

GE863-PRO3 Linux Software User
Guide
1vv0300781 Rev. 0 - 04/06/08

1vv0300781 Rev. 0 - 04/06/08

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 2 of 59

Disclaimer

The information contained in this document is the proprietary information of Telit Communications
S.p.A. and its affiliates (“TELIT”).

The contents are confidential and any disclosure to persons other than the officers, employees, agents
or subcontractors of the owner or licensee of this document, without the prior written consent of Telit,
is strictly prohibited.

Telit makes every effort to ensure the quality of the information it makes available. Notwithstanding the
foregoing, Telit does not make any warranty as to the information contained herein, and does not
accept any liability for any injury, loss or damage of any kind incurred by use of or reliance upon the
information.

Telit disclaims any and all responsibility for the application of the devices characterized in this
document, and notes that the application of the device must comply with the safety standards of the
applicable country, and where applicable, with the relevant wiring rules.

Telit reserves the right to make modifications, additions and deletions to this document due to
typographical errors, inaccurate information, or improvements to programs and/or equipment at any
time and without notice.

Such changes will, nevertheless be incorporated into new editions of this document.

All rights reserved.

© 2008 Telit Communications S.p.A.

1vv0300781 Rev. 0 - 04/06/08

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 3 of 59

Applicable Products

Product Part Number

GE863-PRO3 with Linux OS 3990250698

Linux SW Version

01.0001

1vv0300781 Rev. 0 - 04/06/08

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 4 of 59

Contents

1 Introduction .. 6
1.1 Scope .. 6

1.2 Audience .. 6

1.3 Contact Information, Support ... 6

1.4 Open Source Licenses ... 6

1.5 Product Overview ... 7

1.6 Document Organization ... 7

1.7 Text Conventions .. 7

1.8 Related Documents ... 8

1.9 Document History ... 8

2 GE863-PRO³ Architecture.. 9
2.1 Hardware ... 9

2.2 Software ... 10
2.2.1 Telit Bootloader ... 11
2.2.2 Telit customized U-boot .. 11
2.2.3 Linux kernel ... 12

2.2.3.1 Overview ... 12
2.2.3.2 The GE863-PRO³ Linux kernel .. 14

2.2.4 Filesystem .. 15
2.2.4.1 Overview ... 15
2.2.4.2 The filesystem structure .. 15
2.2.4.3 Busybox .. 18

3 System Startup .. 19
3.1 Startup process ... 19

3.2 The Linux shell ... 20

3.3 Loading a module ... 21

3.4 Auto-Setup at system startup .. 22

3.5 Downloading a file into GE863-PRO3 ... 23
3.5.1 Downloading a file using the Ethernet connection .. 23
3.5.2 Downloading a file using an USB mass storage device ... 24

4 Device Drivers ... 26
4.1 Serial port .. 26

4.1.1 open() ... 27
4.1.2 read() .. 27
4.1.3 write() .. 28
4.1.4 close() .. 29

1vv0300781 Rev. 0 - 04/06/08

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 5 of 59

4.2 I2C .. 29
4.2.1 Loading i2c modules .. 30
4.2.2 open() ... 31
4.2.3 ioctl() ... 32
4.2.4 read() .. 36
4.2.5 write() .. 37
4.2.6 close() .. 38
4.2.7 A Test Program .. 38

4.3 SPI .. 40
4.3.1 Loading the SPI module .. 40
4.3.2 open() ... 41
4.3.3 ioctl() ... 41
4.3.4 read() .. 43
4.3.5 write() .. 44
4.3.6 close() .. 45
4.3.7 A Test Program .. 45

4.4 GPIO .. 47
4.4.1 open() ... 48
4.4.2 read() .. 48
4.4.3 write() .. 49
4.4.4 close() .. 50

4.5 Watchdog ... 50
4.5.1 open() ... 50
4.5.2 ioctl() ... 51
4.5.3 close() .. 53

4.6 SDIO .. 53

4.7 Ethernet ... 54

4.8 USB .. 55
4.8.1 USB Mass Storage ... 55
4.8.2 USB device (Ethernet Gadget) ... 55

5 CMUX ... 57
5.1 Code example .. 58

1vv0300781 Rev. 0 - 04/06/08

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 6 of 59

1 Introduction

1.1 Scope
This user guide serves the following purpose:

 Provides details about the GE863-PRO³ software architecture

• Describes how software developers can use the functions of Linux device drivers to configure,
manage and use GE863-PRO³ hardware resources and system peripherals

1.2 Audience
This User Guide is intended for software developers who develop applications on the ARM processor
of GE863-PRO³ module.

1.3 Contact Information, Support
Our aim is to make this guide as helpful as possible. Keep us informed of your comments and
suggestions for improvements.

For general contact, technical support, report documentation errors and to order manuals, contact
Telit’s Technical Support Center at:

TS-EMEA@telit.com or http://www.telit.com/en/products/technical-support-center/contact.php

Telit appreciates feedback from the users of our information.

1.4 Open Source Licenses
Linux system is made up of many Open Source device drivers licensed as follows:

GNU GENERAL PUBLIC LICENSE
Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.
675 Mass Ave, Cambridge, MA 02139, USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

1vv0300781 Rev. 0 - 04/06/08

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 7 of 59

Please refer to the following web page for the full text of the license:

http://www.gnu.org/licenses/gpl-2.0.html

1.5 Product Overview
The GE863-PRO3 module contains a fully featured GSM/GPRS communications section, compatible
with the other Telit GSM/GPRS modules, but also incorporates a standalone ARM9 CPU and
memories, dedicated to user applications.

This eliminates the need for an external host CPU in many applications, bringing true real-time and
multi tasking capabilities to an embedded module.

1.6 Document Organization
This manual contains the following chapters:

• “Chapter 1, Introduction” provides a scope for this manual, target audience, technical contact
information, and text conventions.

• “Chapter 2, GE863-PRO³ Architecture” provides an overview on GE863-PRO3 hardware and
software architecture describing the main software components: Telit Bootloader, Telit
customized U-Boot, Linux kernel 2.6.24 and Filesystem.

• “Chapter 3, System Startup” describes how to perform the start up process, how to download
a file onto GE863-PRO3 and how to load a kernel module.

• “Chapter 4, Device Drivers” details Linux device drivers and shows how software developers
can use them to interact with GE863-PRO3 hardware resources and peripherals.

• “Chapter 5, CMUX”, describes GSM 7.10 multiplexing protocol implemented by GE863-PRO³
and its use.

How to Use
If you mainly use this document as reference, the main chapters of interest are Chapter 3, System
Startup and Chapter 4, Device Drivers.

If you are new to this product, it is recommended to start by reading through TelitGE863PRO3 EVK
User Guide 1VV0300776, TelitGE863PRO3_Linux_Development 1VV0300780 and this document in
their entirety in order to understand and the concepts and specific features provided by the built in
software of the GE863-PRO3.

1.7 Text Conventions
This section lists the paragraph and font styles used for the various types of information presented in
this user guide.

1vv0300781 Rev. 0 - 04/06/08

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 8 of 59

Format Content
Courier Linux shell commands, filesystem paths and example C source code

1.8 Related Documents
The following documents are related to this user guide:

[1] TelitGE863PRO3 Hardware User Guide 1vv0300773a
[2] TelitGE863PRO3 U-BOOT Software User Guide 1vv0300777
[3] TelitGE863PRO3 EVK User Guide 1VV0300776
[4] TelitGE863PRO3 Linux Development Environment 1VV0300780
[5] TelitGE863PRO3 Linux GSM Library User Guide 1vv0300782
[6] TelitGE863PRO3 Product Description 80285ST10036a

All documentation can be downloaded from Telit’s official web site www.telit.com if not otherwise
indicated.

1.9 Document History

RReevviissiioonn DDaattee CChhaannggeess
ISSUE #0 04/06/08 First Release

1vv0300781 Rev. 0 - 04/06/08

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 9 of 59

2 GE863-PRO³ Architecture

2.1 Hardware
The GE863-PRO³ is an innovation to the quad-band, RoHS compliant GE863 product family which
includes a powerful ARM9™ processor core exclusively dedicated to customer applications. The
GE863-PRO³ incorporates much of the necessary hardware for communicating microcontroller
solutions, including the critical element of memory, significant simplification of the bill of material,
vendor management, and logistics effort are achieved. Below there is a simple plot and a list of the
GE863-PRO³ key elements:

1vv0300781 Rev. 0 - 04/06/08

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 10 of 59

• Atmel AT91SAM9260 microcontroller (200 Mips at 180Mhz, MMU, EmbeddedICE Debug
Communication Channel Support).

