action>=1

Unsolicited response

+WIPOPT: <protocol>,<optnum>,<optval>

if <action>=1 and <protocol>=5 and <optnum>=54

Unsolicited response

+WIPOPT: 5,54,<message header field name>,<message header field

value>,[…]

5.3.3. Parameters and Defined Values

<protocol>: protocol type

 1 UDP

2 TCP client

3 TCP server

4 FTP

5 HTTP

6 SMTP

7 POP3

8 MMS

<idx>: socket or FTP/HTTP/SMTP/POP3/MMS session identifier

<action>: requested operation

1 read the value of an option

2 write the value of an option

<optnum>: option that can be read/written

<optval>: value of an option

<optval2>: value of an extra option (optional)

<optval3>: value of an extra option (optional)

<optval4>: value of an extra option (optional)

5.3.4. Parameter Storage

None

WM_DEV_OAT_UGD_076 Rev 009 February 18, 2011 49

WIPsoft 5.41 IP Protocol Services

5.3.5. Possible Errors

“+CMEE” AT error code Description

800 invalid option

801 invalid option value

803 operation not allowed in the current WIP stack state

830 bad index

834 not implemented

835 option not supported

837 bad protocol

850
invalid channel option or parameter value (for example, HTTP user name
too long)

860 protocol undefined or internal error

863 protocol delete error

864 protocol list error

5.3.6. Examples

Command Responses

AT+WIPOPT=2,1,2,8,20

Note: Set TTL for TCP client

OK

AT+WIPOPT=2,1,1,8 +WIPOPT: 2,8,20

Note: Get TTL for TCP client OK

AT+WIPOPT=3,1,2,9,10

Note: Set TOS for TCP server

OK

AT+WIPOPT=3,1,1,9 +WIPOPT: 3,9,10

Note: Get TOS for TCP server OK

AT+WIPOPT=1,1,1,1 +WIPOPT: 1,1,80

Note: Get peer port for UDP OK

AT+WIPOPT=4,1,2,40,1

Note: Set data representation type for FTP

OK

AT+WIPOPT=4,1,1,40 +WIPOPT: 4,1,1

Note: Get data representation type for FTP OK

AT+WIPOPT=5,1,2,52,0 OK

Note: Set HTTP version to 1.0

AT+WIPOPT=5,1,2,53,6

Note: Set maxredirect to 6

OK

WM_DEV_OAT_UGD_076 Rev 009 February 18, 2011 50

WIPsoft 5.41 IP Protocol Services

Command Responses

AT+WIPOPT=5,1,1,52
+WIPOPT: 5,52,0

OK

Note: Get HTTP version

AT+WIPOPT=6,1,2,61,”senderaddres

s@mail.com”
OK

Note: Set the sender address

AT+WIPOPT=6,1,2,67,0 OK

Note: The application will format the mail header

and send it during the data sending phase

AT+WIPOPT=6,1,1,61

+WIPOPT:

6,61,”senderadress@mail.com”

OK

Note: Get the sender address

AT+WIPOPT=6,1,1,60

+WIPOPT:6,60,220,“220

innosoft.com SMTP service

ready”

OK

Note: Get last protocol error / status

AT+WIPOPT=6,1,1,66

+WIPOPT: 6,66,“My mail

subject”

OK

Note: Get the set mail subject

AT+WIPOPT=7,1,1,72
+WIPOPT: 7,72,243000

OK

Note: Get total mail size

AT+WIPOPT=7,1,1,73

+WIPOPT: 7,73,”1,1024”

+WIPOPT: 7,73,”2,5237”

+WIPOPT: 7,73,”3,128”

+WIPOPT: 7,73,”4,36400”

+WIPOPT: 7,73,”5,356”

OK

Note: Get mail listing

AT+WIPOPT=7,1,2,74,10
+WIPOPT: 7,74,10

OK

WM_DEV_OAT_UGD_076 Rev 009 February 18, 2011 51

WIPsoft 5.41 IP Protocol Services

Command Responses

Note: Delete mail ID 10

AT+WIPOPT=8,1,2,82,”Mr Smith

<mr.smith@example.com”

+WIPOPT: 8,75, ”Mr Smith

<mr.smith@example.com”

OK

Note: Add an email address to the To-field of an

MMS.

5.3.7. Notes

It is possible to change and retrieve option value using +WIPOPT command only when the
socket/session (given by <idx>) is active else it returns error.

5.3.7.1. Options that can be applied to UDP, TCP Client, TCP
Server Sockets

opt

num

Value

format
Option Type Description UDP

TCP

client

TCP

server

0 0-65535 WIP_COPT_PORT Port of the socket R R R

1 0-65535 WIP_COPT_PEER_PORT Port of the peer socket R R -

2 string WIP_COPT_PEER_STRADDR
Address of the peer
socket

R R -

3 0-1 WIP_COPT_BOUND

Specifies whether the
socket is bounded2 to
a peer socket or not

default: 1

R - -

4 1-5839 WIP_COPT_SND_LOWAT

Minimum amount of
available space that
must be available in the
emission buffer before
triggering a
WIP_CEV_WRITE
event

default: 1024

- RW RW

6 0-65535 WIP_COPT_NREAD

Number of bytes that
can currently be read
on that socket

default: 0

R R -

WM_DEV_OAT_UGD_076 Rev 009 February 18, 2011 52

WIPsoft 5.41 IP Protocol Services

opt

num

Value

format
Option Type Description UDP

TCP

client

TCP

server

7 0-1 WIP_COPT_NODELAY

When set to TRUE,
TCP packets are sent
immediately, even if the
buffer is not full
enough.

When set to FALSE,
the packets will be sent
either,

a) by combining
several small packets
into a bigger packet

b) when the data is
ready to send and the
stack is idle.

default: 0

- RW RW

8 0-255 WIP_COPT_TTL

Time-to-leave for
packets

default: 64

RW RW RW

9 0-255 WIP_COPT_TOS
Type of service

default: 0
RW RW RW

2 The option WIP_COPT_BOUND is used to check whether an UDP socket is bound to any other UDP socket or not.
When the UDP socket is created without specifying the IP address of the peer, then the option WIP_COPT_BOUND will
be read as FALSE. This is because there is no destination IP address to communicate with. If the UDP socket is created
by specifying the peer IP address, the option WIP_COPT_BOUND will be read as TRUE. This is because the peer IP
address will be resolved by the DNS and the socket is said to be bounded to the peer socket. Hence this option will be
read as TRUE.

5.3.7.2. Options that can be applied to FTP Session

opt num Value format Value type Description

40 0-1 boolean

data representation type.

0: ASCII

1: binary

default: 0

41 0-1 boolean

FTP mode.

0: active

1: passive

default: 1

5.3.7.3. Options that can be applied to HTTP Session

opt

num

Value

format

Value

type
Option type Description Type

50 u32 WIP_COPT_RCV_BUFSIZE

set the size of the TCP socket
receive buffer

default: 0

RW

WM_DEV_OAT_UGD_076 Rev 009 February 18, 2011 53

WIPsoft 5.41 IP Protocol Services

opt

num

Value

format

Value

type
Option type Description Type

51 u32 WIP_COPT_SND_BUFSIZE

set the size of the TCP socket send
buffer.

default: 0

RW

52 0-1 u8

WIP_COPT_HTTP_VERSION

0: HTTP 1.0

1: HTTP 1.1

define the HTTP version to be used
by the session

default: 1

RW

53 u32 WIP_COPT_HTTP_MAXREDIRECT

set the maximum number of allowed
redirects

a zero value disables automatic
redirects

default: 8

W

54
<ascii
list>

WIP_COPT_HTTP_HEADER

return the HTTP message header
field (or a list of message header
fields) from the last WIPFILE call

default: depends on the HTTP server

R

Caution: Option 54(WIP_COPT_HTTP_HEADER) is not implemented and hence attempt to read this option will
result in +CME ERROR: 834.

5.3.7.4. Options that can be applied to SMTP Session

opt

num

Value

format

Value

type
Option type Description Type

60 digit/string u32/ascii WIP_COPT_SMTP_STATUS_CODE

get last protocol error code
and associated error string

default: NULL string

R

61 string ascii WIP_COPT_SMTP_SENDER
set the sender address

default: NULL string
RW

62 string ascii WIP_COPT_SMTP_SENDERNAME
set the sender name

default: NULL string
RW

63 string ascii WIP_COPT_SMTP_REC
set the recipients list

default: NULL string
RW

64 string ascii WIP_COPT_SMTP_CC_REC
set the CC recipients list

default: NULL string
RW

65 string ascii WIP_COPT_SMTP_BCC_REC
set the BCC recipients list

default: NULL string
RW

66 string ascii WIP_COPT_SMTP_SUBJ
set the mail subject

default: NULL string
RW

67 digit u32 WIP_COPT_SMTP_FORMAT_HEADER

decide if the SMTP library
will format the mail header
or if the application is in
charge of formatting it

0: Application formats mail
header

1: SMTP lib formats mail
header

default: 1

RW

WM_DEV_OAT_UGD_076 Rev 009 February 18, 2011 54

WIPsoft 5.41 IP Protocol Services

Caution: When option WIP_COPT_SMTP_FORMAT_HEADER is set to 0, application can format the mail
header to attach documents (see RFC 2822 for Standard for the Format of ARPA Internet Text
Messages for formatting details). Note that +WIPFILE command is used to send both mail header and
body.

Caution: When option WIP_COPT_SMTP_STATUS_CODE is used to retrieve the error code and the
associated error string for the SMTP session creation, it will not return any error code and error string if
no error occurred during that particular SMTP session creation. For example, After the SMTP session
is created successfully, an attempt to retrieve the error code and the associated error string, using the
option WIP_COPT_SMTP_STATUS_CODE, will result in an error code “0” and the error string
corresponding to the successful case. Create a SMTP session for the second time which will result in
the “+CME ERROR: 840” error code because the session is already active. Now an attempt to retrieve
the error code along with the associated error string, using the option
WIP_COPT_SMTP_STATUS_CODE, will result in error code “0” and the associated error string
because the first SMTP session was successful.

5.3.7.5. Options that can be applied to POP3 Session

opt

num

Value

format

Value

type
Option type Description Type

70 digit/string u32/ascii WIP_COPT_POP3_STATUS_CODE
get last protocol error code and
associated error string

R

71 u32 WIP_COPT_POP3_NB_MAILS

get total number of mails

default: depends on the mails
available in the mail box

R

72 u32 WIP_COPT_POP3_MAILSIZE

get total mail size

default: depends on the mails
available in the mail box

R

73 digit/string ascii not a POP3 wip option

get mail listing

The return value is a list of
strings containing mail ID and
mail size information.

default: depends on the mails
available in the mail box

R

74 u32 not a POP3 wip option

delete the mail ID

The mail ID corresponds to the
mail ID returned by the mail
listing option.

default: depends on the mails
available in the mail box

W

Caution: When option WIP_COPT_POP3_STATUS_CODE is used to retrieve the error code and the
associated error string for the POP3 session creation, it will not return any error code and error string if
no error occurred during that particular POP3 session creation.

For example, after the SMTP session is created successfully, an attempt to retrieve the error code and
the associated error string, using the option WIP_COPT_POP3_STATUS_CODE, will result in an error
code “0” and the error string corresponding to the successful case. Create a POP3 session for the
second time which will result in the “+CME ERROR: 840” error code because the session is already
active. Now an attempt to retrieve the error code along with the associated error string, using the
option WIP_COPT_POP3_STATUS_CODE, will result in error code “0” and the associated error string
because the first POP3 session was successful

WM_DEV_OAT_UGD_076 Rev 009 February 18, 2011 55

WIPsoft 5.41 IP Protocol Services

5.3.7.6. Options that can be applied to MMS sessions

opt

num

Value

format

Value

type

Option type Description Type

80 u32 u32 WIP_MMS_DATE Set the value of the date and time of
the MMS in the following format :

Month/Day/Year Hour:Min:Sec

RW

81 string ascii WIP_MMS_TO_PHONE* Adds a telephone number to the TO
field in the MMS

RW

82 string ascii WIP_MMS_TO_EMAIL* Adds an email address to the TO
field in the MMS

RW

83 string ascii WIP_MMS_CC_PHONE* Adds a telephone number to the CC
field in the MMS

RW

84 string ascii WIP_MMS_CC_EMAIL* Adds an email address to the CC
field in the MMS

RW

85 string ascii WIP_MMS_BCC_PHONE* Adds a telephone number to the
BCC field in the MMS

RW

86 string ascii WIP_MMS_BCC_EMAIL* Adds an email address to the BCC
field in the MMS

RW

87 string ascii WIP_MMS_SUBJECT Set the value of the Subject field in
the MMS

RW

88 See
Table

u32 WIP_MMS_CLASS Set the class of the MMS RW

89 See
Table

u32 WIP_MMS_PRIORITY Set the priority of the MMS RW

90 u32 u32 WIP_MMS_SENDER_VISIBILITY Set the sender visibility of the MMS

show=0 default

hide=1

RW

91 string ascii WIP_MMS_FROM Set the sender of the MMS RW

92 u32 u32 WIP_MMS_MULTIPART_TYPE Set the value of the MMS Multipart
Type via <optval> as u32.

Mixed=0 default.

Related=1.

In the case of “Related” the
presentation file type is sent in
<optval2> as a string and the start
file identification is sent in <optval3>
as a string.

RW

93 See
Table

u32 WIP_MMS_ADD_FILE About to attach a file of type
specified in <optval> as u32, please
see Table 5.3.7.6.1 for possible
values.

The size in Bytes as u32 is sent in
<optval2>.

The file name is sent as a string in
<optval3>

Content-id is sent in <optval4>.

At least one of either file name or
content-id must be set!

W

WM_DEV_OAT_UGD_076 Rev 009 February 18, 2011 56

WIPsoft 5.41 IP Protocol Services

opt

num

Value

format

Value

type

Option type Description Type

94 string ascii WIP_MMS_ADD_FILE_ANY About to attach a file of type
specified in <optval> as a string
using the format of mime-type,

Example “image/xyz”.

The size in Bytes is sent in
<optval2>.

The file name is sent as a string in
<optval3>

Content-id is sent in <optval4>.

At least one of either file name or
content-id must be set.

W

95 u32 u32 WIP_MMS_HTTP_DATA_ENCOD Set the HTTP data transfer encoding

no encoding=0

chunked data transfer encoding=1
default.

RW

96 - WIP_MMS_DONE Sent as the last command to signal
that the MMS sending is considered
done.

This is to catch deadlocks, when for
instance a user misses to send a
last file.

