

 1

Harvester Service
Technical and User Guide

5 June 2008

1. Purpose ...2
2. Overview..2
3. Services ...3
4. Custom Harvests...5
5. Notes on Harvest Flow..6
6. Source Code Overview..6

 2

1. Purpose
The purpose of this document is to provide an overview of the Harvester Service package
along with technical details of the services implemented.

2. Overview
Note:The Harvester Service is not a software package for end users. It does not come
packaged with a friendly user interface. It is a proxy harvester for processing and routing
OAI-PMH Data Provider responses to various applications. It is intended it be used for
integration with other applications requiring a harvesting service.

The Harvester Service provides a service-oriented framework to support the processing and
routing of content and metadata from a source data provider to a target application. It
potentially makes management of distributed harvests simpler by providing a single harvest
application which can service many clients wishing to perform harvesting without the
overhead of writing their own embedded harvester. (Of course the code could also be taken
and modified to work as an embedded harvester as well.) A typical deployment
configuration for example may be:

In the above diagram multiple applications make use of the Harvester to obtain records
from OAI-PMH Data Providers and use the Harvester Service to schedule and run the
harvest. For example Application X and Application Y may both harvest Data Provider A
each asking for the same or different set of records. In the simplest scenario, upon
receiving a harvest request from an external application (which may be a recurring or one-
off harvest) the harvester will schedule the harvest for execution. The responses from the
data provider are passed back to the application for processing via a service point the
application provides in its harvest request. By default a response is forwarded as soon as
the harvester receives it. The harvester also is able to cater for custom harvests whereby
some or all of the standard harvesting process can be altered to suit particular client
applications.

The Harvester Service distribution comprises a number of default harvests including a GET-
type harvest (retrieval of XML content from a URL), a standard OAI-PMH harvest, and a
custom harvest known as RIF which was developed for harvesting on behalf of a
collection/services registry application known as ORCA.

 3

From a software perspective the goals of the Harvester Service development were:
 to make the application lightweight but flexible;
 not to be a burden for IT support staff (and other developers) to maintain;
 to use common and stable technologies;
 to be platform-independent.

The software was written in Java to aid platform-independence and is bundled with a
Postgres database.

3. Services
Service: requestHarvest
Parameters:
harvestid (Mandatory)
The harvestid is provided by the requesting application and needs to be unique within the
harvester. A UUID for example would make a good harvestid. If the harvestid already exists
in the harvester an error response will be returned.
sourceurl (Mandatory)

This is typically the base URL of the OAI PMH Data Provider the application wishes to have
harvested.
responsetargeturl (Mandatory)

A URL for a service to which the harvester will post its harvested fragments. This would
typically be a service on a client application that will process the fragments.
mode (Optional)
Valid values are "test" or "harvest". A mode of “test” returns only the first ListRecords
fragment, treated as a one-off harvest and deleted once complete. Default is value is
"harvest".
method (Optional)

The harvest method to use. This method must correlate to a class in the thread package
with name of form {$method}HarvestThread e.g. PMHHarvestThread. Default is PMH.
metadataPrefix (Optional)
OAI PMH metadataPrefix to use for the harvest. Default is oai_dc.
from (Optional)

Used for date range harvesting. Harvest records "from" this date. Granularities supported
are YYYY-MM-DD and YYYY-MM-DDTHH:mm:ssZ. Default is the value taken from the
“earliestDatestamp” from the Identify request.
until (Optional)

Used for date range harvesting. Harvest records "until" this date. Granularities supported
are YYYY-MM-DD and YYYY-MM-DDTHH:mm:ssZ. Default is the time the harvest commenced.
set (Optional)
A set spec defining a subset of records. Default is null.
date (Optional)

A UTC date in the form YY-MM-DDThh:mm:ssZ indicating the date/time at which the
harvest should run. Default is the date the requestHarvest is received by the Harvester.
frequency (Optional)

The recurrence period for a harvest. Currently supported are hourly, daily, weekly,
fortnightly, monthly. If frequency is not provided but date is, the harvest is scheduled for
one-off execution at the specified date. If frequency is specified but date is not, the time
the request was processed will be used as the basis for periodic scheduling. If both date
and frequency are not provided the harvest will be executed immediately and treated as a
one-off harvest.

Description: The requestHarvest service is responsible for accepting a request from a client
to register and schedule a harvest. On receipt of a request the harvest details are set and

 4

stored in the Harvester database and the harvest is then scheduled according to the
information the client has provided. Should any errors occur, an XML response will be
returned with a reason for the failed request similar to:
<?xml version="1.0" encoding="UTF-8"?>
<response type="failure">
 <timestamp>2008-05-07T04:31:32Z</timestamp>
 <message>Missing parameter: responsetargeturl</message>
</response>

If the request is successful an XML response will be returned:
<?xml version="1.0" encoding="UTF-8"?>
<response type="success">
 <properties>
 <property name="sourceurl" value="http://localhost:8080/dp/request"/>
 <property name="responsetargeturl" value="http://localhost/test.php"/>
 <property name="mode" value="harvest"/>
 <property name="harvestid" value="test"/>
 <property name="method" value="PMH"/>
 </properties>
 <timestamp>2008-05-07T04:32:51Z</timestamp>
 <message>Harvest has been scheduled</message>
</response>

The status of the harvest can be checked at any time via the getHarvestStatus service.