• 8MB SDRAM Mobile Micron.
• 4MB Serial Flash Atmel via SPI interface.
• Quad-band EGSM 850 / 900 / 1800 / 1900 Mhz.
• 4 A/D with A/D trigger and 6 PWM D/A converters.
• 1 USB device and 2 USB host.
• 1 IIC interface.
• 2 SPI bus interface
• 1 SSC digital audio interface.
• 1 image sensor interface
• 6 USARTs and 1 UART
• 1 MMC and SD cards interface.

The GE863-PRO³ is offered in a Ball-Grid-Array (BGA) package enabling a very low profile and small
product size required for the design of extremely compact applications. With its extended
programming capabilities in C/C++ and Python, the Telit GE863-PRO³ is the ideal hardware platform
for complete and compact customer solutions.

Application development is accomplished easily given Telit’s continued commitment to open systems.
With the use of LINUX, developers have access to an extensive library of drivers for different
peripherals and to complete development environments.

The GE863-PRO³ was designed to simplify connectivity through the availability of interfaces such as
SPI, IIC, SD/MMC and USB (Host/Device). Telit offers a vast collection of reference designs enabling
use of the PRO³ with external peripherals such as camera, keyboard, display, Wi-Fi®, Bluetooth®,
SmartCard, SD Card, Ethernet, ZigBee® and GPS.

For further information about hardware refer to document [1] .

2.2 Software
The GE863-PRO³ software architecture from a high level perspective is based on the following
components:

• Telit Bootloader
• Telit customized U-Boot
• Customized Linux kernel based on 2.6.24
• Filesystem

1vv0300781 Rev. 0 - 04/06/08

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 11 of 59

2.2.1 Telit Bootloader
Telit Bootloader is a small binary used for hardware-related management: its main task is to load and
start Telit customized U-Boot. For further details refer to document [2] .

2.2.2 Telit customized U-boot
U-Boot is the Open Source "universal'' cross-platform bootloader supporting hundreds of embedded
boards and a wide variety of microcontrollers (the Atmel AT91SAM9260 included).

Some of the features provided by U-Boot are:

• Hardware initialization.
• Providing boot parameters for the Linux kernel.
• Starting the Linux kernel.
• Reading and writing memory locations.
• Uploading new binary images to the board's RAM.
• Copying binary images from RAM to FLASH memory.
• Storing environment variables which can be used to configure the system.

The GE863-PRO³ has a customized version of U-Boot to get the most out of the board. For further
details refer to document [2] .

Telit Bootloader

U-Boot

Kernel

Filesystem

1vv0300781 Rev. 0 - 04/06/08

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 12 of 59

2.2.3 Linux kernel

2.2.3.1 Overview
The kernel is the central part of the GNU/Linux operating system: its main task is to manage system’s
resources in order to make the hardware and the software communicate. A kernel usually deals with
process management (including inter-process communication), memory management and device
management.

The Linux kernel belongs to the family of Unix-like operating system kernel; created in 1991, it has
been developed by a huge number of contributors worldwide during these years, becoming one of the
most common and versatile kernel for embedded systems.

Below there is a schematic representing, from a high level perspective, the architecture of a
GNU/Linux operating system:

User Space

Hardware

KKeerrnneell SSppaaccee

Architecture dependent kernel code

User Applications

uclibc library

System Call Interface

Kernel

1vv0300781 Rev. 0 - 04/06/08

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 13 of 59

Two regions can be identified:

1) User space: where the user applications are executed.
2) Kernel space: where the kernel (with all its components such as device drivers) works.

These two regions are separated and have different memory address spaces; there are several
methods for user/kernel interaction:

• Using the System Call Interface that connects user to the kernel and provides the mechanism
to communicate between the user-space application and the kernel through the C library.

• Using kernel calls directly from application code leaping over the C library.
• Using the virtual filesystem.

The ordinary C library in Linux system is the glibc. Uclibc is a C library mainly targeted for developing
embedded Linux systems; despite being much smaller than the glibc it has almost all its features
(including shared libraries and threading), making easy to port applications from glibc to uclibc.

The Linux kernel architecture-independent code stays on the top of platform specific code for the
GE863-PRO³ board: this code is allows exploiting all hardware features of the GE863-PRO³.

Inside the kernel we can find, among the others, the following fundamental components:

Virtual Filesystem
Management

Process Management

Memory Management

Network Services
Management

Interprocess
Communication

Management

Device Drivers

1vv0300781 Rev. 0 - 04/06/08

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 14 of 59

The Linux kernel is a monolithic one (i.e. all OS services run along with the main kernel thread, thus
also residing in the same memory area), but it has the capability to dynamically load/unload some of
its components called modules.

A kernel module is a compiled piece of code which can be dynamically linked to the kernel when is
needed (becoming part of the kernel as the other normal kernel code) then removed when it is no
longer needed; modules are mainly used for device drivers.

2.2.3.2 The GE863-PRO³ Linux kernel
The Linux kernel on the GE863-PRO³ is based on version number 2.6.24. Below there is a picture
showing the kernel main components:

Low Level Drivers

Libraries/Modules

Operating System

Wireless
Communication

HW I/F Security Net Proto Custom

Services

1vv0300781 Rev. 0 - 04/06/08

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 15 of 59

The GE863-PRO³ Linux kernel comes with some of its features linked statically; while others are
compiled as modules (see the table below).
At the moment, available drivers are:

Driver Name Module Module Name
GPIO N N/A

MMC/SD N N/A
Ethernet Y macb

Usb Human Interface Device Y usbhid
Support for Host-side USB Y ohci-hcd

Support for USB Mass Storage Y usb-storage
USB Ethernet Gadget Y g-ether

I2C Y

i2c-core
i2c-algo-bit

i2c-dev
i2c-gpio

SPI Y Spidev

2.2.4 Filesystem

2.2.4.1 Overview
A filesystem is the entity where the files are placed logically for storage and retrieval. The filesystem
also specifies conventions for naming files (e.g. maximum number of characters for the file name).
Usually the file system has a hierarchical-tree structure: files are placed in directories inside this tree
structure.

The GE863-PRO³ has the JFFS2, a log-structured file system specifically for use on flash devices in
embedded systems. It implements file compression with the following formats: Zlib, LZO, Real time.

2.2.4.2 The filesystem structure
The image below shows the filesystem root tree.

1vv0300781 Rev. 0 - 04/06/08

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 16 of 59

/bin

This directory contains essential tools and other programs (so called binaries): note that, by default in
the GE863-PRO³, a most of these files are symbolic link that depend on Busybox (see paragraph
2.2.4.3). Moreover the Busybox binary is also placed under this directory.

/dev

This directory contains files representing the system's various hardware devices. Here, for example,
can be found all the devices representing the various GPIOs.

/etc

This directory contains system configuration files, startup files other. Here, for example, can be found
the file fstab used for mounting the various devices in the filesystem.

/home

This directory contains the home directories of the various users.

/lib

/

bin

dev

etc

home

lib

mnt

oldroot

proc

root

sbin

sys

tmp

usr

var

1vv0300781 Rev. 0 - 04/06/08

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 17 of 59

This directory contains shared libraries requiered by programs; for example, here there can be found
the uclibc libraries. Moreover in its subdirectories there are the various loadable kernel modules (for
example the modules for USB Mass Storage Devices): they can be easily recognized by the .ko
extension.

/mnt

This directory contains the mount points1 for the various devices.

/oldroot

By default this directory is empty. It is used by the system for the startup process.

/proc

This directory contains virtual folders and files which represent the current state of the kernel; for
example here you can find info about the cpu (type cat /proc/cpuinfo).

/root

This directory is the home of the user root. By default it is empty.

/sbin

This directory contains executable files are mainly used by the root user for administration task. By
default in the GE863-PRO³, most of these files are symbolic links that depend on Busybox (see
paragraph 2.2.4.3).

/sys

This directory contains system files used for device configuration.

/tmp

This directory contains temporary files.

/usr

This directory contains files and directories related to user tools and applications. By default in the
GE863-PRO³ some of these files are symbolic links that depend on Busybox (see paragraph 2.2.4.3).

/var

This directory contains variable data files.

1 The mount point is the location in the operating system's directory structure where a mounted file system
appears

1vv0300781 Rev. 0 - 04/06/08

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 18 of 59

2.2.4.3 Busybox
Inside the filesystem in the directory /bin there is the Busybox. Busybox gives the user a set of
commands useful to interact with the system; with it the user can carry out normal tasks such as
copying files (cp command), listing directories (ls command), deleting files (rm command) etc. etc.

BusyBox combines tiny versions of many common UNIX utilities into a single small executable. It
provides replacements for most of the utilities usually found in a GNU/Linux system. Note that the
utilities in BusyBox generally have fewer options than their full-featured GNU counterparts; however,
the options that are included usually satisfy the user’s needs and provide a fairly complete POSIX
environment.