NOTE : Once the MMS is sent,

the +WIPPEERCLOSE: 8,* is

received to indicate that MMS

session is closed. Therefore,

there is no need to issue the

AT+WIPCLOSE command to

close it).

* See the Phone/Mail Option Notes subsections for additional information about this option type.

5.3.7.6.1. Values of <optval> WIP_MMS_CLASS

These are the different types of message class.

optval Option Type

0 PERSONAL default

1 INFORMATIONAL

2 ADVERTISEMENT

3 AUTO

5.3.7.6.2. Values of <optval> WIP_MMS_PRIORITY

These are the different types of priority.

optval Option Type

0 LOW

1 NORMAL default

2 HIGH

WM_DEV_OAT_UGD_076 Rev 009 February 18, 2011 57

WIPsoft 5.41 IP Protocol Services

5.3.7.6.3. Values of <optval> WIP_MMS_ADDFILE

These are the file types that correspond to the values predefined in the MMS header specification.
For other types of file the MIME type has to be explicitly set as a string.

optval Option Type Description

0 UTF8 A text file of type UTF8

1 UTF16 A text file of type UTF16

2 UCS2 A text file of type USC2

3 US_ASCII A text file of type (US) ASCII

4 JPEG An image file of type JPEG

5 GIF An image file of type GIF

6 TIFF An image file of type TIFF

7 PNG An image file of type PNG

8 WBMP An image file of type WBMP

9 SMIL A multimedia presentation of type SMIL

5.3.7.6.4. Phone/Mail Option Notes

5.3.7.6.4.1. Recipients

The total number of recipient (To+Cc+Bcc) must be less than or equal to 12, and for each recipient list
(To or Cc or Bcc), the string length must be less than 250 characters, including "/TYPE=PLMN" in
case of phone recipient type.

5.3.7.6.4.2. Command and Response

When getting WIP_MMS_TO_PHONE/WIP_MMS_TO_MAIL or
WIP_MMS_CC_PHONE/WIP_MMS_CC_MAIL or WIP_MMS_BCC_PHONE/WIP_MMS_BCC_MAIL
string is received in +WIPOPT, the response will include the complete TO or CC or BCC recipient list,
preceded by TYPE/PLMN for phone recipient type. For example:

If you enter
AT+WIPOPT=8,1,2,81,”0683517984” (set WIP_MMS_TO_PHONE option)

then
AT+WIPOPT=8,1,2,82,ovc@sierrawireless.com (set WIP_MMS_TO_MAIL option)

After entering AT+WIPOPT=8,1,1,81 (get WIP_MMS_TO_PHONE option) or AT+WIPOPT=8,1,1,82
(get WIP_MMS_TO_MAIL option), the response will be:

+WIPOPT: 8,82,”0683517984/TYPE=PLMN;ovc@sierrawireless.com”

WM_DEV_OAT_UGD_076 Rev 009 February 18, 2011 58

6. Data Exchange for Protocol
Services

The section deals with the data exchange for the services over TCP/IP. All the commands required for
the data exchange through different services are mentioned in succeeding sections.

6.1. File Exchange +WIPFILE

6.1.1. Description

The +WIPFILE command defines the “file system” services that send a block of data through standard
TCP/IP protocols. This command is used for file transfer/reception.

The data can be transferred using two modes: continuous mode and continuous transparent mode.
The FTP/HTTP/SMTP/MMS protocols support continuous mode of operation. But, continuous
transparent mode is supported only by FTP protocol.

By default, all these protocols transfer data using continuous mode. However, data transfer using FTP
protocol can be configured using <dle_mode> parameter.

Note: There is no <dle_mode> parameter specified in the +WIPFILE command to configure mode of
operation for HTTP/SMTP protocol.

6.1.1.1. [ETX] Escaping Mechanism

In case an [ETX] character needs to be transmitted as data, it should be preceded by [DLE] character.
A single [ETX] character marks the end of transmission. Similarly, [ETX] characters received from the
internet are sent to the host through the serial port preceded by a [DLE] character.

WM_DEV_OAT_UGD_076 Rev 009 February 18, 2011 59

WIPsoft 5.41 Data Exchange for Protocol Services

The above schematic explains how [ETX] characters which have a special meaning in WIPsoft are
handled on Sierra Wireless embedded module.

On transmitting side, when [ETX] characters are escaped by a DLE (use case: Desktop PC1 sends
data to the embedded module. Data contains an [ETX] character escaped by a [DLE] character ([DLE]
[ETX] sequence), then the [ETX] character is transmitted as data.

On the receiving side, when [ETX] character is received as data (use case: The PC2 sends data to
the embedded module. Data contains an [ETX] character), then the [ETX] character will be preceded
by a [DLE] character when it is sent to host through the serial port.

6.1.1.2. [DLE] Escaping Mechanism

In case a [DLE] character needs to be transmitted as data, it should be preceded by another [DLE]
character. A single [DLE] character, not preceded by a [DLE] character will not be transmitted.
Similarly, [DLE] characters received are sent to the host through the serial port preceded by a [DLE]
character.

WCPU1

Desktop PC1

Data sent to PC2:
“ab[DLE][ETX]c[ETX]”

Desktop PC2

Internet

Data received from PC2:
“abc[DLE][ETX]c”

Data received from PC1: “ab[ETX]c”

Data sent to PC1:
“ab[ETX]c”

GSM/GPRS

MAPPED UART

WM_DEV_OAT_UGD_076 Rev 009 February 18, 2011 60

WIPsoft 5.41 Data Exchange for Protocol Services

The above schematic explains how [DLE] characters which have a special meaning in WIPsoft are
handled on Sierra Wireless embedded module.

On the transmitting side, when [DLE] characters are escaped by another [DLE] character (use case:
Desktop PC1 sends data to the embedded module. Data contains a non escaped [DLE] character,
and another escaped [DLE] character ([DLE][DLE] sequence), then the [DLE] character is transmitted
as data. A single [DLE] character is ignored and not transmitted.

On the receiving side, when [DLE] character is received as data (use case: The PC2 sends data to
the embedded module. Data contains an [DLE] character), then the [DLE] character will be preceded
by another [DLE] character when it is sent to host through the serial port.

6.1.2. FTP/HTTP/SMTP Session in Continuous Mode

In continuous mode, an [ETX] character is considered as an end of data. In case an [ETX]/[DLE]
character needs to be transmitted as data, it should be preceded by [DLE] character. Similarly,
[ETX]/[DLE] characters received by the TCP/IP stack from the internet are sent to the host through the
serial port preceded by a [DLE] character.

The mapped UART can be switched back to AT mode either by:

1. sending ETX character

2. sending +++ sequence with 1 second guard time before and after the sequence

3. controlling the DTR signal using AT&D command

When the UART leaves data mode, the currently unsent data are transferred.

WCPU1

Desktop PC1

Data sent to PC2:
“ab[DLE]c[DLE][DLE]d”

Desktop PC2

[GED

Reference]

[GED

Reference]

[GED

Reference]

[GED

Reference]

[GED

Reference]

[GED

Reference]

[GED

Reference]

[GED

Reference]

[GED

Reference]

[GED

Reference]

[GED

Reference]

[GED

Reference]

[GED

Reference]

[GED

Reference]

[GED

Reference]

[GED

Reference]

[GED

Reference]

[GED

Reference]

[GED

Reference]

[GED

Reference]

[GED

Reference]

[GED

Reference]

[GED

Reference]

[GED

Reference]

Internet

Data received from PC2:
“abc[DLE][DLE]d”

[GED Reference]

[GED Reference]

[GED Reference]

[GED Reference]

[GED Reference]

[GED Reference]

[GED Reference]

[GED Reference]

[GED Reference]

[GED Reference]

[GED Reference]

[GED Reference]

[GED Reference]

[GED Reference]

[GED Reference]

[GED Reference]

[GED Reference]

[GED Reference]

Data received from PC1:
“abc[DLE]d”

Data sent to PC1:
“abc[DLE]d”

GSM/GPRS

MAPPED UART

WM_DEV_OAT_UGD_076 Rev 009 February 18, 2011 61

WIPsoft 5.41 Data Exchange for Protocol Services

6.1.3. FTP Session in Continuous Transparent Mode

In this mode, [DLE]/[ETX] characters are considered as normal data and not as special characters. In
case [ETX]/[DLE] character is received, it will not be preceded by a [DLE] character before sending it
to the mapped UART.

The mapped UART can be switched back to AT mode either by,

1. sending +++ sequence with 1 second guard time before and after the sequence

2. controlling the DTR signal using AT&D command

When the UART leaves data mode, the currently unsent data are transferred.

6.1.4. Syntax

 if <protocol>=4

Action Command

AT+WIPFILE=<protocol>,<index>,<mode>,<filename>[,<dle_mode>]

CONNECT

...

OK

 if <protocol>=5

Action Command

AT+WIPFILE=<protocol>,<index>,<mode>,<filename>[,<username>,

<password>][,<headers list>[…]]

CONNECT

...

OK

 if <protocol>=6

Action Command

AT+WIPFILE=<protocol>,<index>,<mode>

CONNECT

...

OK

WM_DEV_OAT_UGD_076 Rev 009 February 18, 2011 62

WIPsoft 5.41 Data Exchange for Protocol Services

 if <protocol>=7

Action Command

AT+WIPFILE=<protocol>,<index>,<mode>,<filename>

CONNECT

...

OK

 if <protocol>=8

Action Command

AT+WIPFILE=<protocol>,<index>,<mode>,[<filename>],[<content-

id>][<lastindicator>]

CONNECT

...

OK

 if <protocol>=5

Unsolicited response

+WIPFILE: 5,<index>,<mode>,<http status code>,<http status

reason>

Read command

AT+WIPFILE?

OK

Test Command

AT+WIPFILE=?

OK

WM_DEV_OAT_UGD_076 Rev 009 February 18, 2011 63

WIPsoft 5.41 Data Exchange for Protocol Services

6.1.5. Parameters and Defined Values

<protocol>: protocol type

 4 FTP

5 HTTP

6 SMTP

7 POP3

8 MMS

<idx>: channel identifier

<mode>: file transfer mode

 1 This command switches the UART to data mode and prints the content of the file
on UART. The end of the file is marked by [ETX] character and UART switches
back to AT mode.

This mode is used for downloading file from the FTP server if <protocol>=4.

This mode is used for downloading data of the specified URL using HTTP GET
method if <protocol>=5.

This mode is used for retrieving mail without deleting it from the POP3 server if
<protocol>=7.

This mode is not supported by SMTP protocol.

2 This command switches the UART to data mode and accepts a stream of data
terminated by [ETX] character.

This mode is used for uploading file to the FTP server if <protocol>=4.

This mode is used for uploading data to the specified URL using HTTP PUT
method if <protocol>=5.

This mode is used for sending mail to the SMTP server if <protocol>=6.

This mode is not supported by POP3 protocol.

3 This mode is used for deleting the specified URL using HTTP DELETE method if
<protocol>=5.

This mode is used for retrieving mail and deletion after retrieval from the POP3
server if <protocol>=7.

This mode is not supported by FTP and SMTP protocol.

4 This command switches the UART in data mode and accepts a stream of data
terminated by [ETX] character.

This mode is used for uploading data to the HTTP server using HTTP POST
method if <protocol>=5.

This mode is not supported by FTP, SMTP and POP3 protocol.

5 This command switches the UART to data mode and accepts a stream of data
terminated by [ETX] character.

This mode is used for uploading file using FTP APPEND method server if
<protocol>=4.

This mode is not supported by other protocols

WM_DEV_OAT_UGD_076 Rev 009 February 18, 2011 64

WIPsoft 5.41 Data Exchange for Protocol Services

6 This mode is used to upload DATA in Data Offline mode
(1)

 (by using
+WIPDATARW command).

This mode is used for uploading files to the FTP server if <protocol>=4.

This mode is used for sending mail to the SMTP server if <protocol>=6.

This mode is not supported by other protocols.

7 This mode is used to download and display DATA in Data Offline mode
(1)

 (by
using +WIPDATARW command).

This mode is used for downloading a file from the FTP server if <protocol>=4.

This mode is used for downloading data of the specified URL using HTTP GET
method if <protocol>=5.

This mode is used for retrieving mail without deleting it from the POP3 server if
<protocol>=7.

This mode is not supported by other protocols.

8 This mode is used for retrieving mail and deleting after retrieval from the POP3
server if <protocol>=7 in Data Offline mode

(1)
 (by using +WIPDATARW

command).

This mode is not supported by other protocols.

9 This mode is used for uploading a file using FTP APPEND method server if
<protocol>=4 in Data Offline mode

(1)
 (by using +WIPDATARW command).

This mode is not supported by other protocols

<filename>: file name

if <protocol>=4: specify the name of the file to upload or download

The maximum file length is limited to 128 characters. The actual filename,
including path name has to be used.

if <protocol>=5: URL of the HTTP request

if <protocol>=7: mail id in string format

if <protocol>=8: the identifier matching the identifier specified in WIPOPT.
Please note that the order of the files sent using WIPFILE must match the order
of the files specified using WIPOPT.

<dle_mode>: Mode to configure continuous/continuous transparent mode

This option specifies whether the file should be uploaded/downloaded using
continuous or continuous transparent mode using FTP protocol. By default the
mode will be set to 0 i.e., continuous mode. If this value is set to 1, data will be
transferred using continuous transparent mode.

Range: 0–1(default value: 0)

<user name>: user name in string format

<password>: Password in string format

<header list>: HTTP header message (name-value pair)

The first string in the message header field is the name of the header and the
second string is the value of the header.

<…> additional HTTP message header fields

more pairs(name, value) of HTTP message header field can be added

<http status code>: HTTP 3 digit status code of the response

<http status reason>: HTTP status reason of the response in string format

<content-id> MMS Content-id header

WM_DEV_OAT_UGD_076 Rev 009 February 18, 2011 65

WIPsoft 5.41 Data Exchange for Protocol Services

<lastindicator> Indicates that the file is the last of the files to send.

1
: See the DATA Offline session +WIPDATARW section for more information.

