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Chapter 1

Introduction

1.1 About this Manual

This manual is intended as a general–purpose user’s guide for Q-Chem, a modern electronic

structure program. The manual contains background information that describes Q-Chem methods

and user–selected parameters. It is assumed that the user has some familiarity with the UNIX

environment, an ASCII file editor and a basic understanding of quantum chemistry.

The manual is divided into 11 chapters and 3 appendices, which are briefly summarized below.

After installing Q-Chem, and making necessary adjustments to your user account, it is recom-

mended that particular attention be given to Chapters 3 and 4. The latter chapter has been

formatted so that advanced users can quickly find the information they require, while supplying

new users with a moderate level of important background information. This format has been

maintained throughout the manual, and every attempt has been made to guide the user forward

and backward to other relevant information so that a logical progression through this manual,

while recommended, is not necessary.

1.2 Chapter Summaries

Chapter 1: General overview of the Q-Chem program, its features and capabilities, the

people behind it and contact information.

Chapter 2: Procedures to install, test and run Q-Chem on your machine.

Chapter 3: Basic attributes of the Q-Chem command line input.

Chapter 4: Running self–consistent field ground state calculations.

Chapter 5: Running wavefunction–based correlation methods for ground states.

Chapter 6: Running excited state calculations.

Chapter 7: Using Q-Chem’s built–in basis sets and running user–defined basis sets.
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Appendix A: Optimize package used in Q-Chem for determining Molecular Geometry Crit-

ical Points.

Appendix B: Q-Chem’s AOINTS library, which contains some of the fastest two–electron

integral codes currently available.

Appendix C: Quick reference section.

1.3 Contact Information

For general information regarding broad aspects and features of the Q-Chem program, see Q-

Chem’s WWW home page (http://www.q–chem.com). Alternatively, contact Q-Chem, Inc.

headquarters:

Address: Q-Chem, Inc. Telephone: (724) 325-9969

5001 Baum Blvd Fax: (724) 325-9560

Suite 690 email: sales@q-chem.com

Pittsburgh support@q-chem.com

PA 15213 info@q-chem.com

1.3.1 Customer Support

Full customer support is promptly provided though telephone or email for those customers who

have purchased Q-Chem’s maintenance contract. The maintenance contract offers free customer

support and discounts on future releases and updates. For details of the maintenance contract

please see Q-Chem’s home page (http://www.q–chem.com).

1.4 Q-Chem, Inc.

Q-Chem, Inc. is based in Pittsburgh, Pennsylvania and was founded in 1993. Q-Chem’s scientific

contributors and board members includes leading quantum chemistry software developers — Pro-

fessors Martin Head–Gordon (Berkeley), Peter Gill (Canberra), Fritz Schaefer (Georgia), Anna

Krylov (USC) and Dr Jing Kong (Pittsburgh). The close coupling between leading university re-

search groups, and Q-Chem Inc. ensures that the methods and algorithms available in Q-Chem

are state–of–the–art.

In order to create this technology, the founders of Q-Chem, Inc. built entirely new methodologies

from the ground up, using the latest algorithms and modern programming techniques. Since 1993,

well over 100 man–years have been devoted to the development of the Q-Chem program. The

author list of the program shows the full list of contributors to the current version, consisting of

some 60 people.

1.5 Company Mission

The mission of Q-Chem, Inc. is to develop, distribute and support innovative quantum chem-

istry software for industrial, government and academic researchers in the chemical, petrochemical,

biochemical, pharmaceutical and material sciences.
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1.6 Q-Chem Features

Quantum chemistry methods have proven invaluable for studying chemical and physical properties

of molecules. The Q-Chem system brings together a variety of advanced computational methods

and tools in an integrated ab initio software package, greatly improving the speed and accuracy

of calculations being performed. In addition, Q-Chem will accommodate far large molecular

structures than previously possible and with no loss in accuracy, thereby bringing the power of

quantum chemistry to critical research projects for which this tool was previously unavailable.

1.6.1 New Features in Q-Chem 3.0

Q-Chem 3.0 includes many new features, along with many enhancements in performance and

robustness over previous versions. Below is a list of some of the main additions, and who is

primarily to thank for implementing them. Further details and references can be found in the

official citation for Q-Chem (see Section ).

� Improved two-electron integrals package (Dr Yihan Shao):

– Code for the Head-Gordon-Pople algorithm rewritten to avoid cache misses and to take

advantage of modern computer architectures.

– Overall increased in performance, especially for computing derivatives.� Fourier Transform Coulomb method (Dr Laszlo Fusti–Molnar):

– Highly efficient implementation for the calculation of Coulomb matrices and forces for

DFT calculations.

– Linear scaling regime is attained earlier than previous linear algorithms.

– Present implementation works well for basis sets with high angular momentum and

diffuse functions.� Improved DFT quadrature evaluation:

– Incremental DFT method avoids calculating negligible contributions from grid points

in later SCF cycles (Dr Shawn Brown).

– Highly efficient SG-0 quadrature grid with approximately half the accuracy and number

of grid points as the SG-1 grid (Siu Hung Chien).� Dual basis self-consistent field calculations (Dr Jing Kong, Ryan Steele):

– Two stage SCF calculations can reduce computational cost by an order of magnitude.

– Customized basis subsets designed for optimal projection into larger bases.� Linear scaling diagonalization replacements (Dr Yihan Shao):

– Block strategy avoids sparse–matrix manipulation overhead.

– Effective for one–dimensional systems with > 100 atoms.� Auxiliary basis expansions for MP2 calculations:

– RI-MP2 and SOS-MP2 energies (Dr. Yousung Jung) and gradients (Robert A. DiStasio

Jr.).

– RI-TRIM MP2 energies (Robert A. DiStasio Jr.).

– Scaled opposite spin energies and gradients.
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� Enhancements to the correlation package including:

– Most extensive range of EOM-CCSD methods available including EOM-SF-CCSD,

EOM-EE-CCSD, EOM-DIP-CCSD, EOM-IP/EA-CCSD (Prof. Anna Krylov).

– Available for RHF/UHF/ROHF references.

– Analytic gradients and properties calculations (permanent and transition dipoles etc.).

– Full use of abelian point-group symmetry.

– Singlet strongly orthogonal geminal (SSG) methods (Dr Vitaly Rassolov).� Coupled-cluster perfect-paring methods (Prof. Martin Head–Gordon):

– Perfect pairing (PP), imperfect pairing (IP) and restricted pairing (RP) models.

– PP(2) Corrects for some of the worst failures of MP2 theory.

– Useful in the study of singlet molecules with diradicaloid character.

– Applicable to systems with more than 100 active electrons.� Hybrid quantum mechanics – molecular mechanics (QMMM) methods:

– Fixed point-charge model based on the Amber force field.

– Two-layer ONIOM model (Dr Yihan Shao).

– Integration with the Molaris simulation package.

– Q-Chem/Charmm interface (Dr Lee Woodcock)� Ab Initio Molecular Dynamics (Dr John Herbert):

– Both direct Born-Oppenheimer molecular dynamics (BOMD) and extended Lagrangian

ab initio molecular dynamics (ELMD). have been implemented.

– Available for SCF ground and excited states.� New continuum solvation models (Dr Shawn Brown):

– Surface and Simulation of Volume Polarization for Electrostatics (SS(V)PE) model.

– Available for HF and DFT calculations.� New transition structure search algorithms (Andreas Heyden and Dr Baron Peters):

– Growing string method for finding transition states.

– Dimer Method which does not use the Hessian and is therefore useful for large systems.� New reaction path finding algorithms (Dr Yihan Shao):

– The string method.

– Nudged elastic band method.� Direct dynamics (Dr John Herbert):

– Available for SCF wavefunctions (HF, DFT).

– Direct Born-Oppenheimer molecular dynamics (BOMD).

– Extended Lagrangian ab initio molecular dynamics (ELMD).� Linear scaling properties for large systems (Jörg Kussmann and Prof. Dr. Christian Ochsen-

feld):

– NMR chemical shifts.

– Static and dynamic polarizabilities.
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– Static hyperpolarizabilities, optical rectification and electro–optical Pockels effect.� Anharmonic frequencies (Dr Ching Yeh Lin):

– Efficient implementation of high–order derivatives

– Corrections via perturbation theory (VPT) or configuration interaction (VCI).

– New transition optimized shifted Hermite (TOSH) method.� Wavefunction analysis tools:

– Spin densities at the nuclei (Dr Vitaly Rassolov).

– Efficient calculation of localized orbitals.

– Optimal atomic point-charge models for densities (Andrew Simmonett).

– Calculation of position, momentum and Wigner intracules (Dr Nick Besley and Dr

Darragh O’Neill).� Graphical user interface options:

– Seamless integration with the Spartan package (see www.wavefun.com).

– Support for the public domain version of WebMO (see www.webmo.net).

– Support the MolDen molecular orbital viewer (see www.cmbi.ru.nl/molden).

– Support the JMol package.

1.6.2 New Features in Q-Chem 3.1

Q-Chem 3.1 provides the following important upgrades:

� Several new DFT functional options:

– The nonempirical GGA functional PBE (from the open DF Repository distributed by

the QCG CCLRC Daresbury Lab., implemented in Q-Chem 3.1 by Dr E. Proynov).

– M05 and M06 suites of meta-GGA functionals for more accurate predictions of various

types of reactions and systems (Dr Yan Zhao, Dr Nathan E. Schultz, Prof Don Truhlar).� A faster correlated excited state method: RI-CIS(D) (Dr Young Min Rhee).� Potential energy surface crossing minimization with CCSD and EOM-CCSD methods (Dr

Evgeny Epifanovsky).� Dyson orbitals for ionization from the ground and excited states within CCSD and EOM-

CCSD methods (Dr Melania Oana).

1.6.3 Summary of Existing Methods and Features

� Efficient algorithms for large–molecule density functional calculations:

– Second generation J–engine and J–force engine (Dr Yihan Shao).

– LinK for exchange energies and forces.

– CFMM for linear scaling Coulomb interactions (energies and gradients).

– Linear scaling DFT exchange–correlation quadrature.� Local, gradient–corrected and hybrid DFT functionals:
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– Slater, Becke, GGA91 and Gill ‘96 exchange functionals.

– VWN, PZ81, Wigner, Perdew86, LYP and GGA91 correlation functionals.

– EDF1 exchange–correlation functional (Dr Ross Adamson).

– B3LYP, B3P and user–definable hybrid functionals.

– Analytical gradients and analytical frequencies.

– SG–0 Standard quadrature grid (Siu–Hung Chien).

– Lebedev grids up to 5294 points (Dr Shawn Brown).� High level wavefunction–based electron correlation methods (Chapter 5):

– Efficient semi–direct MP2 energies and gradients.

– MP3, MP4, QCISD, CCSD energies.

– OD and QCCD energies and analytical gradients.

– Triples corrections (QCISD(T), CCSD(T) and OD(T) energies).

– CCSD(2) and OD(2) energies.

– Active space coupled cluster methods: VOD, VQCCD, VOD(2).

– Local second order Møller–Plesset (MP2) methods (DIM and TRIM).

– Improved definitions of core electrons for post–HF correlation (Dr Vitaly Rassolov).� Extensive excited state capabilities:

– CIS energies, analytical gradients and analytical frequencies.

– CIS(D) energies.

– Time–dependent density functional theory energies (TDDFT).

– Coupled cluster excited state energies, OD and VOD (Prof. Anna Krylov).

– Coupled–cluster excited–state geometry optimizations.

– Coupled–cluster property calculations (dipoles, transition dipoles).

– Spin–flip calculations for CCSD and TDDFT excited states (Prof. Anna Krylov and

Dr Yihan Shao).� High performance geometry and transition structure optimization (Jon Baker):

– Optimizes in Cartesian, Z –matrix or delocalized internal coordinates.

– Impose bond angle, dihedral angle (torsion) or out–of–plane bend constraints.

– Freezes atoms in Cartesian coordinates.

– Constraints do not need to be satisfied in the starting structure.

– Geometry optimization in the presence of fixed point charges.

– Intrinsic reaction coordinate (IRC) following code.� Evaluation and visualization of molecular properties

– Onsager, SS(V)PE and Langevin dipoles solvation models.

– Evaluate densities, electrostatic potentials, orbitals over cubes for plotting.

– Natural Bond Orbital (NBO) analysis.

– Attachment–detachment densities for excited states via CIS, TDDFT.

– Vibrational analysis after evaluation of the nuclear coordinate Hessian.

– Isotopic substitution for frequency calculations (Robert Doerksen).

– NMR chemical shifts (Joerg Kussmann).



Chapter 1: Introduction 7

– Atoms in Molecules (AIMPAC) support (Jim Ritchie).

– Stability analysis of SCF wavefunctions (Yihan Shao).

– Calculation of position and momentum molecular intracules (Aaron Lee, Nick Besley

and Darragh O’Neill).� Flexible basis set and effective core potential (ECP) functionality: (Ross Adamson and Peter

Gill)

– Wide range of built–in basis sets and ECPs.

– Basis set superposition error correction.

– Support for mixed and user–defined basis sets.

– Effective core potentials for energies and gradients.

– Highly efficient PRISM–based algorithms to evaluate ECP matrix elements.

– Faster and more accurate ECP second derivatives for frequencies.

1.7 Highlighted Features

Developed by Q-Chem, Inc. and its collaborators, fundamental features include COLD PRISM,

CFMM, CIS(D), Optimize packages. The features, which are highlighted below, are elaborated

in later relevant sections.

1.7.1 COLD PRISM

The COLD PRISM is the latest in a number of high performance two–electron integral algorithms

developed by Peter Gill, Terry Adams and Ross Adamson. The development of COLD PRISM

began with the realization that all methods for computing two–electron integral matrix elements

involve four steps (represented by the COLD acronym), namely — contraction (C), operator (O),

momentum (L) and density (D). This has culminated in the unification and augmentation of the

previous PRISM and J engine methodologies into a generalized scheme, for the construction of

two–electron matrix elements from shell–pair data. The implementation within Q-Chem has been

adapted to permit highly efficient evaluation of the matrix elements associated with effective core

potentials.

1.7.2 Continuous Fast Multipole Method (CFMM)

One of the main driving forces in the evolution of Q-Chem is the implementation of the Continuous

Fast Multipole Method (CFMM) developed by Chris White. This enables Q-Chem to calculate

the electronic Coulomb interactions (the rate–limiting step in large DFT calculations) in less time

than other programs, and the time saved actually increases as the molecule becomes larger. Q-

Chem also includes an improved treatment of the short–range interactions, developed by Yihan

Shao, that significantly speeds up energy evaluation and dramatically speeds up force evaluation,

with no loss of accuracy.

1.7.3 Parallel Computing

HF and DFT calculations, up to second derivatives, are parallelized in Q-Chem. Dynamic load–

balancing is employed to make fine distribution of analytic and numerical integral evaluations.

The memory usage is shared for the solutions of the coupled–perturbed SCF equation, so that
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one can afford frequency calculations on large structures by utilizing the large aggregated memory

on a parallel computer. The parallelization is implemented with MPI, ensuring availability on all

UNIX platforms, including Linux/PC clusters.

1.7.4 Local MP2

Q-Chem’s local MP2 methods are unique, and were developed by Michael Lee, Paul Maslen and

Martin Head–Gordon. Unlike other local correlation methods these satisfy all the properties of a

theoretical model chemistry, and yield strictly continuous potential energy surfaces. Local MP2

reduces disk requirements compared to conventional MP2 by a factor proportional to the number

of atoms in the molecule, and permits calculations in the 1000 to 1500 basis function range on

workstations.

1.7.5 High Level Coupled Cluster Methods

Q-Chem’s coupled cluster capabilities have been developed from the ground up by Anna Krylov

(USC) and David Sherrill (Georgia Tech) while they were postdocs in the research group of Martin

Head–Gordon at Berkeley. In addition to conventional methods such as QCISD, CCSD and

CCSD(T), Q-Chem also contains novel optimized orbital coupled cluster methods developed by

Krylov, Sherrill and Ed Byrd, that can be performed in active spaces. Additionally new high–

level methods developed by Steve Gwaltney in Head–Gordon’s group are available exclusively in Q-

Chem. These methods, denoted as CCSD(2) and OD(2), are superior to CCSD(T) and QCISD(T)

for problems involving bond–breaking and radicals. Q-Chem’s coupled–cluster package included

the ability to perform excited state calculations.

1.7.6 Continuum Solvation Models

The previous version of Q-Chem already contained continuum solvation capabilities in the form

of the simple spherical cavity Onsager reaction field model and the more sophisticated Langevin

dipoles model of aqueous solvation that naturally includes dielectric saturation effects. The spher-

ical cavity model has been extended to include analytical SCF gradients, as well as to include

higher order multipoles, via the Kirkwood treatment, and also to treat solvent with dissolved

salts, via the Debye-Huckel approach. In addition, Q-Chem 3.0 also contains an additional polar-

izable continuum solvation model developed by Chipman. This model defines the dielectric cavity

as an iso-density contour, and solves the Surface and Simulation of Volume Polarization for Elec-

trostatics (SS(V)PE) equations that take careful account of electrostatic effects associated with

solute charge outside the cavity. This model is available for self-consistent reaction field energy

evaluation with HF and DFT calculations.

1.7.7 Optimize

The Q-Chem program incorporates the latest version of Jon Baker’s Optimize package, con-

taining a suite of state–of–the–art algorithms for geometry optimization including the extremely

efficient use of delocalized internal coordinates. Dr Baker wrote the optimization algorithms in

the Spartan package and the optimization code in the Biosym–distributed versions of DMol,

Turbomol and Zindo. The Optimize package in Q-Chem includes support for intrinsic reaction

coordinate following, which allows for the study of reaction pathways.



Chapter 1: Introduction 9

1.7.8 Spartan

Under joint development between Wavefunction and Q-Chem, Spartan is a fully integrated front–

end for the Q-Chem package. It combines the ease of use of Wavefunction’s graphical interface

with the power of a full version of Q-Chem as a computational back–end, for electronic structure

calculations. Versions are available for the Windows (Windows 98 or higher), Macintosh (Mac OS

10.2 or higher), Linux and IRIX operating systems. Full details of the latest release and supported

platforms can be found at the Wavefunction web site: http://www.wavefun.com.

1.8 Current Development and Future Releases

All details of functionality currently under development, information relating to future releases,

and patch information are regularly updated on the Q-Chem web page (http://www.q–chem.com).

Users are referred to this page for updates on developments, release information and further

information on ordering and licenses. For any additional information, please contact Q-Chem,

Inc. headquarters.

1.9 Citing Q-Chem

The official citation for version 3 releases of Q-Chem is a journal article that has been written

describing the main technical features of the program. The full citation for this article is:

“Advances in quantum chemical methods and algorithms in the Q-Chem 3.0 program package”,

Yihan Shao, Laszlo Fusti–Molnar, Yousung Jung, Jürg Kussmann, Christian Ochsenfeld, Shawn T.

Brown, Andrew T.B. Gilbert, Lyudmila V. Slipchenko, Sergey V. Levchenko, Darragh P. O’Neill,

Robert A. DiStasio Jr., Rohini C. Lochan, Tao Wang, Gregory J.O. Beran, Nicholas A. Besley,

John M. Herbert, Ching Yeh Lin, Troy Van Voorhis, Siu Hung Chien, Alex Sodt, Ryan P. Steele,

Vitaly A. Rassolov, Paul E. Maslen, Prakashan P. Korambath, Ross D. Adamson, Brian Austin,

Jon Baker, Edward F. C. Byrd, Holger Daschel, Robert J. Doerksen, Andreas Dreuw, Barry D.

Dunietz, Anthony D. Dutoi, Thomas R. Furlani, Steven R. Gwaltney, Andreas Heyden, So Hirata,

Chao-Ping Hsu, Gary Kedziora, Rustam Z. Khalliulin, Phil Klunzinger, Aaron M. Lee, Michael S.

Lee, WanZhen Liang, Itay Lotan, Nikhil Nair, Baron Peters, Emil I. Proynov, Piotr A. Pieniazek,

Young Min Rhee, Jim Ritchie, Edina Rosta, C. David Sherrill, Andrew C. Simmonett, Joseph

E. Subotnik, H. Lee Woodcock III, Weimin Zhang, Alexis T. Bell, Arup K. Chakraborty, Daniel

M. Chipman, Frerich J. Keil, Arieh Warshel, Warren J. Hehre, Henry F. Schaefer III, Jing Kong,

Anna I. Krylov, Peter M.W. Gill and Martin Head-Gordon. Phys. Chem. Chem. Phys. in press.
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Installation

2.1 Q-Chem Installation Requirements

2.1.1 Execution Environment

Q-Chem is shipped as a single executable along with several scripts for the computer system you

will run Q-Chem on. No compilation is required. Once the package is installed, it is ready to

run. Please refer to the notes on the CD cover for instructions on installing the software on your

particular platform. The system software required to run Q-Chem on your platform is minimal,

and includes:

� A suitable operating system.� Run–time libraries (usually provided with your operating system).� Perl, version 5.� BLAS and LAPACK libraries.� Vendor implementation of MPI or MPICH libraries (parallel version only).

Please check the Q-Chem website, or contact Q-Chem support (email: support@q–qchem.com)

if further details are required.

2.1.2 Hardware Platforms and Operating Systems

Q-Chem will run on a range of UNIX–based computer systems, ranging from Pentium and Athlon

based PCs running Linux, to high performance workstations and servers running other versions

of UNIX. For the availability of a specific platform/operating system, please check Q-Chem web

page at http://www.q–chem.com/products/platforms.html.

2.1.3 Memory and Hard Disk

Memory

Q-Chem, Inc. has endeavored to minimize memory requirements and maximize the efficiency of

its use. Still, the larger the structure or the higher the level of theory, the more random access

memory (RAM) is needed. Although Q-Chem can be run with 32 MB RAM, we recommend

128 MB as a minimum. Q-Chem also offers the ability for user control of important memory
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intensive aspects of the program, an important consideration for non–batch constrained multi–

user systems. In general, the more memory your system has, the larger the calculation you will

be able to perform.

Q-Chem uses two types of memory: a chunk of static memory that is used by multiple data

sets and managed by the code, and the dynamical memory allocation using system calls. The

size of the static memory is specified but the user through the � rem word MEM STATIC and has

a default value of 64 MB. The � rem word MEM TOTAL specifies the limit of the total memory

the user’s job can use and is related to the total memory of the system. Its default value is

effectively unlimited for most machines. The limit for the dynamic memory allocation is given

by (MEM TOTAL-MEM STATIC). The amount of MEM STATIC needed depends on the size of

the user’s particular job. Please note that one should not specify an excessively large value for

MEM STATIC, otherwise it will reduce the available memory for dynamic allocation. The use of� rem words will be discussed in the next chapter.

Disk

The Q-Chem executables, shell scripts, auxiliary files, samples and documentation require between

360 to 400 MB of disk space, depending on the platform. The default Q-Chem output, which is

printed to the designated output file, is usually only a few KBs. This will be exceeded, of course,

in difficult geometry optimizations, and in cases where users invoke non–default print options. In

order to maximize the capabilities of your copy of Q-Chem, additional disk space is required for

scratch files created during execution, these are automatically deleted on normal termination of a

job. The amount of disk space required for scratch files depends critically on the type of job, the

size of the molecule and the basis set chosen.

Q-Chem uses direct methods for Hartree–Fock and density functional theory calculations, which

do not require large amount of scratch disk space. Wavefunction–based correlation methods,

such as MP2 and coupled–cluster theory require substantial amounts of temporary (scratch) disk

storage, and the faster the access speeds, the better these jobs will perform. With the low cost

of disk drives, it is feasible to have between 10 and 100GB of scratch space available relatively

inexpensively, as a dedicated file system for these large temporary job files. The more you have

available, the larger the jobs that will be feasible and, in the case of some jobs like MP2, the jobs

will also run faster as two–electron integrals are computed less often.

Although the size of any one of the Q-Chem temporary files will not exceed 2Gb, a user’s job will

not be limited by this. Q-Chem writes large temporary data sets to multiple files so that it is not

bounded by the 2Gb file size limitation on some operating systems.

2.2 Installing Q-Chem

Users are referred to the guide on the CD cover for installation instructions pertinent to the release

and platform. An encrypted license file, qchem.license.dat, must be obtained from your vendor

before you will be able to use Q-Chem. This file should be placed in the directory � QCAUX/license

and must be able to be read by all users of the software. This file is node–locked, i.e., it will only

operate correctly on the machine for which it was generated. Further details about obtaining this

file, can be found on the CD cover.

Do not alter the license file unless directed by Q-Chem Inc.
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2.3 Environment Variables

Q-Chem requires four shell environment variables in order to run calculations:

QC Defines the location of the Q-Chem directory structure. The qchem.install

shell script determines this automatically.

QCAUX Defines the location of the auxiliary information required by Q-Chem,

which includes the license required to run Q-Chem. If not explicitly set

by the user, this defaults to � QC/aux.

QCSCRATCH Defines the directory in which Q-Chem will store temporary files. Q-Chem

will usually remove these files on successful completion of the job, but they

can be saved, if so wished. Therefore, � QCSCRATCH should not reside in

a directory that will be automatically removed at the end of a job, if the

files are to be kept for further calculations.

Note that many of these files can be very large, and it should be ensured that

the volume that contains this directory has sufficient disk space available.

The � QCSCRATCH directory should be periodically checked for scratch

files remaining from abnormally terminated jobs. � QCSCRATCH defaults

to the working directory if not explicitly set. Please see section 2.6 for

details on saving temporary files and consult your systems administrator.

QCLOCALSCR On certain platforms, such as Linux clusters, it is sometimes preferable to

write the temporary files to a disk local to the node. � QCLOCALSCR spec-

ifies this directory. The temporary files will be copied to � QCSCRATCH at

the end of the job, unless the job is terminated abnormally. In such cases

Q-Chem will attempt to remove the files in � QCLOCALSCR, but may not

be able to due to access restrictions. Please specify this variable only if

required.

2.4 User Account Adjustments

In order for individual users to run Q-Chem, their user environment must be modified as follows:

� User file access permissions must be set so that the user can read, write and execute the

necessary Q-Chem files. It may be advantageous to create a Q-Chem User’s UNIX group

on your machine and recursively change the group ownership of the Q-Chem files to that of

the new group.� A few lines need to be added to user login files or to the system default login files. The

Q-Chem environment variables need to be defined and the Q-Chem set up file needs to be

initiated prior to use of Q-Chem (once, on login).

2.4.1 Example .login File Modifications

For users using the csh shell (or equivalent), add the following lines to their home directory .cshrc

file:

# ***** Start qchem Configuration *****

setenv QC qchem_root_directory_name

setenv QCAUX $QC/aux

setenv QCSCRATCH scratch_directory_name

if (-e $QC/bin/qchem.setup) source $QC/bin/qchem.setup
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unset noclobber

# ***** End qchem Configuration *****

For users using the Bourne shell (or equivalent), add the following lines to their home directory

.profile file:

# ***** Start qchem Configuration *****

QC=qchem_root_directory_name;

export QC

QCAUX=$QC/aux;

export QCAUX

QCSCRATCH=scratch_directory_name;

export QCSCRATCH

noclobber=""

if [ -e $QC/bin/qchem.setup.sh ] ; then

$QC/bin/qchem.setup.sh

fi

# ***** End qchem Configuration *****

Alternatively, these lines can be added to system wide profile or cshrc files or their equivalents.

2.5 The qchem.setup File

When sourced on login from the .cshrc (or .profile, or equivalent), the qchem.setup(.sh) file makes

a number of changes to the operating environment to enable the user to fully exploit Q-Chem

capabilities, without adversely affecting any other aspect of the login session. The file:

� defines a number of environment variables used by various parts of the Q-Chem program� sets the default directory for � QCAUX, if not already defined� adjusts the � PATH environment variable so that the user can access Q-Chem’s executables

from the users working directory

2.6 Running Q-Chem

Once installation is complete, and any necessary adjustments are made to the user account, the

user is now able to run Q-Chem. There are two ways to invoke Q-Chem:

1. qchem command line shell script (if you have purchased Q-Chem as a stand–alone package).

The simple format for command line execution is given below. The remainder of this manual

covers the creation of input files in detail.

2. Via a supported Graphical User Interface. If you find the creation of text–based input,

and examination of the text output tedious and difficult (which, frankly, it can be), then

Q-Chem can be invoked transparently through Wavefunction’s Spartan user interface on

some platforms. Contact Wavefunction (www.wavefun.com) or Q-Chem for full details of

current availability.
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Using the Q-Chem command line shell script, qchem, is straightforward provided Q-Chem has

been correctly installed on your machine and the necessary environment variables have been set

in .cshrc or .profile (or equivalent) login files. If done correctly, necessary changes will have been

made to the � PATH variable automatically on login so that Q-Chem can be invoked from your

working directory.

2.6.1 Serial Q-Chem

The qchem shell script can be used in either of the following ways:

qchem infile outfile

qchem infile outfile savename

qchem --save infile outfile savename

where infile is the name of a suitably formatted Q-Chem input file (detailed in Chapter 3, and

the remainder of this manual), and the outfile is the name of the file to which Q-Chem will place

the job output information.

Note: If the outfile already exists in the working directory, it will be overwritten.

The use of the savename command line variable allows the saving of a few key scratch files between

runs, and is necessary when instructing Q-Chem to read information from previous jobs. If the

savename argument is not given, Q-Chem deletes all temporary scratch files at the end of a run.

The saved files are in � QCSCRATCH/savename/, and include files with the current molecular

geometry, the current molecular orbitals and density matrix and the current force constants (if

available). The –save option in conjunction with savename means that all temporary files are

saved, rather than just the few essential files described above. Normally this is not required.

When � QCLOCALSCR has been specified, the temporary files will be stored there and copied to� QCSCRATCH/savename/ at the end of normal termination.

The name of the input parameters infile, outfile and save can be chosen at the discretion of the

user (usual UNIX file and directory name restrictions apply). It maybe helpful to use the same

job name for infile and outfile, but with varying suffixes. For example:

localhost-1> qchem water.in water.out &

invokes Q-Chem where the input is taken from water.in and the output is placed into water.out.

The & places the job into the background so that you may continue to work in the current shell.

localhost-2> qchem water.com water.log water &

invokes Q-Chem where the input is assumed to reside in water.com, the output is placed into

water.log and the key scratch files are saved in a directory � QCSCRATCH/water/.

2.6.2 Parallel Q-Chem

Running the parallel version of Q-Chem interactively is the almost the same as running the serial

version, except that an additional argument must be given that specifies the number of processors

to use. The qchem shell script can be used in either of the following ways:

qchem -np n infile outfile

qchem -np n infile outfile savename

qchem -save -np n infile outfile savename
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where n is the number of processors to use. If the –np switch is not given, Q-Chem will default

to running locally on a single processor.

When the additional argument savename is specified, the temporary files for parallel Q-Chem are

stored in � QCSCRATCH/savename.0 At the start of a job, any existing files will be copied into

this directory, and on successful completion of the job, be copied to � QCSCRATCH/savename/

for future use. If the job terminates abnormally, the files will not be copied.

To run parallel Q-Chem using a batch scheduler such as PBS, users may have to modify the

mpirun command in � QC/bin/parallel.csh depending on whether or not the MPI implemen-

tation requires the –machinefile option to be given. For further details users should read the� QC/README.Parallel file, and contact Q-Chem if any problems are encountered (email: support@q-

chem.com). Parallel users should also read the above section on using serial Q-Chem.

2.7 Testing and Exploring Q-Chem

Q-Chem is shipped with a small number of test jobs which are located in the � QC/samples

directory. If you wish to test your version of Q-Chem, run the test jobs in the samples directory

and compare the output files with the reference files (suffixed .ref ) of the same name.

These test jobs are not an exhaustive quality control test (a small subset of the test suite used

at Q-Chem, Inc.), but they should all run correctly on your platform. If any fault is identified

in these, or any output files created by your version, do not hesitate to contact customer service

immediately.

These jobs are also an excellent way to begin learning about Q-Chem’s text–based input and

output formats in detail. In many cases you can use these inputs as starting points for building

your own input files, if you wish to avoid reading the rest of this manual!

Please check the Q-Chem web page (http://www.q-chem.com) and the README files in the� QC/bin directory for updated information



Chapter 3

Q-Chem Inputs

3.1 General Form

A graphical interface is the simplest way to control Q-Chem. However, the low level command

line interface is available to enable maximum customization and user exploitation of all Q-Chem

features. The command line interface requires a Q-Chem input file which is simply an ASCII text

file. This input file can be created using your favorite editor (e.g., vi, emacs, jot, etc.) following

the basic steps outlined in the next few chapters.

Q-Chem’s input mechanism uses a series of keywords to signal user input sections of the input

file. As required, the Q-Chem program searches the input file for supported keywords. When

Q-Chem finds a keyword, it then reads the section of the input file beginning at the keyword until

that keyword section is terminated the � end keyword. A short description of all Q-Chem keywords

is provided in Table C.1 and the following sections. The user must understand the function and

format of the � molecule (Section 3.2) and � rem (Section 3.5) keywords, as these keyword sections

are where the user places the molecular geometry information and job specification details.

The keywords � rem and � molecule are requisites of Q-Chem input files

As each keyword has a different function, the format required for specific keywords varies some-

what, to account for these differences (format requirements are summarized in Appendix C).

However, because each keyword in the input file is sought out independently by the program,

the overall format requirements of Q-Chem input files are much less stringent. For example, the� molecule section does not have to occur at the very start of the input file.

The second general aspect of Q-Chem input is that there are effectively four input sources:

� User input file (required)� .qchemrc file in � HOME (optional)� preferences file in � QC/config (optional)� Internal program defaults and calculation results (built–in)

The order of preference is as shown, i.e., the input mechanism offers a program default over–ride

for all users, default override for individual users and, of course, the input file provided by the
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Keyword Description� molecule Contains the molecular coordinate input (input file requisite).� rem Job specification and customization parameters (input file requisite).� end Terminates each keyword section.� basis User–defined basis set information (see Chapter 7).� comment User comments for inclusion into output file.� ecp User–defined effective core potentials (see Chapter 8).� external charges External charges and their positions.� intracule Intracule parameters (see Chapter 10).� isotopes Isotopic substitutions for vibrational calculations (see Chapter 10).� multipole field Details of a multipole field to apply.� nbo Natural Bond Orbital package.� occupied Guess orbitals to be occupied.� opt Constraint definitions for geometry optimizations.� svp Special parameters for the SS(V)PE module.� svpirf Initial guess for SS(V)PE) module.� plots Generate plotting information over a grid of points (see Chapter 10).� van der waals User–defined atomic radii for Langevin dipoles solvation (see Chapter 10).� xc functional Details of user–defined DFT exchange–correlation functionals.

Table 3.1: Q-Chem user input section keywords. See the � QC/samples directory with your release

for specific examples of Q-Chem input using these keywords.

Note: (1) Users are able to enter keyword sections in any order.

(2) Each keyword section must be terminated with the � end keyword.

(3) The � rem and � molecule sections must be included.

(4) It is not necessary to have all keywords in an input file.

(5) Each keyword section is described in Appendix C.

(6) The entire Q-Chem input is case–insensitive.

user overrides all defaults. Refer to Chapter 11 for details of .qchemrc and preferences. Currently,

Q-Chem only supports the � rem keyword in .qchemrc and preferences files.

In general, users will need to enter variables for the � molecule and � rem keyword section and are

encouraged to add a � comment for future reference. The necessity of other keyword input will

become apparent throughout the manual.

3.2 Molecular Coordinate Input ( � molecule)

The � molecule section communicates to the program the charge, spin multiplicity and geometry

of the molecule being considered. The molecular coordinates input begins with two integers: the

net charge and the spin multiplicity of the molecule. The net charge must be between -50 and

50, inclusive (0 for neutral molecules, 1 for cations, -1 for anions, etc.). The multiplicity must be

between 1 and 10, inclusive (1 for a singlet, 2 for a doublet, 3 for a triplet, etc.). Each subsequent

line of the molecular coordinate input corresponds to a single atom in the molecule (or dummy

atom), irrespective of whether using Z –matrix internal coordinates or Cartesian coordinates.

Note: The coordinate system used for declaring an initial molecular geometry by default does not

affect that used in a geometry optimization procedure. See the appendix which discusses

the OPTIMIZE package in further detail.

Q-Chem begins all calculations by rotating and translating the user–defined molecular geometry
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into a Standard Nuclear Orientation whereby the center of nuclear charge is placed at the origin.

This is a standard feature of most quantum chemistry programs.

Note: Q-Chem ignores commas and equal signs, and requires all distances, positions and angles

to be entered as Angstroms and degrees. unless the INPUT BOHR � rem variable is set to

TRUE, in which case all lengths are assumed to be in bohr.

Example 3.1 A molecule in Z –matrix coordinates. Note that the � molecule input begins with
the charge and multiplicity.

$molecule

0 1

O

H1 O distance

H2 O distance H1 theta

distance = 1.0

theta = 104.5

$end

3.2.1 Reading Molecular Coordinates From a Previous Calculation

Often users wish to perform several calculations in quick succession, whereby the later calculations

rely on results obtained from the previous ones. For example, a geometry optimization at a low

level of theory, followed by a vibrational analysis and then, perhaps, single–point energy at a

higher level. Rather than having the user manually transfer the coordinates from the output

of the optimization to the input file of a vibrational analysis or single point energy calculation,

Q-Chem can transfer them directly from job to job.

To achieve this requires that:

� The READ variable is entered into the molecular coordinate input� Scratch files from a previous calculation have been saved. These may be obtained explicitly

by using the save option across multiple job runs as described below and in Chapter 2, or

implicitly when running multiple calculations in one input file, as described later in this

Chapter.

Example 3.2 Reading a geometry from a prior calculation.

$molecule

READ

$end

localhost-1> qchem job1.in job1.out job1

localhost-2> qchem job2.in job2.out job1

In this example, the job1 scratch files are saved in a directory � QCSCRATCH/job1 and are then

made available to the job2 calculation.

Note: The program must be instructed to read specific scratch files by the input of job2.

Users are also able to use the READ function for molecular coordinate input using Q-Chem’s

batch job file (see later in this Chapter).



Chapter 3: Q-Chem Inputs 19

3.2.2 Reading molecular Coordinates from another file

Users are able to use the READ function to read molecular coordinates from a second input file.

The format for the coordinates in the second file follows that for standard Q-Chem input, and

must be delimited with the � molecule and � end keywords.

Example 3.3 Reading molecular coordinates from another file. filename may be given either as
the full file path, or path relative to the working directory.

$molecule

READ filename

$end

3.3 Cartesian Coordinates

Q-Chem can accept a list of N atoms and their 3N Cartesian coordinates. The atoms can

be entered either as atomic numbers or atomic symbols where each line corresponds to a single

atom. The Q-Chem format for declaring a molecular geometry using Cartesian coordinates (in

Angstroms) is:

atom x-coordinate y-coordinate z-coordinate

3.3.1 Examples

Example 3.4 Atomic number Cartesian coordinate input for H2O.

$molecule

0 1

8 0.000000 0.000000 -0.212195

1 1.370265 0.000000 0.848778

1 -1.370265 0.000000 0.848778

$end

Example 3.5 Atomic symbol Cartesian coordinate input for H2O.

$molecule

0 1

O 0.000000 0.000000 -0.212195

H 1.370265 0.000000 0.848778

H -1.370265 0.000000 0.848778

$end

Note: (1) Atoms can be declared by either atomic number or symbol.

(2) Coordinates can be entered either as variables/parameters or real numbers.

(3) Variables/parameters can be declared in any order.

(4) A single blank line separates parameters from the atom declaration.

Once all the molecular Cartesian coordinates have been entered, terminate the molecular coordi-

nate input with the � end keyword.
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3.4 Z–matrix Coordinates

Z –matrix notation is one of the most common molecular coordinate input forms. The Z –matrix

defines the positions of atoms relative to previously defined atoms using a length, an angle and a

dihedral angle. Again, note that all bond lengths and angles must be in Angstroms and degrees.

Note: As with the Cartesian coordinate input method, Q-Chem begins a calculation by taking

the user–defined coordinates and translating and rotating them into a Standard Nuclear

Orientation.

The first three atom entries of a Z –matrix are different from the subsequent entries. The first

Z –matrix line declares a single atom. The second line of the Z –matrix input declares a second

atom, refers to the first atom and gives the distance between them. The third line declares the

third atom, refers to either the first or second atom, gives the distance between them, refers to

the remaining atom and gives the angle between them. All subsequent entries begin with an

atom declaration, a reference atom and a distance, a second reference atom and an angle, a third

reference atom and a dihedral angle. This can be summarized as:

1. First atom.

2. Second atom, reference atom, distance.

3. Third atom, reference atom A, distance between A and the third atom, reference atom B,

angle defined by atoms A, B and the third atom.

4. Fourth atom, reference atom A, distance, reference atom B, angle, reference atom C, dihedral

angle (A, B, C and the fourth atom).

5. All subsequent atoms follow the same basic form as (4)

Example 3.6 Z –matrix for hydrogen peroxide

O1

O2 O1 oo

H1 O1 ho O2 hoo

H2 O2 ho O1 hoo H1 hooh

Line 1 declares an oxygen atom (O1). Line 2 declares the second oxygen atom (O2), followed by

a reference to the first atom (O1) and a distance between them denoted oo. Line 3 declares the

first hydrogen atom (H1), indicates it is separated from the first oxygen atom (O1) by a distance

HO and makes an angle with the second oxygen atom (O2) of hoo. Line 4 declares the fourth

atom and the second hydrogen atom (H2), indicates it is separated from the second oxygen atom

(O2) by a distance HO and makes an angle with the first oxygen atom (O1) of hoo and makes a

dihedral angle with the first hydrogen atom (H1) of hooh.

Some further points to note are:

� Atoms can be declared by either atomic number or symbol.

– If declared by atomic number, connectivity needs to be indicated by Z –matrix line

number.

– If declared by atomic symbol either number similar atoms (e.g., H1, H2, O1, O2 etc.)

and refer connectivity using this symbol, or indicate connectivity by the line number

of the referred atom.� Bond lengths and angles can be entered either as variables/parameters or real numbers.
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– Variables/parameters can be declared in any order.

– A single blank line separates parameters from the Z –matrix.

All the following examples are equivalent in the information forwarded to the Q-Chem program.

Example 3.7 Using parameters to define bond lengths and angles, and using numbered symbols
to define atoms and indicate connectivity.

$molecule

0 1

O1

O2 O1 oo

H1 O1 ho O2 hoo

H2 O2 ho O1 hoo H1 hooh

oo = 1.5

oh = 1.0

hoo = 120.0

hooh = 180.0

$end

Example 3.8 Not using parameters to define bond lengths and angles, and using numbered
symbols to define atoms and indicate connectivity.

$molecule

0 1

O1

O2 O1 1.5

H1 O1 1.0 O2 120.0

H2 O2 1.0 O1 120.0 H1 180.0

$end

Example 3.9 Using parameters to define bond lengths and angles, and referring to atom con-
nectivities by line number.

$molecule

0 1

8

8 1 oo

1 1 ho 2 hoo

1 2 ho 1 hoo 3 hooh

oo = 1.5

oh = 1.0

hoo = 120.0

hooh = 180.0

$end

Example 3.10 Referring to atom connectivities by line number, and entering bond length and
angles directly.

$molecule

0 1

8

8 1 1.5

1 1 1.0 2 120.0

1 2 1.0 1 120.0 3 180.0

$end
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Obviously, a number of the formats outlined above are less appealing to the eye and more difficult

for us to interpret than the others, but each communicates exactly the same Z –matrix to the

Q-Chem program.

3.4.1 Dummy atoms

Dummy atoms are indicated by the identifier X and followed, if necessary, by an integer. (e.g.,

X1, X2. Dummy atoms are often useful for molecules where symmetry axes and planes are not

centered on a real atom, and have also been useful in the past for choosing variables for structure

optimization and introducing symmetry constraints.

Note: Dummy atoms play no role in the quantum mechanical calculation, and are used merely

for convenience in specifying other atomic positions or geometric variables.

3.5 Job Specification: The � rem Array Concept

The � rem array is the means by which users convey to Q-Chem the type of calculation they

wish to perform (level of theory, basis set, convergence criteria, etc.). The keyword � rem signals

the beginning of the overall job specification. Within the � rem section the user inserts � rem

variables (one per line) which define the essential details of the calculation. The format for

entering � rem variables within the � rem keyword section of the input is shown in the following

example shown in the following example:

Example 3.11 Format for declaring � rem variables in the � rem keyword section of the Q-Chem
input file. Note, Q-Chem only reads the first two arguments on each line of � rem. All other text
is ignored and can be used for placing short user comments.

REM_VARIABLE VALUE [comment]

The � rem array stores all details required to perform the calculation, and details of output re-

quirements. It provides the flexibility to customize a calculation to specific user requirements. If

a default � rem variable setting is indicated in this manual, the user does not have to declare the

variable in order for the default to be initiated (e.g., the default JOBTYPE is a single point energy,

SP). Thus, to perform a single point energy calculation, the user does not need to set the � rem

variable JOBTYPE to SP. However, to perform an optimization, for example, it is necessary to

override the program default by setting JOBTYPE to OPT.

A number of the � rem variables have been set aside for internal program use, as they represent

variables automatically determined by Q-Chem (e.g., the number of atoms, the number of basis

functions). These need not concern the user.

User communication to the internal program � rem array comes in two general forms: (1) long

term, machine–specific customization via the .qchemrc and preferences files (Chapter 11) and, (2)

the Q-Chem input deck. There are many defaults already set within the Q-Chem program many

of which can be overridden by the user. Checks are made to ensure that the user specifications are

permissible (e.g. integral accuracy is confined to 10−12 and adjusted, if necessary. If adjustment

is not possible, an error message is returned. Details of these checks and defaults will be given as

they arise.

The user need not know all elements, options and details of the � rem array in order to fully

exploit the Q-Chem program. Many of the necessary elements and options are determined auto-

matically by the program, or the optimized default parameters, supplied according to the user’s

basic requirements, available disk and memory, and the operating system and platform.
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3.6 � rem Array Format in Q-Chem Input

All data between the � rem keyword and the next appearance of � end is assumed to be user � rem

array input. On a single line for each � rem variable, the user declares the � rem variable, followed

by a blank space (tab stop inclusive) and then the � rem variable option. It is recommended that

a comment be placed following a space after the � rem variable option. � rem variables are case

insensitive and a full listing is supplied in Appendix C. Depending on the particular � rem variable,� rem options are entered either as a case–insensitive keyword, an integer value or logical identifier

(true/false). The format for describing each � rem variable in this manual is as follows:

REM VARIABLE

A short description of what the variable controls.

TYPE:

The type of variable, i.e. either INTEGER, LOGICAL or STRING

DEFAULT:

The default value, if any.

OPTIONS:

A list of the options available to the user.

RECOMMENDATION:

A quick recommendation, where appropriate.

Example 3.12 General format of the � rem section of the text input file.

$rem

REM_VARIABLE value [ user_comment ]

REM_VARIABLE value [ user_comment ]

...

$end

Note: (1) Erroneous lines will terminate the calculation.

(2) Tab stops can be used to format input.

(3) A line prefixed with an exclamation mark ‘!’ is treated as a comment and will be

ignored by the program.

3.7 Minimum � rem Array Requirements

Although Q-Chem provides defaults for most � rem variables, the user will always have to stipulate

a few others. For example, in a single point energy calculation, the minimum requirements will be

BASIS (defining the basis set), EXCHANGE (defining the level of theory to treat exchange) and

CORRELATION (defining the level of theory to treat correlation, if required). If a wavefunction–

based correlation treatment (such as MP2) is used, HF is taken as the default for exchange.

Example 3.13 Example of minimum � rem requirements to run an MP2/6-31G* energy calcula-
tion.

$rem

BASIS 6-31G* Just a small basis set

CORRELATION mp2 MP2 energy

$end
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3.8 User–defined basis set ( � basis)

The � rem variable BASIS allows the user to indicate that the basis set is being user–defined. The

user–defined basis set is entered in the � basis section of the input. For further details of entering

a user–defined basis set, see Chapter 7.

3.9 Comments ( � comment)

Users are able to add comments to the input file outside keyword input sections, which will be

ignored by the program. This can be useful as reminders to the user, or perhaps, when teaching

another user to set up inputs. Comments can also be provided in a � comment block, although

currently the entire input deck is copied to the output file, rendering this redundant.

3.10 User–defined Pseudopotentials ( � ecp)

The � rem variable ECP allows the user to indicate that pseudopotentials (effective core potentials)

are being user–defined. The user–defined effective core potential is entered in the � ecp section of

the input. For further details, see Chapter 8.

3.11 Addition of External Charges ( � external charges)

If the � external charges keyword is present, Q-Chem scans for a set of external charges to be incor-

porated into a calculation. The format for a set of external charges is the Cartesian coordinates,

followed by the charge size, one charge per line. Charges are in atomic units, and coordinates

are in angstroms. The external charges are rotated with the molecule into the standard nuclear

orientation.

Example 3.14 General format for incorporating a set of external charges.

$external_charges

x-coord1 y-coord1 z-coord1 charge1

x-coord2 y-coord2 z-coord2 charge2

x-coord3 y-coord3 z-coord3 charge3

$end

3.12 Intracules ( � intracule)

The � intracule section allows the user to enter options to customize the calculation of molecular

intracules. The INTRACULE � rem variable must also be set to TRUE before this section takes

effect. For further details see section 10.5.

3.13 Isotopic substitutions ( � isotopes)

By default Q-Chem uses atomic masses that correspond to the most abundant naturally occurring

isotopes. Alternative masses for any or all of the atoms in a molecule can be specified using the� isotopes keyword. The ISOTOPES � rem variable must be set to TRUE for this section to take

effect. See section 10.8.2 for details.
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3.14 Applying a Multipole Field ( � multipole field)

Q-Chem has the capability to apply a multipole field to the molecule under investigation. Q-Chem

scans the input deck for the � multipole field keyword, and reads each line (up to the terminator

keyword, � end) as a single component of the applied field.

Example 3.15 General format for imposing a multipole field.

$multipole_field

field_component_1 value_1

field_component_2 value_2

$end

The field component is simply stipulated using the Cartesian representation e.g. X, Y, Z, (dipole),

XX, XY, YY (quadrupole) XXX, etc., and the value or size of the imposed field is in atomic units.

3.15 Natural Bond Orbital Package ( � nbo)

The default action in Q-Chem is not to run the NBO package. To turn the NBO package on, set

the � rem variable NBO to ON. To access further features of NBO, place standard NBO package

parameters into a keyword section in the input file headed with the � nbo keyword. Terminate the

section with the termination string � end .

3.16 User–defined occupied guess orbitals ( � occupied)

It is sometimes useful for the occupied guess orbitals to be other than the lowest Nα (or Nβ)

orbitals. Q-Chem allows the occupied guess orbitals to be defined using the � occupied keyword.

The user defines occupied guess orbitals by listing the alpha orbitals to be occupied on the first

line, and beta on the second (see section 4.5.4).

3.17 Geometry Optimization with General Constraints ( � opt)

When a user defines the JOBTYPE to be a molecular geometry optimization, Q-Chem scans the

input deck for the � opt keyword. Distance, angle, dihedral and out–of–plane bend constraints

imposed on any atom declared by the user in this section, are then imposed on the optimization

procedure. See Chapter 9 for details.

3.18 SS(V)PE Solvation Modeling ( � svp and � svpirf )

The � svp section is available to specify special parameters to the solvation module such as cavity

grid parameters and modifications to the numerical integration procedure. The � svpirf section

allows the user to specify an initial guess for the solution of the cavity charges. For more details,

see section 10.2.
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3.19 Orbitals, Densities and ESPs On a Mesh ( � plots)

The � plots part of the input permits the evaluation of molecular orbitals, densities, electrostatic

potentials, transition densities, electron attachment and detachment densities on a user–defined

mesh of points. For more details, see section 10.10.

3.20 User–defined Van der Waals Radii ( � van der waals)

The � van der waals section of the input enables the user to customize the Van der Waals radii

that are important parameters in the Langevin dipoles solvation model. For more details, see

section 10.2.

3.21 User–defined exchange–correlation Density Function-

als ( � xc functional)

The EXCHANGE and CORRELATION � rem variables (Chapter 4) allow the user to indicate that

the exchange–correlation density functional will be user–defined. The user defined exchange–

correlation is to be entered in the � xc functional part of the input. The format is:

$xc_functional

X exchange_symbol coefficient

X exchange_symbol coefficient

...

C correlation_symbol coefficient

C correlation_symbol coefficient

...

K coefficient

$end

Note: Coefficients are real numbers.

3.22 Multiple Jobs in a Single File: Q-Chem Batch Job

Files

It is sometimes useful to place a series of jobs into a single ASCII file. This feature is supported

by Q-Chem and is invoked by separating jobs with the string @@@ on a single line. All output is

subsequently appended to the same output file for each job within the file.

Note: The first job will overwrite any existing output file of the same name in the working

directory. Restarting the job will also overwrite any existing file.

In general, multiple jobs are placed in a single file for two reasons:

� To use information from a prior job in a later job� To keep projects together in a single file
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The @@@ feature allows these objectives to be met, but the following points should be noted:

� Q-Chem reads all the jobs from the input file on initiation and stores them. The user cannot

make changes to the details of jobs which have not been run post command line initiation.� If any single job fails, Q-Chem proceeds to the next job in the batch file.� No check is made to ensure that dependencies are satisfied, or that information is consistent

(e.g. an optimization job followed by a frequency job; reading in the new geometry from

the optimization for the frequency). No check is made to ensure that the optimization was

successful. Similarly, it is assumed that both jobs use the same basis set when reading in

MO coefficients from a previous job.� Scratch files are saved between multi–job/single files runs (i.e., using a batch file with @@@

separators), but are deleted on completion unless a third qchem command line argument is

supplied (see Chapter 2).

Using batch files with the @@@ separator is clearly most useful for cases relating to point 1 above.

The alternative would be to cut and paste output, and/or use a third command line argument to

save scratch files between separate runs.

For example, the following input file will optimize the geometry of H2 at HF/6-31G*, calculate

vibrational frequencies at HF/6-31G* using the optimized geometry and the self-consistent MO

coefficients from the optimization and, finally, perform a single point energy using the optimized

geometry at the MP2/6-311G(d,p) level of theory. Each job will use the same scratch area, reading

files from previous runs as instructed.

Example 3.16 Example of using information from previous jobs in a single input file.

$comment

Optimize H-H at HF/6-31G*

$end

$molecule

0 1

H

H 1 r

r = 1.1

$end

$rem

JOBTYPE opt Optimize the bond length

EXCHANGE hf

CORRELATION none

BASIS 6-31G*

$end

@@@

$comment

Now calculate the frequency of H-H at the same level of theory.

$end

$molecule

read

$end

$rem

JOBTYPE freq Calculate vibrational frequency
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EXCHANGE hf

CORRELATION none

BASIS 6-31G*

SCF_GUESS read Read the MOs from disk

$end

@@@

$comment

Now a single point calculation at at MP2/6-311G(d,p)//HF/6-31G*

$end

$molecule

read

$end

$rem

EXCHANGE hf

CORRELATION mp2

BASIS 6-311G(d,p)

$end

Note: (1) Output is concatenated into the same output file.

(2) Only two arguments are necessarily supplied to the command line interface.

3.23 Q-Chem Output File

The Q-Chem output file is the file to which details of the job invoked by the user are printed. The

type of information printed to this files depends on the type of job (single point energy, geometry

optimization etc.) and the � rem variable print levels. The general and default form is as follows:

� Q-Chem citation� User input� Molecular geometry in Cartesian coordinates� Molecular point group, nuclear repulsion energy, number of alpha and beta electrons� Basis set information (number of functions, shells and function pairs)� SCF details (method, guess, optimization procedure)� SCF iterations (for each iteration, energy and DIIS error is reported)� {depends on job type}� Molecular orbital symmetries� Mulliken population analysis� Cartesian multipole moments� Job completion

Note: Q-Chem overwrites any existing output files in the working directory when it is invoked

with an existing file as the output file parameter.
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3.24 Q-Chem Scratch Files

The directory set by the environment variable � QCSCRATCH is the location Q-Chem places

scratch files it creates on execution. Users may wish to use the information created for subsequent

calculations. See Chapter 2 for information on saving files.

The 32–bit architecture on some platforms means there can be problems associated with files

larger than about 2 GB. Q-Chem handles this issue by splitting scratch files that are larger than

this into several files, each of which is smaller than the 2 GB limit. The maximum number of

these files (which in turn limits the maximum total file size) is determined by the following � rem

variable:

MAX SUB FILE NUM

Sets the maximum number of sub files allowed.

TYPE:

INTEGER

DEFAULT:

16 Corresponding to a total of 32Gb for a given file.

OPTIONS:

n User–defined number of gigabytes.

RECOMMENDATION:

Leave as default, or adjust according to your system limits.
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Self–Consistent Field Ground

State Methods

4.1 Introduction

4.1.1 Overview of Chapter

Theoretical chemical models [3] involve two principal approximations. One must specify the type

of atomic orbital basis set used (see Chapters 7 and 8), and one must specify the way in which

the instantaneous interactions (or correlations) between electrons are treated. Self–consistent field

(SCF) methods are the simplest and most widely used electron correlation treatments, and contain

as special cases all Kohn–Sham density functional methods and the Hartree–Fock method. This

Chapter summarizes Q-Chem’s SCF capabilities, while the next Chapter discusses more complex

(and computationally expensive!) wavefunction–based methods for describing electron correlation.

If you are new to quantum chemistry, we recommend that you also purchase an introductory

textbook on the physical content and practical performance of standard methods [3, 6, 7].

This Chapter is organized so that the earlier sections provide a mixture of basic theoretical back-

ground, and a description of the minimum number of program input options that must be specified

to run SCF jobs. Specifically, this includes the sections on:

� Hartree–Fock theory� Density functional theory. Note that all basic input options described in the Hartree–Fock

section (4.2) also apply to density functional calculations.

Later sections introduce more specialized options that can be consulted as needed:

� Large molecules and linear scaling methods. A short overview of the ideas behind methods

for very large systems and the options that control them.� Initial guesses for SCF calculations. Changing the default initial guess is sometimes impor-

tant for SCF calculations that do not converge.� Converging the SCF calculation. This section describes the iterative methods available to

control SCF calculations in Q-Chem. Altering the standard options is essential for SCF

jobs that have failed to converge with the default options.� Unconventional SCF calculations. Some nonstandard SCF methods with novel physical and

mathematical features. Explore further if you are interested!
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4.1.2 Theoretical Background

In 1926 Schrödinger [8] combined the wave nature of the electron with the statistical knowledge

of the electron viz. Heisenberg’s Uncertainty Principle [9] to formulate an eigenvalue equation for

the total energy of a molecular system. If we focus on stationary states and ignore the effects of

relativity, we have the time–independent, non–relativistic equation

H(R, r)Ψ(R, r) = E(R)Ψ(R, r) (4.1)

where the coordinates R and r refer to nuclei and electron position vectors respectively and H is

the Hamiltonian operator (in atomic units)

H = −1

2

N∑

i=1

∇2
i −

1

2

M∑

A=1

1

MA
∇2
A −

N∑

i=1

M∑

A=1

ZA
riA

+
N∑

i=1

N∑

j>i

1

rij
+

M∑

A=1

M∑

B>A

ZAZB
RAB

(4.2)

In equation (4.2) ∇2 is the Laplacian operator

∇2 ≡ ∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
(4.3)

Z is the nuclear charge, MA is the ratio of the mass of nucleus A to the mass of an electron,

RAB = |RA−RB | is the distance between the Ath and Bth nucleus, rij = |ri − rj | is the distance

between the ith and jth electrons, riA = |ri−RA| is the distance between the ith electron and Ath

nucleus, M is the number of nuclei and N is the number of electrons. E is an eigenvalue of H ,

equal to the total energy, and the wave function Ψ, is an eigenfunction of H .

Separating the motions of the electrons from that of the nuclei, an idea originally due to Born and

Oppenheimer [10], yields the electronic Hamiltonian operator.

Helec = −1

2

N∑

i=1

∇2
i −

N∑

i=1

M∑

A=1

ZA
riA

+

N∑

i=1

N∑

j>i

1

rij
(4.4)

The solution of the corresponding electronic Schrödinger equation

HelecΨelec = EelecΨelec (4.5)

gives the total electronic energy, Eelec, and electronic wave function, Ψelec, which describes the

motion of the electrons for a fixed nuclear position. The total energy is obtained by simply adding

the nuclear–nuclear repulsion energy (fifth term of eq. (4.2)) to the total electronic energy

Etot = Eelec +Enuc (4.6)

Solving the eigenvalue problem (4.5) yields a set of eigenfunctions (Ψ0, Ψ1, Ψ2 . . .) with corre-

sponding eigenvalues (E0, E1, E2 . . .) where E0 ≤ E1 ≤ E2 ≤ . . ..

Our interest lies in determining the lowest eigenvalue and associated eigenfunction which corre-

spond to the ground state energy and wavefunction of the molecule. However, solving (4.5) for

other than the most trivial systems is extremely difficult and the best we can do in practice is to

find approximate solutions.

The first approximation used to solve (4.5) is that electrons move independently within molecular

orbitals (MO), each of which describes the probability distribution of a single electron. Each
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MO is determined by considering the electron as moving within an average field of all the other

electrons. Ensuring that the wave function is antisymmetric upon electron interchange, yields the

well known Slater [11, 12] determinant wavefunction

Ψ =
1√
n!

∣∣∣∣∣∣∣∣∣

χ1(1) χ2(1) · · · χn(1)

χ1(2) χ2(2) · · · χn(2)
...

...
...

χ1(n) χ2(n) · · · χn(n)

∣∣∣∣∣∣∣∣∣
(4.7)

where χi, a spin orbital, is the product of a molecular orbital ψi and a spin function (α or β).

One obtains the optimum set of MOs by variationally minimizing the energy in what is called a

“self–consistent field” or SCF approximation to the many–electron problem. The archetypal SCF

method is the Hartree–Fock approximation, but these SCF methods also include Kohn–Sham

Density Functional Theories (see section 4.3). All SCF methods lead to equations of the form

f(i)χ(xi) = εχ(xi) (4.8)

where the Fock operator f(i) can be written

f(i) = −1

2
∇2
i + υeff(i) (4.9)

Here xi are spin and spatial coordinates of the ith electron, χ are the spin orbitals and υeff is

the effective potential “seen” by the ith electron which depends on the spin orbitals of the other

electrons. The nature of the effective potential υeff depends on the SCF methodology and will be

elaborated on in further sections.

The second approximation usually introduced when solving (4.5), is the introduction of an Atomic

Orbital (AO) basis. AOs (φµ are usually combined linearly to approximate the true MOs. There

are many standardized, atom–centered basis sets and details of these are discussed in Chapter 7.

After eliminating the spin components in (4.8) and introducing a finite basis,

ψi =
∑

µ

cµiφµ (4.10)

(4.8) reduces to the Roothaan-Hall matrix equation

FC = εSC (4.11)

where F is the Fock matrix, C is a square matrix of molecular orbital coefficients, S is the overlap

matrix with elements

Sµν =

∫
φµ(r)φν(r)dr (4.12)

and ε is a diagonal matrix of the orbital energies. Generalizing to an unrestricted formalism

by introducing separate spatial orbitals for α and β spin in (4.7) yields the Pople–Nesbet [13]

equations

FαCα = εαSCα

FβCβ = εβSCβ (4.13)
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Solving (4.11) or (4.13) yields the restricted or unrestricted finite basis Hartree–Fock approxi-

mation. This approximation inherently neglects the instantaneous electron–electron correlations

which are averaged out by the SCF procedure, and while the chemistry resulting from HF calcula-

tions often offers valuable qualitative insight, quantitative energetics are often poor. In principle,

the DFT SCF methodologies are able to capture all the correlation energy (the difference in energy

between the HF energy and the true energy). In practice, the best currently available density func-

tionals perform well, but not perfectly and conventional HF–based approaches to calculating the

correlation energy are still often required. They are discussed separately in the following Chapter.

In self–consistent field methods, an initial guess is calculated for the MOs and, from this, an average

field seen by each electron can be calculated. A new set of MOs can be obtained by solving the

Roothaan–Hall or Pople–Nesbet eigenvalue equations. This procedure is repeated until the new

MOs differ negligibly from those of the previous iteration.

Because they often yield acceptably accurate chemical predictions at a reasonable computational

cost, self–consistent field methods are the corner stone of most quantum chemical programs and

calculations. The formal costs of many SCF algorithms isO(N 4), that is, they grow with the fourth

power of the size, N , of the system. This is slower than the growth of the cheapest conventional

correlated methods but recent work by Q-Chem, Inc. and its collaborators has dramatically

reduced it to O(N), an improvement that now allows SCF methods to be applied to molecules

previously considered beyond the scope of ab initio treatment.

In order to carry out an SCF calculation using Q-Chem, three � rem variables need to be set:

BASIS to specify the basis set (see Chapter 7).

EXCHANGE method for treating Exchange.

CORRELATION method for treating Correlation (defaults to NONE)

Types of ground state energy calculations currently available in Q-Chem are summarized in Table

4.1.2.

Calculation � rem Variable JOBTYPE

Single point energy (default) SINGLE POINT, SP

Force FORCE

Equilibrium Structure Search OPTIMIZATION, OPT

Transition Structure Search TS

Intrinsic reaction pathway RPATH

Frequency FREQUENCY, FREQ

NMR Chemical Shift NMR

Table 4.1: The type of calculation to be run by Q-Chem is controlled by the � rem variable

JOBTYPE.

4.2 Hartree–Fock Calculations

4.2.1 The Hartree–Fock Equations

As with much of the theory underlying modern quantum chemistry, the Hartree–Fock approx-

imation was developed shortly after publication of the Schrödinger equation, but remained a

qualitative theory until the advent of the computer. Although the HF approximation tends to

yield qualitative chemical accuracy, rather than quantitative information, and is generally inferior

to many of the DFT approaches available, it remains as a useful tool in the quantum chemist’s

toolkit. In particular, for organic chemistry, HF predictions of molecular structure are very useful.
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Consider once more the Roothaan–Hall equations, (4.11) or the Pople–Nesbet equations (4.13),

which can be traced back to the integro–differential equation (4.8) where the effective potential

υeff depends on the SCF methodology. In a restricted HF (RHF) formalism, the effective potential

can be written as

υeff =

N/2∑

a

[2Ja(1)−Ka(1)]−
M∑

A=1

ZA
r1A

(4.14)

where the Coulomb and exchange operators are defined as

Ja(1) =

∫
ψ∗a(2)

1

r12
ψa(2)dr2 (4.15)

Ka(1)ψi(1) =

[∫
ψ∗a(2)

1

r12
ψi(2)dr2

]
ψa(1) (4.16)

respectively. By introducing an atomic orbital basis, we obtain Fock matrix elements

Fµν = Hcore
µν + Jµν −Kµν (4.17)

where the core Hamiltonian matrix elements

Hcore
µν = Tµν + Vµν (4.18)

consist of kinetic energy elements

Tµν =

∫
φµ(r)

[
−1

2
∇2

]
φν(r)dr (4.19)

and nuclear attraction elements

Vµν =

∫
φµ(r)

[
−
∑

A

ZA
|RA − r|

]
φν(r)dr (4.20)

The Coulomb and Exchange elements are given by

Jµν =
∑

λσ

Pλσ (µν|λσ) (4.21)

Kµν =
1

2

∑

λσ

Pλσ (µλ|νσ) (4.22)

where the density matrix elements are

Pµν = 2

N/2∑

a=1

CµaCνa (4.23)

and the two electron integrals are

(µν|λσ) =

∫ ∫
φµ(r1)φν (r1)

[
1

r12

]
φλ(r2)φσ(r2)dr1dr2 (4.24)
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Note: The formation and utilization of two–electron integrals is a topic central to the overall

performance of SCF methodologies. The performance of the SCF methods in new quantum

chemistry software programs can be quickly estimated simply by considering the quality of

their atomic orbital integrals packages. See the appendix for details of Q-Chem’s AOINTS

package.

Substituting the matrix element (4.17) back into the Roothaan–Hall equations (4.11) and solv-

ing until self–consistency is achieved will yield the Restricted Hartree–Fock (RHF) energy and

wavefunction. Alternatively, one could have adopted the unrestricted form of the wavefunction by

defining an alpha and beta density matrix

Pαµν =

nα∑

a=1

CαµaC
α
νa

P βµν =

nβ∑

a=1

CβµaC
β
νa (4.25)

and the total electron density matrix PT is simply the sum of the alpha and beta density matrices.

The unrestricted alpha Fock matrix

Fαµν = Hcore
µν + Jµν −Kα

µν (4.26)

differs from the restricted one only in the exchange contributions where the alpha exchange matrix

elements are given by

Kα
µν =

N∑

λ

N∑

σ

Pαλσ (µλ|νσ) (4.27)

4.2.2 Wavefunction Stability Analysis

At convergence, the SCF energy will be at a stationary point with respect to changes in the MO

coefficients. However, this stationary point is not guaranteed to be an energy minimum, and

in cases where it is not, the wavefunction is said to be unstable. Even if the wavefunction is

at a minimum, this minimum may be an artifact of the constraints placed on the form of the

wavefunction. For example, an unrestricted calculation will usually give a lower energy than the

corresponding restricted calculation, and this can give rise to a RHF→UHF instability.