Busybox is composed of:

• A single binary placed in /bin, which is the real executor of the various utilities.
• A number of symbolic links through all the filesystem, having the name of the various utilities

(cp, ls, kill etc.) which refer to the Busybox binary.

To discover the currently defined commands for the GE863-PRO³, open a terminal (refer to 3.1 for
further details) and type:

cd /bin
./busybox

To see help content for any command type in the terminal:

<command name> --help

1vv0300781 Rev. 0 - 04/06/08

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 19 of 59

3 System Startup

3.1 Startup process
Connect the GE863-PRO³ to your host system via serial cable (use Debug port of the EVK, for further
details refer to document [3]). In your host system open a terminal program (such as Hyper Terminal)
and use the following parameters for the connection:

Bits per second: 115200
Data bits: 8
Parity: None
Stop bits: 1
Flow Control: None

After turning on the GE863-PRO³ the following operations occur:

• The Telit Bootloader (refer to 2.2.1) starts and after initializing the hardware it loads the U-Boot
image from flash into RAM and runs it.

• Telit customized U-Boot (refer to 2.2.2) starts and in the terminal you should see a countdown.
If you wish to enter in U-Boot command mode (for further details refer to document [2]) press
any key, otherwise the startup process will continue within a few seconds: U-Boot loads the
kernel image in RAM then starts it.

• The kernel image decompresses itself and starts. After the initial sequence the control is
passed to the shell (refer to 3.2) which can be used to interact with the target. At this point the
system is ready to be used.

1vv0300781 Rev. 0 - 04/06/08

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 20 of 59

3.2 The Linux shell
The Linux shell is a user program that allows you to interact with the target by entering commands
from the keyboard; the shell parses the command, executes it and display the output of the command
on the screen.

When the target has finished booting, in the terminal the shell prompt will appear:

This means that the shell is ready to accept command: you can type in the terminal the command you
want to execute; for example:

ls

You should see the listing of the “/“ directory as in the image below.

1vv0300781 Rev. 0 - 04/06/08

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 21 of 59

3.3 Loading a module
To load a module type in the terminal:

modprobe <module name>

refer to 2.2.3.2 for modules’ name.

By default modprobe tries to load the module from the directory (and subdirectories) where modules
are usually stored. Some of the modules are dependent form others and require loading of other
modules first. modprobe commits to solve these dependencies before loading the specified module.

To see which modules are currently loaded in the kernel use the lsmod command as shown below:

1vv0300781 Rev. 0 - 04/06/08

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 22 of 59

To unload a module type in the terminal:

rmmod <module name>

Beware that rmmod removes only modules which are not currently used or are not needed by other
modules as a dependency.

3.4 Auto-Setup at system startup
To automatically launch commands after boot create a script file in /etc/init.d/ called Sxy (where
xy is a number starting from 00 to 99). Inside this file put all the commands you need to be started
after boot. For example, suppose you want to load the Ethernet on USB module and to configure this
interface: create the file /etc/init.d/S00 and edit it with the following content:

modprobe g_ether
ifconfig usb0 192.168.1.3 netmask 255.255.255.0

At the next reboot the script should be executed automatically.

1vv0300781 Rev. 0 - 04/06/08

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 23 of 59

3.5 Downloading a file into GE863-PRO3
There are several ways to download a file in the target. In the following paragraphs you can find
explained two of these methods; for further details refer to document [4] .

3.5.1 Downloading a file using the Ethernet connection
Be sure to have the Telit Development Environment correctly installed (with an Ethernet connection
up) and coLinux started (refer to document [4] for further details). In the host system go to Start →
Telit Development Platform → Console: and the Linux console will be opened. Type:

cd /mnt/windows

Now the current directory is where the Windows partition has been mounted.

Once identified the file to be copied, use the cp command in the following form:

cp –r <path where the file is>/<file name> /var/www/apache2-default/

For example:

cp –r ARM/binaries/executable /var/www/apache2-default/

The file is ready to be uploaded in the target; open the terminal software (as explained in 3.1) and,
when the shell is ready, within the directory where you want to place the uploaded file, type:

wget http://192.168.121.2/apache2-default/<file name>

1vv0300781 Rev. 0 - 04/06/08

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 24 of 59

You should see an output similar to that in the image below (supposing that the file is called
serialTest):

The ls command shows that the file has been downloaded.

To remove the file from the development environment type in the Linux console:

rm –rf /var/www/apache2-default/<file name>

3.5.2 Downloading a file using an USB mass storage device
Follow the procedure described in 4.8.1 for mounting the device (for example an USB memory key).
Then, type in the terminal:

cd /mnt/usbdev0

in order to have the current working directory in the USB mass storage device. Now the file can be
copied using the cp command:

cp <file name> <directory where the file is to be copied>

1vv0300781 Rev. 0 - 04/06/08

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 25 of 59

For example:

cp test.c /home/

The ls command shows that the file has been copied.

1vv0300781 Rev. 0 - 04/06/08

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 26 of 59

4 Device Drivers
Under Linux OS devices distinguish among three fundamental types: char, block and network. Each
kernel module (see paragraph 2.2.3) usually implements one of these types, and thus is classifiable as
a char module, a block module, or a network module.
A char (character) device is one that can be accessed as a stream of bytes (like a file); serial ports
(e.g. /dev/ttyS0) are examples of char devices. A char driver usually implements at least the open,
close, read, and write system calls allowing this type of communication.
Like char devices, block devices are accessed by filesystem nodes in the /dev directory. A block
device is a device (e.g., a disk) that can host a filesystem. Block and char devices differ only in the
way data is managed internally by the kernel, thus block drivers have a completely different interface
to the kernel than char drivers.
A network interface is a device that is able to exchange data with other hosts and is controlled by a
network driver. Not being a stream-oriented device, a network interface doesn't have a corresponding
entry in the filesystem.
Some types of drivers work with additional layers of kernel support functions for dedicated device
interface: for example USB devices are driven by a USB module that works with the USB subsystem,
but the devices themselves can be char devices (USB serial ports), block devices (USB memory
cards), or network devices (USB Ethernet interfaces).

4.1 Serial port
As discussed above serial ports are char devices that can be accessed through the following
filesystem nodes available on the GE863-PRO³:

ttyS0 used by the shell
ttyS1 available (e.g. used for debugging)
ttyS2 available
ttyS3 available (e.g. for accessing the GSM modem)

Refer to document [3] for further information about hardware setup of serial ports before using them.

If you want to test the ttyS1 serial port you can, for example, connect with a serial cable your host pc
and the GE863-PRO³ on ttyS1.
On GE863-PRO³’ shell type:

cat /dev/ttyS1 &

in order to print on standard output any character received over this serial port.
Now open a terminal on you host pc (by default configured for 9600 data rate) and type, for example,

hello<carriage return>

1vv0300781 Rev. 0 - 04/06/08

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 27 of 59

to write the “hello” test string over ttyS1.

The following subparagraphs show all the functions that can be used from C source code to perform
read/write operations on the serial devices.

4.1.1 open()
The open() function establishes the connection between a file and a file descriptor. The file descriptor2
is used by other I/O functions to refer to that file.

Header file:
fcntl.h

Prototype:
int open(const char *pathname, int flags)

Parameters:
pathname – file name with its own path
flags – an int specifying file opening mode: is one of O_RDONLY, O_WRONLY or O_RDWR which

request opening the file read-only, write-only or read/write, respectively.
 In addition, zero or more file flags can be set, e.g.:

 O_NOCTTY: If pathname refers to a terminal device it will not become the process's
controlling terminal even in case the process does not have one.

 O_NDELAY or O_NONBLOCK: when possible, the file is opened in non-blocking mode

Returns:
The new file descriptor fildes if operation is completed successfully, otherwise it is -1

Example:
Open the /dev/ttyS1 device.

int fd: // file descriptor for /dev/ttyS1 entry

if ((fd = open(“/dev/ttyS1”, O_RDWR | O_NOCTTY | O_NDELAY)) < 0)
{
 /* ERROR MANAGEMENT ROUTINE */
} else {
 /* SERIAL PORT OPENED */
}

4.1.2 read()
The read() function reads nbyte bytes from the file associated with the open file descriptor, fildes, and
copies them in the buffer that is pointed to by buf.

Header file:
unistd.h

2 Identifies ID of the file

1vv0300781 Rev. 0 - 04/06/08

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 28 of 59

Prototype:
ssize_t read(int fildes, void *buf, size_t nbyte);

Parameters:
fildes – file descriptor
buf – destination buffer pointer
nbyte – number of bytes that read() attempts to read

Returns:
The number of bytes actually read if operation is completed successfully, otherwise it is -1

Example:
Read sizeof(read_buff) bytes from the file associated with fd and stores them into read_buff.

char read_buff[BUFF_LEN];

if(read(fd, read_buff, sizeof(read_buff)) < 0)
{
 /* Error Management Routine */
} else {
 /* Value Read */
}

4.1.3 write()
The write() function writes nbyte bytes from the buffer that are pointed by buf to the file associated with
the open file descriptor, fildes.