6.1.6. Parameter Storage

None

6.1.7. Possible Errors

“+CMEE” AT error code Description

800 invalid option

803 operation not allowed in the current WIP stack state

830 bad index

831 bad state

834 not implemented

836 memory allocation error

837 bad protocol

839 error during channel creation

846 internal error: FCM subscription failure

860 protocol undefined or internal error

867 POP3 email retrieving error

868 POP3 email size error

880 SMTP sender email address rejected by server

881 SMTP recipient email address rejected by server

882 SMTP CC recipient email address rejected by server

883 SMTP BCC recipient email address rejected by server

884 SMTP email body send request rejected by server

890 Service denied

891 Message format corrupt

892 Address unresolved

893 Message not found

894 Network problem

895 Content not accepted

896 Unsupported message

897 Unspecified error

WM_DEV_OAT_UGD_076 Rev 009 February 18, 2011 66

WIPsoft 5.41 Data Exchange for Protocol Services

6.1.8. Examples

Command Responses

AT+WIPFILE=4,1,1,”data.bin”

CONNECT

<data received terminated by

[ETX] character>

Note: Download file in continuous mode OK

AT+WIPFILE=4,1,2,”report.log”

CONNECT

<data terminated by [ETX]

character>

Note: Upload file in continuous mode OK

AT+WIPFILE=4,1,5,”report.log”

CONNECT

<data terminated by [ETX]

character>

Note: Upload file in continuous mode; data will be

added at the end of file
OK

AT+WIPFILE=4,1,1,”data.bin”,1

CONNECT

<data>

+++

 OK

Note: Download file in continuous transparent mode
Note; +++ sequence causes the UART to

switch to AT mode

AT+WIPFILE=4,1,2,”report.log”,1

CONNECT

<data>

+++

 OK

Note: Upload file in continuous transparent mode
Note; +++ sequence causes the UART to

switch to AT mode

AT+WIPFILE=4,1,1,”data.bin”,0

CONNECT

<data received terminated by

[ETX] character>

Note: Download file in continuous mode OK

AT+WIPFILE=4,1,2,”report.log”,0

CONNECT

<data terminated by [ETX]

character>

Note: Upload file in continuous mode OK

AT+WIPFILE=5,1,2,”urlForPut”

CONNECT

<data terminated by [ETX]

character>

OK

+WIPFILE:5,1,2,<http status

code>,<http status reason>

WM_DEV_OAT_UGD_076 Rev 009 February 18, 2011 67

WIPsoft 5.41 Data Exchange for Protocol Services

Command Responses

Note: Send a HTTP PUT request to URL

AT+WIPFILE=5,1,3,”urlForDelete”

CONNECT

<data received terminated by

[ETX] character>

OK

+WIPFILE:5,1,3,<http status

code>,<http status reason>

Note: Send a HTTP DELETE request to URL

AT+WIPFILE=5,1,4,”urlForPost”

CONNECT

<data received terminated by

[ETX] character>

OK

+WIPFILE:5,1,4,<http status

code>,<http status reason>

Note: Send a HTTP POST request to URL

AT+WIPFILE=6,1,2

CONNECT

<data sent terminated by

[ETX] character>

OK

Note: Send data mail content

AT+WIPFILE=7,1,1,”15”

CONNECT

<data received terminated by

[ETX] character >

OK

Note: Retrieve data from the given ID
Note: Retrieve mail ID 15

 Mail is not deleted after retrieval

AT+WIPFILE=7,1,3,”1”

CONNECT

<data received terminated by

[ETX] character >

OK

Note: Retrieve data from the given ID
Note: Retrieve mail ID 1 and delete it after

retrieval

6.1.9. Notes

The [ETX] character is considered as an end of data. Hence, in case [ETX] character needs to be
transmitted, it should be preceded by [DLE] character.

For MMS, when sending file data through AT+WIPFILE command, if data size is greater than the one
specified via WIP_MMS_ADD_FILE or WIP_MMS_ADD_FILE_ANY options, the data will be
truncated to said option’s size, and module will leave the data mode. When going back to AT mode,
+WIPFILE: proto,index,size will be received with the size equal to the size of the data that will be
included in the MMS file.

WM_DEV_OAT_UGD_076 Rev 009 February 18, 2011 68

WIPsoft 5.41 Data Exchange for Protocol Services

6.2. Socket Data exchange +WIPDATA

6.2.1. Description

The +WIPDATA command is used to read/write from/to a socket. On successful execution of the
command, the UART switches to data mode. The UART can be switched back to AT mode by
sending “+++” with 1 second guard time before and after the sequence. If data is not read using
+WIPDATA command, further data will be delayed.

An unsolicited event is received when there is a data to read on socket.

Data can be sent on the sockets using two modes

 continuous mode

 continuous transparent mode

Note: When using the UDP protocol, consider that you cannot send more than the
WIP_COPT_RCV_BUFSIZE data receiving buffer size. Based on this, be sure that no data will be
lost, as it depends on the bearer "speed".

6.2.2. Continuous Mode

6.2.2.1. TCP Sockets in Continuous mode

In continuous mode, an [ETX] character is considered as an end of data. When an [ETX] character is
sent on the mapped UART, the TCP socket is shutdown and the peer side is informed of this
shutdown with the indication “[CR][LF]SHUTDOWN[CR][LF]” on the mapped UART.

In case an [ETX]/[DLE] character needs to be transmitted as data, it should be preceded by [DLE]
character. Similarly, [ETX]/[DLE] characters received by the TCP/IP stack from the internet are sent to
the host through the serial port preceded by a [DLE] character.

To close sockets, switch the UART to AT command mode and use +WIPCLOSE command.

6.2.2.2. UDP Sockets in Continuous mode

UDP is a connectionless protocol and hence there is no way to detect or cause a shutdown. However,
an [ETX] character is used to mark the boundaries of datagrams.

All data written on an UDP socket is collected till an [ETX] character is encountered or the maximum
size of the datagram1 is reached and will be sent as a single datagram. Similarly when reading data,

1 Maximum size of an UDP datagram has been fixed to 5904 Bytes. This limit is an arbitrary one. Nevertheless, note that

smaller the datagram is the surer it will reach the aimed destination. Note that UDP is not a reliable transport layer.

WM_DEV_OAT_UGD_076 Rev 009 February 18, 2011 69

WIPsoft 5.41 Data Exchange for Protocol Services

all data will be read till an [ETX] character is encountered which indicates the end of the datagram.
Note that, in this mode, packet segmentation feature is not supported.

In case an [ETX]/[DLE] character needs to be transmitted, it should be preceded by [DLE] character
similar to TCP socket.

When the UART leaves DATA mode, either because of “+++” escape sequence or because of an
AT+WIPDATA=1, index, 0 on another UART, the currently unsent data are sent as a single datagram.

6.2.2.3. [ETX] Escaping Mechanism

The above schematic explains how [ETX] characters – which have a special meaning in WIPsoft – are
handled on Sierra Wireless embedded module.

On transmitting side, when [ETX] are not escaped (use case: Desktop PC1 sends data towards
embedded module. Data contain a non escaped [ETX] ( no [DLE][ETX] sequence), then [ETX] is
not transmitted but an action is done on embedded module regarding the concerned socket:

 UDP socket: a non escaped [ETX] marks the boundary of the current datagram to be sent.
Datagram is immediately sent and the [ETX] is not sent towards the desktop PC2.

 TCP socket: a non escaped [ETX] causes a TCP shutdown operation on the transmitting
direction: peer is informed that embedded module will not send any more data on that socket.
Usually, peer will shutdown the other way (downlink) and this will result in a “peer close event”
on the socket.

On receiving side, when [ETX] are not escaped (use case: embedded module sends data towards
Desktop PC1. Data contain a non escaped [ETX] ( no [DLE][ETX] sequence), then [ETX] means
that a special “IP” event occurred on embedded module regarding the concerned socket:

 UDP socket: a non escaped [ETX] signals the boundary of the current received datagram.

WM_DEV_OAT_UGD_076 Rev 009 February 18, 2011 70

WIPsoft 5.41 Data Exchange for Protocol Services

 TCP socket: a non escaped [ETX] signal that the peer TCP connected TCP unit shutdown the
downlink way. Desktop PC1 should then close the uplink socket to totally terminate the TCP
“session”.

Protocol Mapped UART IP Network (active socket)

UDP Data containing [DLE][ETX] sequence. Data containing [ETX].

UDP [ETX] alone.
Mark the boundary of the UDP Datagram
received/to be transmitted.

TCP Data containing [DLE][ETX] sequence. Data containing [ETX].

TCP [ETX] alone.
Causes/signals a shutdown operation on TCP
socket.

Note: The behavior is symmetrical: apply both on transmitting/receiving side of mapped UART.

WM_DEV_OAT_UGD_076 Rev 009 February 18, 2011 71

WIPsoft 5.41 Data Exchange for Protocol Services

6.2.2.4. [DLE] Escaping Mechanism

A [DLE] character will be sent as data only when it is preceded by another [DLE] character. A single
[DLE] character which is not preceded by a [DLE] character will not be transmitted.

The above schematic explains how [DLE] characters – which have a special meaning in WIPsoft – are
handled on Sierra Wireless embedded module.

On transmitting side, when [DLE] is not escaped (use case: Desktop PC1 sends data towards
embedded module. Data contains a non escaped [DLE] ( no [DLE][DLE] sequence), then [DLE] is
not transmitted.

On transmitting side, when [DLE] is escaped (use case: Desktop PC1 sends data towards embedded
module. Data contain an escaped [DLE] ( [DLE][DLE] sequence) then [DLE] data is transmitted.

On the receiving side (use case: when Desktop PC2 sends data towards embedded module. Data
contains a no escaped [DLE]) the data sent from the embedded module to Desktop PC1 will contain
an escaped [DLE] preceding the [DLE] character (Desktop PC1 receives [DLE][DLE] character from
embedded module).

The scenario is same for both TCP and UDP sockets.

Protocol Mapped UART IP Network (active socket)

UDP Data containing [DLE][DLE] sequence. Data containing [DLE].

WM_DEV_OAT_UGD_076 Rev 009 February 18, 2011 72

WIPsoft 5.41 Data Exchange for Protocol Services

Protocol Mapped UART IP Network (active socket)

UDP [DLE] alone. A single [DLE] is ignored.

TCP Data containing [DLE][DLE] sequence. Data containing [DLE].

TCP [DLE] alone. A single [DLE] is ignored.

6.2.3. Continuous Transparent Mode

6.2.3.1. TCP Sockets in Continuous Transparent Mode

In this mode there is no special meaning associated for [DLE]/[ETX] characters. They are considered
as normal data and all the data will be transmitted on the mapped UART.

6.2.3.2. UDP Sockets in Continuous Transparent Mode

In this mode there is no special meaning associated for [DLE]/[ETX] characters. They are considered
as normal data and all the data will be transmitted on the mapped UART. In case [ETX]/[DLE]
character is received, it will not be preceded by a [DLE] character before sending it to the mapped
UART.

6.2.4. Leaving Continuous /Continuous Transparent
Mode

The UART can be switched back to AT mode

 by sending “+++” with 1 second guard time before and after the sequence

 by sending an AT+WIPDATA=<proto.,<index>,0 on another UART in AT mode

When the UART leaves data mode either because of “+++” escape sequence or because of an
unmapping done on another UART, the currently unsent data are sent as a single datagram.

WM_DEV_OAT_UGD_076 Rev 009 February 18, 2011 73

WIPsoft 5.41 Data Exchange for Protocol Services

6.2.5. Resetting TCP Sockets

A TCP socket is reset when the connection is aborted due to an error on the socket. When the socket
is reset, an [ETX] character is sent on the mapped UART to indicate the end of communication. The
mapped UART switches to AT mode and “+CME ERROR: 843” is displayed on the UART.

6.2.6. Syntax

Action Command

AT+WIPDATA=<protocol>,<idx>,<mode>[,<send size>,<wait time>]

CONNECT

Note: Once the +WIPDATA indication has been received, on peer closed, +WPPEERCLOSE indication
won't be received unless AT+WIPDATA has been sent.

Read Command

AT+WIPDATA?

NONE

Test Command

AT+WIPDATA=?

OK

 if <protocol>=1

Unsolicited response

+WIPDATA: <protocol>,<idx>,<datagram size>,<peer IP>,<peer port>

Caution: Using +WIP AT commands, when receiving several UDP datagrams on an IP bearer, +WIPDATA
indication is sent once for the first received datagram. Next indication (for next remaining UDP
datagram to read) is sent once the first datagram have been read (using +WIPDATA command).

 if <protocol>=2

Unsolicited response

+WIPDATA: <protocol>,<idx>,<number of readable bytes>

Caution: The value returned by <number of readable bytes> indicates that there is some TCP data ready to be
read but number of bytes returned might not be reliable. Moreover, using +WIPAT commands, when
receiving several TCP packets on an IP bearer, +WIPDATA indication is sent once for the first
received packet. The next indication (for the next remaining TCP packet to read) is sent after the first
packet have been read (using +WIPDATA command).

WM_DEV_OAT_UGD_076 Rev 009 February 18, 2011 74

WIPsoft 5.41 Data Exchange for Protocol Services

6.2.7. Parameters and Defined Values

<protocol>: socket type

 1 UDP

2 TCP client

<idx>: socket identifier

<mode>: mode of operation

0 unmap: switch the UART (mapped to continuous mode) to AT mode.

1 continuous: switch the UART

to data mode.

 2 continuous transparent: switch the UART

to data mode. In this mode,[DLE]/[ETX]

characters are considered as normal data and not special characters.

 3 Data Offline: Activate Data Data Offline mode
(1)

 on the specified socket.

In this mode, [DLE]/[ETX] characters are considered as normal data and not special
characters.

<send size>: data packet size: This parameter specifies the size of the data packet that needs to
be sent to the peer. This parameter is supported only for UDP continuous transparent
mode.

range: 8-1460 (default value: 1020)

<wait time>: timeout for configuring the packet segmentation on IP network side: This parameter
specifies the timeout after which the buffered data will be sent to the peer irrespective
of size of the data packet. This parameter is supported only for UDP continuous
transparent mode.

range: 1-100 (default value: 2)

1
: See the DATA Offline session +WIPDATARW section for more information.