To understand what instabilities can occur, it is useful to consider the most general form possible

for the spin orbitals

χi(r, ζ) = ψαi (r)α(ζ) + ψβi (r)β(ζ) (4.28)

where the ψ’s are complex functions of the Cartesian coordinates r, and α and β are spin eigen-

functions of the spin–variable ζ. The first constraint that is almost universally applied is to assume

the spin orbitals depend only on one or other of the spin–functions α or β. Thus the spin–functions

take the form

χi(r, ζ) = ψαi (r)α(ζ) or χi(r, ζ) = ψβi (r)β(ζ) (4.29)

where the ψ’s are still complex functions. Most SCF packages, including Q-Chem’s, deal only

with real functions, and this places an additional constraint on the form of the wavefunction. If
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there exists a complex solution to the SCF equations that has a lower energy, the wavefunction

will exhibit either a RHF→CRHF or a UHF→CUHF instability. The final constraint that is

commonly placed on the spin–functions is that ψαi = ψβi , i.e., the spatial parts of the spin–up and

spin–down orbitals are the same. This gives the familiar restricted formalism and can lead to a

RHF→UHF instability as mentioned above. Further details about the possible instabilities can

be found in [14].

Wavefunction instabilities can arise for several reasons, but frequently occur if

� There exists a singlet biradical at a lower energy then the closed–shell singlet state.� There exists a triplet state at a lower energy than the lowest singlet state.� There are multiple solutions to the SCF equations, and the calculation has not found the

lowest energy solution.

If a wavefunction exhibits an instability, the seriousness of it can be judged from the magnitude of

the negative eigenvalues of the stability matrices. These matrices and eigenvalues are computed by

Q-Chem’s Stability Analysis package, which was implemented by Dr Yihan Shao. The package is

invoked by setting the STABILITY ANALYSIS � rem variable is set to TRUE. In order to compute

these stability matrices Q-Chem must first perform a CIS calculation. This will be performed

automatically, and does not require any further input from the user. By default Q-Chem computes

only the lowest eigenvalue of the stability matrix. This is usually sufficient to determine if there is a

negative eigenvalue, and therefore an instability. Users wishing to calculate additional eigenvalues

can do so by setting the CIS N ROOTS � rem variable to a number larger than 1.

Q-Chem’s Stability Analysis package also seeks to correct internal instabilities (RHF→RHF or

UHF→UHF). Then, if such an instability is detected, Q-Chem automatically performs a unitary

transformation of the molecular orbitals following the directions of the lowest eigenvector, and

writes a new set of MOs to disk. One can read in these MOs as an initial guess in a second SCF

calculation (set the SCF GUESS � rem variable to READ), it might also be desirable to set the

SCF ALGORITHM to GDM. In cases where the lowest–energy SCF solution breaks the molecular

point–group symmetry, the SYM IGNORE � rem should be set to TRUE.

Note: The stability analysis package can be used to analyze both DFT and HF wavefunctions.

4.2.3 Basic Hartree–Fock Job Control

In brief, Q-Chem supports the three main variants of the Hartree–Fock method. They are:

� Restricted Hartree–Fock (RHF) for closed shell molecules. It is typically appropriate for

closed shell molecules at their equilibrium geometry, where electrons occupy orbitals in pairs.� Unrestricted Hartree–Fock (UHF) for open shell molecules. Appropriate for radicals with

an odd number of electrons, and also for molecules with even numbers of electrons where

not all electrons are paired (for example stretched bonds and diradicaloids).� Restricted open shell Hartree–Fock (ROHF) for open shell molecules, where the alpha and

beta orbitals are constrained to be identical.

Only two � rem variables are required in order to run Hartree–Fock (HF) calculations:

�
EXCHANGE must be set to HF.� A valid keyword for BASIS must be specified (see Chapter 7).
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In slightly more detail, here is a list of basic � rem variables associated with running Hartree–Fock

calculations. See Chapter 7 for further detail on basis sets available and Chapter 8 for specifying

effective core potentials.

JOBTYPE

Specifies the type of calculation.

TYPE:

STRING

DEFAULT:

SP

OPTIONS:
SP Single point energy.

OPT Geometry Minimization.

TS Transition Structure Search.

FREQ Frequency Calculation.

FORCE Analytical Force calculation.

RPATH Intrinsic Reaction Coordinate calculation.

NMR NMR chemical shift calculation.
RECOMMENDATION:

Job dependent

EXCHANGE

Specifies the exchange level of theory.

TYPE:

STRING

DEFAULT:

No default

OPTIONS:

HF Exact (Hartree–Fock).

RECOMMENDATION:

Use HF for Hartree–Fock calculations.

BASIS

Specifies the basis sets to be used.

TYPE:

STRING

DEFAULT:

No default basis set

OPTIONS:
General, Gen User defined ( � basis keyword required).

Symbol Use standard basis sets as per Chapter 7.

Mixed Use a mixture of basis sets (see Chapter 7).
RECOMMENDATION:

Consult literature and reviews to aid your selection.
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PRINT ORBITALS

Prints orbital coefficients with atom labels in analysis part of output.

TYPE:

INTEGER/LOGICAL

DEFAULT:

FALSE

OPTIONS:
FALSE Do not print any orbitals.

TRUE Prints occupied orbitals plus 5 virtuals.

NVIRT Number of virtuals to print.
RECOMMENDATION:

Use TRUE unless more virtuals are desired.

THRESH

Cutoff for neglect of two electron integrals. 10−THRESH (THRESH ≤ 14).

TYPE:

INTEGER

DEFAULT:
8 For single point energies.

10 For optimizations and frequency calculations.

14 For coupled-cluster calculations.
OPTIONS:

n for a threshold of 10−n.

RECOMMENDATION:
Should be at least three greater than SCF CONVERGENCE. Increase for more

significant figures, at greater computational cost.

SCF CONVERGENCE
SCF is considered converged when the wavefunction error is less that

10−SCF CONVERGENCE. Adjust the value of THRESH at the same time. Note

that in Q-Chem 3.0 the DIIS error is measured by the maximum error rather

than the RMS error as in previous versions.
TYPE:

INTEGER

DEFAULT:
5 For single point energy calculations.

7 For geometry optimizations and vibrational analysis.

8 For SSG calculations, see Chapter 5.
OPTIONS:

User–defined

RECOMMENDATION:
Tighter criteria for geometry optimization and vibration analysis. Larger values

provide more significant figures, at greater computational cost.
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UNRESTRICTED

Controls the use of restricted or unrestricted orbitals.

TYPE:

LOGICAL

DEFAULT:
FALSE (Restricted) Closed–shell systems.

TRUE (Unrestricted) Open–shell systems.
OPTIONS:

TRUE (Unrestricted) Open–shell systems.

FALSE Restricted open–shell HF (ROHF).
RECOMMENDATION:

Use default unless ROHF is desired. Note that for unrestricted calculations on sys-

tems with an even number of electrons it is usually necessary to break alpha–beta

symmetry in the initial guess, by using SCF GUESS MIX or providing � occupied

information (see Section 4.5 on initial guesses).

4.2.4 Additional Hartree–Fock Job Control Options

Listed below are a number of useful options to customize a Hartree–Fock calculation. This is only

a short summary of the function of these � rem variables. A full list of all SCF–related variables

is provided in Appendix C. A number of other specialized topics (large molecules, customizing

initial guesses, and converging the calculation) are discussed separately in Sections 4.4, 4.5, and

4.6 respectively.

INTEGRALS BUFFER

Controls the size of in–core integral storage buffer.

TYPE:

INTEGER

DEFAULT:

15 15 Megabytes.

OPTIONS:

User defined size.

RECOMMENDATION:

Use the default, or consult your systems administrator for hardware limits.

DIRECT SCF

Controls direct SCF.

TYPE:

LOGICAL

DEFAULT:

Determined by program.

OPTIONS:
TRUE Forces direct SCF.

FALSE Do not use direct SCF.
RECOMMENDATION:

Use default; direct SCF switches off in–core integrals.
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METECO

Sets the threshold criteria for discarding shell–pairs.

TYPE:

INTEGER

DEFAULT:

2 Discard shell–pairs below 10−THRESH.

OPTIONS:
1 Discard shell–pairs four orders of magnitude below machine precision.

2 Discard shell–pairs below 10−THRESH.
RECOMMENDATION:

Use default.

STABILITY ANALYSIS

Performs stability analysis for a HF or DFT solution.

TYPE:

LOGICAL

DEFAULT:

FALSE

OPTIONS:
TRUE Perform stability analysis.

FALSE Do not perform stability analysis.
RECOMMENDATION:

Set to TRUE when a HF or DFT solution is suspected to be unstable.

SCF PRINT

Controls level of output from SCF procedure to Q-Chem output file.

TYPE:

INTEGER

DEFAULT:

0 Minimal, concise, useful and necessary output.

OPTIONS:
0 Minimal, concise, useful and necessary output.

1 Level 0 plus component breakdown of SCF electronic energy.

2 Level 1 plus density, Fock and MO matrices on each cycle.

3 Level 2 plus two–electron Fock matrix components (Coulomb, HF exchange

and DFT exchange-correlation matrices) on each cycle.
RECOMMENDATION:

Proceed with care; can result in extremely large output files at level 2 or higher.

These levels are primarily for program debugging.

SCF FINAL PRINT
Controls level of output from SCF procedure to Q-Chem output file at the end of

the SCF.
TYPE:

INTEGER

DEFAULT:

0 No extra print out.

OPTIONS:
0 No extra print out.

1 Orbital energies and break–down of SCF energy.

2 Level 1 plus MOs and density matrices.

3 Level 2 plus Fock and density matrices.
RECOMMENDATION:

The break–down of energies is often useful (level 1).
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4.2.5 Examples

Provided below are examples of Q-Chem input files to run ground state, Hartree–Fock single

point energy calculations. See the appendix for more examples of Q-Chem input files.

Example 4.1 Example Q-Chem input for a single point energy calculation on water. Note
that the declaration of the single point � rem variable and level of theory to treat correlation are
redundant because they are the same as the Q-Chem defaults.

$molecule

0 1

O

H1 O oh

H2 O oh H1 hoh

oh = 1.2

hoh = 120.0

$end

$rem

JOBTYPE sp Single Point energy

EXCHANGE hf Exact HF exchange

CORRELATION none No correlation

BASIS sto-3g Basis set

$end

$comment

HF/STO-3G water single point calculation

$end

Example 4.2 UHF/6-311G calculation on the Lithium atom. Note that correlation and the job
type were not indicated because Q-Chem defaults automatically to no correlation and single point
energies. Note also that, since the number of alpha and beta electron differ, MOs default to an
unrestricted formalism.

$molecule

0,2

3

$end

$rem

EXCHANGE HF Hartree-Fock

BASIS 6-311G Basis set

$end

Example 4.3 ROHF/6-311G calculation on the Lithium atom. Note again that correlation and
the job type need not be indicated.

$molecule

0,2

3

$end

$rem

EXCHANGE hf Hartree-Fock

UNRESTRICTED false Restricted MOs

BASIS 6-311G Basis set

$end

Example 4.4 RHF/6-31G stability analysis calculation on the singlet state of the oxygen
molecule. The wavefunction is RHF→UHF unstable.
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$molecule

0 1

O

O 1 1.165

$end

$rem

EXCHANGE hf Hartree--Fock

UNRESTRICTED false Restricted MOs

BASIS 6-31G(d) Basis set

STABILITY_ANALYSIS true Perform a stability analysis

$end

4.2.6 Symmetry

Symmetry is a powerful branch of mathematics and is often exploited in quantum chemistry, both

to reduce the computational workload and to classify the final results obtained [15–17]. Q-Chem

is able to determine the point group symmetry of the molecular nuclei and, on completion of the

SCF procedure, classify the symmetry of molecular orbitals, and provide symmetry decomposition

of kinetic and nuclear attraction energy (see Chapter 10).

Molecular systems possessing point group symmetry offer the possibility of large savings of compu-

tational time, by avoiding calculations of integrals which are equivalent i.e., those integrals which

can be mapped on to one another under one of the symmetry operations of the molecular point

group.

The Q-Chem default is to use symmetry to reduce computational time, when possible. Some

algorithms, such as the CFMM, do not yet have symmetry efficiencies implemented and these

cases the symmetry flag ( � rem variable SYMMETRY) is ignored.

In some cases it may be desirable to turn off symmetry altogether, for example if you do not want

Q-Chem to reorient the molecule into the standard nuclear orientation. If the SYM IGNORE � rem

is set to TRUE then the coordinates will not be altered from the input, and the point group will

be set to C1.

SYMMETRY
Controls the efficiency through the use of point group symmetry for calculating

integrals.
TYPE:

LOGICAL

DEFAULT:

TRUE Use symmetry for computing integrals (disabled for RIMP2 jobs).

OPTIONS:
TRUE Use symmetry when available.

FALSE Do not use symmetry. This is always the case for RIMP2 jobs
RECOMMENDATION:

Use default unless benchmarking. Note that symmetry usage is disabled for RIMP2

jobs.
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SYM IGNORE

Controls whether or not Q-Chem determines the point group of the molecule.

TYPE:

LOGICAL

DEFAULT:

FALSE Do determine the point group (disabled for RIMP2 jobs).

OPTIONS:

TRUE/FALSE

RECOMMENDATION:
Use default unless you do not want the molecule to be reoriented. Note that

symmetry usage is disabled for RIMP2 jobs.

SYM TOL
Controls the tolerance for determining point group symmetry. Differences in atom

locations less than 10−SYM TOL are treated as zero.
TYPE:

INTEGER

DEFAULT:

5 corresponding to 10−5.

OPTIONS:

User defined.

RECOMMENDATION:
Use the default unless the molecule has high symmetry which is not being correctly

identified. Note that relaxing this tolerance too much may introduce errors into

the calculation.

4.3 Density Functional Theory

4.3.1 Introduction

In recent years, Density Functional Theory [6,18,19] has emerged as an accurate alternative first–

principles approach to quantum mechanical molecular investigations. DFT currently accounts for

approximately 90% of all quantum chemical calculations being performed, not only because of its

proven chemical accuracy, but also because of its relatively cheap computational expense. These

two features suggest that DFT is likely to remain a leading method in the quantum chemist’s

toolkit well into the future. Q-Chem contains fast, efficient and accurate algorithms for all

popular density functional theories, which make calculations on quite large molecules possible and

practical.

DFT is primarily a theory of electronic ground state structures based on the electron density, ρ(r),

as opposed to the many–electron wavefunction Ψ(r1, . . . , rN ) There are a number of distinct sim-

ilarities and differences to traditional wavefunction approaches and modern DFT methodologies.

Firstly, the essential building blocks of the many electron wavefunction are single–electron orbitals

are directly analogous to the Kohn–Sham (see below) orbitals in the current DFT framework. Sec-

ondly, both the electron density and the many–electron wavefunction tend to be constructed via

a SCF approach that requires the construction of matrix elements which are remarkably and

conveniently very similar.

However, traditional approaches using the many electron wavefunction as a foundation must resort

to a post–SCF calculation (Chapter 5) to incorporate correlation effects, whereas DFT approaches

do not. Post–SCF methods, such as perturbation theory or coupled cluster theory are extremely

expensive relative to the SCF procedure. On the other hand, the DFT approach is, in principle,
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exact, but in practice relies on modeling the unknown exact exchange correlation energy func-

tional. While more accurate forms of such functionals are constantly being developed, there is

no systematic way to improve the functional to achieve an arbitrary level of accuracy. Thus, the

traditional approaches offer the possibility of achieving an arbitrary level of accuracy, but can be

computationally demanding, whereas DFT approaches offer a practical route but the theory is

currently incomplete.

4.3.2 Kohn–Sham Density Functional Theory

The Density Functional Theory by Hohenberg, Kohn and Sham [21, 22] stems from the original

work of Dirac [23], who found that the exchange energy of a uniform electron gas may be calculated

exactly, knowing only the charge density. However, while the more traditional DFT constitutes a

direct approach and the necessary equations contain only the electron density, difficulties associ-

ated with the kinetic energy functional obstructed the extension of DFT to anything more than

a crude level of approximation. Kohn and Sham developed an indirect approach to the kinetic

energy functional which transformed DFT into a practical tool for quantum chemical calculations.

Within the Kohn–Sham formalism [22], the ground state electronic energy, E, can be written as

E = ET + EV +EJ +EXC (4.30)

where ET is the kinetic energy, EV is the electron–nuclear interaction energy, EJ is the Coulomb

self–interaction of the electron density ρ(r) and EXC is the exchange–correlation energy. Adopting

an unrestricted format, the alpha and beta total electron densities can be written as

ρα(r) =

nα∑

i=1

|ψαi |2

ρβ(r) =

nβ∑

i=1

|ψβi |2 (4.31)

where nα and nβ are the number of alpha and beta electron respectively and, ψi are the Kohn–

Sham orbitals. Thus, the total electron density is

ρ(r) = ρα(r) + ρβ(r) (4.32)

which within a finite basis [24] is represented by

ρ(r) =
∑

µν

PT
µνφµ(r)φν(r) (4.33)

The components of (4.28) can now be written as
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ET =

nα∑

i=1

〈
ψαi

∣∣∣∣−
1

2
∇2

∣∣∣∣ψαi
〉

+

nβ∑

i=1

〈
ψβi

∣∣∣∣−
1

2
∇2

∣∣∣∣ψ
β
i

〉

=
∑

µν

PT
µν

〈
φµ(r)

∣∣∣∣−
1

2
∇2

∣∣∣∣φν(r)

〉
(4.34)

EV = −
M∑

A=1

ZA
ρ(r)

|r−RA|
dr

= −
∑

µν

PT
µν

∑

A

〈
φµ(r)

∣∣∣∣
ZA

|r−RA|

∣∣∣∣φν(r)

〉
(4.35)

EJ =
1

2

〈
ρ(r1)

∣∣∣∣
1

|r1 − r2|

∣∣∣∣ ρ(r2)

〉

=
1

2

∑

µν

∑

λσ

PT
µνP

T
λσ (µν|λσ) (4.36)

EXC =

∫
f [ρ(r),∇ρ(r), . . .] dr (4.37)

Minimizing E with respect to the unknown Kohn–Sham orbital coefficients yields a set of matrix

equations exactly analogous to the UHF case

FαCα = εαSCα (4.38)

FβCβ = εβSCβ (4.39)

where the Fock matrix elements are generalized to

Fαµν = Hcore
µν + Jµν − FXCα

µν (4.40)

F βµν = Hcore
µν + Jµν − FXCβ

µν (4.41)

where FXCα
µν and FXCβ

µν are the exchange–correlation parts of the Fock matrices dependent on

the exchange–correlation functional used. The Pople–Nesbet equations are obtained simply by

allowing

FXCα
µν = Kα

µν (4.42)

and similarly for the beta equation. Thus, the density and energy are obtained in a manner

analogous to that for the Hartree–Fock method. Initial guesses are made for the MO coefficients

and an iterative process applied until self consistency is obtained.

4.3.3 Exchange–Correlation Functionals

There are an increasing number of exchange and correlation functionals and hybrid DFT methods

available to the quantum chemist, many of which are very effective. In short, there are three

basic types of functionals: those based on the local spin density approximation (LSDA), those

based on generalized gradient approximations (GGA), and those that include not only gradient

corrections (as in the GGA functionals), but also a dependence on the spin kinetic energy density.

Furthermore, as discussed later in this subsection, each of these types of functionals can be used
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with a certain amount of Hartree-Fock nonlocal exchange replacing some of the local exchange.

When a nonzero amount of Hartree-Fock exchange is used, the functional is called hybrid. Explicit

definitions of each of these approximations vary amongst theoreticians and the reader is referred

to the literature for further details.

Q-Chem includes the following LSDA functionals:

� Slater–Dirac (Exchange) [23]� Vokso–Wilk–Nusair (Correlation) [25]� Perdew–Zunger (Correlation) [26]� Wigner (Correlation) [27]

the following GGA functionals:

� Becke88 (Exchange) [28]� Gill96 (Exchange) [29]� Gilbert–Gill99 (Exchange [30]� Lee–Yang–Parr (Correlation) [31]� Perdew86 (Correlation) [32]� GGA91 (Exchange and correlation) [33]� PBE (Exchange and correlation) [34, 35]� Becke97 (Exchange and correlation within a hybrid scheme) [35, 36]� Becke97-1 (Exchange and correlation within a hybrid scheme) [35, 37]� Becke97-2 (Exchange and correlation within a hybrid scheme) [35, 38]

and the following meta–GGA functionals containing the kinetic energy density (τ):

� BMK (Exchange and Correlation within a hybrid scheme) [39]� M05 (Exchange and Correlation within a hybrid scheme) [40, 45]� M05-2X (Exchange and Correlation within a hybrid scheme) [41, 45]� M06-L (Exchange and Correlation within a hybrid scheme) [42, 45]� M06-HF (Exchange and Correlation within a hybrid scheme) [43, 45]� M06 (Exchange and Correlation within a hybrid scheme) [44, 45]� M06-2X (Exchange and Correlation within a hybrid scheme) [44, 45]

In addition to the established density functionals, Q-Chem contains the recent Empirical Density

Functional 1 (EDF1), developed by Adamson, Gill and Pople [46]. EDF1 is a combined exchange

and correlation functional that is specifically adapted to yield good results with the relatively

modest–sized 6-31+G* basis set, by direct fitting to thermochemical data. It has the interesting

feature that exact exchange mixing was not found to be helpful with a basis set of this size. Fur-

thermore, for this basis set, the performance substantially exceeded the popular B3LYP functional,

while the cost of the calculations is considerably lower because there is no need to evaluate exact
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(non–local) exchange. We recommend consideration of EDF1 instead of either B3LYP or BLYP

for density functional calculations on large molecules, for which basis sets larger than 6-31+G*

may be too computationally demanding.

EDF2, another Empirical Density Functional, was developed by Ching Yeh Lin and Peter Gill [86]

in a similar vein to EDF1, but is specially designed for harmonic frequency calculations. It was

optimized using the cc–pVTZ basis set by fitting into experimental harmonic frequencies and is

designed to describe the potential energy curvature well. Fortuitously, it also performs better than

B3LYP for thermochemical properties.

Hybrid exchange–correlation functionals [47], whereby several different exchange and correlation

functionals are combined linearly to form a new functional, have proven successful in a number

of reported applications. However, since Hybrid functionals contain HF exchange they are more

expensive that pure DFT functionals. Q-Chem has incorporated two of the most popular hybrid

functionals, B3LYP [48] and B3PW91 [49], with the additional option for users to define their own

hybrid functionals via the � xc functional keyword (see user–defined functionals in Section 4.3.9,

below).

In addition, Q-Chem now includes the M05 and M06 suites of density functionals. These func-

tionals are designed to be used only with certain definite percentages of Hartree-fock exchange.

In particular, M06-L [42] is designed to be used with no Hartree-fock exchange (which reduces

the cost for large molecules), and M05 [40], M05-2X [41], M06, and M06-2X [44] are designed to

be used with 28be used with 100density functional exchange because the Hartree-Fock nonlocal

exchange replaces only some of the local exchange.

Note: The hybrid functionals are not simply a pairing of an exchange and correlation functional,

but are a combined exchange–correlation functional (i.e., B-LYP and B3LYP vary in the

correlation contribution in addition to the exchange part).

4.3.4 DFT Numerical Quadrature

In practical DFT calculations, the forms of the approximate exchange–correlation functionals used

are quite complicated, such that the required integrals involving the functionals generally cannot be

evaluated analytically. Q-Chem evaluates these integrals through numerical quadrature directly

applied to the exchange–correlation integrand (i.e., no fitting of the XC potential in an auxiliary

basis is done). Q-Chem provides a standard quadrature grid by default which is sufficient for

most purposes.

The quadrature approach in Q-Chem is generally similar to that found in many DFT programs.

The multicenter XC integrals are first partitioned into “atomic” contributions using a nuclear

weight function. Q-Chem uses the nuclear partitioning of Becke [49], though without the atomic

size adjustments”. The atomic integrals are then evaluated through standard one–center numerical

techniques.

Thus, the exchange–correlation energy EXC is obtained as

EXC =
∑

A

∑

i

wAif (rAi) (4.43)

where the first summation is over the atoms and the second is over the numerical quadrature grid

points for the current atom. The f function is the exchange–correlation functional. The wAi are

the quadrature weights, and the grid points rAi are given by

rAi = RA + ri (4.44)
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where RA is the position of nucleus A, with the ri defining a suitable one–center integration grid,

which is independent of the nuclear configuration.

The single–center integrations are further separated into radial and angular integrations. Within

Q-Chem, the radial part is usually treated by the Euler–Maclaurin scheme proposed by Murry

et al. [50]. This scheme maps the semi–infinite domain [0,∞) → [0, 1) and applies the extended

trapezoidal rule to the transformed integrand. Recently Gill and Chien [51] proposed a radial

scheme based on a Gaussian quadrature on the interval [0, 1] with weight function ln2 x. This

scheme is exact for integrands that are a linear combination of a geometric sequence of exponential

functions, and is therefore well suited to evaluating atomic integrals. The authors refer to this

scheme as MultiExp.

4.3.5 Angular Grids

Angular quadrature rules may be characterized by their degree, which is the highest degree of

spherical harmonics for which the formula is exact, and their efficiency, which is the number of

spherical harmonics exactly integrated per degree of freedom in the formula. Q-Chem supports

the following types of angular grids:

Lebedev These are specially constructed grids for quadrature on the surface of a sphere [12,13,53]

based on the octahedral group. Lebedev grids of the following degrees are available:

Degree 3rd 5th 7th 9th 11th 15th 17th 19th 23rd 29th

Points 6 18 26 38 50 86 110 146 194 302

Additional grids with the following number of points are also available: 74, 170, 230, 266, 350, 434,

590, 770, 974, 1202, 1454, 1730, 2030, 2354, 2702, 3074, 3470, 3890, 4334, 4802, 5294. Lebedev

grids typically have efficiencies near one, with efficiencies greater than one in some cases.

Gauss–Legendre These are spherical product rules separating the two angular dimensions θ and

φ. Integration in the θ dimension is carried out with a Gaussian quadrature rule derived from the

Legendre polynomials (orthogonal on [−1, 1] with weight function unity), while the φ integration

is done with equally spaced points.

A Gauss–Legendre grid is selected by specifying the total number of points, 2N 2, to be used for

the integration. This gives a grid with 2Nφ–points, Nθ–points, and a degree of 2N − 1.

In contrast with Lebedev grids, Gauss–Legendre grids have efficiency of only 2/3 (hence more

Gauss–Legendre points are required to attain the same accuracy as Lebedev). However, since

Gauss–Legendre grids of general degree are available, this is a convenient mechanism for achieving

arbitrary accuracy in the angular integration if desired.

Combining these radial and angular schemes yields an intimidating selection of three–dimensional

quadratures. In practice, is it useful to standardize the grids used in order to facilitate the

comparison of calculations at different levels of theory.

4.3.6 Standard Quadrature Grids

Both the SG–0 [55] and SG–1 [56] standard quadrature grids were designed to yield the perfor-

mance of a large, accurate quadrature grid, but with as few points as possible for the sake of

computational efficiency. This is accomplished by reducing the number of angular points in re-

gions where sophisticated angular quadrature is not necessary, such as near the nuclei where the

charge density is nearly spherically symmetric, while retaining large numbers of angular points in

the valence region where angular accuracy is critical.
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The SG–0 grid was derived in this fashion from a MultiExp–Lebedev–(23,170), (i.e., 23 radial

points and 170 angular points per radial point). This grid was pruned whilst ensuring the error in

the computed exchange energies for the atoms and a selection of small molecules was not larger

than the corresponding error associated with SG–1. In our evaluation, the RMS error associated

with the atomization energies for the molecules in the G1 data set is 72 microhartrees. While

relative energies are expected to be reproduced well by this scheme, if absolute energies are being

sought, a larger grid is recommended.

The SG–0 grid is implemented in Q-Chem from H to micro Hartrees, excepted He and Na; in

this scheme, each atom has around 1400-point, and SG–1 is used for those their SG–0 grids have

not been defined. It should be noted that, since the SG–0 grid used for H has been re-optimized

in this version of Q-Chem (version 3.0), quantities calculated in this scheme may not reproduce

those generated by the last version (version 2.1).

The SG–1 grid is derived from a Euler–Maclaurin–Lebedev–(50,194) grid (i.e., 50 radial points,

and 194 angular points per radial point). This grid has been found to give numerical integration

errors of the order of 0.2 kcal/mol for medium–sized molecules, including particularly demanding

test cases such as isomerization energies of alkanes. This error is deemed acceptable since it is

significantly smaller than the accuracy typically achieved by quantum chemical methods. In SG–1

the total number of points is reduced to approximately 1/4 of that of the original EML–(50,194)

grid, with SG–1 generally giving the same total energies as EML–(50,194) to within a few micro-

hartrees (0.01 kcal/mol). Therefore, the SG–1 grid is relatively efficient while still maintaining the

numerical accuracy necessary for chemical reliability in the majority of applications.

Both the SG–0 and SG–1 grids were optimized so that the error in the energy when using the

grid did not exceed a target threshold. For single point calculations this criterion is appropriate.

However, derivatives of the energy can be more sensitive to the quality of the integration grid, and

it is recommended that a larger grid be used when calculating these. Special care is required when

performing DFT vibrational calculations as imaginary frequencies can be reported if the grid is

inadequate. This is more of a problem with low–frequency vibrations. If imaginary frequencies

are found, or if there is some doubt about the frequencies reported by Q-Chem, the recommended

procedure is to perform the calculation again with a larger grid and check for convergence of the

frequencies. Of course the geometry must be re–optimized, but if the existing geometry is used as

an initial guess, the geometry optimization should converge in only a few cycles.

4.3.7 Consistency Check and Cutoffs for Numerical Integration

Whenever Q-Chem calculates numerical density functional integrals, the electron density itself is

also integrated numerically as a test on the quality of the quadrature formula used. The deviation

of the numerical result from the number of electrons in the system is an indication of the accuracy

of the other numerical integrals. If the relative error in the numerical electron count reaches 0.01%,

a warning is printed; this is an indication that the numerical XC results may not be reliable. If the

warning appears at the first SCF cycle, it is probably not serious, because the initial–guess density

matrix is sometimes not idempotent, as is the case with the SAD guess and the density matrix

taken from a different geometry in a geometry optimization. If that is the case, the problem will

be corrected as the idempotency is restored in later cycles. On the other hand, if the warning is

persistent to the end of SCF iterations, then either a finer grid is needed, or choose an alternative

method for generating the initial guess.

Users should be aware, however, of the potential flaws that have been discovered in some of the

grids currently in use. Jarecki and Davidson [57], for example, have recently shown that correctly

integrating the density is a necessary, but not sufficient, test of grid quality.

By default, Q-Chem will estimate the magnitude of various XC contributions on the grid and

eliminate those determined to be numerically insignificant. Q-Chem uses specially developed
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cutoff procedures which permits evaluation of the XC energy and potential in only O(N) work

for large molecules, where N is the size of the system. This is a significant improvement over the

formal O(N3) scaling of the XC cost, and is critical in enabling DFT calculations to be carried

out on very large systems. In very rare cases, however, the default cutoff scheme can be too

aggressive, eliminating contributions that should be retained; this is almost always signaled by

an inaccurate numerical density integral. An example of when this could occur is in calculating

anions with multiple sets of diffuse functions in the basis. As mentioned above, when an inaccurate

electron count is obtained, it maybe possible to remedy the problem by increasing the size of the

quadrature grid.

Finally we note that early implementations of quadrature–based Kohn–Sham DFT employing

standard basis sets were plagued by lack of rotational invariance. That is, rotation of the system

yielded a significantly energy change. Clearly, such behavior is highly undesirable. Johnson

et al. rectified the problem of rotational invariance by completing the specification of the grid

procedure [58] to ensure that the computed XC energy is the same for any orientation of the

molecule in any Cartesian coordinate system.

4.3.8 Basic DFT Job Control

Three � rem variables are required to run a DFT job: EXCHANGE, CORRELATION and BASIS.

In addition, all of the basic input options discussed for Hartree–Fock calculations in Section 4.2.3,

and the extended options discussed in Section 4.2.4 are all valid for DFT calculations. Below we

list only the basic DFT–specific options.
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EXCHANGE

Specifies the exchange functional or exchange–correlation functional for hybrid.

TYPE:

STRING

DEFAULT:

No default exchange functional

OPTIONS:
HF Fock exchange

Slater, S Slater (Dirac 1930)

Becke, B Becke 1988

Gill96, Gill Gill 1996

GG99 Gilbert and Gill, 1999

Becke(EDF1), B(EDF1) Becke (uses EDF1 parameters)

PW91, PW Perdew

PBE Perdew-Burke-Ernzerhof 1996

B97 Becke97 XC hybrid 1997

B97-1 Becke97 re-optimized by Hamprecht et al. 1998

B97-2 Becke97-1 optimized further by Wilson et al. 2001

B3PW91, Becke3PW91, B3P B3PW91 hybrid

B3LYP, Becke3LYP B3LYP hybrid

B3LYP5 B3LYP based on correlation functional #5 of

Vosko, Wilk, and Nusair rather than their functional #3

EDF1 EDF1

EDF2 EDF2

BMK BMK hybrid

M05 M05 hybrid

M05-2X M05-2X hybrid

M06-L M06-L hybrid

M06-HF M06-HF hybrid

M06 M06 hybrid

M06-2X M06-2X hybrid

General, Gen User defined combination of K, X and C (refer next

section).
RECOMMENDATION:

Consult the literature to guide your selection.
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CORRELATION

Specifies the correlation functional.

TYPE:

STRING

DEFAULT:

None No correlation.

OPTIONS:
None No correlation

VWN Vosko–Wilk–Nusair parameterization #5

LYP Lee–Yang–Parr (LYP)

PW91, PW GGA91 (Perdew)

LYP(EDF1) LYP(EDF1) parameterization

Perdew86, P86 Perdew 1986

PZ81, PZ Perdew–Zunger 1981

PBE Perdew-Burke-Ernzerhof 1996

Wigner Wigner
RECOMMENDATION:

Consult the literature to guide your selection.

FAST XC

Controls direct variable thresholds to accelerate exchange correlation (XC) in DFT.

TYPE:

LOGICAL

DEFAULT:

FALSE

OPTIONS:
TRUE Turn FAST XC on.

FALSE Do not use FAST XC.
RECOMMENDATION:

Caution: FAST XC improves the speed of a DFT calculation, but may occasionally

cause the SCF calculation to diverge.

XC GRID

Specifies the type of grid to use for DFT calculations.

TYPE:

INTEGER

DEFAULT:

0 SG–0/SG–1 hybrid

OPTIONS:
0 Use SG–0 for H, C, N, and O, SG–1 for all other atoms.

1 Use SG–1 for all atoms.

2 Low Quality.

mn The first six integers correspond to m radial points and the second six

integers correspond to n angular points where possible numbers of Lebedev

angular points are listed in section 4.3.4.

−mn The first six integers correspond to m radial points and the second six

integers correspond to n angular points where the number of Gauss–Legendre

angular points n = 2N2.
RECOMMENDATION:

Use default unless numerical integration problems arise. Larger grids may be

required for optimization and frequency calculations.
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XC SMART GRID
Uses SG–0 (where available) for early SCF cycles, and switches to the (larger)

grid specified by XC GRID (which defaults to SG–1, if not otherwise specified)

for final cycles of the SCF.
TYPE:

LOGICAL

DEFAULT:

FALSE

OPTIONS:

TRUE/FALSE

RECOMMENDATION:

The use of the smart grid can save some time on initial SCF cycles.

4.3.9 User–Defined Density Functionals

The format for entering user–defined exchange–correlation density functionals is one line for each

component of the functional. Each line requires three variables: the first defines whether the

component is an exchange or correlation functional by declaring an X or C, respectively. The

second variable is the symbolic representation of the functional as used for the EXCHANGE and

CORRELATION � rem variables. The final variable is a real number corresponding to the con-

tribution of the component to the functional. Hartree–Fock exchange contributions (required for

hybrid density functionals) can be entered using only two variables (K, for HF exchange) followed

by a real number.

$xc_functional

X exchange_symbol coefficient

X exchange_symbol coefficient

...

C correlation_symbol coefficient

C correlation_symbol coefficient

...

K coefficient

$end

Note: (1) Coefficients are real.

(2) A user–defined functional does not require all X , C and K components.

4.3.10 Example

Example 4.5 Q-Chem input for a DFT single point energy calculation on water.

$comment

B-LYP/STO-3G water single point calculation

$end

$molecule

0 1

O

H1 O oh

H2 O oh H1 hoh

oh = 1.2
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hoh = 120.0

$end.

$rem

EXCHANGE Becke Becke88 exchange

CORRELATION lyp LYP correlation

BASIS sto-3g Basis set

$end

4.4 Large Molecules and Linear Scaling Methods

4.4.1 Introduction

Construction of the effective Hamiltonian, or Fock matrix, has traditionally been the rate–determining

step in self–consistent field calculations, due primarily to the cost of two–electron integral evalu-

ation, even with the efficient methods available in Q-Chem (see AOINTS appendix). However,

for large enough molecules, significant speedups are possible by employing linear–scaling methods

for each of the nonlinear terms that can arise. Linear scaling means that if the molecule size is

doubled, then the computational effort likewise only doubles. There are three computationally

significant terms:

� Electron–electron Coulomb interactions, for which Q-Chem incorporates the Continuous

Fast Multipole Method (CFMM) discussed in section 4.4.2� Exact exchange interactions, which arise in hybrid DFT calculations and Hartree–Fock cal-

culations, for which Q-Chem incorporates the LinK method discussed in section 4.4.3 below.� Numerical integration of the exchange and correlation functionals in DFT calculations, which

we have already discussed in section 4.3.4.

Q-Chem supports energies and efficient analytical gradients for all three of these high performance

methods to permit structure optimization of large molecules, as well as relative energy evaluation.

Note that analytical second derivatives of SCF energies do not exploit these methods at present.

For the most part, these methods are switched on automatically by the program based on whether

they offer a significant speedup for the job at hand. Nevertheless it is useful to have a general

idea of the key concepts behind each of these algorithms, and what input options are necessary

to control them. That is the primary purpose of this section, in addition to briefly describing two

more conventional methods for reducing computer time in large calculations in Section 4.4.4.

There is one other computationally significant step in SCF calculations, and that is diagonalization

of the Fock matrix, once it has been constructed. This step scales with the cube of molecular size

(or basis set size), with a small prefactor. So, for large enough SCF calculations (very roughly

in the vicinity of 2000 basis functions and larger), diagonalization becomes the rate–determining

step. The cost of cubic scaling with a small prefactor at this point exceeds the cost of the linear

scaling Fock build, which has a very large prefactor, and the gap rapidly widens thereafter. This

sets an effective upper limit on the size of SCF calculation for which Q-Chem is useful at several

thousand basis functions.

4.4.2 Continuous Fast Multipole Method (CFMM)

The quantum chemical Coulomb problem, perhaps better known as the DFT bottleneck, has been

at the forefront of many research efforts throughout the 1990s. The quadratic computational
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scaling behavior conventionally seen in the construction of the Coulomb matrix in DFT or HF

calculations has prevented the application of ab initio methods to molecules containing many

hundreds of atoms. Q-Chem, Inc., in collaboration with White and Head–Gordon at the Univer-

sity of California at Berkeley, and Gill now at the Australian National University, were the first

to develop the generalization of Greengard’s Fast Multipole Method (FMM) [59] to Continuous

charged matter distributions in the form of the CFMM, which is the first linear scaling algorithm

for DFT calculations. This initial breakthrough has since lead to an increasing number of linear

scaling alternatives and analogies, but for Coulomb interactions, the CFMM remains state of the

art. There are two computationally intensive contributions to the Coulomb interactions which we

discuss in turn:

� Long–range interactions, which are treated by the CFMM� Short–range interactions, corresponding to overlapping charge distributions, which are treated

by a specialized “J–matrix engine” together with Q-Chem’s state–of–the art two–electron

integral methods.

The Continuous Fast Multipole Method was the first implemented linear scaling algorithm for the

construction of the J matrix. In collaboration with Q-Chem, Inc., Dr Chris White began the

development of the CFMM by more efficiently deriving [14] the original Fast Multipole Method

before generalizing it to the CFMM [61]. The generalization applied by White et al. allowed the

principles underlying the success of the FMM to be applied to arbitrary (subject to constraints

in evaluating the related integrals) continuous, but localized, matter distributions. White and

co–workers further improved the underlying CFMM algorithm [29, 63] then implemented it ef-

ficiently [64], achieving performance that is an order of magnitude faster than some competing

implementations.

The success of the CFMM follows similarly with that of the FMM, in that the charge system is

subdivided into a hierarchy of boxes. Local charge distributions are then systematically organized

into multipole representations so that each distribution interacts with local expansions of the

potential due to all distant charge distributions. Local and distant distributions are distinguished

by a well–separated (WS) index, which is the number of boxes that must separate two collections

of charges before they may be considered distant and can interact through multipole expansions;

near–field interactions must be calculated directly. In the CFMM each distribution is given its

own WS index and is sorted on the basis of the WS index, and the position of their space centers.

The implementation in Q-Chem has allowed the efficiency gains of contracted basis functions to

be maintained.

The CFMM algorithm can be summarized in five steps:

1. Form and translate multipoles.

2. Convert multipoles to local Taylor expansions.

3. Translate Taylor information to the lowest level.

4. Evaluate Taylor expansions to obtain the far–field potential.

5. Perform direct interactions between overlapping distributions.

Accuracy can be carefully controlled by due consideration of tree depth, truncation of the multipole

expansion and the definition of the extent of charge distributions in accordance with a rigorous

mathematical error bound. As a rough guide, 10 poles are adequate for single point energy

calculations, while 25 poles yield sufficient accuracy for gradient calculations. Subdivision of boxes

to yield a one–dimensional length of about 8 boxes works quite well for systems of up to about
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one hundred atoms. Larger molecular systems, or ones which are extended along one dimension,

will benefit from an increase in this number. The program automatically selects an appropriate

number of boxes by default.

For the evaluation of the remaining short–range interactions, Q-Chem incorporates efficient J–

matrix engines, originated by White and Head–Gordon [65]. These are analytically exact methods

that are based on standard two–electron integral methods, but with an interesting twist. If one

knows that the two–electron integrals are going to be summed into a Coulomb matrix, one can

ask whether they are in fact the most efficient intermediates for this specific task. Or, can one

instead find a more compact and computationally efficient set of intermediates by folding the

density matrix into the recurrence relations for the two–electron integrals. For integrals that

are not highly contracted (i.e., are not linear combinations of more than a few Gaussians), the

answer is a dramatic yes. This is the basis of the J–matrix approach, and Q-Chem includes the

latest algorithm developed by Yihan Shao working with Martin Head–Gordon at Berkeley for this

purpose. Shao’s J engine is employed for both energies [66] and forces [67] and gives substantial

speedups relative to the use of two–electron integrals without any approximation (roughly a factor

of 10 (energies) and 30 (forces) at the level of an uncontracted dddd shell quartet, and increasing

with angular momentum). Its use is automatically selected for integrals with low degrees of

contraction, while regular integrals are employed when the degree of contraction is high, following

the state of the art PRISM approach of Gill and coworkers [3].

The CFMM is controlled by the following input parameters:

CFMM ORDER

Controls the order of the multipole expansions in CFMM calculation.

TYPE:

INTEGER

DEFAULT:
15 For single point SCF accuracy

25 For tighter convergence (optimizations)
OPTIONS:

n Use multipole expansions of order n

RECOMMENDATION:

Use default.

GRAIN

Controls the number of lowest–level boxes in one dimension for CFMM.

TYPE:

INTEGER

DEFAULT:

-1 Program decides best value, turning on CFMM when useful

OPTIONS:
-1 Program decides best value, turning on CFMM when useful

1 Do not use CFMM

n ≥ 8 Use CFMM with n lowest–level boxes in one dimension
RECOMMENDATION:

This is an expert option; either use the default, or use a value of 1 if CFMM is

not desired.

4.4.3 Linear Scaling Exchange (LinK) Matrix Evaluation

Hartree–Fock calculations and the popular hybrid density functionals such as B3LYP also re-

quire two–electron integrals to evaluate the exchange energy associated with a single determinant.
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There is no useful multipole expansion for the exchange energy, because the bra and ket of the

two–electron integral are coupled by the density matrix, which carries the effect of exchange.

Fortunately, density matrix elements decay exponentially with distance for systems that have a

HOMO–LUMO gap [69]. The better the insulator, the more localized the electronic structure, and

the faster the rate of exponential decay. Therefore, for insulators, there are only a linear number

of numerically significant contributions to the exchange energy. With intelligent numerical thresh-

olding, it is possible to rigorously evaluate the exchange matrix in linear scaling effort. For this

purpose, Q-Chem contains the linear scaling K (LinK) method [69] to evaluate both exchange en-

ergies and their gradients [56] in linear scaling effort (provided the density matrix is highly sparse).

The LinK method essentially reduces to the conventional direct SCF method for exchange in the

small molecule limit (by adding no significant overhead), while yielding large speedups for (very)

large systems where the density matrix is indeed highly sparse. For full details, we refer the reader

to the original papers [56,69]. LinK can be explicitly requested by the following option (although

Q-Chem automatically switches it on when the program believes it is the preferable algorithm).

LIN K

Controls whether linear scaling evaluation of exact exchange (LinK) is used.

TYPE:

LOGICAL

DEFAULT:

Program chooses, switching on LinK whenever CFMM is used.

OPTIONS:
TRUE Use LinK

FALSE Do not use LinK
RECOMMENDATION:

Use for HF and hybrid DFT calculations with large numbers of atoms.

4.4.4 Incremental and Variable Thresh Fock Matrix Building

The use of a variable integral threshold, operating for the first few cycles of an SCF, is justifiable

on the basis that the MO coefficients are usually of poor quality in these cycles. In Q-Chem,

the integrals in the first iteration are calculated at a threshold of 10−6 (for an anticipated final

integral threshold greater than, or equal to 10−6 to ensure the error in the first iteration is solely

sourced from the poor MO guess. Following this, the integral threshold used is computed as

tmp thresh = varthresh×DIIS error (4.45)

where the DIIS error is that calculated from the previous cycle, varthresh is the variable thresh-

old set by the program (by default) and tmp thresh is the temporary threshold used for integral

evaluation. Each cycle requires recalculation of all integrals. The variable integral threshold

procedure has the greatest impact in early SCF cycles.

In an incremental Fock matrix build [18], F is computed recursively as

Fm = Fm−1 + ∆Jm−1 − 1

2
∆Km−1 (4.46)

where m is the SCF cycle, and ∆Jm and ∆Km are computed using the difference density

∆Pm = Pm −Pm−1 (4.47)
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Using Schwartz integrals and elements of the difference density, Q-Chem is able to determine

at each iteration which ERIs are required, and if necessary, recalculated. As the SCF nears

convergence, ∆Pm becomes sparse and the number of ERIs that need to be recalculated declines

dramatically, saving the user large amounts of computational time.

Incremental Fock matrix builds and variable thresholds are only used when the SCF is carried

out using the direct SCF algorithm and are clearly complementary algorithms. These options are

controlled by the following input parameters, which are only used with direct SCF calculations.

INCFOCK

Iteration number after which the incremental Fock matrix algorithm is initiated

TYPE:

INTEGER

DEFAULT:

1 Start INCFOCK after iteration number 1

OPTIONS:

User–defined (0 switches INCFOCK off)

RECOMMENDATION:

May be necessary to allow several iterations before switching on INCFOCK.

VARTHRESH
Controls the temporary integral cut–off threshold. tmp thresh = 10−VARTHRESH×
DIIS error

TYPE:

INTEGER

DEFAULT:

0 Turns VARTHRESH off

OPTIONS:

n User–defined threshold

RECOMMENDATION:

3 has been found to be a practical level, and can slightly speed up SCF evaluation.

4.4.5 Incremental DFT

Incremental DFT (IncDFT) uses the difference density and functional values to improve the per-

formance of the DFT quadrature procedure by providing a better screening of negligible values.

Using this option will yield improved efficiency at each successive iteration due to more effective

screening.

INCDFT

Toggles the use of the IncDFT procedure for DFT energy calculations.

TYPE:

LOGICAL

DEFAULT:

TRUE

OPTIONS:
FALSE Do not use IncDFT

TRUE Use IncDFT
RECOMMENDATION:

Turning this option on can lead to faster SCF calculations, particularly towards

the end of the SCF. Please note that for some systems use of this option may lead

to convergence problems.
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INCDFT DENDIFF THRESH

Sets the threshold for screening density matrix values in the IncDFT procedure.

TYPE:

INTEGER

DEFAULT:

SCF CONVERGENCE + 3

OPTIONS:

n Corresponding to a threshold of 10−n.

RECOMMENDATION:
If the default value causes convergence problems, set this value higher to tighten

the threshold.

INCDFT GRIDDIFF THRESH

Sets the threshold for screening functional values in the IncDFT procedure

TYPE:

INTEGER

DEFAULT:

SCF CONVERGENCE + 3

OPTIONS:

n Corresponding to a threshold of 10−n.

RECOMMENDATION:
If the default value causes convergence problems, set this value higher to tighten

the threshold.

INCDFT DENDIFF VARTHRESH
Sets the lower bound for the variable threshold for screening density matrix values

in the IncDFT procedure. The threshold will begin at this value and then vary

depending on the error in the current SCF iteration until the value specified by

INCDFT DENDIFF THRESH is reached. This means this value must be set lower

than INCDFT DENDIFF THRESH.
TYPE:

INTEGER

DEFAULT:

0 Variable threshold is not used.

OPTIONS:

n Corresponding to a threshold of 10−n.

RECOMMENDATION:
If the default value causes convergence problems, set this value higher to tighten

accuracy. If this fails, set to 0 and use a static threshold.

INCDFT GRIDDIFF VARTHRESH
Sets the lower bound for the variable threshold for screening the functional values

in the IncDFT procedure. The threshold will begin at this value and then vary

depending on the error in the current SCF iteration until the value specified by

INCDFT GRIDDIFF THRESH is reached. This means that this value must be set

lower than INCDFT GRIDDIFF THRESH.
TYPE:

INTEGER

DEFAULT:

0 Variable threshold is not used.

OPTIONS:

n Corresponding to a threshold of 10−n.

RECOMMENDATION:
If the default value causes convergence problems, set this value higher to tighten

accuracy. If this fails, set to 0 and use a static threshold.
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4.4.6 Fourier Transform Coulomb Method

The Coulomb part of the DFT calculations using ‘ordinary’ Gaussian representations can be sped

up dramatically using plane waves as a secondary basis set by replacing the most costly analytical

electron repulsion integrals with numerical integration techniques. The main advantages to keeping

the Gaussians as the primary basis set is that the diagonalization step is much faster than using

plane waves as the primary basis set, and all electron calculations can be performed analytically.

The Fourier Transform Coulomb (FTC) technique [82,83] is precise and tunable and all results are

practically identical with the traditional analytical integral calculations. The FTC technique is at

least 2–3 orders of magnitude more accurate then other popular plane wave based methods using

the same energy cutoff. It is also at least 2–3 orders of magnitude more accurate than the density

fitting (resolution of identity) technique. Recently, an efficient way to implement the forces of the

Coulomb energy was introduced [84], and a new technique to localize filtered core functions. Both

of these features have been implemented within Q-Chem and contribute to the efficiency of the

method.

The FTC method achieves these spectacular results by replacing the analytical integral calcula-

tions, whose computational costs scales as O(N 4) (where N is the number of basis function) with

procedures that scale as only O(N 2). The asymptotic scaling of computational costs with system

size is linear versus the analytical integral evaluation which is quadratic. Research at Q-Chem

Inc. has yielded a new, general, and very efficient implementation of the FTC method which work

in tandem with the J–engine and the CFMM (Continuous Fast Multipole Method) techniques [85].

In the current implementation the speed–ups arising from the FTC technique are moderate when

small or medium Pople basis sets are used. The reason is that the J–matrix engine and CFMM

techniques provide an already highly efficient solution to the Coulomb problem. However, increas-

ing the number of polarization functions and, particularly, the number of diffuse functions allows

the FTC to come into its own and gives the most significant improvements. For instance, using the

6-311G+(df,pd) basis set for a medium–big sized molecule is more affordable today then before.

We found also significant speed ups when non–Pople basis sets are used such as cc-pvTZ. The

FTC energy and gradients calculations are implemented to use up to f–type basis functions.

FTC

Controls the overall use of the FTC.

TYPE:

INTEGER

DEFAULT:

0

OPTIONS:
0 Do not use FTC in the Coulomb part

1 Use FTC in the Coulomb part
RECOMMENDATION:

Use FTC when bigger and/or diffuse basis sets are used.
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FTC SMALLMOL
Controls whether or not the operator is evaluated on a large grid and stored in

memory to speed up the calculation.
TYPE:

INTEGER

DEFAULT:

1

OPTIONS:
1 Use a big pre-calculated array to speed up the FTC calculations

0 Use this option to save some memory
RECOMMENDATION:

Use the default if possible and use 0 (or buy some more memory) when needed.

FTC CLASS THRESH ORDER
Together with FTC CLASS THRESH MULT, determines the cutoff threshold for

included a shell–pair in the dd class, i.e., the class that is expanded in terms of

plane waves.
TYPE:

INTEGER

DEFAULT:

5 Logarithmic part of the FTC classification threshold. Corresponds to 10−5

OPTIONS:

n User specified

RECOMMENDATION:

Use the default.

FTC CLASS THRESH MULT
Together with FTC CLASS THRESH ORDER, determines the cutoff threshold for

included a shell–pair in the dd class, i.e., the class that is expanded in terms of

plane waves.
TYPE:

INTEGER

DEFAULT:
5 Multiplicative part of the FTC classification threshold. Together with

the default value of the FTC CLASS THRESH ORDER this leads to

the 5× 10−5 threshold value.
OPTIONS:

n User specified.

RECOMMENDATION:
Use the default. If diffuse basis sets are used and the molecule is relatively big then

tighter FTC classification threshold has to be used. According to our experiments

using Pople–type diffuse basis sets, the default 5 × 10−5 value provides accurate

result for an alanine5 molecule while 1 × 10−5 threshold value for alanine10 and

5× 10−6 value for alanine15 has to be used.

4.4.7 Examples

Example 4.6 Q-Chem input for a large single point energy calculation. The CFMM is switched
on automatically when LinK is requested.

$comment

HF/3-21G single point calculation on a large molecule

read in the molecular coordinates from file
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$end

$molecule

read dna.inp

$end

$rem

EXCHANGE HF HF exchange

BASIS 3-21G Basis set

LIN_K TRUE Calculate K using LinK

$end

Example 4.7 Q-Chem input for a large single point energy calculation. This would be appropri-
ate for a medium-sized molecule, but for truly large calculations, the CFMM and LinK algorithms
are far more efficient.

$comment

HF/3-21G single point calculation on a large molecule

read in the molecular coordinates from file

$end

$molecule

read dna.inp

$end

$rem

exchange hf HF exchange

basis 3-21G Basis set

incfock 5 Incremental Fock after 5 cycles

varthresh 3 1.0d-03 variable threshold

$end

4.5 SCF Initial Guess

4.5.1 Introduction

The Roothaan–Hall and Pople–Nesbet equations of SCF theory are non–linear in the molecular

orbital coefficients. Like many mathematical problems involving non–linear equations, prior to

the application of a technique to search for a numerical solution, an initial guess for the solution

must be generated. If the guess is poor, the iterative procedure applied to determine the numer-

ical solutions may converge very slowly, requiring a large number of iterations, or at worst, the

procedure may diverge.

Thus, in an ab initio SCF procedure, the quality of the initial guess is of utmost importance for

(at least) two main reasons:

� To ensure that the SCF converges to an appropriate ground state. Often SCF calculations

can converge to different local minima in wavefunction space, depending upon which part of

that space the initial guess places the system in.� When considering jobs with many basis functions requiring the recalculation of ERIs at each

iteration, using a good initial guess that is close to the final solution can reduce the total

job time significantly by decreasing the number of SCF iterations.

For these reasons, sooner or later most users will find it helpful to have some understanding of the

different options available for customizing the initial guess. Q-Chem currently offers five options

for the initial guess:
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� Superposition of Atomic Density (SAD)� Core Hamiltonian (CORE)� Generalized Wolfsberg–Helmholtz (GWH)� Reading previously obtained MOs from disk. (READ)� Basis set projection (BASIS2)

The first three of these guesses are built–in, and are briefly described in Section 4.5.2. The option

of reading MOs from disk is described in Section 4.5.3. The initial guess MOs can be modified,

either by mixing, or altering the order of occupation. These options are discussed in Section 4.5.4.

Finally, Q-Chem’s novel basis set projection method is discussed in Section 4.5.5.

4.5.2 Simple Initial Guesses

There are three simple initial guesses available in Q-Chem. While they are all simple, they are

by no means equal in quality, as we discuss below.

1. Superposition of Atomic Densities (SAD): The SAD guess is almost trivially con-

structed by summing together atomic densities that have been spherically averaged to yield

a trial density matrix. The SAD guess is far superior to the other two options below, par-

ticularly when large basis sets and/or large molecules are employed. There are three issues

associated with the SAD guess to be aware of:

(a) No molecular orbitals are obtained, which means that SCF algorithms requiring orbitals

(the direct minimization methods discussed in Section 4.6) cannot directly use the SAD

guess, and,

(b) The SAD guess is not available for general (read–in) basis sets. All internal basis sets

support the SAD guess.

(c) The SAD guess is not idempotent and thus requires at least two SCF iterations to

ensure proper SCF convergence (idempotency of the density).

2. Generalized Wolfsberg–Helmholtz (GWH): The GWH guess procedure [73] uses a

combination of the overlap matrix elements (4.12), and the diagonal elements of the Core

Hamiltonian matrix (4.18). This initial guess is most satisfactory in small basis sets for small

molecules. It is constructed according to the relation given below, where cx is a constant.

Hµυ = cxSµυ(Hµµ +Hυυ)/2 (4.48)

3. Core Hamiltonian: The core Hamiltonian guess simply obtains the guess MO coefficients

by diagonalizing the core Hamiltonian matrix (4.18). This approach works best with small

basis sets, and degrades as both the molecule size and the basis set size are increased.

The selection of these choices (or whether to read in the orbitals) is controlled by the following� rem variables:
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SCF GUESS

Specifies the initial guess procedure to use for the SCF.

TYPE:

STRING

DEFAULT:
SAD Superposition of atomic density (available only with standard basis sets)

GWH For ROHF where a set of orbitals are required.
OPTIONS:

CORE Diagonalize core Hamiltonian

SAD Superposition of atomic density

GWH Apply generalized Wolfsberg–Helmholtz approximation

READ Read previous MOs from disk
RECOMMENDATION:

SAD guess for standard basis sets. For general basis sets, it is best to use the

BASIS2 � rem. Alternatively, try the GWH or core Hamiltonian guess. For ROHF

it can be useful to READ guesses from an SCF calculation on the corresponding

cation or anion. Note that because the density is made spherical, this may favor

an undesired state for atomic systems, especially transition metals.

SCF GUESS ALWAYS
Switch to force the regeneration of a new initial guess for each series of SCF

iterations (for use in geometry optimization).
TYPE:

LOGICAL

DEFAULT:

False

OPTIONS:
False Do not generate a new guess for each series of SCF iterations in an

optimization; use MOs from the previous SCF calculation for the guess,

if available.

True Generate a new guess for each series of SCF iterations in a geometry

optimization.
RECOMMENDATION:

Use default unless SCF convergence issues arise

4.5.3 Reading MOs from Disk

There are two methods by which MO coefficients can be used from a previous job by reading them

from disk:

1. Running two independent jobs sequentially invoking qchem with three command line vari-

ables:.

localhost-1> qchem job1.in job1.out save

localhost-2> qchem job2.in job2.out save

Note: (1) The � rem variable SCF GUESS must be set to READ in job2.in.

(2) Scratch files remain in � QCSCRATCH/save on exit.

2. Running a batch job where two jobs are placed into a single input file separated by the string

@@@ on a single line.

Note: (1) SCF GUESS must be set to READ in the second job of the batch file.

(2) A third qchem command line variable is not necessary.

(3) As for the SAD guess, Q-Chem requires at least two SCF cycles to ensure proper

SCF convergence (idempotency of the density).
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Note: It is up to the user to make sure that the basis sets match between the two jobs. There is

no internal checking for this, although the occupied orbitals are re-orthogonalized in the

current basis after being read in. If you want to project from a smaller basis into a larger

basis, consult section 4.5.5.

4.5.4 Modifying the Occupied Molecular Orbitals

It is sometimes useful for the occupied guess orbitals to be other than the lowest Nα (or Nβ)

orbitals. Reasons why one may need to do this include:

� To converge to a state of different symmetry or orbital occupation.� To break spatial symmetry.� To break spin symmetry, as in unrestricted calculations on molecules with an even number

of electrons.

There are two mechanisms for modifying a set of guess orbitals: either by SCF GUESS MIX, or by

specifying the orbitals to occupy. Q-Chem users may define the occupied guess orbitals using the� occupied keyword. Occupied guess orbitals are defined by listing the alpha orbitals to be occupied

on the first line and beta on the second. The need for orbitals renders this option incompatible

with the SAD guess.

Example 4.8 Format for modifying occupied guess orbitals.

$occupied

1 2 3 4 ... nalpha

1 2 3 4 ... nbeta

$end

The other � rem variables related to altering the orbital occupancies are:.

SCF GUESS PRINT

Controls printing of guess MOs, Fock and density matrices.

TYPE:

INTEGER

DEFAULT:

0

OPTIONS:
0 Do not print guesses.

SAD

1 Atomic density matrices and molecular matrix.

2 Level 1 plus density matrices.

CORE and GWH

1 No extra output.

2 Level 1 plus Fock and density matrices and, MO coefficients and

eigenvalues.

READ

1 No extra output

2 Level 1 plus density matrices, MO coefficients and eigenvalues.
RECOMMENDATION:

None
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SCF GUESS MIX
Controls mixing of LUMO and HOMO to break symmetry in the initial guess. For

unrestricted jobs, the mixing is performed only for the alpha orbitals.
TYPE:

INTEGER

DEFAULT:

0 (FALSE) Do not mix HOMO and LUMO in SCF guess.

OPTIONS:
0 (FALSE) Do not mix HOMO and LUMO in SCF guess.

1 (TRUE) Add 10% of LUMO to HOMO to break symmetry.

n Add n× 10% of LUMO to HOMO (0 < n < 10).
RECOMMENDATION:

When performing unrestricted calculations on molecules with an even number of

electrons, it is often necessary to break alpha–beta symmetry in the initial guess

with this option, or by specifying input for � occupied .

4.5.5 Basis Set Projection

Q-Chem also includes a novel basis set projection method developed by Dr Jing Kong of Q-

Chem Inc. It permits a calculation in a large basis set to bootstrap itself up via a calculation in a

small basis set that is automatically spawned when the user requests this option. When basis set

projection is requested (by providing a valid small basis for BASIS2), the program executes the

following steps:

� A simple DFT calculation is performed in the small basis, BASIS2, yielding a converged

density matrix in this basis.� The large basis set SCF calculation (with different values of EXCHANGE and CORRELATION

set by the input) begins by constructing the DFT Fock operator in the large basis but with

the density matrix obtained from the small basis set.� By diagonalizing this matrix, an accurate initial guess for the density matrix in the large

basis is obtained, and the target SCF calculation commences.

Two different methods of projection are available and can be set using the BASISPROJTYPE� rem. The OVPROJECTION option expands the MOs from the BASIS2 calculation in the larger

basis, while the FOPPROJECTION option constructs the Fock matrix in the larger basis using the

density matrix from the initial, smaller basis set calculation. Basis set projection is a very effective

option for general basis sets, where the SAD guess is not available. In detail, this initial guess is

controlled by the following � rem variables:

BASIS2

Sets the small basis set to use in basis set projection.

TYPE:

STRING

DEFAULT:

No second basis set default.

OPTIONS:

Symbol Use standard basis sets as per Chapter 7.

RECOMMENDATION:
BASIS2 should be smaller than BASIS. There is little advantage to using a basis

larger than a minimal basis.
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BASISPROJTYPE

Determines which method to use when projecting the density matrix of BASIS2

TYPE:

STRING

DEFAULT:

FOPPROJECTION

OPTIONS:
FOPPROJECTION Construct the Fock matrix in the second basis

OVPROJECTION Projects MO’s from BASIS2 to BASIS.
RECOMMENDATION:

None

4.5.6 Examples

Example 4.9 Input where basis set projection is used to generate a good initial guess for a
calculation employing a general basis set, for which the default initial guess is not available.

$molecule

0 1

O

H 1 r

H 1 r 2 a

r 0.9

a 104.0

$end

$rem

EXCHANGE hf

CORRELATION mp2

BASIS general

BASIS2 sto-3g

$end

$basis

O 0

S 3 1.000000

3.22037000E+02 5.92394000E-02

4.84308000E+01 3.51500000E-01

1.04206000E+01 7.07658000E-01

SP 2 1.000000

7.40294000E+00 -4.04453000E-01 2.44586000E-01

1.57620000E+00 1.22156000E+00 8.53955000E-01

SP 1 1.000000

3.73684000E-01 1.00000000E+00 1.00000000E+00

SP 1 1.000000

8.45000000E-02 1.00000000E+00 1.00000000E+00

****

H 0

S 2 1.000000

5.44717800E+00 1.56285000E-01

8.24547000E-01 9.04691000E-01

S 1 1.000000

1.83192000E-01 1.00000000E+00

****

$end
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Example 4.10 Input for an ROHF calculation on the OH radical. One SCF cycle is initially
performed on the cation, to get reasonably good initial guess orbitals, which are then read in as
the guess for the radical. This avoids the use of Q-Chem’s default GWH guess for ROHF, which
is often poor.

$comment

OH radical, part 1. Do 1 iteration of cation orbitals.

$end

$molecule

1 1

O 0.000 0.000 0.000

H 0.000 0.000 1.000

$end

$rem

BASIS = 6-311++G(2df)

EXCHANGE = hf

MAX_SCF_CYCLES = 1

THRESH = 10

$end

@@@

$comment

OH radical, part 2. Read cation orbitals, do the radical

$end

$molecule

0 2

O 0.000 0.000 0.000

H 0.000 0.000 1.000

$end

$rem

BASIS = 6-311++G(2df)

EXCHANGE = hf

UNRESTRICTED = false

SCF_ALGORITHM = dm

SCF_CONVERGENCE = 7

SCF_GUESS = read

THRESH = 10

$end

Example 4.11 Input for an unrestricted HF calculation on H2 in the dissociation limit, showing
the use of SCF GUESS MIX = 2 (corresponding to 20% of the alpha LUMO mixed with the alpha
HOMO). Geometric direct minimization with DIIS is used to converge the SCF, together with
MAX DIIS CYCLES = 1 (using the default value for MAX DIIS CYCLES, the DIIS procedure just
oscillates).

$molecule

0 1

H 0.000 0.000 0.0

H 0.000 0.000 -10.0

$end

$rem

UNRESTRICTED = true

EXCHANGE = hf

BASIS = 6-31g**
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SCF_ALGORITHM = diis_gdm

MAX_DIIS_CYCLES = 1

SCF_GUESS = gwh

SCF_GUESS_MIX = 2

$end

4.6 Converging SCF Calculations

4.6.1 Introduction

As for any numerical optimization procedure, the rate of convergence of the SCF procedure is

dependent on the initial guess and on the algorithm used to step towards the stationary point.

Q-Chem features a number of alternative SCF optimization algorithms, which are discussed in

the following sections, along with the � rem variables that are used to control the calculations. The

main options are discussed in sections which follow and are, in brief:

� The highly successful DIIS procedures, which are the default, except for restricted open–shell

SCF calculations.� The new geometric direct minimization (GDM) method, which is highly robust, and the

recommended fall-back when DIIS fails. It can also be invoked after a few initial iterations

with DIIS to improve the initial guess. GDM is the default algorithm for restricted open–shell

SCF calculations.� The older and less robust direct minimization method (DM). As for GDM, it can also be

invoked after a few DIIS iterations (except for RO jobs).� The maximum overlap method (MOM) which ensures that DIIS always occupies a continuous

set of orbitals and does not oscillate between different occupancies.

4.6.2 Basic Convergence Control Options

See also more detailed options in the following sections, and note that the SCF convergence

criterion and the integral threshold must be set in a compatible manner, (this usually means

THRESH should be set to at least 3 higher than SCF CONVERGENCE).

MAX SCF CYCLES

Controls the maximum number of SCF iterations permitted.

TYPE:

INTEGER

DEFAULT:

50

OPTIONS:

User–defined.

RECOMMENDATION:

Increase for slowly converging systems such as those containing transition metals.
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SCF ALGORITHM

Algorithm used for converging the SCF.

TYPE:

STRING

DEFAULT:

DIIS Pulay DIIS.

OPTIONS:
DIIS Pulay DIIS.

DM Direct minimizer.

DIIS DM Uses DIIS initially, switching to direct minimizer for later iterations

(See THRESH DIIS SWITCH, MAX DIIS CYCLES).

DIIS GDM Use DIIS and then later switch to geometric direct minimization

(See THRESH DIIS SWITCH, MAX DIIS CYCLES).

GDM Geometric Direct Minimization.

ROOTHAAN Roothaan repeated diagonalization.
RECOMMENDATION:

Use DIIS unless wanting ROHF, in which case geometric direct minimization is

recommended. If DIIS fails, DIIS GDM is the recommended fall–back option.

SCF CONVERGENCE
SCF is considered converged when the wavefunction error is less that

10−SCF CONVERGENCE. Adjust the value of THRESH at the same time. Note

that in Q-Chem 3.0 the DIIS error is measured by the maximum error rather

than the RMS error.
TYPE:

INTEGER

DEFAULT:
5 For single point energy calculations.

7 For geometry optimizations and vibrational analysis.

8 For SSG calculations, see Chapter 5.
OPTIONS:

n Corresponding to 10−n

RECOMMENDATION:
Tighter criteria for geometry optimization and vibration analysis. Larger values

provide more significant figures, at greater computational cost.