Header file:
unistd.h

Prototype:
ssize_t write(int fildes, const void *buf, size_t nbyte);

Parameters:
fildes – file descriptor
buf – destination buffer pointer
nbyte – number of bytes that write() attempts to write

Returns:
The number of bytes actually written if operation is completed successfully (this number shall never be
bigger than nbyte), otherwise it is -1

Example:
Write sizeof(value_to_be_written) bytes from the buffer pointed to by value_to_be_written to the file
associated with the open file descriptor, fd.

char value_to_be_written[] = “Hello world\r\n”;

1vv0300781 Rev. 0 - 04/06/08

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 29 of 59

if (write(fd, value_to_be_written, sizeof(value_to_be_written)) < 0)
{
 /* Error Management Routine */
} else {
 /* Value Written */
}

4.1.4 close()
The close() function deallocates the file descriptor indicated by fildes. To deallocate means to make
the file descriptor available for subsequent calls to open() or other functions that allocate file
descriptors.

Header file:
unistd.h

Prototype:
int close(int fildes);

Parameters:
fildes – file descriptor

Returns:
0 if operation is completed successfully, otherwise it is -1

Example:
Close the /dev/ttyS1 device.

if(close(fd) < 0)
{
 /* Error Management Routine */
} else {
 /* File Closed */
}

4.2 I2C
The GE863-PRO3 is provided with the Atmel Two-wire Interface (TWI). It is useful to connect several
components, like EEPROM and I2C compatible device, using a unique two-wire bus.

In this chapter is described how to load I2C modules on the Linux Operating System and how to do a
little test with a C program that opens the I2C bus interface (i.e., /dev/i2c-0) and writes some data on
the device.

1vv0300781 Rev. 0 - 04/06/08

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 30 of 59

Although there are many I2C devices and chips, we can use a unique I2C kernel interface composed
by a core module used by both master and slave device modules. In the following picture we can see
the whole module structure:

So, in our system, in order to use the I2C Interface, the following steps shall be followed:

1. Load the i2c-core module;
2. Load the i2c-algo-bit module;
3. Load the i2c-dev module;
4. Load the i2c-gpio module and/or other adapter driver module(s);
5. Load your I2C device driver module(s).

However, you can find the list of all the available I2C loadable modules in the directory:
/lib/modules/your_kernel_version/kernel/drivers/i2c

4.2.1 Loading i2c modules

1. The module i2c-core is used by every other I2C modules, so it must be loaded first.

To load this module type the command

modprobe i2c-core

2. The i2c-algo-bit module implements a generic algorithm for the communications on the bus. If
you need a more specific algorithm, you can modify the i2c-algo-bit source file or implement
another module that uses i2c-algo-bit.

To load the i2c-algo-bit module type the command

modprobe i2c-algo-bit

1vv0300781 Rev. 0 - 04/06/08

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 31 of 59

3. The i2c-dev module implements a useful tool that allows the user to access all devices on an
adapter from userspace, through the /dev interface. So we’ll have one item in the /dev
directory for each bus adapter in our system. Each registered i2c adapter gets a number,
counting from 0. I2C device files are character device files with major device number 89 and a
minor device number corresponding to the number assigned as explained above. So, for
example, we’ll have in /dev the following files: i2c-0, i2c-1, ..., i2c-10, ... All 256 minor device
numbers are reserved for i2c.

To load the i2c-dev module type the command

modprobe i2c-dev

4. The i2c-gpio module is an adapter driver or, in other words, a bus controller for the GPIO bus.

If we don’t load adapter driver we won’t be able to find any item in the /dev directory. So we
have to load one adapter driver for each I2C bus in our system. In this case, we’ll have only
one bus and its correspondent driver.

To load the i2c-gpio module type the command

modprobe i2c-gpio

5. Of course you’ll need to use the I2C Interface to connect I2C chips or devices to your system.

So, after loading the previous modules, you may also need to load the driver module(s) of your
specific device(s). In order to do this, you can use the modprobe command followed by your
module’s name.

4.2.2 open()
The open() function establishes the connection between a file and a file descriptor. The file descriptor
is used by other I/O functions to refer to opened file.

Header file:
fcntl.h

Prototype:
int open(const char *pathname, int flags)

Parameters:
pathname – file name with its own path
flags – an int specifying file opening mode: that can be O_RDONLY, O_WRONLY or O_RDWR

 which requests opening the file read-only, write-only or read/write, respectively

Returns:
The new file descriptor fildes if operation is completed successfully, otherwise it is -1

Example:
Open the /dev/i2c-0.

int fd; // file descriptor for the /dev/watchdog entry

1vv0300781 Rev. 0 - 04/06/08

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 32 of 59

if((fd = open("/dev/i2c-0", O_ RDWR) < 0)
{
 /* Error Management Routine */
} else {
 /* I2C Device Opened */
}

4.2.3 ioctl()
The ioctl() function manipulates the underlying device parameters. In particular, many operating
characteristics can be controlled with ioctl() requests.

Header file:
sys/ioctl.h

Prototype:
int ioctl(int fildes, int request, ...)

Parameters:
fildes – file descriptor
request – device-dependent request code.
 The following ioctls request codes can be used for I2C:

 I2C_SLAVE, I2C_SLAVE_FORCE: to select the slave address
 I2C_TENBIT: to set the ten bit addressing
 I2C_PEC: to enable the packet error checking
 I2C_FUNCS: to get the adapter functionality mask
 I2C_RDWR: to do a combined read/write transaction
 I2C_SMBUS: to use SMBus functionalities
 I2C_RETRIES: to set the number of retries when not acknowledged
 I2C_TIMEOUT: to set the timeout value.

The third argument is a void * and depends on the ioctl request code used: see the examples below.

Returns:
0 if operation is completed successfully, otherwise it is -1

Examples:

 I2C_SLAVE, I2C_SLAVE_FORCE

Both set or change the slave address for the device opened with file_descriptor. The
address is passed in the 7 lower bits of the addr argument (except for 10 bit addresses, passed
in the 10 lower bits). With the I2C_SLAVE_FORCE request, the address passed is used as slave
address even in case it’s already in use by another program or driver.
Example:

long addr = 0x5;
ret = ioctl(file_descriptor,I2C_SLAVE, addr);

1vv0300781 Rev. 0 - 04/06/08

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 33 of 59

if (ret < 0)
 printf("An error occurred in ioctl");

 I2C_TENBIT

Selects ten bit addresses if the “select” argument does not equal 0, selects normal 7 bit addresses
if the “select” argument equals 0. The default value is 0. This request is only valid if the adapter
has I2C_FUNC_10BIT_ADDR.
Example:

long select = 0;
ret = ioctl(file_descriptor,I2C_TENBIT, select);

 I2C_PEC

Selects SMBus PEC (Packet Error Checking) generation and verification if “select” argument does
not equal 0, disables if select equals 0. The default value is 0. It is used only for SMBus
transactions. This request only has an effect if the adapter has I2C_FUNC_SMBUS_PEC (this
might not be available and will have no effect).
Example:

long select = 0;
ret = ioctl(file_descriptor,I2C_PEC, select);

 I2C_FUNCS

Gets the adapter functionality mask and puts it in *funcs.
Example:

unsigned long funcs;
user = ioctl(file_descriptor,I2C_FUNCS, &funcs);

After this call, the funcs mask should be equal to FFF800F, the hexadecimal value for
1111111111111000000000001111, which indicates that the following adapter functionalities are
available:

I2C_FUNC_I2C
I2C_FUNC_10BIT_ADDR
I2C_FUNC_PROTOCOL_MANGLING
I2C_FUNC_SMBUS_HWPEC_CALC
I2C_FUNC_SMBUS_BLOCK_PROC_CALL
I2C_FUNC_SMBUS_QUICK
I2C_FUNC_SMBUS_READ_BYTE
I2C_FUNC_SMBUS_WRITE_BYTE
I2C_FUNC_SMBUS_READ_BYTE_DATA
I2C_FUNC_SMBUS_WRITE_BYTE_DATA
I2C_FUNC_SMBUS_READ_WORD_DATA
I2C_FUNC_SMBUS_WRITE_WORD_DATA
I2C_FUNC_SMBUS_PROC_CALL

1vv0300781 Rev. 0 - 04/06/08

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 34 of 59

I2C_FUNC_SMBUS_READ_BLOCK_DATA
I2C_FUNC_SMBUS_WRITE_BLOCK_DATA
I2C_FUNC_SMBUS_READ_I2C_BLOCK
I2C_FUNC_SMBUS_WRITE_I2C_BLOCK
I2C_FUNC_SMBUS_BYTE
I2C_FUNC_SMBUS_BYTE_DATA
I2C_FUNC_SMBUS_WORD_DATA
I2C_FUNC_SMBUS_BLOCK_DATA
I2C_FUNC_SMBUS_I2C_BLOCK

Of course, if the funcs mask is different from FFF800F, the system will support different
functionalities. See the i2c.h file in the linux source tree for the available functionalities.