6.2.8. Parameter Storage

None

6.2.9. Possible Errors

“+CMEE” AT error code Description

831 bad state

836 memory allocation error

837 bad protocol

843 connection reset by peer

WM_DEV_OAT_UGD_076 Rev 009 February 18, 2011 75

WIPsoft 5.41 Data Exchange for Protocol Services

6.2.10. Examples

Command Responses

AT+WIPDATA=2,5,1

CONNECT

<read/write data>

+++

OK

Note; TCP Client with index 5 can send/read data

in continuous mode

Note; +++ sequence causes the UART to switch to

AT mode

AT+WIPDATA=2,5,1,10,5

CONNECT

<read/write data>

+++

OK

Note; TCP Client with index 5 can send/read data

in continuous mode

Note; +++ sequence causes the UART to switch to

AT mode

AT+WIPDATA=1,5,1

CONNECT

<read/write data>

+++

OK

Note; UDP with index 5 can send/read data in

continuous mode

Note; +++ sequence causes the UART to switch to

AT mode

AT+WIPDATA=1,5,1

CONNECT

<read/write data>

<ETX>

OK

Note; UDP with index 5 can send/read data in

continuous mode
Note; [ETX] character indicates end of data

AT+WIPDATA=1,5,2

CONNECT

<read/write data>

+++

OK
Note; UDP with index 5 can send/read data in

continuous transparent mode with default value

set for <send size> and <wait time>

Note; +++ sequence causes the UART to switch to

AT mode

AT+WIPDATA=1,5,2,20,2

CONNECT

<read/write data>

+++

OK
Note; UDP with index 5 can send/read data in

continuous transparent mode with <send size>

set to 20 and <wait time> set to 2

Note; +++ sequence causes the UART to switch to

AT mode

AT+WIPDATA=2,5,1,20,10

CONNECT

<read/write data>

+++

OK

WM_DEV_OAT_UGD_076 Rev 009 February 18, 2011 76

WIPsoft 5.41 Data Exchange for Protocol Services

Command Responses

 Note: TCP with index 5 can send/read data in

continuous mode with <send size> set to 20 and

<wait time> set to 10

Note; +++ sequence causes the UART to switch to

AT mode

AT+WIPDATA=2,5,2,10,5

CONNECT

<read/write data>

+++

OK
 Note: TCP with index 5 can send/read data in

continuous transparent mode with <send size>

set to 10 and <wait time> set to 5

Note; +++ sequence causes the UART to switch to

AT mode

AT+WIPDATA=2,5,2

CONNECT

<read/write data>

+++

OK

 Note: TCP with index 5 can send/read data in

continuous transparent mode

Note; +++ sequence causes the UART to switch to

AT mode

6.2.11. Notes

6.2.11.1. Continuous Mode (Non Transparent) for a TCP Mapped
Socket

If the [ETX] character is sent from the peer, it is considered as an end of data transfer. After sending
an [ETX] character, the socket will be shutdown and the peer will be informed of this shutdown by a
“[CR][LF]SHUTDOWN[CR][LF]” indication on its mapped UART and the UART does not switch to AT
mode. This indicates that no more data can be sent from the host socket, but it can receive data. The
below schematic shows the shutdown procedure for a TCP socket:

WM_DEV_OAT_UGD_076 Rev 009 February 18, 2011 77

WIPsoft 5.41 Data Exchange for Protocol Services

In the above schematic, a TCP socket is connected. On the transmitting side, data and [ETX] is sent
(use case: Desktop PC1 is a embedded module which sends data to PC2 which is either a PC or a
embedded module), the data is received on PC2 and [ETX] character shutdowns the socket on the
transmitting side and displays a message “[CR][LF]SHUTDOWN[CR][LF]” on the mapped UART of
PC2.

When PC2 is switched back to AT mode, “+WIPPEERCLOSE: <protocol>,<idx>” indication is
received indicating that no more data can be sent by PC1 but can read data sent from PC2.

There are different indications received for shutdown and reset for a TCP socket. When a TCP socket
is reset, [ETX] character is sent on the mapped UART to indicate the end of communication. The
mapped UART switches to AT mode and “+CME ERROR: 843” is displayed on the UART. The reset
and shutdown can therefore be distinguished by the indications received on the UART.

6.2.11.2. Mapping/Unmapping of a Mapped UDP and TCP Socket

When a TCP socket is unmapped and still active, it is possible to map it again in another mode which
is different from the previous one without closing the TCP socket.

The UART switches back to AT mode due to “+++”with 1 second guard time before and after the
sequence or by sending an AT+WIPDATA=<proto>,<index>,0 on another UART in AT mode. This
applies to both UDP and TCP protocols.

When +++ is issued, embedded module switches from DATA mode to AT mode. If ATO command is
used to switch the embedded module back to DATA mode,

 +CME ERROR:3 will be received when GPRS bearer is used

 no response is received when GSM bearer is used

To switch the embedded module back to DATA mode, AT+WIPDATA=x,x,x should be used instead of
ATO. After executing AT+WIPDATA=x,x,x command, “CONNECT” will be received to indicate that the
embedded module is switched back to DATA mode.

Note that un-mapping socket using +WIPDATA command with <send size> and <wait time> specified
results in “ERROR”.

WM_DEV_OAT_UGD_076 Rev 009 February 18, 2011 78

WIPsoft 5.41 Data Exchange for Protocol Services

6.2.11.3. Time out Mechanism to know the state of the Peer TCP
Socket

In a TCP server-client connection between two remote devices if the peer socket is closed down
abruptly (e.g. powered off) the peer TCP socket does not get any indication message. This is a
normal behavior. The TCP protocol uses a timeout mechanism to check the state of the TCP sockets
in a TCP socket connection. According to this mechanism, to know the state of the peer TCP socket
the data needs to be sent and wait for the acknowledgement within a specified time period. If the
acknowledgement is not received within the specified time out period then the data is retransmitted.
But if the time out occurs before receiving acknowledgement then it implies that the peer TCP socket
is closed.

TCP Timeout Period = function (R, N)

Where,

 R = Round trip time. This is the time for a TCP packet to go to the

 remote TCP socket and the time to receive the acknowledgement

 by the transmitter TCP socket. The typical round trip time is 1

 seconds for GPRS.

 N = Number of retransmission allowed before the time out happens.

Hence, the typical timeout period is 10 minutes depending on the network and also the peer TCP
socket localization.

In WIPsoft, to know the state of the peer socket, data needs to be sent. If acknowledgement is not
received within the timeout period then “+CME ERROR: 842” is returned. This indicates that the peer
socket is closed.

Please note that the retransmission of the data to the peer TCP socket within the timeout period is
managed by the WIPlib Plug-In.

6.2.11.4. Packet Segmentation in TCP Socket

The parameters used for packet segmentation can be configured using +WIPDATA or +WIPCFG
command. In case if it is not configured using +WIPDATA command, then the values already set for
option WIP_NET_OPT_TCP_MIN_MSS and AT_WIP_NET_OPT_PREF_TIMEOUT_VALUE will be
used.

Note that if an attempt is made to set data packet size more than twice the value of
WIP_NET_OPT_TCP_MIN_MSS using +WIPDATA command results in “+CME ERROR: 847”.

The data sent to a mapped TCP socket through UART will be buffered before sending it to the peer.
This buffered data will be sent to the peer when:

 total amount of buffered data is twice or more than the preferred segmentation size. The
preferred segmentation size is configurable through the “AT+WIPCFG = 2, 4, <size>”
(WIP_NET_OPT_TCP_MIN_MSS) or +WIPDATA command.

 internal timer expires. The timeout period is configurable through the “AT+WIPCFG =
2,12,<time>” (AT_WIP_NET_OPT_PREF_TIMEOUT_VALUE) or +WIPDATA command.

 socket is unmapped, shut down or closed

In some scenarios, there might be a segmentation of data packets because of timer expiration,
network problems etc. Thus a single packet of data may be received in more than one packet at the
peer

WM_DEV_OAT_UGD_076 Rev 009 February 18, 2011 79

WIPsoft 5.41 Data Exchange for Protocol Services

6.2.11.5. Packet Segmentation in UDP Socket

This feature for UDP is supported only in case of continuous transparent mode. If the +WIPDATA
command is executed in continuous mode to use this feature, “ERROR” will be returned. The
parameters used for packet segmentation can be configured using +WIPDATA command. In case if it
is not configured using +WIPDATA command, default value of these parameters will be used.

The data sent to a mapped UDP socket through UART will be buffered before sending it to the peer.
This buffered data will be sent to the peer when:

 the buffered data size is equal to segmentation size. Note that if the buffered data is greater
than segmentation size, then the data will be written to the channel in chunks of segmentation
size.

 the timer expires

 socket is unmapped or closed

In some scenarios, there might be a segmentation of data packets because of timer expiration,
network problems etc. Thus a single packet of data may be received in more than one packet at the
peer.

WM_DEV_OAT_UGD_076 Rev 009 February 18, 2011 80

WIPsoft 5.41 Data Exchange for Protocol Services

6.3. DATA Offline session +WIPDATARW

This command is used to upload or download data on UART without switching to DATA mode
(CONNECT/OK Online mode) for +WIPDATA and +WIPFILE commands.

DATA offline session starts when AT+WIPDATA command is used with mode (3) or when
AT+WIPFILE command is used with mode (6, 7, 8 or 9). Otherwise +WIPDATARW command can't be
use and returns +CME ERROR 831 error message.

In this mode,[DLE]/[ETX] characters are considered as normal data and not special characters. Data
read or written are in hexadecimal dump format.

6.3.1. Restrictions

 DATA offline feature is not recommended to send or received quickly high data volume. In
this case, the nominal online mode shall be used.

 To improve AT command exchange and behavior, the use of USB com port is recommended.
Otherwise, UART com port buffer threshold shall be decrease with +WHCNF command (see
General AT Command User Guide).

 Be careful for TCP socket (+WIPDATA), a maximum of 5840 bytes can be send. Over this
size data are lost but no error is returned.

 +WIDATARW command should not be used to fill TX sender buffer with more than 5840
bytes (4*1460) for TCP socket.

6.3.2. Syntax

Action abort : <command>= 0

AT+WIPDATARW=<command>,<idx>

+WIPDATARW: <state>,<idx>

OK

Action write : <command>= 1, 2 or 3

AT+WIPDATARW=<command>,<idx>,"<DATA DUMP>"

OK

Unsolicited message <state> = 0 or 1

+WIPDATARW: <state>,<idx>

Unsolicited message <state> = 3

+WIPDATARW: <state>,<idx>,<size>

WM_DEV_OAT_UGD_076 Rev 009 February 18, 2011 81

WIPsoft 5.41 Data Exchange for Protocol Services

Unsolicited message <state> = 2

+WIPDATARW: <state>,<idx>,<nb_block>,<num_block>,"<DATA DUMP>"

+WIPDATARW: <state>,<idx>,<nb_block>,<num_block>,"<DATA DUMP>"

Read Command

AT+WIPDATARW?

OK

Test Command

AT+WIPDATARW=?

OK

6.3.3. Parameters and Defined Values

<command>:

0 Close WIPDATARW session.

1 WRITE and Send: Add DATA in TX buffer then send all data stored in the buffer.

2 WRITE EXT : Add DATA in TX buffer (but buffer is not sent)

 3 WRITE, Send and close: Add DATA in TX buffer, send all data stored in the buffer, then
close the current DATA offline session.

This command is only supported for +WIPDATA session.

<idx> channel identifier

<state>:

0 WIPDATARW session Closed for the channel <idx> specified

1 WIPDATARW session Opened for the channel <idx> specified.

Ready to send or received data

 2 Data reading

 3 Data sent

<DATA DUMP> DATA in hexadecimal format.

To send more than 200 bytes data, use +WIPDATARW with <command> = 2 to add data to buffer
and use for the last block

Data must be written in TX buffer with <command> = 2 by 200 byte block and the last block must be
written with <command> =1 to write it and send the TX buffer.”

Only 200 data bytes can be read or written at a time. DATA received are displayed by 200 byte block
if received data buffer to display is bigger than 200 bytes.

6.3.4. Parameter Storage

None

WM_DEV_OAT_UGD_076 Rev 009 February 18, 2011 82

WIPsoft 5.41 Data Exchange for Protocol Services

6.3.5. Possible Errors

“+CMEE” AT error code Description

800 Invalid option

801 Invalid option value

830 Bad index

831 Bad state

836 Memory allocation error

853 Data offline buffer full

6.3.6. Examples

Command Responses

AT+WIPDATA=1,1,3

(UDP socket have been previously

created)

+WIPDATARW:1,1

OK

Note : exchange data on socket index 1 with

AT Command
Note WIPDATARW session ready on channel idx 1.

AT+WIPDATARW=1,1,"30313233343

536373839"

+WIPDATARW:3,1,10

OK

Note : send 10 data byte on channel idx 1 Note : 10 data bytes had been sent

 +WIPDATA:

1,1,10,"192.168.1.2",1357

+WIPDATARW:2,1,1,1,"313233343536

3738"

OK

 Note : Data dump received on channel idx 1

AT+WIPDATARW=2,1,"30[…]39" OK

Note : Write 200 Data bytes in TX Buffer Note : 200 data bytes are stored in TX Buffer

AT+WIPDATARW=2,1,"30[…]39" OK

Note : Write 200 Data bytes in TX Buffer Note : 200 data bytes are stored in TX Buffer

AT+WIPDATARW=1,1,"3039" +WIPDATARW:3,1,402

OK

Note : Write 2 Data bytes in TX Buffer and

send buffer.

Note : 402 data bytes have been sent

AT+WIPDATARW=0,1 +WIPDATARW:0,1

OK

WM_DEV_OAT_UGD_076 Rev 009 February 18, 2011 83

WIPsoft 5.41 Data Exchange for Protocol Services

Note : Close WIPDATARW session on channel

idx 1

AT+WIPDATARW=1,1,"30313233343

536373839"

+CME ERROR: 831

Note : try to send 10 bytes on channel index 1 Note : WIPDATARW session is not open in channel

idx 1

AT+WIPFILE=4,2,6,”./filename.

txt”

+WIPDATARW:1,2

OK

Note : Start data offline session for uploading

file “filename.txt”

AT+WIPDATARW=1,2,"30313233343

536373839"

+WIPDATARW:4,2,10

+WIPDATARW:0,2

OK

Note : Upload data

Note : 10 bytes uploaded

WIPDATARW session closed on channel idx 2

AT+WIPFILE=4,2,7,”./filename.

txt”

+WIPDATARW:3,2,2,1,"31[…]"

+WIPDATARW:3,2,2,2,"31[…]"

+WIPDATARW:0,2

OK
Note : Download and display “filename.txt”

file
Note : More than 200 data downloaded

WIPDATARW session closed on channel idx 2

WM_DEV_OAT_UGD_076 Rev 009 February 18, 2011 84

7. Ping Services

7.1. PING command +WIPPING

7.1.1. Description

The +WIPPING command is used to configure different PING parameters and to send PING requests.
An unsolicited response is displayed each time a “PING” echo event is received or a timeout expires.

7.1.2. Syntax

Action Command

AT+WIPPING=<host>,[<repeat>,<interval>,[<timeout>,[<nwrite>,[<tt

l>]]]]

OK

Read Command

AT+WIPPING?

OK

Test Command

AT+WIPPING=?

OK

Unsolicited response

+WIPPING:<timeout_expired>,<packet_idx>,<response_time>

WM_DEV_OAT_UGD_076 Rev 009 February 18, 2011 85

WIPsoft 5.41 Ping Services

7.1.3. Parameters and Defined Values

<host>: host name or IP address

string

<repeat>: number of packets to send

range: 1-65535 (default value:1)

<interval>: number of milliseconds between packets

range: 1-65535 (default value:2000)

<timeout>: number of milliseconds before a packet is considered lost

range: 1-65535 (default value:2000)

<ttl>: IP packet Time To Live.