4.6.3 Direct Inversion in the Iterative Subspace (DIIS)

The SCF implementation of the Direct Inversion in the Iterative Subspace (DIIS) method [6, 65]

uses the property of an SCF solution which requires the density matrix to commute with the Fock

matrix

SPF− FPS = 0 (4.49)

During the SCF cycles, prior to achieving self–consistency, it is possible to define an error vector

ei, which is non-zero

SPiFi − FiPiS = ei (4.50)

where Pi is obtained from diagonalization of F̂i, and
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F̂k =

k−1∑

j=1

cjFj (4.51)

The DIIS coefficients ck, are obtained by a least–squares constrained minimization of the error

vectors, viz

Z =

(∑

k

ckek

)
·
(∑

k

ckek

)
(4.52)

where the constraint

∑

k

ck = 1 (4.53)

is imposed to yield a set of linear equations, of dimension N + 1




e1 · e1 · · · e1 · eN 1
...

. . .
...

...

eN · e1 · · · eN · eN 1

1 · · · 1 0







c1
...

cN
λ


 =




0
...

0

1


 (4.54)

Convergence criteria requires the largest element of the N th error vector to be below a cutoff

threshold, usually 10−5 for single point energies, often increased to 10−8 for optimizations and

frequency calculations.

The rate of convergence may be improved by restricting the number of previous Fock matrices

(size of the DIIS subspace, � rem variable DIIS SUBSPACE SIZE) used for determining the DIIS

coefficients

F̂k =

k−1∑

j=k−(L+1)

cjFj (4.55)

where L is the size of the DIIS subspace. As the Fock matrix nears self–consistency the linear

matrix equations (4.54) tend to become severely ill–conditioned and it is often necessary to reset

the DIIS subspace (this is automatically carried out by the program).

Finally, on a practical note, we observe that DIIS has a tendency to converge to global minima

rather than local minima when employed for SCF calculations. This seems to be because only at

convergence is the density matrix in the DIIS iterations idempotent. On the way to convergence,

one is not on the “true” energy surface, and this seems to permit DIIS to “tunnel” through

barriers in wavefunction space. This is usually a desirable property, and is the motivation for the

options that permit initial DIIS iterations before switching to direct minimization to converge to

the minimum in difficult cases.

The following � rem variables permit some customization of the DIIS iterations:
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DIIS SUBSPACE SIZE

Controls the size of the DIIS subspace during the SCF.

TYPE:

INTEGER

DEFAULT:

15

OPTIONS:

User–defined

RECOMMENDATION:

None

DIIS PRINT

Controls the output from DIIS SCF optimization.

TYPE:

INTEGER

DEFAULT:

0

OPTIONS:
0 Minimal print out.

1 Chosen method and DIIS coefficients and solutions.

2 Level 1 plus changes in multipole moments.

3 Level 2 plus Multipole moments.

4 Level 3 plus extrapolated Fock matrices.
RECOMMENDATION:

Use default

Note: In Q-Chem 3.0 the DIIS error is determined by the maximum error rather than the RMS

error. For backward compatability the RMS error can be forced by using the following� rem

DIIS ERR RMS

Changes the DIIS convergence metric from the maximum to the RMS error.

TYPE:

LOGICAL

DEFAULT:

FALSE

OPTIONS:

TRUE, FALSE

RECOMMENDATION:

Use default, the maximum error provides a more reliable criterion.

4.6.4 Geometric Direct Minimization (GDM)

Troy Van Voorhis, working at Berkeley with Martin Head–Gordon, has developed a novel direct

minimization method that is extremely robust, and at the same time is only slightly less efficient

than DIIS. This method is called geometric direct minimization (GDM) because it takes steps in an

orbital rotation space that correspond properly to the hyper-spherical geometry of that space. In

other words, rotations are variables that describe a space which is curved like a many–dimensional

sphere. Just like the optimum flight paths for airplanes are not straight lines but great circles,

so too are the optimum steps in orbital rotation space. GDM takes this correctly into account,
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which is the origin of its efficiency and its robustness. For full details, we refer the reader to a

paper submitted for publication [76]. GDM is a good alternative to DIIS for SCF jobs that exhibit

convergence difficulties with DIIS.

Recently, Barry Dunietz, also working at Berkely with Martin Head–Gordon, has extended the

GDM approach to restricted open–shell SCF calculations. Their results indicate that GDM is

much more efficient than the older direct minimization method (DM).

In section 4.6.3, we discussed the fact that DIIS can efficiently head towards the global SCF

minimum in the early iterations. This can be true even if DIIS fails to converge in later itera-

tions. For this reason, a hybrid scheme has been implemented which uses the DIIS minimization

procedure to achieve convergence to an intermediate cutoff threshold. Thereafter, the geometric

direct minimization algorithm is used. This scheme combines the strengths of the two methods

quite nicely: the ability of DIIS to recover from initial guesses that may not be close to the global

minimum, and the ability of GDM to robustly converge to a local minimum, even when the local

surface topology is challenging for DIIS. This is the recommended procedure with which to invoke

GDM (i.e., setting SCF ALGORITHM = DIIS GDM). This hybrid procedure is also compatible

with the SAD guess, while GDM itself is not, because it requires an initial guess set of orbitals. If

one wishes to disturb the initial guess as little as possible before switching on GDM, one should

additionally specify MAX DIIS CYCLES = 1 to obtain only a single Roothaan step (which also

serves up a properly orthogonalized set of orbitals).

� rem options relevant to GDM are SCF ALGORITHM which should be set to either GDM or

DIIS GDM and the following:

MAX DIIS CYCLES
The maximum number of DIIS iterations before switching to (geometric) di-

rect minimization when SCF ALGORITHM is DIIS GDM or DIIS DM. See also

THRESH DIIS SWITCH.
TYPE:

INTEGER

DEFAULT:

50

OPTIONS:
1 Only a single Roothaan step before switching to (G)DM

n n DIIS iterations before switching to (G)DM.
RECOMMENDATION:

None

THRESH DIIS SWITCH
The threshold for switching between DIIS extrapolation and direct minimization of

the SCF energy is 10−THRESH DIIS SWITCH when SCF ALGORITHM is DIIS GDM

or DIIS DM. See also MAX DIIS CYCLES

TYPE:

INTEGER

DEFAULT:

2

OPTIONS:

User–defined.

RECOMMENDATION:

None
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4.6.5 Direct Minimization (DM)

Direct minimization (DM) is a less sophisticated forerunner of the geometric direct minimization

(GDM) method discussed in the previous section. DM does not properly step along great circles in

the hyper-spherical space of orbital rotations, and therefore converges less rapidly and less robustly

than GDM, in general. It is retained for legacy purposes, and because it is at present the only

method available for restricted open shell (RO) SCF calculations in Q-Chem. In general, the input

options are the same as for GDM, with the exception of the specification of SCF ALGORITHM,

which can be either DIIS DM (recommended) or DM.

PSEUDO CANONICAL
When SCF ALGORITHM = DM, this controls the way the initial step, and steps

after subspace resets are taken.
TYPE:

LOGICAL

DEFAULT:

FALSE

OPTIONS:
FALSE Use Roothaan steps when (re)initializing

TRUE Use a steepest descent step when (re)initializing
RECOMMENDATION:

The default is usually more efficient, but choosing TRUE sometimes avoids prob-

lems with orbital reordering.

4.6.6 Maximum Overlap Method (MOM)

In general, the DIIS procedure is remarkably successful. One difficulty that is occasionally en-

countered is the problem of an SCF that occupies two different sets of orbitals on alternating

iterations, and therefore oscillates and fails to converge. This can be overcome by choosing or-

bital occupancies that maximize the overlap of the new occupied orbitals with the set previously

occupied. Q-Chem contains the maximum overlap method (MOM) [77], developed by Andrew

Gilbert and Peter Gill now at the Australian National University.

MOM is therefore is a useful adjunct to DIIS in convergence problems involving flipping of orbital

occupancies. It is controlled by the � rem variable MOM START, which specifies the SCF iteration

on which the MOM procedure is first enabled. There are two strategies that are useful in setting

a value for MOM START. To help maintain an initial configuration it should be set to start on

the first cycle. On the other hand, to assist convergence it should come on later to avoid holding

on to an initial configuration that may be far from the converged one.

The MOM–related � rem variables in full are the following:.

MOM PRINT

Switches printing on within the MOM procedure.

TYPE:

LOGICAL

DEFAULT:

FALSE

OPTIONS:
FALSE Printing is turned off

TRUE Printing is turned on.
RECOMMENDATION:

None
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MOM START

Determines when MOM is switched on to stabilize DIIS iterations.

TYPE:

INTEGER

DEFAULT:

0 (FALSE)

OPTIONS:
0 (FALSE) MOM is not used

n MOM begins on cycle n.
RECOMMENDATION:

Set to 1 if preservation of initial orbitals is desired. If MOM is to be used to aid

convergence, an SCF without MOM should be run to determine when the SCF

starts oscillating. MOM should be set to start just before the oscillations.

4.6.7 Examples

Example 4.12 Input for a UHF calculation using geometric direct minimization (GDM) on the
phenyl radical, after initial iterations with DIIS. This example fails to converge if DIIS is employed
directly.

$molecule

0 2

c1

x1 c1 1.0

c2 c1 rc2 x1 90.0

x2 c2 1.0 c1 90.0 x1 0.0

c3 c1 rc3 x1 90.0 c2 tc3

c4 c1 rc3 x1 90.0 c2 -tc3

c5 c3 rc5 c1 ac5 x1 -90.0

c6 c4 rc5 c1 ac5 x1 90.0

h1 c2 rh1 x2 90.0 c1 180.0

h2 c3 rh2 c1 ah2 x1 90.0

h3 c4 rh2 c1 ah2 x1 -90.0

h4 c5 rh4 c3 ah4 c1 180.0

h5 c6 rh4 c4 ah4 c1 180.0

rc2 = 2.672986

rc3 = 1.354498

tc3 = 62.851505

rc5 = 1.372904

ac5 = 116.454370

rh1 = 1.085735

rh2 = 1.085342

ah2 = 122.157328

rh4 = 1.087216

ah4 = 119.523496

$end

$rem

BASIS = 6-31G*

EXCHANGE = hf

INTSBUFFERSIZE = 15000000

SCF_ALGORITHM = diis_gdm

SCF_CONVERGENCE = 7

THRESH = 10

$end

Example 4.13 An example showing how to converge a ROHF calculation on the 3A2 state of
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DMX. Note the use of reading in orbitals from a previous closed–shell calculation and the use of
MOM to maintain the orbital occupancies. The 3B1 is obtained if MOM is not used.

$molecule

+1 1

C 0.000000 0.000000 0.990770

H 0.000000 0.000000 2.081970

C -1.233954 0.000000 0.290926

C -2.444677 0.000000 1.001437

H -2.464545 0.000000 2.089088

H -3.400657 0.000000 0.486785

C -1.175344 0.000000 -1.151599

H -2.151707 0.000000 -1.649364

C 0.000000 0.000000 -1.928130

C 1.175344 0.000000 -1.151599

H 2.151707 0.000000 -1.649364

C 1.233954 0.000000 0.290926

C 2.444677 0.000000 1.001437

H 2.464545 0.000000 2.089088

H 3.400657 0.000000 0.486785

$end

$rem

UNRESTRICTED false

EXCHANGE hf

BASIS 6-31+G*

SCF_GUESS core

$end

@@@

$molecule

read

$end

$rem

UNRESTRICTED false

EXCHANGE hf

BASIS 6-31+G*

SCF_GUESS read

MOM_START 1

$end

$occupied

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 28

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 28

$end

@@@

$molecule

-1 3

... <as above> ...

$end

$rem

UNRESTRICTED false

EXCHANGE hf

BASIS 6-31+G*

SCF_GUESS read

$end
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4.7 Dual–Basis Self–Consistent Field Calculations

The Dual–Basis approximation to self–consistent field energies provides an efficient means for

approximating large basis set effects at vastly less cost than a full SCF calculation in a large basis

set. The procedure is as follows [87]. First, a full SCF (HF or DFT) calculation is performed in a

chosen small basis (specified by BASIS2). Second, a single SCF–like step in the large (target) basis

(specified by BASIS) is used to perturbatively approximate the large basis energy. This correction

amounts to a first–order approximation in the change in density matrix, after the single large–basis

step:

Etotal = Esmall basis + Tr[(∆P)F]large basis (4.56)

where F (in the large basis) is built from the converged (small basis) density matrix. Thus, only

a single Fock build is required in the large basis set. Currently, HF and DFT energies, as well as

analytic first derivatives of HF energies (FORCE or OPT), are available.

In addition, the Dual-Basis approximation can be used for the reference energy of a correlated

second order Møller–Plesset (MP2) calculation [88]. When activated, a Dual–Basis HF energy

is first calculated; subsequently, the MO coefficients and orbital energies are used to calculate

the correlation energy in the large basis. This technique is particularly effective for RI–MP2

calculations (see Section 5.5), in which the cost of the underlying SCF calculation often dominates.

Although any small/large basis set pairing can be handled by the code, we recommend using only

proper subsets of the target basis. This choice not only produces more accurate results; it also

leads to more efficient integral screening in both the energy and gradient. Subsets for cc-pVTZ and

cc-pVQZ have been developed for this purpose [88] and are called “rcc-pVTZ” and “rcc-pVQZ”.

In addition, 6-311+G** can be used as a subset for 6-311++G(3df,3pd), the largest Pople-style

set currently available.

Across the G3 set of 223 molecules, using cc-pVQZ, errors for MP2 are 0.27 kcal/mol (energy)

and 0.08 kcal/mol (atomization energy per bond). Dual-Basis errors for B3LYP are 0.04 kcal/mol

(energy) and 0.03 kcal/mol (atomization energy per bond).

Dual-Basis calculations are controlled with the following � rem’s. DUAL BASIS ENERGY turns on

the Dual-Basis approximation. Note that use of BASIS2 without DUAL BASIS ENERGY only uses

basis set projection to generate the initial guess and does not invoke the Dual-Basis approximation.

OVPROJECTION is used as the default projection mechanism for Dual–Basis calculations; it is not

recommended that this be changed. In its current implementation, specification of SCF variables

(e.g., THRESH) will apply to calculations in both basis sets.

DUAL BASIS ENERGY

Activates dual-basis SCF (HF or DFT) energy correction.

TYPE:

LOGICAL

DEFAULT:

FALSE

OPTIONS:
Analytic first derivative available for HF (see JOBTYPE)

Can be used in conjunction with MP2 or RI-MP2

See BASIS, BASIS2, BASISPROJTYPE
RECOMMENDATION:

Use Dual-Basis to capture large-basis effects at smaller basis cost. Particularly

useful with RI–MP2, in which HF often dominates. Use only proper subsets for

small–basis calculation.
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4.7.1 Examples

Example 4.14 Input for a Dual–Basis B3LYP calculation.

$molecule

0 1

H

H 1 0.75

$end

$rem

JOBTYPE sp

EXCHANGE b3lyp

BASIS 6-311+g**

BASIS2 6-311g*

DUAL_BASIS_ENERGY true

$end

Example 4.15 Input for a Dual–Basis RI–MP2 calculation.

$molecule

0 1

H

H 1 0.75

$end

$rem

JOBTYPE sp

EXCHANGE hf

CORRELATION rimp2

AUX_BASIS rimp2-cc-pVQZ

PURECART 11111 !for auxiliary set

BASIS cc-pVQZ

BASIS2 rcc-pVQZ !special subset for cc-pVQZ

DUAL_BASIS_ENERGY true

$end

4.8 Unconventional SCF Calculations

4.8.1 CASE Approximation

The Coulomb Attenuated Schrödinger Equation (CASE) [15] approximation follows from the

KWIK [16] algorithm in which the Coulomb operator is separated into two pieces

1

r12
≡ erfc (ωr12)

r12
+

erf (ωr12)

r12
(4.57)

The first of these two terms is singular but short–range and the second is non–singular but

long–range. The CASE approximation is applied by smoothly attenuating all occurrences of the

Coulomb operator in (4.2) by neglecting the long–range portion of the identity in (4.57). The pa-

rameter ω can be used to tune the level of attenuation. Although the total energies from Coulomb

attenuated calculations are significantly different from non–attenuated energies, it is found that

relative energies, correlation energies and, in particular, wavefunctions, are not, provided a rea-

sonable value of ω is chosen.
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By virtue of the exponential decay of the attenuated operator, ERIs can be neglected on a proxim-

ity basis yielding a rigorous O(N) algorithm for single point energies. CASE may also be applied

in geometry optimizations and frequency calculations.

OMEGA

Controls the degree of attenuation of the Coulomb operator.

TYPE:

INTEGER

DEFAULT:

No default

OPTIONS:

n Corresponding to ω = n/1000

RECOMMENDATION:

None

INTEGRAL 2E OPR

Determines the two–electron operator.

TYPE:

INTEGER

DEFAULT:

-2 Coulomb Operator.

OPTIONS:
-1 Apply the CASE approximation.

-2 Coulomb Operator.
RECOMMENDATION:

Use default unless the CASE operator is desired.

4.8.2 Polarized Atomic Orbital (PAO) Calculations

Polarized atomic orbital (PAO) calculations are an interesting unconventional SCF method, in

which the molecular orbitals and the density matrix are not expanded directly in terms of the basis

of atomic orbitals. Instead, an intermediate molecule–optimized minimal basis of polarized atomic

orbitals (PAOs) is used [80]. The polarized atomic orbitals are defined by an atom–blocked linear

transformation from the fixed atomic orbital basis, where the coefficients of the transformation

are optimized to minimize the energy, at the same time as the density matrix is obtained in the

PAO representation. Thus a PAO–SCF calculation is a constrained variational method, whose

energy is above that of a full SCF calculation in the same basis. However, a molecule optimized

minimal basis is a very compact and useful representation for purposes of chemical analysis, and

it also has potential computational advantages in the context of MP2 or local MP2 calculations,

as can be done after a PAO–HF calculation is complete to obtain the PAO–MP2 energy.

PAO–SCF calculations tend to systematically underestimate binding energies (since by definition

the exact result is obtained for atoms, but not for molecules). In tests on the G2 database,

PAO-B3LYP/6-311+G(2df,p) atomization energies deviated from full B3LYP/6-311+G(2df,p) at-

omization energies by roughly 20 kcal/mol, with the error being essentially extensive with the

number of bonds. This deviation can be reduced to only 0.5 kcal/mol with the use of a simple

non–iterative second order correction for “beyond–minimal basis” effects [35]. The second order

correction is evaluated at the end of each PAO–SCF calculation, as it involves negligible computa-

tional cost. Analytical gradients are available using PAOs, to permit structure optimization. For

additional discussion of the PAO–SCF method and its uses, see the references cited above.

Calculations with PAOs are determined controlled by the following � rem variables. PAO METHOD
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= PAO invokes PAO–SCF calculations, while the algorithm used to iterate the PAO’s can be

controlled with PAO ALGORITHM.

PAO ALGORITHM

Algorithm used to optimize polarized atomic orbitals (see PAO METHOD)

TYPE:

INTEGER

DEFAULT:

0

OPTIONS:
0 Use efficient (and riskier) strategy to converge PAOs.

1 Use conservative (and slower) strategy to converge PAOs.
RECOMMENDATION:

None

PAO METHOD

Controls evaluation of polarized atomic orbitals (PAOs).

TYPE:

STRING

DEFAULT:

EPAO For local MP2 calculations Otherwise no default.

OPTIONS:
PAO Perform PAO–SCF instead of conventional SCF.

EPAO Obtain EPAO’s after a conventional SCF.
RECOMMENDATION:

None
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4.9 Ground State Method Summary

To summarize the main features of Q-Chem’s ground state self–consistent field capabilities, the

user needs to consider:

� Input a molecular geometry ( � molecule keyword)

– Cartesian

– Z –matrix

– Read from prior calculations� Declare the job specification ( � remkeyword)

– JOBTYPE�
Single point�
Optimization�
Frequency�
See Table 4.1.2 for further options

– BASIS�
Refer to Chapter 7 (note: � basis keyword for user defined basis sets)�
Effective core potentials, as described in Chapter 8

– EXCHANGE�
Linear scaling algorithms for all methods�
Arsenal of exchange density functionals�
User definable functionals and hybrids

– CORRELATION�
DFT or wavefunction–based methods�
Linear scaling (CPU and memory) incorporation of correlation with DFT�
Arsenal of correlation density functionals�
User definable functionals and hybrids�
See Chapter 5 for wavefunction–based correlation methods.� Exploit Q-Chem’s special features

– CFMM, LinK large molecule options

– SCF rate of convergence increased through improved guessers and alternative mini-

mization algorithms

– Explore novel methods if desired: CASE approximation, PAOs.
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Chapter 5

Wavefunction–based Correlation

Methods

5.1 Introduction

The Hartree–Fock procedure, while often qualitatively correct, is frequently quantitatively defi-

cient. The deficiency is due to the underlying assumption of the Hartree–Fock approximation:

that electrons move independently within molecular orbitals subject to an averaged field imposed

by the remaining electrons. The error that this introduces is called the correlation energy and

a wide variety of procedures exist for estimating its magnitude. The purpose of this Chapter

is to introduce the main wavefunction–based methods available in Q-Chem to describe electron

correlation.

Wavefunction–based electron correlation methods concentrate on the design of corrections to the

wavefunction beyond the mean–field Hartree–Fock description. This is to be contrasted with the

density functional theory methods discussed in the previous Chapter. While density functional

methods yield a description of electronic structure that accounts for electron correlation subject

only to the limitations of present–day functionals (which, for example, omit dispersion interac-

tions), DFT cannot be systematically improved if the results are deficient. Wavefunction–based

approaches for describing electron correlation [5, 6] offer this main advantage. Their main disad-

vantage is relatively high computational cost, particularly for the higher–level theories.

There are four broad classes of models for describing electron correlation that are supported within

Q-Chem. The first three directly approximate the full time–independent Schrödinger equation.

In order of increasing accuracy, and also increasing cost, they are:

1. Perturbative treatment of pair correlations between electrons, typically capable of recovering

80% or so of the correlation energy in stable molecules.

2. Self–consistent treatment of pair correlations between electrons, capable of recovering on the

order of 95% or so of the correlation energy.

3. Non–iterative corrections for higher than double substitutions, which can account for more

than 99% of the correlation energy. They are the basis of many modern methods that are

capable of yielding chemical accuracy for ground state reaction energies, as exemplified by

the G2 [7] and G3 methods [8].

These methods are discussed in the following three subsections.
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There is also a fourth class of methods supported in Q-Chem, which have a different objective.

These active space methods aim to obtain a balanced description of electron correlation in highly

correlated systems, such as biradicals, or along bond–breaking coordinates. Active space meth-

ods are discussed in section 5.8. Finally, equation of motion (EOM) methods provide tools for

describing open-shell and electronically excited species.

In order to carry out a wavefunction–based electron correlation calculation using Q-Chem, three� rem variables need to be set:

� BASIS to specify the basis set (see Chapter 7)�
CORRELATION method for treating Correlation (defaults to NONE)�
N FROZEN CORE frozen core electrons (0 default, optionally FC, or n)

Additionally, for EOM calculations the number of target states in each irreducible representation

(irrep) should also be specified (see section 6.5.5).

Note that for wavefunction–based correlation methods, the default option for EXCHANGE is HF

(Hartree–Fock). It can therefore be omitted from the input if desired.

The full range of ground state wavefunction–based correlation methods available (i.e. the recog-

nized options to the CORRELATION keyword) are as follows:.

CORRELATION

Specifies the correlation level of theory, either DFT or wavefunction–based.

TYPE:

STRING

DEFAULT:

None No Correlation

OPTIONS:
MP2 Sections 5.2 and 5.3

Local MP2 Section 5.4

RILMP2 Section 5.5.1

ZAPT2 A more efficient restricted open–shell MP2 method [9].

MP3 Section 5.2

MP4SDQ Section 5.2

MP4 Section 5.2

CCD Section 5.6

CCD(2) Section 5.7

CCSD Section 5.6

CCSD(T) Section 5.7

CCSD(2) Section 5.7

QCISD Section 5.6

QCISD(T) Section 5.7

OD Section 5.6

OD(T) Section 5.7

OD(2) Section 5.7

VOD Section 5.8

VOD(2) Section 5.8

QCCD Section 5.6

VQCCD Section 5.8
RECOMMENDATION:

Consult the literature for guidance.
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5.2 Møller-Plesset Perturbation Theory

5.2.1 Introduction

Møller–Plesset Perturbation Theory [10] is a widely used method for approximating the correlation

energy of molecules. In particular, second order Møller–Plesset perturbation theory (MP2) is

one of the simplest and most useful levels of theory beyond the Hartree–Fock approximation.

Conventional and local MP2 methods available in Q-Chem are discussed in detail in Sections 5.3

and 5.4 respectively. The MP3 method is still occasionally used, while MP4 calculations are quite

commonly employed as part of the G2 and G3 thermochemical methods [7, 8]. In the remainder

of this section, the theoretical basis of Møller–Plesset theory is reviewed.

5.2.2 Theoretical Background

The Hartree–Fock wave function Ψ0 and energy E0 are approximate solutions (eigenfunction and

eigenvalue) to the exact Hamiltonian eigenvalue problem or Schrödinger’s electronic wave equation

(4.5). The HF wave function and energy are, however, exact solutions for the Hartree–Fock

Hamiltonian H0 eigenvalue problem. If we assume that the Hartree–Fock wave function Ψ0 and

energyE0 lie near the exact wave function Ψ and energyE, we can now write the exact Hamiltonian

operator as

H = Ho + λV (5.1)

where V is the small perturbation and λ is a dimensionless parameter. Expanding the exact wave

function and energy in terms of the HF wave function and energy yields

E = E(0) + λE(1) + λ2E(2) + λ3E(3) + . . . (5.2)

Ψ = Ψ0 + λΨ(1) + λ2Ψ(2) + λ3Ψ(3) + . . . (5.3)

substituting the expansions into the Schrödinger equation and gathering terms in λn yields

H0Ψ0 = E(0)Ψ0 (5.4)

H0Ψ(1) + VΨ0 = E(0)Ψ(1) +E(1)Ψ0 (5.5)

H0Ψ(2) + VΨ(1) = E(0)Ψ(2) +E(1)Ψ(1) +E(2)Ψ0 (5.6)

and so forth. Multiplying each of the above equations by Ψ0 and integrating over all space yields

the following expression for the nth order MPn energy

E(0) = 〈Ψ0|H0 |Ψ0〉 (5.7)

E(1) = 〈Ψ0|V |Ψ0〉 (5.8)

E(2) = 〈Ψ0|V
∣∣∣Ψ(1)

〉
(5.9)
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Thus, the Hartree–Fock energy

E0 = 〈Ψ0|H0 + V |Ψ0〉 (5.10)

is simply the sum of the zeroth– and first– order energies

E0 = E(0) +E(1) (5.11)

The correlation energy can then be written

Ecorr = E
(2)
0 +E

(3)
0 +E

(4)
0 + . . . (5.12)

of which the first term is the MP2 energy.

It can be shown that the MP2 energy can be written (in terms of spin–orbitals) as

E
(2)
0 = −1

4

virt∑

ab

occ∑

ij

|〈ab| |ij〉|2
εa + εb − εi − εj

(5.13)

where

〈ab ‖ij 〉 = 〈ab | ij〉 − 〈ab | ji〉 (5.14)

and

〈ab | cd〉 =

∫
ψa(r1)ψc(r1)

[
1

r12

]
ψb(r2)ψd(r2)dr1dr2 (5.15)

which can be written in terms of the two–electron repulsion integrals

〈ab | cd〉 =
∑

µ

∑

ν

∑

λ

∑

σ

CµaCνcCλbCσd (µν|λσ) (5.16)

Expressions for higher order terms follow similarly, although with much greater algebraic and com-

putational complexity. MP3 and particularly MP4 (the third and fourth order contributions to the

correlation energy) are both occasionally used, although they are increasingly supplanted by the

coupled–cluster methods described in the following sections. The disk and memory requirements

for MP3 are similar to the self–consistent pair correlation methods discussed in Section 5.6 while

the computational cost of MP4 is similar to the (T) corrections discussed in Section 5.7.

5.3 Exact MP2 Methods

5.3.1 Algorithm

Second order Møller–Plesset theory (MP2) [10] probably the simplest useful wave function–based

electron correlation method. Revived in the mid–1970s, it remains highly popular today, because

it offers systematic improvement in optimized geometries and other molecular properties relative

to Hartree–Fock (HF) theory [3]. Indeed, in a recent comparative study of small closed–shell

molecules [12], MP2 outperformed much more expensive singles and doubles coupled–cluster theory

for such properties! Relative to state–of–the–art Kohn–Sham density functional theory (DFT)



Chapter 5: Wavefunction–based Correlation Methods 90

methods, which are the most economical methods to account for electron correlation effects, MP2

has the advantage of properly incorporating long–range dispersion forces. The principal weaknesses

of MP2 theory are for open shell systems, and other cases where the HF determinant is a poor

starting point.

Q-Chem contains an efficient conventional semi–direct method to evaluate the MP2 energy and

gradient [13]. These methods require OV N memory (O,V ,N are the numbers of occupied, vir-

tual and total orbitals, respectively), and disk space which is bounded from above by OV N 2/2.

The latter can be reduced to IV N 2/2 by treating the occupied orbitals in batches of size I , and

re–evaluating the two–electron integrals O/I times. This approach is tractable on modern work-

stations for energy and gradient calculations of at least 500 basis functions or so, or molecules

of between 15 and 30 first row atoms, depending on the basis set size. The computational cost

increases between the 3rd and 5th power of the size of the molecule, depending on which part of

the calculation is time–dominant.

The algorithm and implementation in Q-Chem is improved over earlier methods [8, 15], particu-

larly in the following areas:

� Uses pure functions, as opposed to Cartesians, for all fifth–order steps. This leads to large

computational savings for basis sets containing pure functions.� Customized loop unrolling for improved efficiency.� The sortless semi–direct method avoids a read and write operation resulting in a large I/O

savings.� Reduction in disk and memory usage.� No extra integral evaluation for gradient calculations.� Full exploitation of frozen core approximation.

The implementation offers the user the following alternatives:

� Direct algorithm (energies only).� Disk–based sortless semi–direct algorithm (energies and gradients).� Local occupied orbital method (energies only).

The semidirect algorithm is the only choice for gradient calculations. It is also normally the most

efficient choice for energy calculations. There are two classes of exceptions:

� If the amount of disk space available is not significantly larger than the amount of memory

available, then the direct algorithm is preferred.� If the calculation involves a very large basis set, then the local orbital method may be faster,

because it performs the transformation in a different order. It does not have the large

memory requirement (no OV N array needed), and always evaluates the integrals four times.

The AO2MO DISK option is also ignored in this algorithm, which requires up to O2V N

megabytes of disk space.

There are three important options that should be wisely chosen by the user in order to exploit

the full efficiency of Q-Chem’s direct and semidirect MP2 methods (as discussed above, the

LOCAL OCCUPIED method has different requirements).
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�
MEM STATIC: The value specified for this � rem variable must be sufficient to permit efficient

integral evaluation (10-80Mb) and to hold a large temporary array whose size is OV N , the

product of the number of occupied, virtual and total numbers of orbitals.�
AO2MO DISK: The value specified for this � rem variable should be as large as possible

(i.e., perhaps 80% of the free space on your � QCSCRATCH partition where temporary job

files are held). The value of this variable will determine how many times the two–electron

integrals in the atomic orbital basis must be re–evaluated, which is a major computational

step in MP2 calculations.�
N FROZEN CORE: The computational requirements for MP2 are proportional to the num-

ber of occupied orbitals for some steps, and the square of that number for other steps.

Therefore the CPU time can be significantly reduced if your job employs the frozen core ap-

proximation. Additionally the memory and disk requirements are reduced when the frozen

core approximation is employed.

5.3.2 The Definition of Core Electron

The number of core electrons in an atom is relatively well defined, and consists of certain atomic

shells, (note that ECPs are available in ‘small–core’ and ‘large–core’ varieties, see Chapter 8 for

further details). For example, in phosphorus the core consists of 1s, 2s, and 2p shells, for a total

of ten electrons. In molecular systems, the core electrons are usually chosen as those occupying

the n/2 lowest energy orbitals, where n is the number of core electrons in the constituent atoms.

In some cases, particularly in the lower parts of the periodic table, this definition is inappropriate

and can lead to significant errors in the correlation energy. Vitaly Rassolov has implemented an

alternative definition of core electrons within Q-Chem which is based on a Mulliken population

analysis, and which addresses this problem [16].

The current implementation is restricted to n-kl type basis sets such as 3-21 or 6-31, and related

bases such as 6-31+G(d). There are essentially two cases to consider, the outermost 6G functions

(or 3G in the case of the 3-21G basis set) for Na, Mg, K and Ca, and the 3d functions for the

elements Ga—Kr. Whether or not these are treated as core or valence is determined by the

CORE CHARACTER � rem, as summarized in Table 5.3.2.

CORE CHARACTER Outermost 6G (3G) 3d (Ga—Kr)

for Na, Mg, K, Ca

1 valence valence

2 valence core

3 core core

4 core valence

Table 5.1: A summary of the effects of different core definitions

5.3.3 Algorithm Control and Customization

The direct and semi–direct integral transformation algorithms used by Q-Chem (e.g., MP2,

CIS(D)) are limited by available disk space, D, and memory, C, the number of basis functions,

N , the number of virtual orbitals, V and the number of occupied orbitals, O, as discussed above.

The generic description of the key � rem variables are:
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MEM STATIC

Sets the memory for individual program modules.

TYPE:

INTEGER

DEFAULT:

64 corresponding to 64 Mb.

OPTIONS:

n User–defined number of megabytes.

RECOMMENDATION:
For direct and semi–direct MP2 calculations, this must exceed OVN + require-

ments for AO integral evaluation (32–160 Mb), as discussed above.

MEM TOTAL

Sets the total memory available to Q-Chem, in megabytes.

TYPE:

INTEGER

DEFAULT:

2000 (2 Gb)

OPTIONS:

n User–defined number of megabytes.

RECOMMENDATION:
Use default, or set to the physical memory of your machine. Note that if more

than 1GB is specified for a Coupled Cluster job, the memory is allocated as follows

12% MEM STATIC

3% CC TMPBUFFSIZE

50% CC CC BLCK TNSR BUFFSIZE

35% Other memory requirements:

AO2MO DISK

Sets the amount of disk space (in megabytes) available for MP2 calculations.

TYPE:

INTEGER

DEFAULT:

2000 Corresponding to 2000 Mb.

OPTIONS:

n User–defined number of megabytes.

RECOMMENDATION:

Should be set as large as possible, discussed in Section 5.3.1.

CD ALGORITHM

Determines the algorithm for MP2 integral transformations.

TYPE:

STRING

DEFAULT:

Program determined.

OPTIONS:
DIRECT Uses fully direct algorithm (energies only).

SEMI DIRECT Uses disk–based semi–direct algorithm.

LOCAL OCCUPIED Alternative energy algorithm (see 5.3.1).
RECOMMENDATION:

Semi–direct is usually most efficient, and will normally be chosen by default.
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N FROZEN CORE

Sets the number of frozen core orbitals in a post–Hartree–Fock calculation.

TYPE:

INTEGER

DEFAULT:

0

OPTIONS:
FC Frozen Core approximation (all core orbitals frozen).

n Freeze n core orbitals.
RECOMMENDATION:

While the default is not to freeze orbitals, MP2 calculations are more efficient with

frozen core orbitals. Use FC if possible.

N FROZEN VIRTUAL

Sets the number of frozen virtual orbitals in a post–Hartree–Fock calculation.

TYPE:

INTEGER

DEFAULT:

0

OPTIONS:

n Freeze n virtual orbitals.

RECOMMENDATION:

None

CORE CHARACTER

Selects how the core orbitals are determined in the frozen–core approximation.

TYPE:

INTEGER

DEFAULT:

0

OPTIONS:
0 Use energy–based definition.

1-4 Use Muliken–based definition (see Table 5.3.2 for details).
RECOMMENDATION:

Use default, unless performing calculations on molecules with heavy elements.

PRINT CORE CHARACTER

Determines the print level for the CORE CHARACTER option.

TYPE:

INTEGER

DEFAULT:

0

OPTIONS:
0 No additional output is printed.

1 Prints core characters of occupied MOs.

2 Print level 1, plus prints the core character of AOs.
RECOMMENDATION:

Use default, unless you are uncertain about what the core character is.
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5.3.4 Example

Example 5.1 Example of an MP2/6-31G* calculation employing the frozen core approximation.
Note that the EXCHANGE � rem variable will default to HF

$molecule

0 1

O

H1 O oh

H2 O oh H1 hoh

oh = 1.01

hoh = 105

$end

$rem

CORRELATION mp2

BASIS 6-31g*

N_FROZEN_CORE fc

$end

5.4 Local MP2 Methods

5.4.1 Local Triatomics in Molecules (TRIM) Model

The development of what may be called “fast methods” for evaluating electron correlation is a

problem of both fundamental and practical importance, because of the unphysical increases in

computational complexity with molecular size which afflict “exact” implementations of electron

correlation methods. Ideally, the development of fast methods for treating electron correlation

should not impact either model errors or numerical errors associated with the original electron

correlation models. Unfortunately this is not possible at present, as may be appreciated from the

following rough argument. Spatial locality is what permits re-formulations of electronic structure

methods that yield the same answer as traditional methods, but faster. The one–particle density

matrix decays exponentially with a rate that relates to the HOMO–LUMO gap in periodic systems.

When length scales longer than this characteristic decay length are examined, sparsity will emerge

in both the one–particle density matrix and also pair correlation amplitudes expressed in terms

of localized functions. Very roughly, such a length scale is about 5 to 10 atoms in a line, for

good insulators such as alkanes. Hence sparsity emerges beyond this number of atoms in 1–D,

beyond this number of atoms squared in 2–D, and this number of atoms cubed in 3–D. Thus for

three–dimensional systems, locality only begins to emerge for systems of between hundreds and

thousands of atoms.

If we wish to accelerate calculations on systems below this size regime, we must therefore intro-

duce additional errors into the calculation, either as numerical noise through looser tolerances,

or by modifying the theoretical model, or perhaps both. Q-Chem’s approach to local electron

correlation is based on modifying the theoretical models describing correlation with an additional

well–defined local approximation. We do not attempt to accelerate the calculations by introducing

more numerical error because of the difficulties of controlling the error as a function of molecule

size, and the difficulty of achieving reproducible significant results. From this perspective, local

correlation becomes an integral part of specifying the electron correlation treatment. This means

that the considerations necessary for a correlation treatment to qualify as a well–defined theoreti-

cal model chemistry apply equally to local correlation modeling. The local approximations should

be
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� Size–consistent : meaning that the energy of a super–system of two non–interacting molecules

should be the sum of the energy obtained from individual calculations on each molecule.� Uniquely defined: Require no input beyond nuclei, electrons, and an atomic orbital basis

set. In other words, the model should be uniquely specified without customization for each

molecule.� Yield continuous potential energy surfaces: The model approximations should be smooth,

and not yield energies that exhibit jumps as nuclear geometries are varied.

To ensure that these model chemistry criteria are met, Q-Chem’s local MP2 methods [18, 35]

express the double substitutions (i.e., the pair correlations) in a redundant basis of atom–labeled

functions. The advantage of doing this is that local models satisfying model chemistry criteria can

be defined by performing an atomic truncation of the double substitutions. A general substitution

in this representation will then involve the replacement of occupied functions associated with

two given atoms by empty (or virtual) functions on two other atoms, coupling together four

different atoms. We can force one occupied to virtual substitution (of the two that comprise

a double substitution) to occur only between functions on the same atom, so that only three

different atoms are involved in the double substitution. This defines the triatomics in molecules

(TRIM) local model for double substitutions. The TRIM model offers the potential for reducing

the computational requirements of exact MP2 theory by a factor proportional to the number of

atoms. We could also force each occupied to virtual substitution to be on a given atom, thereby

defining a more drastic diatomics in molecules (DIM) local correlation model.

The simplest atom–centered basis that is capable of spanning the occupied space is a minimal

basis of core and valence atomic orbitals on each atom. Such a basis is necessarily redundant

because it also contains sufficient flexibility to describe the empty valence anti-bonding orbitals

necessary to correctly account for nondynamical electron correlation effects such as bond–breaking.

This redundancy is actually important for the success of the atomic truncations because occupied

functions on adjacent atoms to some extent describe the same part of the occupied space. The

minimal functions we use to span the occupied space are obtained at the end of a large basis

set calculation, and are called extracted polarized atomic orbitals (EPAOs) [19]. We discuss them

briefly below. It is even possible to explicitly perform an SCF calculation in terms of a molecule–

optimized minimal basis of polarized atomic orbitals (PAOs) (see Chapter 4). To span the virtual

space, we use the full set of atomic orbitals, appropriately projected into the virtual space.

We summarize the situation. The number of functions spanning the occupied subspace will be the

minimal basis set dimension, M , which is greater than the number of occupied orbitals, O, by a

factor of up to about two. The virtual space is spanned by the set of projected atomic orbitals

whose number is the atomic orbital basis set size N , which is fractionally greater than the number

of virtuals V NO. The number of double substitutions in such a redundant representation will be

typically three to five times larger than the usual total. This will be more than compensated by

reducing the number of retained substitutions by a factor of the number of atoms, A, in the local

triatomics in molecules model, or a factor of A2 in the diatomics in molecules model.

The local MP2 energy in the TRIM and DIM models are given by the following expressions, which

can be compared against the full MP2 expression given earlier in Eq. (5.13). First, for the DIM

model:

EDIM MP2 = −1

2

∑

P̄ Q̄

(
P̄ |Q̄

) (
P̄ ||Q̄

)

∆P̄ + ∆Q̄

(5.17)

The sums are over the linear number of atomic single excitations after they have been canonicalized.

Each term in the denominator is thus an energy difference between occupied and virtual levels in

this local basis. Similarly, the TRIM model corresponds to the following local MP2 energy:
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ETRIM MP2 = −
∑

P̄ bj

(
P̄ |jb

) (
P̄ ||jb

)

∆P̄ + εb − εj
−EDIM MP2 (5.18)

where the sum is now mixed between atomic substitutions P̄ , and nonlocal occupied j to virtual

b substitutions. See references [18, 35] for a full derivation and discussion.

The accuracy of the local TRIM and DIM models has been tested in a series of calculations [18,35].

In particular, the TRIM model has been shown to be quite faithful to full MP2 theory via the

following tests:

� The TRIM model recovers around 99.7% of the MP2 correlation energy for covalent bonding.

This is significantly higher than the roughly 98—99% correlation energy recovery typically

exhibited by the Saebo–Pulay local correlation method [20]. The DIM model recovers around

95% of the correlation energy.� The performance of the TRIM model for relative energies is very robust, as shown in ref. [35]

for the challenging case of torsional barriers in conjugated molecules. The RMS error in these

relative energies is only 0.031 kcal/mol, as compared to around 1 kcal/mol when electron

correlation effects are completely neglected.� For the water dimer with the aug–cc–pVTZ basis, 96% of the MP2 contribution to the

binding energy is recovered with the TRIM model, as compared to 62% with the Saebo–

Pulay local correlation method.� For calculations of the MP2 contribution to the G3 and G3(MP2) energies with the larger

molecules in the G3–99 database [21], introduction of the TRIM approximation results in

an RMS error relative to full MP2 theory of only 0.3 kcal/mol, even though the absolute

magnitude of these quantities is on the order of tens of kcal/mol.

5.4.2 EPAO Evaluation Options

When a local MP2 job (requested by the LOCAL MP2 option for CORRELATION) is performed,

the first new step after the SCF calculation is converged is to extract a minimal basis of polarized

atomic orbitals (EPAOs) that spans the occupied space. There are three valid choices for this

basis, controlled by the PAO METHOD and EPAO ITERATE keywords described below.

� Uniterated EPAOs : The initial guess EPAOs are the default for local MP2 calculations, and

are defined as follows. For each atom, the covariant density matrix (SPS) is diagonalized,

giving eigenvalues which are approximate natural orbital occupancies, and eigenvectors which

are corresponding atomic orbitals. The m eigenvectors with largest populations are retained

(where m is the minimal basis dimension for the current atom). This nonorthogonal minimal

basis is symmetrically orthogonalized, and then modified as discussed in ref. [19] to ensure

that these functions rigorously span the occupied space of the full SCF calculation that

has just been performed. These orbitals may be denoted as EPAO(0) to indicate that no

iterations have been performed after the guess. In general, the quality of the local MP2

results obtained with this option is very similar to the EPAO option below, but it is much

faster and fully robust. For the example of the torsional barrier calculations [35] discussed

above, the TRIM RMS deviations of 0.03 kcal/mol from full MP2 calculations are increased

to only 0.04 kcal/mol when EPAO(0) orbitals are employed rather than EPAOs.� EPAOs: EPAOs are defined by minimizing a localization functional as described in ref. [19].

These functions were designed to be suitable for local MP2 calculations, and have yielded

excellent results in all tests performed so far. Unfortunately the functional is difficult to
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converge for large molecules, at least with the algorithms that have been developed to this

stage. Therefore it is not the default, but is switched on by specifying a (large) value for

EPAO ITERATE, as discussed below.� PAO: If the SCF calculation is performed in terms of a molecule–optimized minimal basis, as

described in Chapter 4, then the resulting PAO–SCF calculation can be corrected with either

conventional or local MP2 for electron correlation. PAO–SCF calculations alter the SCF

energy, and are therefore not the default. This can be enabled by specifying PAO METHOD

as PAO, in a job which also requests CORRELATION as LOCAL MP2

PAO METHOD

Controls the type of PAO calculations requested.

TYPE:

STRING

DEFAULT:

EPAO For local MP2, EPAOs are chosen by default.

OPTIONS:
EPAO Find EPAOs by minimizing delocalization function.

PAO Do SCF in a molecule–optimized minimal basis.
RECOMMENDATION:

None

EPAO ITERATE

Controls iterations for EPAO calculations (see PAO METHOD).

TYPE:

INTEGER

DEFAULT:

0 Use uniterated EPAOs based on atomic blocks of SPS.

OPTIONS:

n Optimize the EPAOs for up to n iterations.

RECOMMENDATION:
Use default. For molecules that are not too large, one can test the sensitivity of

the results to the type of minimal functions by the use of optimized EPAOs in

which case a value of n = 500 is reasonable.

EPAO WEIGHTS

Controls algorithm and weights for EPAO calculations (see PAO METHOD).

TYPE:

INTEGER

DEFAULT:

115 Standard weights, use 1st and 2nd order optimization

OPTIONS:

15 Standard weights, with 1st order optimization only.

RECOMMENDATION:

Use default, unless convergence failure is encountered.

5.4.3 Algorithm Control and Customization

A local MP2 calculation (requested by the LOCAL MP2 option for CORRELATION ) consists of

the following steps:

� After the SCF is converged, a minimal basis of EPAOs are obtained.
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� The TRIM (and DIM) local MP2 energies are then evaluated (gradients are not yet available).

Details of the efficient implementation of the local MP2 method described above are reported in

the recent thesis of Dr Michael Lee [22]. Here we simply summarize the capabilities of the program.

The computational advantage associated with these local MP2 methods varies depending upon

the size of molecule and the basis set. As a rough general estimate, TRIM MP2 calculations are

feasible on molecule sizes about twice as large as those for which conventional MP2 calculations

are feasible on a given computer, and this is their primary advantage. Our implementation is

well suited for large basis set calculations. The AO basis two–electron integrals are evaluated four

times. DIM MP2 calculations are performed as a by–product of TRIM MP2 but no separately

optimized DIM algorithm has been implemented.

The resource requirements for local MP2 calculations are as follows:

� Memory: The memory requirement for the integral transformation does not exceed OON ,

and is thresholded so that it asymptotically grows linearly with molecule size. Additional

memory of approximately 32N 2 is required to complete the local MP2 energy evaluation.� Disk: The disk space requirement is only about 8OV N , but is not governed by a thresh-

old. This is a very large reduction from the case of a full MP2 calculation, where, in the

case of four integral evaluations, OV N 2/4 disk space is required. As the local MP2 disk

space requirement is not adjustable, the AO2MO DISK keyword is ignored for LOCAL MP2

calculations.

The evaluation of the local MP2 energy does not require any further customization. An adequate

amount of MEM STATIC (80 to 160 Mb) should be specified to permit efficient AO basis two–

electron integral evaluation, but all large scratch arrays are allocated from MEM TOTAL.

5.4.4 Examples

Example 5.2 A relative energy evaluation using the local TRIM model for MP2 with the 6-
311G** basis set. The energy difference is the internal rotation barrier in propenal, with the first
geometry being planar trans, and the second the transition structure.

$molecule

0 1

C

C 1 1.32095

C 2 1.47845 1 121.19

O 3 1.18974 2 123.83 1 180.00

H 1 1.07686 2 121.50 3 0.00

H 1 1.07450 2 122.09 3 180.00

H 2 1.07549 1 122.34 3 180.00

H 3 1.09486 2 115.27 4 180.00

$end

$rem

CORRELATION local_mp2

BASIS 6-311g**

$end

@@@

$molecule

0 1

C
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C 1 1.31656

C 2 1.49838 1 123.44

O 3 1.18747 2 123.81 1 92.28

H 1 1.07631 2 122.03 3 -0.31

H 1 1.07484 2 121.43 3 180.28

H 2 1.07813 1 120.96 3 180.34

H 3 1.09387 2 115.87 4 179.07

$end

$rem

CORRELATION local_mp2

BASIS 6-311g**

$end

5.5 Auxiliary Basis Set (Resolution of the Identity) MP2

Methods.

For a molecule of fixed size, increasing the number of basis functions per atom, n, leads to O(n4)

growth in the number of significant four–center two–electron integrals, since the number of non–

negligible product charge distributions, |µν〉, grows as O(n2). As a result, the use of large (high–

quality) basis expansions is computationally costly. Perhaps the most practical way around this

“basis set quality” bottleneck is the use of auxiliary basis expansions [23,25,28]. The ability to use

auxiliary basis sets to accelerate a variety of electron correlation methods, including both energies

and analytical gradients, is one of the major new features of Q-Chem 3.0.

The auxiliary basis {|K〉} is used to approximate products of Gaussian basis functions:

|µν〉 ≈ |µ̃ν〉 =
∑

K

|K〉CKµν (5.19)

Auxiliary basis expansions were introduced long ago, and are now widely recognized as an effective

and powerful approach, which is sometimes synonymously called resolution of the identity (RI) or

density fitting (DF). When using auxiliary basis expansions, the rate of growth of computational

cost of large–scale electronic structure calculations with n is reduced to approximately n3.

If n is fixed and molecule size increases, auxiliary basis expansions reduce the pre–factor associated

with the computation, while not altering the scaling. The important point is that the prefactor

can be reduced by 5 or 10 times or more. Such large speedups are possible because the number of

auxiliary functions required to obtain reasonable accuracy, X , has been shown to be only about 3

or 4 times larger than N .

The auxiliary basis expansion coefficients, C, are determined by minimizing the deviation between

the fitted distribution and the actual distribution, 〈µν− µ̃ν|µν − µ̃ν〉, which leads to the following

set of linear equations:

∑
L
〈K |L〉CLµν = 〈K |µν 〉 (5.20)

Evidently solution of the fit equations requires only two– and three–center integrals, and as a result

the (four–center) two–electron integrals can be approximated as the following optimal expression

for a given choice of auxiliary basis set:

〈µν|λσ〉 ≈ 〈µ̃ν|λ̃σ〉 =
∑

K,LCLµ 〈L|K〉CKλσ (5.21)

In the limit where the auxiliary basis is complete (i.e. all products of AOs are included), the fitting

procedure described above will be exact. However, the auxiliary basis is invariably incomplete
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(as mentioned above, X ≈ 3N) because this is essential for obtaining increased computational

efficiency. Standardized auxiliary basis sets have been developed by the Karlsruhe group for

second order perturbation (MP2) calculations [26, 27] of the correlation energy. With these basis

sets, small absolute errors (e.g. below 60 µ-Hartree per atom in MP2) and even smaller relative

errors in computed energies are found, while the speed–up can be 3–30 fold. This development

has made the routine use of auxiliary basis sets for electron correlation calculations possible.

Correlation calculations that can take advantage of auxiliary basis expansions are described in the

remainder of this section (MP2, and MP2-like methods) and in Section 5.9 (simplified active space

coupled cluster methods such as PP, PP(2), IP, RP). These methods automatically employ auxil-

iary basis expansions when a valid choice of auxiliary basis set is supplied using the AUX BASIS

keyword which is used in the same way as the BASIS keyword. The PURECART � rem is no longer

needed here, even if using a auxiliary basis that does not have a predefined value. There is a

built-in automatic procedure that provides the effect of the PURECART � rem in these cases by

default.

5.5.1 RI-MP2 energies and gradients.

Following common convention, the MP2 energy evaluated approximately using an auxiliary basis

is referred to as “resolution of the identity” MP2, or RI-MP2 for short. RIMP2 energy and gra-

dient calculations are enabled simply by specifying the AUX BASIS keyword discussed above. As

discussed above, RI-MP2 energies [28] and gradients [29, 30] are significantly faster than the best

conventional MP2 energies and gradients, and cause negligible loss of accuracy, when an appropri-

ate standardized auxiliary basis set is employed. Therefore they are recommended for jobs where

turnaround time is an issue. Disk requirements are very modest – one merely needs to hold various

3-index arrays. Memory requirements grow more slowly than our conventional MP2 algorithms

– only quadratically with molecular size. The minimum memory requirement is approximately

3X2, where X is the number of auxiliary basis functions, for both energy and analytical gradient

evaluations, with some additional memory being necessary for integral evaluation and other small

arrays.

In fact, for molecules that are not too large (perhaps no more than 20 or 30 heavy atoms) the

RI-MP2 treatment of electron correlation is so efficient that the computation is dominated by

the initial Hartree-Fock calculation. This is despite the fact that as a function of molecule size,

the cost of the RI-MP2 treatment still scales more steeply with molecule size (it is just that the

pre-factor is so much smaller with the RI approach). Its scaling remains 5th order with the size

of the molecule, which only dominates the initial SCF calculation for larger molecules. Thus,

for RI-MP2 energy evaluation on moderate size molecules (particularly in large basis sets), it is

desirable to use the dual basis HF method to further improve execution times (see Section 4.7).

5.5.2 Example

Example 5.3 Q-Chem input for an RIMP2 geometry optimization.

$molecule

0 1

O

H 1 0.9

F 1 1.4 2 100.

$end

$rem

JOBTYPE opt

CORRELATION rimp2
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BASIS cc-pvtz

AUX_BASIS rimp2-cc-pvtz

% PURECART 1111

SYMMETRY false

$end

For the size of required memory, the followings need to be considered.

MEM STATIC

Sets the memory for AO-integral evaluations and their transformations.

TYPE:

INTEGER

DEFAULT:

64 corresponding to 64 Mb.

OPTIONS:

n User–defined number of megabytes.

RECOMMENDATION:
For RI-MP2 calculations, 150(ON + V ) of MEM STATIC is required. Because a

number of matrices with N2 size also need to be stored, 32–160 Mb of additional

MEM STATIC is needed.

MEM TOTAL

Sets the total memory available to Q-Chem, in megabytes.

TYPE:

INTEGER

DEFAULT:

2000 (2 Gb)

OPTIONS:

n User–defined number of megabytes.

RECOMMENDATION:
Use default, or set to the physical memory of your machine. The minimum re-

quirement is 3X2.

5.5.3 Opposite spin (SOS-MP2 and MOS-MP2) energies and gradients.

The accuracy of MP2 calculations can be significantly improved by semi-empirically scaling the

opposite-spin and same-spin correlation components with separate scaling factors, as shown by

Grimme [31]. Results of similar quality can be obtained by just scaling the opposite spin correlation

(by 1.3), as was recently demonstrated [32]. Furthermore this SOS-MP2 energy can be evaluated

using the RI approximation together with a Laplace transform technique, in effort that scales only

with the 4th power of molecular size. Efficient algorithms for the energy [32] and the analytical

gradient [33] of this method are available in Q-Chem 3.0, and offer advantages in speed over MP2

for larger molecules, as well as statistically significant improvements in accuracy.

However, we note that the SOS-MP2 method does systematically underestimate long-range dis-

persion (for which the appropriate scaling factor is 2 rather than 1.3) but this can be accounted

for by making the scaling factor distance-dependent, which is done in the modified opposite spin

variant (MOS-MP2) that has recently been proposed and tested [34]. The MOS-MP2 energy and

analytical gradient are also available in Q-Chem 3.0 at a cost that is essentially identical with

SOS-MP2. Timings show that the 4th order implementation of SOS-MP2 and MOS-MP2 yields

substantial speedups over RIMP2 for molecules in the 40 heavy atom regime and larger. It is also

possible to customize the scale factors for particular applications, such as weak interactions, if

required.
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A fourth order scaling SOS-MP2/MOS-MP2 energy calculation can be invoked by setting the

CORRELATION keyword to either SOSMP2 or MOSMP2. MOS-MP2 further requires the specifi-

cation of the � rem variable OMEGA, which tunes the level of attenuation of the MOS operator:

=
1

r12
+ cMOS.

erf (ωr12)

r12
(5.22)

The recommended OMEGA value is ω = 0.6 a.u. [34]. The fast algorithm makes use of auxiliary

basis expansions and therefore, the keyword AUX BASIS should be set consistently with the user’s

choice of BASIS. Fourth-order scaling analytical gradient for both SOS-MP2 and MOS-MP2

are also available and is automatically invoked when JOBTYPE is set to OPT or FORCE. The

minimum memory requirement is 3X2, whereX = the number of auxiliary basis functions, for both

energy and analytical gradient evaluations. Disk space requirement for closed shell calculations is

∼ 2OV X for energy evaluation and ∼ 4OV X for analytical gradient evaluation.

Summary of key � rem variables to be specified:

CORRELATION SOSMP2

MOSMP2

JOBTYPE sp (default) single point energy evaluation

opt geometry optimization with analytical gradient

force force evaluation with analytical gradient

BASIS user’s choice (standard or user-defined: general/mixed)

AUX BASIS corresponding auxiliary basis (standard or user-defined: aux general/aux mixed)

OMEGA no default n ω = n/1000 600 recommended value ω = 0.6 a.u.

N FROZEN CORE Optional

N FROZEN VIRTUAL Optional

5.5.4 Examples

Example 5.4 Example of SOS-MP2 geometry optimization

$molecule

0 3

C1

H1 C1 1.07726

H2 C1 1.07726 H1 131.60824

$end

$rem

JOBTYPE opt

CORRELATION sosmp2

BASIS cc-pvdz

AUX_BASIS rimp2-cc-pvdz

% PURECART 1111

UNRESTRICTED true

SYMMETRY false

$end

Example 5.5 Example of MOS-MP2 energy evaluation with frozen core approximation

$molecule

0 1

Cl

Cl 1 2.05

$end

$rem
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JOBTYPE sp

CORRELATION mosmp2

OMEGA 600

BASIS cc-pVTZ

AUX_BASIS rimp2-cc-pVTZ

% PURECART 1111

N_FROZEN_CORE fc

THRESH 12

SCF_CONVERGENCE 8

$end

5.5.5 RI–TRIM MP2 Energies

The triatomics in molecules (TRIM) local correlation approximation to MP2 theory [35] was

described in detail in Section 5.4.1 which also discussed our implementation of this approach

based on conventional four–center two–electron integrals. Q-Chem 3.0 also includes an auxiliary

basis implementation of the TRIM model. The new RI-TRIM MP2 energy algorithm [36] greatly

accelerates these local correlation calculations (often by an order of magnitude or more for the

correlation part), which scale with the 4th power of molecule size. The electron correlation part

of the calculation is speeded up over normal RI-MP2 by a factor proportional to the number of

atoms in the molecule. For a hexadecapeptide, for instance, the speedup is approximately a factor

of 4 [36]. The TRIM model can also be applied to the scaled opposite spin models discussed above.

As for the other RI-based models discussed in this section, we recommend using RI-TRIM MP2

instead of the conventional TRIM MP2 code whenever run-time of the job is a significant issue.

As for RI-MP2 itself, TRIM MP2 is invoked by adding AUX BASIS � rems to the input deck, in

addition to requesting CORRELATION = RILMP2.

Example 5.6 Example of RI–TRIM MP2 energy evaluation

$molecule

0 3

C1

H1 C1 1.07726

H2 C1 1.07726 H1 131.60824

$end

$rem

CORRELATION rilmp2

BASIS cc-pVDZ

AUX_BASIS rimp2-cc-pVDZ

% PURECART 1111

UNRESTRICTED true

SYMMETRY false

$end

5.6 Self–Consistent Pair Correlation Methods

The following sections give short summaries of the various pair correlation methods available in

Q-Chem, all of which are variants of coupled–cluster theory. The basic object–oriented tools nec-

essary to permit the implementation of these methods in Q-Chem was accomplished by Professors

Anna Krylov and David Sherrill, working at Berkeley with Martin Head–Gordon, and then contin-

uing independently at the University of Southern California and Georgia Tech respectively. While

at Berkeley, Krylov and Sherrill also developed the optimized orbital coupled–cluster method, with

additional assistance from Ed Byrd. The extension of this code to MP3, MP4, CCSD and QCISD
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is the work of Prof. Steve Gwaltney at Berkeley, while the extensions to QCCD were implemented

by Ed Byrd at Berkeley.

5.6.1 Coupled Cluster Singles and Doubles (CCSD)

The standard approach for treating pair correlations self-consistently are coupled–cluster methods

where the cluster operator contains all single and double substitutions [37], abbreviated as CCSD.

CCSD yields results that are only slightly superior to MP2 for structures and frequencies of stable

closed–shell molecules. However, it is far superior for reactive species, such as transition structures

and radicals, for which the performance of MP2 is quite erratic.

A full textbook presentation of CCSD is beyond the scope of this manual, and several comprehen-

sive references are available. However, it may be useful to briefly summarize the main equations.

The CCSD wavefunction is:

|ΨCCSD〉 = exp
(
T̂1 + T̂2

)
|Φ0〉 (5.23)

where the single and double excitation operators may be defined by their actions on the reference

single determinant (which is normally taken as the Hartree–Fock determinant in CCSD):

T̂1 |Φ0〉 =
occ∑

i

virt∑

a

tai |Φai 〉 (5.24)

T̂2 |Φ0〉 =
1

4

occ∑

ij

virt∑

ab

tabij
∣∣Φabij

〉
(5.25)

It is unfeasible to determine the CCSD energy by variational minimization of 〈E〉CCSD with respect

to the singles and doubles amplitudes because the expressions terminate at the same level of

complexity as full configuration interaction (!). So, instead, the Schrödinger equation is satisfied

in the subspace spanned by the reference determinant, all single substitutions, and all double

substitutions. Projection with these functions and integration over all space provides sufficient

equations to determine the energy, the singles and doubles amplitudes as the solutions of sets of

nonlinear equations. These equations may be symbolically written as follows:

ECCSD = 〈Φ0|Ĥ|ΨCCSD〉

=

〈
Φ0

∣∣∣Ĥ
∣∣∣
(

1 + T̂1 +
1

2
T̂ 2

1 + T̂2

)
Φ0

〉

C

(5.26)

0 =
〈

Φai

∣∣∣Ĥ −ECCSD

∣∣∣ΨCCSD

〉

=

〈
Φai

∣∣∣Ĥ
∣∣∣
(

1 + T̂1 +
1

2
T̂ 2

1 + T̂2 + T̂1T̂2 +
1

3!
T̂ 3

1

)
Φ0

〉

C

(5.27)

0 =
〈

Φabij

∣∣∣Ĥ −ECCSD

∣∣∣ΨCCSD

〉

=

〈
Φabij

∣∣∣Ĥ
∣∣∣
(

1 + T̂1 +
1

2
T̂ 2

1 + T̂2 + T̂1T̂2 +
1

3!
T̂ 3

1

+
1

2
T̂ 2

2 +
1

2
T̂ 2

1 T̂2 +
1

4!
T̂ 4

1

)
Φ0

〉

C

(5.28)

The result is a set of equations which yield an energy that is not necessarily variational (i.e., may

not be above the true energy), although it is strictly size–consistent. The equations are also exact
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for a pair of electrons, and, to the extent that molecules are a collection of interacting electron

pairs, this is the basis for expecting that CCSD results will be of useful accuracy.

The computational effort necessary to solve the CCSD equations can be shown to scale with the

6th power of the molecular size, for fixed choice of basis set. Disk storage scales with the 4th

power of molecular size, and involves a number of sets of doubles amplitudes, as well as two–

electron integrals in the molecular orbital basis. Therefore the improved accuracy relative to MP2

theory comes at a steep computational cost. Given these scalings it is relatively straightforward

to estimate the feasibility (or non feasibility) of a CCSD calculation on a larger molecule (or with

a larger basis set) given that a smaller trial calculation is first performed. Q-Chem supports both

energies and analytic gradients for CCSD for RHF and UHF references (including frozen-core).

For ROHF, only energies and properties are available.

5.6.2 Quadratic Configuration Interaction (QCISD)

Quadratic configuration interaction with singles and doubles (QCISD) [38] is a widely used al-

ternative to CCSD, that shares its main desirable properties of being size–consistent, exact for

pairs of electrons, as well as being also non variational. Its computational cost also scales in the

same way with molecule size and basis set as CCSD, although with slightly smaller constants.

While originally proposed independently of CCSD based on correcting configuration interaction

equations to be size–consistent, QCISD is probably best viewed as approximation to CCSD. The

defining equations are given below (under the assumption of Hartree–Fock orbitals, which should

always be used in QCISD). The QCISD equations can clearly be viewed as the CCSD equations

with a large number of terms omitted, which are evidently not very numerically significant:

EQCISD =
〈

Φ0

∣∣∣Ĥ
∣∣∣
(

1 + T̂2

)
Φ0

〉
C

(5.29)

0 =
〈

Φai

∣∣∣Ĥ
∣∣∣
(
T̂1 + T̂2 + T̂1T̂2

)
Φ0

〉
C

(5.30)

0 =

〈
Φabij

∣∣∣Ĥ
∣∣∣
(

1 + T̂1 + T̂2 +
1

2
T̂ 2

2

)
Φ0

〉

C

(5.31)

QCISD energies are available in Q-Chem, and are requested with the QCISD keyword. As dis-

cussed in Section 5.7, the non iterative QCISD(T) correction to the QCISD solution is also available

to approximately incorporate the effect of higher substitutions.

5.6.3 Optimized Orbital Coupled Cluster Doubles (OD)

It is possible to greatly simplify the CCSD equations by omitting the single substitutions (i.e.,

setting the T1 operator to zero). If the same single determinant reference is used (specifically the

Hartree–Fock determinant), then this defines the coupled–cluster doubles (CCD) method, by the

following equations:

ECCD =
〈

Φ0

∣∣∣Ĥ
∣∣∣
(

1 + T̂2

)
Φ0

〉
C

(5.32)

0 =

〈
Φabij

∣∣∣Ĥ
∣∣∣
(

1 + T̂2 +
1

2
T̂ 2

2

)
Φ0

〉

C

(5.33)

The CCD method cannot itself usually be recommended because while pair correlations are all

correctly included, the neglect of single substitutions causes calculated energies and properties to
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be significantly less reliable than for CCSD. Single substitutions play a role very similar to orbital

optimization, in that they effectively alter the reference determinant to be more appropriate for

the description of electron correlation (the Hartree–Fock determinant is optimized in the absence

of electron correlation).

This suggests an alternative to CCSD and QCISD that has some additional advantages. This is

the optimized orbital CCD method (OO–CCD), which we normally refer to as simply optimized

doubles (OD) [39]. The OD method is defined by the CCD equations above, plus the additional

set of conditions that the cluster energy is minimized with respect to orbital variations. This may

be mathematically expressed by:

∂ECCD

∂θai
= 0 (5.34)

where the rotation angle θai mixes the ith occupied orbital with the ath virtual (empty) orbital.

Thus the orbitals that define the single determinant reference are optimized to minimize the

coupled–cluster energy, and are variationally best for this purpose. The resulting orbitals are

approximate Brueckner orbitals.

The OD method has the advantage of formal simplicity (orbital variations and single substitutions

are essentially redundant variables). In cases where Hartree–Fock theory performs poorly (for

example artificial symmetry breaking, or non-convergence), it is also practically advantageous to

use the OD method, where the HF orbitals are not required, rather than CCSD or QCISD. Q-

Chem supports both energies and analytical gradients using the OD method. The computational

cost for the OD energy is more than twice that of the CCSD or QCISD method, but the total cost

of energy plus gradient is roughly similar, although OD remains more expensive. An additional

advantage of the OD method is that it can be performed in an active space, as discussed later, in

Section 5.8.

5.6.4 Quadratic Coupled Cluster Doubles (QCCD)

The non variational determination of the energy in the CCSD, QCISD, and OD methods dis-

cussed in the above subsections is not normally a practical problem. However, there are some

cases where these methods perform poorly. One such example are potential curves for homolytic

bond dissociation, using closed shell orbitals, where the calculated energies near dissociation go

significantly below the true energies, giving potential curves with unphysical barriers to forma-

tion of the molecule from the separated fragments [40]. The Quadratic Coupled Cluster Doubles

(QCCD) method [41] recently proposed by Troy Van Voorhis at Berkeley uses a different energy

functional to yield improved behavior in problem cases of this type. Specifically, the QCCD energy

functional is defined as:

EQCCD =

〈
Φ0

(
1 + Λ̂2 +

1

2
Λ̂2

2

) ∣∣∣Ĥ
∣∣∣ exp

(
T̂2

)
Φ0

〉

C

(5.35)

where the amplitudes of both the T̂2 and Λ̂2 operators are determined by minimizing the QCCD

energy functional. Additionally, the optimal orbitals are determined by minimizing the QCCD

energy functional with respect to orbital rotations mixing occupied and virtual orbitals.