 I2C_RDWR

Do a combined read/write transaction without break in between. This is valid only if the adapter
has I2C_FUNC_I2C.
The difference between doing normal read/write calls and using an ioctl with the I2C_RDWR
request is that in the second case you can do the several read or write using the repeated start
condition between two messages. If you use multiple calls to read and write functions instead of
the ioctl with the I2C_RDWR request, you’ll send messages with a stop condition between
them. The argument of the ioctl call is a pointer to a

 struct i2c_rdwr_ioctl_data {
 struct i2c_msg *msgs; /* ptr to array of simple messages */
 int nmsgs; /* number of messages to exchange */
 }

where nmsgs is the number of messages to exchange. These messages are contained in the
struct i2c_msg pointer that points to an array of structures with following definition:

struct i2c_msg {

__u16 addr; /* slave address */
__u16 flags;
__u16 len; /* msg length */
__u8 *buf; /* pointer to msg data */

};

In the addr field you have to put the address of the slave device you want to communicate with. In
the flags field you have to set the options among the ones listed below:

I2C_M_TEN: setting this option you indicate that the address in the addr field is composed
by ten bits, so you’ll use the ten bit address mode;
I2C_M_RD: if set, a read operation will be performed; if you don’t set it, it’ll automatically do a
write operation;
I2C_M_NOSTART: if set, there won’t be any start condition during the sending of this
message with the i2c protocol;
I2C_M_REV_DIR_ADDR: you should set this flag if you want to do a write, but need to
simulate the process of a Read instead of a normal Write, or vice versa;

1vv0300781 Rev. 0 - 04/06/08

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 35 of 59

I2C_M_IGNORE_NAK: Normally a message is interrupted immediately if there is NACK from
the client. Setting this flag treats any NACK as an ACK, and all subsequent messages are
sent.
I2C_M_NO_RD_ACK: in a read message, the ACK/NACK bit from the master is skipped.

The struct i2c_msg also contains a pointer into a data buffer. The function will write or read
data to or from that buffer depending on whether the I2C_M_RD flag is set or not in the flags
field of a particular message. Finally, in the len field you have to set the number of bytes you want
to be read (written) to (from) the array pointed by buf.

In the following example we suppose that our slave device is an EEPROM. We want to read a data
from a specific internal address of the EEPROM, in this case the address is 0x0. First we have to
do a write with the internal address, and then a read of the data:

struct i2c_rdwr_ioctl_data work_queue;
char buf[1];
struct i2c_msg msgs[2];

buf[0]=0x0; //this is the internal address

msgs[0].len = 1;
msgs[0].flags = 0;
msgs[0].addr = 0x50; //this is the device address
msgs[0].buf = buf;

msgs[1].addr = addr;
msgs[1].flags = I2C_M_RD;
msgs[1].len = 255;
msgs[1].buf = buf2;

work_queue.msgs = msgs;
work_queue.nmsgs = 2;

ret = ioctl(fd,I2C_RDWR,&work_queue);
if (ret < 0) {
 printf("Error during I2C_RDWR ioctl with error code: %d\n",ret);
}
else{

printf("The value read at address %X is
%s\n",buf[0],work_queue.msgs[1].buf);

}

 I2C_SMBUS

Set the system to do SMBus transfers. You also have to use the following data structure:

struct i2c_smbus_ioctl_data {

__u8 read_write;
 __u8 command;

1vv0300781 Rev. 0 - 04/06/08

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 36 of 59

 __u32 size;
 union i2c_smbus_data {
 __u8 byte;
 __u16 word;
 __u8 block[I2C_SMBUS_BLOCK_MAX + 2];

// block[0] is used for length
 // and one more for user-space
compatibility

}
};

The read_write variable can be configured with I2C_SMBUS_READ or with I2C_SMBUS_WRITE.
The command values are always valid.
The size value can be I2C_SMBUS_BLOCK_PROC_CALL, I2C_SMBUS_QUICK,
I2C_SMBUS_PROC_CALL, I2C_SMBUS_BYTE, I2C_SMBUS_BYTE_DATA,
I2C_SMBUS_WORD_DATA, I2C_SMBUS_BLOCK_DATA, I2C_SMBUS_I2C_BLOCK
Example:

struct i2c_smbus_ioctl_data mycmd;
mycmd.read_write=0;
mycmd.command=0;
mycmd.size=I2C_SMBUS_QUICK; // this means "probe if this address
replies"
mycmd.data=NULL;
ret=ioctl(f,I2C_SMBUS,&mycmd);
if (ret < 0)

printf("An error occurred in ioctl");

 I2C_RETRIES

Sets the number of times a device address should be polled when not acknowledging.
Example:

unsigned long num_retries = 4;
res = ioctl(file_descriptor,I2C_RETRIES, num_retries);

 I2C_TIMEOUT

With this macro you can set the timeout value in jiffies.
Example:

unsigned long jiffies = 100;
res = ioctl(file_descriptor,I2C_TIMEOUT, jiffies);

4.2.4 read()
The read() function reads nbyte bytes from the file associated with the open file descriptor, fildes, and
copies them in the buffer that is pointed to by buf.

1vv0300781 Rev. 0 - 04/06/08

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 37 of 59

Header file:
unistd.h

Prototype:
ssize_t read(int fildes, void *buf, size_t nbyte);

Parameters:
fildes – file descriptor
buf – destination buffer pointer
nbyte – number of bytes that read() attempts to read

Returns:
The number of bytes actually read if if operation is completed successfully, otherwise it is -1.

Example:
Read sizeof(read_buff) bytes from the file associated with fd and stores them into read_buff.

char read_buff[BUFF_LEN];

if(read(fd, read_buff, sizeof(read_buff)) < 0)
{
 /* Error Management Routine */
} else {
 /* Value Read */
}

4.2.5 write()
The write() function writes nbyte bytes from the buffer that are pointed by buf to the file associated with
the open file descriptor, fildes.

Header file:
unistd.h

Prototype:
ssize_t write(int fildes, const void *buf, size_t nbyte);

Parameters:
fildes – file descriptor
buf – destination buffer pointer
nbyte – number of bytes that write() attempts to write

Returns:
The number of bytes actually written if operation is completed successfully (this number shall never be
greater than nbyte), otherwise it is -1.

Example:

1vv0300781 Rev. 0 - 04/06/08

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 38 of 59

Write sizeof(value_to_be_written) bytes from the buffer pointed by value_to_be_written to the file
associated with the open file descriptor, fd.

char value_to_be_written[] = “dumy_write”;

if (write(fd, value_to_be_written, sizeof(value_to_be_written)) < 0)
{
 /* Error Management Routine */
} else {
 /* Value Written */
}

4.2.6 close()
The close() function deallocates the file descriptor indicated by fildes. To deallocate means to make
the file descriptor available for subsequent calls to open() or other functions that allocate file
descriptors.

Header file:
unistd.h

Prototype:
int close(int fildes);

Parameters:
fildes – file descriptor

Returns:
0 if operation is completed successfully, otherwise it is -1

Example:
Close the I2C device.

if(close(fd) < 0)
{
 /* Error Management Routine */
} else {
 /* File Closed */
}

4.2.7 A Test Program

The following simple C program is useful to test the I2C interface. It opens the /dev/i2c interface and
calls the write function in an infinite loop to write some random values on the device.

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

1vv0300781 Rev. 0 - 04/06/08

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 39 of 59

#include <sys/ioctl.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <linux/i2c.h>
#include <linux/i2c-dev.h>

int main()
{
 int fd;
 char val;
 char buf[5];
 int addr = 0x40; /* This I2C address is a random value

because no device is attached
 on the bus; if you connect a device,

change this value with the correct one*/
 fd = open("/dev/i2c-0",O_RDWR);
 if (fd < 0) {
 fprintf(stderr, "Error during open\n");
 exit(1);
 }

 /* The following ioctl call sets in slave mode

 the device located at the addr address */
 if (ioctl(fd, I2C_SLAVE, addr) < 0) {
 fprintf(stderr, "Error during IOCTL\n");
 exit(1);
 }
 buf[0] = 'T';
 buf[1] = 'e';
 buf[2] = 's';
 buf[3] = 't';

 for(val=1;;val=(val+1)%255) {
 buf[4] = val;
 if (write(fd, buf, 5) != 5) {
 fprintf(stderr, "Write error (%d)\n",val);
 } else {
 fprintf(stderr, "Write OK (%d)\n",val);
 }
 usleep(500000);
 }
 return 0;

1vv0300781 Rev. 0 - 04/06/08

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 40 of 59

}

If you have some I2C device connected to the board, you’ll have to set the addr variable with the
correct address of the I2C device you want to write. Otherwise, you can initialize that variable with a
random value. In this case, you can connect an oscilloscope to the SDA and SCL pins of the board to
observe the behaviour of the signal on the pins.