Default value is set by WIP_NET_OPT_IP_TTL +WIPCFG option

range : 0-255

<nwrite>: size of packets

range : 1-1500 (default value:64)

<timeout_expired>: PING result

0: PING response received before <timeout>

1: <timeout> expired before the response was received

<packet_idx>: packet index in the sequence

<response_time>: PING response time in millisecond

7.1.4. Parameter Storage

None

7.1.5. Possible Errors

“+CMEE” AT error code Description

800 invalid option

801 invalid option value

819 error on ping channel

WM_DEV_OAT_UGD_076 Rev 009 February 18, 2011 86

WIPsoft 5.41 Ping Services

7.1.6. Examples

Command Responses

AT+WIPPING=”www.sierrawireless.com”
OK

+WIPPING: 1,0,0

Note: Ping “www.sierrawireless.com”
Note: Ping “www.sierrawireless.com failed

: timeout expired

AT+WIPPING=”192.168.0.1”
OK

+WIPPING: 0,0,224

Note: Ping ”192.168.0.1”
Note: Ping “192.168.0.1 succeeded. Ping

response received in 224 ms

AT+WIPPING=”192.168.0.1”,2,2000,1000

OK

+WIPPING: 0,0,880

+WIPPING: 1,1,xxxx

Note: Send 2 successive ping requests to ”192.168.0.1”.

Each Ping is every 2000 ms, timeout is set to 1000 ms (if

ping responses time is more than 1000 ms then timeout

expires)

Note: Ping “192.168.0.1 succeeded. First

Ping response received in 880 ms. Second

one was not received before specified

timeout (1000 ms)  timeout expired

WM_DEV_OAT_UGD_076 Rev 009 February 18, 2011 87

8. WIPsoft Library API

The WIPsoft Application provides a comprehensive and flexible environment to use the IP feature
using AT commands. The WIPsoft Application is an application and it uses the WIPlib Plug-In as the
TCP/IP protocol stack. Hence when the WIPsoft application executed no other application can be
executed in the embedded module. WIPsoft API allow customer application to subscribe for AT+WIP
commands

Customer application can subscribe to AT+WIP commands using WIPsoft library API. This feature
allows customer application to use ADL services with WIPsoft services. Note that concurrent access
to IP stack from WIPsoft library and WIP library results in unpredictable events and behavior. Hence it
is recommended to us either WIPsoft library API or WIP library at a time but not both at the same
time.

The FCM flow, through which the WIP AT commands are executed, is subscribed by the WIPsoft
library to transfer data between the embedded module and the external device. Hence, if the WIPsoft
library is subscribed from the application, same FCM flow should not be subscribed from the same
application.

8.1. Required Header File

The header file for the WIP AT command interface is wip_atcmd.h.

8.2. The wip_ATCmdSubscribe Function

The wip_ATCmdSubscribe function subscribes to +WIPCFG, +WIPBR, +WIPPING, +WIPCREATE,
+WIPDATA, +WIPFILE, +WIPOPT AT commands provided by WIPsoft.

8.2.1. Prototype

s32 wip_ATCmdSubscribe (void);

8.2.2. Parameters

None

8.2.3. Returned Values

The function returns

 0 on success

 negative error code on failure as described below:

Error Code Description

-1 subscription for WIP AT commands fails

-2 WIP AT commands already subscribed

WM_DEV_OAT_UGD_076 Rev 009 February 18, 2011 88

WIPsoft 5.41 WIPsoft Library API

8.3. The wip_ATCmdUnsubscribe Function

The wip_ATCmdUnsubscribe function unsubscribes to +WIPCFG, +WIPBR, +WIPPING,
+WIPCREATE, +WIPDATA, +WIPFILE, +WIPOPT AT commands provided by WIPsoft.

8.3.1. Prototype

s32 wip_ATCmdUnsubscribe (void);

8.3.2. Parameters

None

8.3.3. Returned Values

The function returns

 0 on success

 negative error code on failure as described below:

Error Code Description

-3 WIP AT commands already unsubscribed

-4 un-subscription for WIP AT commands fails

WM_DEV_OAT_UGD_076 Rev 009 February 18, 2011 89

9. Examples of Application

9.1. TCP Socket

9.1.1. TCP Server Socket

9.1.1.1. Using GPRS bearer

AT+WIPCFG=1

OK

//start IP stack

AT+WIPBR=1,6

OK

//open GPRS bearer

AT+WIPBR=2,6,11,”APN name”

OK

//set APN name of GPRS bearer

AT+WIPBR=2,6,0,”user name”

OK

//set user name (<login>)

AT+WIPBR=2,6,1,”passwd”

OK

//set password (<password>)

AT+WIPBR=4,6,0

OK

//start GPRS bearer

AT+WIPCREATE=3,1,80,5,8

OK

//create the server on port 80, idx = 1. The server

//is listening for connection request on port

//80.Spawned sockets will be given the index 5,

//6, 7 and 8. It will accept connection request

//until it has no more socket left.

+WIPACCEPT: 1,5 //unsolicited: the server accepted a connection

//resulting TCP client on idx 5.

AT+WIPDATA=2,5,1

CONNECT

//exchange data on socket index 5

… //read, write

+++ //switch to AT mode

OK

AT+WIPCLOSE=2,5

OK

//close the TCP client socket index 5

WM_DEV_OAT_UGD_076 Rev 009 February 18, 2011 90

WIPsoft 5.41 Examples of Application

9.1.1.2. Using GSM bearer

AT+WIPCFG=1

OK

//start IP stack

AT+WIPBR=1,5

OK

//open GSM bearer

AT+WIPBR=2,5,2,”Phone number”

OK

//set phone number for GSM bearer

AT+WIPBR=2,5,0,”user name”

OK

//set user name

AT+WIPBR=2,5,1,”passwd”

OK

//set password

AT+WIPBR=4,5,0

OK

//start GSM bearer

AT+WIPCREATE=3,1,80,5,8

OK

//create the server on port 80, idx = 1. The server

//is listening for connection request on port

//80.Spawned sockets will be given the index 5,

//6, 7 and 8. It will accept connection request

//until it has no more socket left.

+WIPACCEPT: 1,5 //unsolicited: the server accepted a connection

//resulting TCP client on idx 5

AT+WIPDATA=2,5,1

CONNECT

//exchange data on socket idx 5

… //read, write

+++ //switch to AT mode

OK

AT+WIPCLOSE=2,5

OK

//close the TCP client socket index 5

WM_DEV_OAT_UGD_076 Rev 009 February 18, 2011 91

WIPsoft 5.41 Examples of Application

9.1.2. TCP Client Socket

9.1.2.1. Using GPRS Bearer

AT+WIPCFG=1

OK

//start IP stack

AT+WIPBR=1,6

OK

//open GPRS bearer

AT+WIPBR=2,6,11,”APN name”

OK

//set APN name of GPRS bearer

AT+WIPBR=2,6,0,”user name”

OK

//set user name

AT+WIPBR=2,6,1,”passwd”

OK

//set password

AT+WIPBR=4,6,0

OK

//start GPRS bearer

AT+WIPCREATE=2,1,”ip addr”,80 //create a TCP client towards peer IP device @ “ip

//addr”, port 80.

OK //all parameters and IP stack behavior are OK.

+WIPREADY: 2,1 //unsolicited: the TCP client socket is connected

//to the peer

AT+WIPDATA=2,1,1

CONNECT

//exchange data on socket idx 1:

… //read, write

+++ //switch to AT mode

OK

AT+WIPCLOSE=2,1

OK

//close the TCP client socket index 1

WM_DEV_OAT_UGD_076 Rev 009 February 18, 2011 92

WIPsoft 5.41 Examples of Application

9.1.2.2. Using GSM Bearer

AT+WIPCFG=1

OK

//start IP stack

AT+WIPBR=1,5

OK

//open GSM bearer

AT+WIPBR=2,5,2,”Phone number”

OK

//set phone number for GSM bearer

AT+WIPBR=2,5,0,”user name”

OK

//set user name

AT+WIPBR=2,5,1,”passwd”

OK

//set password

AT+WIPBR=4,5,0

OK

//start GSM bearer

AT+WIPCREATE=2,1,”ip addr”,80 //create a TCP client towards peer IP device @ “ip

//addr”, port 80

OK //all parameters and IP stack behavior are OK

+WIPREADY: 2,1 //unsolicited: the TCP client socket is connected to

//the peer

AT+WIPDATA=2,1,1

CONNECT

//exchange data on socket idx 1

… //read, write

+++ //switch to AT mode

OK

AT+WIPCLOSE=2,1

OK

//close the TCP client socket index 1

WM_DEV_OAT_UGD_076 Rev 009 February 18, 2011 93

WIPsoft 5.41 Examples of Application

9.2. UDP Socket

AT+WIPCFG=1

OK

//start IP stack

AT+WIPBR=1,6

OK

//open GPRS bearer

AT+WIPBR=2,6,11,”APN name”

OK

//set APN name of GPRS bearer

AT+WIPBR=2,6,0,”user name”

OK

//set user name

AT+WIPBR=2,6,1,”passwd”

OK

//set password

AT+WIPBR=4,6,0

OK

//start GPRS bearer

AT+WIPCREATE=1,1,80,”www.sierr

awireless.com”,80

//create a UDP client towards peer IP device @

//“www.sierrawireless.com” , port 80

OK //all parameters and IP stack behavior are OK

+WIPREADY: 1,1 //unsolicited: the UDP client socket is “pseudo”

//connected to the peer (no //real connection is

UDP)

AT+WIPDATA=1,1,1

CONNECT

//exchange data on socket idx 1:

… //read, write

+++ //switch to AT mode

OK

AT+WIPCLOSE=1,1

OK

//close the UDP socket index 1

AT+WIPCREATE=1,1,1234 //start a UDP server and listen for datagram on port

//1234

OK //all parameters and IP stack //behavior are OK

+WIPREADY: 1,1 //unsolicited: the UDP client socket is “pseudo”

//connected to the peer (no real connection is UDP)

+WIPDATA:

1,1,25,"192.168.0.2",2397

//one datagram is ready to be read : it was sent

from //192.168.0.2 on port //2397 and is composed

of 25 //bytes

AT+WIPDATA=1,1,1

WM_DEV_OAT_UGD_076 Rev 009 February 18, 2011 94

WIPsoft 5.41 Examples of Application

CONNECT

abcedghijklmnopqrstuvwxyz[ETX] //here 25 bytes + the [ETX] character (marking the

//bound of the datagram) have been read.

+++ or AT+WIPDATA=1,1,0 //type on this UART “+++” escape sequence or un

//map the UART on other control port (USB UART)

OK //here UART is back to AT command mode. If some

//other remote IP devices sent some one or more

//datagrams while reading for the first one, then a

//new datagram indication is received

+WIPDATA:

1,1,50,"192.168.0.4",58

//one datagram is ready to be read : it was sent

from //192.168.0.4 on port 58 and is composed of

50 //bytes

AT+WIPDATA=1,1,1

CONNECT

abcedghijklmnopqrstuvwxyzabced

ghijklmnopqrstuvwxyz [ETX]

//here 25 bytes + the [ETX] character (marking the

//bound of the datagram) have been read.

WM_DEV_OAT_UGD_076 Rev 009 February 18, 2011 95

WIPsoft 5.41 Examples of Application

9.3. PING

AT+WIPCFG=1

OK

//start IP stack

AT+WIPBR=1,6

OK

//open GPRS bearer

AT+WIPBR=2,6,11,”APN name”

OK

//set APN name of GPRS bearer

AT+WIPBR=2,6,0,”user name”

OK

//set user name

AT+WIPBR=2,6,1,”passwd”

OK

//set password

AT+WIPBR=4,6,0

OK

//start GPRS bearer

AT+WIPPING=”192.168.0.1”

OK

+WIPPING:0,0,224

//start PING session

WM_DEV_OAT_UGD_076 Rev 009 February 18, 2011 96

WIPsoft 5.41 Examples of Application

9.4. FTP

AT+WIPCFG=1

OK

//start IP stack

AT+WIPBR=1,6

OK

//open GPRS bearer

AT+WIPBR=2,6,11,”APN name”

OK

//set APN name of GPRS bearer

AT+WIPBR=2,6,0,”user name”

OK

//set user name

AT+WIPBR=2,6,1,”passwd”

OK

//set password

AT+WIPBR=4,6,0

OK

//start GPRS bearer

AT+WIPCREATE=4,1,”FTP

server”,21,”username”,”passwd”

OK

//create FTP session

AT+WIPFILE=4,1,2,”./filename.txt”

CONNECT

<data>

[ETX]

OK

//upload file “filename.txt”

AT+WIPFILE=4,1,1,”./filename.txt”

CONNECT

<data>

[ETX]

OK

//download file “filename.txt”

WM_DEV_OAT_UGD_076 Rev 009 February 18, 2011 97

WIPsoft 5.41 Examples of Application

9.5. FTP DATA Offline

AT+WIPCFG=1

OK

//start IP stack

AT+WIPBR=1,6

OK

//open GPRS bearer

AT+WIPBR=2,6,11,”APN name”

OK

//set APN name of GPRS bearer

AT+WIPBR=2,6,0,”user name”

OK

//set user name

AT+WIPBR=2,6,1,”passwd”

OK

//set password

AT+WIPBR=4,6,0

OK

//start GPRS bearer

AT+WIPCREATE=4,1,”FTP

server”,21,”username”,”passwd”

OK

//create FTP session

AT+WIPFILE=4,1,6,”./filename.txt”

+WIPDATARW: 1,1

OK

//upload file “filename.txt”

AT+WIPDATARW=1,1,"30313233343536373839"

+WIPDATARW: 3,1,10

+WIPDATARW: 0,1

OK

//upload data file

// 10 data bytes sent

// WIPDATARW session closes on

channel idx 1

AT+WIPFILE=4,1,7,”./filename.txt”

+WIPDATARW: 2,1,2,1,"3132333435[…]"

+WIPDATARW: 2,1,2,2,"3132333435[…]"

+WIPDATARW: 0,1

OK

//download and dump “filename.txt”

file

WM_DEV_OAT_UGD_076 Rev 009 February 18, 2011 98

WIPsoft 5.41 Examples of Application

9.6. HTTP

AT+WIPCFG=1

OK

//start IP stack

AT+WIPBR=1,6

OK

//open GPRS bearer

AT+WIPBR=2,6,11,”APN name”

OK

//set APN name of GPRS bearer

AT+WIPBR=2,6,0,”user name”