To see why the QCCD energy should be an improvement on the OD energy, we first write the

latter in a different way than before. Namely, we can write a CCD energy functional which when

minimized with respect to the T̂2 and Λ̂2 operators, gives back the same CCD equations defined

earlier. This energy functional is:
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ECCD =
〈

Φ0

(
1 + Λ̂2

) ∣∣∣Ĥ
∣∣∣ exp

(
T̂2

)
Φ0

〉
C

(5.36)

Minimization with respect to the Λ̂2 operator gives the equations for the T̂2 operator presented

previously, and, if those equations are satisfied then it is clear that we do not require knowledge

of the Λ̂2 operator itself to evaluate the energy.

Comparing the two energy functionals, (5.35) and (5.36), we see that the QCCD functional includes

up through quadratic terms of the Maclaurin expansion of exp(Λ̂2) while the conventional CCD

functional includes only linear terms. Thus the bra wavefunction and the ket wavefunction in the

energy expression are treated more equivalently in QCCD than in CCD. This makes QCCD closer

to a true variational treatment [40] where the bra and ket wavefunctions are treated precisely

equivalently, but without the exponential cost of the variational method.

In practice QCCD is a dramatic improvement relative to any of the conventional pair correlation

methods for processes involving more than two active electrons (i.e., the breaking of at least a

double bond, or, two spatially close single bonds). For example calculations, we refer to the

original paper [41], and the follow–up paper describing the full implementation [42]. We note

that these improvements carry a computational price. While QCCD scales formally with the 6th

power of molecule size like CCSD, QCISD, and OD, the coefficient is substantially larger. For

this reason, QCCD calculations are by default performed as OD calculations until they are partly

converged. Q-Chem also contains some configuration interaction models (CISD and CISDT). The

CI methods are inferior to CC due to size-consistency issues, however, these models may be useful

for benchmarking and development purposes.

5.6.5 Job Control Options

There are a large number of options for the coupled–cluster singles and doubles methods. They

are documented in Appendix C, and, as the reader will find upon following this link, it is an

extensive list indeed. Fortunately, many of them are not necessary for routine jobs. Most of the

options for non–routine jobs concern altering the default iterative procedure, which is most often

necessary for optimized orbital calculations (OD, QCCD), as well as the active space and EOM

methods discussed later in Section 5.8. The more common options relating to convergence control

are discussed there, in Section 5.8.4. Below we list the options that one should be aware of for

routine calculations.

MEM TOTAL

Sets the total memory available to Q-Chem, in megabytes.

TYPE:

INTEGER

DEFAULT:

2000 (2 Gb)

OPTIONS:

n User–defined number of megabytes.

RECOMMENDATION:
Use default, or set to the physical memory of your machine. Note that if more

than 1GB is specified for a Coupled Cluster job, the memory is allocated as follows

12% MEM STATIC

3% CC TMPBUFFSIZE

50% CC CC BLCK TNSR BUFFSIZE

35% Other memory requirements:
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CC DO CISDT

Controls the calculation of CISDT

TYPE:

INTEGER

DEFAULT:

0

OPTIONS:
0 Do not compute triples (do CISD only)

1 Do compute the triples correction (full CISDT)
RECOMMENDATION:

None

CC CONVERGENCE
Overall convergence criterion for the coupled–cluster codes. This is designed

to ensure at least n significant digits in the calculated energy, and automat-

ically sets the other convergence–related variables (CC E CONV, CC T CONV,

CC THETA CONV, CC THETA GRAD CONV, CC Z CONV) [10−n].
TYPE:

INTEGER

DEFAULT:
8 Energies.

8 Gradients.
OPTIONS:

n Corresponding to 10−n convergence criterion.

RECOMMENDATION:

None

CC DOV THRESH
Specifies minimum allowed values for the coupled–cluster energy denominators.

Smaller values are replaced by this constant during early iterations only, so the

final results are unaffected, but initial convergence is improved when the guess is

poor.
TYPE:

INTEGER

DEFAULT:

2502 Corresponding to 0.25

OPTIONS:

abcde Integer code is mapped to abc× 10−de

RECOMMENDATION:

Increase to 0.5 or 0.75 for non convergent coupled–cluster calculations.

CC MAXITER

Maximum number of iterations to optimize the coupled–cluster energy.

TYPE:

INTEGER

DEFAULT:

200

OPTIONS:

n up to n iterations to achieve convergence.

RECOMMENDATION:

None
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CC PRINT

Controls the output from post–MP2 coupled–cluster module of Q-Chem

TYPE:

INTEGER

DEFAULT:

1

OPTIONS:

0→ 7 higher values can lead to deforestation. . .

RECOMMENDATION:

Increase if you need more output and don’t like trees

5.6.6 Example

Example 5.7 A series of jobs evaluating the correlation energy (with core orbitals frozen) of the
ground state of the NH2 radical with three methods of coupled–cluster singles and doubles type:
CCSD itself, OD, and QCCD.

$molecule

0 2

N

H1 N 1.02805

H2 N 1.02805 H1 103.34

$end

$rem

CORRELATION ccsd

BASIS 6-31g*

N_FROZEN_CORE fc

$end

@@@

$molecule

read

$end

$rem

CORRELATION od

BASIS 6-31g*

N_FROZEN_CORE fc

$end

@@@

$molecule

read

$end

$rem

CORRELATION qccd

BASIS 6-31g*

N_FROZEN_CORE fc

$end
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5.7 Non–iterative Corrections to Coupled Cluster Energies

5.7.1 (T) Triples Corrections

To approach chemical accuracy in reaction energies and related properties, it is necessary to

account for electron correlation effects that involve three electrons simultaneously, as represented

by triple substitutions relative to the mean field single determinant reference, which arise in MP4.

The best standard methods for including triple substitutions are the CCSD(T) [43] and QCISD(T)

methods [38] The accuracy of these methods is well–documented for many cases [44], and in general

is a very significant improvement relative to the starting point (either CCSD or QCISD). The cost

of these corrections scales with the 7th power of molecule size (or the 4th power of the number of

basis functions for fixed molecule size), although no additional disk resources are required relative

to the starting coupled–cluster calculation. Q-Chem supports the evaluation of CCSD(T) and

QCISD(T) energies, as well as the corresponding OD(T) correction to the optimized doubles

method discussed in the previous subsection. Gradients and properties are not currently available

for any of these (T) corrections.

5.7.2 (2) Triples and Quadruples Corrections

While the (T) corrections discussed above have been extraordinarily successful, there is nonetheless

still room for further improvements in accuracy, for at least some important classes of problems.

They contain judiciously chosen terms from 4th and 5th order Møller–Plesset perturbation theory,

as well as higher order terms that result from the fact that the converged cluster amplitudes are

employed to evaluate the 4th and 5th order terms. The (T) correction therefore depends upon the

bare reference orbitals and orbital energies, and in this way its effectiveness still depends on the

quality of the reference determinant. Since we are correcting a coupled–cluster solution rather than

a single determinant, this is an aspect of the (T) corrections that can be improved. Deficiencies of

the (T) corrections show up computationally in cases where there are near–degeneracies between

orbitals, such as stretched bonds, some transition states, open shell radicals, and biradicals.

Recently, Steve Gwaltney working at Berkeley with Martin Head–Gordon has suggested a new

class of non iterative correction that offers the prospect of improved accuracy in problem cases of

the types identified above [45]. Q-Chem contains Gwaltney’s implementation of this new method,

for energies only. The new correction is a true second order correction to a coupled–cluster starting

point, and is therefore denoted as (2). It is available for two of the cluster methods discussed above,

as OD(2) and CCSD(2) [45, 46]. Only energies are available at present.

The basis of the (2) method is to partition not the regular Hamiltonian into perturbed and

unperturbed parts, but rather to partition a similarity–transformed Hamiltonian, defined as ˆ̄H =

e−T̂ ĤeT̂ . In the truncated space (call it the p-space) within which the cluster problem is solved

(e.g., singles and doubles for CCSD), the coupled–cluster wavefunction is a true eigenvalue of ˆ̄H .

Therefore we take the zero order Hamiltonian, ˆ̄H(0), to be the full ˆ̄H in the p–space, while in

the space of excluded substitutions (the q-space) we take only the one–body part of ˆ̄H (which

can be made diagonal). The fluctuation potential describing electron correlations in the q-space

is ˆ̄H − ˆ̄H(0), and the (2) correction then follows from second order perturbation theory.

The new partitioning of terms between the perturbed and unperturbed Hamiltonians inherent

in the (2) correction leads to a correction that shows both similarities and differences relative

to the existing (T) corrections. There are two types of higher correlations that enter at second

order: not only triple substitutions, but also quadruple substitutions. The quadruples are treated

with a factorization ansatz, that is exact in 5th order Møller–Plesset theory [47], to reduce their

computational cost from N9 to N6. For large basis sets this can still be larger than the cost of
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the triples terms, which scale as the 7th power of molecule size, with a factor twice as large as the

usual (T) corrections.

These corrections are feasible for molecules containing between four and ten first row atoms,

depending on computer resources, and the size of the basis set chosen. There is early evidence

that the (2) corrections are superior to the (T) corrections for highly correlated systems [45].

This shows up in improved potential curves, particularly at long range and may also extend to

improved energetic and structural properties at equilibrium in problematical cases. It will be

some time before sufficient testing on the new (2) corrections has been done to permit a general

assessment of the performance of these methods. However, they are clearly very promising, and

for this reason they are available in Q-Chem.

5.7.3 Job Control Options

The evaluation of a non iterative (T) or (2) correction after a coupled–cluster singles and doubles

level calculation (either CCSD, QCISD or OD) is controlled by the correlation keyword, and the

specification of any frozen orbitals via N FROZEN CORE (and possibly N FROZEN VIRTUAL).

There is only one additional job control option. For the (2) correction, it is possible to apply

the frozen core approximation in the reference coupled cluster calculation, and then correlate all

orbitals in the (2) correction. This is controlled by CC INCL CORE CORR, described below.

The default is to include core and core–valence correlation automatically in the CCSD(2) or OD(2)

correction, if the reference CCSD or OD calculation was performed with frozen core orbitals. The

reason for this choice is that core correlation is economical to include via this method (the main

cost increase is only linear in the number of core orbitals), and such effects are important to

account for in accurate calculations. This option should be made false if a job with explicitly

frozen core orbitals is desired. One good reason for freezing core orbitals in the correction is if

the basis set is physically inappropriate for describing core correlation (e.g., standard Pople basis

sets, and Dunning cc–pVxZ basis sets are designed to describe valence–only correlation effects).

Another good reason is if a direct comparison is desired against another method such as CCSD(T)

which is always used in the same orbital window as the CCSD reference.

CC INCL CORE CORR
Whether to include the correlation contribution from frozen core orbitals in non

iterative (2) corrections, such as OD(2) and CCSD(2).
TYPE:

LOGICAL

DEFAULT:

TRUE

OPTIONS:

TRUE/FALSE

RECOMMENDATION:
Use default unless no core–valence or core correlation is desired (e.g., for compari-

son with other methods or because the basis used cannot describe core correlation).

5.7.4 Example

Example 5.8 Two jobs that compare the correlation energy calculated via the standard CCSD(T)
method with the new CCSD(2) approximation, both using the frozen core approximation. This
requires that CC INCL CORE CORR must be specified as FALSE in the CCSD(2) input.

$molecule

0 2
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O

H O 0.97907

$end

$rem

CORRELATION ccsd(t)

BASIS cc-pvtz

N_FROZEN_CORE fc

$end

@@@

$molecule

read

$end

$rem

CORRELATION ccsd(2)

BASIS cc-pvtz

N_FROZEN_CORE fc

CC_INCL_CORE_CORR false

$end

5.8 Coupled Cluster Active Space Methods

5.8.1 Introduction

Electron correlation effects can be qualitatively divided into two classes. The first class is static

or nondynamical correlation: long wavelength low–energy correlations associated with other elec-

tron configurations that are nearly as low in energy as the lowest energy configuration. These

correlation effects are important for problems such as homolytic bond breaking, and are the hard-

est to describe because by definition the single configuration Hartree–Fock description is not a

good starting point. The second class is dynamical correlation: short wavelength high–energy

correlations associated with atomic-like effects. Dynamical correlation is essential for quantitative

accuracy, but a reasonable description of static correlation is a prerequisite for a calculation being

qualitatively correct.

In the methods discussed in the previous several subsections, the objective was to approximate

the total correlation energy. However, in some cases, it is useful to instead directly model the

nondynamical and dynamical correlation energies separately. The reasons for this are pragmatic:

with approximate methods, such a separation can give a more balanced treatment of electron

correlation along bond–breaking coordinates, or reaction coordinates that involve biradicaloid

intermediates. The nondynamical correlation energy is conveniently defined as the solution of

the Schrödinger equation within a small basis set composed of valence bonding, antibonding and

lone pair orbitals: the so–called full valence active space. Solved exactly, this is the so-called full

valence complete active space SCF (CASSCF) [48], or equivalently, the fully optimized reaction

space (FORS) method [49].

Full valence CASSCF and FORS involve computational complexity which increases exponentially

with the number of atoms, and is thus unfeasible beyond systems of only a few atoms, unless

the active space is further restricted on a case–by–case basis. Q-Chem includes two relatively

economical methods that directly approximate these theories using a truncated coupled–cluster

doubles wave function with optimized orbitals [50]. They are active space generalizations of the

OD and QCCD methods discussed previously in Sections 5.6.3 and 5.6.4, and are discussed in the

following two subsections. By contrast with the exponential growth of computational cost with

problem size associated with exact solution of the full valence CASSCF problem, these cluster
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approximations have only 6th order growth of computational cost with problem size, while often

providing useful accuracy.

The full valence space is a well–defined theoretical chemical model. For these active space coupled–

cluster doubles methods, it consists of the union of valence levels that are occupied in the single

determinant reference, and those that are empty. The occupied levels that are to be replaced can

only be the occupied valence and lone pair orbitals, whose number is defined by the sum of the

valence electron counts for each atom (i.e., 1 for H, 2 for He, 1 for Li, etc.). At the same time, the

empty virtual orbitals to which the double substitutions occur are restricted to be empty (usually

antibonding) valence orbitals. Their number is the difference between the number of valence

atomic orbitals, and the number of occupied valence orbitals given above. This definition (the full

valence space) is the default when either of the “valence” active space methods are invoked (VOD

or VQCCD)

There is also a second useful definition of a valence active space, which we shall call the 1:1 or

perfect pairing active space. In this definition, the number of occupied valence orbitals remains

the same as above. The number of empty correlating orbitals in the active space is defined as

being exactly the same number, so that each occupied orbital may be regarded as being associated

1:1 with a correlating virtual orbital. In the water molecule, for example, this means that the lone

pair electrons as well as the bond-orbitals are correlated. Generally the 1:1 active space recovers

more correlation for molecules dominated by elements on the right of the periodic table, while the

full valence active space recovers more correlation for molecules dominated by atoms to the left of

the periodic table.

If you wish to specify either the 1:1 active space as described above, or some other choice of active

space based on your particular chemical problem, then you must specify the numbers of active

occupied and virtual orbitals. This is done via the standard “window options”, documented earlier

in the Chapter.

Finally we note that the entire discussion of active spaces here leads only to specific numbers

of active occupied and virtual orbitals. The orbitals that are contained within these spaces are

optimized by minimizing the trial energy with respect to all the degrees of freedom previously dis-

cussed: the substitution amplitudes, and the orbital rotation angles mixing occupied and virtual

levels. In addition, there are new orbital degrees of freedom to be optimized to obtain the best

active space of the chosen size, in the sense of yielding the lowest coupled–cluster energy. Thus

rotation angles mixing active and inactive occupied orbitals must be varied until the energy is sta-

tionary. Denoting inactive orbitals by primes and active orbitals without primes this corresponds

to satisfying:

∂ECCD

∂θj
′
i

= 0 (5.37)

Likewise the rotation angles mixing active and inactive virtual orbitals must also be varied until

the coupled–cluster energy is minimized with respect to these degrees of freedom.

∂ECCD

∂θb′a
= 0 (5.38)

5.8.2 VOD and VOD(2) Methods

The VOD method is the active space version of the OD method described earlier in Section 5.6.3.

Both energies and gradients are available for VOD, so structure optimization is possible. There

are a few important comments to make about the usefulness of VOD. First, it is a method that is

capable of accurately treating problems that fundamentally involve 2 active electrons in a given



Chapter 5: Wavefunction–based Correlation Methods 114

local region of the molecule. It is therefore a good alternative for describing single bond–breaking,

or torsion around a double bond, or some classes of diradicals. However it often performs poorly for

problems where there is more than one bond being broken in a local region, with the non variational

solutions being quite possible. For such problems the newer VQCCD method is substantially more

reliable.

Assuming that VOD is a valid zero order description for the electronic structure, then a second

order correction, VOD(2), is available for energies only. VOD(2) is a version of OD(2) generalized

to valence active spaces. It permits more accurate calculations of relative energies by accounting

for dynamical correlation.

5.8.3 VQCCD

The VQCCD method is the active space version of the QCCD method described earlier in Section

5.6.3. Both energies and gradients are available for VQCCD, so that structure optimization is

possible. VQCCD is applicable to a substantially wider range of problems than the VOD method,

because the modified energy functional is not vulnerable to non variational collapse. Testing to

date suggests that it is capable of describing double bond breaking to similar accuracy as full

valence CASSCF, and that potential curves for triple bond–breaking are qualitatively correct,

although quantitatively in error by a few tens of kcal/mol. The computational cost scales in the

same manner with system size as the VOD method, albeit with a significantly larger prefactor.

5.8.4 Convergence Strategies and More Advanced Options

These optimized orbital coupled–cluster active space methods enable the use of the full valence

space for larger systems than is possible with conventional complete active space codes. However,

we should note at the outset that often there are substantial challenges in converging valence active

space calculations (and even sometimes optimized orbital coupled cluster calculations without an

active space). Active space calculations cannot be regarded as “routine” calculations in the same

way as SCF calculations, and often require a considerable amount of computational trial and error

to persuade them to converge. These difficulties are largely because of strong coupling between

the orbital degrees of freedom and the amplitude degrees of freedom, as well as the fact that the

energy surface is often quite flat with respect to the orbital variations defining the active space.

Being aware of this at the outset, and realizing that the program has nothing against you personally

is useful information for the uninitiated user of these methods. What the program does have, to

assist in the struggle to achieve a converged solution, are accordingly many convergence options,

fully documented in Appendix C. In this section, we describe the basic options and the ideas behind

using them as a starting point. Experience plays a critical role, however, and so we encourage you

to experiment with toy jobs that give rapid feedback in order to become proficient at diagnosing

problems.

If the default procedure fails to converge, the first useful option to employ is CC PRECONV T2Z,

with a value of between 10 and 50. This is useful for jobs in which the MP2 amplitudes are very

poor guesses for the converged cluster amplitudes, and therefore initial iterations varying only the

amplitudes will be beneficial:



Chapter 5: Wavefunction–based Correlation Methods 115

CC PRECONV T2Z
Whether to pre-converge the cluster amplitudes before beginning orbital optimiza-

tion in optimized orbital cluster methods.
TYPE:

INTEGER

DEFAULT:
0 (FALSE)

10 If CC RESTART, CC RESTART NO SCF or CC MP2NO GUESS are TRUE
OPTIONS:

0 No pre–convergence before orbital optimization.

n Up to n iterations in this pre–convergence procedure.
RECOMMENDATION:

Experiment with this option in cases of convergence failure.

Other options that are useful include those that permit some damping of step sizes, and modify

or disable the standard DIIS procedure. The main choices are as follows:

CC DIIS
Specify the version of Pulay’s Direct Inversion of the Iterative Subspace (DIIS)

convergence accelerator to be used in the coupled–cluster code.
TYPE:

INTEGER

DEFAULT:

0

OPTIONS:
0 Activates procedure 2 initially, and procedure 1 when gradients are smaller

than DIIS12 SWITCH.

1 Uses error vectors defined as differences between parameter vectors from

successive iterations. Most efficient near convergence.

2 Error vectors are defined as gradients scaled by square root of the

approximate diagonal Hessian. Most efficient far from convergence.
RECOMMENDATION:

DIIS1 can be more stable. If DIIS problems are encountered in the early stages of

a calculation (when gradients are large) try DIIS1.

CC DIIS START

Iteration number when DIIS is turned on. Set to a large number to disable DIIS.

TYPE:

INTEGER

DEFAULT:

3

OPTIONS:

n User–defined

RECOMMENDATION:
Occasionally DIIS can cause optimized orbital coupled–cluster calculations to di-

verge through large orbital changes. If this is seen, DIIS should be disabled.
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CC DOV THRESH
Specifies minimum allowed values for the coupled–cluster energy denominators.

Smaller values are replaced by this constant during early iterations only, so the

final results are unaffected, but initial convergence is improved when the guess is

poor.
TYPE:

INTEGER

DEFAULT:

2502 Corresponding to 0.25

OPTIONS:

abcde Integer code is mapped to abc× 10−de

RECOMMENDATION:

Increase to 0.5 or 0.75 for non convergent coupled–cluster calculations.

CC THETA STEPSIZE
Scale factor for the orbital rotation step size. The optimal rotation steps should

be approximately equal to the gradient vector.
TYPE:

INTEGER

DEFAULT:

100 Corresponding to 1.0

OPTIONS:
abcde Integer code is mapped to abc× 10−de

If the initial step is smaller than 0.5, the program will increase step

when gradients are smaller than the value of THETA GRAD THRESH,

up to a limit of 0.5.
RECOMMENDATION:

Try a smaller value in cases of poor convergence and very large orbital gradients.

For example, a value of 01001 translates to 0.1

An even stronger more–or–less last resort option permits iteration of the cluster amplitudes without

changing the orbitals:

CC PRECONV T2Z EACH
Whether to pre–converge the cluster amplitudes before each change of the orbitals

in optimized orbital coupled–cluster methods. The maximum number of iterations

in this pre–convergence procedure is given by the value of this parameter.
TYPE:

INTEGER

DEFAULT:

0 (FALSE)

OPTIONS:
0 No pre–convergence before orbital optimization.

n Up to n iterations in this pre–convergence procedure.
RECOMMENDATION:

A very slow last resort option for jobs that do not converge.

5.8.5 Examples

Example 5.9 Two jobs that compare the correlation energy of the water molecule with partially
stretched bonds, calculated via the two coupled–cluster active space methods, VOD, and VQCCD.
These are relatively “easy” jobs to converge, and may be contrasted with the next example, which
is not easy to converge. The orbitals are restricted.
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$molecule

0 1

O

H 1 r

H 1 r a

r = 1.5

a = 104.5

$end

$rem

CORRELATION vod

EXCHANGE hf

BASIS 6-31G

$end

@@@

$molecule

read

$end

$rem

CORRELATION vqccd

EXCHANGE hf

BASIS 6-31G

$end

Example 5.10 The water molecule with highly stretched bonds, calculated via the two coupled–
cluster active space methods, VOD, and VQCCD. These are “difficult” jobs to converge. The
convergence options shown permitted the job to converge after some experimentation (thanks due
to Ed Byrd for this!). The difficulty of converging this job should be contrasted with the previous
example where the bonds were less stretched. In this case, the VQCCD method yields far better
results than VOD!.

$molecule

0 1

O

H 1 r

H 1 r a

r = 3.0

a = 104.5

$end

$rem

CORRELATION vod

EXCHANGE hf

BASIS 6-31G

SCF_CONVERGENCE 9

THRESH 12

CC_PRECONV_T2Z 50

CC_PRECONV_T2Z_EACH 50

CC_DOV_THRESH 7500

CC_THETA_STEPSIZE 3200

CC_DIIS_START 75

$end

@@@

$molecule

read
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$end

$rem

CORRELATION vqccd

EXCHANGE hf

BASIS 6-31G

SCF_CONVERGENCE 9

THRESH 12

CC_PRECONV_T2Z 50

CC_PRECONV_T2Z_EACH 50

CC_DOV_THRESH 7500

CC_THETA_STEPSIZE 3200

CC_DIIS_START 75

$end

5.9 Simplified Coupled–Cluster Methods Based on a Per-

fect Pairing Active Space.

Molecules where electron correlations are strong are characterized by small energy gaps between

the nominally occupied orbitals (that would comprise the Hartree–Fock wavefunction, for example)

and nominally empty orbitals. Examples include so–called diradicaloid molecules [51], or molecules

with partly broken chemical bonds (and thus some transition structures). Because the energy gap

is small, other electron configurations apart from the reference determinant contribute to the

molecular wavefunction with considerable amplitude, and it is a significant error to omit them

from the wavefunction. Including all possible configurations is vast overkill, and it is common

to restrict the configurations that one generates to constructed not from all molecular orbitals,

but rather just from orbitals that are either “core” or “active”. In this section, we consider

just one type of active space, which is composed of two orbitals to represent each electron pair,

one nominally occupied (bonding or lone pair in character) and the other nominally empty, or

correlating (it is typically antibonding in character). This is usually called the perfect pairing

active space, and it clearly is well–suited to represent the bond–antibond correlations that are

associated with bond–breaking.

The exact quantum chemistry in this (or any other) active space is given by a Complete Active

Space SCF (CASSCF) calculation, whose exponential cost growth with molecule size makes it

prohibitive for systems with more than about 14 active orbitals. One well–defined coupled cluster

approximation to CASSCF is to include only double substitutions in the valence space, whose

orbitals are optimized. In the framework of conventional CC theory, this defines the valence

optimized doubles (VOD) model [50], which scales as O(N 6) (see Section 5.8.2). This is still too

expensive to readily apply to large molecules.

The methods described in this section bridge the gap between sophisticated but expensive coupled

cluster methods and inexpensive methods such as DFT, HF and MP2 theory that may be (and

indeed often are) inadequate for describing molecules that exhibit strong electron correlations such

as diradicals. The coupled cluster perfect pairing (PP) [52, 53], imperfect pairing (IP) [54] and

restricted coupled cluster (RCC) [55] models are local approximations to VOD that include only

a linear and quadratic number of double substitution amplitudes respectively. They are close in

spirit to generalized valence bond (GVB) type wavefunctions [56], because in fact they are all

coupled cluster models for GVB which share the same perfect pairing active space. We shall

therefore sometimes collectively refer to PP, IP and RCC as GVB methods in the remainder of

this section.
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To be specific, the coupled cluster PP wavefunction is written as:

|Ψ〉 = exp

(
nactive∑

i=1

tiâ
†
i∗â
†
ī∗âīâi

)
|Φ〉 (5.39)

where nactive is the number of active electrons, and the ti are the linear number of unknown cluster

amplitudes, corresponding to exciting the two electrons in the ith electron pair from their bonding

orbital pair to their antibonding orbital pair. In addition to ti, the core and active orbitals are

optimized as well to minimize the PP energy. The algorithm used for this is a slight modification

of the GDM method, described for SCF calculations in Section 4.6.4. Despite the simplicity of

the PP wavefunction, with only a linear number of correlation amplitudes, it is still a useful

theoretical model chemistry with which to explore highly correlated systems. This is because it is

exact for a single electron pair in the PP active space, and thus it is also exact for a collection of

non–interacting electron pairs in this active space. And molecules, after all, are simply collections

of interacting electron pairs! In practice PP on molecules recovers between 60% and 80% of the

correlation energy in its active space.

Cases where PP needs improvement include molecules with several strongly correlated electron

pairs that are all localized in the same region of space, and therefore involve significant inter–pair,

as well as intra–pair correlations. For this purpose, we have the IP and RCC wavefunctions. The

corresponding wavefunction expression for the IP and RCC wavefunctions includes an additional

quadratic number of cluster amplitudes, tij that describes the correlation of an electron in the ith

pair with an electron in the jth pair. IP and RCC are virtually identical physically. Generally

IP should be used unless bonds are being completely broken with restricted orbitals, in which

case RCC is preferred as it has been constructed to eliminate the tendency of restricted coupled

cluster methods to become non–variational in the dissociation limit. IP and RCC typically recover

between 80% and 95% of the correlation energy in their perfect pairing active spaces.

In Q-Chem 3.0, PP, IP and RCC are implemented with a new resolution of the identity (RI)

algorithm that makes them computationally very efficient [57, 58]. The PP model is available

with restricted and unrestricted orbitals, while the IP and RCC models are only available with

restricted orbitals (work on an unrestricted implementation is in progress). They can be ap-

plied to systems with more than 100 active electrons, and both energies and analytical gradients

are available. These methods are requested via the standard CORRELATION keyword, accord-

ing to CORRELATION = PP, CORRELATION = IP, and CORRELATION = RCC respectively. If

AUX BASIS is not specified, the calculation uses four–center two–electron integrals by default.

Much faster auxiliary basis algorithms (see 5.5 for an introduction), which are used for the cor-

relation energy (not the reference SCF energy), can be enabled by specifying a valid string for

AUX BASIS. The example below illustrates a simple IP calculation.

Example 5.11 Imperfect pairing with auxiliary basis set for geometry optimization.

$molecule

0 1

H

F 1 1.0

$end

$rem

JOBTYPE opt

CORRELATION ip

BASIS cc-pVDZ

AUX_BASIS rimp2-cc-pVDZ

% PURECART 11111

$end
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There are often considerable challenges in converging the orbital optimization associated with

these GVB–type calculations. The situation is somewhat analogous to SCF calculations but more

severe because there are more orbital degrees of freedom that affect the energy (for instance, mixing

occupied active orbitals amongst each other, mixing active virtuals with each other, mixing core

and active occupied, mixing active virtual and inactive virtual). Furthermore the energy changes

associated with many of these new orbital degrees of freedom are rather small and delicate. As a

consequence, in cases where the correlations are strong, these GVB–type jobs often require many

more iterations than the corresponding GDM calculations at the SCF level. This is a reflection

of the correlation model itself. To deal with convergence issues, a number of REM values are

available to customize the calculations, as listed below.

GVB ORB MAX ITER
Controls the number of orbital iterations allowed in GVB–CC calculations. Some

jobs, particularly unrestricted PP jobs can require 500–1000 iterations.
TYPE:

INTEGER

DEFAULT:

256

OPTIONS:

User–defined number of iterations.

RECOMMENDATION:
Default is typically adequate, but some jobs, particularly UPP jobs, can require

500–1000 iterations if converged tightly.

GVB ORB CONV
The GVB–CC wave function is considered converged when the root–mean–square

orbital gradient and orbital step sizes are less than 10−GVB ORB CONV. Adjust

THRESH simultaneously.
TYPE:

INTEGER

DEFAULT:

5

OPTIONS:

n User–defined

RECOMMENDATION:
Use 6 for PP(2) jobs or geometry optimizations. Tighter convergence (i.e. 7 or

higher) cannot always be reliably achieved.

GVB ORB SCALE

Scales the default orbital step size by n/1000.

TYPE:

INTEGER

DEFAULT:

1000 Corresponding to 100%

OPTIONS:

n User–defined, 0–1000

RECOMMENDATION:
Default is usually fine, but for some stretched geometries it can help with conver-

gence to use smaller values.
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GVB AMP SCALE
Scales the default orbital amplitude iteration step size by n/1000 for IP/RCC. PP

amplitude equations are solved analytically, so this parameter does not affect PP.
TYPE:

INTEGER

DEFAULT:

1000 Corresponding to 100%

OPTIONS:

n User-defined, 0–1000

RECOMMENDATION:
Default is usually fine, but in some highly–correlated systems it can help with

convergence to use smaller values.

GVB RESTART

Restart a job from previously–converged GVB–CC orbitals.

TYPE:

LOGICAL

DEFAULT:

FALSE

OPTIONS:

TRUE/FALSE

RECOMMENDATION:
Useful when trying to converge to the same GVB solution at slightly different

geometries, for example.

Another issue that a user of these methods should be aware of is the fact that there is a multiple

minimum challenge associated with PP,IP and RCC calculations. In SCF calculations it is some-

times possible to converge to more than one set of orbitals that satisfy the SCF equations at a

given geometry. The same problem can arise in GVB calculations, and based on our experience

to date, the problem in fact is more commonly encountered in GVB calculations than in SCF

calculations. A user may therefore want to (or have to!) tinker with the initial guess used for the

calculations. One way is to set GVB RESTART = TRUE (see above), to replace the default initial

guess (the converged SCF orbitals which are then localized). Another way is to change the local-

ized orbitals that are used in the initial guess, which is controlled by the GVB LOCAL variable,

described below. Sometimes different localization criteria, and thus different initial guesses, lead

to different converged solutions.

GVB LOCAL

Sets the localization scheme used in the initial guess wave function.

TYPE:

INTEGER

DEFAULT:

2 Pipek–Mezey orbitals

OPTIONS:
1 Boys localized orbitals

2 Pipek–Mezey orbitals
RECOMMENDATION:

Different initial guesses can sometimes lead to different solutions. It can be helpful

to try both to ensure the global minimum has been found.

If the calculation is perfect pairing (CORRELATION = PP), it is possible to look for unrestricted

solutions in addition to restricted ones. Indeed there is no implementation of restricted open

shell orbitals for PP in Q-Chem 3.0. Unrestricted orbitals are the default for molecules with odd
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numbers of electrons, but can also be specified for molecules with even numbers of electrons. This

is accomplished by setting GVB UNRESTRICTED = TRUE. Given a restricted guess, this will,

however usually converge to a restricted solution anyway, so additional REM variables should be

specified to ensure an initial guess that has broken spin symmetry. This can be accomplished by

using an unrestricted SCF solution as the initial guess, using the techniques described in Chapter

4. Alternatively a restricted set of guess orbitals can be explicitly symmetry broken just before

the calculation starts by using GVB GUESS MIX, which is described below.

GVB UNRESTRICTED

Controls restricted versus unrestricted PP jobs. Usually handled automatically.

TYPE:

LOGICAL

DEFAULT:

same value as UNRESTRICTED

OPTIONS:

TRUE/FALSE

RECOMMENDATION:
Set this variable explicitly only to do a UPP job from an RHF or ROHF initial

guess.

GVB GUESS MIX
Similar to SCF GUESS MIX, it breaks alpha–beta symmetry for UPP by mixing

the alpha HOMO and LUMO orbitals according to the user–defined fraction of

LUMO to add the HOMO. 100 corresponds to a 1:1 ratio of HOMO and LUMO

in the mixed orbitals.
TYPE:

INTEGER

DEFAULT:

0

OPTIONS:

n User–defined, 0 ≤ n ≤ 100

RECOMMENDATION:

25 often works well to break symmetry without overly impeding convergence.

Other REM variables relevant to GVB calculations are given below. It is possible to explicitly set

the number of active electron pairs using the GVB N PAIRS variable. The default is to make all

valence electrons active. Other reasonable choices are certainly possible. For instance all electron

pairs could be active (nactive = nβ). Or alternatively one could make only formal bonding electron

pairs active (nactive = NSTO−3G − nα). Or in some cases, one might want only the most reactive

electron pair to be active (nactive =1). Clearly making physically appropriate choices for this

variable is essential for obtaining physically appropriate results!
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GVB N PAIRS
Alternative to CC REST OCC and CC REST VIR for setting active space size in

GVB and valence coupled cluster methods.
TYPE:

INTEGER

DEFAULT:

PP active space (1 occ and 1 virt for each valence electron pair)

OPTIONS:

n user–defined

RECOMMENDATION:
Use default unless one wants to study a special active space. When using small

active spaces, it is important to ensure that the proper orbitals are incorporated

in the active space. If not, use the � reorder mo feature to adjust the SCF orbitals

appropriately.

GVB PRINT

Controls the amount of information printed during a GVB–CC job.

TYPE:

INTEGER

DEFAULT:

0

OPTIONS:

n User–defined

RECOMMENDATION:

Should never need to go above 0 or 1.

The PP and IP models are potential replacements for HF theory as a zero order description of

electronic structure and can be used as a starting point for perturbation theory. They neglect

all correlations that involve electron configurations with one or more orbitals that are outside the

active space. Physically this means that so–called “dynamical correlations”, which correspond

to atomic–like correlations involving high angular momentum virtual levels are neglected. This

means that the GVB models cannot be very accurate for describing energy differences which are

sensitive to this neglected correlation energy – for instance atomization energies. It is desirable

to correct them for this neglected correlation in a way that is similar to how the HF reference is

corrected via MP2 perturbation theory.

For this purpose, the leading (second order) correction to the PP model, termed PP(2) [59], has

been formulated and efficiently implemented for restricted and unrestricted orbitals (energy only).

PP(2) improves upon many of the worst failures of MP2 theory (to which it is analogous), such

as for open shell radicals. PP(2) also greatly improves relative energies relative to PP itself.

PP(2) is implemented using a resolution of the identity (RI) approach to keep the computational

cost manageable. This cost scales in the same 5th order way with molecular size as RI–MP2,

but with a pre–factor that is about 5 times larger. It is therefore vastly cheaper than CCSD or

CCSD(T) calculations which scale with the 6th and 7th powers of system size respectively. PP(2)

calculations are requested with CORRELATION = PP(2). Since the only available algorithm uses

auxiliary basis sets, it is essential to also provide a valid value for AUX BASIS to have a complete

input file.

The example below shows a PP(2) input file for the challenging case of the N2 molecule with a

stretched bond. For this reason a number of the non–standard options outlined earlier for orbital

convergence are enabled here. First, this case is an unrestricted calculation on a molecule with an

even number of electrons, and so it is essential to break the alpha–beta spin symmetry in order to

find an unrestricted solution. Second, we have chosen to leave the lone pairs uncorrelated, which
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is accomplished by specifying GVB N PAIRS.

Example 5.12 A non–standard PP(2) calculation. UPP(2) for stretched N2 with only 3 corre-
lating pairs Try Boys localization scheme for initial guess.

$molecule

0 1

N

N 1 1.65

$end

$rem

UNRESTRICTED true

CORRELATION pp(2)

EXCHANGE hf

BASIS cc-pvdz

AUX_BASIS rimp2-cc-pvdz must use RI with PP(2)

% PURECART 11111

SCF_GUESS_MIX 10 mix SCF guess 100{\%}

GVB_GUESS_MIX 25 mix GVB guess 25{\%} also!

GVB_N_PAIRS 3 correlate only 3 pairs

GVB_ORB_CONV 6 tighter convergence

GVB_LOCAL 1 use Boys initial guess

$end

We have already mentioned a few issues associated with GVB calculations: the neglect of dynamic

correlation (which can be remedied with PP(2)), the convergence challenges and the multiple

minimum issues. Another weakness of these GVB methods is occasional symmetry–breaking

artifacts that are a consequence of the limited number of retained pair correlation amplitudes. For

example, benzene in the PP approximation prefers D3h symmetry over D6h by 3 kcal/mol (with a

2˚ distortion), while in IP, this difference is reduced to 0.5 kcal/mol and less than 1˚ [54]. Likewise

the allyl radical breaks symmetry in the unrestricted PP model [53], although to a lesser extent

than in restricted open shell HF. Another occasional weakness is the limitation to the perfect

pairing active space, which is not necessarily appropriate for molecules with expanded valence

shells, such as in some transition metal compounds (e.g. expansion from 4s3d into 4s4p3d) or

possibly hypervalent molecules (expansion from 3s3p into 3s3p3d). The singlet strongly orthogonal

geminal method (see the next Section) is capable of dealing with expanded valence shells and could

be used for such cases. The perfect pairing active space is satisfactory for most organic and first

row inorganic molecules.

To summarize, while these GVB methods are powerful and can yield much insight when used

properly, they do have enough pitfalls that they should not be considered true “black box” meth-

ods.

5.10 Geminal models

5.10.1 Reference wavefunction

Computational models that use single reference wavefunction describe molecules in terms of in-

dependent electrons interacting via mean Coulomb and exchange fields. It is natural to improve

this description by using correlated electron pairs, or geminals, as building blocks for molecular

wavefunctions. Requirements of computational efficiency and size consistency constrain geminals

to have Sz = 0 [60], with each geminal spanning its own subspace of molecular orbitals [61]. Gem-

inal wavefunctions were introduced into computational chemistry by Hurley, Lennard–Jones, and

Pople [62]. An excellent review of the history and properties of geminal wavefunctions is given by

Surjan [63].
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We implement a size consistent model chemistry based on Singlet type Strongly orthogonal Gemi-

nals (SSG). In SSG, the number of molecular orbitals in each singlet electron pair is an adjustable

parameter chosen to minimize total energy. Open shell orbitals remain uncorrelated. The SSG

wavefunction is computed by setting SSG � rem variable to 1. Both spin–restricted (RSSG) and

spin–unrestricted (USSG) versions are available, chosen by the UNRESTRICTED � rem variable.

The wavefunction has the form

ΨSSG = Â
[
ψ1(r1, r2) . . . ψnβ (r2nβ−1, r2nβ )φi(r2nβ+1) . . . φj(rnβ+nα)

]

ψa(r1, r2) =
∑

k∈A

DA
i√
2

[φk(r1)φ̄k(r2)− φk(r2)φ̄k(r1)] (5.40)

φk(r1) =
∑

λ

Ckλχλ(r1)

φ̄k(r1) =
∑

λ

C̄kλχλ(r1)

with the coefficients C, D, and subspaces A chosen to minimize the energy

ESSG =
〈ΨSSG|Ĥ |ΨSSG〉
〈ΨSSG|ΨSSG〉

(5.41)

evaluated with the exact hamiltonian Ĥ. A constraint C̄kλ = Ckλ for all MO coefficients yields a

spin–restricted version of SSG.

SSG model can use any orbital–based initial guess. It is often advantageous to compute Hartree–

Fock orbitals and then read them as initial guess for SSG. The program distinguishes Hartree–

Fock and SSG initial guess wavefunctions, and in former case makes preliminary assignment of

individual orbital pairs into geminals. The verification of orbital assignments is performed every

ten wavefunction optimization steps, and the orbital pair is reassigned if total energy is lowered.

The convergence algorithm consists of combination of three types of minimization steps. The direct

minimization steps [64] seeks a minimum along the gradient direction, rescaled by the quantity

analogous to the orbital energy differences in SCF theory [60]. If the orbitals are nearly degenerate

or inverted, a perturbative re-optimization of single geminal is performed. Finally, new set of the

coefficients C and D is formed from a linear combination of previous iterations, in a manner similar

to DIIS algorithm [6,65]. The size of iterative subspace is controlled by the DIIS SUBSPACE SIZE

keyword.

After convergence is achieved, SSG reorders geminals based on geminal energy. The energy,

along with geminal expansion coefficients, is printed for each geminal. Presence of any but the

leading coefficient with large absolute value (value of 0.1 is often used for the definition of “large”)

indicates the importance of electron correlation in the system. The Mulliken population analysis

is also performed for each geminal, which enables easy assignment of geminals into such chemical

objects as core electron pairs, chemical bonds, and lone electron pairs.

As an example, consider the sample calculation of ScH molecule with 6-31G basis set at the exper-

imental bond distance of 1.776 Å. In its singlet ground state the molecule has 11 geminals. Nine

of them form core electrons on Sc. Two remaining geminals are:

Geminal 10 E = -1.342609

0.99128 -0.12578 -0.03563 -0.01149 -0.01133 -0.00398

Geminal 11 E = -0.757086

0.96142 -0.17446 -0.16872 -0.12414 -0.03187 -0.01227 -0.01204 -0.00435 -0.00416 -0.00098
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Mulliken population analysis shows that geminal 10 is delocalized between Sc and H, indicat-

ing a bond. It is moderately correlated, with second expansion coefficient of a magnitude 0.126.

The geminal of highest energy is localized on Sc. It represents 4s2 electrons and describes their

excitation into 3d orbitals. Presence of three large expansion coefficients show that this effect

cannot be described within GVB framework [67].

5.10.2 Perturbative corrections

The SSG description of molecular electronic structure can be improved by perturbative descrip-

tion of missing inter–geminal correlation effects. We have implemented Epstein–Nesbet form of

perturbation theory [68, 69] that permits a balanced description of one– and two–electron contri-

butions to excited states’ energies in SSG model. This form of perturbation theory is especially

accurate for calculation of weak intermolecular forces. Also, two–electron [ij̄, jī] integrals are in-

cluded in the reference Hamiltonian in addition to intra–geminal [ij̄, ij̄] integrals that are needed

for reference wavefunction to be an eigenfunction of the reference Hamiltonian [70].

All perturbative contributions to the SSG(EN2) energy (second–order Epstein–Nesbet perturba-

tion theory of SSG wavefunction) are analyzed in terms of largest numerators, smallest denomi-

nators, and total energy contributions by the type of excitation. All excited states are subdivided

into dispersion–like with correlated excitation within one geminal coupled to the excitation within

another geminal, single, and double electron charge transfer. This analysis permits careful assess-

ment of the quality of SSG reference wavefunction. Formally, the SSG(EN2) correction can be

applied both to RSSG and USSG wavefunctions. Experience shows that molecules with broken or

nearly broken bonds may have divergent RSSG(EN2) corrections. USSG(EN2) theory is balanced,

with largest perturbative corrections to the wavefunction rarely exceeding 0.1 in magnitude.

SSG

Controls the calculation of the SSG wavefunction.

TYPE:

INTEGER

DEFAULT:

0

OPTIONS:
0 Do not compute the SSG wavefunction

1 Do compute the SSG wavefunction
RECOMMENDATION:

See also the UNRESTRICTED and DIIS SUBSPACE SIZE � rem variables.
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Chapter 6

Open-Shell and Excited State

Methods

6.1 General Excited State Features

As for ground state calculations, performing an adequate excited state calculation involves mak-

ing an appropriate choice of method and basis set. The development of effective approaches to

modeling electronic excited states has historically lagged behind advances in treating the ground

state. In part this is because of the much greater diversity in the character of the wave func-

tions for excited states, making it more difficult to develop broadly applicable methods without

molecule–specific or even state–specific specification of the form of the wave function. Recently,

however, a hierarchy of single–reference ab initio methods has begun to emerge for the treatment

of excited states. Broadly speaking, Q-Chem contains methods that are capable of giving quali-

tative agreement, and in many cases quantitative agreement with experiment for lower optically

allowed states. The situation is less satisfactory for states that involve two-electron excitations,

although even here reasonable results can sometimes be obtained. Moreover, some of the excited

state methods can be extended to treat open-shell wavefunctions, e.g. diradicals, ionized and

electron attachment states and more.

In excited state calculations, as for ground state calculations, the user must strike a compromise

between cost and accuracy. The first three main sections of this Chapter summarize Q-Chem’s

capabilities in three general classes of excited state methods:

� Single–electron wavefunction–based methods (Section 6.2). These are excited state treat-

ments of roughly the same level of sophistication as the Hartree–Fock ground state method,

in the sense that electron correlation is essentially ignored. Single excitation configuration

interaction (CIS) is the workhorse method of this type. The spin-flip variant of CIS extends

it to diradicals.� Time–dependent density functional theory (TDDFT) (Section 6.3). TDDFT is the most

useful extension of density functional theory to excited states that has been developed so

far. For a cost that is little greater than the simple wavefunction methods such as CIS, a

significantly more accurate method results. TDDFT can be extended to treat di- and tri-

radicals and bond-breaking by adopting the spin-flip approach (see section 6.3.1 for details).� Wavefunction–based electron correlation treatments (Sections 6.4 and 6.5). Roughly speak-

ing, these are excited state analogs of the ground state wavefunction–based electron correla-

tion methods discussed in Chapter 5. They are more accurate than the methods of Section
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6.2, but also significantly more computationally expensive. These methods can also be ex-

tended to describe certain multi-configurational wavefunctions, for example, problematic

doublet radicals, diradicals, triradicals, and more.

In general, a basis set appropriate for a ground state density functional theory or a Hartree–Fock

calculation will be appropriate for describing valence excited states. However, many excited states

involve significant contributions from diffuse Rydberg orbitals, and, therefore, it is often advisable

to use basis sets that include additional diffuse functions. The 6-31+G* basis set is a reasonable

compromise for the low–lying valence excited states of many organic molecules. To describe true

Rydberg excited states, Q-Chem allows the user to add two or more sets of diffuse functions (see

Chapter 7). For example the 6-311(2+)G* basis includes two sets of diffuse functions on heavy

atoms and is generally adequate for description of both valence and Rydberg excited states.

Q-Chem supports four main types of excited state calculation:

� Vertical absorption spectrum

This is the calculation of the excited states of the molecule at the ground state geometry, as

appropriate for absorption spectroscopy. The methods supported for performing a vertical

absorption calculation are: CIS, RPA, XCIS, CIS(D), EOM–CCSD and EOM–OD, each of

which will be discussed in turn.� Visualization

It is possible to visualize the excited states either by attachment–detachment density anal-

ysis (available for CIS only) or by plotting the transition density (see � plots descriptions in

Chapters 3 and 10). Transition densities can be calculated for CIS and EOM-CCSD meth-

ods. The theoretical basis of the attachment–detachment density analysis is discussed in

Section 6.4 of this Chapter. In addition Dyson orbitals can be calculated and plotted for the

ionization from the ground and electronically excited states for the CCSD and EOM-CCSD

wavefunctions.� Excited state optimization

Optimization of the geometry of stationary points on excited state potential energy surfaces

is valuable for understanding the geometric relaxation that occurs between the ground and

excited state. Analytic first derivatives are available for UCIS, RCIS and EOM-CCSD,

EOM-OD excited state optimizations may also be performed using finite difference methods,

however, these can be very time-consuming to compute.� Optimization of the crossings between potential energy surfaces

Seams between potential energy surfaces can be located and optimized by using analytic

gradients within CCSD and EOM-CCSD formalisms.� Properties

Properties such as transition dipoles, dipole moments, spatial extent of electron densities

and 〈S2〉 values can be computed for EOM-CCSD and EOM-OD wavefunctions.� Excited state vibrational analysis

Given an optimized excited state geometry, Q-Chem can calculate the force constants at

the stationary point to predict excited state vibrational frequencies. Stationary points can

also be characterized as minima, transition structures or nth–order saddle points. Analytic

excited state vibrational analyses can only be performed using the UCIS and RCIS meth-

ods, for which efficient analytical second derivatives are available. EOM-CCSD frequencies

are also available using analytic first derivatives and second derivatives obtained from fi-

nite difference methods. EOM-OD frequencies are only available through finite difference

calculations.
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6.2 Non–Correlated Wavefunction Methods

Q-Chem includes several excited state methods which do not incorporate correlation: CIS, XCIS

and RPA. These methods are sufficiently inexpensive that calculations on large molecules are

possible, and are roughly comparable to the HF treatment of the ground state in terms of perfor-

mance. They tend to yield qualitative rather than quantitative insight. Excitation energies tend

to exhibit errors on the order of an electron volt, consistent with the neglect of electron correlation

effects, which are generally different in the ground state and the excited state.

6.2.1 Single Excitation Configuration Interaction (CIS)

The derivation of the CI–singles [3,4] energy and wave function begins by selecting the HF single-

determinant wave function as reference for the ground state of the system

ΨHF =
1√
n!

det {χ1χ2 · · ·χiχj · · ·χn} (6.1)

where n is the number of electrons, and the spin orbitals

χi =
N∑

µ

cµiφµ (6.2)

are expanded in a finite basis of N atomic orbital basis functions. Molecular orbital coefficients

{cµi} are usually found by SCF procedures which solve the Hartree–Fock equations

FC = εSC (6.3)

where S is the overlap matrix, C is the matrix of molecular orbital coefficients, ε is a diagonal

matrix of orbital eigenvalues and F is the Fock matrix with elements

Fµυ = Hµυ +
∑

λσ

∑

i

cµicυi (µλ || υσ) (6.4)

involving the core Hamiltonian and the anti-symmetrized two–electron integrals

(µν||λσ) =

∫ ∫
φµ(r1)φν(r2) (1/r12) [φλ(r1)φσ(r2)− φλ(r2)φσ(r1)] dr1dr2 (6.5)

On solving (6.3), the total energy of the ground state single determinant can be expressed as

EHF =
∑

µυ

PHF
µυ Hµυ +

1

2

∑

µυλσ

PHF
µυ P

HF
λσ (µλ || υσ) + Vnuc (6.6)

where PHF is the HF density matrix and Vnuc is the nuclear repulsion energy.

Equation (6.1) represents only one of many possible determinants made from orbitals of the system;

there are in fact n(N − n) possible singly substituted determinants constructed by replacing an

orbital occupied in the ground state (i, j, k, . . .) with an orbital unoccupied in the ground state

(a, b, c, . . .). Such wave functions and energies can be written

Ψa
i =

1√
n!

det {χ1χ2 · · ·χaχj · · ·χn} (6.7)
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Eia = EHF + εa − εi − (ia || ia) (6.8)

where we have introduced the anti-symmetrized two–electron integrals in the molecular orbital

basis

(pq || rs) =
∑

µυλσ

cµpcυqcλrcσs (µλ || υσ) (6.9)

These singly excited wave functions and energies could be considered crude approximations to the

excited states of the system. However, determinants of the form (6.7) are deficient in that they:

� do not yield pure spin states� resemble more closely ionization rather than excitation� are not appropriate for excitation into degenerate states

These deficiencies can be partially overcome by representing the excited state wavefunction as a

linear combination of all possible singly excited determinants

ΨCIS =
∑

ia

aai Ψa
i (6.10)

where the coefficients {aia} can be obtained by diagonalizing the many–electron Hamiltonian, A,

in the space of all single substitutions, where the matrix elements are

Aia,jb = 〈Ψa
i |H

∣∣Ψb
j

〉

= [EHF + εa − εj ] δijδab − (ja || ib) (6.11)

By Brillouin’s theorem single substitutions do not interact directly with a reference HF deter-

minant, so the resulting eigenvectors from the CIS excited state represent a treatment roughly

comparable to that of the HF ground state. The excitation energy is simply the difference between

HF ground state energy and CIS excited state energies, and the eigenvectors of A correspond to

the amplitudes of the single–electron promotions.

CIS calculations can be performed in Q-Chem using restricted (RCIS) [3,4], unrestricted (UCIS),

or restricted open shell (ROCIS) [5] spin orbitals.

6.2.2 Random Phase Approximation (RPA)

The Random Phase Approximation (RPA) [6,7] is an alternative to CIS for uncorrelated calcula-

tions of excited states. It offers some advantages for computing oscillator strengths, and is roughly

comparable in accuracy to CIS for excitation energies to singlet states, but is inferior for triplet

states. RPA energies are non–variational.

6.2.3 Extended CIS (XCIS)

The motivation for the extended CIS procedure (XCIS) [8] stems from the fact that ROCIS and

UCIS are less effective for radicals that CIS is for closed shell molecules. Using the attachment–

detachment density analysis procedure [9], the failing of ROCIS and UCIS methodologies for the

nitromethyl radical was traced to the neglect of a particular class of double substitution which
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involves the simultaneous promotion of an α spin electron from the singly occupied orbital and

the promotion of a β spin electron into the singly occupied orbital. In particular, the spin adapted

configurations

∣∣∣Ψ̃a
i (1)

〉
=

1√
6

(
Ψā
ī −Ψa

i

)
+

2√
6

Ψap̄
pī

(6.12)

(where a, b, c, . . . are virtual orbitals, i, j, k, . . . are occupied orbitals and, p, q, r, . . . are singly

occupied orbitals) are of crucial importance and , it is quite likely that similar excitations are also

very significant in other radicals of interest.

The XCIS proposal, a more satisfactory generalization of CIS to open shell molecules, is to simul-

taneously include a restricted class of double substitutions similar to those in (6.12). To illustrate

this, consider the resulting orbital spaces of an ROHF calculation: doubly occupied (d), singly

occupied (s) and virtual (v). From this starting point we can distinguish three types of single

excitations of the same multiplicity as the ground state: d→ s, s→ v and d→ v. Thus, the spin

adapted ROCIS wave function is

|ΨROCIS〉 =
1√
2

dv∑

ia

aai
(
Ψa
i + Ψā

ī

)
+

sv∑

pa

aapΨa
p +

ds∑

ip

ap̄
ī
Ψp̄
ī

(6.13)

The extension of CIS theory to incorporate higher excitations maintains the ROHF as the ground

state reference and adds terms to the ROCIS wave function similar to that of equation (6.13), as

well as those where the double excitation occurs through different orbitals in the α and β space

|ΨXCIS〉 = 1√
2

dv∑
ia

aai
(
Ψa
i + Ψā

ī

)
+

sv∑
pa
aapΨa

p +
ds∑
ip

ap̄
ī
Ψp̄
ī
+

dvs∑
iap

ãai (p)Ψ̃a
i (p) +

dv,ss∑
ia,p6=q

aaq̄
pī

Ψaq̄
pī

(6.14)

XCIS is defined only from a restricted open shell Hartree–Fock ground state reference, as it would

be difficult to uniquely define singly occupied orbitals in a UHF wave function. In addition, β

unoccupied orbitals, through which the spin–flip double excitation proceeds, may not match the

half–occupied α orbitals in either character or even symmetry.

For molecules with closed shell ground states, both the HF ground and CIS excited states emerge

from diagonalization of the Hamiltonian in the space of the HF reference and singly excited

substituted configuration state functions. The XCIS case is different because the restricted class

of double excitations included could mix with the ground state and lower its energy. This mixing

is avoided to maintain the size consistency of the ground state energy.

With the inclusion of the restricted set of doubles excitations in the excited states, but not in

the ground state, it could be expected that some fraction of the correlation energy be recovered,

resulting in anomalously low excited state energies. However, the fraction of the total number

of doubles excitations included in the XCIS wave function is very small and those introduced

cannot account for the pair correlation of any pair of electrons. Thus, the XCIS procedure can be

considered one that neglects electron correlation.

The computational cost of XCIS is approximately four times greater than CIS and ROCIS, and

its accuracy for open shell molecules is generally comparable to that of the CIS method for closed

shell molecules. In general, it achieves qualitative agreement with experiment. XCIS is available

for doublet and quartet excited states beginning from a doublet ROHF treatment of the ground

state, for excitation energies only.
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6.2.4 Basic Job Control Options

See also JOBTYPE, BASIS, EXCHANGE and CORRELATION. EXCHANGE must be HF and

CORRELATION must be NONE. The minimum input required above a ground state HF cal-

culation is to specify a nonzero value for CIS N ROOTS.

CIS N ROOTS

Sets the number of CI-Singles (CIS) excited state roots to find

TYPE:

INTEGER

DEFAULT:

0 Do not look for any excited states

OPTIONS:

n n > 0 Looks for n CIS excited states

RECOMMENDATION:

None

CIS SINGLETS

Solve for singlet excited states in RCIS calculations (ignored for UCIS)

TYPE:

LOGICAL

DEFAULT:

TRUE

OPTIONS:
TRUE Solve for singlet states

FALSE Do not solve for singlet states.
RECOMMENDATION:

None

CIS TRIPLETS

Solve for triplet excited states in RCIS calculations (ignored for UCIS)

TYPE:

LOGICAL

DEFAULT:

TRUE

OPTIONS:
TRUE Solve for triplet states

FALSE Do not solve for triplet states.
RECOMMENDATION:

None

RPA

Do an RPA calculation in addition to a CIS calculation

TYPE:

LOGICAL

DEFAULT:

False

OPTIONS:
False Do not do an RPA calculation

True Do an RPA calculation.
RECOMMENDATION:

None
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XCIS

Do an XCIS calculation in addition to a CIS calculation

TYPE:

LOGICAL

DEFAULT:

False

OPTIONS:
False Do not do an XCIS calculation

True Do an XCIS calculation (requires ROHF ground state).
RECOMMENDATION:

None

6.2.5 Customization
N FROZEN CORE

Controls the number of frozen core orbitals

TYPE:

INTEGER

DEFAULT:

0 No frozen core orbitals

OPTIONS:
FC Frozen core approximation

n Freeze n core orbitals
RECOMMENDATION:

There is no computational advantage to using frozen core for CIS, and analytical

derivatives are only available when no orbitals are frozen. It is helpful when

calculating CIS(D) corrections (see Sec. 6.4).

N FROZEN VIRTUAL

Controls the number of frozen virtual orbitals.

TYPE:

INTEGER

DEFAULT:

0 No frozen virtual orbitals

OPTIONS:

n Freeze n virtual orbitals

RECOMMENDATION:
There is no computational advantage to using frozen virtuals for CIS, and analyt-

ical derivatives are only available when no orbitals are frozen.

MAX CIS CYCLES

Maximum number of CIS iterative cycles allowed

TYPE:

INTEGER

DEFAULT:

30

OPTIONS:

n User–defined number of cycles

RECOMMENDATION:

Default is usually sufficient.
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CIS CONVERGENCE

CIS is considered converged when error is less than 10−CIS CONVERGENCE

TYPE:

INTEGER

DEFAULT:

6 CIS convergence threshold 10−6

OPTIONS:

n Corresponding to 10−n

RECOMMENDATION:

None

CIS RELAXED DENSITY

Use the relaxed CIS density for attachment/detachment density analysis

TYPE:

LOGICAL

DEFAULT:

False

OPTIONS:
False Do not use the relaxed CIS density in analysis

True Use the relaxed CIS density in analysis.
RECOMMENDATION:

None

CIS GUESS DISK

Read the CIS guess from disk (previous calculation)

TYPE:

LOGICAL

DEFAULT:

False

OPTIONS:
False Create a new guess

True Read the guess from disk
RECOMMENDATION:

Requires a guess from previous calculation.

CIS GUESS DISK TYPE

Determines the type of guesses to be read from disk

TYPE:

INTEGER

DEFAULT:

Nil

OPTIONS:
0 Read triplets only

1 Read triplets and singlets

2 Read singlets only
RECOMMENDATION:

Must be specified if CIS GUESS DISK is TRUE.
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6.2.6 CIS Analytical Derivatives

While CIS excitation energies are relatively inaccurate, with errors of the order of 1eV, CIS excited

state properties, such as structures and frequencies, are much more useful. This is very similar

to the manner in which ground state Hartree–Fock (HF) structures and frequencies are much

more accurate than HF relative energies. Generally speaking, for low–lying excited states, it

is expected that CIS vibrational frequencies will be systematically 10% higher or so relative to

experiment [10–12]. If the excited states are of pure valence character, then basis set requirements

are generally similar to the ground state. Excited states with partial Rydberg character require

the addition of one or preferably two sets of diffuse functions.

Q-Chem includes efficient analytical first and second derivatives of the CIS energy [13,14], to yield

analytical gradients, excited state vibrational frequencies, force constants, polarizabilities, and

infrared intensities. Their evaluation is controlled by two � rem variables, listed below. Analytical

gradients can be evaluated for any job where the CIS excitation energy calculation itself is feasible.

JOBTYPE

Specifies the type of calculation

TYPE:

STRING

DEFAULT:

SP

OPTIONS:
SP Single point energy

FORCE Analytical Force calculation

OPT Geometry Minimization

TS Transition Structure Search

FREQ Frequency Calculation
RECOMMENDATION:

None

CIS STATE DERIV

Sets CIS state for excited state optimizations and vibrational analysis

TYPE:

INTEGER

DEFAULT:

0 Does not select any of the excited states

OPTIONS:

n Select the nth state.

RECOMMENDATION:

Check to see that the states do no change order during an optimization

The semi–direct method [8] used to evaluate the frequencies is generally similar to the semi–

direct method used to evaluate Hartree–Fock frequencies for the ground state. Memory and disk

requirements (see below) are similar, and the computer time scales approximately as the cube of

the system size for large molecules.

The main complication associated with running analytical CIS second derivatives is ensuring Q-

Chem has sufficient memory to perform the calculations. For most purposes, the defaults will

be adequate, but if a large calculation fails due to a memory error, then the following additional

information may be useful in fine tuning the input, and understanding why the job failed. Note

that the analytical CIS second derivative code does not currently support frozen core or virtual

orbitals (unlike Q-Chem’s MP2 code). Unlike MP2 calculations, applying frozen core/virtual
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orbital approximations does not lead to large computational savings in CIS calculations as all

computationally expensive steps are performed in the atomic basis.

The memory requirements for CIS (and HF) analytical frequencies are primarily extracted from

“C” memory, which is defined as

“C” memory = MEM TOTAL - MEM STATIC

“C” memory must be large enough to contain a number of arrays whose size is 3×NAtoms×N2
Basis

(NAtoms is the number of atoms and NBasis refers to the number of basis functions). The value

of the � rem variable MEM STATIC should be set sufficiently large to permit efficient integral

evaluation. If too large, it reduces the amount of “C” memory available. If too small, the job

may fail due to insufficient scratch space. For most purposes, a value of about 80 Mb is sufficient,

and by default MEM TOTAL is set to a very large number (large than physical memory on most

computers) and thus malloc (memory allocation) errors may occur on jobs where the memory

demands exceeds physical memory.

6.2.7 Examples

Example 6.1 A basic CIS excitation energy calculation on formaldehyde at the HF/6-31G*
optimized ground state geometry, which is obtained in the first part of the job. Above the first
singlet excited state, the states have Rydberg character, and therefore a basis with two sets of
diffuse functions is used.

$molecule

0 1

C

O 1 CO

H 1 CH 2 A

H 1 CH 2 A 3 D

CO = 1.2

CH = 1.0

A = 120.0

D = 180.0

$end

$rem

jobtype = opt

exchange = hf

basis = 6-31G*

$end

@@@

$molecule

read

$end

$rem

exchange = hf

basis = 6-311(2+)G*

cis_n_roots = 15 Do 15 states

cis_singlets = true Do do singlets

cis_triplets = false Don’t do Triplets

$end
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Example 6.2 An XCIS calculation of excited states of an unsaturated radical, the phenyl radical,
for which double substitutions make considerable contributions to low–lying excited states.

$comment

C6H5 phenyl radical C2v symmetry MP2(full)/6-31G* = -230.7777459

$end

$molecule

0 2

c1

x1 c1 1.0

c2 c1 rc2 x1 90.0

x2 c2 1.0 c1 90.0 x1 0.0

c3 c1 rc3 x1 90.0 c2 tc3

c4 c1 rc3 x1 90.0 c2 -tc3

c5 c3 rc5 c1 ac5 x1 -90.0

c6 c4 rc5 c1 ac5 x1 90.0

h1 c2 rh1 x2 90.0 c1 180.0

h2 c3 rh2 c1 ah2 x1 90.0

h3 c4 rh2 c1 ah2 x1 -90.0

h4 c5 rh4 c3 ah4 c1 180.0

h5 c6 rh4 c4 ah4 c1 180.0

rh1 = 1.08574

rh2 = 1.08534

rc2 = 2.67299

rc3 = 1.35450

rh4 = 1.08722

rc5 = 1.37290

tc3 = 62.85

ah2 = 122.16

ah4 = 119.52

ac5 = 116.45

$end

$rem

basis = 6-31+G*

exchange = hf

mem_static = 80

intsbuffersize = 15000000

scf_convergence = 8

cis_n_roots = 5

xcis = true

$end

Example 6.3 This example illustrates a CIS geometry optimization followed by a vibrational
frequency analysis on the lowest singlet excited state of formaldehyde. This n→ π∗ excited state
is non–planar, unlike the ground state. The optimization converges to a non-planar structure with
zero forces, and all frequencies real.

$comment

singlet n -> pi* state optimization and frequencies for formaldehyde

$end

$molecule

0 1

C

O 1 CO

H 1 CH 2 A

H 1 CH 2 A 3 D
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CO = 1.2

CH = 1.0

A = 120.0

D = 150.0

$end

$rem

jobtype = opt

exchange = hf

basis = 6-31+G*

cis_state_deriv = 1 Optimize state 1

cis_n_roots = 3 Do 3 states

cis_singlets = true Do do singlets

cis_triplets = false Don’t do Triplets

$end

@@@

$molecule

read

$end

$rem

jobtype = freq

exchange = hf

basis = 6-31+G*

cis_state_deriv = 1 Focus on state 1

cis_n_roots = 3 Do 3 states

cis_singlets = true Do do singlets

cis_triplets = false Don’t do Triplets

$end

6.3 Time–Dependent Density Functional Theory (TDDFT)

6.3.1 A Brief Introduction to TDDFT

Excited states may be obtained from density functional theory by time–dependent density func-

tional theory [15, 16], which calculates poles in the response of the ground state density to a

time–varying applied electric field. These poles are Bohr frequencies or excitation energies, and

are available in Q-Chem [17], together with the CIS–like Tamm–Dancoff approximation [18].

TDDFT is becoming very popular as a method for studying excited states because the computa-

tional cost is roughly similar to the simple CIS method (scaling as roughly the square of molecular

size), but a description of differential electron correlation effects is implicit in the method. The ex-

citation energies for low–lying valence excited states of molecules (below the ionization threshold,

or more conservatively, below the first Rydberg threshold) are often remarkably improved relative

to CIS, with an accuracy of roughly 0.1-0.3 eV eV being observed with either gradient corrected

or local density functionals.

However, standard density functionals do not yield a potential with the correct long–range Coulomb

tail (due to the so–called self–interaction problem), and therefore excited states which sample this

tail (for example diffuse Rydberg states, and some charge transfer excited states) are not given

accurately [19, 20]. Hence it is advisable to only employ TDDFT for low–lying valence excited

states that are below the first ionization potential of the molecule. This makes radical cations a

particularly favorable choice of system, as exploited in ref. [21]. TDDFT for low–lying valence

excited states of radicals is in general a remarkable improvement relative to CIS, including some
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states, that, when treated by wave function–based methods can involve a significant fraction of

double excitation character [17].

Standard TDDFT also does not yield a good description of static correlation effects (see section

5.8), because it is based on a single reference configuration of Kohn-Sham orbitals. Recently, a

new variation of TDDFT called spin–flip density functional theory (SFDFT) was developed by

Yihan Shao, Martin Head–Gordon and Anna Krylov to address this issue [26]. SFDFT is different

from standard TDDFT in two ways:

� The reference is a high-spine triplet (quartet) for a system with an even (odd) number of

electrons;� One electron is spin–flipped from an alpha Kohn–Sham orbital to a beta orbital during the

excitation.

SFDFT can describe the ground state as well as a few low–lying excited states, and has been

applied to bond–breaking processes, and di- and tri-radicals with degenerate or near–degenerate

frontier orbitals. See also section 6.5.8 for details on wavefunction–based spin–flip models.