If you connect an I2C device to the board the write call should be successful and the program should
report “Write OK”. Otherwise the program displays “Write error”, but this is not a problem: it only
means that there is no device connected on the bus.

4.3 SPI
The "Serial Peripheral Interface" (SPI) is a synchronous four wire serial link used to connect
microcontrollers to sensors, memory, and peripherals.
The Serial Peripheral Interface is essentially a shift register that serially transmits data bits to other
SPIs. During a data transfer, one SPI system acts as the “master”' and controls the data flow, while
the other devices act as “slaves''.

The SPI system consists of two data lines and two control lines:
• Master Out Slave In (MOSI): This data line supplies the output data from the master shifted into the
input(s) of the slave(s).
• Master In Slave Out (MISO): This data line supplies the output data from a slave to the input of the
master. There may be no more than one slave transmitting data during any particular transfer.
• Serial Clock (SPCK): This control line is driven by the master and regulates the flow of the data bits.
The master may transmit data at a variety of baud rates; the SPCK line cycles once for each bit that is
transmitted.
• Slave Select (NSS): This control line allows slaves to be turned on and off by hardware (it is also
called chipselect).

4.3.1 Loading the SPI module
The SPI driver is released to customer under in the form of a loadable module.

To load the SPI module type in the terminal:

modprobe spidev

When loaded, the SPI driver will installs a new device named spidev1.1. under the /dev/ directory.
The “1.1” name extension represents the number of the selected SPI bus and the selected chipselect.

Once installed the SPI device can be used as a normal character device and can be accessed by any
application running in userspace.

1vv0300781 Rev. 0 - 04/06/08

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 41 of 59

4.3.2 open()
The open() function shall establish the connection between a file and a file descriptor. The file
descriptor is used by other I/O functions to refer to the opened file.

Header file:
fcntl.h

Prototype:
int open(const char *pathname, int flags)

Parameters:
pathname – file name with its own path
flags – is an int specifying file opening mode: is one of O_RDONLY, O_WRONLY or O_RDWR

 which request opening the file read-only, write-only or read/write, respectively

Returns:
The new file descriptor fildes if operation is completed successfully, otherwise it is -1.

Example:
Open the /dev/spidev1.1.

int fd; // file descriptor for the /dev/watchdog entry

if((fd = open("/dev/spidev1.1", O_ RDWR) < 0)
{
 /* Error Management Routine */
} else {
 /* SPI Device Opened */
}

4.3.3 ioctl()
The ioctl() function manipulates the underlying device parameters. In particular, many operating
characteristics can be controlled with ioctl() requests.

Header file:
sys/ioctl.h
linux/spi/spidev.h

Prototype:
int ioctl(int fildes, int request, ...)

Parameters:
fildes – file descriptor
request – device-dependent request code.
 The following ioctls request codes can be used for SPI:

 SPI_IOC_RD_MODE and SPI_IOC_WR_MODE to get/set the SPI mode

1vv0300781 Rev. 0 - 04/06/08

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 42 of 59

 SPI_IOC_RD_BITS_PER_WORD and SPI_IOC_WR_BITS_PER_WORD to get/set
the number of bits per words exchanged
 SPI_IOC_RD_MAX_SPEED_HZ and SPI_IOC_WR_MAX_SPEED_HZ to get/set the
maximum allowed speed
 SPI_IOC_MESSAGE to exchange data in full duplex mode

The third argument is a void * and depends on the ioctl request code used: see the examples below.

Returns:
0 if operation is completed successfully, otherwise it is -1.

Examples:

 SPI_IOC_RD_MODE and SPI_IOC_WR_MODE

Get (RD) or set (WR) the SPI mode. The third parameter is a pointer to a byte which will return
(RD) or assign (WR) the SPI transfer mode.
The constant values defined in the “spidev.h” file will be used to set the SPI mode.
Please note that SPI_CS_HIGH, SPI_CPHA, SPI_CPOL and SPI_MODE_0..SPI_MODE_3 are
the only constant values, listed in the “spidev.h” file, supported by the current SPI driver.
Example:

uint8_t mode;
mode = SPI_CS_HIGH|SPI_CPOL|SPI_CPHA;/* Beware! this is just an example.
Check your device before setting these fields*/
ret = ioctl(fd, SPI_IOC_WR_MODE, &mode);
if (ret == -1)
 printf("can't set SPI mode");

 SPI_IOC_RD_BITS_PER_WORD and SPI_IOC_WR_BITS_PER_WORD

Get (RD) or set (WR) the number of bits per word exchanged. The third parameter is a pointer to a
byte which will return (RD) or assign (WR) the number of bits in each SPI transfer word.
Example:

uint8_t bits;
ret = ioctl(fd, SPI_IOC_WR_BITS_PER_WORD, &bits);
if (ret == -1)
 printf("can't set bits per word");

 SPI_IOC_RD_MAX_SPEED_HZ and SPI_IOC_WR_MAX_SPEED_HZ

Get (RD) or set (WR) the SPI max speed. The third parameter is a pointer to a uint32_t which will
return (RD) or assign (WR) the maximum SPI transfer speed, in Hz. It is not required that the
controller assigns specific clock speed.
Example:

uint32_t speed;
ret = ioctl(fd, SPI_IOC_WR_MAX_SPEED_HZ, &speed);
if (ret == -1)
 printf("can't set max speed hz");

1vv0300781 Rev. 0 - 04/06/08

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 43 of 59

 SPI_IOC_MESSAGE

Standard read() and write() operations are obviously only half-duplex, and the chipselect is
deactivated between those operations. Full-duplex access, and composite operation without
chipselect de-activation, is available using the SPI_IOC_MESSAGE(N) request.
Please note that the SPI_IOC_MESSAGE(N) request needs, as parameter, a pointer to struct
spi_ioc_transfer whose fields speed_hz and bits_per_word must be set to 0.

Example:

uint8_t tx[] = {
 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
 0x40, 0x00, 0x00, 0x00, 0x00, 0x95,
 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
 0xDE, 0xAD, 0xBE, 0xEF, 0xBA, 0xAD,
 0xF0, 0x0D,
 };
uint8_t rx[ARRAY_SIZE(tx)] = {0, };
 struct spi_ioc_transfer tr = {
 .tx_buf = (unsigned long)tx,
 .rx_buf = (unsigned long)rx,
 .len = ARRAY_SIZE(tx),
 .delay_usecs = delay,/*Delay before chipselect
deactivation*/
 .speed_hz = 0,/* Must be set to 0 */
 .bits_per_word = 0,/* Must be set to 0*/
 };
 for (i = 0; i < 100 ; i++)
 {
 ret = ioctl(fd, SPI_IOC_MESSAGE(1), &tr);
 if (ret == -1)
 printf("can't send spi message");
 }

4.3.4 read()
The read() function reads nbyte bytes from the file associated with the open file descriptor, fildes, and
copies them in the buffer that is pointed to by buf.

Header file:
unistd.h

Prototype:
ssize_t read(int fildes, void *buf, size_t nbyte);

Parameters:

1vv0300781 Rev. 0 - 04/06/08

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 44 of 59

fildes – file descriptor
buf – destination buffer pointer
nbyte – number of bytes that read() attempts to read

Returns:
The number of bytes actually read if operation is completed successfully, otherwise it is -1.

Example:
Read sizeof(read_buff) bytes from the file associated with fd and stores them in read_buff.

char read_buff[BUFF_LEN];

if(read(fd, read_buff, sizeof(read_buff)) < 0)
{
 /* Error Management Routine */
} else {
 /* Value Read */
}

4.3.5 write()
The write() function writes nbyte bytes from the buffer that are pointed by buf to the file associated with
the open file descriptor, fildes.