OK

//set user name

AT+WIPBR=2,6,1,”passwd”

OK

//set password

AT+WIPBR=4,6,0

OK

//start GPRS bearer

AT+WIPCREATE=5,1,”www.siteaddress

.com”,81,”username”,”password”,”h

eader name”,” header value”

OK

+WIPREADY: 5,1

//connect to remote HTTP proxy server port 81

//with authentication and some header fields

//connection and authentication are successful

AT+WIPOPT=5,1,1,51

+WIPOPT:5,51,<sender buffer size>

OK

//get size of the TCP send buffer size

//get option successful

AT+WIPOPT=5,1,2,53,6

OK

//set maximum number of redirects

AT+WIPFILE=5,1,1,”urlForGet”,”use

rname”,”password”,”Accept”,”text/

html”,”Transfer-

codings”,”compress”

CONNECT

<user starts getting the mail

with the UART in data mode and

ends with an [ETX] >

OK

+WIPFILE: 5,1,1,255,”Found”

//HTTP GET method

//unsolicited string on the HTTP status code

//and reason

WM_DEV_OAT_UGD_076 Rev 009 February 18, 2011 99

WIPsoft 5.41 Examples of Application

9.7. SMTP

AT+WIPCFG=1

OK

//start IP stack

AT+WIPBR=1,6

OK

//open GPRS bearer

AT+WIPBR=2,6,11,”APN name”

OK

//set APN name of GPRS bearer

AT+WIPBR=2,6,0,”user name”

OK

//set user name

AT+WIPBR=2,6,1,”passwd”

OK

//set password

AT+WIPBR=4,6,0

OK

//start GPRS bearer

AT+WIPCREATE=6,1,”192.168.1.2”,25

,”user”,”password”

OK

+WIPREADY: 6,1

//connect to remote SMTP server

//connection and authentication are successful

WM_DEV_OAT_UGD_076 Rev 009 February 18, 2011 100

WIPsoft 5.41 Examples of Application

AT+WIPOPT=6,1,2,61,”sender@mail.c

om”

OK

//set sender mail address

AT+WIPOPT=6,1,2,62,”sender name”

OK

//set sender name

AT+WIPOPT=6,1,2,63,”

rec01@mail.com, rec02@mail.com”

OK

//set receiver mail address

AT+WIPOPT=6,1,2,64,”ccrec01@mail.

com, ccrec02@mail.com”

OK

//set CC receiver mail address

AT+WIPOPT=6,1,2,65,”bccrec01@mail

.com, bccrec02@mail.com”

OK

//set BCC mail address

AT+WIPOPT=6,1,2,66,”mail subject”

OK

//set mail subject

AT+WIPFILE=6,1,2

CONNECT

<user starts sending mail with

the UART in data mode and ends

with an [ETX] character >

OK

//send mail

mailto:rec02@mail.com

WM_DEV_OAT_UGD_076 Rev 009 February 18, 2011 101

WIPsoft 5.41 Examples of Application

9.8. POP3

AT+WIPCFG=1

OK

//start IP stack

AT+WIPBR=1,6

OK

//open GPRS bearer

AT+WIPBR=2,6,11,”APN name”

OK

//set APN name of GPRS bearer

AT+WIPBR=2,6,0,”user name”

OK

//set user name

AT+WIPBR=2,6,1,”passwd”

OK

//set password

AT+WIPBR=4,6,0

OK

//start GPRS bearer

AT+WIPCREATE=7,1,”192.168.1.2”,11

0,”user”,”password”

OK

+WIPREADY: 7,1

//connect to remote POP3 server

//connection and authentication are successful

AT+WIPOPT=7,1,1,71

+WIPOPT: 7,71,10

OK

//get total number of mails

AT+WIPOPT=7,1,1,72

+WIPOPT: 7,72,124000

OK

//get total mail size

AT+WIPFILE=7,1,1,”5”

CONNECT

<user starts getting the mail

with the UART in data mode and

ends with an [ETX] >

OK

//retrieve mail id 5

WM_DEV_OAT_UGD_076 Rev 009 February 18, 2011 102

WIPsoft 5.41 Examples of Application

AT+WIPFILE=7,1,3,”1”

CONNECT

<user starts getting the mail

with the UART in data mode and

ends with an [ETX] >

OK

//retrieve mail id 1 and delete it from the server

//after retrieving

WM_DEV_OAT_UGD_076 Rev 009 February 18, 2011 103

WIPsoft 5.41 Examples of Application

9.9. MMS

Example of sending an MMS with multiple recipients and multiple files with the same extensions.

Please note that files are not buffered, but sent directly to the MMS Server.

Detailed information about the files is needed for the headers before and must be set for each file
using WIPOPT before sending the file via WIPFILE.

AT+WIPCFG=1

OK

//start IP stack

AT+WIPBR=1,6

OK

//open GPRS bearer

AT+WIPBR=2,6,11,"orange.fr"

OK

//set APN name of GPRS bearer

AT+WIPBR=2,6,0,"user name"

OK

//set user name

AT+WIPBR=2,6,1,"passwd"

OK

//set password

AT+WIPBR=4,6,0

OK

//start GPRS bearer

AT+WIPCREATE=8,1,

"192.168.10.200",8080,

"http://mms.orange.fr"

OK

//create the connection to the MMS server.

AT+WIPOPT=8, 1, 2, 82, "Mr,Smith

<smith@example.com>"

OK

//add email address to the TO field.

http://mms.orange.fr/

WM_DEV_OAT_UGD_076 Rev 009 February 18, 2011 104

WIPsoft 5.41 Examples of Application

AT+WIPOPT=8,1,2,83,"+33623456789"

OK

//add telephone number to the CC field.

AT+WIPOPT=8,1,2,83,"0654321987"

OK

//add telephone number to the CC field.

AT+WIPOPT=8,1,2,86, "X <x@y.com>"

OK

// add email address to the BCC field.

AT+WIPOPT=8,1,2,92,1,

"application/smil","<001>"

OK

// set the multipart type to Related and specify

that the first file that should be read is a type

SMIL with the content-id “<001>”

AT+WIPOPT=8,1,2,93,9,100,

"1.smil", "<001>"

OK

// add a SMIL multimedia presentation file of

size 100 Bytes with filename “1.smil” and

content-id “<001>”

AT+WIPOPT=8,1,2,93,2,222,"2.txt",

OK

// add a text file of type USC2 of size 222 bytes

with the filename “2.txt” but no content-id.

AT+WIPOPT=8,1,2,93,3,304,,<003>"

OK

// add a text file of type ASCII of size 304 Bytes

with no filename but content-id “<003>”.

AT+WIPOPT=8,1,2,93,4,1024,"4.jpeg"

,"<004>"

OK

// add a JPEG picture of size 1024 Bytes with

the filename “4.jpeg” and content-id “<004>”.

AT+WIPOPT=8,1,2,93,5,2048,"5.gif",

"<005>"

OK

// add a GIF picture of size 2048 Bytes with

the filename “5.gif” and content-id “<005>”.

AT+WIPOPT=8,1,2,94,"audio/xyz",

128,"6.xyz","<XYZ>"

OK

// add a file of a content type specified in the

string of size 128 Bytes with the filename

“6.xyz” and content-id “<XYZ>”.

 // NOW SEND THE CONTENT OF THE FILES IN

THE SAME ORDER!

AT+WIPFILE=8,1,2,"1.smil","<001>"

CONNECT

<user starts sending the file with

the UART in data mode and ends

with an [ETX] character >

OK

// send the SMIL file previously specified by

WIPOPT.

WM_DEV_OAT_UGD_076 Rev 009 February 18, 2011 105

WIPsoft 5.41 Examples of Application

AT+WIPFILE=8,1,2,"2.txt",

CONNECT

<user starts sending the file with

the UART in data mode and ends

with an [ETX] character >

OK

// send the TXT file previously specified by

WIPOPT.

AT+WIPFILE=8,1,2,,"<003>"

CONNECT

<user starts sending the file with

the UART in data mode and ends

with an [ETX] character >

OK

// send the TXT file previously specified by

WIPOPT.

AT+WIPFILE=8,1,2,"4.jpeg","<004>"

CONNECT

<user starts sending the file with

the UART in data mode and ends

with an [ETX] character >

OK

// send the JPEG previously specified by

WIPOPT.

AT+WIPFILE=8,1,2,"5.gif", "<005>"

CONNECT

<user starts sending the file with

the UART in data mode and ends

with an [ETX] character >

OK

// send the GIF previously specified by

WIPOPT.

AT+WIPFILE=8,1,2,"6.xyz","<XYZ>"

CONNECT

<user starts sending the file with

the UART in data mode and ends

with an [ETX] character >

OK

// send the XYZ file previously specified by

WIPOPT.

AT+WIPOPT=8,1,2,96

OK

// send WIP_MMS_DONE to signal that the

users has sent the last file. This is to avoid

deadlock errors where the user missed to send

a file.

+WIPACCEPT: 1,5 //unsolicited: the server accepted a connection

and the MMS was sent successfully.

AT+WIPCLOSE=8,1

OK

Close the connection to the server.

WM_DEV_OAT_UGD_076 Rev 009 February 18, 2011 106

WIPsoft 5.41 Examples of Application

9.10. Creating a TCP Server, spawning the
maximum TCP Socket (for the configured
Server)

AT+WIPCFG=1

OK

//start IP stack

AT+WIPBR=1,6

OK

//open GPRS bearer

AT+WIPBR=2,6,11,”APN name”

OK

//set APN name of GPRS bearer

AT+WIPBR=2,6,0,”user name”

OK

//set user name

AT+WIPBR=2,6,1,”passwd”

OK

//set password

AT+WIPBR=4,6,0

OK

//start GPRS bearer

AT+WIPCREATE=3,1,80,5,6

OK

//create the server on port 80, idx = 1. The

//server is listening for connection request on

//port 80.Spawned sockets will be given the

//index 5 or 6. It will accept connection request

//until it has no more socket left.

+WIPACCEPT: 1,5 //unsolicited: the server accepted a connection

//resulting TCP client on idx 5.

+WIPACCEPT: 1,6 //unsolicited: the server accepted a connection

//resulting TCP client on idx 6.

AT+WIPCLOSE=2,5 //close the spawned TCP client socket index 5.

OK //now if the peer device try to connect to the

//server it shall receive an accept () immediately

///followed by an shutdown() (connection reset

//by peer)

WM_DEV_OAT_UGD_076 Rev 009 February 18, 2011 107

WIPsoft 5.41 Examples of Application

9.11. Creating a Server and try to create a TCP
Client/Server on a reserved index (reserved by
the Server) will fail.

AT+WIPCFG=1

OK

//start IP stack

AT+WIPBR=1,6

OK

//open GPRS bearer

AT+WIPBR=2,6,11,”APN name”

OK

//set APN name of GPRS bearer

AT+WIPBR=2,6,0,”user name”

OK

//set user name

AT+WIPBR=2,6,1,”passwd”

OK

//set password

AT+WIPBR=4,6,0

OK

//start GPRS bearer

AT+WIPCREATE=3,2,80,1,2

OK

//create the server on port 80, idx=2. The server

//is listening for connection request on port 80.

//Spawned sockets will be given the index 1 or

//2.It will accept connection request until has

//nor more socket left.

AT+WIPCREATE=2,3,”198.168.0.1”,80 //create a TCP client towards peer IP device @

//“198.168.0.1”, port 80,

OK //all parameters and IP stack behavior are OK.

+WIPREADY: 2,3 //unsolicited: the TCP client socket is connected

//to the peer.

+WIPACCEPT: 2,1 //unsolicited: the server index accepted a

//connection; resulting TCP client on idx 1

AT+WIPDATA=2,3,1

CONNECT

//exchange data on socket index 3

AT+WIPDATA=2,1,1

CONNECT

//exchange data on socket index 1

[ETX] //send unescaped ETX character

+WIPPEERCLOSE: 2,3 //unsolicited: peer socket is closed

AT+WIPCLOSE=3,1

OK

//close TCP server socket index 1

WM_DEV_OAT_UGD_076 Rev 009 February 18, 2011 108

WIPsoft 5.41 Examples of Application

AT+WIPCREATE=3,2,81,2,3 //create the server on port 81, idx=2 and

from_idx=2 and to_idx=3

+CME ERROR:845 //TCP client socket with idx 2 was reserved by

//the previous server socket and it was not

//closed explicitly. Hence error is returned.

WM_DEV_OAT_UGD_076 Rev 009 February 18, 2011 109

WIPsoft 5.41 Examples of Application

9.12. Create a TCP Client and try to create a TCP
Server with indexes range containing TCP
Client will fail.

AT+WIPCFG=1

OK

//start IP stack

AT+WIPBR=1,6

OK

//open GPRS bearer

AT+WIPBR=2,6,11,”APN name”

OK

//set APN name of GPRS bearer

AT+WIPBR=2,6,0,”user name”

OK

//set user name

AT+WIPBR=2,6,1,”passwd”

OK

//set password

AT+WIPBR=4,6,0

OK

//start GPRS bearer

AT+WIPCREATE=2,1,”198.168.0.1”,80 //create a TCP client towards peer IP device @

//“198.168.0.1”, port 80

OK //all parameters and IP stack behavior are OK.

+WIPREADY: 2,1 //unsolicited: the TCP client socket is connected

//to the peer.

AT+WIPCREATE=3,2,80,1,2

+CME ERROR: 845

//create the server on port 80, idx=2. Range

//requested contains the already used index

//“1” and hence error is returned.

WM_DEV_OAT_UGD_076 Rev 009 February 18, 2011 110

WIPsoft 5.41 Examples of Application

9.13. Creating 8 UDP sockets, 8 TCP clients and 4
TCP servers.

AT+WIPCFG=1

OK

//start IP stack

AT+WIPBR=1,6

OK

//open GPRS bearer

AT+WIPBR=2,6,11,”APN name”

OK

//set APN name of GPRS bearer

AT+WIPBR=2,6,0,”user name”

OK

//set user name

AT+WIPBR=2,6,1,”passwd”

OK

//set password

AT+WIPBR=4,6,0

OK

//start GPRS bearer

AT+WIPCREATE=1,1,55,”192.168.0.1”

,75

//create a UDP client towards peer IP device @

//“192.168.0.1”, port 75.

OK //all parameters and IP stack behavior are OK.

+WIPREADY: 1,1 //unsolicited: the UDP client socket is “pseudo

//”connected to the peer (no real connection is

// UDP)

AT+WIPCREATE=1,2,56,”192.168.0.1”

,76

//create a UDP client towards peer IP device @

//“192.168.0.1”, port 76.

OK //all parameters and IP stack behavior are OK.