6.3.2 TDDFT within a Reduced Single Excitation Space

Much of chemistry and biology occurs in solution or on surfaces. The molecular environment can

have a large effect on electronic structure and may change chemical behavior. Q-Chem is able

to compute excited states within a local region of a system through performing the TDDFT (or

CIS) calculation with a reduced single excitation subspace [22]. This allows the excited states

of a solute molecule to be studied with a large number of solvent molecules reducing the rapid

rise in computational cost. The success of this approach relies on there being only weak mixing

between the electronic excitations of interest and those omitted from the single excitation space.

For systems in which there are strong hydrogen bonds between solute and solvent, it is advisable

to include excitations associated with the neighboring solvent molecule(s) within the reduced

excitation space.

The reduced single excitation space is constructed from excitations between a subset of occupied

and virtual orbitals. These can be selected from an analysis based on Mulliken populations and

molecular orbital coefficients. For this approach the atoms that constitute the solvent needs to

be defined. Alternatively, the orbitals can be defined directly. The atoms or orbitals are specified

within a � solute block. These approach is implemented within the TDA and has been used to

study the excited states of formamide in solution [23], CO on the Pt(111) surface [24] and the

tryptophan chromophore within proteins [25].

6.3.3 Job Control for TDDFT

Input for time–dependent density functional theory calculations follows very closely the input

already described for the uncorrelated excited state methods described in the previous section (in

particular, see Section 6.2.4). There are several points to be aware of:

� The exchange and correlation functionals are specified exactly as for a ground state DFT

calculation, through EXCHANGE and CORRELATION.� If RPA is set to TRUE, a full TDDFT calculation will be performed. This is not the default.

The default is RPA = FALSE, which leads to a calculation employing the Tamm–Dancoff

approximation (TDA), which is usually a good approximation to full TDDFT.



Chapter 6: Open-Shell and Excited State Methods 143

� If CC SPIN FLIP is set to TRUE when performing a TDDFT calculation, a SFDFT calcula-

tion will also be performed. At present, SFDFT is only implemented within TDDFT/TDA

so RPA must be set to FALSE. Remember to set the spin multiplicity to 3 for systems with

an even–number of electrons (e.g., diradicals), and 4 for odd–number electron systems (e.g.,

triradicals).

TDDFT and TDDFT/TDA are both available only for excitation energies at present.

TRNSS

Controls whether reduced single excitation space is used

TYPE:

LOGICAL

DEFAULT:

FALSE Use full excitation space

OPTIONS:

TRUE Use reduced excitation space

RECOMMENDATION:

None

TRTYPE

Controls how reduced subspace is specified

TYPE:

INTEGER

DEFAULT:

1 Select orbitals localized on a set of atoms

OPTIONS:

2 Specify a set of orbitals

RECOMMENDATION:

None

N SOL

Specifies number of atoms or orbitals in $solute

TYPE:

INTEGER

DEFAULT:

No default

OPTIONS:

User defined

RECOMMENDATION:

None

CISTR PRINT

Controls level of output

TYPE:

LOGICAL

DEFAULT:

FALSE Minimal output

OPTIONS:

TRUE Increase output level

RECOMMENDATION:

None



Chapter 6: Open-Shell and Excited State Methods 144

CUTOCC

Specifies occupied orbital cutoff

TYPE:

INTEGER: CUTOFF=CUTOCC/100

DEFAULT:

50

OPTIONS:

0-200

RECOMMENDATION:

None

CUTVIR

Specifies virtual orbital cutoff

TYPE:

INTEGER: CUTOFF=CUTVIR/100

DEFAULT:

0 No truncation

OPTIONS:

0-100

RECOMMENDATION:

None

6.3.4 Example

Example 6.4 This example shows two jobs which request variants of time–dependent density
functional theory calculations. The first job, using the default value of RPA = FALSE, performs
TDDFT in the Tamm–Dancoff approximation (TDA). The second job, with RPA = TRUE performs
a both TDA and full TDDFT calculations.

$comment

methyl peroxy radical

TDDFT/TDA and full TDDFT with 6-31+G*

$end

$molecule

0 2

C 1.00412 -0.18045 0.00000

O -0.24600 0.59615 0.00000

O -1.31237 -0.23026 0.00000

H 1.81077 0.56720 0.00000

H 1.03665 -0.80545 -0.90480

H 1.03665 -0.80545 0.90480

$end

$rem

EXCHANGE b

CORRELATION lyp

CIS_N_ROOTS 5

BASIS 6-31+G*

SCF_CONVERGENCE 7

$end

@@@

$molecule
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read

$end

$rem

EXCHANGE b

CORRELATION lyp

CIS_N_ROOTS 5

RPA true

BASIS 6-31+G*

SCF_CONVERGENCE 7

$end

Example 6.5 This example shows a calculation of the excited states of a formamide–water
complex within a reduced excitation space of the orbitals located on formamide

$comment

formamide--water

TDDFT/TDA in reduced excitation space

$end

$molecule

0 1

H 1.13 0.49 -0.75

C 0.31 0.50 -0.03

N -0.28 -0.71 0.08

H -1.09 -0.75 0.67

H 0.23 -1.62 -0.22

O -0.21 1.51 0.47

O -2.69 1.94 -0.59

H -2.59 2.08 -1.53

H -1.83 1.63 -0.30

$end

$rem

EXCHANGE b3lyp

CIS_N_ROOTS 10

BASIS 6-31++G**

TRNSS TRUE

TRTYPE 1

CUTOCC 60

CUTVIR 40

CISTR_PRINT TRUE

$end

$solute

1

2

3

4

5

6

$end

Example 6.6 SF-TDDFT SP calculation of the 6 lowest states of the TMM diradical using
recommended 50-50 functional

$molecule

0 3

C

C 1 CC1

C 1 CC2 2 A2

C 1 CC2 2 A2 3 180.0
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H 2 C2H 1 C2CH 3 0.0

H 2 C2H 1 C2CH 4 0.0

H 3 C3Hu 1 C3CHu 2 0.0

H 3 C3Hd 1 C3CHd 4 0.0

H 4 C3Hu 1 C3CHu 2 0.0

H 4 C3Hd 1 C3CHd 3 0.0

CC1 = 1.35

CC2 = 1.47

C2H = 1.083

C3Hu = 1.08

C3Hd = 1.08

C2CH = 121.2

C3CHu = 120.3

C3CHd = 121.3

A2 = 121.0

$end

$rem

jobtype SP

EXCHANGE GENERAL Exact exchange

BASIS 6-31G*

SCF_GUESS CORE

SCF_CONVERGENCE 10

MAX_SCF_CYCLES 100

CC_SPIN_FLIP 1

CIS_N_ROOTS 6

CC_DCONVERGENCE 10

CIS_CONVERGENCE 10

MAX_CIS_CYCLES = 100

$end

$xc_functional

X HF 0.5

X S 0.08

X B 0.42

C VWN 0.19

C LYP 0.81

$end

6.4 Correlated Excited State Methods, CIS(D)

CIS(D) [27, 28] is a simple size–consistent doubles correction to CIS which has a computational

cost which scales as the fifth power of the basis set for each excited state. In this sense, CIS(D)

and can be considered an excited state analog of the ground state MP2 method. CIS(D) yields

useful improvements in the accuracy of excitation energies relative to CIS, and yet can still be

applied to relatively large molecules using Q-Chem’s efficient integrals transformation package.

The CIS(D) excited state procedure is a second–order perturbative approximation to the compu-

tationally expensive CCSD, based on a single excitation configuration interaction (CIS) reference.

The coupled-cluster wavefunction, truncated at single and double excitations, is the exponential

of the single and double substitution operators acting on the Hartree–Fock determinant

|Ψ〉 = exp (T1 + T2) |Ψ0〉 (6.15)

Determining the singles and doubles amplitudes requires solving the two equations
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which lead to the CCSD excited state equations, which can be written
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This is an eigenvalue equation Ab = ωb for the transition amplitudes (b vectors), which are also

contained in the U operators.

The second–order approximation to the CCSD eigenvalue equation yields a second–order contri-

bution to the excitation energy which can be written in the form

ω(2) = b(0)tA(1)b(1) + b(0)tA(2)b(0) (6.20)

or in the alternative form

ω(2) = ωCIS(D)

= ECIS(D) −EMP2 (6.21)

where

ECIS(D) =
〈
ΨCIS

∣∣V
∣∣U2ΨHF

〉
+
〈
ΨCIS

∣∣V
∣∣T2U1ΨHF

〉
(6.22)

and

EMP2 =
〈
ΨHF

∣∣V
∣∣T2ΨHF

〉
(6.23)

The output of a CIS(D) calculation contains useful information beyond the CIS(D) corrected

excitation energies themselves. The stability of the CIS(D) energies is tested by evaluating a

diagnostic, termed the “theta diagnostic” [29]. The theta diagnostic calculates a mixing angle

that measures the extent to which electron correlation causes each pair of calculated CIS states

to couple. Clearly the most extreme case would be a mixing angle of 45◦, which would indicate

breakdown of the validity of the initial CIS states and any subsequent corrections. On the other

hand small mixing angles on the order of only a degree or so are an indication that the calculated

results are reliable. The code reports the largest mixing angle for each state to all others that

have been calculated.
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6.4.1 CIS(D) Job Control

The CIS(D) algorithm which is currently used in Q-Chemhas much in common with Q-Chem’s

coupled–cluster package and share many of the � rem options. As with all post–HF calculations,

it is important to ensure there are sufficient resources available for the necessary integral calcu-

lations and transformations. For CIS(D), these resources are controlled using the � rem variables

CC TMPBUFFSIZE, CC BLCK TNSR BUFFSIZE, MEM STATIC and MEM TOTAL. To request a

CIS(D) calculation the CORRELATION � rem should be set to CIS(D) and the number of excited

states to calculate should be specified by CC NLOWSPIN and CC NHIGHSPIN variables.

CC NHIGHSPIN
Sets the number of high–spin excited state roots to find. Works only for singlet

reference states and triplet excited states.
TYPE:

INTEGER/INTEGER ARRAY

DEFAULT:

0 Do not look for any excited states.

OPTIONS:

[i, j, k . . .] Find i excited states in the first irrep, j states in the second irrep etc.

RECOMMENDATION:

None

CC NLOWSPIN
Sets the number of low–spin excited state roots to find. In the case of closed-shell

reference states, excited singlet states will be found. For any other reference state,

all states (e.g. both singlet and triplet) will be calculated.
TYPE:

INTEGER/INTEGER ARRAY

DEFAULT:

0 Do not look for any excited states.

OPTIONS:

[i, j, k . . .] Find i excited states in the first irrep, j states in the second irrep etc.

RECOMMENDATION:

None

Note: It is a symmetry of a transition rather than that of a target state which is specified in

excited state calculations. The symmetry of the target state is a product of the symmetry

of the reference state and the transition. For closed-shell molecules, the former is fully

symmetric and the symmetry of the target state is the same as that of transition, however,

for open-shell references this is not so.

CC STATE DERIV
Selects which EOM or CIS(D) state is to be considered for optimization or property

calculations.
TYPE:

INTEGER

DEFAULT:

-1 Turns off optimization/property calculations

OPTIONS:

n Optimize the nth excited state.

RECOMMENDATION:

None
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Note: Should be smaller or equal to the number of excited states calculated in the corresponding

irrep. The symmetry is turned off for finite difference calculations

CC TMPBUFFSIZE
Maximum size, in Mb, of additional buffers for temporary arrays used to work

with individual blocks or matrices.
TYPE:

INTEGER

DEFAULT:

3% of MEM TOTAL

OPTIONS:

n Integer number of Mb

RECOMMENDATION:

Should not be smaller than the size of the largest possible block.

CC BLCK TNSR BUFFSIZE
Specifies the maximum size, in Mb, of the buffers for in–core storage of block–

tensors.
TYPE:

INTEGER

DEFAULT:

50% of MEM TOTAL

OPTIONS:

n Integer number of Mb

RECOMMENDATION:
Larger values can give better I/O performance and are recommended for systems

with large memory (add to your .qchemrc file)

MEM STATIC

Sets the memory for individual fortran program modules

TYPE:

INTEGER

DEFAULT:

64 corresponding to 64 Mb

OPTIONS:

n User–defined number of megabytes.

RECOMMENDATION:
For direct and semi-direct MP2 calculations, this must exceed OVN + require-

ments for AO integral evaluation (32-160 Mb), as discussed above.

MEM TOTAL

Sets the total memory available to Q-Chem

TYPE:

INTEGER

DEFAULT:

2000 2 Gb

OPTIONS:

n User–defined number of megabytes

RECOMMENDATION:

Use default, or set to about 80% of the physical memory of your machine.
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6.4.2 Examples

Example 6.7 Q-Chem CIS(D) SP calculations for ozone at the experimental ground state
geometry C2v

$molecule

0 1

O

O 1 RE

O 2 RE 1 A

RE=1.272

A=116.8

$end

$rem

jobtype SP

BASIS 6-31G*

N_FROZEN_CORE 3 use frozen core

correlation CIS(D)

CC_NLOWSPIN [2,2,2,2] find 2 lowest singlets in each irrep.

CC_NHIGHSPIN [2,2,2,2] find two lowest triplets in each irrep.

$end

Example 6.8 Q-Chem CIS(D) geometry optimization for the lowest triplet state of water. The
symmetry is automatically turned off for finite difference calculations

$molecule

0 1

o

h 1 r

h 1 r 2 a

r 0.95

a 104.0

$end

$rem

jobtype opt

basis 3-21g

correlation cis(d)

scf_guess read

cc_nhighspin 1 calculate one lowest triplet

cc_state_deriv 1 optimize the geometry of the lowest state.

$end

6.4.3 Resolution of the Identity CIS(D) Methods

Because of algorithmic similarity with MP2 calculation, the “resolution of the identity” approx-

imation can also be used in CIS(D). In fact, RI-CIS(D) is orders of magnitudes more efficient

than previously explained CIS(D) algorithms for effectively all molecules with more than a few

atoms. Like in MP2, this is achieved by reducing the prefactor of the computational load, while

keeping the overall cost scaling still with the fifth power of the system size. Basically, RI-CIS(D)

calculations are enabled by setting the CORRELATION � rem to RICIS(D) with the CIS calculation

explained in 6.2.1. MEM STATIC, AUX BASIS, and PURECART need to be set by following the

same guide as in RI-MP2 (Sec. 5.5). In addition, a few other � rem variables have to be set for

efficiency.
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MEM STATIC

Sets the memory for individual program modules

TYPE:

INTEGER

DEFAULT:

64 corresponding to 64 Mb

OPTIONS:

n User–defined number of megabytes.

RECOMMENDATION:
For RI-CIS(D) calculations, 150(N 2 +N) of MEM STATIC is required. Because a

number of matrices with N2 size also need to be stored, 32–160 Mb of additional

MEM STATIC is needed.

MEM TOTAL

Sets the total memory available to Q-Chem

TYPE:

INTEGER

DEFAULT:

2000 2 Gb

OPTIONS:

n User–defined number of megabytes

RECOMMENDATION:
The minimum memory requirement of RI-CIS(D) is approximately MEM STATIC

+ max(3SV X, 3X2) (S: number of excited states, X : number of auxiliary basis

functions). However, because RI-CIS(D) uses a batching scheme for efficient eval-

uations of electron repulsion integrals, more memory will significantly speed up

the calculation. Put as much memory as possible if you are not sure about what

to use (but never put any more than available). The actual memory size used in

the calculation will be printed out in the output file.

AO2MO DISK

Sets the scratch space size for individual program modules

TYPE:

INTEGER

DEFAULT:

2000 2 Gb

OPTIONS:

n User–defined number of megabytes.

RECOMMENDATION:
The minimum disk requirement of RI-CIS(D) is approximately 3SOV X . Again,

the batching scheme will become more efficient with more available disk space.

Put as much disk space as possible if you are not sure about what to use (but

never put any more than available). The size of the actually used disk space will

also be printed out in the output file.

Presently in Q-Chem, RI approximation is supported for closed-shell restricted CIS(D) and open-

shell unrestricted UCIS(D) energy calculations.

6.4.4 Example

Example 6.9 Q-Chem input for an RI-CIS(D) calculation.

$molecule
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0 1

C 0.667472 0.000000 0.000000

C -0.667472 0.000000 0.000000

H 1.237553 0.922911 0.000000

H 1.237553 -0.922911 0.000000

H -1.237553 0.922911 0.000000

H -1.237553 -0.922911 0.000000

$end

$rem

jobtype sp

exchange hf

basis 6-311(2+,2+)G**

mem_total 1000

mem_static 100

ao2mo_disk 1000

aux_basis rimp2-aug-cc-pVTZ

purecart 1111

correlation ricis(d)

cis_n_roots 10

cis_singlets true

cis_triplets false

$end

6.5 Coupled-Cluster Excited-State and Open-Shell Meth-

ods

6.5.1 Excited states by EOM-EE-CCSD and EOM-EE-OD

It is possible to obtain a description of electronic excited states at a level of theory similar to that

associated with coupled-cluster theory for the ground state, by applying either linear response

theory [30] or equations of motion methods [31]. A number of groups have demonstrated that

excitation energies based on a coupled-cluster singles and doubles ground state are generally very

accurate for states that are primarily single electron promotions. The error observed in calculated

excitation energies to such states is approximately 0.3 eV, including both valence and Rydberg

excited states. This, of course, assumes that a basis set large and flexible enough to describe the

valence and Rydberg states is employed. The accuracy of excited state coupled-cluster methods is

much lower for excited states that involve a substantial component of double excitation character,

where errors may be 1 eV or even more. Such errors arise because the description of electron

correlation is better in the ground state than for an excited state with substantial double excitation

character. The description of these states can be improved by including triple excitations, as in

the EOM(2,3) method.

Q-Chem includes coupled-cluster methods for excited states based on the optimized orbital

coupled-cluster doubles (OD), and the coupled cluster singles and doubles (CCSD) methods, de-

scribed earlier. OD excitation energies have been shown to be essentially identical in numerical

performance to CCSD excited states [32].

These methods, while far more computationally expensive than TDDFT, are nevertheless useful as

proven high accuracy methods for the study of excited states of small molecules. Moreover, they

are capable of describing both valence and Rydberg excited states. Also, when studying a series

of related molecules it can be very useful to compare the performance of TDDFT and coupled-

cluster theory for at least a small example to understand its performance. Along similar lines, the

CIS(D) method described earlier as an economical correlation energy correction to CIS excitation

energies is in fact an approximation to coupled-cluster excitation energies. It is useful to assess the
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performance of CIS(D) for a class of problems by benchmarking against the full coupled-cluster

treatment. Finally, Q-Chem includes extensions of EOM methods to treat ionized or electron

attachment systems, as well as di- and tri-radicals.

6.5.2 EOM–XX–CCSD suit of methods

Q-Chem features the most complete set of EOM-CCSD models that enables accurate, robust, and

efficient calculations of electronically excited states (EOM–EE–CCSD) [38–40]; ground and excited

states of diradicals and triradicals (EOM–SF–CCSD [41, 42], available only in Q-Chem); ioniza-

tion potentials and electron attachment energies as well as problematic doublet radicals, cation

or anion radicals, (EOM–IP/EA–CCSD) [43–45]. Conceptually, EOM is very similar to configu-

ration interaction (CI): target EOM states are found by diagonalizing the similarity transformed

Hamiltonian H̄ = e−THeT :

H̄R = ER, (6.24)

where T and R are general excitation operators with respect to the reference determinant |Φ0〉.
In the EOM–CCSD models, T and R are truncated at single and double excitations, and the

amplitudes T satisfy the CC equations for the reference state |Φ0〉:

〈Φai |H̄ |Φ0〉
〈Φabij |H̄ |Φ0〉 (6.25)

The computational scaling of EOM–CCSD and CISD methods is identical, i.e., O(N 6), however

EOM–CCSD is numerically superior to CISD because correlation effects are “folded in” in the

transformed Hamiltonian, and because EOM–CCSD is rigorously size–extensive.

By combining different types of excitation operators and references |Φ0〉, different groups of target

states can be accessed as explained in Fig. 6.1. For example, electronically excited states can be

described when the reference |Φ0〉 corresponds to the ground state wave function, and operators

R conserve the number of electrons and a total spin [40]. In the ionized/electron attached EOM

models [43, 44], operators R are not electron conserving (i.e., include different number of cre-

ation and annihilation operators) — these models can accurately treat ground and excited states

of doublet radicals and some other other open-shell systems. For example, singly ionized EOM

methods, i.e., EOM–IP–CCSD and EOM–EA–CCSD, have proven very useful for doublet radi-

cals whose theoretical treatment is often plagued by symmetry breaking. Finally, the EOM–SF

method [41,42] in which the excitation operators include spin–flip allows one to access diradicals,

triradicals, and bond–breaking.

Q-Chem features EOM–EE/SF/IP/EA–CCSD methods for both closed and open–shell references

(RHF/UHF/ROHF), including frozen core/virtual options. All EOM models take the full advan-

tage of molecular point group symmetry. Analytic gradients are available for RHF and UHF

references, for the full orbital space, and with frozen core/virtual orbitals [46]. Properties calcula-

tions (permanent and transition dipole moments, 〈S2〉, 〈R2〉, etc.) are also available. The current

implementation of the EOM–XX–CCSD methods enables calculations of medium–size molecules,

e.g., up to 10–14 heavy atoms.

6.5.3 Spin–Flip Methods for Di- and Triradicals

The Spin–Flip method [33,34,48] was developed as a method to address the bond–breaking problem

associated with a single–determinant description of the wavefunction. Both closed and open shell
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Figure 6.1: In the EOM formalism, target states Ψ are described as excitations from a reference

state Ψ0: Ψ = RΨ0, where R is a general excitation operator. Different EOM models are defined

by choosing the reference and the form of the operator R. In the EOM models for electronically

excited states (EOM–EE, upper panel), the reference is the closed–shell ground state Hartree–

Fock determinant, and the operator R conserves the number of α and β electrons. Note that

two–configurational open–shell singlets can be correctly described by EOM–EE since both leading

determinants appear as single electron excitations. The second and third panels present the

EOM–IP/EA models. The reference states for EOM–IP/EA are determinants for N + 1/N − 1

electron states, and the excitation operator R is ionizing or electron–attaching, respectively. Note

that both the EOM–IP and EOM–EA sets of determinants are spin–complete and balanced with

respect to the target multi–configurational ground and excited states of doublet radicals. Finally,

the EOM–SF method (the lowest panel) employs the hight–spin triplet state as a reference, and

the operator R includes spin–flip, i.e., does not conserve the number of α and β electrons. All

the determinants present in the target low–spin states appear as single excitations, which ensures

their balanced treatment both in the limit of large and small HOMO–LUMO gaps.

singlet states are described within a single reference as spin–flipping, (e.g., α → β excitations

from the triplet reference state, for which both dynamical and non–dynamical correlation effects

are smaller than for the corresponding singlet state. This is because the exchange hole, which

arises from the Pauli exclusion between same–spin electrons, partially compensates for the poor
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description of the coulomb hole by the mean–field Hartree–Fock model. Furthermore, because two

α electrons cannot form a bond, no bond breaking occurs as the internuclear distance is stretched,

and the triplet wavefunction remains essentially single–reference in character. The spin–flip model

has also proved useful in the description of di– and tri–radicals.

The spin–flip method is available for the CIS, CIS(D), CISD, CISDT, OD, CCSD, and EOM–

(2,3) levels of theory. For the OD and CCSD models, the following non–relaxed properties are

also available: dipoles, transition dipoles, eigenvalues of the spin–squared operator (< S2 >),

and densities. Analytic gradients are also for SF-CIS and EOM-SF-CCSD methods. To invoke a

spin–flip calculation the CC SPIN FLIP � rem should be set to TRUE, along with the associated� rem settings for the chosen level of correlation. Note that the high multiplicity triplet or quartet

reference states should be used.

6.5.4 EOM–DIP–CCSD

Double–ionization potential (DIP) is another non–electron–conserving variant of the EOM ap-

proach [37]. In DIP, target states are found by detaching two electrons from the reference state:

Ψk(N) = RN−2(k)Ψ0(N + 2), (6.26)

and the excitation operator R(k) has the following form:

R(k) = R1(k) +R2(k), (6.27)

R1(k) = 1/2
∑

ij

rijji, R2(k) = 1/6
∑

ijka

raijka
†kji. (6.28)

As a reference state in the EOM–DIP calculations one usually takes the well–described closed–shell

state. Therefore, EOM–DIP is an useful tool for describing molecules with electronic degeneracies

of the type “2n− 2 electrons on n degenerate orbitals”. The simplest examples of such systems

are diradicals with two–electrons–on–two–orbitals pattern.

Accuracy of the EOM–DIP–CCSD method in description of the corresponding systems is similar

to accuracy of other EOM-CCSD models, i.e., 0.1–0.3 eV. The scaling of EOM–DIP–CCSD is

O(N6), analogous to that of other EOM–CCSD methods. However, its computational cost is less

compared to, e.g., EOM–EE–CCSD, and it increases more slowly with increasing basis set size.

6.5.5 Equation-of-Motion Coupled-Cluster Job Control

There is a rich range of input control options for coupled-cluster excited state or other EOM

calculations. The minimal requirement is the input for the reference state CCSD or OD calculation

(see Chapter 5), plus specification of the number of target states requested through CC NLOWSPIN

and CC NHIGHSPIN. Users must be aware of the point group symmetry of the system being

studied and also the symmetry of the initial and target states of interest, as well as symmetry

of transition. It is possible to turn off the use of symmetry using the CC SYMMETRY. If set to

FALSE the molecule will be treated as having C1 symmetry and all states will be of A symmetry.

The full range of input options that are directly relevant to EOM-CC module follows:
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CC NHIGHSPIN
Sets the number of high–spin excited state roots to find. Works only for singlet

RHF reference states and triplet excited states, is ignored for UHF or ROHF

references
TYPE:

INTEGER/INTEGER ARRAY

DEFAULT:

0 Do not look for any coupled-cluster excited states

OPTIONS:
[i, j, k . . .] Find i CC excited states in the irrep symmetry, j excited states

in the second irrep, etc.
RECOMMENDATION:

None

CC NLOWSPIN
Sets the number of coupled-cluster excited state roots to find with the same mul-

tiplicity as the ground state in the case of a closed-shell singlet RHF reference.

For a spin–unrestricted ground state, (e.g., doublet radicals or high-spin triplet or

quartets), this is the total number of states of all multiplicities. It also specifies

the target states in EOM-IP/EA/SF
TYPE:

INTEGER

DEFAULT:

0 Do not look for any EOM target states (e.g. excited states)

OPTIONS:
[i, j, k . . .] Find i CC excited states in the first irrep, j excited states

in the second irrep, etc.
RECOMMENDATION:

None

Note: It is a symmetry of a transition rather than that of a target state which is specified in

excited state calculations. The symmetry of the target state is a product of the symmetry

of the reference state and the transition. For closed-shell molecules, the former is fully

symmetric and the symmetry of the target state is the same as that of transition, however,

for open-shell references this is not so.

Note: For the CC NHIGHSPIN and CC NLOWSPIN options, Q-Chem will increase the number of

roots if it suspects degeneracy, or change it to a smaller value, if it cannot generate enough

guess vectors to start the calculations.

CC DCONVERGENCE

Convergence criterion for the RMS residuals of excited state vectors

TYPE:

INTEGER

DEFAULT:

5 Corresponding to 10−5

OPTIONS:

n Corresponding to 10−n convergence criterion

RECOMMENDATION:

Use default. Should normally be set to the same value as CC DTHRESHOLD.
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CC DO DISCONECTED

Determines whether disconnected terms included in the EOM-OD equations

TYPE:

LOGICAL

DEFAULT:

FALSE

OPTIONS:

TRUE/FALSE

RECOMMENDATION:

Inclusion of disconnected terms has very small effects and is not necessary.

CC DTHRESHOLD
Specifies threshold for including a new expansion vector in the iterative Davidson

diagonalization. Their norm must be above this threshold.
TYPE:

INTEGER

DEFAULT:

00105 Corresponding to 0.00001

OPTIONS:

abcde Integer code is mapped to abc× 10−de

RECOMMENDATION:
Use default unless converge problems are encountered. Should normally be set

to the same values as CC DCONVERGENCE, if convergence problems arise try

setting to a value less than CC DCONVERGENCE.

CC DMAXITER

Maximum number of iteration allowed for Davidson diagonalization procedure.

TYPE:

INTEGER

DEFAULT:

30

OPTIONS:

n User–defined number of iterations

RECOMMENDATION:

Default is usually sufficient

CC NGUESS DOUBLES

Specifies number of excited state guess vectors which are double excitations.

TYPE:

INTEGER

DEFAULT:

0

OPTIONS:

n Include n guess vectors that are double excitations

RECOMMENDATION:
This should be set to the expected number of doubly excited states (see also

CC PRECONV DOUBLES), otherwise they may not be found.
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CC NGUESS SINGLES

Specifies number of excited state guess vectors that are single excitations.

TYPE:

INTEGER

DEFAULT:

Equal to the number of excited states requested

OPTIONS:

n Include n guess vectors that are single excitations

RECOMMENDATION:

Should be greater or equal than the number of excited states requested.

CC DMAXVECTORS
Specifies maximum number of vectors in the subspace for the Davidson diagonal-

ization.
TYPE:

INTEGER

DEFAULT:

60

OPTIONS:

n Up to n vectors per root before the subspace is reset

RECOMMENDATION:

Larger values increase disk storage but accelerate and stabilize convergence.

CC PRECONV DOUBLES
When TRUE, doubly–excited vectors are converged prior to a full excited states

calculation.
TYPE:

LOGICAL

DEFAULT:

FALSE

OPTIONS:

TRUE/FALSE

RECOMMENDATION:

Occasionally necessary to ensure a doubly excited state is found.

CC PRECONV SINGLES
When TRUE, singly–excited vectors are converged prior to a full excited states

calculation.
TYPE:

LOGICAL

DEFAULT:

FALSE

OPTIONS:

TRUE/FALSE

RECOMMENDATION:

None
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CC SPIN FLIP
Selects whether do perform a standard excited state calculation, or a spin–flip

calculation. Spin multiplicity should be set to 3 for systems with an even number

of electrons, and 4 for systems with an odd number of electrons.
TYPE:

LOGICAL

DEFAULT:

FALSE

OPTIONS:

TRUE/FALSE

RECOMMENDATION:

None

CC IP
If TRUE, calculates EOM–IP–CCSD excitation energies and properties (upon re-

quest).
TYPE:

LOGICAL

DEFAULT:

FALSE (no EOM–IP–CCSD states will be calculated)

OPTIONS:

FALSE, TRUE

RECOMMENDATION:

None

CC EA
If TRUE, calculates EOM–EA–CCSD excitation energies and properties (upon

request).
TYPE:

LOGICAL

DEFAULT:

FALSE (no EOM–EA–CCSD states will be calculated)

OPTIONS:

FALSE, TRUE

RECOMMENDATION:

None

Note: When CC IP is set to TRUE, it can change the convergence of Hartree–Fock iterations

compared to the same job with CC IP=FALSE, because a very diffuse basis function is

added to a center of symmetry before the Hartree–Fock iterations start. For the same

reason, BASIS2 keyword is incompatible with CC IP=TRUE. In order to read Hartree–

Fock guess from a previous job, you must specify CC IP=TRUE (even if you do not request

for any correlation or excited states) in that previous job. Currently, the second moments

of electron density are incorrect for the EOM–IP–CCSD target states. CC NLOWSPIN

should also be set to specify the number of target EOM-IP states.
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CC DIP

Initializes a EOM–DIP–CCSD calculation

TYPE:

INTEGER

DEFAULT:

0

OPTIONS:
0 Do not perform an EOM–DIP–CCSD calculation

1 Do perform an EOM–DIP–CCSD calculation
RECOMMENDATION:

None

CC SPIN FLIP MS
This option is only used in EOM–SF using quintet references and including triple

excitations. By default, SF flips the spin of one α electron. One can ask to flip

the spins of two α electrons by specifying CC SPIN FLIP MS = 1
TYPE:

INTEGER

DEFAULT:
0 For α→ α excitation

1 For α→ β excitations
OPTIONS:

2 Allows double spin–flip calculations , i.e., two electrons are

flipped in the excitation operator: αα→ ββ.
RECOMMENDATION:

This option can be useful when starting from quintet references - though this is

not typical for EOM–SF.

6.5.6 Examples

Example 6.10 EOM-EE-OD and EOM-EE-CCSD calculations of the singlet excited states of
formaldehyde

$molecule

0 1

O

C,1,R1

H,2,R2,1,A

H,2,R2,1,A,3,180.

R1=1.4

R2=1.0

A=120.

$end

$rem

correlation od

basis 6-31+g

cc_nlowspin [2,2,2,2]

$end

@@@

$molecule

read

$end

$rem
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correlation ccsd

basis 6-31+g

cc_nlowspin [2,2,2,2]

$end

Example 6.11 EOM-SF-CCSD calculations for methylene from high-spin 3B2 reference

$molecule

0 3

C

H 1 rCH

H 1 rCH 2 aHCH

rCH = 1.1167

aHCH = 102.07

$end

$rem

jobtype SP

CORRELATION CCSD

BASIS 6-31G*

SCF_GUESS CORE

CC_NGUESS_SINGLES 4

CC_SPIN_FLIP 1

CC_NLOWSPIN [2,0,0,2] Get two singlet A1 states and singlet and triplet B2 states

$end

Example 6.12 EOM-IP-CCSD calculations for NO3 using closed-shell anion reference

$molecule

-1 1

N

O 1 r1

O 1 r2 2 A2

O 1 r2 2 A2 3 180.0

r1 = 1.237

r2 = 1.237

A2 = 120.00

$end

$rem

jobtype SP single point

LEVCOR CCSD

BASIS 6-31G*

basis_lin_dep_thresh 14

CC_NLOWSPIN = [1,1,2,1] ground and excited states of the radical

CC_IP = true

$end

6.5.7 Analytic gradients for the CCSD and EOM–XX–CCSD methods

Analytic gradients are available for the CCSD and all EOM–CCSD methods for both closed–

and open–shell references (UHF and RHF only), including frozen core/virtuals functionality [46].

Practical computational studies of spectroscopic and dynamical properties usually focus on sta-

tionary points of PESs and thus require energy derivatives. For example, first derivatives allow

one to characterize molecular equilibrium geometries, transition structures, and to calculate mini-

mum energy paths and intrinsic reaction coordinates. In principle, derivatives of any order can be

computed numerically from total energies by a finite difference procedure. Since such calculations
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require only total energies, they can be performed for any electronic structure method. However,

this universality of the numerical derivatives is their only advantage. The numerical evaluation of

energy gradient for a system with N degrees of freedom requires at least 2N single point energy

calculations. Moreover, the finite difference procedure often encounters numerical problems, such

as poor convergence, numerical noise, etc.. Calculation of analytic gradients is free of numerical

instabilities, and can be performed approximately at a cost of a single point energy calculation,

which results in significant time savings for polyatomic molecules.

Application limit: same as for the single–point CCSD or EOM–CCSD calculations.

Limitations: ROHF–CCSD and ROHF–EOM–CCSD gradients are not yet available.

6.5.8 Properties for CCSD and EOM-CCSD wavefunctions

For direct comparisons with experiments, calculation of molecular properties is extremely impor-

tant. For the CCSD and EOM–CCSD wave functions, Q-Chem currently can calculate permanent

and transition dipole moments, oscillator strengths, 〈R2〉 (as well as XX, YY and ZZ components

separately, which is useful for assigning different Rydberg states, e.g., 3px vs. 3s, etc.), and the

〈S2〉 values. Interface of the CCSD and EOM–CCSD codes with the NBO 5.0 package is also

available.

The coupled-cluster package in Q-Chem can calculate properties of excited states including tran-

sition dipoles and geometry optimizations. The excited state of interest is selected using a combi-

nation of the � rem variables CC STATE DERIV and CC REFSYM. The former of these determines

the state, whilst the latter determines the symmetry of the state. Alternatively, both these can be

specified using the single STATE TO OPT � rem. Users must be aware of the point group symmetry

of the system being studied and also the symmetry of the excited state of interest. It is possible

to turn off the use of symmetry using the CC SYMMETRY. If set to FALSE the molecule will be

treated as having C1 symmetry and all states will be of A symmetry.

6.5.9 Equation-of-Motion Coupled-Cluster Optimization and Proper-

ties Job Control
CC STATE DERIV

Together with CC REFSYM, selects which EOM state is to be considered for op-

timization or property calculations. When transition properties are requested by

CC TRANS PROP, the transition properties will be calculated between this state

and all other EOM states.
TYPE:

INTEGER

DEFAULT:

-1 Turns off optimization/property calculations

OPTIONS:

n Optimize the nth excited state.

RECOMMENDATION:

None

Note: Should be smaller or equal to the number of excited states calculated in the corresponding

irrep.
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CC REFSYM
Together with CC STATE DERIV, selects which EOM state is to be considered for

optimization or property calculations. When transition properties are requested,

the transition properties will be calculated between this state and all other EOM

states.
TYPE:

INTEGER

DEFAULT:

-1 Turns off optimization/property calculations

OPTIONS:

n Optimize the requested state in nth irrep.

RECOMMENDATION:

None

STATE TO OPT
An alternative to the above two � rem variables which allows the state and sym-

metry to be specified using a single variable
TYPE:

INTEGER ARRAY

DEFAULT:

None

OPTIONS:

[i,j] optimize the jth state of the ith irrep.

RECOMMENDATION:

Do not use in conjuction with CC REFSYM and CC STATE DERIV

CC PROP
Whether or not the non–relaxed (expectation value) one–particle CCSD prop-

erties will be calculated. The properties currently include permanent dipole

moment, the second moments 〈X2〉, 〈Y 2〉, and 〈Z2〉 of electron density, and

the total 〈R2〉 = 〈X2〉 + 〈Y 2〉 + 〈Z2〉 (in atomic units). Incompatible with

JOBTYPE=FORCE, OPT, FREQ.
TYPE:

LOGICAL

DEFAULT:

FALSE (no one–particle properties will be calculated)

OPTIONS:

FALSE, TRUE

RECOMMENDATION:
Additional equations need to be solved (lambda CCSD equations) for proper-

ties with the cost approximately the same as CCSD equations. Use default if

you do not need properties. The cost of the properties calculation itself is low.

The CCSD one–particle density can be analyzed with NBO package by specifying

NBO=TRUE, CC PROP=TRUE and JOBTYPE=FORCE.
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CC TWOPART PROP
Request for calculation of non–relaxed two–particle CCSD properties. The two–

particle properties currently include 〈S2〉. The one–particle properties also will be

calculated, since the additional cost of the one–particle properties calculation is

inferior compared to the cost of 〈S2〉. The variable CC PROP must be also set to

TRUE.
TYPE:

LOGICAL

DEFAULT:

FALSE (no two–particle properties will be calculated)

OPTIONS:

FALSE, TRUE

RECOMMENDATION:
The two–particle properties are extremely computationally expensive, since they

require calculation and use of the two–particle density matrix (the cost is approx-

imately the same as the cost of an analytic gradient calculation). Do not request

the two–particle properties unless you really need them.

CC EXSTATES PROP
Whether or not the non–relaxed (expectation value) one–particle EOM–CCSD

target state properties will be calculated. The properties currently include perma-

nent dipole moment, the second moments 〈X2〉, 〈Y 2〉, and 〈Z2〉 of electron density,

and the total 〈R2〉 = 〈X2〉 + 〈Y 2〉 + 〈Z2〉 (in atomic units). Incompatible with

JOBTYPE=FORCE, OPT, FREQ.
TYPE:

LOGICAL

DEFAULT:

FALSE (no one–particle properties will be calculated)

OPTIONS:

FALSE, TRUE

RECOMMENDATION:
Additional equations (EOM–CCSD equations for the left eigenvectors) need to

be solved for properties, approximately doubling the cost of calculation for each

irrep. Sometimes the equations for left and right eigenvectors converge to dif-

ferent sets of target states. In this case, the simultaneous iterations of left and

right vectors will diverge, and the properties for several or all the target states

may be incorrect! The problem can be solved by varying the number of requested

states, specified with CC NLOWSPIN and CC NHIGHSPIN, or the number of guess

vectors (CC NGUESS SINGLES). The cost of the one–particle properties calcula-

tion itself is low. The one–particle density of an EOM–CCSD target state can

be analyzed with NBO package by specifying the state with CC REFSYM and

CC STATE DERIV and requesting NBO=TRUE and CC EXSTATES PROP=TRUE.
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CC TRANS PROP
Whether or not the transition dipole moment (in atomic units) and oscillator

strength for the EOM–CCSD target states will be calculated. By default, the

transition dipole moment is calculated between the CCSD reference and the EOM–

CCSD target states. In order to calculate transition dipole moment between a

set of EOM–CCSD states and another EOM–CCSD state, the CC REFSYM and

CC STATE DERIV must be specified for this state.
TYPE:

LOGICAL

DEFAULT:

FALSE (no transition dipole and oscillator strength will be calculated)

OPTIONS:

FALSE, TRUE

RECOMMENDATION:
Additional equations (for the left EOM–CCSD eigenvectors plus lambda CCSD

equations in case if transition properties between the CCSD reference and EOM–

CCSD target states are requested) need to be solved for transition properties,

approximately doubling the computational cost. The cost of the transition prop-

erties calculation itself is low.

CC EOM TWOPART PROP
Request for calculation of non–relaxed two–particle EOM–CCSD target state prop-

erties. The two-particle properties currently include 〈S2〉. The one–particle

properties also will be calculated, since the additional cost of the one–particle

properties calculation is inferior compared to the cost of 〈S2〉. The variable

CC EXSTATES PROP must be also set to TRUE.
TYPE:

LOGICAL

DEFAULT:

FALSE (no two-particle properties will be calculated)

OPTIONS:

FALSE, TRUE

RECOMMENDATION:
The two–particle properties are extremely computationally expensive, since they

require calculation and use of the two–particle density matrix (the cost is approx-

imately the same as the cost of an analytic gradient calculation for each state).

Do not request the two–particle properties unless you really need them.

CC SYMMETRY

Controls the use of symmetry in coupled-cluster calculations

TYPE:

LOGICAL

DEFAULT:

TRUE

OPTIONS:
TRUE Use the point group symmetry of the molecule

FALSE Do not use point group symmetry (all states will be of A symmetry).
RECOMMENDATION:

It is automatically turned off for any finite difference calculations, e.g. second

derivatives.

Note: The keywords below are useful mostly for the developers .
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CC AMPL RESP
If set to TRUE, adds amplitude response terms to one–particle and two–particle

CCSD density matrices before calculation of properties. CC PROP must be set to

TRUE.
TYPE:

LOGICAL

DEFAULT:

FALSE (no amplitude response terms will be added to density matrices)

OPTIONS:

FALSE, TRUE

RECOMMENDATION:
The cost is always about the cost of an analytic gradient calculation, independent

of whether or not the two–particle properties are requested. Besides, adding am-

plitude response terms without orbital response will unlikely improve the quality

of the properties. However, it can be used for debugging purposes.

CC FULL RESP
If set to TRUE, adds both amplitude and orbital response terms to one–

and two–particle CCSD density matrices before calculation of the proper-

ties. CC PROP must be set to TRUE. If both CC AMPL RESP=TRUE and

CC FULL RESP=TRUE, the CC AMPL RESP=TRUE will be ignored.
TYPE:

LOGICAL

DEFAULT:
FALSE No orbital response terms will be added to density matrices, and no

amplitude response will be calculated if CC AMPL RESP = FALSE

OPTIONS:

FALSE, TRUE

RECOMMENDATION:
The cost for the full response properties calculation is about the same as the cost

of the analytic gradient. Adding full response terms improves quality of calculated

properties, but usually it is a small but expensive correction. Use it only if you

really need accurate properties.

CC EOM AMPL RESP
If set to TRUE, adds amplitude response terms to one–particle and

two–particle EOM–CCSD density matrices before calculation of properties.

CC EXSTATES PROP must be set to TRUE.
TYPE:

INTEGER

DEFAULT:

FALSE (no amplitude response terms will be added to density matrices)

OPTIONS:

FALSE, TRUE

RECOMMENDATION:
The cost is always about the cost of an analytic gradient calculation for each state,

independent of whether or not the two–particle properties are requested. Besides,

adding amplitude response terms without orbital response will unlikely improve

the quality of the properties. However, it can be used for debugging purposes.
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CC EOM FULL RESP
If set to TRUE, adds both amplitude and orbital response terms to one– and

two–particle EOM–CCSD density matrices before calculation of the properties.

CC EXSTATES PROP must be set to TRUE. If both CC EOM AMPL RESP=TRUE

and CC EOM FULL RESP=TRUE, the CC EOM AMPL RESP=TRUE will be ig-

nored.
TYPE:

LOGICAL

DEFAULT:
FALSE No orbital response terms will be added to density matrices, and no

amplitude response will be calculated if CC EOM AMPL RESP = FALSE

OPTIONS:

FALSE, TRUE

RECOMMENDATION:
The cost for the full response properties calculation is about the same as the cost of

the analytic gradient for each state. Adding full response terms improves quality

of calculated properties, but usually it is a small but expensive correction. Use it

only if you really need accurate properties.

6.5.10 Examples

Example 6.13 Geometry optimization for the excited open-shell singlet state, 1B2, of methylene
followed by the calculations of the fully relaxed one-electron properties using EOM-EE-CCSD

$molecule

0 1

C

H 1 rCH

H 1 rCH 2 aHCH

rCH = 1.083

aHCH = 145.

$end

$rem

jobtype OPT

CORRELATION CCSD

BASIS cc-pVTZ

SCF_GUESS CORE

SCF_CONVERGENCE 9

CC_NLOWSPIN [0,0,0,1]

CC_NGUESS_SINGLES 2

cc_state_to_opt [4,1]

CC_DCONVERGENCE 9 use tighter convergence for EOM amplitudes

CC_T_CONV 9 use tighter convergence for CCSD amplitudes

$end

@@@

$molecule

READ

$end

$rem

jobtype SP

CORRELATION CCSD

BASIS cc-pVTZ

SCF_GUESS READ

CC_NLOWSPIN [0,0,0,1]

CC_NGUESS_SINGLES 2
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CC_EXSTATES_PROP 1 calculate properties for EOM states

CC_EOM_FULL_RESP 1 use fully relaxed properties

$end

Example 6.14 Property and transition property calculation on the lowest singlet state of CH2

using EOM-SF-CCSD

$molecule

0 3

C

H 1 rch

H 1 rch 2 ahch

rch = 1.1167

ahch = 102.07

$end

$rem

CORRELATION ccsd

EXCHANGE hf

BASIS cc-pvtz

SCF_GUESS core

SCF_CONVERGENCE 9

CC_NLOWSPIN [2,0,0,3] Get three 1^B2 and two 1^A1

CC_SPIN_FLIP 1 Do SF. Note the triplet reference.

CC_EXSTATES_PROP 1

CC_TRANS_PROP 1

CC_STATE_DERIV 1 First EOM state in the REFSYM irrep

CC_REFSYM 4 Calc. trans. prop. between 1^B2 and all other states

$end

Example 6.15 Geometry optimization with tight convergence for the 2A1 excited state of CH2Cl,
followed by calculation of non-relaxed and fully relaxed permanent dipole moment and < S2 >.

$molecule

0 2

H

C 1 CH

CL 2 CCL 1 CCLH

H 2 CH 3 CCLH 1 DIH

CH=1.096247

CCL=2.158212

CCLH=122.0

DIH=180.0

$end

$rem

JOBTYPE OPT

CORRELATION CCSD

BASIS 6-31G* Basis Set

SCF_GUESS SAD

CC_DCONVERGENCE 9 EOM amplitude convergence

CC_T_CONV 9 CCSD amplitudes convergence

CC_NLOWSPIN [0,0,0,1]

cc_state_to_opt [4,1]

CC_NGUESS_SINGLES 2

GEOM_OPT_TOL_GRADIENT 2

GEOM_OPT_TOL_DISPLACEMENT 2

GEOM_OPT_TOL_ENERGY 2

$end
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@@@

$molecule

READ

$end

$rem

JOBTYPE SP

CORRELATION CCSD

BASIS 6-31G* Basis Set

SCF_GUESS READ

CC_NLOWSPIN [0,0,0,1]

CC_NGUESS_SINGLES 2

CC_EXSTATES_PROP 1 calculate one-electron properties

CC_EOM_TWOPART_PROP 1 and two-electron properties (S^2)

$end

@@@

$molecule

READ

$end

$rem

JOBTYPE SP

CORRELATION CCSD

BASIS 6-31G* Basis Set

SCF_GUESS READ

CC_NLOWSPIN [0,0,0,1]

CC_NGUESS_SINGLES 2

CC_EXSTATES_PROP 1

CC_EOM_TWOPART_PROP 1

CC_EOM_FULL_RESP 1 same as above, but do fully relaxed properties

$end

Example 6.16 CCSD calculation on three A2 and one B2 state of formaldehyde. Transition
properties will be calculated between the third A2 state and all other EOM states

$molecule

0 1

O

C 1 1.4

H 2 1.0 1 120

H 3 1.0 1 120

$end

$rem

BASIS 6-31+G

CORRELATION CCSD

CC_NLOWSPIN [0,3,0,1]

STATE_TO_OPT [1,2]

CC_STATE_DERIV 2

UNRESTRICTED true

CC_TRANS_PROP true

$end

6.5.11 EOM(2,3) methods for higher accuracy and problematic situa-

tions

In the EOM–CC(2,3) approach [47], the transformed Hamiltonian H̄ is diagonalized in the basis

of the reference, singly, doubly, and triply excited determinants, i.e., the excitation operator R

is truncated at triple excitations. The excitation operator T , however, is truncated at double
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excitation level, and its amplitudes are found from the CCSD equations, just like for EOM–CCSD

(or EOM–CC(2,2)) method.

The accuracy of the EOM–CC(2,3) method closely follows that of full EOM–CCSDT (which can

be also called EOM–CC(3,3)), whereas computational cost of the former model is less.

The inclusion of triple excitations is necessary for achieving chemical accuracy (1 kcal/mol) for

ground state properties. It is even more so for excited states. In particular, triple excitations are

crucial for doubly excited states [47], excited states of some radicals and SF calculations (diradi-

cals, triradicals, bond–breaking) when a reference open–shell state is heavily spin–contaminated.

Accuracy of EOM–CCSD and EOM–CC(2,3) is compared in Table 6.5.11.

System EOM–CCSD EOM–CC(2,3)

Singly–excited electronic states 0.1–0.2 eV 0.01 eV

Doubly–excited electronic states ∼ 1 eV 0.1–0.2 eV

Severe spin–contamination of the reference ∼ 0.5 eV ≤ 0.1 eV

Breaking single bond (EOM–SF) 0.1–0.2 eV 0.01 eV

Breaking double bond (EOM–2SF ?) ∼ 1 eV 0.1–0.2 eV

Table 6.1: Performance of the EOM–CCSD and EOM–CC(2,3) methods

To extent the applicability of the EOM–CC(2,3) model to larger systems, the active–space variant

of EOM–CC(2,3) was also implemented, in which triple excitations are restricted to semi–internal

ones.

Since the computational scaling of EOM–CC(2,3) method is O(N 8), these calculations can be

performed only for relatively small systems. Moderate size molecules (10 heavy atoms) can be

tackled by either using the active space implementation or tiny basis sets. To achieve high accuracy

for these systems, energy additivity schemes are used, as advocated by Gauss and coworkers, who

were very successful in extrapolating EOM–CCSDT/large basis set values by combining large basis

set EOM–CCSD calculations with small basis set EOM–CCSDT ones.

Along with EOM–CC(2,3), the CISDT method has been also implemented. It can be invoked by

specifying CC MAXITER = 0 and CC DO CISDT = 1. Default for CC DO CISDT is 0. EE, SF, and

double SF variants of CISDT are available. Note that double SF CISDT is a size–extensive model.

The active space CISDT calculations can be performed similarly to the active space EOM–CC(2,3)

ones.

Running the full EOM–CC(2,3) calculations is straightforward, however, the calculations are ex-

pensive with the bottlenecks being storage of the data on a hard drive and the CPU time. Cal-

culations with around 80 basis functions are possible for a molecule consisting of four first row

atoms (NO dimer). The number of basis functions can be larger for smaller systems.

Note: In EE calculations, one needs to always solve for at least one low–spin root in the first

symmetry irrep in order to obtain the correlated EOM energy of the reference. The triples

correction to the total reference energy must be used to evaluate EOM–(2,3) excitation

energies.

6.5.12 Active space EOM-CC(2,3)

Active space calculations are less demanding with respect to the size of a hard drive. The main

bottlenecks here are the memory usage and the CPU time. Both arise due to the increased number

of orbital blocks in the active space calculations. In the current implementation, each block can

contain from 0 up to 16 orbitals of the same symmetry irrep, occupancy, and spin–symmetry. For
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example, for a typical molecule of C2v symmetry, in a small/moderate basis set (e.g., TMM in

6-31G*), the number of blocks for each index is:

occupied: (α + β)× (a1 + a2 + b1 + b2) = 2× 4 = 8

virtuals: (α+ β)× (2a1 + a2 + b1 + 2b2) = 2× 6 = 12

(usually there are more than 16 a1 and b2 virtual orbitals).

In EOM–CCSD, the total number of blocks is O2V 2 = 82 × 122 = 9216. In EOM–CC(2,3) the

number of blocks in the EOM part is O3V 3 = 83 × 123 = 884736. In active space EOM–CC(2,3),

additional fragmentation of blocks occurs to distinguish between the restricted and active orbitals.

For example, if the active space includes occupied and virtual orbitals of all symmetry irreps (this

will be a very large active space), the number of occupied and virtual blocks for each index is

16 and 20, respectively, and the total number of blocks increases to 3.3 × 107. Not all of the

blocks contain real information, some blocks are zeros because of the spatial or spin-symmetry

requirements. For the C2v symmetry group, the number of non–zero blocks is about 10–12 times

less than the total number of blocks, i.e., 3 × 106. This is the number of non-zero blocks in one

vector. Davidson diagonalization procedure requires (2*MAX VECTORS + 2*NROOTS) vectors,

where MAX VECTORS is the maximum number of vectors in the subspace, and NROOTS is the

number of the roots to solve for. Taking NROOTS=2 and MAX VECTORS=20, we obtain 44

vectors with the total number of non-zero blocks being 1.3× 108.

In our implementation, each block is a logical unit of information. Along with real data, which

are kept on a hard drive at all the times except of their direct usage, each non–zero block contains

an auxiliary information about its size, structure, relative position with respect to other blocks,

location on a hard drive, and so on. The auxiliary information about blocks is always kept in

memory. Currently, the approximate size of this auxiliary information is about 400 bytes per

block. It means, that in order to keep information about one vector (3 × 106 blocks), 1.2 GB

of memory is required! The information about 44 vectors amounts 53 GB. Moreover, the huge

number of blocks significantly slows down the code.

To make the calculations of active space EOM–CC(2,3) feasible, we need to reduce the total

number of blocks. One way to do this is to reduce the symmetry of the molecule to lower or C1

symmetry group (of course, this will result in more expensive calculation). For example, lowering

the symmetry group from C2v to Cs would results in reducing the total number of blocks in active

space EOM–CC(2,3) calculations in about 26 = 64 times, and the number of non–zero blocks in

about 30 times (the relative portion of non–zero blocks in Cs symmetry group is smaller compared

to that in C2v).

Alternatively, one may keep the MAX VECTORS and NROOTS parameters of Davidson’s diago-

nalization procedure as small as possible (this mainly concerns the MAX VECTORS parameter).

For example, specifying MAX VECTORS = 12 instead of 20 would require 30% less memory.

One more trick concerns specifying the active space. In a desperate situation of a severe lack of

memory, should the two previous options fail, one can try to modify (increase) the active space in

such a way that the fragmentation of active and restricted orbitals would be less. For example, if

there is one restricted occupied b1 orbital and one active occupied B1 orbital, adding the restricted

b1 to the active space will reduce the number of blocks, by the price of increasing the number of

FLOPS. In principle, adding extra orbital to the active space should increase the accuracy of

calculations, however, a special care should be taken about the (near) degenerate pairs of orbitals,

which should be handled in the same way, i.e., both active or both restricted.

6.5.13 Job Control for EOM–(2,3)

The following options are available:
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CC DO TRIPLES

This keyword initializes a EOM-CC(2,3) calculation

TYPE:

INTEGER

DEFAULT:

0

OPTIONS:
0 No EOM-CC(2,3) calculation

1 Perform a EOM-CC(2,3) calculation
RECOMMENDATION:

None

CC DO SMALL TRIPLES
Pre-converges the EOM–CCSD block of the Hamiltonian by doing several EOM–

CCSD iterations before switching to EOM(2,3) using the EOM-CCSD vectors as

a guess for EOM-CC(2,3)
TYPE:

INTEGER

DEFAULT:

0 Do not do any EOM–CCSD iterations

OPTIONS:

n Do n iterations

RECOMMENDATION:

None

CC PRECONV SD
Solves the EOM–CCSD equations, prints energies, then uses EOM–CCSD vectors

as initial vectors in EOM-CC(2,3). Very convenient for calculations using energy

additivity schemes.
TYPE:

INTEGER

DEFAULT:

0

OPTIONS:

1 Turns the pre-converging on

RECOMMENDATION:

Turning this option on is recommended

CC RESTR AMPL
Forces the integrals, T , and R amplitudes to be determined in the full space even

though the CC REST OCC and CC REST VIR keywords are used.
TYPE:

INTEGER

DEFAULT:

1

OPTIONS:
0 Do apply restrictions

1 Do not apply restrictions
RECOMMENDATION:

None
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CC RESTR TRIPLES
Restricts R3 amplitudes to the active space, i.e., one electron should be removed

from the active occupied orbital and one electron should be added to the active

virtual orbital.
TYPE:

INTEGER

DEFAULT:

1

OPTIONS:

1 Applies the restrictions

RECOMMENDATION:

None

CC REST OCC

Sets the number of restricted occupied orbitals including frozen occupied orbitals.

TYPE:

INTEGER

DEFAULT:

0

OPTIONS:

n Restrict n occupied orbitals.

RECOMMENDATION:

None

CC REST VIR

Sets the number of restricted virtual orbitals including frozen virtual orbitals.

TYPE:

INTEGER

DEFAULT:

0

OPTIONS:

n Restrict n virtual orbitals.

RECOMMENDATION:

None

To select the active space, orbitals can be reordered by specifying the new order in the � re-

order mosection. The section consists of two rows of numbers (α and β sets), starting from 1, and

ending with n, where n is the number of the last orbital specified.

Example 6.17 Example � reorder mosection with orbitals 16 and 17 swapped for both α and β
electrons�

reorder mo

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 17 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 17 16�
end

6.5.14 Examples

Example 6.18 EOM-SF(2,3) calculations of methylene.
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$molecule

0 3

C

H 1 CH

H 1 CH 2 HCH

CH = 1.07

HCH = 111.0

$end

$rem

correlation ccsd

cc_do_triples 1 do EOM-(2,3)

basis 6-31G

cc_nlowspin [2,0,0,2]

n_frozen_core 1

n_frozen_virtual 1

cc_preconv_sd 1 Get EOM-CCSD energies first.

cc_spin_flip 1

$end

Example 6.19 This is active-space EOM-SF(2,3) calculations for methane with an elongated
CC bond. HF MOs should be reordered as specified in the � reorder mosection such that active
space for triples consists of sigma and sigma* orbitals.

$molecule

0 3

C

H 1 CH

H 1 CHX 2 HCH

H 1 CH 2 HCH 3 A120

H 1 CH 2 HCH 4 A120

CH=1.086

HCH=109.4712206

A120=120.

CHX=1.8

$end

$rem

jobtype sp

correlation ccsd

exchange hf

basis 6-31G*

cc_nlowspin [1,0]

cc_spin_flip 1

n_frozen_core 1

cc_do_triples 1 does eom-2,3

cc_preconv_sd 1 does eom-ccsd first

cc_restr_triples 1 triples are restricted to the active space only

cc_restr_ampl 0 ccsd and eom singles and doubles are full-space

cc_rest_occ 4 specifies active space

cc_rest_vir 17 specifies active space

print_orbitals 10 (number of virtuals to print)

$end

$reorder_mo

1 2 5 4 3

1 2 3 4 5

$end
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6.6 Potential Energy Surface Crossing Minimization

Potential energy surface crossing optimization procedure finds energy minima on crossing seams.

On the seam, the potential surfaces are degenerated in the subspace perpendicular to the plane

defined by two vectors – gradient difference

g =
∂

∂q
(E1 −E2)

and derivative coupling

h =

〈
Ψ1

∣∣∣∣
∂H

∂q

∣∣∣∣Ψ2

〉
.

At the time Q-Chem is unable to locate crossing minima for states which have non-zero derivative

coupling. Fortunately, often this is not the case. Minima on the seams of conical intersections of

states of different multiplicity can be found as their derivative coupling is zero. Minima on the

seams of intersections of states of different point group symmetry can be located as well.

To run a PES crossing minimization, CCSD and EOM-CCSD methods must be employed for the

ground and excited state calculations respectively.

6.6.1 Job Control Options

XOPT STATE 1, XOPT STATE 2

Specify two electronic states the intersection of which will be searched.

TYPE:

[INTEGER, INTEGER, INTEGER]

DEFAULT:

No default value (the option must be specified to run this calculation)

OPTIONS:
[spin, irrep, state]

spin = 0 Addresses states with low spin,

see also CC NLOWSPIN.

spin = 1 Addresses states with high spin,

see also CC NHIGHSPIN.

irrep Specifies the irreducible representation to which

the state belongs, for C2v point group symmetry

irrep = 1 for A1, irrep = 2 for A2,

irrep = 3 for B1, irrep = 4 for B2.

state Specifies the state number within the irreducible

representation, state = 1 means the lowest excited

state, state = 2 is the second excited state, etc.

0, 0, -1 Ground state.
RECOMMENDATION:

Only intersections of states with different spin or symmetry can be calculated at

this time.

Note: The spin can only be specified when using closed-shell RHF references. In the case of

open-shell references all states are treated together, see also CC NHIGHSPIN.
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XOPT SEAM ONLY

Orders an intersection seam search only, no minimization is to perform.

TYPE:

LOGICAL

DEFAULT:

FALSE

OPTIONS:
TRUE Find a point on the intersection seam and stop.

FALSE Perform a minimization of the intersection seam.
RECOMMENDATION:

In systems with a large number of degrees of freedom it might be useful to locate

the seam first setting this option to TRUE and use that geometry as a starting

point for the minimization.

6.6.2 Examples

Example 6.20 Minimize the intersection of Ã2A1 and B̃2B1 states of the NO2 molecule using
EOM-IP-CCSD method

$molecule

-1 1

N1

O2 N1 rno

O3 N1 rno O2 aono

rno = 1.3040

aono = 106.7

$end

$rem

JOBTYPE opt Optimize the intersection seam

EXCHANGE hf

UNRESTRICTED true

CORRELATION ccsd

BASIS 6-31g

CC_IP true

CC_NLOWSPIN [1,0,1,0] C2v point group symmetry

XOPT_STATE_1 [0,1,1] 1A1 low spin state

XOPT_STATE_2 [0,3,1] 1B1 low spin state

GEOM_OPT_TOL_GRADIENT 30 Tighten gradient tolerance

$END

Example 6.21 Minimize the intersection of Ã1B2 and B̃1A2 states of the N+
3 ion using EOM-

CCSD method

$molecule

1 1

N1

N2 N1 rnn

N3 N2 rnn N1 annn

rnn=1.46

annn=70.0

$end

$rem
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JOBTYPE opt

EXCHANGE hf

CORRELATION ccsd

BASIS 6-31g

CC_NLOWSPIN [0,2,0,2] C2v point group symmetry

XOPT_STATE_1 [0,4,1] 1B2 low spin state

XOPT_STATE_2 [0,2,2] 2A2 low spin state

XOPT_SEAM_ONLY true Find the seam only

GEOM_OPT_TOL_GRADIENT 100

$end

$opt

CONSTRAINT Set constraints on the N-N bond lengths

stre 1 2 1.46

stre 2 3 1.46

ENDCONSTRAINT

$end

@@@

$molecule

READ

$end

$rem

JOBTYPE opt Optimize the intersection seam

EXCHANGE hf

CORRELATION ccsd

BASIS 6-31g

CC_NLOWSPIN [0,2,0,2]

XOPT_STATE_1 [0,4,1]

XOPT_STATE_2 [0,2,2]

GEOM_OPT_TOL_GRADIENT 30

$end

6.7 Dyson Orbitals for Ionization from the ground and elec-

tronically excited states within EOM-CCSD formalism

Dyson orbitals can be used to compute angular distribution of photoelectrons. For a general

wavefunction, Dyson orbitals represent the overlap between the N electron molecular wavefunction

and the N-1/N+1 electron wavefunction of the corresponding cation/anion:

φd(1) =
1

N − 1

∫
ΨN(1, . . . , n)ΨN−1(2, . . . , n)d2 . . . dn (6.29)

φd(1) =
1

N + 1

∫
ΨN (2, . . . , n+ 1)ΨN+1(1, . . . , n+ 1)d2 . . . d(n+ 1) (6.30)

For Hartree-Fock wavefunctions and within Koopmans’ approximation, these are just the canonical

wavefunction of the ionized/attached electron. For correlated wavefunctions, Dyson orbitals can

be decomposed into contributions from the reference molecular orbitals:
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φd =
∑

p

γpφp (6.31)

γp =< ΨN |p+|ΨN−1 > (6.32)

γp =< ΨN |p|ΨN+1 > (6.33)

The calculation of Dyson orbitals is straightforward within the EOM-IP/EA-CCSD methods,

where cation/anion and initial molecule states are defined with respect to the same MO basis.

Since the left and right CC vectors are not the same, one can define correspondingly two Dyson

orbitals (left-right and right-left):

γRp =< Φ0e
T1+T2LEE|p+|RIP eT1+T2Φ0 > (6.34)

γLp =< Φ0e
T1+T2LIP |p|REEeT1+T2Φ0 > (6.35)

The norm of these orbitals is proportional to the one-electron character of the transition.

Dyson orbitals can be used as a tool that shows the difference between a molecular state and its

cation/anion. For ionization transitions, these orbitals can be also interpreted as the wavefunction

of the leaving electron before ionization.

6.7.1 Dyson Orbitals Job Control

The calculation of Dyson orbitals is implemented for two cases: ground (reference) and excited

state ionization/electron attachment. To obtain the ground state Dyson orbitals one needs to

run a regular EOM-IP/EA-CCSD calculation, request transition properties calculation by setting

CC TRANS PROP=TRUE and CC DO DYSON = TRUE. The Dyson orbitals decomposition in

the MO basis is printed in the output, for all transitions between the reference and all IP/EA

states. At the end of the file, also the coefficients of these Dyson orbitals in the AO basis are

available.

CC DO DYSON
Whether ground state Dyson orbitals will be calculated for EOM-IP/EA-CCSD

calculations.
TYPE:

LOGICAL

DEFAULT:

FALSE (the option must be specified to run this calculation)

OPTIONS:

TRUE/FALSE

RECOMMENDATION:

none

For calculating Dyson orbitals between excited states from the reference configuration and IP/EA

states, CC TRANS PROP=TRUE and CC DO DYSON EE = TRUE have to be added to the usual

EOM-IP/EA-CCSD calculation. The CC NHIGHSPIN keyword is used to specify the (initial)

excited states (EE), and CC NLOWSPIN specifies target ionized or attached states for the IP/EA

calculation. The Dyson orbital decomposition in MO and AO bases is printed for each EE-IP/EA

pair of states in the order: EE1 - IP/EA1, EE1 - IP/EA2,. . . , EE2 - IP/EA1, EE2 - IP/EA2, . . .,

and so on.
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CC DO DYSON EE
Whether excited state Dyson orbitals will be calculated for EOM-IP/EA-CCSD

calculations.
TYPE:

LOGICAL

DEFAULT:

FALSE (the option must be specified to run this calculation)

OPTIONS:

TRUE/FALSE

RECOMMENDATION:

none

Dyson orbitals can be also plotted using IANLTY = 200 and the � plots utility. Only the sizes of

the box need to be specified, followed by a line of zeros:

$plots

comment

10 -2 2

10 -2 2

10 -2 2

0 0 0 0

$plots

All Dyson orbitals on the xyz Cartesian grid will be written in the resulting plot.mo file. For

RHF(UHF) reference, the columns order in plot.mo is: φlr1 α (φlr1 β) φrl1 α (φrl1 β) φlr2 α (φlr2 β) . . .

Note: The meaning of the CC NHIGHSPIN is different for Dyson orbital calculations!

6.7.2 Examples

Example 6.22 Plotting grd-ex and ex-grd state Dyson orbitals for ionization of the oxygen
molecule. The target states of the cation are 2Ag and 2B2u.

$molecule

0 3

O 0.000 0.000 0.000

O 1.222 0.000 0.000

$end

$rem

jobtype sp

basis 6-31G*

correlation ccsd

cc_ip true request EOM-IP cals

cc_nlowspin [1,0,0,0,0,0,1,0] Target EOM-IP states

cc_trans_prop true request transition OPDMs to be calculated

cc_do_dyson true calculate Dyson orbitals

IANLTY 200

$end

$plots

plots excited states densities and trans densities

10 -2 2

10 -2 2

10 -2 2



Chapter 6: Open-Shell and Excited State Methods 180

0 0 0 0

$plots

Example 6.23 Plotting ex-ex state Dyson orbitals between the 1st 2A1 excited state of the HO
radical and the the 1st A1 and A2 excited states of HO−

$molecule

-1 1

H 0.000 0.000 0.000

O 1.000 0.000 0.000

$end

$rem

jobtype SP

correlation CCSD

BASIS 6-31G*

CC_NLOWSPIN [1,0,0,0] states of HO radical

CC_NHIGHSPIN [1,1,0,0] excited states of HO-

CC_IP true do EOM-IP

CC_TRANS_PROP true calculate transition properties

CC_DO_DYSON_EE true calculate Dyson orbitals for ionization from excited states

IANLTY 200

$end

$plots

plot excited states densities and trans densities

10 -2 2

10 -2 2

10 -2 2

0 0 0 0

$plots

6.8 Attachment/Detachment Density Analysis

As methods for ab initio calculations of excited states are becoming increasingly more routine,

the question is how best to extract chemical meaning from such calculations. Recently, a new

method of analyzing molecular excited states has been proposed [9] which has proven successful

in applications reported so far [9,35,36]. This section describes the theoretical background to this

attachment–detachment density analysis, while details of the input for creating data suitable for

plotting these quantities is described separately in the Molecular Properties Chapter.