Header file:
unistd.h

Prototype:
ssize_t write(int fildes, const void *buf, size_t nbyte);

Parameters:
fildes – file descriptor
buf – destination buffer pointer
nbyte – number of bytes that write() attempts to write

Returns:
The number of bytes actually written if operation is completed successfully, (this number shall never
be greater than nbyte), otherwise it is -1

Example:
Write sizeof(value_to_be_written) bytes from the buffer pointed by value_to_be_written to the file
associated with the open file descriptor, fd.

char value_to_be_written[] = “dummy_write”;

if (write(fd, value_to_be_written, sizeof(value_to_be_written)) < 0)
{
 /* Error Management Routine */
} else {

1vv0300781 Rev. 0 - 04/06/08

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 45 of 59

 /* Value Written */
}

4.3.6 close()
The close() function deallocates the file descriptor indicated by fildes. To deallocate means to make
the file descriptor available for subsequent calls to open() or other functions that allocate file
descriptors.

Header file:
unistd.h

Prototype:
int close(int fildes);

Parameters:
fildes – file descriptor

Returns:
0 if operation is completed successfully, otherwise it is -1

Example:
Close the SPI device.

if(close(fd) < 0)
{
 /* Error Management Routine */
} else {
 /* File Closed */
}

4.3.7 A Test Program
Below it is reported a simple piece of code that opens the device, writes some random data, reads
some data if available and then closes the devices. Please note that the following code works for half
duplex communication. For typical full duplex communication the SPI_IOC_MESSAGE ioctl will be
used.
In order to receive data when executing the read() function a transmitting SPI peripheral must be
connected.

#include <stdint.h>
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <getopt.h>
#include <fcntl.h>
#include <sys/ioctl.h>
#include <linux/types.h>
#include <linux/spi/spidev.h>

1vv0300781 Rev. 0 - 04/06/08

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 46 of 59

#define ARRAY_SIZE(a) (sizeof(a) / sizeof((a)[0]))
static const char *device = "/dev/spidev1.1";

static void myTransfer(int fd)
{
 int ret;
 int i = 0;
 uint8_t tx[] = {
 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
 0x40, 0x00, 0x00, 0x00, 0x00, 0x95,
 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
 0xDE, 0xAD, 0xBE, 0xEF, 0xBA, 0xAD,
 0xF0, 0x0D,
 };
 uint8_t rx[ARRAY_SIZE(tx)] = {0, };
 if((write(fd, tx, ARRAY_SIZE(tx)))!=ARRAY_SIZE(tx))
 {
 printf("Write Failed.\n");
 }
 else
 {
 printf("\nTransmitted Buffer.\n");
 for(i=0; i < ARRAY_SIZE(tx); i++)
 {
 printf("0x%x,",tx[i]);
 if((!(i%10)) &&(i!=0))
 {
 printf("\n");
 }
 }
 }
 if((read(fd, rx, ARRAY_SIZE(tx)))!=ARRAY_SIZE(tx))
 {
 printf("\nRead Failed.\n");
 }
 else
 {
 printf("\nReceived Buffer.\n");
 for(i=0; i < ARRAY_SIZE(tx); i++)
 {
 printf("0x%x,",rx[i]);
 if((!(i%10)) &&(i!=0))
 {
 printf("\n");
 }
 }
 }

1vv0300781 Rev. 0 - 04/06/08

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 47 of 59

 return;
}

int main(int argc, char *argv[])
{
 int ret = 0;
 int fd;

 fd = open(device, O_RDWR);
 if (fd < 0)
 {
 printf("can't open device");
 return -1;
 }
 myTransfer(fd);

 close(fd);

 return ret;
}

4.4 GPIO
The GPIO driver creates a series of devices under the /dev/ directory. Each device is named as
at91sam9260_gpio.<pin>.
GPIO pins are numbered from 0 to 95. The first 32 pins refer to the A bank, the second 32 pins refer to
the B bank and the others refer to the C bank.
GPIO pins can be read and written thorough simple read/write operations.

The read operation returns the status and the level of the pin if it is configured as a GPIO, otherwise it
fails. The write operation can change the configuration and output value. The configuration can be
changed using:

 O for output enable with pull up
 o for output enable without pull up
 I input enabled with pull up
 i input enabled without pull up
 1 set the level up
 0 set the level low

To test a gpio you can use the shell, for example (gpio number 92):

echo O1 > /dev/at91sam9260_gpio.92

to raise up the signal.

1vv0300781 Rev. 0 - 04/06/08

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 48 of 59

The following subparagraphs show all the functions that can be used from C source code to perform
read/write operations onto GPIOs pins.

4.4.1 open()
The open() function establishes the connection between a file and a file descriptor. The file descriptor
is used by other I/O functions to refer to the opened file.

Header file:
fcntl.h

Prototype:
int open(const char *pathname, int flags)

Parameters:
pathname – file name with its own path
flags – is an int specifying file opening mode: is one of O_RDONLY, O_WRONLY or O_RDWR

 which request opening the file read-only, write-only or read/write, respectively

Returns:
The new file descriptor fildes if operation is completed successfully, otherwise it is -1.

Example:
Open the GPIO device (for example number 92).

int fd; // file descriptor for GPIO /dev entries

if((fd = open(“/dev/at91sam9260_gpio.92”, O_RDWR)) < 0)
{
 /* Error Management Routine */
} else {
 /* Gpio Opened */
}

4.4.2 read()
The read() function reads nbyte bytes from the file associated with the open file descriptor, fildes, and
copies them in the buffer that is pointed to by buf.

Header file:
unistd.h

Prototype:
ssize_t read(int fildes, void *buf, size_t nbyte);

Parameters:
fildes – file descriptor
buf – destination buffer pointer
nbyte – number of bytes that read() attempts to read

1vv0300781 Rev. 0 - 04/06/08

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 49 of 59

Returns:
The number of bytes actually read if operation is completed successfully, otherwise it is -1

Example:
Read sizeof(read_buff) bytes from the file associated with fd and stores them into read_buff.

char read_buff[BUFF_LEN];

if(read(fd, read_buff, sizeof(read_buff)) < 0)
{
 /* Error Management Routine */
} else {
 /* Value Read */
}

4.4.3 write()
The write() function writes nbyte bytes from the buffer that are pointed by buf to the file associated with
the open file descriptor, fildes.

Header file:
unistd.h

Prototype:
ssize_t write(int fildes, const void *buf, size_t nbyte);

Parameters:
fildes – file descriptor
buf – destination buffer pointer
nbyte – number of bytes that write() attempts to write

Returns:
The number of bytes actually written if operation is completed successfully
 (this number shall never be greater than nbyte), otherwise it is -1.

Example:
Write sizeof(value_to_be_written) bytes from the buffer pointed by value_to_be_written to the file
associated with the open file descriptor, fd.

char value_to_be_written[] = “O1”;

if (write(fd, value_to_be_written, sizeof(value_to_be_written)) < 0)
{
 /* Error Management Routine */
} else {
 /* Value Written */
}

1vv0300781 Rev. 0 - 04/06/08

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 50 of 59

4.4.4 close()
The close() function deallocates the file descriptor indicated by fildes. To deallocate means to make
the file descriptor available for subsequent calls to open() or other functions that allocate file
descriptors.

Header file:
unistd.h

Prototype:
int close(int fildes);

Parameters:
fildes – file descriptor

Returns:
0 if operation is completed successfully, otherwise it is -1.

Example:
Close the GPIO device.

if(close(fd) < 0)
{
 /* Error Management Routine */
} else {
 /* File Closed */
}

4.5 Watchdog
A Watchdog Timer (WDT) is a hardware circuit that can reset the computer system in case of a
software fault.
Usually a userspace daemon will notify the kernel watchdog driver via the /dev/watchdog special
device file that the userspace is still alive, at regular intervals. When such a notification occurs, the
driver will usually tell the hardware watchdog that everything is in order, and that the watchdog should
wait before resetting the system. If userspace fails (RAM error, kernel bug, whatever), the notifications
cease to occur, and the hardware watchdog will reset the system (causing a reboot) after the timeout
expires.

Userspace can interact with the kernel watchdog driver through the functions shown in the paragraphs
below.

4.5.1 open()
The open() function establishes the connection between a file and a file descriptor. The file descriptor
is used by other I/O functions to refer to the opened file.

Header file:

1vv0300781 Rev. 0 - 04/06/08

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 51 of 59

fcntl.h

Prototype:
int open(const char *pathname, int flags)

Parameters:
pathname – file name with its own path
flags – an int specifying file opening mode: that can be O_RDONLY, O_WRONLY or O_RDWR

 which request opening the file read-only, write-only or read/write, respectively

Returns:
The new file descriptor fildes if operation is completed successfully, otherwise it is -1
Example:
Open the /dev/watchdog.

int fd; // file descriptor for the /dev/watchdog entry

if((fd = open("/dev/watchdog", O_WRONLY) < 0)
{
 /* Error Management Routine */
} else {
 /* Watchdog Device Opened */
}

4.5.2 ioctl()
The ioctl() function manipulates the underlying device parameters. In particular, many operating
characteristics can be controlled with ioctl() requests.