+WIPREADY: 1,2 //unsolicited: the UDP client socket is “pseudo

//”connected to the peer (no real connection is

// UDP)

AT+WIPCREATE=1,3,57,”192.168.0.1”

,77

//create a UDP client towards peer IP device @

//“192.168.0.1”, port 77.

OK //all parameters and IP stack behavior are OK.

+WIPREADY: 1,3 //unsolicited: the UDP client socket is “pseudo

//”connected to the peer (no real connection is

// UDP)

AT+WIPCREATE=1,4,58,”192.168.0.1”

,78

//create a UDP client towards peer IP device @

//“192.168.0.1”, port 78.

WM_DEV_OAT_UGD_076 Rev 009 February 18, 2011 111

WIPsoft 5.41 Examples of Application

OK //all parameters and IP stack behavior are OK

+WIPREADY: 1,4 //unsolicited: the UDP client socket is “pseudo

//”connected to the peer (no real connection is

// UDP)

AT+WIPCREATE=1,5,59,”192.168.0.1”

,79

//create a UDP client towards peer IP device @

//“192.168.0.1”, port 79.

OK //all parameters and IP stack behavior are OK

+WIPREADY: 1,5 //unsolicited: the UDP client socket is “pseudo

//”connected to the peer (no real connection is

// UDP)

AT+WIPCREATE=1,6,60,”192.168.0.1”

,80

//create a UDP client towards peer IP device @

//“192.168.0.1”, port 80.

OK //all parameters and IP stack behavior are OK

+WIPREADY: 1,6 //unsolicited: the UDP client socket is “pseudo

//”connected to the peer (no real connection is

// UDP)

AT+WIPCREATE=1,7,61,”192.168.0.1”

,81

//create a UDP client towards peer IP device @

//“192.168.0.1”, port 81

OK //all parameters and IP stack behavior are OK

+WIPREADY: 1,7 //unsolicited: the UDP client socket is “pseudo

//”connected to the peer (no real connection is

// UDP)

AT+WIPCREATE=1,8,62,”192.168.0.1”

,82

//create a UDP client towards peer IP device @

//“192.168.0.1”, port 82.

OK //all parameters and IP stack behavior are OK

+WIPREADY: 1,8 //unsolicited: the UDP client socket is “pseudo

//”connected to the peer (no real connection is

// UDP)

AT+WIPCREATE=1,9,63,”192.168.0.1”

,83

+CME ERROR: 830

//8 UDP sockets have been created and hence

//9
th

 attempt fails

AT+WIPCREATE=3,1,80,1,1

OK

//create one server on port 80, idx = 1. One

//TCP client socket is reserved on index 1

AT+WIPCREATE=3,2,81,2,2

OK

//create one server on port 81, idx = 2. One

//TCP client socket is reserved on index 2

AT+WIPCREATE=3,3,82,3,3

OK

//create one server on port 82, idx = 3. One

//TCP client socket is reserved on index 3

AT+WIPCREATE=3,4,83,4,4

OK

//create one server on port 83, idx = 4. One

//TCP client socket is reserved on index 4

AT+WIPCREATE=3,5,84,5,5

+CME ERROR: 830

//4 TCP servers have been created and hence

//creation of 5
th
 TCP server socket fails

WM_DEV_OAT_UGD_076 Rev 009 February 18, 2011 112

WIPsoft 5.41 Examples of Application

AT+WIPCREATE=2,1,”192.168.0.1”,80

+CME ERROR: 845

//create a TCP client socket towards peer IP

//device @ “192.168.0.1”, port 80. Index 1 is

//reserved by server index and hence error is

//returned.

 //4 reserved TCP client sockets have been

//spawned by their TCP server.

+WIPACCEPT: 1,1 //unsolicited: the server index 1 accepted a

//connection; resulting TCP client on idx 1

+WIPACCEPT: 2,2 //unsolicited: the server index 2 accepted a

//connection; resulting TCP client on idx 2

+WIPACCEPT: 3,3 //unsolicited: the server index 3 accepted a

//connection; resulting TCP client on idx 3

+WIPACCEPT: 4,4 //unsolicited: the server index 4 accepted a

//connection; resulting TCP client on idx 4

AT+WIPCREATE=2,5,”192.168.0.1”,80 //create a TCP client towards peer IP device @

//“192.168.0.1”, port 80.

OK //all parameters and IP stack behavior are OK

+WIPREADY: 2,5 //unsolicited: the TCP client socket is connected

//to the peer.

AT+WIPCREATE=2,6,”192.168.0.1”,80 //create a TCP client towards peer IP device @

//“192.168.0.1”, port 80.

OK //all parameters and IP stack behavior are OK

+WIPREADY: 2,6 //unsolicited: the TCP client socket is connected

//to the peer

AT+WIPCREATE=2,7,”192.168.0.1”,80 //create a TCP client towards peer IP device @

//“192.168.0.1”, port 80

OK //all parameters and IP stack behavior are OK

+WIPREADY: 2,7 //unsolicited: the TCP client socket is connected

//to the peer

AT+WIPCREATE=2,8,”192.168.0.1”,80 //create a TCP client towards peer IP device @

//“192.168.0.1”, port 80.

OK //all parameters and IP stack behavior are OK

+WIPREADY: 2,8 //unsolicited: the TCP client socket is connected

//to the peer

AT+WIPCREATE=2,8,”192.168.0.1”,80

+CME ERROR: 840

//create a TCP client towards peer IP device @

//“192.168.0.1”, port 80. Index 8 is already

//used and corresponds to an active socket.

AT+WIPCREATE=2,9,”192.168.0.1”,80

+CME ERROR: 830

//create a TCP client towards a peer IP device @

//“192.168.0.1”, port 80. Index 9 is forbidden.

WM_DEV_OAT_UGD_076 Rev 009 February 18, 2011 113

WIPsoft 5.41 Examples of Application

9.14. Changing the MAX_SOCK_NUM option value
and try to create 8 UDP sockets, 8 TCP Client
sockets and 4 TCP Server sockets.

AT+WIPCFG=1

OK

//start IP stack

AT+WIPCFG=2,6,3

OK

//MAX_SOCK_NUM has been changed to 3

AT+WIPCFG=4,1

OK

//save the changed configuration to flash

AT+WIPCFG=0

OK

//close the IP stack

AT+WIPCFG=1

OK

//start IP stack

AT+WIPBR=1,6

OK

//open GPRS bearer

AT+WIPBR=2,6,11,”APN name”

OK

//set APN name of GPRS bearer

AT+WIPBR=2,6,0,”user name”

OK

//set user name

AT+WIPBR=2,6,1,”passwd”

OK

//set password

AT+WIPBR=4,6,0

OK

//start GPRS bearer

AT+WIPCREATE=1,1,55,”192.168.0.1”

,75

//create a UDP client towards peer IP device @

//“192.168.0.1”, port 75.

OK //all parameters and IP stack behavior are OK.

+WIPREADY: 1,1 //unsolicited: the UDP client socket is “pseudo

//”connected to the peer (no real connection is

// UDP)

AT+WIPCREATE=1,2,56,”192.168.0.1”

,76

//create a UDP client towards peer IP device @

//“192.168.0.1”, port 76.

WM_DEV_OAT_UGD_076 Rev 009 February 18, 2011 114

WIPsoft 5.41 Examples of Application

OK //all parameters and IP stack behavior are OK.

+WIPREADY: 1,2 //unsolicited: the UDP client socket is “pseudo

//”connected to the peer (no real connection is

// UDP)

AT+WIPCREATE=1,3,57,”192.168.0.1”

,77

//create a UDP client towards peer IP device @

//“192.168.0.1”, port 77.

OK //all parameters and IP stack behavior are OK.

+WIPREADY: 1,3 //unsolicited: the UDP client socket is “pseudo

//”connected to the peer (no real connection is

// UDP)

AT+WIPCREATE=1,4,58,”192.168.0.1”

,78

//create a UDP client towards peer IP device @

//“192.168.0.1”, port 78.

+CME ERROR: 838 //maximum 3 sockets can be created as the

//MAX_SOCK_NUM value has been changed to

//3. Hence an attempt to create a fourth socket

//returns error.

WM_DEV_OAT_UGD_076 Rev 009 February 18, 2011 115

WIPsoft 5.41 Examples of Application

9.15. Creating 8 UDP sockets, 8 TCP Clients, 4 TCP
Servers and either one FTP/HTTP/SMTP/POP3

AT+WIPCFG=1

OK

//start IP stack

AT+WIPBR=1,6

OK

//open GPRS bearer

AT+WIPBR=2,6,11,”APN name”

OK

//set APN name of GPRS bearer

AT+WIPBR=2,6,0,”user name”

OK

//set user name

AT+WIPBR=2,6,1,”passwd”

OK

//set password

AT+WIPBR=4,6,0

OK

//start GPRS bearer

AT+WIPCREATE=1,1,55,”192.168.0.1”

,75

//create a UDP client towards peer IP device @

//“192.168.0.1”, port 75.

OK //all parameters and IP stack behavior are OK.

+WIPREADY: 1,1 //unsolicited: the UDP client socket is “pseudo

//”connected to the peer (no real connection is

// UDP)

AT+WIPCREATE=1,2,56,”192.168.0.1”

,76

//create a UDP client towards peer IP device @

//“192.168.0.1”, port 76.

OK //all parameters and IP stack behavior are OK.

+WIPREADY: 1,2 //unsolicited: the UDP client socket is “pseudo

//”connected to the peer (no real connection is

// UDP)

AT+WIPCREATE=1,3,57,”192.168.0.1”

,77

//create a UDP client towards peer IP device @

//“192.168.0.1”, port 77.

OK //all parameters and IP stack behavior are OK.

+WIPREADY: 1,3 //unsolicited: the UDP client socket is “pseudo

//”connected to the peer (no real connection is

// UDP)

AT+WIPCREATE=1,4,58,”192.168.0.1”

,78

//create a UDP client towards peer IP device @

//“192.168.0.1”, port 78.

WM_DEV_OAT_UGD_076 Rev 009 February 18, 2011 116

WIPsoft 5.41 Examples of Application

OK //all parameters and IP stack behavior are OK

+WIPREADY: 1,4 //unsolicited: the UDP client socket is “pseudo

//”connected to the peer (no real connection is

// UDP)

AT+WIPCREATE=1,5,59,”192.168.0.1”

,79

//create a UDP client towards peer IP device @

//“192.168.0.1”, port 79.

OK //all parameters and IP stack behavior are OK

+WIPREADY: 1,5 //unsolicited: the UDP client socket is “pseudo

//”connected to the peer (no real connection is

// UDP)

AT+WIPCREATE=1,6,60,”192.168.0.1”

,80

//create a UDP client towards peer IP device @

//“192.168.0.1”, port 80.

OK //all parameters and IP stack behavior are OK

+WIPREADY: 1,6 //unsolicited: the UDP client socket is “pseudo

//”connected to the peer (no real connection is

// UDP)

AT+WIPCREATE=1,7,61,”192.168.0.1”

,81

//create a UDP client towards peer IP device @

//“192.168.0.1”, port 81

OK //all parameters and IP stack behavior are OK

+WIPREADY: 1,7 //unsolicited: the UDP client socket is “pseudo

//”connected to the peer (no real connection is

// UDP)

AT+WIPCREATE=1,8,62,”192.168.0.1”

,82

//create a UDP client towards peer IP device @

//“192.168.0.1”, port 82.

OK //all parameters and IP stack behavior are OK

+WIPREADY: 1,8 //unsolicited: the UDP client socket is “pseudo

//”connected to the peer (no real connection is

// UDP)

AT+WIPCREATE=1,9,63,”192.168.0.1”

,83

+CME ERROR: 830

//8 UDP sockets have been created and hence

//9
th

 attempt fails

AT+WIPCREATE=3,1,83,1,1

OK

//create one server on port 83, idx = 1. One

//TCP client socket is reserved on index 1

AT+WIPCREATE=3,2,84,2,2

OK

//create one server on port 84, idx = 2. One

//TCP client socket is reserved on index 2

AT+WIPCREATE=3,3,85,3,3

OK

//create one server on port 85, idx = 3. One

//TCP client socket is reserved on index 3

AT+WIPCREATE=3,4,86,4,4

OK

//create one server on port 86, idx = 4. One

//TCP client socket is reserved on index 4

AT+WIPCREATE=3,5,84,5,5

+CME ERROR: 830

//4 TCP servers have been created and hence

//creation of 5
th
 TCP server socket fails

WM_DEV_OAT_UGD_076 Rev 009 February 18, 2011 117

WIPsoft 5.41 Examples of Application

AT+WIPCREATE=2,1,”192.168.0.1”,83

+CME ERROR: 845

//4 TCP server have been created and each of

//them reserved 1 TCP client socket and hence

//5
th

 attempt of creating TCP server fails

 //4 reserved TCP client sockets have been

//spawned by their TCP server.

+WIPACCEPT: 1,1 //unsolicited: the server index 1 accepted a

//connection; resulting TCP client on idx 1

+WIPACCEPT: 2,2 //unsolicited: the server index 2 accepted a

//connection; resulting TCP client on idx 2

+WIPACCEPT: 3,3 //unsolicited: the server index 3 accepted a

//connection; resulting TCP client on idx 3

+WIPACCEPT: 4,4 //unsolicited: the server index 4 accepted a

//connection; resulting TCP client on idx 4

AT+WIPCREATE=2,5,”192.168.0.2”,80 //create a TCP client towards peer IP device @

//“192.168.0.2”, port 80.

OK //all parameters and IP stack behavior are OK

+WIPREADY: 2,5 //unsolicited: the TCP client socket is connected

//to the peer.

AT+WIPCREATE=2,6,”192.168.0.2”,80 //create a TCP client towards peer IP device @

//“192.168.0.2”, port 80.

OK //all parameters and IP stack behavior are OK

+WIPREADY: 2,6 //unsolicited: the TCP client socket is connected

//to the peer

AT+WIPCREATE=2,7,”192.168.0.2”,80 //create a TCP client towards peer IP device @

//“192.168.0.2”, port 80

OK //all parameters and IP stack behavior are OK

+WIPREADY: 2,7 //unsolicited: the TCP client socket is connected

//to the peer

AT+WIPCREATE=2,8,”192.168.0.2”,80 //create a TCP client towards peer IP device @

//“192.168.0.2”, port 80.

OK //all parameters and IP stack behavior are OK

+WIPREADY: 2,8 //unsolicited: the TCP client socket is connected

//to the peer

AT+WIPCREATE=2,8,”192.168.0.2”,80

+CME ERROR: 840

//create a TCP client towards peer IP device @

//“192.168.0.2”, port 80. Index 8 is already

//used and corresponds to an active socket.