Consider the one–particle density matrices of the initial and final states of interest, P1 and P2

respectively. Assuming that each state is represented in a finite basis of spin–orbitals, such as the

molecular orbital basis, and each state is at the same geometry. Subtracting these matrices yields

the difference density

∆ = P1 −P2 (6.36)

Now, the eigenvectors of the one–particle density matrix P describing a single state are termed the

natural orbitals, and provide the best orbital description that is possible for the state, in that a CI

expansion using the natural orbitals as the single–particle basis is the most compact. The basis of

the attachment/detachment analysis is to consider what could be termed natural orbitals of the

electronic transition and their occupation numbers (associated eigenvalues). These are defined as

the eigenvectors U defined by

Ut∆U = δ (6.37)
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The sum of the occupation numbers δp of these orbitals is then

tr(∆) =
N∑

p=1

δp = n (6.38)

where n is the net gain or loss of electrons in the transition. The net gain in an electronic transition

which does not involve ionization or electron attachment will obviously be zero.

The detachment density

D = UdUt (6.39)

is defined as the sum of all natural orbitals of the difference density with negative occupation

numbers, weighted by the absolute value of their occupations where d is a diagonal matrix with

elements

dp = −min(δp, 0) (6.40)

The detachment density corresponds to the electron density associated with single particle levels

vacated in an electronic transition or hole density.

The attachment density

A = UaUt (6.41)

is defined as the sum of all natural orbitals of the difference density with positive occupation

numbers where a is a diagonal matrix with elements

ap = max(δp, 0) (6.42)

The attachment density corresponds to the electron density associated with the single particle

levels occupied in the transition or particle density. The difference between the attachment and

detachment densities yields the original difference density matrix

∆ = A−D (6.43)
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Chapter 7

Basis Sets

7.1 Introduction

A basis set is a set of functions combined linearly to model molecular orbitals. Basis functions

can be considered as representing the atomic orbitals of the atoms and are introduced in quantum

chemical calculations because the equations defining the molecular orbitals are otherwise very

difficult to solve.

Many standard basis sets have been carefully optimized and tested over the years. In principle, a

user would employ the largest basis set available in order to model molecular orbitals as accurately

as possible. In practice, the computational cost grows rapidly with the size of the basis set so a

compromise must be sought between accuracy and cost. If this is systematically pursued, it leads to

a “theoretical model chemistry” [3], that is, a well–defined energy procedure (e.g., Hartree–Fock)

in combination with a well–defined basis set.

Basis sets have been constructed from Slater, Gaussian, plane wave and delta functions. Slater

functions were initially employed because they are considered “natural” and have the correct

behavior at the origin and in the asymptotic regions. However, the two–electron repulsion integrals

(ERIs) encountered when using Slater basis functions are expensive and difficult to evaluate. Delta

functions are used in several quantum chemistry programs. However, while codes incorporating

delta functions are simple, thousands of functions are required to achieve accurate results, even

for small molecules. Plane waves are widely used and highly efficient for calculations on periodic

systems, but are not so convenient or natural for molecular calculations.

The most important basis sets are contracted sets of atom–centered Gaussian functions. The

number of basis functions used depends on the number of core and valence atomic orbitals, and

whether the atom is light (H or He) or heavy (everything else). Contracted basis sets have been

shown to be computationally efficient and to have the ability to yield chemical accuracy (see

the Appendix on AOINTS). The Q-Chem program has been optimized to exploit basis sets of

the contracted Gaussian function type and has a large number of built–in standard basis sets

(developed by Dunning and Pople, among others) which the user can access quickly and easily.

The selection of a basis set for quantum chemical calculations is very important. It is sometimes

possible to use small basis sets to obtain good chemical accuracy, but calculations can often be

significantly improved by the addition of diffuse and polarization functions. Consult the literature

and reviews [3–7] to aid your selection and see the section “Further Reading” at the end of this

chapter.
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7.2 Built–in Basis sets

Q-Chem is equipped with many standard basis sets [8], and allows the user to specify the required

basis set by its standard symbolic representation. The available built–in basis sets are of four types:

� Pople basis sets� Dunning basis sets� Correlation consistent Dunning basis sets� Ahlrichs basis sets

In addition, Q-Chem supports the following features:

� Extra diffuse functions available for high quality excited state calculations.� Standard polarization functions.� Basis sets are requested by symbolic representation.� s, p, sp, d, f and g angular momentum types of basis functions.� Maximum number of shells per atom is 100.� Pure and Cartesian basis functions.� Mixed basis sets (see section 7.5).� Basis set superposition error (BSSE) corrections.

The following � rem keyword controls the basis set:

BASIS

Sets the basis set to be used

TYPE:

STRING

DEFAULT:

No default basis set

OPTIONS:
General, Gen User–defined. See section below

Symbol Use standard basis sets as in the table below

Mixed Use a combination of different basis sets
RECOMMENDATION:

Consult literature and reviews to aid your selection.

7.3 Basis Set Symbolic Representation

Examples are given in the tables below and follow the standard format generally adopted for

specifying basis sets. The single exception applies to additional diffuse functions. These are best

inserted in a similar manner to the polarization functions; in parentheses with the light atom

designation following heavy atom designation. (i.e., heavy, light). Use a period (.) as a place–

holder (see examples).
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j k l m n

STO−j(k+, l+)G(m,n) 2,3,6 a b d p

j−21(k+, l+)G(m,n) 3 a b 2d 2p

j− 31(k+, l+)G(m,n) 4,6 a b 3d 3p

j − 311(k+, l+)G(m,n) 6 a b df ,2df ,3df pd,2pd,3pd

Table 7.1: Summary of Pople type basis sets available in the Q-Chem program. m and nrefer

to the polarization functions on heavy and light atoms respectively. ak is the number of sets of

diffuse functions on heavy bl is the number of sets of diffuse functions on light atoms

Symbolic Name Atoms Supported

STO–2G H, He, Li→Ne, Na→Ar, K, Ca, Sr

STO–3G H, He, Li→Ne, Na→Ar, K→Kr, Rb→Sb

STO–6G H, He, Li→Ne, Na→Ar, K→Kr

3–21G H, He, Li→Ne, Na→Ar, K→Kr, Rb→Xe, Cs

4–31G H, He, Li→Ne, P→Cl

6–31G H, He, Li→Ne, Na→Ar, K→Zn

6–311G H, He, Li→Ne, Na→Ar, Ga→Kr

G3LARGE H, He, Li→Ne, Na→Ar, Ga→Kr

G3MP2LARGE H, He, Li→Ne, Na→Ar, Ga→Kr

Table 7.2: Atoms supported for Pople basis sets available in Q-Chem (see the Table below for

specific examples).

Symbolic Name Atoms Supported

3–21G H, He, Li→Ne, Na→Ar, K→Kr, Rb→Xe, Cs

3–21+G H, He, Na→Cl, Na→Ar, K, Ca, Ga→Kr

3–21G* H, He, Na→Cl

6–31G H, He, Li→Ne, Na→Ar, K→Zn

6–31+G H, He, Li→Ne, Na→Ar

6–31G* H, He, Li→Ne, Na→Ar, K→Zn

6–31G(d,p) H, He, Li→Ne, Na→Ar, K→Zn

6–31G(.,+)G H, He, Li→Ne, Na→Ar

6–31+G* H, He, Li→Ne, Na→Ar

6–311G H, He, Li→Ne, Na→Ar, Ga→Kr

6–311+G H, He, Li→Ne, Na→Ar

6–311G* H, He, Li→Ne, Na→Ar, Ga→Kr

6–311G(d,p) H, He, Li→Ne, Na→Ar, Ga→Kr

G3LARGE H, He, Li→Ne, Na→Ar, Ga→Kr

G3MP2LARGE H, He, Li→Ne, Na→Ar, Ga→Kr

Table 7.3: Examples of extended Pople basis sets.

SV(k+, l+)(md, np), DZ(k+, l+)(md, np), TZ(k+, l+)(md, np)

k # sets of heavy atom diffuse functions

l # sets of light atom diffuse functions

m # sets of d functions on heavy atoms

n # sets of p functions on light atoms

Table 7.4: Summary of Dunning–type basis sets available in the Q-Chem program.
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Symbolic Name Atoms Supported

SV H, Li→Ne

DZ H, Li→Ne, Al→Cl

TZ H, Li→Ne

Table 7.5: Atoms supported for old Dunning basis sets available in Q-Chem.

Symbolic Name Atoms Supported

SV H, Li→Ne

SV* H, B→Ne

SV(d,p) H, B→Ne

DZ H, Li→Ne, Al→Cl

DZ+ H, B→Ne

DZ++ H, B→Ne

DZ* H, Li→Ne

DZ** H, Li→Ne

DZ(d,p) H, Li→Ne

TZ H, Li→Ne

TZ+ H, Li→Ne

TZ++ H, Li→Ne

TZ* H, Li→Ne

TZ** H, Li→Ne

TZ(d,p) H, Li→Ne

Table 7.6: Examples of extended Dunning basis sets.

Symbolic Name Atoms Supported

cc–pVDZ H, He, B→Ne, Al→Ar, Ga→Kr

cc–pVTZ H, He, B→Ne, Al→Ar, Ga→Kr

cc–pVQZ H, He, B→Ne, Al→Ar, Ga→Kr

cc–pCVDZ B→Ne

cc–pCVTZ B→Ne

cc–pCVQZ B→Ne

aug–cc–pVDZ H, He, B→Ne, Al→Ar, Ga→Kr

aug–cc–pVTZ H, He, B→Ne, Al→Ar, Ga→Kr

aug–cc–pVQZ H, He, B→Ne, Al→Ar, Ga→Kr

aug–cc–pCVDZ B→F

aug–cc–pCVTZ B→Ne

aug–cc–pCVQZ B→Ne

Table 7.7: Atoms supported Dunning correlation-consistent basis sets available in Q-Chem.

Symbolic Name Atoms Supported

TZV Li→Kr

VDZ H→Kr

VTZ H→Kr

Table 7.8: Atoms supported for Ahlrichs basis sets available in Q-Chem
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7.3.1 Customization

Q-Chem offers a number of standard and special customization features. One of the most im-

portant is that of supplying additional diffuse functions. Diffuse functions are often important for

studying anions and excited states of molecules, and for the latter several sets of additional diffuse

functions may be required. These extra diffuse functions can be generated from the standard

diffuse functions by applying a scaling factor to the exponent of the original diffuse function. This

yields a geometric series of exponents for the diffuse functions which includes the original standard

functions along with more diffuse functions.

When using very large basis sets, especially those that include many diffuse functions, or if the

system being studied is very large, linear dependence in the basis set may arise. This results in

an over–complete description of the space spanned by the basis functions, and can cause a loss of

uniqueness in the molecular orbital coefficients. Consequently, the SCF may be slow to converge

or behave erratically. Q-Chem will automatically check for linear dependence in the basis set,

and will project out the near–degeneracies, if they exist. This will result in there being slightly

fewer molecular orbitals than there are basis functions. Q-Chem checks for linear–dependence by

considering the eigenvalues of the overlap matrix. Very small eigenvalues are an indication that

the basis set is close to being linearly dependent. The size at which the eigenvalues are considered

to be too small is governed by the � rem variable BASIS LIN DEP THRESH. By default this is set

to 6, corresponding to a threshold of 10−6. This has been found to give reliable results, however,

if you have a poorly behaved SCF, and you suspect there maybe linear dependence in you basis,

the threshold should be increased.

PRINT GENERAL BASIS

Controls print out of built in basis sets in input format

TYPE:

LOGICAL

DEFAULT:

FALSE

OPTIONS:
TRUE Print out standard basis set information

FALSE Do not print out standard basis set information
RECOMMENDATION:

Useful for modification of standard basis sets.

BASIS LIN DEP THRESH

Sets the threshold for determining linear dependence in the basis set

TYPE:

INTEGER

DEFAULT:

6 Corresponding to a threshold of 10−6

OPTIONS:

n Sets the threshold to 10−n

RECOMMENDATION:
Set to 5 or smaller if you have a poorly behaved SCF and you suspect linear

dependence in you basis set. Lower values (larger thresholds) may affect the

accuracy of the calculation.
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7.4 User–defined Basis Sets ( � basis)

7.4.1 Introduction

Users may, on occasion, prefer to use non–standard basis, and it is possible to declare user–defined

basis sets in Q-Chem input (see Chapter 3 on Q-Chem inputs). The format for inserting a non–

standard user–defined basis set is both logical and flexible, and is described in detail in the job

control section below.

Note that the SAD guess is not currently supported with non–standard or user–defined basis sets.

The simplest alternative is to specify the GWH or CORE options for SCF GUESS, but these are

relatively ineffective other than for small basis sets. The recommended alternative is to employ

basis set projection by specifying a standard basis set for the BASIS2 keyword. See the section in

Chapter 4 on initial guesses for more information.

7.4.2 Job Control

In order to use a user–defined basis set the BASIS � rem must be set to GENERAL or GEN.

When using a non–standard basis set which incorporates d or higher angular momentum basis

functions, the � rem variable PURECART needs to be initiated. This � rem variable indicates to

the Q-Chem program how to handle the angular form of the basis functions. As indicated above,

each integer represents an angular momentum type which can be defined as either pure (1) or

Cartesian (2). For example, 111 would specify all g, f and d basis functions as being in the pure

form. 121 would indicate g– and d– functions are pure and f–functions Cartesian.

PURECART

INTEGER

TYPE:

Controls the use of pure (spherical harmonic) or Cartesian angular forms

DEFAULT:

2111 Cartesian h–functions and pure g, f, d functions

OPTIONS:

hgfd Use 1 for pure and 2 for Cartesian.

RECOMMENDATION:

This is pre–defined for all standard basis sets

In standard basis sets all functions are pure, except for the d functions in n − 21G type bases

(e.g., 3-21G) and n−31G (6-31G, 6-31G*,6-31+G* . . .). In particular, the 6-311G series uses pure

functions (both d and f).

7.4.3 Format For User–defined Basis Sets

The format for the user–defined basis section is as follows:
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�
basis

X 0

L K scale

α1 CLmin1 CLmin+1
1 . . . CLmax1

α2 CLmin2 CLmin+1
2 . . . CLmax2

...
...

...
. . .

...

αK CLminK CLmin+1
K . . . CLmaxK

****�
end

where

X Atomic symbol of the atom (atomic number not accepted)

L Angular momentum symbol (S, P, SP, D, F, G)

K Degree of contraction of the shell (integer)

scale Scaling to be applied to exponents (default is 1.00)

ai Gaussian primitive exponent (positive real number)

CLi Contraction coefficient for each angular momentum (non–zero real numbers).

Atoms are terminated with **** and the complete basis set is terminated with the � end keyword

terminator. No blank lines can be incorporated within the general basis set input. Note that more

than one contraction coefficient per line is one required for compound shells like SP. As with all

Q-Chem input deck information, all input is case–insensitive.

7.4.4 Example

Example 7.1 Example of adding a user–defined non–standard basis set. Note that since d, f
and g functions are incorporated, the � rem variable PURECART must be set. Note the use of
BASIS2 for the initial guess.

$molecule

0 1

O

H O oh

H O oh 2 hoh

oh = 1.2

hoh = 110.0

$end

$rem

EXCHANGE hf

BASIS gen user--defined general basis

BASIS2 sto-3g sto-3g orbitals as initial guess

PURECART 112 Cartesian d functions, pure f and g

$end

$basis

H 0

S 2 1.00

1.30976 0.430129

0.233136 0.678914

****

O 0

S 2 1.00

49.9810 0.430129

8.89659 0.678914

SP 2 1.00
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1.94524 0.0494720 0.511541

0.493363 0.963782 0.612820

D 1 1.00

0.39000 1.000000

F 1 1.00

4.10000 1.000000

G 1 1.00

3.35000 1.000000

****

$end

7.5 Mixed Basis Sets

In addition to defining a custom basis set, it is also possible to specify different standard basis

sets for different atoms. For example, in a large alkene molecule the hydrogen atoms could be

modeled by the STO–3G basis, while the carbon atoms have the larger 6-31G(d) basis. This can

be specified within the � basis block using the more familiar basis set labels.

Note: (1) It is not possible to augment a standard basis set in this way; the whole basis needs

to be inserted as for a user–defined basis (angular momentum, exponents, contraction

coefficients) and additional functions added. Standard basis set exponents and coefficients

can be easily obtained by setting the PRINT GENERAL BASIS � rem variable to TRUE.

(2) The PURECART flag must be set for all general basis input containing d angular

momentum or higher functions, regardless of whether standard basis sets are entered in

this non–standard manner.

The user can also specify different basis sets for atoms of the same type, but in different parts of

the molecule. This allows a larger basis set to be used for the active region of a system, and a

smaller basis set to be used in the less important regions. To enable this the BASIS keyword must

be set to MIXED and a � basis section included in the input deck that gives a complete specification

of the basis sets to be used. The format is exactly the same as for the user–defined basis, except

that the atom number (as ordered in the � molecule section) must be specified in the field after the

atomic symbol. A basis set must be specified for every atom in the input, even if the same basis

set is to be used for all atoms of a particular element. Custom basis sets can be entered, and the

shorthand labeling of basis sets is also supported.

The use of different basis sets for a particular element means the global potential energy surface

is no longer unique. The user should exercise caution when using this feature of mixed basis sets,

especially during geometry optimizations and transition state searches.

7.5.1 Examples

Example 7.2 Example of adding a user defined non–standard basis set. The user is able to
specify different standard basis sets for different atoms.

$molecule

0 1

O

H O oh

H O oh 2 hoh

oh = 1.2

hoh = 110.0

$end
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$rem

EXCHANGE hf

BASIS General user-defined general basis

PURECART 2 Cartesian D functions

BASIS2 sto-3g use STO-3G as initial guess

$end

$basis

H 0

6-31G

****

O 0

6-311G(d)

****

$end

Example 7.3 Example of using a mixed basis set for methanol. The user is able to specify
different standard basis sets for some atoms and supply user–defined exponents and contraction
coefficients for others. This might be particularly useful in cases where the user has constructed
exponents and contraction coefficients for atoms not defined in a standard basis set so that only
the non–defined atoms need have the exponents and contraction coefficients entered. Note that a
basis set has to be specified for every atom in the molecule, even if the same basis is to be used
on an atom type. Note also that the dummy atom is not counted.

$molecule

0 1

C

O C rco

H1 C rch1 O h1co

x C 1.0 O xcol h1 180.0

H2 C rch2 x h2cx h1 90.0

H3 C rch2 x h2cx h1 -90.0

H4 O roh C hoc h1 180.0

rco = 1.421

rch1 = 1.094

rch2 = 1.094

roh = 0.963

h1co = 107.2

xco = 129.9

h2cx = 54.25

hoc = 108.0

$end

$rem

exchange hf

basis mixed user-defined mixed basis

$end

$basis

C 1

3-21G

****

O 2

S 3 1.00

3.22037000E+02 5.92394000E-02

4.84308000E+01 3.51500000E-01

1.04206000E+01 7.07658000E-01

SP 2 1.00

7.40294000E+00 -4.04453000E-01 2.44586000E-01

1.57620000E+00 1.22156000E+00 8.53955000E-01

SP 1 1.00
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3.73684000E-01 1.00000000E+00 1.00000000E+00

SP 1 1.00

8.45000000E-02 1.00000000E+00 1.00000000E+00

****

H 3

6-31(+,+)G(d,p)

****

H 4

sto-3g

****

H 5

sto-3g

****

H 6

sto-3g

****

$end

7.6 Basis Set Superposition Error (BSSE)

When calculating binding energies, the energies of the fragments are usually higher than they

should be due to the smaller effective basis set used for the individual species. This leads to an

overestimate of the binding energy called the basis set superposition error. The effects of this can

be corrected for by performing the calculations on the individual species in the presence of the

basis set associated with the other species. This requires basis functions to be placed at arbitrary

points in space, not just those defined by the nuclear centers. This can be done within Q-Chem

by using ghost atoms. These atoms have zero nuclear charge, but can support a user defined basis

set. Ghost atom locations are specified in the � molecule section, as for any other atom, and the

basis must be specified in a � basis section in the same manner as for a mixed basis.

Example 7.4 A calculation on a water monomer in the presence of the full dimmer basis set.
The energy will be slightly lower than that without the ghost atom functions due to the greater
flexibility of the basis set.

$molecule

0 1

O 1.68668 -0.00318 0.000000

H 1.09686 0.01288 -0.741096

H 1.09686 0.01288 0.741096

Gh -1.45451 0.01190 0.000000

Gh -2.02544 -0.04298 -0.754494

Gh -2.02544 -0.04298 0.754494

$end

$rem

EXCHANGE hf

CORRELATION mp2

BASIS mixed

$end

$basis

O 1

6-31G*

****

H 2

6-31G*

****

H 3

6-31G*
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****

O 4

6-31G*

****

H 5

6-31G*

****

H 6

6-31G*

****

$end
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Chapter 8

Effective Core Potentials

8.1 Introduction

The application of quantum chemical methods to elements in the lower half of the Periodic Table

is more difficult than for the lighter atoms. There are two key reasons for this:

� the number of electrons in heavy atoms is large� relativistic effects in heavy atoms are often non–negligible

Both of these problems stem from the presence of large numbers of core electrons and, given

that such electrons do not play a significant direct role in chemical behavior, it is natural to

ask whether it is possible to model their effects in some simpler way. Such enquiries led to the

invention of Effective Core Potentials (ECPs) or pseudopotentials. For reviews of relativistic effects

in chemistry, see for example refs [3–6].

If we seek to replace the core electrons around a given nucleus by a pseudopotential, while affecting

the chemistry as little as possible, the pseudopotential should have the same effect on nearby

valence electrons as the core electrons. The most obvious effect is the simple electrostatic repulsion

between the core and valence regions but the requirement that valence orbitals must be orthogonal

to core orbitals introduces additional subtler effects that cannot be neglected.

The most widely used ECPs today are of the form first proposed by Kahn et al., [7] in the 1970s.

These model the effects of the core by a one–electron operator U(r) whose matrix elements are

simply added to the one–electron Hamiltonian matrix. The ECP operator is given by

U(r) = UL(r) +

L−1∑

l=0

+l∑

m=−l
|Ylm〉 [Ul(r) − UL(r)] 〈Ylm| (8.1)

where the |Ylm〉 are spherical harmonic projectors and the Ul(r) are linear combinations of Gaus-

sians, multiplied by r−2, r−1 or r0. In addition, UL(r) contains a Coulombic term Nc/r, where

Nc is the number of core electrons.

One of the key issues in the development of pseudopotentials is the definition of the “core”. So–

called “large–core” ECPs include all shells except the outermost one, but “small–core” ECPs

include all except the outermost two shells. Although the small–core ECPs are more expensive to

use (because more electrons are treated explicitly), it is often found that their enhanced accuracy

justifies their use.
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When an ECP is constructed, it is usually based either on non–relativistic, or quasi–relativistic

all–electron calculations. As one might expect, the quasi–relativistic ECPs tend to yield better

results than their non–relativistic brethren, especially for atoms beyond the 3d block.

8.2 Built–In Pseudopotentials

8.2.1 Overview

Q-Chem is equipped with several standard ECP sets which are specified using the ECP keyword

within the � rem block. The built–in ECPs, which are described in some detail at the end of this

Chapter, fall into four families:

� The Hay–Wadt (or Los Alamos) sets (HWMB and LANL2DZ)� The Stevens–Basch–Krauss–Jansien–Cundari set (SBKJC)� The Christiansen–Ross–Ermler–Nash–Bursten sets (CRENBS and CRENBL)� The Stuttgart–Bonn sets (SRLC and SRSC)

References and information about the definition and characteristics of most of these sets can be

found at the EMSL site of the Pacific Northwest National Laboratory [8]

http://www.emsl.pnl.gov/forms/basisform.html

Each of the built–in ECPs comes with a matching orbital basis set for the valence electrons. In

general, it is advisable to use these together and, if you select a basis set other than the matching

one, Q-Chem will print a warning message in the output file. If you omit the BASIS � rem keyword

entirely, Q-Chem will automatically provide the matching one.

The following � rem variable controls which ECP is used:

ECP

Defines the effective core potential and associated basis set to be used

TYPE:

STRING

DEFAULT:

No pseudopotential

OPTIONS:
General, Gen User defined. ( � ecp keyword required)

Symbol Use standard pseudopotentials discussed above.
RECOMMENDATION:

Pseudopotentials are recommended for first row transition metals and heavier

elements. Consul the reviews for more details.

8.2.2 Combining Pseudopotentials

If you wish, you can use different ECP sets for different elements in the system. This is especially

useful if you would like to use a particular ECP but find that it is not available for all of the

elements in your molecule. To combine different ECP sets, you set the ECP and BASIS keywords

to “Gen” or “General” and then add a � ecp block and a � basis block to your input file. In each of

these blocks, you must name the ECP and the orbital basis set that you wish to use, separating
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each element by a sequence of four asterisks. There is also a built-in combination that can be

invoked specifying “ECP=LACVP”. It assigns automatically 6-31G* or other suitable type basis

sets for atoms H-Ar, while uses LANL2DZ for heavier atoms.

8.2.3 Examples

Example 8.1 Computing the HF/LANL2DZ energy of AgCl at a bond length of 2.4 Å.

$molecule

0 1

Ag

Cl Ag r

r = 2.4

$end

$rem

EXCHANGE hf Hartree-Fock calculation

ECP lanl2dz Using the Hay-Wadt ECP

BASIS lanl2dz And the matching basis set

$end

Example 8.2 Computing the HF geometry of CdBr2 using the Stuttgart relativistic ECPs. The
small–core ECP and basis are employed on the Cd atom and the large–core ECP and basis on the
Br atoms.

$molecule

0 1

Cd

Br1 Cd r

Br2 Cd r Br1 180

r = 2.4

$end

$rem

JOBTYPE opt Geometry optimization

EXCHANGE hf Hartree-Fock theory

ECP gen Combine ECPs

BASIS gen Combine basis sets

PURECART 1 Use pure d functions

$end

$ecp

Cd

srsc

****

Br

srlc

****

$end

$basis

Cd

srsc

****

Br

srlc

****

$end
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8.3 User–Defined Pseudopotentials

Many users will find that the library of built–in pseudopotentials is adequate for their needs.

However, if you need to use an ECP that is not built into Q-Chem, you can enter it in much the

same way as you can enter a user–defined orbital basis set (see Chapter 7).

8.3.1 Job Control for User–Defined ECP’s

To apply a user–defined pseudopotential, you must set the ECP and BASIS keywords in � rem to

“Gen”. You then add a � ecp block that defines your ECP, element by element, and a � basis block

that defines your orbital basis set, separating elements by asterisks.

The syntax within the � basis block is described in Chapter 7. The syntax for each record within

the � ecp block is as follows:.

� ecp

For each atom that will bear an ECP

Chemical symbol for the atom

ECP name ; the L value for the ECP ; number of core electrons removed

For each ECP component (in the order unprojected, P̂0, P̂1, , P̂L−1

The component name

The number of Gaussians in the component

For each Gaussian in the component

The power of r ; the exponent ; the contraction coefficient

A sequence of four asterisks (i.e., ****)� end

Note: (1) All of the information in the � ecp block is case–insensitive.

(2) The L value may not exceed 4. That is, nothing beyond G projectors is allowed.

(3) The power of r (which includes the Jacobian r2 factor) must be 0, 1 or 2.

8.3.2 Example

Example 8.3 Optimizing the HF geometry of AlH3 using a user–defined ECP and basis set on
Al and the 3–21G basis on H.

$molecule

0 1

Al

H1 Al r

H2 Al r H1 120

H3 Al r H1 120 H2 180

r = 1.6

$end

$rem

JOBTYPE opt Geometry optimization

EXCHANGE hf Hartree-Fock theory

ECP gen User-defined ECP

BASIS gen User-defined basis

$end

$ecp

Al

Stevens_ECP 2 10
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d potential

1

1 1.95559 -3.03055

s-d potential

2

0 7.78858 6.04650

2 1.99025 18.87509

p-d potential

2

0 2.83146 3.29465

2 1.38479 6.87029

****

$end

$basis

Al

SP 3 1.00

0.90110 -0.30377 -0.07929

0.44950 0.13382 0.16540

0.14050 0.76037 0.53015

SP 1 1.00

0.04874 0.32232 0.47724

****

H

3-21G

****

$end

8.4 Pseudopotentials and Density Functional Theory

Q-Chem’s pseudopotential package and DFT package are tightly integrated and facilitate the

application of advanced density functionals to molecules containing heavy elements. Any of the

local, gradient–corrected and hybrid functionals discussed in Chapter 4 may be used and you may

also perform ECP calculations with user–defined hybrid functionals.

In a DFT calculation with pseudopotentials, the exchange–correlation energy is obtained entirely

from the non–core electrons. This will be satisfactory if there are no chemically important core–

valence effects but may introduce significant errors, particularly if you are using a “large–core”

ECP.

Q-Chem’s default quadrature grid is a SG–1/SG–0 hybrid (see section 4.3.4) which was originally

defined only for the elements up to argon. In Q-Chem 2.0 and above, the SG–1 grid has been

extended and it is now defined for all atoms up to, and including, the actinides.

8.4.1 Example

Example 8.4 Optimization of the structure of XeF+
5 using B3LYP theory and the ECPs of

Stevens and collaborators. Note that the BASIS keyword has been omitted and, therefore, the
matching SBKJC orbital basis set will be used.

$molecule

1 1

Xe

F1 Xe r1

F2 Xe r2 F1 a

F3 Xe r2 F1 a F2 90

F4 Xe r2 F1 a F3 90
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F5 Xe r2 F1 a F4 90

r1 = 2.07

r2 = 2.05

a = 80.0

$end

$rem

JOBTYP opt

EXCHANGE b3lyp

ECP sbkjc

$end

8.5 Pseudopotentials and Electron Correlation

The pseudopotential package is integrated with the electron correlation package and it is therefore

possible to apply any of Q-Chem’s post–Hartree–Fock methods to systems in which some of the

atoms may bear pseudopotentials. Of course, the correlation energy contribution arising from core

electrons that have been replaced by an ECP is not included. In this sense, correlation energies

with ECPs are comparable to correlation energies from frozen core calculations. However, the

use of ECPs effectively removes both core electrons and the corresponding virtual (unoccupied)

orbitals.

8.5.1 Example

Example 8.5 Optimization of the structure of Se8 using HF/LANL2DZ, followed by a single–
point energy calculation at the MP2/LANL2DZ level.

$molecule

0 1

x1

x2 x1 xx

Se1 x1 sx x2 90.

Se2 x1 sx x2 90. Se1 90.

Se3 x1 sx x2 90. Se2 90.

Se4 x1 sx x2 90. se3 90.

Se5 x2 sx x1 90. Se1 45.

Se6 x2 sx x1 90. Se5 90.

Se7 x2 sx x1 90. Se6 90.

Se8 x2 sx x1 90. Se7 90.

xx = 1.2

sx = 2.8

$end

$rem

JOBTYP opt

EXCHANGE hf

ECP lanl2dz

$end

@@@

$molecule

read

$end
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$rem

JOBTYP sp Single-point energy

CORRELATION mp2 MP2 correlation energy

ECP lanl2dz Hay-Wadt ECP and basis

SCF_GUESS read Read in the MOs

$end

8.6 Pseudopotentials and Vibrational Frequencies

The pseudopotential package is also integrated with the vibrational analysis package and it is

therefore possible to compute the vibrational frequencies (and hence the infra–red and Raman

spectra) of systems in which some of the atoms may bear pseudopotentials.

Q-Chem 3.0 cannot calculate analytic second derivatives of the nuclear potential–energy term

when ECP’s are used, and must therefore resort to finite difference methods. However, for HF and

DFT calculations, it can compute analytic second derivatives for all other terms in the Hamilto-

nian. The program takes full advantage of this by only computing the potential–energy derivatives

numerically, and adding these to the analytically calculated second derivatives of the remaining

energy terms.

There is a significant speed advantage associated with this approach as, at each finite–difference

step, only the potential–energy term needs to be calculated. This term requires only three–center

integrals, which are far fewer in number and much cheaper to evaluate than the four–center, two–

electron integrals associated with the electron–electron interaction terms. Readers are referred to

Table 9.1 for a full list of the analytic derivative capabilities of Q-Chem.

8.6.1 Example

Example 8.6 Structure and vibrational frequencies of TeO2 using Hartree–Fock theory and the
Stuttgart relativistic large–core ECPs. Note that the vibrational frequency job reads both the
optimized structure and the molecular orbitals from the geometry optimization job that precedes
it. Note also that only the second derivatives of the potential–energy term will be calculated by
finite–difference, all other terms will be calculated analytically.

$molecule

0 1

Te

O1 Te r

O2 Te r O1 a

r = 1.8

a = 108

$end

$rem

JOBTYP opt

EXCHANGE hf

ECP srlc

$end

@@@

$molecule

read

$end
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$rem

JOBTYP freq

EXCHANGE hf

ECP srlc

SCF_GUESS read

$end

8.6.2 A Brief Guide to Q-Chem’s Built–in ECP’s

The remainder of this Chapter consists of a brief reference guide to Q-Chem’s built–in ECPs.

The ECPs vary in their complexity and their accuracy and the purpose of the guide is to enable

the user quickly and easily to decide which ECP to use in a planned calculation.

The following information is provided for each ECP:

� The elements for which the ECP is available in Q-Chem. This is shown on a schematic

Periodic Table by shading all the elements that are not supported.� The literature reference for each element for which the ECP is available in Q-Chem.� The matching orbital basis set that Q-Chem will use for light (i.e. non–ECP atoms). For

example, if the user requests SRSC pseudopotentials – which are defined only for atoms

beyond argon – Q-Chem will use the 6–311G* basis set for all atoms up to Ar.� The core electrons that are replaced by the ECP. For example, in the LANL2DZ pseudopo-

tential for the Fe atom, the core is [Ne], indicating that the 1s, 2s and 2p electrons are

removed.� The maximum spherical harmonic projection operator that is used for each element. This

often, but not always, corresponds to the maximum orbital angular momentum of the core

electrons that have been replaced by the ECP. For example, in the LANL2DZ pseudopoten-

tial for the Fe atom, the maximum projector is of P–type.� The number of valence basis functions of each angular momentum type that are present

in the matching orbital basis set. For example, in the matching basis for the LANL2DZ

pseudopotential for the Fe atom, there the three s shells, three p shells and two d shells.

This basis is therefore almost of triple–split valence quality.

Finally, we note the limitations of the current ECP implementation within Q-Chem:

� Energies can be calculated only for s, p, d and f basis functions with G projectors. Conse-

quently, Q-Chem cannot perform energy calculations on actinides using SRLC.� Gradients can be calculated only for s, p and d basis functions with F projectors and only

for s and p basis functions with G projectors.
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8.6.3 The HWMB Pseudopotential at a Glance
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HWMB is not available for shaded elements
(a) No pseudopotential; Pople STO–3G basis used

(b) Wadt & Hay, J. Chem. Phys. 82 (1985) 285

(c) Hay & Wadt, J. Chem. Phys. 82 (1985) 299

(d) Hay & Wadt, J. Chem. Phys. 82 (1985) 270

Element Core Max Projector Valence

H–He none none (1s)

Li–Ne none none (2s,1p)

Na–Ar [Ne] P (1s,1p)

K–Ca [Ne] P (2s,1p)

Sc–Cu [Ne] P (2s,1p,1d)

Zn [Ar] D (1s,1p,1d)

Ga–Kr [Ar]+3d D (1s,1p)

Rb–Sr [Ar]+3d D (2s,1p)

Y–Ag [Ar]+3d D (2s,1p,1d)

Cd [Kr] D (1s,1p,1d)

In–Xe [Kr]+4d D (1s,1p)

Cs–Ba [Kr]+4d D (2s,1p)

La [Kr]+4d D (2s,1p,1d)

Hf–Au [Kr]+4d+4f F (2s,1p,1d)

Hg [Xe]+4f F (1s,1p,1d)

Tl–Bi [Xe]+4f+5d F (1s,1p)
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8.6.4 The LANL2DZ Pseudopotential at a Glance
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e f

LANL2DZ is not available for shaded elements

(a) No pseudopotential; Pople 6–31G basis used

(b) Wadt & Hay, J. Chem. Phys. 82 (1985) 285

(c) Hay & Wadt, J. Chem. Phys. 82 (1985) 299

(d) Hay & Wadt, J. Chem. Phys. 82 (1985) 270

(e) Hay, J. Chem. Phys. 79 (1983) 5469

(f) Wadt, to be published

Element Core Max Projector Valence

H–He none none (2s)

Li–Ne none none (3s,2p)

Na–Ar [Ne] P (2s,2p)

K–Ca [Ne] P (3s,3p)

Sc–Cu [Ne] P (3s,3p,2d)

Zn [Ar] D (2s,2p,2d)

Ga–Kr [Ar]+3d D (2s,2p)

Rb–Sr [Ar]+3d D (3s,3p)

Y–Ag [Ar]+3d D (3s,3p,2d)

Cd [Kr] D (2s,2p,2d)

In–Xe [Kr]+4d D (2s,2p)

Cs–Ba [Kr]+4d D (3s,3p)

La [Kr]+4d D (3s,3p,2d)

Hf–Au [Kr]+4d+4f F (3s,3p,2d)

Hg [Xe]+4f F (2s,2p,2d)

Tl [Xe]+4f+5d F (2s,2p,2d)

Pb–Bi [Xe]+4f+5d F (2s,2p)

U–Pu [Xe]+4f+5d F (3s,3p,2d,2f)
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8.6.5 The SBKJC Pseudopotential at a Glance
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a a

bb

c

d

SBKJC is not available for shaded elements
(a) No pseudopotential; Pople 3–21G basis used

(b) W.J. Stevens, H. Basch & M. Krauss, J. Chem. Phys. 81 (1984) 6026

(c) W.J. Stevens, M. Krauss, H. Basch & P.G. Jasien, Can. J. Chem 70 (1992) 612

(d) T.R. Cundari & W.J. Stevens, J. Chem. Phys. 98 (1993) 5555

Element Core Max Projector Valence

H–He none none (2s)

Li–Ne [He] S (2s,2p)

Na–Ar [Ne] P (2s,2p)

K–Ca [Ar] P (2s,2p)

Sc–Ga [Ne] P (4s,4p,3d)

Ge–Kr [Ar]+3d D (2s,2p)

Rb–Sr [Kr] D (2s,2p)

Y–In [Ar]+3d D (4s,4p,3d)

Sn–Xe [Kr]+4d D (2s,2p)

Cs–Ba [Xe] D (2s,2p)

La [Kr]+4d F (4s,4p,3d)

Ce–Lu [Kr]+4d D (4s,4p,1d,1f)

Hf–Tl [Kr]+4d+4f F (4s,4p,3d)

Pb–Rn [Xe]+4f+5d F (2s,2p)
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8.6.6 The CRENBS Pseudopotential at a Glance
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d

CRENBS is not available for shaded elements

(a) No pseudopotential; Pople STO–3G basis used

(b) Hurley, Pacios, Christiansen, Ross & Ermler, J. Chem. Phys. 84 (1986) 6840

(c) LaJohn, Christiansen, Ross, Atashroo & Ermler, J. Chem. Phys. 87 (1987) 2812

(d) Ross, Powers, Atashroo, Ermler, LaJohn & Christiansen, J. Chem. Phys. 93 (1990) 6654

Element Core Max Projector Valence

H–He none none (1s)

Li–Ne none none (2s,1p)

Na–Ar none none (3s,2p)

K–Ca none none (4s,3p)

Sc–Zn [Ar] P (1s,0p,1d)

Ga–Kr [Ar]+3d D (1s,1p)

Y–Cd [Kr] D (1s,1p,1d)

In–Xe [Kr]+4d D (1s,1p)

La [Xe] D (1s,1p,1d)

Hf–Hg [Xe]+4f F (1s,1p,1d)

Tl–Rn [Xe]+4f+5d F (1s,1p)

8.6.7 The CRENBL Pseudopotential at a Glance

a a

bb

c

d

e

f h

g
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(a) No pseudopotential; Pople 6–311G* basis used

(b) Pacios & Christiansen, J. Chem. Phys. 82 (1985) 2664

(c) Hurley, Pacios, Christiansen, Ross & Ermler, J. Chem. Phys. 84 (1986) 6840

(d) LaJohn, Christiansen, Ross, Atashroo & Ermler, J. Chem. Phys. 87 (1987) 2812

(e) Ross, Powers, Atashroo, Ermler, LaJohn & Christiansen, J. Chem. Phys. 93 (1990) 6654

(f) Ermler, Ross & Christiansen, Int. J. Quantum Chem. 40 (1991) 829

(g) Ross, Gayen & Ermler, J. Chem. Phys. 100 (1994) 8145

(h) Nash, Bursten & Ermler, J. Chem. Phys. 106 (1997) 5133

Element Core Max Projector Valence

H–He none none (3s)

Li–Ne [He] S (4s,4p)

Na–Mg [He] S (6s,4p)

Al–Ar [Ne] P (4s,4p)

K–Ca [Ne] P (5s,4p)

Sc–Zn [Ne] P (7s,6p,6d)

Ga–Kr [Ar] P (3s,3p,4d)

Rb–Sr [Ar]+3d D (5s,5p)

Y–Cd [Ar]+3d D (5s,5p,4d)

In–Xe [Kr] D (3s,3p,4d)

Cs–La [Kr]+4d D (5s,5p,4d)

Ce–Lu [Xe] D (6s,6p,6d,6f)

Hf–Hg [Kr]+4d+4f F (5s,5p,4d)

Tl–Rn [Xe]+4f F (3s,3p,4d)

Fr–Ra [Xe]+4f+5d F (5s,5p,4d)

Ac–Pu [Xe]+4f+5d F (5s,5p,4d,4f)

Am–Lr [Xe]+4f+5d F (0s,2p,6d,5f)
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8.6.8 The SRLC Pseudopotential at a Glance
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a a

b

c
d e

f

g

h i

j

SRLC is not available for shaded elements
(a) No pseudopotential; Pople 6–31G basis used

(b) Fuentealba, Preuss, Stoll & Szentpaly, Chem. Phys. Lett. 89 (1982) 418

(c) Fuentealba, Szentpály, Preuss & Stoll, J. Phys. B 18 (1985) 1287

(d) Bergner, Dolg, Küchle, Stoll & Preuss, Mol. Phys. 80 (1993) 1431

(e) Nicklass, Dolg, Stoll & Preuss, J. Chem. Phys. 102 (1995) 8942

(f) Schautz, Flad & Dolg, Theor. Chem. Acc. 99 (1998) 231

(g) Fuentealba, Stoll, Szentpaly, Schwerdtfeger & Preuss, J. Phys. B 16 (1983) L323

(h) Szentpaly, Fuentealba, Preuss & Stoll, Chem. Phys. Lett. 93 (1982) 555

(i) Küchle, Dolg, Stoll & Preuss, Mol. Phys. 74 (1991) 1245

(j) Küchle, to be published
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Element Core Max Projector Valence

H–He none none (2s)

Li–Be [He] P (2s,2p)

B–N [He] D (2s,2p)

O–F [He] D (2s,3p)

Ne [He] D (4s,4p,3d,1f)

Na–P [Ne] D (2s,2p)

S–Cl [Ne] D (2s,3p)

Ar [Ne] F (4s,4p,3d,1f)

K–Ca [Ar] D (2s,2p)

Zn [Ar]+3d D (3s,2p)

Ga–As [Ar]+3d F (2s,2p)

Se–Br [Ar]+3d F (2s,3p)

Kr [Ar]+3d G (4s,4p,3d,1f)

Rb–Sr [Kr] D (2s,2p)

In–Sb [Kr]+4d F (2s,2p)

Te–I [Kr]+4d F (2s,3p)

Xe [Kr]+4d G (4s,4p,3d,1f)

Cs–Ba [Xe] D (2s,2p)

Hg–Bi [Xe]+4f+5d G (2s,2p,1d)

Po–At [Xe]+4f+5d G (2s,3p,1d)

Rn [Xe]+4f+5d G (2s,2p,1d)

Ac–Lr [Xe]+4f+5d G (5s,5p,4d,3f,2g)
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8.6.9 The SRSC Pseudopotential at a Glance
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b c

d

e

f

g

SRSC is not available for shaded elements

(a) No pseudopotential; Pople 6–311G* basis used

(b) Leininger, Nicklass, Küchle, Stoll, Dolg & Bergner, Chem. Phys. Lett. 255 (1996) 274

(c) Kaupp, Schleyer, Stoll & Preuss, J. Chem. Phys. 94 (1991) 1360

(d) Dolg, Wedig, Stoll & Preuss, J. Chem. Phys. 86 (1987) 866

(e) Andrae, Haeussermann, Dolg, Stoll & Preuss, Theor. Chim. Acta 77 (1990) 123

(f) Dolg, Stoll & Preuss, J. Chem. Phys. 90 (1989) 1730

(g) Küchle, Dolg, Stoll & Preuss, J. Chem. Phys. 100 (1994) 7535

Element Core Max Projector Valence

H–Ar none none (3s)

Li–Ne none none (4s,3p,1d)

Na–Ar none none (6s,5p,1d)

K [Ne] F (5s,4p)

Ca [Ne] F (4s,4p,2d)

Sc–Zn [Ne] D (6s,5p,3d)

Rb [Ar]+3d F (5s,4p)

Sr [Ar]+3d F (4s,4p,2d)

Y–Cd [Ar]+3d F (6s,5p,3d)

Cs [Kr]+4d F (5s,4p)

Ba [Kr]+4d F (3s,3p,2d,1f)

Ce–Yb [Ar]+3d G (5s,5p,4d,3f)

Hf–Pt [Kr]+4d+4f G (6s,5p,3d)

Au [Kr]+4d+4f F (7s,3p,4d)

Hg [Kr]+4d+4f G (6s,6p,4d)

Ac–Lr [Kr]+4d+4f G (8s,7p,6d,4f)
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Chapter 9

Molecular Geometry Critical

Points

9.1 Equilibrium Geometries and Transition Structures

Molecular potential energy surfaces rely on the Born–Oppenheimer separation of nuclear and elec-

tronic motion. Minima on such energy surfaces correspond to the classical picture of equilibrium

geometries and first–order saddle points for transition structures. Both equilibrium and transition

structures are stationary points and therefore the energy gradients will vanish. Characterization of

the critical point requires consideration of the eigenvalues of the Hessian (second derivative matrix).

Equilibrium geometries have Hessians whose eigenvalues are all positive. Transition structures, on

the other hand, have Hessians with exactly one negative eigenvalue. That is, a transition structure

is a maximum along a reaction path between two local minima, but a minimum in all directions

perpendicular to the path.

The quality of a geometry optimization algorithm is of major importance; even the fastest integral

code in the world will be useless if combined with an inefficient optimization algorithm that requires

excessive numbers of steps to converge. Thus, Q-Chem incorporates the most advanced geometry

optimization features currently available through Jon Baker’s Optimize package (see Appendix

A), a product of over ten years of research and development.

The key to optimizing a molecular geometry successfully is to proceed from the starting geometry

to the final geometry in as few steps as possible. Four factors influence the path and number of

steps:

� starting geometry� optimization algorithm� quality of the Hessian (and gradient)� coordinate system

Q-Chem controls the last three of these, but the starting geometry is solely determined by the

user, and the closer it is to the converged geometry, the fewer optimization steps will be required.

Decisions regarding the optimizing algorithm and the coordinate system are generally made by the

Optimize package to maximize the rate of convergence. Users are able to override these decisions,

but in general, this is not recommended.
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Another consideration when trying to minimize the optimization time concerns the quality of the

gradient and Hessian. A higher quality Hessian (i.e., analytical vs. approximate) will in many

cases lead to faster convergence and hence, fewer optimization steps. However, the construction of

an analytical Hessian requires significant computational effort and may outweigh the advantage of

fewer optimization cycles. Currently available analytical gradients and Hessians are summarized

in Table 9.1.

Level of Theory Analytical Maximum Angular Analytical Maximum Angular

(Algorithm) Gradients Momentum Type Hessian Momentum Type

DFT 3 h 3 f

HF 3 h 3 f

ROHF 3 h 7

MP2 3 h 7

(V)OD 3 h 7

(V)QCCD 3 h 7

CIS (except RO) 3 h 3 f

CFMM 3 h 7

Table 9.1: Gradients and Hessians currently available for geometry optimizations with maximum

angular momentum types for analytical derivative calculations (for higher angular momentum,

derivatives are computed numerically).

9.2 User–controllable Parameters

9.2.1 Features

� Cartesian, Z –matrix or internal coordinate systems� Eigenvector Following (EF) or GDIIS algorithms� Constrained optimizations� Equilibrium structure searches� Transition structure searches� Initial Hessian and Hessian update options� Reaction pathways using intrinsic reaction coordinates (IRC)

9.2.2 Job Control

Note: Users input starting geometry through the � molecule keyword.

Users must first define what level of theory is required. Refer back to previous sections regarding

enhancements and customization of these features. EXCHANGE, CORRELATION (if required)

and BASIS � rem variables must be set.

The remaining � rem variables are those specifically relating to the Optimize package.
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JOBTYPE

Specifies the calculation.

TYPE:

STRING

DEFAULT:

Default is single–point, which should be changed to one of the following options.

OPTIONS:
OPT Equilibrium structure optimization.

TS Transition structure optimization.

RPATH Intrinsic reaction path following.
RECOMMENDATION:

Application–dependent.

GEOM OPT HESSIAN

Determines the initial Hessian status.

TYPE:

STRING

DEFAULT:

DIAGONAL

OPTIONS:
DIAGONAL Set up diagonal Hessian.

READ Have exact or initial Hessian. Use as is if Cartesian, or transform

if internals.
RECOMMENDATION:

An accurate initial Hessian will improve the performance of the optimizer, but is

expensive to compute.

GEOM OPT COORDS

Controls the type of optimization coordinates.

TYPE:

INTEGER

DEFAULT:

-1

OPTIONS:
0 Optimize in Cartesian coordinates.

1 Generate and optimize in internal coordinates, if this fails abort.

-1 Generate and optimize in internal coordinates, if this fails at any stage of the

optimization, switch to Cartesian and continue.

2 Optimize in Z-matrix coordinates, if this fails abort.

-2 Optimize in Z-matrix coordinates, if this fails during any stage of the

optimization switch to Cartesians and continue.
RECOMMENDATION:

Use the default; delocalized internals are more efficient.
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GEOM OPT TOL GRADIENT

Convergence on maximum gradient component.

TYPE:

INTEGER

DEFAULT:

300 ≡ 300× 10−6 tolerance on maximum gradient component.

OPTIONS:

n Integer value (tolerance = n× 10−6).

RECOMMENDATION:
Use the default. To converge GEOM OPT TOL GRADIENT and one of

GEOM OPT TOL DISPLACEMENT and GEOM OPT TOL ENERGY must be sat-

isfied.

GEOM OPT TOL DISPLACEMENT

Convergence on maximum atomic displacement.

TYPE:

INTEGER

DEFAULT:

1200 ≡ 1200× 10−6 tolerance on maximum atomic displacement.

OPTIONS:

n Integer value (tolerance = n× 10−6).

RECOMMENDATION:
Use the default. To converge GEOM OPT TOL GRADIENT and one of

GEOM OPT TOL DISPLACEMENT and GEOM OPT TOL ENERGY must be sat-

isfied.

GEOM OPT TOL ENERGY

Convergence on energy change of successive optimization cycles.

TYPE:

INTEGER

DEFAULT:

100 ≡ 100× 10−8 tolerance on maximum gradient component.

OPTIONS:

n Integer value (tolerance = value n× 10−8).

RECOMMENDATION:
Use the default. To converge GEOM OPT TOL GRADIENT and one of

GEOM OPT TOL DISPLACEMENT and GEOM OPT TOL ENERGY must be sat-

isfied.

GEOM OPT MAX CYCLES

Maximum number of optimization cycles.

TYPE:

INTEGER

DEFAULT:

50

OPTIONS:

n User defined positive integer.

RECOMMENDATION:
The default should be sufficient for most cases. Increase if the initial guess geom-

etry is poor, or for systems with shallow potential wells.
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GEOM OPT PRINT

Controls the amount of Optimize print output.

TYPE:

INTEGER

DEFAULT:

3 Error messages, summary, warning, standard information and gradient print out.

OPTIONS:
0 Error messages only.

1 Level 0 plus summary and warning print out.

2 Level 1 plus standard information.

3 Level 2 plus gradient print out.

4 Level 3 plus Hessian print out.

5 Level 4 plus iterative print out.

6 Level 5 plus internal generation print out.

7 Debug print out.
RECOMMENDATION:

Use the default.

9.2.3 Customization
GEOM OPT SYMFLAG

Controls the use of symmetry in Optimize.

TYPE:

INTEGER

DEFAULT:

1

OPTIONS:
1 Make use of point group symmetry.

0 Do not make use of point group symmetry.
RECOMMENDATION:

Use default.

GEOM OPT MODE

Determines Hessian mode followed during a transition state search.

TYPE:

INTEGER

DEFAULT:

0

OPTIONS:
0 Mode following off.

n Maximize along mode n.
RECOMMENDATION:

Use default, for geometry optimizations.
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GEOM OPT MAX DIIS

Controls maximum size of subspace for GDIIS.

TYPE:

INTEGER

DEFAULT:

0

OPTIONS:
0 Do not use GDIIS.

-1 Default size = min(NDEG, NATOMS, 4) NDEG = number of molecular

degrees of freedom.

n Size specified by user.
RECOMMENDATION:

Use default or do not set n too large.

GEOM OPT DMAX

Maximum allowed step size. Value supplied is multiplied by 10−3.

TYPE:

INTEGER

DEFAULT:

300 = 0.3

OPTIONS:

n User–defined cutoff.

RECOMMENDATION:

Use default.

GEOM OPT UPDATE

Controls the Hessian update algorithm.

TYPE:

INTEGER

DEFAULT:

-1

OPTIONS:
-1 Use the default update algorithm.

0 Do not update the Hessian (not recommended).

1 Murtagh–Sargent update.

2 Powell update.

3 Powell/Murtagh-Sargent update (TS default).

4 BFGS update (OPT default).

5 BFGS with safeguards to ensure retention of positive definiteness

(GDISS default).
RECOMMENDATION:

Use default.
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GEOM OPT LINEAR ANGLE

Threshold for near linear bond angles (degrees).

TYPE:

INTEGER

DEFAULT:

165 degrees.

OPTIONS:

n User–defined level.

RECOMMENDATION:

Use default.

FDIFF STEPSIZE

Displacement used for calculating derivatives by finite difference.

TYPE:

INTEGER

DEFAULT:

100 Corresponding to 0.001 Å.

OPTIONS:

n Use a step size of n× 10−5.

RECOMMENDATION:
Use default, unless on a very flat potential, in which case a larger value should be

used.

9.2.4 Example

Example 9.1 As outlined, the rate of convergence of the iterative optimization process is
dependent on a number of factors, one of which is the use of an initial analytic Hessian. This
is easily achieved by instructing Q-Chem to calculate an analytic Hessian and proceed then to
determine the required critical point

$molecule

0 1

O

H 1 oh

H 1 oh 2 hoh

oh = 1.1

hoh = 104

$end

$rem

JOBTYPE freq Calculate an analytic Hessian

EXCHANGE hf

BASIS 6-31g(d)

$end

$comment

Now proceed with the Optimization making sure to read in the analytic

Hessian (use other available information too).

$end

@@@

$molecule

read

$end
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$rem

JOBTYPE opt

EXCHANGE hf

BASIS 6-31g(d)

SCF_GUESS read

GEOM_OPT_HESSIAN read Have the initial Hessian

$end

9.3 Constrained Optimization

9.3.1 Introduction

Constrained optimization refers to the optimization of molecular structures (transition or equilib-

rium) in which certain parameters (e.g., bond lengths, bond angles or dihedral angles) are fixed.

Jon Baker’s Optimize package implemented in the Q-Chem program has been modified to handle

constraints directly in delocalized internal coordinates using the method of Lagrange multipliers

(see appendix). Constraints are imposed in an � opt keyword section of the input file.

Features of constrained optimizations in Q-Chem are:

� Starting geometries do not have to satisfy imposed constraints.� Delocalized internal coordinates are the most efficient system for large molecules.� Q-Chem’s free format � opt section allows the user to apply constraints with ease.

Note: The � opt input section is case–insensitive and free–format, except that there should be no

space at the start of each line.

9.3.2 Geometry Optimization with General Constraints

CONSTRAINT and ENDCONSTRAINT define the beginning and end, respectively, of the constraint

section of � opt within which users may specify up to six different types of constraints:

interatomic distances

Values in angstroms; value > 0:

stre atom1 atom2 value

angles

Values in degrees, 0 ≤ value ≤ 180; atom2 is the middle atom of the bend:

bend atom1 atom2 atom3 value

out–of–plane–bends

Values in degrees, −180 ≤ value ≤ 180 atom2 ; angle between atom4 and the atom1–atom2–atom3

plane:

outp atom1 atom2 atom3 atom4 value

dihedral angles

Values in degrees, −180 ≤ value ≤ 180; angle the plane atom1–atom2–atom3 makes with the

plane atom2–atom3–atom4 :

tors atom1 atom2 atom3 atom4 value



Chapter 9: Molecular Geometry Critical Points 221

coplanar bends

Values in degrees, −180 ≤ value ≤ 180; bending of atom1–atom2–atom3 in the plane atom2–

atom3–atom4 :

linc atom1 atom2 atom3 atom4 value

perpendicular bends

Values in degrees, −180 ≤ value ≤ 180; bending of atom1–atom2–atom3 perpendicular to the

plane atom2–atom3–atom4 :

linp atom1 atom2 atom3 atom4 value

9.3.3 Frozen Atoms

Absolute atom positions can be frozen with the FIXED section. The section starts with the

FIXED keyword as the first line and ends with the ENDFIXED keyword on the last. The format

to fix a coordinate or coordinates of an atom is:

atom coordinate reference

coordinate reference can be any combination of up to three characters X , Y and Z to specify the

coordinate(s) to be fixed: X , Y , Z, XY, XZ, YZ, XYZ. The fixing characters must be next to each

other. e.g.,

FIXED

2 XY

ENDFIXED

means the x-coordinate and y-coordinate of atom 2 are fixed, whereas

FIXED

2 X Y

ENDFIXED

will yield erroneous results.

Note: When the FIXED section is specified within � opt , the optimization coordinates will be

Cartesian.

9.3.4 Dummy Atoms

DUMMY defines the beginning of the dummy atom section and ENDDUMMY its conclusion.

Dummy atoms are used to help define constraints during constrained optimizations in Cartesian

coordinates. They cannot be used with delocalized internals.

All dummy atoms are defined with reference to a list of real atoms, that is, dummy atom coordi-

nates are generated from the coordinates of the real atoms from the dummy atoms defining list

(see below). There are three types of dummy atom:

1. Positioned at the arithmetic mean of up to seven real atoms in the defining list.

2. Positioned a unit distance along the normal to a plane defined by three atoms, centered on

the middle atom of the three.

3. Positioned a unit distance along the bisector of a given angle.
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The format for declaring dummy atoms is:

DUMMY

idum type list_length defining_list

ENDDUMMY

idum Center number of defining atom (must be one greater than the total number of

real atoms for the first dummy atom, two greater for second etc.).

type Type of dummy atom (either 1, 2 or 3; see above).

list length Number of atoms in the defining list.

defining list List of up to seven atoms defining the position of the dummy atom.

Once defined, dummy atoms can be used to define standard internal (distance, angle) constraints

as per the constraints section, above.

Note: The use of dummy atoms of type 1 has never progressed beyond the experimental stage.

9.3.5 Dummy Atom Placement in Dihedral Constraints

Bond and dihedral angles cannot be constrained in Cartesian optimizations to exactly 0◦ or ±180◦.
This is because the corresponding constraint normals are zero vectors. Also, dihedral constraints

near these two limiting values (within, say 20◦) tend to oscillate and are difficult to converge.

These difficulties can be overcome by defining dummy atoms and redefining the constraints with

respect to the dummy atoms. For example, a dihedral constraint of 180◦ can be redefined to two

constraints of 90◦ with respect to a suitably positioned dummy atom. The same thing can be

done with a 180◦ bond angle (long a familiar use in Z –matrix construction).

Typical usage is as follows:

Internal Coordinates Cartesian Coordinates

�
opt

CONSTRAINT

tors I J K L 180.0

ENDCONSTRAINT�
end

�
opt

DUMMY

M 2 I J K

ENDDUMMY

CONSTRAINT

tors I J K M 90

tors M J K L 90

ENDCONSTRAINT�
end

Table 9.2: Comparison of dihedral angle constraint method for adopted coordinates.

The order of atoms is important to obtain the correct signature on the dihedral angles. For a 0◦

dihedral constraint, J and K should be switched in the definition of the second torsion constraint

in Cartesian coordinates.

Note: In almost all cases the above discussion is somewhat academic, as internal coordinates are

now best imposed using delocalized internal coordinates and there is no restriction on the

constraint values.
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9.3.6 Additional Atom Connectivity

Normally delocalized internal coordinates are generated automatically from the input Cartesian

coordinates. This is accomplished by first determining the atomic connectivity list (i.e., which

atoms are formally bonded) and then constructing a set of individual primitive internal coordinates

comprising all bond stretches, all planar bends and all proper torsions that can be generated

based on the atomic connectivity. The delocalized internal are in turn constructed from this set

of primitives.

The atomic connectivity depends simply on distance and there are default bond lengths between all

pairs of atoms in the code. In order for delocalized internals to be generated successfully, all atoms

in the molecule must be formally bonded so as to form a closed system. In molecular complexes

with long, weak bonds or in certain transition states where parts of the molecule are rearranging

or dissociating, distances between atoms may be too great for the atoms to be regarded as formally

bonded, and the standard atomic connectivity will separate the system into two or more distinct

parts. In this event, the generation of delocalized internal coordinates will fail. Additional atomic

connectivity can be included for the system to overcome this difficulty.

CONNECT defines the beginning of the additional connectivity section and ENDCONNECT the

end. The format of the CONNECT section is:

CONNECT

atom list_length list

ENDCONNECT

atom Atom for which additional connectivity is being defined.

list length Number of atoms in the list of bonded atoms.

list List of up to 8 atoms considered as being bonded to the given atom.

9.3.7 Example

Example 9.2 Methanol geometry optimization with constraints.

$comment

Methanol geom opt with constraints in bond length and bond angles.

$end

$molecule

0 1

C 0.14192 0.33268 0.00000

O 0.14192 -1.08832 0.00000

H 1.18699 0.65619 0.00000

H -0.34843 0.74268 0.88786

H -0.34843 0.74268 -0.88786

H -0.77395 -1.38590 0.00000

$end

$rem

GEOM_OPT_PRINT 6

JOBTYPE opt

EXCHANGE hf

BASIS 3-21g

$end

$opt

CONSTRAINT

stre 1 6 1.8
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bend 2 1 4 110.0

bend 2 1 5 110.0

ENDCONSTRAINT

$end

9.3.8 Summary

$opt

CONSTRAINT

stre atom1 atom2 value

...

bend atom1 atom2 atom3 value

...

outp atom1 atom2 atom3 atom4 value

...

tors atom1 atom2 atom3 atom4 value

...

linc atom1 atom2 atom3 atom4 value

...

linp atom1 atom2 atom3 atom4 value

...

ENDCONSTRAINT

FIXED

atom coordinate_reference

...

ENDFIXED

DUMMY

idum type list_length defining_list

...

ENDDUMMY

CONNECT

atom list_length list

...

ENDCONNECT

$end

9.4 Intrinsic Reaction Coordinates

The concept of a reaction path, although seemingly well–defined chemically (i.e., how the atoms

in the system move to get from reactants to products), is somewhat ambiguous mathematically

because, using the usual definitions, it depends on the coordinate system. Stationary points on

a potential energy surface are independent of coordinates, but the path connecting them is not,

and so different coordinate systems will produce different reaction paths. There are even different

definitions of what constitutes a “reaction path”; the one used in Q-Chem is based on the intrinsic

reaction coordinate (IRC), first defined in this context by Fukui [2]. This is essentially a series of

steepest descent paths going downhill from the transition state.
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The reaction path is most unlikely to be a straight line and so by taking a finite step length along

the direction of the gradient you will leave the “true” path. A series of small steepest descent

steps will zig–zag along the actual reaction path (this is known as “stitching”). Ishida et al.. [3]

developed a predictor-corrector algorithm, involving a second gradient calculation after the initial

steepest descent step, followed by a line search along the gradient bisector to get back on the path;

this was subsequently improved by Schmidt et al. [4], and is the method we have adopted. For

the first step downhill from the transition state this approach cannot be used (as the gradient is

zero); instead a step is taken along the Hessian mode corresponding to the imaginary frequency.

The reaction path can be defined and followed in Z-matrix coordinates, Cartesian coordinates or

mass–weighted Cartesians. The latter represents the “true” IRC as defined by Fukui [2]. However,

if the main reason for following the reaction path is simply to determine which minima a given

transition state connects (perhaps the major use), then it doesn’t matter which coordinates are

used. In order to use the IRC code the transition state geometry and the exact Hessian must

be available. These must be computed via transition state (JOBTYPE = TS) and frequency

calculation (JOBTYPE = FREQ) respectively.

9.4.1 Job control

An IRC calculation is invoked by setting the JOBTYPE � rem to RPATH.

RPATH COORDS

Determines which coordinate system to use in the IRC search.

TYPE:

INTEGER

DEFAULT:

1

OPTIONS:
1 Use mass–weighted coordinates.

2 Use Z –matrix coordinates.
RECOMMENDATION:

Use default.

RPATH DIRECTION
Determines the direction of the eigen mode to follow. This will not usually be

known prior to the Hessian diagonalization.
TYPE:

INTEGER

DEFAULT:

1

OPTIONS:
1 Descend in the positive direction of the eigen mode.

-1 Descend in the negative direction of the eigen mode.
RECOMMENDATION:

It is usually not possible to determine in which direction to go a priori, and

therefore both directions will need to be considered.
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RPATH MAX CYCLES

Specifies the maximum number of points to find on the reaction path.

TYPE:

INTEGER

DEFAULT:

20

OPTIONS:

n User–defined number of cycles.

RECOMMENDATION:

Use more points if the minimum is desired, but not reached using the default.

RPATH MAX STEPSIZE

Specifies the maximum step size to be taken (in thousandths of a.u.).

TYPE:

INTEGER

DEFAULT:

150 corresponding to a step size of 0.15 a.u..

OPTIONS:

n Step size = n/1000.

RECOMMENDATION:

None.

RPATH TOL DISPLACEMENT
Specifies the convergence threshold for the step. If a step size is chosen by the

algorithm that is smaller than this, the path is deemed to have reached the mini-

mum.
TYPE:

INTEGER

DEFAULT:

5000 Corresponding to 0.005 a.u.

OPTIONS:

n User–defined. Tolerance = n/1000000.

RECOMMENDATION:

None.

RPATH PRINT

Specifies the print output level.

TYPE:

INTEGER

DEFAULT:

2

OPTIONS:

n

RECOMMENDATION:
Use default, little additional information is printed at higher levels. Most of the

output arises from the multiple single point calculations that are performed along

the reaction pathway.

9.4.2 Example

Example 9.3
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$molecule

0 1

C

H 1 1.20191

N 1 1.22178 2 72.76337

$end

$rem

JOBTYPE freq

BASIS sto-3g

EXCHANGE hf

$end

@@@

$molecule

read

$end

$rem

JOBTYPE rpath

BASIS sto-3g

EXCHANGE hf

SCF_GUESS read

RPATH_MAX_CYCLES 30

$end

9.5 The Growing String Method

One of the difficulties associated with a saddle point search is to obtain a good initial guess for

the starting configuration that can later be used for a local surface walking algorithm. This

difficulty becomes especially relevant for large systems, where the search space dimensionality is

high and the initial starting configuration is often far away from the final saddle point. A very

promising method for finding a good guess of the saddle point configuration and the minimum

energy pathway connecting reactant and product states are interpolation algorithms. For example,

the nudged elastic band method [5,6] and the string method [7] start from a certain initial reaction

pathway connecting the reactant and the product state, and then optimize in discretized path space

towards the minimum energy pathway. The highest energy point on the so obtained approximation

to the minimum energy pathway becomes a good initial guess for the saddle point configuration

that can subsequently be used with any local surface walking algorithm.

Inevitably, the performance of an interpolation method heavily relies on the choice of the initial

reaction pathway, and a poorly chosen initial pathway can cause slow convergence, or convergence

to an incorrect pathway. The growing string method [8] offered an elegant solution to this problem,

in which two string fragments (one from the reactant and the other from the product state) were

grown until the two fragments join. The growing string method has been implemented within

Q-Chem.

9.6 Improved Dimer Method

Once a good approximation to the minimum energy pathway is obtained, e.g., with the help of an

interpolation algorithm such as the growing string method, local surface walking algorithms can

be used to determine the exact location of the saddle point. Baker’s partitioned rational function

optimization (P-RFO) method, which utilizes an approximate or exact Hessian, has proven to be

a very powerful method for this purpose.
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The dimer method [9] on the other hand, is a mode following algorithm that utilizes only the

curvature along one direction in configuration space (rather than the full Hessian) and requires

only gradient evaluations. It is therefore especially applicable for large systems where a full Hessian

calculation is very time consuming, or for saddle point searches where the eigenvector of the lowest

Hessian eigenvalue of the starting configuration does not correspond to the reaction coordinate. A

recent modification of this method has been developed [10,11] to significantly reduce the influence

of numerical noise, as it is common in quantum chemical methods, on the performance of the

dimer algorithm, and to significantly reduce its computational cost. This improved dimer method

has recently been implemented within Q-Chem.