Service: getHarvestStatus
Parameters:
harvestid (Mandatory)
The id of the harvest

Description: The getHarvestStatus service shows the current status of a scheduled harvest.
The response is an XML formatted message:
?xml version="1.0" encoding="UTF-8"?>
<response type="success">
 <properties>
 <property name="sourceurl" value="http://localhost:8080/ dp/request"/>
 <property name="responsetargeturl" value="http://localhost/test.php"/>
 <property name="mode" value="harvest"/>
 <property name="harvestid" value="test"/>
 <property name="method" value="PMH"/>
 </properties>
 <timestamp>2008-05-07T04:38:02Z</timestamp>
 <message>Scheduled for 2008-05-07T05:20:14Z</message>
</response>

If the harvestid is not found (for example if a one-off harvest has completed and been
removed from the Harvester records) an error response similar to that described in the
requestHarvest service will be returned.

 5

Service: deleteHarvestRequest
Parameters:
harvestid (Mandatory)
The id of the harvest to delete
Description: The deleteHarvest service deletes an existing harvest. The response is an XML
formatted message:
<?xml version="1.0" encoding="UTF-8"?>
<response type="success">
 <timestamp>2008-05-07T15:53:51Z</timestamp>
 <message>Harvest test deleted</message>
</response>

If the harvestid is not found (for example if a one-off harvest has completed and been
removed from the Harvester records) an error response similar to that described in the
requestHarvest service will be returned. If a harvest is running when the delete is
performed the harvest will error. The process for cleanly deleting a harvest is to first use
the stopHarvest service before attempting a deletion. Deleting a harvest removes all trace
of the harvest from the database.

Service: startHarvest
Parameters:
harvestid (Mandatory)
The harvestid of the harvest to apply the service to.

Description: Starts the harvest identified by the harvestid. If the harvest is already running
this service will have no effect and the XML response will contain a message to this effect.
A harvest must be stopped (either by user or in error) before the startHarvest service will
run successfully.

Service: stopHarvest
Parameters:
harvestid (Mandatory)
The harvestid of the harvest to apply the service to.

Description: Stops the harvest identified by the harvestid. If the harvest is already stopped
or unable to be stopped this service will have no effect and the XML response will contain a
message to this effect.

4. Custom Harvests
Custom harvests can be added to the Harvester through the creation of a Java class
extending the HarvestThread class. Each HarvestThread class implements a particular
harvesting method. For example the GETHarvestThread implements a pseudo-harvest which
simply reads a URL pointing to an XML document containing metadata of interest and
passes to content direct to an application. The RIFHarvestThread is a custom harvest which
performs an OAI PMH harvest but strips the PMH markup and removes namespaces from the
metadata payload before forwarding the resultant fragment to the client application.

The only requirements for custom harvests are that the class files must be deployed as part
of the au.edu.apsr.harvester.thread package; and to be used (instantiated) the value of the
“method” attribute of the requestHarvest service must be the string preceding
“HarvestThread” in the class name i.e. {$method}HarvestThread. Custom harvests can
override or ignore any harvest details. For example, a custom harvest may ever only need
to use one metadataPrefix value and so can be hardcoded within the custom harvest thus
overriding the default; it may not want to store response records in the database; it may

 6

want to delete a harvest from the system whenever a harvest fails; etc.

5. Notes on Harvest Flow
The harvester is designed to act as a service for applications wanting to harvest from data
providers. Typically a client application will send a requestHarvest service request to the
Harvester which will result in the Harvester recording the harvest details in its database
and then scheduling the harvest for execution. On execution a harvest occurs (the
processing and flow is determined by the particular {$method}HarvestThread class) and
once completed is either deleted from the Harvester (in the case of a one-off harvest) or
rescheduled as an incremental harvest based on the date and frequency provided in the
initial client request. Individual response fragments in all current HarvestThread
implementations are stored in the Harvester database and also posted back to the URL
specified in the reponsetargeturl. When successfully posted are removed from the
Harvester database.
In the event the Tomcat servlet container is shutdown all jobs are rescheduled on restart.
One-off jobs will be executed immediately on restart.

In the event either a sourceurl or responsetargeturl is unavailable or returns an error, the
harvest will retry up to three times and then fail with an error status and rescheduled
based on the harvest record’s date and frequency. The harvest will need to be restarted
manually via the manage service if needing to rerun prior to the next scheduled run.

6. Source Code Overview
A brief overview of the source organisation follows. For further details individual code
modules should be examined. A javadoc option with the build file is available (use ant
target of 'javadoc').

harvester->src
Java Source Code

harvester->docs
Install guide, license and the like can be found in the docs area.

harvester->etc
web.xml file and Postgres database DDL

harvester->lib
All external jars and associated license details.

harvester->stylesheet
XSLT Source Code

harvester->src->...->dao

DAO classes for Postgres database actions. These classes can be substituted for classes
supporting other database platforms.

harvester->src->...->oai
OCLC’s Harvester2 verb classes.

harvester->src->...->servlet
Classes implementing the services described earlier in this document

 7

harvester->src->...->testing
Classes used in development for testing which may be of use to other developers.

harvester->src->...->thread
Classes implementing harvests and the harvest manager class.

harvester->src->...->to

Transfer object classes. These classes define an interface between client and business
classes and the DAO classes.

harvester->src->...->util

Classes containing methods useful to numerous other classes and XSL Java extension
methods.