AT+WIPCREATE=2,9,”192.168.0.2”,80

+CME ERROR: 830

//create a TCP client towards a peer IP device @

//“192.168.0.2”, port 80. Index 9 is forbidden.

AT+WIPCREATE=4,1,”ftp

server”,,”user name”,”password”

//create FTP session using default port 21

OK //FTP session is created successfully.

AT+WIPCREATE=7,1,”POP3

server”,,”user name”,”mail id”

+CME ERROR: 840

//attempt of creating a OP3 session returns an

//error as already 1 FTP session is active.

AT+WIPCLOSE=4,1 //close FTP session

WM_DEV_OAT_UGD_076 Rev 009 February 18, 2011 118

WIPsoft 5.41 Examples of Application

OK

+WIPPEERCLOSE: 4,1

//unsolicited: FTP session is closed

//successfully

AT+WIPCREATE=7,1,”POP3

server”,,”user name”,”mail id”

//create POP3 session using default port 110

OK //all parameters and IP stack behaviors are OK.

+WIPREADY: 7,1 //unsolicited: the POP3 session is created

//successfully

WM_DEV_OAT_UGD_076 Rev 009 February 18, 2011 119

WIPsoft 5.41 Examples of Application

9.16. Subscribe/Unsubscribe WIPsoft AT
commands using WIPsoft Library API

#include "adl_global.h" // Global includes

#include "wip_atcmd.h" // WIP AT command services

#if __OAT_API_VERSION__ >= 400

const u16 wm_apmCustomStackSize = 4096;

#else

u32 wm_apmCustomStack[1024];

const u16 wm_apmCustomStackSize = sizeof(wm_apmCustomStack);

#endif

void adl_main (adl_InitType_e InitType)

{

 TRACE ((1, "Embedded Application : Main"));

 /* subscribe to the +WIP AT commands set service */

 if (wip_ATCmdSubsrcibe() == 0) {

 /* The customer can write here its own application based on other

 plug -ins or its specific application target. */

 wip_ATCmdUnsubscribe();

 }

 else

 {

 /* Error while subscribing to WIPsoft library */

 }

}

WM_DEV_OAT_UGD_076 Rev 009 February 18, 2011 120

WIPsoft 5.41 Examples of Application

9.17. Creating TCP client and server sockets in the
same Wireless CPU at the same time mapping
or unmapping the UART to exchange the data
between the sockets

AT+WIPCFG=1

OK

//start IP stack

AT+WIPBR=1,6

OK

//open GPRS bearer

AT+WIPBR=2,6,11,”APN name”

OK

//set APN name of GPRS bearer

AT+WIPBR=2,6,0,”user name”

OK

//set user name

AT+WIPBR=2,6,1,”passwd”

OK

//set password

AT+WIPBR=4,6,0

OK

//start GPRS bearer

AT+WIPCREATE=3,2,80,1,2

OK

//create the server on port 80, idx=2. The server

//is listening for connection request on port 80.

//Spawned sockets will be given the index 1 or

//2.It will accept connection request until has

//nor more socket left.

AT+WIPCREATE=2,3,”198.168.0.1”,80 //create a TCP client towards peer IP device @

//“198.168.0.1”, port 80,

OK //all parameters and IP stack behavior are OK.

+WIPREADY: 2,3 //unsolicited: the TCP client socket is connected

//to the peer.

+WIPACCEPT: 2,1 //unsolicited: the server index accepted a

//connection; resulting TCP client on idx 1

AT+WIPDATA=2,3,1

CONNECT

//exchange data on socket index 3

abc+++

OK

//data sent to socket index 1 and switched to

AT mode by giving +++

AT+WIPDATA=2,1,1

CONNECT

//exchange data on socket index 1

abc+++

OK

//data received from socket index 3

WM_DEV_OAT_UGD_076 Rev 009 February 18, 2011 121

10. Error Codes

10.1. General CME Error Codes

“+CMEE” AT
error code

Description

800 invalid option

801 invalid option value

802 not enough memory

803 operation not allowed in the current WIP stack state

804 device already open

805 network interface not available

806 operation not allowed on the considered bearer

807 bearer connection failure : line busy

808 bearer connection failure : no answer

809 bearer connection failure : no carrier

810 bearer connection failure : no sim card present

811 bearer connection failure : sim not ready (no pin code entered, …)

812 bearer connection failure : GPRS network failure

813 bearer connection failure : PPP LCP negotiation failed

814 bearer connection failure : PPP authentication failed

815 bearer connection failure : PPP IPCP negotiation failed

816 bearer connection failure : PPP peer terminates session

817 bearer connection failure : PPP peer does not answer to echo request

818 incoming call refused

819 error on Ping channel

820 error writing configuration in FLASH memory

821 error reading configuration in FLASH memory

822-829 reserved for future use

830 bad index

831 bad state

832 bad port number

833 bad port state

834 not implemented

835 option not supported

836 memory allocation error

837 bad protocol

838 no more free socket

839 error during channel creation

840 UDP/TCP socket or FTP/HTTP/SMTP/POP3 session is already active

841 peer closed, or error in the FTP connection

842
destination host unreachable (whether host unreachable, Network unreachable, response
timeout)

WM_DEV_OAT_UGD_076 Rev 009 February 18, 2011 122

WIPsoft 5.41 Error Codes

“+CMEE” AT
error code

Description

843 connection reset by peer

844 stack already started

845
attempt is made to reserve/create a client socket which is already reserved/opened by TCP
server/client

846 internal error: FCM subscription failure

847
bearer connection failure: WIP_BOPT_GPRS_TIMEOUT time limit expired before GPRS
bearer connected

848 impossible to connect to the bearer

849
connection to the bearer has succeeded but a problem has occurred during the data flow
establishment

850 invalid channel option or parameter value (for example, HTTP user name too long)

851
specified parameters to the command is more or less than the maximum number of
mandatory parameters

852 IP stack not initialized

853 Data offline buffer filled

854-859 reserved for future use

860 protocol undefined or internal error

861 username rejected by server

862 password rejected by server

863 delete error

864 list error

865 authentication error

866 server not ready error

867 POP3 email retrieving error

868 POP3 email size error

869-879 reserved for future use

880 SMTP sender email address rejected by server

881 SMTP recipient email address rejected by server

882 SMTP CC recipient email address rejected by server

883 SMTP BCC recipient email address rejected by server

884 SMTP email body send request rejected by server

890 Service denied

891 Message format corrupt

892 Address unresolved

893 Message not found

894 Network problem

895 Content not accepted

896 Unsupported message

897 Unspecified error

WM_DEV_OAT_UGD_076 Rev 009 February 18, 2011 123

WIPsoft 5.41 Error Codes

10.2. GPRS CME Error Codes

<error> Meaning Resulting from the following commands

103 Incorrect MS identity.(#3) +CGATT

132 Service option not supported (#32) +CGACT +CGDATA ATD*99

133 Requested service option not
subscribed (#33)

+CGACT +CGDATA ATD*99

134 Service option temporarily out of order
(#26, #34, #38)

+CGACT +CGDATA ATD*99

148 Unspecified GPRS error All GPRS commands

149 PDP authentication failure (#29) +CGACT +CGDATA ATD*99

150 Invalid mobile class +CGCLASS +CGATT

WM_DEV_OAT_UGD_076 Rev 009 February 18, 2011 124

Index

+WIPBR, 25

+WIPCFG, 16

+WIPCLOSE, 44

+WIPCREATE, 35

+WIPDATA, 68

+WIPFILE, 58

+WIPOPT, 47

+WIPPING, 84

FTP, 96

HTTP, 98

PING, 95

POP3, 101

SMTP, 99

TCP Socket, 89

UDP Socket, 93

wip_ATCmdSubscribe, 87

wip_ATCmdUnsubscribe, 88

	Contents
	1. Introduction
	1.1. Abbreviations
	1.2. Logos
	1.3. AT Commands Presentation Rules

	2. AT Command Syntax
	2.1. Command Line
	2.2. Information Responses and Result Codes

	3. Principles
	3.1. Sockets Identification
	3.1.1. Possible Protocols
	3.1.2. Number of Sockets
	3.1.3. Notes

	4. General Configuration
	4.1. IP Stack Handling +WIPCFG
	4.1.1. Description
	4.1.2. Syntax
	4.1.3. Parameters and Defined Values
	4.1.4. Parameter Storage
	4.1.5. Possible Errors
	4.1.6. Examples
	4.1.7. Notes

	4.2. Bearers Handling +WIPBR
	4.2.1. Description
	4.2.2. Syntax
	4.2.3. Parameters and Defined Values
	4.2.4. Parameter Storage
	4.2.5. Possible Errors
	4.2.5.1. General CME Errors
	4.2.5.2. GPRS CME Errors

	4.2.6. Examples
	4.2.7. Notes
	4.2.7.1. For Starting a Bearer

	5. IP Protocol Services
	5.1. Service Creation +WIPCREATE
	5.1.1. Description
	5.1.2. Syntax
	5.1.3. Parameters and Defined Values
	5.1.4. Parameter Storage
	5.1.5. Possible Errors
	5.1.6. Examples
	5.1.7. Notes

	5.2. Closing a Service +WIPCLOSE
	5.2.1. Description
	5.2.2. Syntax
	5.2.3. Parameters and Defined Values
	5.2.4. Parameter Storage
	5.2.5. Possible Errors
	1.1.1.
	5.2.6. Examples
	5.2.7. Notes

	5.3. Service Option Handling +WIPOPT
	5.3.1. Description
	5.3.2. Syntax
	5.3.3. Parameters and Defined Values
	5.3.4. Parameter Storage
	5.3.5. Possible Errors
	5.3.6. Examples
	5.3.7. Notes
	5.3.7.1. Options that can be applied to UDP, TCP Client, TCP Server Sockets
	5.3.7.2. Options that can be applied to FTP Session
	5.3.7.3. Options that can be applied to HTTP Session
	5.3.7.4. Options that can be applied to SMTP Session
	5.3.7.5. Options that can be applied to POP3 Session
	5.3.7.6. Options that can be applied to MMS sessions
	5.3.7.6.1. Values of <optval> WIP_MMS_CLASS
	5.3.7.6.2. Values of <optval> WIP_MMS_PRIORITY
	5.3.7.6.3. Values of <optval> WIP_MMS_ADDFILE
	5.3.7.6.4. Phone/Mail Option Notes
	5.3.7.6.4.1. Recipients
	5.3.7.6.4.2. Command and Response

	6. Data Exchange for Protocol Services
	6.1. File Exchange +WIPFILE
	6.1.1. Description
	6.1.1.1. [ETX] Escaping Mechanism
	6.1.1.2. [DLE] Escaping Mechanism

	6.1.2. FTP/HTTP/SMTP Session in Continuous Mode
	6.1.3. FTP Session in Continuous Transparent Mode
	6.1.4. Syntax
	6.1.5. Parameters and Defined Values
	6.1.6. Parameter Storage
	6.1.7. Possible Errors
	6.1.8. Examples
	6.1.9. Notes

	6.2. Socket Data exchange +WIPDATA
	6.2.1. Description
	6.2.2. Continuous Mode
	6.2.2.1. TCP Sockets in Continuous mode
	6.2.2.2. UDP Sockets in Continuous mode
	6.2.2.3. [ETX] Escaping Mechanism
	6.2.2.4. [DLE] Escaping Mechanism

	6.2.3. Continuous Transparent Mode
	6.2.3.1. TCP Sockets in Continuous Transparent Mode
	6.2.3.2. UDP Sockets in Continuous Transparent Mode

	6.2.4. Leaving Continuous /Continuous Transparent Mode
	6.2.5. Resetting TCP Sockets
	6.2.6. Syntax
	6.2.7. Parameters and Defined Values
	6.2.8. Parameter Storage
	6.2.9. Possible Errors
	6.2.10. Examples
	6.2.11. Notes
	6.2.11.1. Continuous Mode (Non Transparent) for a TCP Mapped Socket
	6.2.11.2. Mapping/Unmapping of a Mapped UDP and TCP Socket
	6.2.11.3. Time out Mechanism to know the state of the Peer TCP Socket
	6.2.11.4. Packet Segmentation in TCP Socket
	6.2.11.5. Packet Segmentation in UDP Socket

	6.3. DATA Offline session +WIPDATARW
	6.3.1. Restrictions
	6.3.2. Syntax
	6.3.3. Parameters and Defined Values
	6.3.4. Parameter Storage
	6.3.5. Possible Errors
	6.3.6. Examples

	7. Ping Services
	7.1. PING command +WIPPING
	7.1.1. Description
	7.1.2. Syntax
	7.1.3. Parameters and Defined Values
	7.1.4. Parameter Storage
	7.1.5. Possible Errors
	7.1.6. Examples

	8. WIPsoft Library API
	8.1. Required Header File
	8.2. The wip_ATCmdSubscribe Function
	8.2.1. Prototype
	8.2.2. Parameters
	8.2.3. Returned Values

	8.3. The wip_ATCmdUnsubscribe Function
	8.3.1. Prototype
	8.3.2. Parameters
	8.3.3. Returned Values

	9. Examples of Application
	9.1. TCP Socket
	9.1.1. TCP Server Socket
	9.1.1.1. Using GPRS bearer
	9.1.1.2. Using GSM bearer

	9.1.2. TCP Client Socket
	9.1.2.1. Using GPRS Bearer
	9.1.2.2. Using GSM Bearer

	9.2. UDP Socket
	9.3. PING
	9.4. FTP
	9.5. FTP DATA Offline
	9.6. HTTP
	9.7. SMTP
	9.8. POP3
	9.9. MMS
	9.10. Creating a TCP Server, spawning the maximum TCP Socket (for the configured Server)
	9.11. Creating a Server and try to create a TCP Client/Server on a reserved index (reserved by the Server) will fail.
	9.12. Create a TCP Client and try to create a TCP Server with indexes range containing TCP Client will fail.
	9.13. Creating 8 UDP sockets, 8 TCP clients and 4 TCP servers.
	9.14. Changing the MAX_SOCK_NUM option value and try to create 8 UDP sockets, 8 TCP Client sockets and 4 TCP Server sockets.
	9.15. Creating 8 UDP sockets, 8 TCP Clients, 4 TCP Servers and either one FTP/HTTP/SMTP/POP3
	9.16. Subscribe/Unsubscribe WIPsoft AT commands using WIPsoft Library API
	9.17. Creating TCP client and server sockets in the same Wireless CPU at the same time mapping or unmapping the UART to exchange the data between the sockets

	10. Error Codes
	10.1. General CME Error Codes
	10.2. GPRS CME Error Codes

	Index