9.7 Ab initio Molecular Dynamics

Q-Chem can propagate classical molecular dynamics trajectories on the Born-Oppenheimer poten-

tial energy surface generated by a particular theoretical model chemistry (e.g., B3LYP/6-31G*).

This procedure, in which the forces on the nuclei are evaluated on–the–fly, is known variously as

“direct dynamics”, “ab initio molecular dynamics”, or “Born–Oppenheimer molecular dynamics”

(BOMD). In its most straightforward form, a BOMD calculation consists of an energy + gradient

calculation at each molecular dynamics time step, and thus each time step is comparable in cost

to one geometry optimization step. A BOMD calculation may be requested using any SCF energy

+ gradient method available in Q-Chem, including excited–state gradients; however, methods

lacking analytic gradients will be prohibitively expensive, except for very small systems.

Initial Cartesian coordinates and velocities must be specified for the nuclei. Coordinates are

specified in the � molecule section as usual, while velocities can be specified using a � velocity

section with the form:

�
velocity

vx,1 vy,1 vz,1
vx,2 vy,2 vz,2
vx,N vy,N vz,N�
end

Here vx,i,vy,i, and vz,I are the x, y, and z Cartesian velocities of the ith nucleus, specified in

atomic units (bohrs per a.u. of time, where 1 a.u. of time is approximately 0.0242 fs). The� velocity section thus has the same form as the � molecule section, but without atomic symbols

and without the line specifying charge and multiplicity. The atoms must be ordered in the same

manner in both the � velocity and � molecule sections.

As an alternative to a � velocity section, initial nuclear velocities can be sample from certain

distributions (e.g., Maxwell–Boltzmann), using the AIMD INIT VELOC variable described below.

Although the Q-Chem output file dutifully records the progress of any ab initio molecular dynam-

ics job, the most useful information is printed not to the main output file but rather to a directory

called “AIMD” that is a subdirectory of the job’s scratch directory. (All ab initio molecular dy-

namics jobs should therefore use the “-save” option.) The AIMD directory consists of a set of files

that record, in ASCII format, one line of information at each time step. Each file contains a few

comment lines (indicated by “#”) that describe its contents and which we summarize in the list

below.

� Cost: Records the number of SCF cycles, the total cpu time, and the total memory use at

each dynamics step.� EComponents: Records various components of the total energy (all in Hartrees).
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� Energy: Records the total energy and fluctuations therein.� MulMoments: If multipole moments are requested, they are printed here.� NucCarts: Records the nuclear Cartesian coordinates x1, y1, z1, x2, y2, z2, . . . , xN , yN , zN
at each time step, in either bohrs or angstroms.� NucForces: Records the Cartesian forces on the nuclei at each time step (same order as the

coordinates, but given in atomic units).� NucVeloc: Records the Cartesian velocities of the nuclei at each time step (same order as

the coordinates, but given in atomic units).� TandV: Records the kinetic and potential energy, as well as fluctuations in each.

For ELMD jobs, there are other output files as well:

� ChangeInF: Records the matrix norm and largest magnitude element of ∆F = F(t + δt) −
F(t) in the basis of Cholesky–orthogonalized AOs. The files ChangeInP, ChangeInL, and

ChangeInZ provide analogous information for the density matrix P and the Cholesky or-

thogonalization matrices L and Z defined in [12].� DeltaNorm: Records the norm and largest magnitude element of the curvy–steps rotation

angle matrix ∆ defined in [12]. Matrix elements of ∆ are the dynamical variables repre-

senting the electronic degrees of freedom. The output file DeltaDotNorm provides the same

information for the electronic velocity matrix d∆/dt.� ElecGradNorm: Records the norm and largest magnitude element of the electronic gradient

matrix FP−PF in the Cholesky basis.� dTfict: Records the instantaneous time derivative of the fictitious kinetic energy at each

time step, in atomic units.

Ab initio molecular dynamics jobs are requested by specifying JOBTYPE = AIMD. Initial velocities

must be specified either using a � velocity section or via the AIMD INIT VELOC keyword described

below. In addition, the following � rem variables must be specified for any ab initio molecular

dynamics job:

AIMD METHOD

Selects an ab initio molecular dynamics algorithm.

TYPE:

STRING

DEFAULT:

BOMD

OPTIONS:
BOMD Born–Oppenheimer molecular dynamics.

CURVY Curvy–steps Extended Lagrangian molecular dynamics.
RECOMMENDATION:

BOMD yields exact classical molecular dynamics, provided that the energy is

tolerably conserved. ELMD is an approximation to exact classical dynamics whose

validity should be tested for the properties of interest.
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TIME STEP

Specifies the molecular dynamics time step, in atomic units (1 a.u. = 0.0242 fs).

TYPE:

INTEGER

DEFAULT:

None.

OPTIONS:

User–specified.

RECOMMENDATION:
Smaller time steps lead to better energy conservation; too large a time step may

cause the job to fail entirely. Make the time step as large as possible, consistent

with tolerable energy conservation.

AIMD STEPS

Specifies the requested number of molecular dynamics steps.

TYPE:

INTEGER

DEFAULT:

None.

OPTIONS:

User–specified.

RECOMMENDATION:

None.

Ab initio molecular dynamics calculations can be quite expensive, and thus Q-Chem includes sev-

eral algorithms designed to accelerate such calculations. At the self–consistent field (Hartree–Fock

and DFT) level, BOMD calculations can be greatly accelerated by using information from previous

time steps to construct a good initial guess for the new molecular orbitals or Fock matrix, thus

hastening SCF convergence. A Fock matrix extrapolation procedure [13], based on a suggestion

by Pulay and Fogarasi [14], is available for this purpose.

The Fock matrix elements Fµν in the atomic orbital basis are oscillatory functions of the time t,

and Q-Chem’s extrapolation procedure fits these oscillations to a power series in t,

Fµν(t) =

N∑

n=0

cn t
n (9.1)

The N+1 extrapolation coefficients cn are determined by a fit to a set of M Fock matrices retained

from previous time steps. Fock matrix extrapolation can significantly reduce the number of SCF

iterations required at each time step, but for low–order extrapolations, or if SCF CONVERGENCE

is set too small, a systematic drift in the total energy may be observed. Benchmark calculations

testing the limits of energy conservation can be found in Ref. [13], and demonstrate that nu-

merically exact classical dynamics (without energy drift) can be obtained at significantly reduced

cost.

Fock matrix extrapolation is requested by specifying values for N and M , as in the form of the

following two � rem variables:
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FOCK EXTRAP ORDER

Specifies the polynomial order N for Fock matrix extrapolation.

TYPE:

INTEGER

DEFAULT:

0 Do not perform Fock matrix extrapolation.

OPTIONS:

N Extrapolate using an Nth–order polynomial (N > 0).

RECOMMENDATION:

None

FOCK EXTRAP POINTS
Specifies the number Mof old Fock matrices that are retained for use in extrapo-

lation.
TYPE:

INTEGER

DEFAULT:

0 Do not perform Fock matrix extrapolation.

OPTIONS:

M Save M Fock matrices for use in extrapolation (M > N)

RECOMMENDATION:
Higher–order extrapolations with more saved Fock matrices are faster and conserve

energy better than low–order extrapolations, up to a point. In many cases, the

scheme (N = 6, M = 12), in conjunction with SCF CONVERGENCE = 6, is found

to provide about a 50% savings in computational cost while still conserving energy.

Assuming decent conservation, a BOMD calculation represents exact classical dynamics on the

Born–Oppenheimer potential energy surface. In contrast, so–called extended Lagrangian molec-

ular dynamics (ELMD) methods make an approximation to exact classical dynamics in order to

expedite the calculations. ELMD methods—of which the most famous is Car–Parrinello molecular

dynamics—introduce a fictitious dynamics for the electronic (orbital) degrees of freedom, which

are then propagated alongside the nuclear degrees of freedom, rather than optimized at each time

step as they are in a BOMD calculation. The fictitious electronic dynamics is controlled by a

fictitious mass parameter µ, and the value of µ controls both the accuracy and the efficiency of the

method. In the limit of small µ the nuclei and the orbitals propagate adiabatically, and ELMD

mimics true classical dynamics. Larger values of µ slow down the electronic dynamics, allowing for

larger time steps (and more computationally efficient dynamics), at the expense of an ever–greater

approximation to true classical dynamics.

Q-Chem’s ELMD algorithm is based upon propagating the density matrix, expressed in a basis

of atom–centered Gaussian orbitals, along shortest–distance paths (geodesics) of the manifold of

allowed density matrices P. Idempotency of P is maintained at every time step, by construction,

and thus our algorithm requires neither density matrix purification, nor iterative solution for

Lagrange multipliers (to enforce orthogonality of the molecular orbitals). We call this procedure

“curvy steps” ELMD [12], and in a sense it is a time–dependent implementation of the GDM

algorithm (Section 4.6) for converging SCF single–point calculations.

The extent to which ELMD constitutes a significant approximation to BOMD continues to be

debated. When assessing the accuracy of ELMD, the primary consideration is whether there

exists a separation of time scales between nuclear oscillations, whose time scale τnuc is set by the

period of the fastest vibrational frequency, and electronic oscillations, whose time scale τelec may

be estimated according to [12]
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τelec >
√
µ/(εLUMO − εHOMO) (9.2)

A conservative estimate, suggested in [12], is that essentially exact classical dynamics is attained

when τnuc > 10 τelec. In practice, we recommend careful benchmarking to insure that ELMD

faithfully reproduces the BOMD observables of interest.

Due to the existence of a fast time scale τelec, ELMD requires smaller time steps than BOMD.

When BOMD is combined with Fock matrix extrapolation to accelerate convergence, it is no longer

clear that ELMD methods are substantially more efficient, at least in Gaussian basis sets [13,14].

The following � rem variables are required for ELMD jobs:

AIMD FICT MASS
Specifies the value of the fictitious electronic mass µ, in atomic units, where µ has

dimensions of (energy)×(time)2.
TYPE:

INTEGER

DEFAULT:

None

OPTIONS:

User-specified

RECOMMENDATION:
Values in the range of 50–200 a.u. have been employed in test calculations; consult

[12] for examples and discussion.

Additional job control variables for ab initio molecular dynamics.

AIMD INIT VELOC

Specifies the method for selecting initial nuclear velocities.

TYPE:

STRING

DEFAULT:

None

OPTIONS:
THERMAL Random sampling of nuclear velocities from a Maxwell–Boltzmann

distribution. The user must specify the temperature in Kelvin via

the � rem variable AIMD TEMP.

ZPE Choose velocities in order to put zero–point vibrational energy into

each normal mode, with random signs. This option requires that a

frequency job to be run beforehand.
RECOMMENDATION:

This variable need only be specified in the event that velocities are not specified

explicitly in a � velocity section.

AIMD MOMENTS

Requests that multipole moments be output at each time step.

TYPE:

INTEGER

DEFAULT:

0 Do not output multipole moments.

OPTIONS:

n Output the first n multipole moments.

RECOMMENDATION:

None
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AIMD TEMP

Specifies a temperature (in Kelvin) for Maxwell–Boltzmann velocity sampling.

TYPE:

INTEGER

DEFAULT:

None

OPTIONS:

User-specified number of Kelvin.

RECOMMENDATION:
This variable is only useful in conjunction with AIMD INIT VELOC = THERMAL.

Note that the simulations are run at constant energy, rather than constant tem-

perature, so the mean nuclear kinetic energy will fluctuate in the course of the

simulation.

DEUTERATE

Requests that all hydrogen atoms be replaces with deuterium.

TYPE:

LOGICAL

DEFAULT:

FALSE Do not replace hydrogens.

OPTIONS:

TRUE Replace hydrogens with deuterium.

RECOMMENDATION:
Replacing hydrogen atoms reduces the fastest vibrational frequencies by a factor

of 1.4, which allow for a larger fictitious mass and time step in ELMD calculations.

There is no reason to replace hydrogens in BOMD calculations.

9.7.1 Examples

Example 9.4 Simulating thermal fluctuations of the water dimer at 298 K.

$molecule

0 1

O 1.386977 0.011218 0.109098

H 1.748442 0.720970 -0.431026

H 1.741280 -0.793653 -0.281811

O -1.511955 -0.009629 -0.120521

H -0.558095 0.008225 0.047352

H -1.910308 0.077777 0.749067

$end

$rem

JOBTYPE aimd

AIMD_METHOD bomd

EXCHANGE b3lyp

BASIS 6-31g*

TIME_STEP 20 (20 a.u. = 0.48 fs)

AIMD_STEPS 1000

AIMD_INIT_VELOC thermal

AIMD_TEMP 298

FOCK_EXTRAP_ORDER 6 request Fock matrix extrapolation

FOCK_EXTRAP_POINTS 12

$end

Example 9.5 Propagating F−(H2O)4 on its first excited-state potential energy surface, calculated
at the CIS level.
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$molecule

-1 1

O -1.969902 -1.946636 0.714962

H -2.155172 -1.153127 1.216596

H -1.018352 -1.980061 0.682456

O -1.974264 0.720358 1.942703

H -2.153919 1.222737 1.148346

H -1.023012 0.684200 1.980531

O -1.962151 1.947857 -0.723321

H -2.143937 1.154349 -1.226245

H -1.010860 1.980414 -0.682958

O -1.957618 -0.718815 -1.950659

H -2.145835 -1.221322 -1.158379

H -1.005985 -0.682951 -1.978284

F 1.431477 0.000499 0.010220

$end

$rem

JOBTYPE aimd

AIMD_METHOD bomd

EXCHANGE hf

BASIS 6-31+G*

ECP SRLC

PURECART 1111

CIS_N_ROOTS 3

CIS_TRIPLETS false

CIS_STATE_DERIV 1 propagate on first excited state

AIMD_INIT_VELOC thermal

AIMD_TEMP 150

TIME_STEP 25

AIMD_STEPS 827 (500 fs)

$end

Example 9.6 Simulating vibrations of the NaCl molecule using ELMD.

$molecule

0 1

Na 0.000000 0.000000 -1.742298

Cl 0.000000 0.000000 0.761479

$end

$rem

JOBTYPE freq

EXCHANGE b3lyp

ECP sbkjc

$end

@@@

$molecule

read

$end

$rem

JOBTYPE aimd

EXCHANGE b3lyp

ECP sbkjc

TIME_STEP 14

AIMD_STEPS 500

AIMD_METHOD curvy

AIMD_FICT_MASS 360

AIMD_INIT_VELOC zpe

$end
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9.8 Quantum Mechanics/Molecular Mechanics

Q-Chem 3.0 introduces the capability of performing QM/MM calculations in conjuction with the

Charmm package. Both software packages are required to perform these calculations, but all the

code required for communication between the programs is incorporated in the released versions.

QM/MM jobs can be controlled using the following � rem keywords:

QM MM

Turns on the Q-Chem/Charmm interface.

TYPE:

LOGICAL

DEFAULT:

FALSE

OPTIONS:
TRUE Do QM/MM calculation through the Q-Chem/Charmm interface.

FALSE Turn this feature off.
RECOMMENDATION:

Use default unless running calculations with Charmm.

QMMM PRINT

Controls the amount of output printed from a QM/MM job.

TYPE:

LOGICAL

DEFAULT:

FALSE

OPTIONS:
TRUE Limit molecule, point charge, and analysis printing.

FALSE Normal printing.
RECOMMENDATION:

Use default unless running calculations with Charmm.

QMMM CHARGES

Controls the printing of QM charges to file.

TYPE:

LOGICAL

DEFAULT:

FALSE

OPTIONS:
TRUE Writes a charges.dat file with the Mulliken charges from the QM region.

FALSE No file written.
RECOMMENDATION:

Use default unless running calculations with Charmm where charges on the QM

region need to be saved.
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IGDEFIELD
Triggers the calculation of the electrostatic potential and/or the electric field at

the points given in the file ESPGrid.
TYPE:

INTEGER

DEFAULT:

UNDEFINED

OPTIONS:
O Computes ESP.

1 Computes ESP and EFIELD.

2 Computes EFIELD.
RECOMMENDATION:

Must use this � rem when IGDESP is specified.

GEOM PRINT

Controls the amount of geometric information printed at each step.

TYPE:

LOGICAL

DEFAULT:

FALSE

OPTIONS:
TRUE Prints out all geometric information; bond distances, angles, torsions.

FALSE Normal printing of distance matrix.
RECOMMENDATION:

Use if you want to be able to quickly examine geometric parameters at the begin-

ning and end of optimizations. Only prints in the beginning of single point energy

calculations.

Example 9.7 Do a basic QM/MM optimization of the water dimer You need Charmm to do
this but the is the Q-Chem file that is needed to test the QM/MM functionality. You also need a
ESPGrid file with the MM atom positions. These are the bare necessities for a Charmm/Q-Chem
QM/MM calculation.

$molecule

0 1

O -0.91126 1.09227 1.02007

H -1.75684 1.51867 1.28260

H -0.55929 1.74495 0.36940

$end

$rem

IGDESP 3 ! Number of MM atoms

EXCHANGE hf ! HF Exchange

BASIS cc-pvdz ! Correlation Consistent Basis

QM_MM true ! Turn on QM/MM calculation

JOBTYPE force ! Need this for QM/MM optmizations

SYMMETRY off ! Stop standard rotation of input

SYM_IGNORE true ! Do not use symmetry

PRINT_INPUT false ! Turn off input echoing, important for performance

QMMM_PRINT true ! Turn off some analysis that’s not needed for QM/MM

$end

$external_charges

1.20426 -0.64330 0.79922 -0.83400

1.01723 -1.36906 1.39217 0.41700

0.43830 -0.06644 0.91277 0.41700

$end
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Chapter 10

Molecular Properties and Analysis

10.1 Introduction

Q-Chem has incorporated a number of molecular properties and wavefunction analysis tools,

summarized as follows:

� Chemical solvent models� Population analysis� Calculation of molecular intracules� Vibrational analysis (including isotopic substitution)� Interface to the Natural Bond Orbital package� Molecular orbital symmetries� Multipole moments� Data generation for 2–D or 3–D plots� NMR shielding tensors and chemical shifts

10.2 Chemical Solvent Models

Ab initio quantum chemical programs enable the accurate study of large molecules properties in the

gas phase. However, some of these properties change significantly in solution. The largest changes

are expected when going from vapor to polar solutions. Although in principle it is possible to

model solvation effects upon the solute properties by super-molecular (cluster) calculations (e.g.,

by averaging over several possible configurations of the first solvation shell), these calculations

are very demanding. Furthermore, the super-molecular calculations cannot, at present, provide

accurate and stable hydration energies, for which long–range effects are very important. An

accurate prediction of the hydration free energies is necessary for computer modeling of chemical

reactions and ligand–receptor interactions in aqueous solution. Q-Chem contains three solvent

models, which differ greatly in their level of sophistication and realism. The crude and simple

Onsager model is described first, followed by the much more advanced SS(V)PE model developed

by Daniel Chipman from the University of Notre Dame, and the Langevin dipoles model developed

by Jan Florian and Arieh Warshel of the University of Southern California.
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10.2.1 Onsager Dipole Continuum Solvent

Q-Chem offers a solvent model based on that originally attributed to Onsager [5] in which the

solute is placed in a spherical cavity surrounded by a continuous medium. The Onsager model

requires two parameters: the cavity radius a0 and a dielectric constant ε. Typically, the cavity

radius is calculated using

a3
0 = 3Vm/4πN (10.1)

where Vm is obtained from experiment (molecular weight/density) [6] andN is Avogadro’s number.

It is also common to add 0.5 Å to the value of a0 from (10.1) to account for the first solvation

shell [7]. See the review by Tomasi and Perisco [8] for further insights into continuum solvent

models.

The � rem variables associated with running Onsager reaction field calculations are documented be-

low. Q-Chem requires at least single point energy calculation � rem variables BASIS, EXCHANGE

and CORRELATION (if required) in addition to the Onsager specific variables SOLUTE RADIUS

and SOLVENT DIELECTRIC.

SOLUTE RADIUS

Sets the Onsager solvent model cavity radius.

TYPE:

INTEGER

DEFAULT:

No default.

OPTIONS:

n a0 = n× 10−5.

RECOMMENDATION:

Use equation (10.1).

SOLVENT DIELECTRIC

Sets the dielectric constant of the Onsager solvent continuum.

TYPE:

INTEGER

DEFAULT:

No default.

OPTIONS:

n ε = n× 10−5.

RECOMMENDATION:

As per required solvent.

10.2.2 Surface and Simulation of Volume Polarization for Electrostatics

(SS(V)PE)

The SS(V)PE model [9–11] treats solvent as a continuum dielectric, solving for apparent surface

charges on the solute cavity surface by solving Poisson’s equation. SS(V)PE is particularly de-

signed to provide a good approximation to the volume polarization arising from “escaped charge”,

which is that fraction of the wavefunction extending past the cavity boundary. In addition, the

cavity construction and Poisson solver also receive careful numerical treatment. For example, the

cavity may be chosen to be an iso-density contour surface, and the Lebedev grids for the Poisson
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solver can be chosen very densely. For more information on the similarities and differences of the

SS(V)PE model to other continuum methods, see Ref. [10].

Lebedev grids [12–14] are used as a single–center integration grid for the solution of the Poisson

equation on the cavity surface. A Lebedev grid having octahedral symmetry on the initial unit

sphere is projected onto the actual molecular surface, and so supports full symmetry for all Abelian

point groups. The larger and/or the less spherical the solute molecule may be, the more points are

needed to get satisfactory precision in the results. Further experience will be required to develop

detailed recommendations for this parameter. Values as small as 110 points are usually sufficient

for simple diatomics and triatomics. The default value of 1202 points has been found adequate to

obtain the energy to within 0.1 kcal/mol for solutes the size of monosubstituted benzenes.

The SS(V)PE model treats the electrostatic interaction between a quantum solute and a classical

dielectric continuum solvent. No treatment is yet implemented for cavitation, dispersion, or any of

a variety of other specific solvation effects. Note that corrections for these latter effects that might

be reported by other programs are generally not transferable. The reason is that they are usually

parameterized to improve the ultimate agreement with experiment. In addition to providing

corrections for the physical effects advertised, they therefore also inherently include contributions

that help to make up for any deficiencies in the electrostatic description. Consequently, they

are appropriate only for use with the particular electrostatic model in which they were originally

developed.

Analytic nuclear gradients are not yet available for the SS(V)PE energy, but numerical differenti-

ation will permit optimization of small solute molecules. Wavefunctions may be any of the RHF

or UHF and their KS-DFT analogs.

Researchers that use this feature are asked to cite Ref. [9].

SVP

Sets whether to perform the isodensity solvation procedure.

TYPE:

LOGICAL

DEFAULT:

FALSE

OPTIONS:
FALSE Do not perform the SS(V)PE solvation procedure.

TRUE Perform the SS(V)PE solvation procedure.
RECOMMENDATION:

NONE

SVP MEMORY

Specifies the amount of memory for use by the solvation module.

TYPE:

INTEGER

DEFAULT:

125

OPTIONS:

n corresponds to the amount of memory in MB.

RECOMMENDATION:
The default should be fine for medium size molecules with the default Lebedev

grid, only increase if needed.
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SVP PATH
Specifies whether to run a gas phase computation prior to performing the solvation

procedure.
TYPE:

INTEGER

DEFAULT:

0

OPTIONS:
0 runs a gas-phase calculation and after

convergence runs the SS(V)PE computation.

1 does not run a gas-phase calculation.
RECOMMENDATION:

Running the gas-phase calculation provides a good guess to start the solvation

stage and provides a more complete set of solvated properties.

SVP CHARGE CONV
Determines the convergence value for the charges on the cavity. When the change

in charges fall below this value, if the electron density is converged, then the

calculation is considered converged.
TYPE:

INTEGER

DEFAULT:

7

OPTIONS:

n Convergence threshold set to 10−n.

RECOMMENDATION:

The default value unless convergence problems arise.

SVP CAVITY CONV

Determines the convergence value of the iterative isodensity cavity procedure.

TYPE:

INTEGER

DEFAULT:

10

OPTIONS:

n Convergence threshold set to 10−n.

RECOMMENDATION:

The default value unless convergence problems arise.

SVP GUESS
Specifies how and if the solvation module will use a given guess for the charges

and cavity points.
TYPE:

INTEGER

DEFAULT:

0

OPTIONS:
0 No guessing.

1 Read a guess from a previous Q-Chem solvation computation.

2 Use a guess specified by the
�
svpirf section from the input

RECOMMENDATION:
It is helpful to also set SCF GUESS to READ when using a guess from a previous

Q-Chem run.
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The format for the
�
svpirf section of the input is the following:

$svpirf

<# point> <x point> <y point> <z point> <charge> <grid weight>

<# point> <x normal> <y normal> <z normal>

$end

10.2.3 The SVP Section Variables

Now listed are a number of variables that directly access the solvation module and therefore must

be specified in the context of a FORTRAN namelist. The format is as follows:

$svp

<KEYWORD>=<VALUE>, <KEYWORD>=<VALUE>,...

<KEYWORD>=<VALUE>

$end

For example, the section may look like this:

$svp

RHOISO=0.001, DIELST=78.39, NPTLEB=110

$end

The following keywords are supported in the � svp section:

DIELST

The static dielectric constant.

TYPE:

FLOAT

DEFAULT:

78.39

OPTIONS:

real number specifying the constant.

RECOMMENDATION:

The default value 78.39 is appropriate for water solvent.

ISHAPE

A flag to set the shape of the cavity surface.

TYPE:

INTEGER

DEFAULT:

0

OPTIONS:
0 use the electronic isodensity surface.

1 use a spherical cavity surface.
RECOMMENDATION:

Use the default surface.
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RHOISO
Value of the electronic isodensity contour used to specify the cavity surface. (Only

relevant for ISHAPE = 0).
TYPE:

FLOAT

DEFAULT:

0.001

OPTIONS:

Real number specifying the density in electrons/bohr3.

RECOMMENDATION:
The default value is optimal for most situations. Increasing the value produces a

smaller cavity which ordinarily increases the magnitude of the solvation energy.

RADSPH

Sphere radius used to specify the cavity surface (Only relevant for ISHAPE=1).

TYPE:

FLOAT

DEFAULT:

Half the distance between the outermost atoms plus 1.4 Angstroms.

OPTIONS:

Real number specifying the radius in bohr (if positive) or in Angstroms (if negative).

RECOMMENDATION:

Make sure that the cavity radius is larger than the length of the molecule.

INTCAV

A flag to select the surface integration method.

TYPE:

INTEGER

DEFAULT:

0

OPTIONS:
0 Single center Lebedev integration.

1 Single center spherical polar integration.
RECOMMENDATION:

The Lebedev integration is by far the more efficient.

NPTLEB
The number of points used in the Lebedev grid for the single–center surface inte-

gration. (Only relevant if INTCAV=0).
TYPE:

INTEGER

DEFAULT:

1202

OPTIONS:
Valid choices are: 6, 18, 26, 38, 50, 86, 110, 146, 170, 194, 302, 350, 434, 590, 770,

974, 1202, 1454, 1730, 2030, 2354, 2702, 3074, 3470, 3890, 4334,

4802, or 5294.
RECOMMENDATION:

The default value has been found adequate to obtain the energy to within 0.1

kcal/mol for solutes the size of monosubstituted benzenes.
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NPTTHE, NPTPHI
The number of (θ,φ) points used for single–centered surface integration (relevant

only if INTCAV=1).
TYPE:

INTEGER

DEFAULT:

8,16

OPTIONS:

θ,φ specifying the number of points.

RECOMMENDATION:
These should be multiples of 2 and 4 respectively, to provide symmetry sufficient

for all Abelian point groups. Defaults are too small for all but the tiniest and

simplest solutes.

LINEQ
Flag to select the method for solving the linear equations that determine the

apparent point charges on the cavity surface.
TYPE:

INTEGER

DEFAULT:

1

OPTIONS:
0 use LU decomposition in memory if space permits, else switch to LINEQ=2

1 use conjugate gradient iterations in memory if space permits, else use LINEQ=2

2 use conjugate gradient iterations with the system matrix stored externally on disk.
RECOMMENDATION:

The default should be sufficient in most cases.

CVGLIN
Convergence criterion for solving linear equations by the conjugate gradient iter-

ative method (relevant if LINEQ=1 or 2).
TYPE:

FLOAT

DEFAULT:

1.0E-7

OPTIONS:

Real number specifying the actual criterion.

RECOMMENDATION:

The default value should be used unless convergence problems arise.

The single–center surface integration approach may fail for certain highly non spherical molecular

surfaces. The program will automatically check for this and bomb out with a warning message if

need be. The single–center approach succeeds only for what is called a star surface, meaning that

an observer sitting at the center has an unobstructed view of the entire surface. Said another way,

for a star surface any ray emanating out from the center will pass through the surface only once.

Some cases of failure may be fixed by simply moving to a new center with the ITRNGR parameter

described below. But some surfaces are inherently nonstar surfaces and cannot be treated with

this program until more sophisticated surface integration approaches are implemented.
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ITRNGR

Translation of the cavity surface integration grid.

TYPE:

INTEGER

DEFAULT:

2

OPTIONS:
0 No translation (i.e., center of the cavity at the origin

of the atomic coordinate system)

1 Translate to the center of nuclear mass.

2 Translate to the center of nuclear charge.

3 Translate to the midpoint of the outermost atoms.

4 Translate to midpoint of the outermost non-hydrogen atoms.

5 Translate to user-specified coordinates in Bohr.

6 Translate to user-specified coordinates in Angstroms.
RECOMMENDATION:

The default value is recommended unless the single–center integrations procedure

fails.

TRANX, TRANY, TRANZ
x, y, and z value of user-specified translation (only relevant if ITRNGR is set to 5

or 6
TYPE:

FLOAT

DEFAULT:

0, 0, 0

OPTIONS:

x, y, and z relative to the origin in the appropriate units.

RECOMMENDATION:

None.

IROTGR

Rotation of the cavity surface integration grid.

TYPE:

INTEGER

DEFAULT:

2

OPTIONS:
0 No rotation.

1 Rotate initial xyz axes of the integration grid to coincide

with principal moments of nuclear inertia (relevant if ITRNGR=1)

2 Rotate initial xyz axes of integration grid to coincide with

principal moments of nuclear charge (relevant if ITRNGR=2)

3 Rotate initial xyz axes of the integration grid through user-specified

Euler angles as defined by Wilson, Decius, and Cross.
RECOMMENDATION:

The default is recommended unless the knowledgeable user has good reason oth-

erwise.
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ROTTHE ROTPHI ROTCHI
Euler angles (θ, φ, χ) in degrees for user-specified rotation of the cavity surface.

(relevant if IROTGR=3)
TYPE:

FLOAT

DEFAULT:

0,0,0

OPTIONS:

θ, φ, χ in degrees

RECOMMENDATION:

None.

IOPPRD

Specifies the choice of system operator form.

TYPE:

INTEGER

DEFAULT:

0

OPTIONS:
0 Symmetric form.

1 Non-symmetric form.
RECOMMENDATION:

The default uses more memory but is generally more efficient, we recommend its

use unless there is shortage of memory available.

10.2.4 Langevin Dipoles Solvation Model

Q-Chem provides the option to calculate molecular properties in aqueous solution and the mag-

nitudes of the hydration free energies by the Langevin dipoles (LD) solvation model developed by

Jan Florián and Arieh Warshel [15,16], of the University of Southern California. In this model, a

solute molecule is surrounded by a sphere of point dipoles, with centers on a cubic lattice. Each

of these dipoles (called Langevin dipoles) changes its size and orientation in the electrostatic field

of the solute and the other Langevin dipoles. The electrostatic field from the solute is determined

rigorously by the integration of its charge density, whereas for dipole–dipole interactions, a 12 Å

cutoff is used. The Q-Chem/ChemSol 1.0 implementation of the LD model is fully self–consistent

in that the molecular quantum mechanical calculation takes into account solute–solvent interac-

tions. Further details on the implementation and parameterization of this model can be found in

the original literature [15, 17].

The results of ChemSol calculations are printed in the standard output file. Below is a part of

the output for a calculation on the methoxide anion (corresponding to the sample input given

later on, and the sample file in the � QC/samples directory).

Iterative Langevin Dipoles (ILD) Results (kcal/mol)

LD Electrostatic energy -86.14

Hydrophobic energy 0.28

van der Waals energy (VdW) -1.95

Bulk correction -10.07

Solvation free energy dG(ILD) -97.87

The total hydration free energy, ∆ G(ILD) is calculated as a sum of several contributions. Note

that the electrostatic part of ∆G is calculated by using the linear–response approximation [15] and
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contains contributions from the polarization of the solute charge distribution due to its interaction

with the solvent. This results from the self–consistent implementation of the Langevin dipoles

model within Q-Chem.

In order for an LD calculation to be carried out by the ChemSol program within Q-Chem, the

user must specify a single-point HF or DFT calculation (i.e., at least � rem variables BASIS, EXCHANGE

and CORRELATION) in addition to setting CHEMSOL � rem variable to 1 in the keyword section.

CHEMSOL

Controls the use of ChemSol in Q-Chem.

TYPE:

INTEGER

DEFAULT:

0

OPTIONS:
0 Do not use ChemSol.

1 Perform a ChemSol calculation.
RECOMMENDATION:

None

CHEMSOL EFIELD
Determines how the solute charge distribution is approximated in evaluating the

electrostatic field of the solute.
TYPE:

INTEGER

DEFAULT:

1

OPTIONS:
1 Exact solute charge distribution is used.

0 Solute charge distribution is approximated by Mulliken atomic charges.

This is a faster, but less rigorous procedure.
RECOMMENDATION:

None.

CHEMSOL NN

Sets the number of grids used to calculate the average hydration free energy.

TYPE:

INTEGER

DEFAULT:

5 ∆Ghydr will be averaged over 5 different grids.

OPTIONS:

n Number of different grids (Max = 20).

RECOMMENDATION:

None.
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CHEMSOL PRINT

Controls printing in the ChemSol part of the Q-Chem output file.

TYPE:

INTEGER

DEFAULT:

0

OPTIONS:
0 Limited printout.

1 Full printout.
RECOMMENDATION:

None

10.2.5 Customizing Langevin Dipoles Solvation Calculations

Accurate calculations of hydration free energies require a judicious choice of the solute–solvent

boundary in terms of atom–type dependent parameters. The default atomic van der Waals radii

available in Q-Chem were chosen to provide reasonable hydration free energies for most solutes and

basis sets. These parameters basically coincide with the ChemSol 2.0 radii given in reference [17].

The only difference between the Q-Chem and ChemSol 2.0 atomic radii stems from the fact that

Q-Chem parameter set uses hybridization independent radii for carbon and oxygen atoms.

User–defined atomic radii can be specified in the � van der waals section of the input file after

setting READ VDW � rem variable to TRUE.

READ VDW

Controls the input of user–defined atomic radii for ChemSol calculation.

TYPE:

LOGICAL

DEFAULT:

FALSE

OPTIONS:
FALSE Use default ChemSol parameters.

TRUE Read from the � van der waals section of the input file.
RECOMMENDATION:

None.

Two different (mutually exclusive) formats can be used, as shown below.

$van_der_waals

1

atomic_number radius

...

$end

$van_der_waals

2

sequential_atom_number VdW_radius

...

$end
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The purpose of the second format is to permit the user to customize the radius of specific atoms,

in the order that they appear in the � molecule section, rather than simply by atomic numbers as

in format 1. The radii of atoms that are not listed in the � van der waals input will be assigned

default values. The atomic radii that were used in the calculation are printed in the ChemSol

part of the output file in the column denoted rp. All radii should be given in Å.

10.2.6 Example

Example 10.1 A Langevin dipoles calculation on the methoxide anion. A customized value is
specified for the radius of the C atom.

$molecule

-1 1

C 0.0000 0.0000 -0.5274

O 0.0000 0.0000 0.7831

H 0.0000 1.0140 -1.0335

H 0.8782 -0.5070 -1.0335

H -0.8782 -0.5070 -1.0335

$end

$rem

EXCHANGE hf

BASIS 6-31G

SCF_CONVERGENCE 6

CHEMSOL 1

READ_VDW true

$end

$van_der_waals

2

1 2.5

$end

10.3 Wavefunction Analysis

Q-Chem performs a number of standard wavefunction analyses by default. Switching the � rem

variable WAVEFUNCTION ANALYSIS to FALSE will prevent the calculation of all wavefunction

analysis features (described in this section). Alternatively, each wavefunction analysis feature

may be controlled by its � rem variable. (The NBO package which is interfaced with Q-Chem is

capable of performing more sophisticated analyses. See later in this chapter and the NBO manual

for details).

WAVEFUNCTION ANALYSIS

Controls the running of the default wavefunction analysis tasks.

TYPE:

LOGICAL

DEFAULT:

TRUE

OPTIONS:
TRUE Perform default wavefunction analysis.

FALSE Do not perform default wavefunction analysis.
RECOMMENDATION:

None
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Note: WAVEFUNCTION ANALYSIS has no effect on NBO, solvent models or vibrational analyses.

The one–electron charge density, usually written as

ρ(r) =
∑

µν

Pµνφµ(r)φν(r) (10.2)

represents the probability of finding an electron at the point r, but implies little regarding the

number of electrons associated with a given nucleus in a molecule. However, since the number of

electrons N is related to the occupied orbitals ψi by

N = 2

N/2∑

a

|ψa(r)|2 dr (10.3)

we can substitute the basis expansion of ψa into (10.3) and obtain

N =
∑

µυ

PµυSµυ =
∑

µ

(PS)µµ = Tr(PS) (10.4)

where we interpret (PS)µµ as the number of electrons associated with φµ. If the basis functions

are atom–centered, the number of electrons associated with a given atom can be obtained by

summing over all the basis functions. This leads to the Mulliken formula for the net charge of the

atom A

qA = ZA −
∑

µ∈A
(PS)µµ (10.5)

where ZA is the atom’s nuclear charge. This is called a Mulliken population analysis [18]. Q-Chem

performs a Mulliken population analysis by default.

POP MULLIKEN

Controls running of Mulliken population analysis.

TYPE:

LOGICAL/INTEGER

DEFAULT:

TRUE (or 1)

OPTIONS:
FALSE (or 0) Do not calculate Mulliken Population.

TRUE (1) Calculate Mulliken population

2 Also calculate shell populations for each occupied orbital.
RECOMMENDATION:

Leave as TRUE. Trivial additional calculation

10.3.1 Multipole Moments

Q-Chem can compute Cartesian multipole moments of the charge density to arbitrary order.
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MULTIPOLE ORDER
Determines highest order of multipole moments to print if wavefunction analysis

requested.
TYPE:

INTEGER

DEFAULT:

4

OPTIONS:

n Calculate moments to nth order.

RECOMMENDATION:

Use default unless higher multipoles are required.

10.3.2 Symmetry Decomposition

Q-Chem’s default is to write the SCF wave function molecular orbital symmetries and energies

to the output file. If requested, a symmetry decomposition of the kinetic and nuclear attraction

energies can also be calculated.

SYMMETRY DECOMPOSITION

Determines symmetry decompositions to calculate.

TYPE:

INTEGER

DEFAULT:

1

OPTIONS:
0 No symmetry decomposition.

1 Calculate MO eigenvalues and symmetry (if available).

2 Perform symmetry decomposition of kinetic energy and nuclear attraction

matrices.
RECOMMENDATION:

None

10.4 Visualization using MolDen

Upon request, Q-Chem will generate an input file for the MolDen program, a molecular visual-

ization program that is freely available at http://www.cmbi.ru.nl/molden/molden.html. MolDen

can be used to view ball–and–stick molecular models (including stepwise visualization of a geom-

etry optimization), molecular orbitals, and vibrational normal modes. MolDen also contains a

powerful Z –matrix editor. Orbital visualization is currently supported for s, p, and d functions

(pure or Cartesian), as well as pure f functions.
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MOLDEN FORMAT
Requests a MolDen–formatted input file containing information from a Q-Chem

job.
TYPE:

LOGICAL

DEFAULT:

False

OPTIONS:

True Append MolDen input file at the end of the Q-Chem output file.

RECOMMENDATION:

None.

10.4.1 Examples

Example 10.2 Generating a MolDen file for molecular orbital visualization.

$molecule

0 1

O

H 1 0.95

H 1 0.95 2 104.5

$end

$rem

EXCHANGE hf

BASIS cc-pvtz

PRINT_ORBITALS true (default is to print 5 virtual orbitals)

MOLDEN_FORMAT true

$end

Example 10.3 Generating a MolDen file to step through a geometry optimization.

$molecule

0 1

O

H 1 0.95

H 1 0.95 2 104.5

$end

$rem

JOBTYPE opt

EXCHANGE hf

BASIS 6-31G*

MOLDEN_FORMAT true

$end

10.5 Intracules

The many dimensions of electronic wave functions makes them difficult to analyze and interpret.

It is often convenient to reduce this large number of dimensions, yielding simpler functions that

can more readily provide chemical insight. The most familiar of these is the one–electron density

ρ(r), which gives the probability of an electron being found at the point r. Analogously, the one–

electron momentum density π(p) gives the probability that an electron will have a momentum of

p. However, the wavefunction is reduced to the one–electron density much information is lost.
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In particular, it is often desirable to retain explicit two–electron information. Intracules are two–

electron distribution functions and provide information about the relative position and momentum

of electrons. A detailed account of the different type of intracules can be found in [19]. Q-Chem’s

intracule package was developed by Aaron Lee and Nick Besley, and can compute the following

intracules for or HF wavefunctions:

� Position intracules, P (u): describes the probability of finding two electrons separated by a

distance u.� Momentum intracules, M(v): describes the probability of finding two electrons with relative

momentum v.� Wigner intracule, W (u, v): describes the combined probability of finding two electrons sep-

arated by u and with relative momentum v.

10.5.1 Position Intracules

The intracule density I(u), represents the probability for the inter-electronic vector u = u1 − u2.

I(u) =

∫
ρ(r1r2) δ(r12 − u) dr1 dr2 (10.6)

where ρ(r1, r2) is the two–electron density. A simpler quantity is the spherically averaged intracule

density

P (u) =

∫
I(u)dΩu (10.7)

where Ωu is the angular part of v, measures the probability that two electrons are separated by a

scalar distance u = |u|. This intracule is called a position intracule [19]. If the molecular orbitals

are expanded within a basis set

ψa(r) =
∑

µ

cµa φµ(r) (10.8)

P (u) can be expressed as

P (u) =
∑

µνλσ

Γµνλσ(µνλσ)P (10.9)

where Γµνλσ is the two–particle density matrix and (µνλσ)P is the position integral

(µνλσ)P =

∫
φ∗µ(r) φν(r) φ∗λ(r + u)φσ(r + u) dr dΩ (10.10)

and φµ(r), φν(r), φλ(r) and φσ(r) are basis functions. For HF wavefunctions the position intracule

can be decomposed into Coulomb PJ(u) and exchange PK(u) components.

PJ(u) =
1

2

∑

µνλσ

DµνDλσ(µνλσ)P (10.11)

PK(u) = −1

2

∑

µνλσ

[
Dα
µλD

α
νσ +Dβ

µλD
β
νσ

]
(µνλσ)P (10.12)
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where Dµν etc. are density matrix elements. The evaluation of P (u), PJ(u) and PK(u) within Q-

Chem has been described in detail [20]. Some of the moments of P (u) are physically significant [21],

for example

∞∫

0

u0P (u)du =
n(n− 1)

2
(10.13)

∞∫

0

u0PJ(u)du =
n2

2
(10.14)

∞∫

0

u2PJ(u)du = nQ− µ2 (10.15)

∞∫

0

u0PK(u)du = −n
2

(10.16)

where n is the number of electrons and, µ is the electronic dipole moment and Q is the trace of

the electronic quadrupole moment tensor. Q-Chem can compute both moments and derivatives

of position intracules.

10.5.2 Momentum Intracules

Analogous quantities can be defined in momentum space. Ī(v) represents the probability density

of a relative momentum v = p1 − p2

Ī(v) =

∫
π(p1,p2) δ(p12 − v)dp1dp2 (10.17)

where π(p1,p2) momentum two–electron density. Similarly, the spherically averaged intracule

M(v) =

∫
Ī(v)dΩv (10.18)

where Ωv is the angular part of v, is a measure of relative momentum v = |v| and is called the

momentum intracule. M(v) can be written as

M(v) =
∑

µνλσ

Γµνλσ (µνλσ)M (10.19)

where Γµνλσ is the two–particle density matrix and (µνλσ)M is the momentum integral [22]

(µνλσ)M =
v2

2π2

∫
φ∗µ(r)φν (r + q)φ∗λ(u + q)φσ(u)j0(qv) dr dq du (10.20)

The momentum integrals only possess four–fold permutational symmetry, i.e.,

(µνλσ)M = (νµλσ)M = (σλνµ)M = (λσµν)M (10.21)

(νµλσ)M = (µνσλ)M = (λσνµ)M = (σλµν)M (10.22)
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and therefore generation of M(v) is roughly twice as expensive as P (u). Momentum intracules

can also be decomposed into Coulomb MJ(v) and exchange MK(v) components.

MJ(v) =
1

2

∑

µνλσ

DµνDλσ(µνλσ)M (10.23)

MK(v) = −1

2

∑

µνλσ

[
Dα
µλD

α
νσ +Dβ

µλD
β
νσ

]
(µνλσ)M (10.24)

Again the even–order moments are physically significant [22]

∞∫

0

v0M(v)dv =
n(n− 1)

2
(10.25)

∞∫

0

u0MJ(v)dv =
n2

2
(10.26)

∞∫

0

v2PJ(v)dv = 2nET (10.27)

∞∫

0

v0MK(v)dv = −n
2

(10.28)

(10.29)

where n is the number of electrons and ET is the total electronic kinetic energy. Currently, Q-

Chem can compute M(v), MJ(v) and MK(v) using s and p basis functions only. Moments are

generated using quadrature and consequently for accurate results M(v) must be computed over a

large and closely spaced v range.

10.5.3 Wigner Intracules

P (u) and M(v) provide a representation of an electron distribution in either position or momen-

tum space but neither alone can provide a complete description. For a combined position and

momentum description an intracule in phase space is required. Defining such an intracule is more

difficult since there is no phase space second–order reduced density. However, the second–order

Wigner distribution [23]

W2(r1,p1, r2,p2) =
1

π6

∫
ρ2(r1 + q1, r1 − q1, r2 + q2, r2 − q2)e−2i(p1·q1+p2·q2)dq1dq2 (10.30)

can be interpreted as giving the probability of finding an electron at r1 with momentum p1

and another electron at r2 with momentum p2. W2(r1, r2,p1,p2 is often referred to as ‘quasi–

probability’ distribution’ since it is not positive everywhere.

The Wigner distribution can be used in an analogous way to the second order reduced densities to

define a combined position and momentum intracule. This intracule is called a Wigner intracule,

and is formally defined as

W (u, v) =

∫
W2(r1,p1, r2,p2)δ(r12 − u)δ(p12 − v)dr1 dr2 dp1 dp2 dΩu dΩv (10.31)
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If the orbitals are expanded in a basis set, W (u, v) can be written as

W (u, v) =
∑

µνλσ

Γµνλσ (µνλσ)W (10.32)

where (µνλσ)W is the Wigner integral

(µνλσ)W =
v2

2π2

∫ ∫
φ∗µ(r)φν(r + q)φ∗λ(r + q + u)φσ(r + u)j0(q v) dr dq dΩu (10.33)

Wigner integrals are similar to momentum integrals and only have four–fold permutational sym-

metry. Evaluating Wigner integrals is considerably more difficult that their position or momentum

counterparts. The fundamental [ssss]w integral

[ssss]W =
u2v2

2π2

∫ ∫
exp

[
−α|r−A|2 −β|r+q−B|2 −γ|r+q+u−C|2−δ|r+u−D|2

]
×

j0(qv) dr dq dΩu (10.34)

can be expressed as

[ssss]W =
πu2v2 e−(R+λ2u2+µ2v2)

2(α+ δ)3/2(β + γ)3/2

∫
e−P·uj0 (|Q + ηu|v) dΩu (10.35)

or

[ssss]W =
2π2u2v2e−(R+λ2u2+µ2v2)

(α+ δ)3/2(β + γ)3/2

∞∑

n=0

(2n+ 1)in(P u)jn(ηuv)jn(Qv)Pn

(
P ·Q
P Q

)
(10.36)

Two approaches for evaluating (µνλσ)W have been implemented in Q-Chem, full details can be

found in [24]. The first approach uses the first form of [ssss]W and used Lebedev quadrature to

perform the remaining integrations over Ωu. For high accuracy large Lebedev grids [12–14] should

be used, grids of up to 5294 points are available in Q-Chem. Alternatively, the second form can

be adopted and the integrals evaluated by summation of a series. Currently, both methods have

been implemented within Q-Chem for s and p basis functions only.

When computing intracules it is most efficient to locate the loop over u and/or v points within

the loop over shell–quartets [25]. However, for W (u, v) this requires a large amount of memory to

store all the integrals arising from each (u, v) point. Consequently, an additional scheme, in which

the u and v points loop is outside the shell–quartet loop, is available. This scheme is less efficient,

but substantially reduces the memory requirements.

10.5.4 Intracule Job Control

The following � rem variables can be used to control the calculation of intracules.
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INTRACULE
Controls whether intracule properties are calculated (see also the � intracule sec-

tion).
TYPE:

LOGICAL

DEFAULT:

FALSE

OPTIONS:
FALSE No intracule properties.

TRUE Evaluate intracule properties.
RECOMMENDATION:

None

WIG MEM

Reduce memory required in the evaluation of W (u, v).

TYPE:

LOGICAL

DEFAULT:

FALSE

OPTIONS:
FALSE Do not use low memory option.

TRUE Use low memory option.
RECOMMENDATION:

The low memory option is slower, use default unless memory is limited.

WIG LEB

Use Lebedev quadrature to evaluate Wigner integrals.

TYPE:

LOGICAL

DEFAULT:

FALSE

OPTIONS:
FALSE Evaluate Wigner integrals through series summation.

TRUE Use quadrature for Wigner integrals.
RECOMMENDATION:

None

WIG GRID

Specify angular Lebedev grid for Wigner intracule calculations.

TYPE:

INTEGER

DEFAULT:

194

OPTIONS:

Lebedev grids up to 5810 points.

RECOMMENDATION:

Larger grids if high accuracy required.



Chapter 10: Molecular Properties and Analysis 258

N WIG SERIES

Sets summation limit for Wigner integrals.

TYPE:

INTEGER

DEFAULT:

10

OPTIONS:

n < 100

RECOMMENDATION:

Increase n for greater accuracy.

N I SERIES

Sets summation limit for series expansion evaluation of in(x).

TYPE:

INTEGER

DEFAULT:

40

OPTIONS:

n > 0

RECOMMENDATION:

Lower values speed up the calculation, but may affect accuracy.

N J SERIES

Sets summation limit for series expansion evaluation of jn(x).

TYPE:

INTEGER

DEFAULT:

40

OPTIONS:

n > 0

RECOMMENDATION:

Lower values speed up the calculation, but may affect accuracy.

10.5.5 Format for the 	 intracule Section

int type 0 Compute P (u) only

1 Compute M(v) only

2 Compute W (u, v) only

3 Compute P (u), M(v) and W (u, v)

4 Compute P (u) and M(v)

5 Compute P (u) and W (u, v)

6 Compute M(v) and W (u, v)

u points Number of points, start, end.

v points Number of points, start, end.

moments 0–4 Order of moments to be computed (P (u) only).

derivs 0–4 order of derivatives to be computed (P (u) only).

accuracy n (10−n) specify accuracy of intracule interpolation table (P (u) only).
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10.5.6 Examples

Example 10.4 Compute HF/STO-3G P (u), M(v) and W (u, v) for Ne, using Lebedev quadrature
with 974 point grid.

$molecule

0 1

Ne

$end

$rem

EXCHANGE hf

BASIS sto-3g

INTRACULE true

WIG_LEB true

WIG_GRID 974

$end

$intracule

int_type 3

u_points 10 0.0 10.0

v_points 8 0.0 8.0

moments 4

derivs 4

accuracy 8

$end

Example 10.5 Compute HF/6-31G W (u, v) intracules for H2O using series summation up to
n=25 and 30 terms in the series evaluations of jn(x) and in(x).

$molecule

0 1

H1

O H1 r

H2 O r H1 theta

r = 1.1

theta = 106

$end

$rem

EXCHANGE hf

BASIS 6-31G

INTRACULE true

WIG_MEM true

N_WIG_SERIES 25

N_I_SERIES 40

N_J_SERIES 50

$end

$intracule

int_type 2

u_points 30 0.0 15.0

v_points 20 0.0 10.0

$end
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10.6 Vibrational Analysis

Vibrational analysis is an extremely important tool for the quantum chemist, supplying a molecular

fingerprint which is invaluable for aiding identification of molecular species in many experimental

studies. Q-Chem includes a vibrational analysis package that can calculate vibrational frequencies

and their Raman [26] and infrared activities. Vibrational frequencies are calculated by either using

an analytic Hessian (if available, see Table 9.1) or, numerical finite difference of the gradient.

The default setting in Q-Chem is to use the highest analytical derivative order available for the

requested theoretical method.

When calculating analytic frequencies at the HF and DFT levels of theory, the coupled–perturbed

SCF equations must be solved. This is the most time–consuming step in the calculation, and

also consumes the most memory. The amount of memory required is O(N 2M) where N is the

number of basis functions, and M the number of atoms. This is an order more memory than

is required for the SCF calculation, and is often the limiting consideration when treating larger

systems analytically. Q-Chem incorporates a new approach to this problem that avoids this

memory bottleneck by solving the CPSCF equations in segments [27]. Instead of solving for all

the perturbations at once, they are divided into several segments, and the CPSCF is applied for

one segment at a time, resulting in a memory scaling of O(N 2M/Nseg), where Nseg is the number

of segments. This option is invoked automatically by the program.

Following a vibrational analysis, Q-Chem computes useful statistical thermodynamic properties

at standard temperature and pressure, including: zero–point vibration energy (ZPVE) and, trans-

lational, rotational and vibrational, entropies and enthalpies.

The performance of various ab initio theories in determining vibrational frequencies has been well

documented. See references [9, 28, 29].

10.6.1 Job Control

In order to carry out a frequency analysis users must at a minimum provide a molecule within the� molecule keyword and define an appropriate level of theory within the � rem keyword using the� rem variables EXCHANGE, CORRELATION (if required) (Chapter 4) and BASIS (Chapter 7).

Since the default type of job (JOBTYPE) is a single point energy (SP) calculation, the JOBTYPE� rem variable must be set to FREQ.

It is very important to note that a vibrational frequency analysis must be performed at a stationary

point on the potential surface that has been optimized at the same level of theory. Therefore a

vibrational frequency analysis most naturally follows a geometry optimization in the same input

deck, where the molecular geometry is obtained (see examples).

Users should also be aware that the quality of the quadrature grid used in DFT calculations is

more important when calculating second derivatives. The default grid for some atoms has changed

in Q-Chem 3.0 (see section 4.3.4) and for this reason vibrational frequencies may vary slightly

form previous versions. It is recommended that a grid larger than the default grid is used when

performing frequency calculations.

The standard output from a frequency analysis includes the following.

� Vibrational frequencies.� Raman and IR activities and intensities (requires � rem DORAMAN).� Atomic masses.� Zero–point vibrational energy.
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� Translational, rotational, and vibrational, entropies and enthalpies.

Several other � rem variables are available that control the vibrational frequency analysis. In detail,

they are:

DORAMAN

Controls calculation of Raman intensities. Requires JOBTYPE to be set to FREQ

TYPE:

LOGICAL

DEFAULT:

FALSE

OPTIONS:
FALSE Do not calculate Raman intensities.

TRUE Do calculate Raman intensities.
RECOMMENDATION:

None

VIBMAN PRINT

Controls level of extra print out for vibrational analysis.

TYPE:

INTEGER

DEFAULT:

1

OPTIONS:
1 Standard full information print out.

3 Level 1 plus vibrational frequencies in atomic units.

4 Level 3 plus mass–weighted Hessian matrix, projected mass–weighted Hessian

matrix.

6 Level 4 plus vectors for translations and rotations projection matrix.

7 Level 6 plus anharmonic cubic and quartic force field print out.
RECOMMENDATION:

Use default.

CPSCF NSEG

Controls the number of segments used to calculate the CPSCF equations.

TYPE:

INTEGER

DEFAULT:

0

OPTIONS:
0 Do not solve the CPSCF equations in segments.

n User–defined. Use n segments when solving the CPSCF equations.
RECOMMENDATION:

Use default.
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FDIFF STEPSIZE

Displacement used for calculating derivatives by finite difference.

TYPE:

INTEGER

DEFAULT:

100 Corresponding to 0.001 Å.

OPTIONS:

n Use a step size of n× 10−5.

RECOMMENDATION:
Use default, unless on a very flat potential, in which case a larger value should be

used.

10.6.2 Example

Example 10.6 An EDF1/6-31+G* optimization, followed by a vibrational analysis. Doing the
vibrational analysis at a stationary point is necessary for the results to be valid.

$molecule

O 1

C 1 co

F 2 fc 1 fco

H 2 hc 1 hcp 3 180.0

co = 1.2

fc = 1.4

hc = 1.0

fco = 120.0

hco = 120.0

$end

$rem

JOBTYPE opt

EXCHANGE edf1

BASIS 6-31+G*

$end

@@@

$molecule

read

$end

$rem

JOBTYPE freq

EXCHANGE edf1

BASIS 6-31+G*

$end

10.7 Anharmonic Vibrational Frequency

Computing vibrational spectra beyond the harmonic approximation has become an active area

of research owing to the improved efficiency of computer techniques [31–34]. To calculate the

exact vibrational spectrum within Born–Oppenheimer approximation, one has to solve the nuclear

Schrödinger equation completely using numerical integration techniques, and consider the full

configuration interaction of quanta in the vibrational states. This has only been carried out on

di– or tri–atomic system [35,36]. The difficulty of this numerical integration arises because solving
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exact the nuclear Schrödinger equation requires a complete electronic basis set, consideration of

all the nuclear vibrational configuration states, and a complete potential energy surface (PES).

Simplification of the Nuclear Vibration Theory (NVT) and PES are the doorways to accelerating

the anharmonic correction calculations. There are five aspects to simplifying the problem:

� Expand the potential energy surface using a Taylor series and examine the contribution

from higher derivatives. Small contributions can be eliminated, which allows for the efficient

calculation of the Hamiltonian.� Investigate the effect on the number of configurations employed in a variational calculation.� Avoid using variational theory (due to its expensive computational cost) by using other

approximations, for example, perturbation theory.� Obtain the PES indirectly by applying a self–consistent field procedure.� Apply an anharmonic wavefunction which is more appropriate for describing the distribution

of nuclear probability on an anharmonic potential energy surface.

To incorporate these simplifications, new formulae combining information from the Hessian, gra-

dient and energy are used as a default procedure to calculate the cubic and quartic force field of

a given potential energy surface.

Here, we also briefly describe various NVT methods. In the early stage of solving the nuclear

Schrödinger equation (around 1930s), second–order Vibrational Perturbation Theory (VPT2) [33,

37–40] was developed. However, problems occur when resonances exist in the spectrum. This

becomes more problematic for larger molecules due to the greater chance of accidental degeneracies

occurring. To avoid this problem, one can do a direct integration of the secular matrix using

Vibrational Configuration Interaction (VCI) theory [41]. It is the most accurate method and

also the least favored due to its computational expense. In Q-Chem 3.0, we introduce a new

approach to treating the wavefunction, transition–optimized shifted Hermite (TOSH) theory [42],

which uses first–order perturbation theory, which avoids the degeneracy problems of VPT2, but

which incorporates anharmonic effects into the wavefunction, thus increasing the accuracy of the

predicted anharmonic energies.

10.7.1 Vibration Configuration Interaction Theory

To solve the nuclear vibrational Schrödinger equation, one can only use direct integration proce-

dures for di–atomic molecules [35,36]. For larger systems, a truncated version of full configuration

interaction is considered to be the most accurate approach. When one applies the variational prin-

ciple to the vibrational problem, a basis function for the nuclear wavefunction of the nth excited

state of mode i is:

ψ
(n)
i = φ

(n)
i

m∏

j 6=i
φ

(0)
j (10.37)

where the φ
(n)
i represents the harmonic oscillator eigenfunctions for normal mode qi, which can

be expressed in terms of Hermite polynomials:

φ
(n)
i =

(
ω

1
2

i

π
1
2 2nn!

) 1
2

e−
ωiq

2
i

2 Hn(qi
√
ωi) (10.38)
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With the basis function defined in eq. (10.37), the nth wavefunction can be described as a linear

combination of the Hermite polynomials:

Ψ(n) =

n1∑

i=0

n2∑

j=0

n3∑

k=0

· · ·
nm∑

m=0

c
(n)
ijk···mψ

(n)
ijk···m (10.39)

where ni is the number of quanta in the ith mode. We propose the notation VCI(n) where n is

the total number of quanta i.e.:

n = n1 + n2 + n3 + · · ·+ nm (10.40)

To determine this expansion coefficient c(n), we integrate the Ĥ , as in eq. (4.1), with Ψ(n) to get

the eigenvalues

c(n) = E
(n)
VCI(n) =< Ψ(n)|Ĥ |Ψ(n) > (10.41)

This gives us the anharmonically corrected frequencies to n–quanta accuracy for a m–mode

molecule. The size of the secular matrix on the right hand of eq. (10.41) is ((n + m)!/n!m!)2,

and the storage of this matrix can easily surpass the memory limit of a computer. Although

this method is highly accurate, we need to seek for other approximations for computing large

molecules.

10.7.2 Vibrational Perturbation Theory

Vibrational perturbation theory has been historically popular for calculating molecular spec-

troscopy. Nevertheless, it is notorious for the incapability of dealing with resonance cases. In

addition, the non–standard formulas for various symmetries of molecules forces the users to mod-

ify inputs on a case–by–case basis [43–45], which narrows the accessibility of this method. VPT

applies perturbation treatments on the same Hamiltonian as in eq. (4.1), but divides it into an

unperturbed part, Û , and a perturbed part, V̂ .

Û =
m∑

i

(
−1

2

∂2

∂q2
i

+
ωi

2

2
qi

2

)
(10.42)

V̂ =
1

6

m∑

ijk=1

ηijkqiqjqk +
1

24

m∑

ijkl=1

ηijklqiqjqkql (10.43)

One can then apply second–order perturbation theory to get the ith excited state energy:

E(i) = Û (i)+ < Ψ(i)|V̂ |Ψ(i) > +
∑

j 6=i

| < Ψ(i)|V̂ |Ψ(j) > |2
Û (i) − Û (j)

(10.44)

The denominator in eq. (10.44) can be zero either because of symmetry or accidental degeneracy.

Various solutions, which depend on the type of degeneracy that occurs, have been developed which

ignore the zero–denominator elements from the Hamiltonian [43–46]. An alternative solution has

been proposed by Barone [33] which can be applied to all molecules by changing the masses of

one or more nuclei in degenerate cases. The disadvantage of this method is that it will break the

degeneracy which results in fundamental frequencies no longer retaining their correct symmetry.

He proposed:
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E
(i)
VPT2 =

∑

i

ωi(ni +
1

2
) +

∑

i≤j
xij(ni +

1

2
)(nj +

1

2
) + · · · (10.45)

where the anharmonic constants xii and xij are given by:

xii =
1

16ω2
i


ηiiii −

5η2
iii

3ω2
i

−
m∑

i6=j

(8ω2
i − 3ω2

j )η
2
iij

ω2
j (4ω2

i − ω2
j )


 (10.46)

xij =
1

4ωiωj


ηiijj −

2η2
iij

4ω2
i − ω2

j

−
2η2
ijj

4ω2
j − ω2

i

− ηiiiηijj
ω2
i

− ηjjjηiij
ω2
j

−
m∑

i6=j 6=k

ηiikηjjk
ω2
k


 (10.47)

Here, we ignore the vib–rotational terms (Coriolis coupling), and rotational constants since the

contribution from these terms are relatively small (less than 10cm−1).

10.7.3 Transition–Optimized Shifted Hermite Theory

So far, every aspect of solving the nuclear wave equation has been considered, except the wave-

function. Since Schrödinger proposed his equation, the nuclear wavefunction has traditionally be

expressed in terms of Hermite functions, which are designed for the harmonic oscillator case. Re-

cently [42] a modified representation has been presented. To demonstrate how this approximation

works, we start with a simple example. For a di–atomic molecule, the Hamiltonian with up to

quartic derivatives can be written as:

Ĥ = −1

2

∂2

∂q2
+

1

2
ω2q2 + ηiiiq

3 + ηiiiiq
4 (10.48)

and the wavefunction is expressed as in eq. (10.38). Now, if we shift the center of the wavefunction

by σ, which is equivalent to a translation of the normal coordinate q, the shape will still remain

the same, but the anharmonic correction can now be incorporated into the wavefunction. For a

ground vibrational state, the wavefunction is written as:

φ(0) =
(ω
π

) 1
4

e−
ω
2 (q−σ)2

(10.49)

Similarly, for the first excited vibrational state, we have:

φ(1) =

(
4ω3

π

) 1
4

(q − σ) e
ω
2 (q−σ)2

(10.50)

Therefore, the energy difference between the first vibrational excited state and the ground state

is:

∆ETOSH = ω +
ηiiii
8ω2

+
ηiiiσ

2ω
+
ηiiiiσ

2

4ω
(10.51)

which is the fundamental vibrational frequency from first–order perturbation theory. We know

from the first–order perturbation theory with an ordinary wavefunction within a QFF PES, the

energy is:
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∆EVPT1 = ω +
ηiiii
8ω2

(10.52)

The differences between these two wavefunctions are the two extra terms arising from the shift

in eq. (10.51). To determine the shift, we compare the energy with that from second–order

perturbation theory:

∆EVPT2 = ω +
ηiiii
8ω2
− 5ηiii

2

24ω4
(10.53)

Since σ is a very small quantity compared with the other variables, we ignore the contribution of

σ2 and compare ∆ETOSH with ∆EVPT2, which yields an initial guess for σ:

σ = − 5

12

ηiii
ω3

(10.54)

Because the only difference between this approach and the ordinary wavefunction is the shift in

the normal coordinate, we call it “Transition–optimized shifted Hermite” (TOSH) functions [42].

This approximation gives second–order accuracy at only first–order cost.

For poly–atomic molecules, we consider eq. (10.51), and propose the energy of the ith mode

expressed as:

∆E
(i)
TOSH = νi = ωi +

1

8ωi

m∑

j=1

ηiijj
ωj

+
1

2ωi

m∑

j=1

ηiijσi +
1

4ωi

m∑

j=1

ηiijjσ
2
i (10.55)

Following the same approach as for the di–atomic case, by comparing this with the energy from

second–order perturbation theory, we obtain the shift as

σi = δij
ηiii
6ω3

i

− ηiij
2ωiω2

j

− ηiij
4ωi(−2ωi − ωj)ωj

−
N∑

k 6=i

ηjkk
4ω2

jωk
(10.56)

10.8 Job Control

The following � rem variables can be used to control the calculation of anharmonic frequencies.

ANHAR
Performing various nuclear vibrational theory (TOSH, VPT2, VCI) calculations

to obtain vibrational anharmonic frequencies.
TYPE:

LOGICAL

DEFAULT:

FALSE

OPTIONS:
TRUE Carry out the anharmonic frequency calculation.

FALSE Do harmonic frequency calculation.
RECOMMENDATION:

Since this calculation involves the third and fourth derivatives at the

minimum of the potential energy surface, it is recommended that the

GEOM OPT TOL DISPLACEMENT, GEOM OPT TOL GRADIENT and

GEOM OPT TOL ENERGY tolerances are set tighter. Note that VPT2 cal-

culations will fail if the system involves resonances (either accidental or due to

symmetry). See the VCI � rem variable for more details about increasing the

accuracy of anharmonic calculations.
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VCI

Specifies the number of quanta involved in the VCI calculation.

TYPE:

INTEGER

DEFAULT:

2

OPTIONS:

User-defined

RECOMMENDATION:
The availability depends on the memory of the machine. For example, a machine

with 1.5 GB memory and for molecules with fewer than 3 atoms, VCI(10) can

be carried out, for molecule containing fewer than 5 atoms, VCI(7) can be car-

ried out, for molecule containing fewer than 6 atoms, VCI(4) can be carried out.

For molecules larger than hexa–atomics, VCI(2) is usually available. VCI(1) and

VCI(3) usually overestimated the true energy while VCI(4) usually gives an answer

close to the converged energy.

ENG DER
Controls what types of gradient information are used to compute higher deriva-

tives. The default uses a combination of energy, gradient and Hessian information,

which makes the force field calculation faster.
TYPE:

INTEGER

DEFAULT:

0

OPTIONS:
0 Use energy, gradient, and Hessian information.

1 Use energy information only.

2 Use Hessian information only.
RECOMMENDATION:

When the molecule is larger than benzene, ENG DER=2 is recommended.

10.8.1 Examples

Example 10.7 A four–quanta anharmonic frequency calculation on formaldehyde at the EDF2/6-
31G* optimized ground state geometry, which is obtained in the first part of the job. It is necessary
to carry out the harmonic frequency first and this will print out an approximate time for the
subsequent anharmonic frequency calculation. If a FREQ job has already been performed, the
anharmonic calculation can be restarted using the saved scratch files from the harmonic calculation.