Header file:
sys/ioctl.h
linux/watchdog.h

Prototype:
int ioctl(int fildes, int request, ...)

Parameters:
fildes – file descriptor
request – device-dependent request code.
 The following ioctls request codes can be used for watchdog device:

 WDIOC_KEEPALIVE: to notify the watchdog that userspace is still alive
 WDIOC_SETTIMEOUT: to set a timeout
 WDIOC_SETOPTIONS: to enable or disable the watchdog
 WDIOC_GETTIMEOUT: to query the timeout

The third argument is a void * and depends on the ioctl request code used: see the examples below.

Returns:

1vv0300781 Rev. 0 - 04/06/08

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 52 of 59

0 if operation is completed successfully, otherwise it is -1

Examples:

 WDIOC_KEEPALIVE

The AT91Sam9260 watchdog driver supports the WDIOC_KEEPALIVE ioctl. It notifies the
watchdog that userspace is still alive. In this case the third argument in the ioctl is ignored. This
function call resets the timer and leaves the system alive (is used to avoid reset when the
watchdog is active). Example:

fd = open("/dev/watchdog", O_WRONLY);
int dummy;
for(;;){
 ioctl(fd, WDIOC_KEEPALIVE, &dummy);
 sleep(1)
}

 WDIOC_SETTIMEOUT

Setting Timeout is performed by the SETTIMEOUT ioctl. The third argument is an integer that
represents the timeout in seconds (max timeout is 16 seconds in at91sam9260 architecture). The
driver returns the real timeout used in the same variable, and this timeout can be different from the
one that has been set due to limitation of the hardware.
The watchdog timeout can be written only once (at91sam9260 only permits one program
operation).
Example:

int timeout=15;
ioctl(fd, WDIOC_SETTIMEOUT, &timeout);

Notice: If the watchdog start is enabled the user must set the timeout otherwise it will use the
default value.

 WDIOC_SETOPTIONS

It enables or disables the watchdog. The third argument is an integer indicating the option to be
set.

Example to disable the watchdog:

int options = WDIOS_DISABLECARD;
ioctl(fd, WDIOC_SETOPTIONS, &options);

Example to enable the watchdog:

int options = WDIOS_ENABLECARD;
ioctl(fd, WDIOC_SETOPTIONS, &options);

 WDIOC_GETTIMEOUT

1vv0300781 Rev. 0 - 04/06/08

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 53 of 59

It is possible to query the timeout using the WDIOC_GETTIMEOUT ioctl. The third argument is an
integer representing the timeout in seconds.
Example:

ioctl(fd, WDIOC_GETTIMEOUT, &timeout);
printf("The timeout is %d seconds\n", timeout);

4.5.3 close()
The close() function deallocates the file descriptor indicated by fildes. To deallocate means to make
the file descriptor available for subsequent calls to open() or other functions that allocate file
descriptors.

Header file:
unistd.h

Prototype:
int close(int fildes);

Parameters:
fildes – file descriptor

Returns:
0 if operation is completed successfully, otherwise it is -1

Example:
Close the watchdog device.

if(close(fd) < 0)
{
 /* Error Management Routine */
} else {
 /* File Closed */
}

4.6 SDIO
GE863-PRO³ support for Secure Digital (SD) and Multimedia Card (MMC) is built in the kernel.

First create a directory where the device will be mounted, for example:

mkdir /mnt/sdcard

Then, connect the device and mount it:

mount /dev/mmcblk0p1 /mnt/sdcard

1vv0300781 Rev. 0 - 04/06/08

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 54 of 59

The device is now ready to be used.

Note that the card filesystem must be Fat/Fat32 in order to work correctly.

To un-mount the device type:

umount /mnt/sdcard

4.7 Ethernet
The GE863-PRO³ Linux operating system is able to drive an Ethernet interface; the Ethernet support
is built as a module. To load the module type in the terminal:

modprobe macb

Once the module is loaded, you will find a new Ethernet device called eth0; to properly configure the
device use the ifconfig command.

First of all you have to assign the MAC address:

ifconfig eth0 hw ether <MAC address>

For example:

ifconfig eth0 hw ether AA:BB:AA:BB:AA:BB

Then, you have to assign the IP address and netmask:

ifconfig eth0 <ip address> netmask <netmask>

For example, suppose you want to assign the IP address 192.168.1.12 to the device, with a netmask
255.255.255.0:

ifconfig eth0 192.168.1.12 netmask 255.255.255.0

To test if everything works correctly on the device you can type:

ping <ip address of another station in the network>

And you should see packets transmission.

1vv0300781 Rev. 0 - 04/06/08

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 55 of 59

4.8 USB

4.8.1 USB Mass Storage
Any type of USB Mass Storage Device can be connected to the GE863-PRO³. For that purpose some
kernel modules have to be loaded. Type in the terminal:

modprobe ohci-hcd
modprobe usb-storage

Now create a directory where the device will be mounted, for example:

mkdir /mnt/usbdev0

Connect the device then mount it:

mount /dev/sda1 /mnt/usbdev0

Note that the GE863-PRO³ has two USB ports A-type, so if you connect two devices they will be
called /dev/sda1 and /dev/sdb1.

To un-mount the device type:

umount /mnt/usbdev0

4.8.2 USB device (Ethernet Gadget)
The GE863-PRO³ has Ethernet on USB capabilities, so the USB link B-type (target side) / A-type (PC
side) can behave like a normal Ethernet link. For that purpose some kernel modules need to be
loaded. Type in the terminal:

modprobe g_ether

Connect the USB cable and configure the interface:

ifconfig usb0 <ip address> netmask <netmask>

For example:

ifconfig usb0 192.168.121.3 netmask 255.255.255.0

To test the correct working of the device you can type:

ping <ip address of another station in the network>

And you should see packets transmission.

1vv0300781 Rev. 0 - 04/06/08

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 56 of 59

Note that: on the host you need to load the suitable drivers and configure the new virtual Ethernet link
for correct working. For further details refer to document [4] .

To remove the link type:

ifconfig usb0 down

1vv0300781 Rev. 0 - 04/06/08

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 57 of 59

5 CMUX
GE863-PRO³ implements the GSM 7.10 multiplexing protocol that enables one serial interface to
transmit data to different customer applications. Using the multiplexer features, GE863-PRO³ can
perform e.g. a fax/data/GPRS call while using the SMS service.
Cmux protocol can be enabled by starting cmuxt daemon once the modem has been turned on, with
the options shown below:

Synopsis

cmuxt [parameters]

Parameters

-p <serport> : Serial port device to connect to [default value: /dev/ttyS1]
-b <baudrate> : MUX mode baudrate [0,9600,19200,...115200]
-u <sleep time> : Sleep time after send AT command (msec)
-c : (crtscts) Hw control OFF
-d : Daemonize: create a daemon
-l : Don't make pts symLinks. Links needs root privileges
-h -? : Show this help message

Since GE863-PRO³ use /dev/ttyS3 device to access to modem, cmuxt is called typing:

cmuxt –p /dev/ttyS3 –b 115200 –d

Once cmuxt has been started the following four devices are created into /dev directory:

/dev/cmux1
/dev/cmux2
/dev/cmux3
/dev/cmux4

The devices above are the serial virtual channels that have to be accessed by applications in order to
perform multiple operations at the same time (see figure below).

Please note: virtual port cmux4 is reserved and cannot be used.

1vv0300781 Rev. 0 - 04/06/08

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 58 of 59

5.1 Code example
Cmux virtual channels can be simply managed as a serial device as shown in the example below:

 Open the virtual channel port (for example /dev/cmux1):

int fdPts;
cmux_port[] = "/dev/cmux1";
struct termios serCfg;

if((fdPts = open(cmux_port, O_RDWR)) < 0)
 return -1;
else if(tcgetattr(fdPts, &serCfg)!= 0)
 return -1;

cfmakeraw(&serCfg);

if(tcsetattr(fdPts, TCSANOW, &serCfg) != 0)
 return -1;

 Commit the desired operation:

/* Write example */
char AT_cmd1[] = "AT&V?\r";

if write(fdPts, AT_cmd1, strlen(AT_cmd1)) < 0)
{
 /* ERROR MANAGEMENT ROUTINE */
} else {

ttttyySS33

ccmmuuxx11 AApppplliiccaattiioonn 11

AApppplliiccaattiioonn 22

GE863-PRO³

CCMMUUXX

MODEM

ccmmuuxx22

ccmmuuxx33 AApppplliiccaattiioonn 33

1vv0300781 Rev. 0 - 04/06/08

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Rights Reserved page 59 of 59

 /* VALUE WRITTEN */
}
/* Read example */
char read_buff[BUFF_LEN];

read(fdPts, read_buff, sizeof(read_buff));

 Close the serial port

close(fdPts);