$molecule

0 1

C

O, 1, CO

H, 1, CH, 2, A

H, 1, CH, 2, A, 3, D

CO = 1.2

CH = 1.0

A = 120.0

D = 180.0

$end

$rem

JOBTYPE OPT

EXCHANGE EDF2
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BASIS 6-31G*

GEOM_OPT_TOL_DISPLACEMENT 1

GEOM_OPT_TOL_GRADIENT 1

GEOM_OPT_TOL_ENERGY 1

$end

@@@

$molecule

READ

$end

$rem

JOBTYPE FREQ

EXCHANGE EDF2

BASIS 6-31G*

$end

@@@

$molecule

READ

$end

$rem

JOBTYPE FREQ

EXCHANGE EDF2

BASIS 6-31G*

ANHAR TRUE

VCI 4

$end

10.8.2 Isotopic Substitutions

By default Q-Chem calculates vibrational frequencies using the atomic masses of the most abun-

dant isotopes (taken from the Handbook of Chemistry and Physics, 63rd Edition). Masses of other

isotopes can be specified using the � isotopes section and by setting the ISOTOPES � rem variable

to TRUE. The format of the � isotopes section is as follows:

$isotopes

number_of_isotope_loops tp_flag

number_of_atoms [temp pressure] (loop 1)

atom_number1 mass1

atom_number2 mass2

...

number_of_atoms [temp pressure] (loop 2)

atom_number1 mass1

atom_number2 mass2

...

$end

Note: Only the atoms whose masses are to be changed from the default values need to be specified.

After each loop all masses are reset to the default values. Atoms are numbered according

to the order in the � molecule section.

An initial loop using the default masses is always performed first. Subsequent loops use the user–

specified atomic masses. Only those atoms whose masses are to be changed need to be included in

the list, all other atoms will adopt the default masses. The output gives a full frequency analysis

for each loop. Note that the calculation of vibrational frequencies in the additional loops only

involves a rescaling of the computed Hessian, and therefore takes little additional computational

time.
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The first line of the � isotopes section specifies the number of substitution loops and also whether

the temperature and pressure should be modified. The tp flag setting should be set to 0 if the

default temperature and pressure are to be used (298.18 K and 1 atm respectively), or 1 if they

are to be altered. Note that the temperatures should be specified in Kelvin (K) and pressures in

atmospheres (atm).

ISOTOPES

Specifies if non–default masses are to be used in the frequency calculation.

TYPE:

LOGICAL

DEFAULT:

FALSE

OPTIONS:
FALSE Use default masses only.

TRUE Read isotope masses from � isotopes section.
RECOMMENDATION:

None

10.8.3 Example

Example 10.8 An EDF1/6-31+G* optimization, followed by a vibrational analysis. Doing the
vibrational analysis at a stationary point is necessary for the results to be valid.

$molecule

0 1

C 1.08900 0.00000 0.00000

C -1.08900 0.00000 0.00000

H 2.08900 0.00000 0.00000

H -2.08900 0.00000 0.00000

$end

$rem

BASIS 3-21G

JOBTYPE opt

EXCHANGE hf

CORRELATION none

$end

@@@

$molecule

read

$end

$rem

BASIS 3-21G

JOBTYPE freq

EXCHANGE hf

CORRELATION none

SCF_GUESS read

ISOTOPES 1

$end

$isotopes

2 0 ! two loops, both at std temp and pressure

4

1 13.00336 ! All atoms are given non-default masses
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2 13.00336

3 2.01410

4 2.01410

2

3 2.01410 ! H’s replaced with D’s

4 2.01410

$end

10.9 Interface to the NBO Package

Q-Chem has incorporated the Natural Bond Orbital package (v4.0) for molecular properties and

wavefunction analysis. The NBO package is invoked either by setting the � rem variable NBO to

TRUE and is initiated after the SCF wavefunction is obtained. Users are referred to the NBO

users manual for options and details relating to exploitation of the features offered in this package.

If switched on for a geometry optimization, the NBO package will only be invoked at the end of

the last optimization step.

10.9.1 Job Control

The following � rem variable should be set:

NBO

Controls the use of the NBO package.

TYPE:

LOGICAL

DEFAULT:

FALSE

OPTIONS:
FALSE Do not invoke the NBO package.

TRUE Do invoke the NBO package.
RECOMMENDATION:

None

The general format for passing options from Q-Chem to the NBO program is shown below:

$nbo

{NBO program keywords, parameters and options}

$end

Note: (1) � rem variable NBO must be set to TRUE before the � nbo keyword is recognized.

(2) Q-Chem does not support facets of the NBO package which require multiple job runs

10.10 Plotting Densities and Orbitals

The best way to visualize the charge densities and molecular orbitals that Q-Chem evaluates

is with an integrated graphical user interface. Alternatively, Q-Chem can evaluate a range of

densities and orbitals on a user–specified grid of points by invoking the � plots option, which is

itself enabled by requesting IANLTY = 200.
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The format of the � plots input is documented below. It permits molecular orbitals to be plotted.

Additionally the SCF ground density can be plotted, as well as excited state densities (at either the

CIS, RPA or TDDFT/TDA or TDDFT). Also in connection with excited states, either transition

densities or attachment–detachment densities (at the same levels of theory given above) can be

plotted as well.

The output from the � plots command is one (or several) ASCII files in the working directory,

named plots.mo, etc.. The results then must be visualized with a third party program capable of

making 3–D plots.

An example of the use of the � plots option is the following input deck:

Example 10.9 A job that evaluates the H2 HOMO and LUMO on a 1 by 1 by 15 grid, along the
bond axis. The plotting output is in an ASCII file called plot.mo, which lists for each grid point,
x, y, z, and the value of each requested MO.

$molecule

0 1

H 0.0 0.0 0.35

H 0.0 0.0 -0.35

$end

$rem

EXCHANGE hf

BASIS 6-31g**

IANLTY 200

$end

$plots

Plot the HOMO and the LUMO on a line

1 0.0 0.0

1 0.0 0.0

15 -3.0 3.0

2 0 0 0

1 2

$end

General format for the � plots section of the Q-Chem input deck.

� plots

One comment line

Specification of the 3–D mesh of points on 3 lines:

Nx xmin xmax

Ny ymin ymax

Nz zmin zmax

A line with 4 integers indicating how many things to plot:

NMO NRho NTrans NDA

An optional line with the integer list of MO’s to evaluate (only if NMO > 0)

MO(1) MO(2) . . . MO(NMO)

An optional line with the integer list of densities to evaluate (only if NRho > 0)

Rho(1) Rho(2) . . . Rho(NRho)

An optional line with the integer list of transition densities (only if NTrans > 0)

Trans(1) Trans(2) . . . Trans(NTrans)

An optional line with states for detachment/attachment densities (if NDA > 0)

DA(1) DA(2) . . . DA(NDA)� end
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Line 1 of the � plots keyword section is reserved for comments. Lines 2–4 list the number of one

dimension points and the range of the grid (note that coordinate ranges are in Angstroms, while

all output is in atomic units). Line 5 must contain 4 non-negative integers indicating the number

of: molecular orbitals (NMO), electron densities (NRho), transition densities and attach/detach

densities (NDA), to have mesh values calculated.

The final lines specify which MOs, electron densities, transition densities and CIS attach/detach

states are to be plotted (the line can be left blank, or removed, if the number of items to plot is

zero). Molecular orbitals are numbered 1 . . .Nα, Nα + 1 . . .Nα +Nβ; electron densities numbered

where 0= ground state, 1 = first excited state, 2 = second excited state, etc.; and attach/detach

specified from state 1→ NDA.

All output data is printed to files in the working directory, overwriting any existing file of the same

name. Molecular orbital data is printed to a file called plot.mo; densities to plots.hf ; restricted un-

relaxed attachment/detachment analysis to plot.attach.alpha and plot.detach.alpha; unrestricted

unrelaxed attachment/detachment analysis to plot.attach.alpha, plot.detach.alpha, plot.attach.beta

and plot.detach.beta; restricted relaxed attachment/detachment analysis to plot.attach.rlx.alpha

and plot.detach.rlx.alpha; unrestricted relaxed attachment/detachment analysis to plot.attach.rlx.alpha,

plot.detach.rlx.alpha, plot.attach.rlx.beta and plot.detach.rlx.beta. Output is printed in atomic units

- coordinates first followed by item value, as shown below:

x1 y1 z1 a1 a2 ... aN

x2 y1 z1 b1 b2 ... bN

...

The Q-Chem � plots utility allows the user to plot transition densities and detachment/attachment

densities directly from amplitudes saved from a previous calculation, without having to solve the

post–SCF (CIS, RPA, TDA, or TDDFT) equations again. To take advantage of this feature, the

same Q-Chem scratch directory must be used, and the SKIP CIS RPA � rem variable must be set

to TRUE. To further reduce computational time, the SCF GUESS � rem can be set to READ.

SKIP CIS RPA
Skips the solution of the CIS, RPA, TDA or TDDFT equations for wavefunction

analysis.
TYPE:

LOGICAL

DEFAULT:

FALSE

OPTIONS:

TRUE / FALSE

RECOMMENDATION:
Set to true to speed up the generation of plot data if the same calculation has

been run previously with the scratch files saved.

10.11 Electrostatic Potentials

Q-Chem can evaluate electrostatic potentials on a grid of points. Electrostatic potential evaluation

is controlled by the � rem variable IGDESP, as documented below:.
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IGDESP
Controls evaluation of the electrostatic potential on a grid of points. If enabled,

the output is in an ACSII file, plot.esp, in the format x, y, z, esp for each point.
TYPE:

INTEGER

DEFAULT:

none no electrostatic potential evaluation

OPTIONS:
−1 read grid input via the � plots section of the input deck

0 Generate the ESP values at all nuclear positions.

+n read n grid points from the ACSII file ESPGrid.
RECOMMENDATION:

None

The following example illustrates the evaluation of electrostatic potentials on a grid, note that

IANLTY must also be set to 200.

Example 10.10 A job that evaluates the electrostatic potential for H2 on a 1 by 1 by 15 grid,
along the bond axis. The output is in an ASCII file called plot.esp, which lists for each grid point,
x, y, z, and the electrostatic potential.

$molecule

0 1

H 0.0 0.0 0.35

H 0.0 0.0 -0.35

$end

$rem

EXCHANGE hf

BASIS 6-31g**

IANLTY 200

IGDESP -1

$end

$plots

plot the HOMO and the LUMO on a line

1 0.0 0.0

1 0.0 0.0

15 -3.0 3.0

0 0 0 0

0

$end

The electrostatic potential is a complicated object and it is not uncommon to model it using a

simplified representation based on atomic charges. For this purpose it is well known that Mulliken

charges perform very poorly. Several definitions of ESP–derived atomic charges have been given

in the literature, however, most of them rely on a least–squares fitting of the ESP evaluated

on a selection of grid points. Although these grid points are usually chosen so that the ESP is

well modeled in the “chemically important” region, it still remains that the calculated charges

will change if the molecule is rotated. Recently an efficient rotationally invariant algorithm was

proposed [47] that sought to model the ESP not by direct fitting, but by fitting to the multipole

moments. By doing so it was found that the fit to the ESP was superior to methods that relied on

direct fitting of the ESP. The calculation requires the traceless form of the multipole moments and

these are also printed out during the course of the calculations. To request these multipole–derived

charges the following � rem option should be set:
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MM CHARGES

Requests the calculation of multipole–derived charges (MDCs).

TYPE:

LOGICAL

DEFAULT:

FALSE

OPTIONS:

TRUE Calculates the MDCs and also the traceless form of the multipole moments

RECOMMENDATION:
Set to TRUE if MDCs or the traceless form of the multipole moments are desired.

The calculation does not take long.

10.12 Spin and charge densities at the nuclei

Gaussian basis sets violate nuclear cusp conditions [48–50]. This may lead to large errors in wave-

function at nuclei, particularly for spin density calculations [51]. This problem can be alleviated by

using an averaging operator that compute wavefunction density based on constraints that wave-

function must satisfy near Coulomb singularity [52, 53]. The derivation of operators is based on

hyper virial theorem [54] and presented in Ref. [52]. Application to molecular spin densities for

spin-polarized [53] and DFT [55] wavefunctions show considerable improvement over traditional

delta function operator.

One of the simplest forms of such operators is based on the Gaussian weight function

exp[−(Z/r0)2 (r−R)2] (10.57)

sampling the vicinity of a nucleus of charge Z at R. Parameter r0 has to be small enough to

neglect two-electron contributions of the order O(r4
0) but large enough for meaningful averaging.

The range of values between 0.15 to 0.3 a.u. is shown to be adequate, with final answer being

relatively insensitive to the exact choice of r0 [52,53]. The value of r0 is chosen by RC R0 keyword

in the units of 0.001 a.u. The averaging operators are implemented for single determinant Hartree-

Fock and DFT, and correlated SSG wavefunctions. Spin and charge densities are printed for all

nuclei in a molecule, including ghost atoms.

RC R0
Determines the parameter in the Gaussian weight function used to smooth the

density at the nuclei.
TYPE:

INTEGER

DEFAULT:

0

OPTIONS:
0 Corresponds the traditional delta function spin and charge densities

n corresponding to n× 10−3 a.u.
RECOMMENDATION:

We recommend value of 250 for a typical spit valence basis. For basis sets with in-

creased flexibility in the nuclear vicinity the smaller values of r0 also yield adequate

spin density.
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10.13 NMR Shielding Tensors

NMR spectroscopy is a powerful technique to yield important information on molecular systems

in chemistry and biochemistry. Since there is no direct relationship between the measured NMR

signals and structural properties, the necessity for a reliable method to predict NMR chemical

shifts arises. Examples for such assignments are numerous, for example, assignments of solid–

state spectra [56, 57]. The implementation within Q-Chem uses gauge–including atomic orbitals

(GIAO’s) [58–60] to calculate the NMR chemical shielding tensors. This scheme has been proven

to be reliable an accurate for many applications [61].

The shielding tensor, σ, is a second–order property depending on the external magnetic field, B,

and the nuclear magnetic spin momentum, mk, of nucleus k.

∆E = −mj(1− σ)B (10.58)

Using analytical derivative techniques to evaluate σ, the components of the 3x3 tensor are com-

puted as

σij =
∑

µν

Pµν
∂2hµν

∂Bi∂mj,k
+
∑

µν

∂Pµν
∂Bi

∂hµν
∂mj,k

(10.59)

where i and j are Cartesian coordinates. To solve for the necessary perturbed densities ∂P/∂Bx,y,z,

a new CPSCF method based on a density matrix based formulation [62, 66] is used. This formu-

lation is related to a density matrix based CPSCF (D–CPSCF) formulation employed for the

computation of vibrational frequencies [63]. Alternatively, an MO–based CPSCF calculation of

shielding tensors can be chosen by the variable MOPROP. Features of the NMR package include:

� Restricted HF–GIAO and KS–DFT–GIAO NMR chemical shifts calculations� LinK/CFMM support to evaluate Coulomb– and Exchange–like matrices� Density matrix–based coupled–perturbed SCF (D–CPSCF)� DIIS acceleration� Support of basis sets up to d functions� Support of LSDA/GGA/Hybrid XC–functionals

10.13.1 Job Control

The JOBTYPE must be set to NMR to request the NMR chemical shifts.

D CPSCF PERTNUM

Specifies whether to do the perturbations one at a time, or all together.

TYPE:

INTEGER

DEFAULT:

0

OPTIONS:
0 Perturbed densities to be calculated all together.

1 Perturbed densities to be calculated one at a time.
RECOMMENDATION:

None
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D SCF CONV 1
Sets the convergence criterion for the level–1 iterations. This preconditions the

density for the level–2 calculation, and does not include any two–electron integrals.

TYPE:

INTEGER

DEFAULT:

4 corresponding to a threshold of 10−4.

OPTIONS:

n < 10 Sets convergence threshold to 10−n.

RECOMMENDATION:
The criterion for level–1 convergence must be less than or equal to the level–2

criterion, otherwise the D–CPSCF will not converge.

D SCF CONV 2

Sets the convergence criterion for the level–2 iterations.

TYPE:

INTEGER

DEFAULT:

4 Corresponding to a threshold of 10−4.

OPTIONS:

n < 10 Sets convergence threshold to 10−n.

RECOMMENDATION:

None

D SCF MAX 1

Sets the maximum number of level–1 iterations.

TYPE:

INTEGER

DEFAULT:

100

OPTIONS:

n User defined.

RECOMMENDATION:

Use default.

D SCF MAX 2

Sets the maximum number of level–2 iterations.

TYPE:

INTEGER

DEFAULT:

30

OPTIONS:

n User defined.

RECOMMENDATION:

Use default.
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D SCF DIIS

Specifies the number of matrices to use in the DIIS extrapolation in the D–CPSCF.

TYPE:

INTEGER

DEFAULT:

11

OPTIONS:

n n = 0 specifies no DIIS extrapolation is to be used.

RECOMMENDATION:

Use the default.

10.14 Linear–Scaling NMR chemical shifts: GIAO–HF and

GIAO–DFT

The importance of nuclear magnetic resonance (NMR) spectroscopy for modern chemistry and

biochemistry cannot be overestimated. Despite tremendous progress in experimental techniques,

the understanding and reliable assignment of observed experimental spectra remains often a highly

difficult task, so that quantum chemical methods can be extremely useful both in the solution and

the solid state (e.g., Refs. [56, 57, 64–66] and references therein).

The cost for the computation of NMR chemical shifts within even the simplest quantum chem-

ical methods such as Hartree–Fock (HF) or density functional (DFT) approximations increases

conventionally with the third power of the molecular size M , O(M 3), where O(·) stands for the

scaling order. Therefore, the computation of NMR chemical shieldings has so far been limited to

molecular systems in the order of 100 atoms without molecular symmetry.

For larger systems it is crucial to reduce the increase of the computational effort to linear, which

has been recently achieved by Kussmann and Ochsenfeld [62, 66]. In this way, the computation

of NMR chemical shifts becomes possible at both HF or DFT level for molecular systems with

1000 atoms and more, while the accuracy and reliability of traditional methods is fully preserved.

In our formulation we use gauge–including atomic orbitals (GIAO) [58,59,67], which have proven

to be particularly successful [68]. For example, for many molecular systems the HF (GIAO–HF)

approach provides typically an accuracy of 0.2–0.4 ppm for the computation of 1H NMR chemical

shifts (e.g. Refs. [56, 57, 64–66]).

NMR chemical shifts are calculated as second derivatives of the energy with respect to the external

magnetic field B and the nuclear magnetic spin mNj of a nucleus N :

σNij =
∂2E

∂Bi∂MNj

(10.60)

where i, j are x, y, z coordinates.

For the computation of the NMR shielding tensor it is necessary to solve for the response of the

one–particle density matrix with respect to the magnetic field, so that the solution of the coupled

perturbed SCF (CPSCF) equations either within the HF or the DFT approach is required.

These equations can be solved within a density matrix–based formalism for the first time with

only linear–scaling effort for molecular systems with a non–vanishing HOMO–LUMO gap [66].

The solution is even simpler in DFT approaches without explicit exchange, since present density

functionals are not dependent on the magnetic field.
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The present implementation of NMR shieldings in Q-Chem employs the LinK (linear exchange

K) method [69, 70] for the formation of exchange contributions [66]. Since the derivative of the

density matrix with respect to the magnetic field is skew–symmetric, its Coulomb–type contrac-

tions vanish. For the remaining Coulomb–type matrices the CFMM method [14] is adapted [66].

In addition, a multitude of different approaches for the solution of the CPSCF equations can be

selected within Q-Chem.

The so far largest molecular system for which NMR shieldings have been computed, contained

1003 atoms and 8593 basis functions (GIAO–HF/6-31G*) without molecular symmetry [66].

10.15 Linear–Scaling Computation of Electric Properties

The search for new optical devices is a major field of materials sciences. Here, polarizabilities

and hyperpolarizabilities provide particularly important information on molecular systems. The

response of the molecular systems in the presence of an external monochromatic ocillatory electric

field is determined by the solution of the TDSCF equations, where the perturbation is represented

as the interaction of the molecule with a single Fourier component within the dipole approximation

Ĥ(S) =
1

2
µ̂E
(
e−iωt + e+iωt

)
(10.61)

µ̂ = −e
N∑

i=1

r̂i (10.62)

where E is the E–field vector, ω the corresponding frequency, e the electronic charge and µ the

dipole moment operator. Starting from Frenkel’s variational principle the TDSCF equations can

be derived by standard techniques of perturbation theory [72]. As a solution we yield the first

(Px(±ω)) and second order (e.g. Pxy(±ω,±ω)) perturbed density matrices with which the follow-

ing properties are calculated:

� Static polarizability: αxy(0; 0) = Tr [HµxPy (ω = 0)]� Dynamic polarizability: αxy(±ω;∓ω) = Tr [HµxPy(±ω)]� Static hyperpolarizability: βxyz(0; 0, 0) = Tr [HµxPyz(ω = 0, ω = 0)]� Second harmonic generation: βxyz(∓2ω;±ω,±ω) = Tr [HµxPyz(±ω,±ω)]� Electro-optical Pockels effect: βxyz(∓ω; 0,±ω) = Tr [HµxPyz(ω = 0,±ω)]� Optical rectification: βxyz(0;±ω,∓ω) = Tr [HµxPyz(±ω,∓ω)]

where Hµx is the matrix representation of the x component of the dipole moments.

The TDSCF calculation is the most time consuming step and scales asymptotically as O(N 3)

because of the AO–MO transformations. The scaling behavior of the two–electron integral for-

mations, which dominate over a wide range because of a larger prefactor, can be reduced by

LinK/CFMM from quadratic to linear (O(N 2)→O(N)).

Third–order properties can be calculated with the equations above after a second–order TDSCF

calculation (MOPROP: 101/102) or by use of Wigner’s (2n + 1) rule [73] (MOPROP: 103/104).

Since the second order TDSCF depends on the first–order results, the convergence of the algo-

rithm may be problematically. So we recommend the use of 103/104 for the calculation of first

hyperpolarizabilities.
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These optical properties can be computed for the first time using linear–scaling methods (LinK/CFMM)

for all integral contractions [62]. Although the present implementation available in Q-Chem still

uses MO–based time–dependent SCF (TDSCF) equations both at the HF and DFT level, the

prefactor of this O(M3) scaling step is rather small, so that the reduction of the scaling achieved

for the integral contractions is most important. Here, all derivatives are computed analytically.

Further specifications of the dynamic properties are done in the section � fdpfreq in the following

format:

$fdpfreq

property

frequencies

units

$end

The first line is only required for third order properties to specify the kind of first hyperpolariz-

ability:

� StaticHyper Static Hyperpolarizability� SHG Second harmonic generation� EOPockels Electro-optical Pockels effect� OptRect Optical rectification

Line number 2 contains the values (FLOAT) of the frequencies of the perturbations. Alternatively,

for dynamic polarizabilities an equidistant sequence of frequencies can be specified by the keyword

WALK (see example below). The last line specifies the units of the given frequencies:

� au Frequency (atomic units)� eV Frequency (eV)� nm Wavelength (nm) → Note that 0 nm will be treated as 0.0 a.u.� Hz Frequency (Hertz)� cmInv Wavenumber (cm−1)

10.15.1 Examples for section 	 fdpfreq

Example 10.11 Static and Dynamic polarizabilities, atomic units:

$fdpfreq

0.0 0.03 0.05

au

$end

Example 10.12 Series of dynamic polarizabilities, starting with 0.00 incremented by 0.01 up to
0.10:

$fdpfreq

walk 0.00 0.10 0.01

au

$end
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Example 10.13 Static first hyperpolarizability, second harmonic generation and electro–optical
Pockels effect, wavelength in nm:

$fdpfreq

StaticHyper SHG EOPockels

1064

nm

$end

10.15.2 Features of mopropman

� Restricted/unrestricted HF and KS-DFT CPSCF/TDSCF� LinK/CFMM support to evaluate Coulomb– and Exchange–like matrices� DIIS acceleration� Support of LSDA/GGA/Hybrid XC–functionals listed below� Analytical derivatives

The following XC–functionals are supported:

Exchange:

� Dirac� Becke 88

Correlation:

� Wigner� VWN (both RPA and No. 5 parameterizations)� Perdew-Zunger 81� Perdew 86 (both PZ81 and VWN (No. 5) kernel)� LYP

10.15.3 Job Control

The following options can be used:
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MOPROP

Specifies the job for mopropman.

TYPE:

INTEGER

DEFAULT:

0 Do not run mopropman.

OPTIONS:
1 NMR chemical shielding tensors.

2 Static polarizability.

100 Dynamic polarizability.

101 First hyperpolarizability.

102 First hyperpolarizability, reading First order results from disk.

103 First hyperpolarizability using Wigner’s (2n+ 1) rule.

104 First hyperpolarizability using Wigner’s (2n+ 1) rule, reading

first order results from disk.
RECOMMENDATION:

None.

MOPROP PERTNUM

Set the number of perturbed densities that will to be treated together.

TYPE:

INTEGER

DEFAULT:

0

OPTIONS:
0 All at once.

n Treat the perturbed densities batchwise.
RECOMMENDATION:

Use default

MOPROP CONV 1ST

Sets the convergence criteria for CPSCF and 1st order TDSCF.

TYPE:

INTEGER

DEFAULT:

6

OPTIONS:

n < 10 Convergence threshold set to 10−n.

RECOMMENDATION:

None

MOPROP CONV 2ND

Sets the convergence criterium for second–order TDSCF.

TYPE:

INTEGER

DEFAULT:

6

OPTIONS:

n < 10 Convergence threshold set to 10−n.

RECOMMENDATION:

None
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MOPROP criteria 1ST

The maximal number of iterations for CPSCF and first–order TDSCF.

TYPE:

INTEGER

DEFAULT:

50

OPTIONS:

n Set maximum number of iterations to n.

RECOMMENDATION:

Use default.

MOPROP MAXITER 2ND

The maximal number of iterations for second–order TDSCF.

TYPE:

INTEGER

DEFAULT:

50

OPTIONS:

n Set maximum number of iterations to n.

RECOMMENDATION:

Use default.

MOPROP DIIS

Controls the use of Pulays DIIS.

TYPE:

INTEGER

DEFAULT:

5

OPTIONS:
0 Turn off DIIS.

5 Turn on DIIS.
RECOMMENDATION:

None

MOPROP DIIS DIM SS

Specified the DIIS subspace dimension.

TYPE:

INTEGER

DEFAULT:

20

OPTIONS:
0 No DIIS.

n Use a subspace of dimension n.
RECOMMENDATION:

None
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SAVE LAST GPX
Save last G [Px] when calculating dynamic polarizabilities in order to call moprop-

man in a second run with MOPROP = 102.
TYPE:

INTEGER

DEFAULT:

0

OPTIONS:
0 False

1 True
RECOMMENDATION:

None

10.16 Atoms in Molecules

Q-Chem can output a file suitable for analysis with the Atoms in Molecules package (AIMPAC).

The source for AIMPAC can be freely downloaded from the website:

http://www.chemistry.mcmaster.ca/aimpac/imagemap/imagemap.htm

Users should check this site for further information about installing and running AIMPAC. The

AIMPAC input file is created by specifying a filename for the WRITE WFN � rem.

WRITE WFN
Specifies whether or not a wfn file is created, which is suitable for use with AIM-

PAC. Note that the output to this file is currently limited to f orbitals, which is

the highest angular momentum implemented in AIMPAC.
TYPE:

STRING

DEFAULT:

(NULL) No output file is created.

OPTIONS:
filename Specifies the output file name. The suffix .wfn will

be appended to this name.
RECOMMENDATION:

None
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Chapter 11

Extended Customization

11.1 User–dependent and Machine–dependent Customiza-

tion

Q-Chem has developed a simple mechanism for users to set user–defined long–term defaults to

override the built–in program defaults. Such defaults may be most suited to machine specific

features such as memory allocation, as the total available memory will vary from machine to

machine depending on specific hardware and accounting configurations. However, users may

identify other important uses for this customization feature.

Q-Chem obtains input initialization variables from four sources:

� User input file� � HOME/.qchemrc file� � QC/config/preferences file� Program defaults

The order of preference of initialization is as above, where the higher placed input mechanism

overrides the lower.

Details of the requirements of the Q-Chem input file have been discussed in detail in this manual

and in addition, many of the various program defaults which have been set by Q-Chem. However,

in reviewing the variables and defaults, users may identify � rem variable defaults that they find too

limiting or, variables which they find repeatedly need to be set within their input files for maximum

exploitation of Q-Chem’s features. Rather than continually having to remember to place such

variables into the Q-Chem input file, users are able to set long–term defaults which are read each

time the user runs a Q-Chem job. This is done by placing these defaults into the file .qchemrc

stored in the users home directory. Additionally, system administrators can override Q-Chem

defaults with an additional preferences file in the � QC/config directory achieving a hierarchy of

input as illustrated above.

Note: The .qchemrc and preferences files are not requisites for running Q-Chem and currently

only support � rem keywords.
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11.1.1 .qchemrc and Preferences File Format

The format of the .qchemrc and preferences files is similar to that for the input file, except that

only a � rem keyword section may be entered, terminated with the usual � end keyword. Any other

keyword sections will be ignored.

It is important that the .qchemrc and preferences files have appropriate file permissions so that

they are readable by the user invoking Q-Chem. The format of both of these files is as follows:

$rem

rem_variable option comment

rem_variable option comment

...

$end

Example 11.1 An example of a .qchemrc file to apply program default override � rem settings
to all of the user’s Q-Chem jobs.

$rem

INCORE_INTS_BUFFER 4000000 More integrals in memory

DIIS_SUBSPACE_SIZE 5 Modify max DIIS subspace size

THRESH 10

$end

11.1.2 Recommendations

As mentioned, the customization files are specifically suited for placing long–term machine specific

defaults, as clearly some of the defaults placed by Q-Chem will not be optimal on large or very

small machines. The following � rem variables are examples of those which should be considered,

but the user is free to include as few or as many as desired (AO2MO DISK, INCORE INTS BUFFER,

MEM STATIC, SCF CONVERGENCE, THRESH, NBO).

Q-Chem will print a warning message to advise the user if a � rem keyword section has been

detected in either .qchemrc or preferences.

11.2 Q-Chem Auxiliary files ( � QCAUX )

The � QCAUX environment variable determines the directory where Q-Chem searches for data

files and the machine license. This directory defaults to � QC/aux. Presently, the � QCAUX con-

tains four subdirectories: atoms, basis, drivers and license. The atoms directory contains data

used for the SAD (Chapter 4) SCF density guess; basis contains the exponents and contraction co-

efficients for the standard basis sets available in Q-Chem (Chapter 7); drivers contains important

information for Q-Chem’s AOINTS package and the license directory contains the user license.

By setting the � QCAUX variable, the aux directory may be moved to a separate location from

the rest of the program, e.g., to save disk space. Alternatively, one may place a soft link in � QC

to the actual aux directory.

Users should not alter any files or directories within � QCAUX

unless directed by Q-Chem, Inc.
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11.3 Additional Q-Chem Output

The following features are under development and users are advised that those presented, and the

format requirements to invoke them, are subject to change in future releases.

11.3.1 Third Party FCHK File

Q-Chem can be instructed to output a third party “fchk” file, “Test.FChk”, to the working

directory by setting the � rem variable GUI to 2. Please note that for future releases of Q-Chem

this feature, and the method used to invoke it, is subject to change.

GUI

Controls the output of auxiliary information for third party packages.

TYPE:

INTEGER

DEFAULT:

0

OPTIONS:
0 No auxiliary output is printed.

2 Auxiliary information is printed to the file Test.FChk.
RECOMMENDATION:

Use default unless the additional information is required. Please note that any

existing Test.FChk file will be overwritten.
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Geometry Optimization with

Q-Chem

A.1 Introduction

Geometry optimization refers to the determination of stationary points, principally minima and

transition states, on molecular potential energy surfaces. It is an iterative process, requiring the

repeated calculation of energies, gradients and (possibly) Hessians at each optimization cycle until

convergence is attained. The optimization step involves modifying the current geometry, utilizing

current and previous energy, gradient and Hessian information to produce a revised geometry

which is closer to the target stationary point than its predecessor was. The art of geometry

optimization lies in calculating the step h, the displacement from the starting geometry on that

cycle, so as to converge in as few cycles as possible.

There are four main factors that influence the rate of convergence. These are:

� Initial starting geometry.� Algorithm used to determine the step h.� Quality of the Hessian (second derivative) matrix.� Coordinate system chosen.

The first of these factors is obvious: the closer the initial geometry is to the final converged geom-

etry the fewer optimization cycles it will take to reach it. The second factor is again obvious: if a

poor step h is predicted, this will obviously slow down the rate of convergence. The third factor is

related to the second: the best algorithms make use of second derivative (curvature) information

in calculating h, and the better this information is, the better will be the predicted step. The

importance of the fourth factor (the coordinate system) has only been generally appreciated rel-

atively recently: a good choice of coordinates can enhance the convergence rate by an order of

magnitude (a factor of 10) or more, depending on the molecule being optimized.

Q-Chem includes a powerful suite of algorithms for geometry optimization written by Jon Baker

and known collectively as Optimize. These algorithms have been developed and perfected over

the past ten years and the code is robust and has been well tested. Optimize is a general

geometry optimization package for locating both minima and transition states. It can optimize

using Cartesian, Z –matrix coordinates or delocalized internal coordinates. The last of these are

generated automatically from the Cartesian coordinates and are often found to be particularly
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effective. It also handles fixed constraints on distances, angles, torsions and out–of–plane bends,

between any atoms in the molecule, whether or not the desired constraint is satisfied in the starting

geometry. Finally it can freeze atomic positions, or any x, y, z Cartesian atomic coordinates.

Optimize is designed to operate with minimal user input. All that is required is the initial guess

geometry, either in Cartesian coordinates (e.g., from a suitable model builder such as HyperChem)

or as a Z –matrix, the type of stationary point being sought (minimum or transition state) and

details of any imposed constraints. All decisions as to the optimization strategy (what algorithm

to use, what coordinate system to choose, how to handle the constraints) are made by Optimize.

Note particularly, that although the starting geometry is input in a particular coordinate system (as

a Z –matrix, for example) these coordinates are not necessarily used during the actual optimization.

The best coordinates for the majority of geometry optimizations are delocalized internals, and

these will be tried first. Only if delocalized internals fail for some reason, or if conditions prevent

them being used (e.g., frozen atoms) will other coordinate systems be tried. If all else fails the

default is to switch to Cartesian coordinates. Similar defaults hold for the optimization algorithm,

maximum step size, convergence criteria, etc. You may of course override the default choices and

force a particular optimization strategy, but it is not normally necessary to provide Optimize

with anything other than the minimal information outlined above.

The heart of the Optimize package (for both minima and transition states) is Baker’s EF (Eigen-

vector Following) algorithm [1]. This was developed following the work of Cerjan and Miller [2]

and, Simons and coworkers [3,4]. The Hessian mode–following option incorporated into this algo-

rithm is capable of locating transition states by walking uphill from the associated minima. By

following the lowest Hessian mode, the EF algorithm can locate transition states starting from

any reasonable input geometry and Hessian.

An additional option available for minimization is Pulay’s GDIIS algorithm [5], which is based on

the well known DIIS technique for accelerating SCF convergence [6]. GDIIS must be specifically

requested, as the EF algorithm is the default.

Although optimizations can be carried out in Cartesian or Z –matrix coordinates, the best choice,

as noted above, is usually delocalized internal coordinates. These coordinates were developed very

recently by Baker et al. [7], and can be considered as a further extension of the natural internal

coordinates developed by Pulay et al. [8,9] and the redundant optimization method of Pulay and

Fogarasi [10].

Optimize incorporates a very accurate and efficient Lagrange multiplier algorithm for constrained

optimization. This was originally developed for use with Cartesian coordinates [11, 12] and can

handle constraints that are not satisfied in the starting geometry. Very recently the Lagrange

multiplier approach has been modified for use with delocalized internals [13]; this is much more

efficient and is now the default. The Lagrange multiplier code can locate constrained transition

states as well as minima.

A.2 Theoretical Background

Consider the energy, E(x0) at some point x0 on a potential energy surface. We can express the

energy at a nearby point x = x0 + h by means of the Taylor series

E(x0 + h) = E(x0) + ht
dE(x0)

dx
+

1

2
ht
d2E(x0)

dx1dx2
h + . . . (A.1)

If we knew the exact form of the energy functional E(x) and all its derivatives, we could move

from the current point x0 directly to a stationary point, (i.e., we would know exactly what the
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step h ought to be). Since we typically know only the lower derivatives of E(x) at best, then we

can estimate the step h by differentiating the Taylor series with respect to h, keeping only the

first few terms on the right hand side, and setting the left hand side, dE(x0 + h)/dh, to zero,

which is the value it would have at a genuine stationary point. Thus

dE(x0 + h)

dh
=
dE(x0)

dx
+
d2E(x0)

dx1dx2
h + higher terms (ignored) (A.2)

From which

h = H−1g (A.3)

where

dE

dx
≡ g (gradient vector),

d2E

dx1dx2
≡ H (Hessian matrix) (A.4)

(A.3) is known as the Newton–Raphson step. It is the major component of almost all geometry

optimization algorithms in quantum chemistry.

The above derivation assumed exact first (gradient) and second (Hessian) derivative informa-

tion. Analytical gradients are available for all methodologies supported in Q-Chem; however

analytical second derivatives are not. Furthermore, even if they were, it would not necessarily be

advantageous to use them as their evaluation is usually computationally demanding, and, efficient

optimizations can in fact be performed without an exact Hessian. An excellent compromise in

practice is to begin with an approximate Hessian matrix, and update this using gradient and dis-

placement information generated as the optimization progresses. In this way the starting Hessian

can be “improved” at essentially no cost. Using (A.3) with an approximate Hessian is called the

quasi Newton–Raphson step.

The nature of the Hessian matrix (in particular its eigenvalue structure) plays a crucial role in a

successful optimization. All stationary points on a potential energy surface have a zero gradient

vector; however the character of the stationary point (i.e., what type of structure it corresponds

to) is determined by the Hessian. Diagonalization of the Hessian matrix can be considered to

define a set of mutually orthogonal directions on the energy surface (the eigenvectors) together

with the curvature along those directions (the eigenvalues). At a local minimum (corresponding to

a well in the potential energy surface) the curvature along all of these directions must be positive,

reflecting the fact that a small displacement along any of these directions causes the energy to

rise. At a transition state, the curvature is negative (i.e., the energy is a maximum) along one

direction, but positive along all the others. Thus, for a stationary point to be a transition state

the Hessian matrix at that point must have one and only one negative eigenvalue, while for a

minimum the Hessian must have all positive eigenvalues. In the latter case the Hessian is called

positive definite. If searching for a minimum it is important that the Hessian matrix be positive

definite; in fact, unless the Hessian is positive definite there is no guarantee that the step predicted

by (A.3) is even a descent step (i.e., a direction that will actually lower the energy). Similarly, for

a transition state search, the Hessian must have one negative eigenvalue. Maintaining the Hessian

eigenvalue structure is not difficult for minimization, but it can be a difficulty when trying to find

a transition state.

In a diagonal Hessian representation the Newton–Raphson step can be written

h =
∑ −Fi

bi
ui (A.5)
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where ui and bi are the eigenvectors and eigenvalues of the Hessian matrix H and Fi = utig

is the component of g along the local direction (eigenmode)ui. As discussed by Simons et al.

[3], the Newton–Raphson step can be considered as minimizing along directions ui which have

positive eigenvalues and maximizing along directions with negative eigenvalues. Thus, if the user

is searching for a minimum and the Hessian matrix is positive definite, then the Newton–Raphson

step is appropriate since it is attempting to minimize along all directions simultaneously. However,

if the Hessian has one or more negative eigenvalues, then the basic Newton–Raphson step is not

appropriate for a minimum search, since it will be maximizing and not minimizing along one

or more directions. Exactly the same arguments apply during a transition state search except

that the Hessian must have one negative eigenvalue, because the user has to maximize along one

direction. However, there must be only one negative eigenvalue. A positive definite Hessian is a

disaster for a transition state search because the Newton–Raphson step will then lead towards a

minimum.

If firmly in a region of the potential energy surface with the right Hessian character, then a careful

search (based on the Newton–Raphson step) will almost always lead to a stationary point of the

correct type. However, this is only true if the Hessian is exact. If an approximate Hessian is

being improved by updating, then there is no guarantee that the Hessian eigenvalue structure will

be retained from one cycle to the next unless one is very careful during the update. Updating

procedures that ”guarantee” conservation of a positive definite Hessian do exist (or at least warn

the user if the update is likely to introduce negative eigenvalues). This can be very useful during a

minimum search; but there are no such guarantees for preserving the Hessian character (one and

only one negative eigenvalue) required for a transition state.

In addition to the difficulties in retaining the correct Hessian character, there is the matter of

obtaining a ”correct” Hessian in the first instance. This is particularly acute for a transition state

search. For a minimum search it is possible to ”guess” a reasonable, positive–definite starting

Hessian (for example, by carrying out a molecular mechanics minimization initially and using the

mechanics Hessian to begin the ab initio optimization) but this option is usually not available for

transition states. Even if the user calculates the Hessian exactly at the starting geometry, the

guess for the structure may not be sufficiently accurate, and the expensive, exact Hessian may not

have the desired eigenvalue structure.

Consequently, particularly for a transition state search, an alternative to the basic Newton–

Raphson step is clearly needed, especially when the Hessian matrix is inappropriate for the sta-

tionary point being sought.

One of the first algorithms that was capable of taking corrective action during a transition state

search if the Hessian had the wrong eigenvalue structure, was developed by Poppinger [14], who

suggested that, instead of taking the Newton–Raphson step, if the Hessian had all positive eigen-

values, the lowest Hessian mode be followed uphill; whereas, if there were two or more negative

eigenvalues, the mode corresponding to the least negative eigenvalue be followed downhill. While

this step should lead the user back into the right region of the energy surface, it has the disadvan-

tage that the user is maximizing or minimizing along one mode only, unlike the Newton–Raphson

step which maximizes/minimizes along all modes simultaneously. Another drawback is that suc-

cessive such steps tend to become linearly dependent, which degrades most of the commonly used

Hessian updates.

A.3 The Eigenvector Following (EF) Algorithm

The work of Cerjan and Miller [2], and later Simons and coworkers [3,4], showed that there was a

better step than simply directly following one of the Hessian eigenvectors. A simple modification

to the Newton–Raphson step is capable of guiding the search away from the current region towards
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a stationary point with the required characteristics. This is

h =
∑ −Fi

(bi − λ)
ui (A.6)

in which λ can be regarded as a shift parameter on the Hessian eigenvalue bi. Scaling the Newton–

Raphson step in this manner effectively directs the step to lie primarily, but not exclusively (unlike

Poppinger’s algorithm [14]), along one of the local eigenmodes, depending on the value chosen for

λ. References [2–4] all utilize the same basic approach (A.6) but differ in the means of determining

the value of λ.

The EF algorithm [1] utilizes the rational function approach presented in [4], yielding an eigenvalue

equation of the form

(
H g

gt 0

)(
h

1

)
= λ

(
h

1

)
(A.7)

from which a suitable λ can be obtained. Expanding (A.7) gives

(H− λ)h + g = 0 (A.8)

gth = λ (A.9)

In terms of a diagonal Hessian representation, (A.8) rearranges to (A.6), and substitution of (A.6)

into the diagonal form of (A.9) gives

∑ −F 2
i

(bi − λ)
= λ (A.10)

which can be used to evaluate λ iteratively.

The eigenvalues, λ, of the RFO equation (A.7) have the following important properties [4]:

� The (n+ 1) values of λ bracket the n eigenvalues of the Hessian matrix λi < bi < λi+1.� At a stationary point, one of the eigenvalues, λ, of (A.7) is zero and the other n eigenvalues

are those of the Hessian at the stationary point.� For a saddle point of order m, the zero eigenvalue separates the m negative and the (n−m)

positive Hessian eigenvalues.

This last property, the separability of the positive and negative Hessian eigenvalues, enables two

shift parameters to be used, one for modes along which the energy is to be maximized and the

other for which it is minimized. For a transition state (a first–order saddle point), in terms of the

Hessian eigenmodes, we have the two matrix equations

(
b1 F1

F1 0

)(
h1

1

)
= λp

(
h1

1

)
(A.11)




b2 F2

. . . 0
...

0 bn Fn
F2 · · · Fn 0







h2

...

hn
1


 = λn




h2

...

hn
1


 (A.12)
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where it is assumed that we are maximizing along the lowest Hessian mode u1. Note that λp is

the highest eigenvalue of (A.11) (it is always positive and approaches zero at convergence) and λn
is the lowest eigenvalue of (A.12) (it is always negative and again approaches zero at convergence).

Choosing these values of λ gives a step that attempts to maximize along the lowest Hessian mode,

while at the same time minimizing along all the other modes. It does this regardless of the Hessian

eigenvalue structure (unlike the Newton–Raphson step). The two shift parameters are then used

in (A.6) to give the final step

h =
−F1

(b1 − λp)
u1 −

n∑

i=2

−Fi
(bi − λn)

ui (A.13)

If this step is greater than the maximum allowed, it is scaled down. For minimization only one

shift parameter, λn, would be used which would act on all modes.

In (A.11) and (A.12) it was assumed that the step would maximize along the lowest Hessian

mode, b1, and minimize along all the higher modes. However, it is possible to maximize along

modes other than the lowest, and in this way perhaps locate transition states for alternative

rearrangements/dissociations from the same initial starting point. For maximization along the kth

mode (instead of the lowest), (A.11) is replaced by

(
bk Fk
Fk 0

)(
hk
1

)
= λp

(
hk
1

)
(A.14)

and (A.12) would now exclude the kth mode but include the lowest. Since what was originally

the kth mode is the mode along which the negative eigenvalue is required, then this mode will

eventually become the lowest mode at some stage of the optimization. To ensure that the original

mode is being followed smoothly from one cycle to the next, the mode that is actually followed is

the one with the greatest overlap with the mode followed on the previous cycle. This procedure

is known as mode following. For more details and some examples, see [1].

A.4 Delocalized Internal Coordinates

The choice of coordinate system can have a major influence on the rate of convergence during

a geometry optimization. For complex potential energy surfaces with many stationary points, a

different choice of coordinates can result in convergence to a different final structure.

The key attribute of a good set of coordinates for geometry optimization is the degree of coupling

between the individual coordinates. In general, the less coupling the better, as variation of one

particular coordinate will then have minimal impact on the other coordinates. Coupling manifests

itself primarily as relatively large partial derivative terms between different coordinates. For

example, a strong harmonic coupling between two different coordinates, i and j, results in a large

off–diagonal element, Hij , in the Hessian (second derivative) matrix. Normally this is the only

type of coupling that can be directly “observed” during an optimization, as third and higher

derivatives are ignored in almost all optimization algorithms.

In the early days of computational quantum chemistry geometry optimizations were carried out in

Cartesian coordinates. Cartesians are an obvious choice as they can be defined for all systems and

gradients and second derivatives are calculated directly in Cartesian coordinates. Unfortunately,

Cartesians normally make a poor coordinate set for optimization as they are heavily coupled.

Recently, Cartesians have been returning to favour because of their very general nature, and

because it has been clearly demonstrated that if reliable second derivative information is available

(i.e., a good starting Hessian) and the initial geometry is reasonable, then Cartesians can be as
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efficient as any other coordinate set for small to medium–sized molecules [15, 16]. Without good

Hessian data, however, Cartesians are inefficient, especially for long chain acyclic systems.

In the 1970s Cartesians were replaced by Z –matrix coordinates. Initially the Z –matrix was utilized

simply as a means of geometry input; it is far easier to describe a molecule in terms of bond lengths,

bond angles and dihedral angles (the natural way a chemist thinks of molecular structure) than to

develop a suitable set of Cartesian coordinates. It was subsequently found that optimization was

generally more efficient in Z –matrix coordinates than in Cartesians, especially for acyclic systems.

This is not always the case, and care must be taken in constructing a suitable Z –matrix. A good

general rule is ensure that each variable is defined in such a way that changing its value will not

change the values of any of the other variables. A brief discussion concerning good Z –matrix

construction strategy is given by Schlegel [17].

In 1979 Pulay et al. published a key paper, introducing what were termed natural internal co-

ordinates into geometry optimization [8]. These coordinates involve the use of individual bond

displacements as stretching coordinates, but linear combinations of bond angles and torsions as

deformational coordinates. Suitable linear combinations of bends and torsions (the two are consid-

ered separately) are selected using group theoretical arguments based on local pseudo symmetry.

For example, bond angles around an sp3 hybridized carbon atom are all approximately tetrahe-

dral, regardless of the groups attached, and idealized tetrahedral symmetry can be used to generate

deformational coordinates around the central carbon atom.

The major advantage of natural internal coordinates in geometry optimization is their ability to

significantly reduce the coupling, both harmonic and anharmonic, between the various coordinates.

Compared to natural internals, Z –matrix coordinates arbitrarily omit some angles and torsions (to

prevent redundancy), and this can induce strong anharmonic coupling between the coordinates,

especially with a poorly constructed Z –matrix. Another advantage of the reduced coupling is that

successful minimizations can be carried out in natural internals with only an approximate (e.g.,

diagonal) Hessian provided at the starting geometry. A good starting Hessian is still needed for a

transition state search.

Despite their clear advantages, natural internals have only become used widely more recently.

This is because, when used in the early programs, it was necessary for the user to define them.

This situation changed in 1992 with the development of computational algorithms capable of

automatically generating natural internals from input Cartesians [9]. For minimization, natural

internals have become the coordinates of first choice [9, 16].

There are some disadvantages to natural internal coordinates as they are commonly constructed

and used:

� Algorithms for the automatic construction of natural internals are complicated. There are

a large number of structural possibilities, and to adequately handle even the most common

of them can take several thousand lines of code.� For the more complex molecular topologies, most assigning algorithms generate more natural

internal coordinates than are required to characterize all possible motions of the system (i.e.,

the generated coordinate set contains redundancies).� In cases with a very complex molecular topology (e.g., multiply fused rings and cage com-

pounds) the assigning algorithm may be unable to generate a suitable set of coordinates.

The redundancy problem has recently been addressed in an excellent paper by Pulay and Fogarasi

[10], who have developed a scheme for carrying out geometry optimization directly in the redundant

coordinate space.
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Very recently, Baker et al. have developed a set of delocalized internal coordinates [7] which elim-

inate all of the above–mentioned difficulties. Building on some of the ideas in the redundant opti-

mization scheme of Pulay and Fogarasi [10], delocalized internals form a complete, non–redundant

set of coordinates which are as good as, if not superior to, natural internals, and which can be gen-

erated in a simple and straightforward manner for essentially any molecular topology, no matter

how complex.

Consider a set of n internal coordinates q = (q1, q2, . . . qn)t Displacements ∆q in q are related to

the corresponding Cartesian displacements ∆X by means of the usual B–matrix [18]

∆q = B∆X (A.15)

If any of the internal coordinates q are redundant, then the rows of the B–matrix will be linearly

dependent.

Delocalized internal coordinates are obtained simply by constructing and diagonalizing the matrix

G = BBt. Diagonalization of G results in two sets of eigenvectors; a set of m (typically

3N -6, where N is the number of atoms) eigenvectors with eigenvalues λ > 0, and a set of nm

eigenvectors with eigenvalues λ = 0 (to numerical precision). In this way, any redundancies

present in the original coordinate set q are isolated (they correspond to those eigenvectors with

zero eigenvalues). The eigenvalue equation of G can thus be written

G(UR) = (UR)

(
Λ 0

0 0

)
(A.16)

where U is the set of non–redundant eigenvectors of G (those with λ > 0) and R is the corre-

sponding redundant set.

The nature of the original set of coordinates q is unimportant, as long as it spans all the degrees of

freedom of the system under consideration. We include in q, all bond stretches, all planar bends

and all proper torsions that can be generated based on the atomic connectivity. These individual

internal coordinates are termed primitives. This blanket approach generates far more primitives

than are necessary, and the set q contains much redundancy. This is of little concern, as solution

of (A.16) takes care of all redundancies.

Note that eigenvectors in both U and R will each be linear combinations of potentially all the

original primitives. Despite this apparent complexity, we take the set of non–redundant vectors

U as our working coordinate set. Internal coordinates so defined are much more delocalized than

natural internal coordinates (which are combinations of a relatively small number of bends or

torsions) hence, the term delocalized internal coordinates.

It may appear that because delocalized internals are such a complicated mixing of the original

primitive internals, they are a poor choice for use in an actual optimization. On the contrary,

arguments can be made that delocalized internals are, in fact, the ”best” possible choice, certainly

at the starting geometry. The interested reader is referred to the original literature for more

details [7].

The situation for geometry optimization, comparing Cartesian, Z –matrix and delocalized internal

coordinates, and assuming a ”reasonable” starting geometry, is as follows:

� For small or very rigid medium-sized systems (up to about 15 atoms), optimizations in

Cartesian and internal coordinates (”good” Z –matrix or delocalized internals) should per-

form similarly.� For medium–sized systems (say 15–30 atoms) optimizations in Cartesians should perform as

well as optimizations in internal coordinates, provided a reliable starting Hessian is available.
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� For large systems (30+ atoms), unless these are very rigid, neither Cartesian nor Z –matrix

coordinates can compete with delocalized internals, even with good quality Hessian infor-

mation. As the system increases, and with less reliable starting geometries, the advantage

of delocalized internals can only increase.

There is one particular situation in which Cartesian coordinates may be the best choice. Natural

internal coordinates (and by extension delocalized internals) show a tendency to converge to low

energy structures [16]. This is because steps taken in internal coordinate space tend to be much

larger when translated into Cartesian space, and, as a result, higher energy local minima tend to

be “jumped over”, especially if there is no reliable Hessian information available (which is generally

not needed for a successful optimization). Consequently, if the user is looking for a local minimum

(i.e., a metastable structure) and has both a good starting geometry and a decent Hessian, the

user should carry out the optimization in Cartesian coordinates.

A.5 Constrained Optimization

Constrained optimization refers to the optimization of molecular structures in which certain pa-

rameters (e.g., bond lengths, bond angles or dihedral angles) are fixed. In quantum chemistry

calculations, this has traditionally been accomplished using Z –matrix coordinates, with the de-

sired parameter set in the Z –matrix and simply omitted from the optimization space. In 1992,

Baker presented an algorithm for constrained optimization directly in Cartesian coordinates [11].

Baker’s algorithm used both penalty functions and the classical method of Lagrange multipli-

ers [19], and was developed in order to impose constraints on a molecule obtained from a graph-

ical model builder as a set of Cartesian coordinates. Some improvements widening the range of

constraints that could be handled were made in 1993 [12]. Q-Chem includes the latest version

of this algorithm, which has been modified to handle constraints directly in delocalized internal

coordinates [13].

The essential problem in constrained optimization is to minimize a function of, for example, n

variables F (x) subject to a series of m constraints of the form Ci(x) = 0, i = l. m. Assuming

m < n, then perhaps the best way to proceed (if this were possible in practice) would be to use the

m constraint equations to eliminate m of the variables, and then solve the resulting unconstrained

problem in terms of the ((n−m) independent variables. This is exactly what occurs in a Z –matrix

optimization. Such an approach cannot be used in Cartesian coordinates as standard distance and

angle constraints are non–linear functions of the appropriate coordinates. For example a distance

constraint (between atoms i and j in a molecule) is given in Cartesians by (Rij −R0) = 0, with

Rij =

√
(xi − xj)2

+ (yi − yj)2
+ (zi − zj)2

(A.17)

and R0the constrained distance. This obviously cannot be satisfied by elimination. What can

be eliminated in Cartesians are the individual x, y and z coordinates themselves and in this way

individual atoms can be totally or partially frozen.

Internal constraints can be handled in Cartesian coordinates by introducing the Lagrangian func-

tion

L(x, λ) = F (x)−
m∑

i=1

λiCi(x) (A.18)

which replaces the function F (x) in the unconstrained case. Here, the λi are the so–called Lagrange

multipliers, one for each constraint Ci(x). Differentiating (A.18) with respect to x and λ gives
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dL(x, λ)

dxj
=

dF (x)

dxj
−

m∑

i=1

λi
dCi(x)

dxj

dL(x, λ)

dλi
= −Ci(x) (A.19)

At a stationary point of the Lagrangian we have ∇L = 0, i.e., all dL/dxj = 0 and all dL/dλi = 0.

This latter condition means that all Ci(x) = 0 and thus all constraints are satisfied. Hence, finding

a set of values (x, λ) for which ∇L = 0 will give a possible solution to the constrained optimization

problem in exactly the same way as finding an x for which g = ∇F = 0 gives a solution to the

corresponding unconstrained problem.

The Lagrangian second derivative matrix, the equivalent of the Hessian matrix in an unconstrained

optimization, is given by

∇2L =

(
d2L(x,λ)
dxjdxk

d2L(x,λ)
dxjdλi

d2L(x,λ)
dxjdλi

d2L(x,λ)
dλjdλi

)
(A.20)

where

d2L(x, λ)

dxjdxk
=
d2F (x)

dxjdxk
−
∑

λi
d2F (x)

dxjdxk
(A.21)

d2L(x, λ)

dxjdλi
=
−dCi(x)

dxj
(A.22)

d2L(x, λ)

dλjdλi
= 0 (A.23)

Thus in addition to the standard gradient vector and Hessian matrix for the unconstrained function

F (x), we need both the first and second derivatives (with respect to coordinate displacement) of the

constraint functions. Once these quantities are available, the corresponding Lagrangian gradient,

given by (A.19), and Lagrangian second derivative matrix, given by (A.20), can be formed, and the

optimization step calculated in a similar manner to that for a standard unconstrained optimization

[11].

In the Lagrange multiplier method, the unknown multipliers, λi, are an integral part of the pa-

rameter set. This means that the optimization space consists of all n variables x plus all m La-

grange multipliers λ, one for each constraint. The total dimension of the constrained optimization

problem, nm, has thus increased by m compared to the corresponding unconstrained case. The

Lagrangian Hessian matrix, ∇2L, has m extra modes compared to the standard (unconstrained)

Hessian matrix, ∇2F. What normally happens is that these additional modes are dominated by

the constraints (i.e., their largest components correspond to the constraint Lagrange multipliers)

and they have negative curvature (a negative Hessian eigenvalue). This is perhaps not surprising

when one realizes that any motion in the parameter space that breaks the constraints is likely to

lower the energy.

Compared to a standard unconstrained minimization, where a stationary point is sought at which

the Hessian matrix has all positive eigenvalues, in the constrained problem we are looking for

a stationary point of the Lagrangian function at which the Lagrangian Hessian matrix has as

many negative eigenvalues as there are constraints (i.e., we are looking for an mth order saddle

point). For further details and practical applications of constrained optimization using Lagrange

multipliers in Cartesian coordinates, see [11].
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Eigenvector following can be implemented in a constrained optimization in a similar way to the

unconstrained case. Considering a constrained minimization with m constraints, then (A.11) is

replaced by




b1 F1

. . . 0
...

0 bm Fm
F1 · · · Fm 0







h1

...

hm
1


 = λp




h1

...

hm
1


 (A.24)

and (A.12) by




bm+1 Fm+1

. . . 0
...

0 bm+n Fm+n

Fm+1 · · · Fm+n 0







hm+1

...

hm+n

1


 = λn




hm+1

...

hm+n

1


 (A.25)

where now the bi are the eigenvalues of ∇2L, with corresponding eigenvectors ui, and Fi = uti∇L.

Here (A.24) includes the m constraint modes along which a negative Lagrangian Hessian eigenvalue

is required, and (A.25) includes all the other modes.

Equations (A.24) and (A.25) implement eigenvector following for a constrained minimization.

Constrained transition state searches can be carried out by selecting one extra mode to be maxi-

mized in addition to the m constraint modes, i.e., by searching for a saddle point of the Lagrangian

function of order m+ l.

It should be realized that, in the Lagrange multiplier method, the desired constraints are only

satisfied at convergence, and not necessarily at intermediate geometries. The Lagrange multipliers

are part of the optimization space; they vary just as any other geometrical parameter and, conse-

quently the degree to which the constraints are satisfied changes from cycle to cycle, approaching

100% satisfied near convergence. One advantage this brings is that, unlike in a standard Z –matrix

approach, constraints do not have to be satisfied in the starting geometry.

Imposed constraints can normally be satisfied to very high accuracy, 10−6 or better. However,

problems can arise for both bond and dihedral angle constraints near 0◦ and 180◦ and, instead of

attempting to impose a single constraint, it is better to split angle constraints near these limiting

values into two by using a dummy atom Baker:1993[12], exactly analogous to splitting a 180◦ bond

angle into two 90◦ angles in a Z –matrix.

Note: Exact 0◦ and 180◦ single angle constraints cannot be imposed, as the corresponding con-

straint normals, ∇Ci, are zero, and would result in rows and columns of zeros in the

Lagrangian Hessian matrix.

A.6 Delocalized internal coordinates

We do not give further details of the optimization algorithms available in Q-Chem for imposing

constraints in Cartesian coordinates, as it is far simpler and easier to do this directly in delocalized

internal coordinates.

At first sight it does not seem particularly straightforward to impose any constraints at all in

delocalized internals, given that each coordinate is potentially a linear combination of all possible

primitives. However, this is deceptive, and in fact all standard constraints can be imposed by a

relatively simple Schmidt orthogonalization procedure. In this instance consider a unit vector with

unit component corresponding to the primitive internal (stretch, bend or torsion) that one wishes to
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keep constant. This vector is then projected on to the full set, U, of active delocalized coordinates,

normalized, and then all n, for example, delocalized internals are Schmidt orthogonalized in turn

to this normalized, projected constraint vector. The last coordinate taken in the active space

should drop out (since it will be linearly dependent on the other vectors and the constraint vector)

leaving (n− 1) active vectors and one constraint vector.

In more detail, the procedure is as follows (taken directly from [7]). The initial (usually unit)

constraint vector C is projected on to the set U of delocalized internal coordinates according to

Cproj =
∑
〈C | Uk〉Uk (A.26)

where the summation is over all n active coordinates Uk. The projected vector Cproj is then

normalized and an (n + l) dimensional vector space V is formed, comprising the normalized,

projected constraint vector together with all active delocalized coordinates

V =
{
Cproj,Uk k = 1.n

}
(A.27)

This set of vectors is Schmidt orthogonalized according to the standard procedure

Ṽk = αk

(
Vk −

k−1∑

l=1

〈
Vk

∣∣∣ Ṽl

〉
Ṽl

)
(A.28)

where the first vector taken, V1, is Cproj. The αk in (A.28) is a normalization factor. As noted

above, the last vector taken, Vn+1 = Uk , will drop out, leaving a fully orthonormal set of (n− 1)

active vectors and one constraint vector.

After the Schmidt orthogonalization the constraint vector will contain all the weight in the active

space of the primitive to be fixed, which will have a zero component in all of the other (n − 1)

vectors. The fixed primitive has thus been isolated entirely in the constraint vector which can now

be removed from the active subspace for the geometry optimization step.

Extension of the above procedure to multiple constraints is straightforward. In addition to con-

straints on individual primitives, it is also possible to impose combinatorial constraints. For

example, if, instead of a unit vector, one started the constraint procedure with a vector in which

two components were set to unity, then this would impose a constraint in which the sum of the

two relevant primitives were always constant. In theory any desired linear combination of any

primitives could be constrained.

Note further that imposed constraints are not confined to those primitive internals generated

from the initial atomic connectivity. If we wish to constrain a distance, angle or torsion between

atoms that are not formally connected, then all we need to do is add that particular coordinate

to our primitive set. It can then be isolated and constrained in exactly the same way as a formal

connectivity constraint.

Everything discussed thus far regarding the imposition of constraints in delocalized internal co-

ordinates has involved isolating each constraint in one vector which is then eliminated from the

optimization space. This is very similar in effect to a Z –matrix optimization, in which constraints

are imposed by elimination. This, of course, can only be done if the desired constraint is satisfied

in the starting geometry. We have already seen that the Lagrange multiplier algorithm, used to

impose distance, angle and torsion constraints in Cartesian coordinates, can be used even when

the constraint is not satisfied initially. The Lagrange multiplier method can also be used with de-

localized internals, and its implementation with internal coordinates brings several simplifications

and advantages.
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In Cartesians, as already noted, standard internal constraints (bond distances, angles and torsions)

are somewhat complicated non-linear functions of the x, y and z coordinates of the atoms involved.

A torsion, for example, which involves four atoms, is a function of twelve different coordinates.

In internals, on the other hand, each constraint is a coordinate in its own right and is therefore a

simple linear function of just one coordinate (itself).

If we denote a general internal coordinate by R, then the constraint function Ci(R) is a function

of one coordinate, Ri, and it and its derivatives can be written

Ci(Ri) = Ri −R0 (A.29)

dCi(Ri)/dRi = 1; dCi(Ri)/dRj = 0 (A.30)

d2Ci(Ri)/dRidRj = 0 (A.31)

where in (A.29), R0 is the desired value of the constrained coordinate, and Ri is its current value.

From (A.30) we see that the constraint normals, dCi(R)/dRi, are simply unit vectors and the

Lagrangian Hessian matrix, (A.20), can be obtained from the normal Hessian matrix by adding

m columns (and m rows) of, again, unit vectors.

A further advantage, in addition to the considerable simplification, is the handling of 0◦ and 180◦

dihedral angle constraints. In Cartesian coordinates it is not possible to formally constrain bond

angles and torsions to exactly 0◦ or 180◦ because the corresponding constraint normal is a zero

vector. Similar difficulties do not arise in internal coordinates, at least for torsions, because the

constraint normals are unit vectors regardless of the value of the constraint; thus 0◦ and 180◦

dihedral angle constraints can be imposed just as easily as any other value. 180◦ bond angles

still cause difficulties, but near-linear arrangements of atoms require special treatment even in

unconstrained optimizations; a typical solution involves replacing a near 180◦ bond angle by two

special linear co–planar and perpendicular bends [20], and modifying the torsions where necessary.

A linear arrangement can be enforced by constraining the co–planar and perpendicular bends.

One other advantage over Cartesians is that in internals the constraint coordinate can be eliminated

once the constraint is satisfied to the desired accuracy (the default tolerance is 10−6 in atomic

units: Bohrs and radians). This is not possible in Cartesians due to the functional form of the

constraint. In Cartesians, therefore, the Lagrange multiplier algorithm must be used throughout

the entire optimization, whereas in delocalized internal coordinates it need only be used until all

desired constraints are satisfied; as constraints become satisfied they can simply be eliminated

from the optimization space and once all constraint coordinates have been eliminated standard

algorithms can be used in the space of the remaining unconstrained coordinates. Normally, unless

the starting geometry is particularly poor in this regard, constraints are satisfied fairly early on

in the optimization (and at more or less the same time for multiple constraints), and Lagrange

multipliers only need to be used in the first half–dozen or so cycles of a constrained optimization

in internal coordinates.

A.7 GDIIS

Direct inversion in the iterative subspace (DIIS) was originally developed by Pulay for accelerat-

ing SCF convergence [6]. Subsequently, Csaszar and Pulay used a similar scheme for geometry

optimization, which they termed GDIIS [5]. The method is somewhat different from the usual

quasi–Newton type approach and is included in Optimize as an alternative to the EF algorithm.
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Tests indicate that its performance is similar to EF, at least for small systems; however there is

rarely an advantage in using GDIIS in preference to EF.

In GDIIS, geometries xi generated in previous optimization cycles are linearly combined to find

the “best” geometry on the current cycle

xn =

m∑

i=1

cixi (A.32)

where the problem is to find the best values for the coefficients ci.

If we express each geometry, xi, by its deviation from the sought–after final geometry, xf , i.e.,

xf = xi + ei, where ei is an error vector, then it is obvious that if the conditions

r =
∑

ciei (A.33)

and

∑
ci = 1 (A.34)

are satisfied, then the relation

∑
cixi = xf (A.35)

also holds.

The true error vectors ei are, of course, unknown. However, in the case of a nearly quadratic

energy function they can be approximated by

ei = −H−1gi (A.36)

where gi is the gradient vector corresponding to the geometry xi and H is an approximation to

the Hessian matrix. Minimization of the norm of the residuum vector r, (A.33), together with the

constraint equation, (A.34), leads to a system of (m+ l) linear equations




B11 · · · B1m 1
...

. . .
...

...

Bm1 · · · Bmm 1

1 · · · 1 0







c1
...

cm
−λ


 =




0
...

0

1


 (A.37)

where Bij = 〈ei|ej〉 is the scalar product of the error vectors ei and ej , and λ is a Lagrange

multiplier.

The coefficients ci determined from (A.37) are used to calculate an intermediate interpolated

geometry

x
′
m+1 =

∑
cixi (A.38)

and its corresponding interpolated gradient

g
′
m+1 =

∑
cigi (A.39)
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A new, independent geometry is generated from the interpolated geometry and gradient according

to

xm+1 = x
′
m+1 −H−1g

′
m+1 (A.40)

Note: Convergence is theoretically guaranteed regardless of the quality of the Hessian matrix (as

long as it is positive definite), and the original GDIIS algorithm used a static Hessian (i.e.,

the original starting Hessian, often a simple unit matrix, remained unchanged during the

entire optimization). However, updating the Hessian at each cycle generally results in more

rapid convergence, and this is the default in Optimize.

Other modifications to the original method include limiting the number of previous geometries

used in (A.32) and, subsequently, by neglecting earlier geometries, and eliminating any geometries

more than a certain distance (default 0.3 a.u.) from the current geometry.
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Appendix B

AOINTS

B.1 Introduction

Within the Q-Chem program, an Atomic Orbital INTegralS (AOINTS) package has been de-

veloped which, while relatively invisible to the user, is one of the keys to the overall speed and

efficiency of the Q-Chem program.

“Ever since Boys’ introduction of Gaussian basis sets to quantum chemistry in 1950, the calculation

and handling of the notorious two–electron–repulsion integrals (ERIs) over Gaussian functions

has been an important avenue of research for practicing computational chemists. Indeed, the

emergence of practically useful computer programs . has been fueled in no small part by the

development of sophisticated algorithms to compute the very large number of ERIs that are

involved in calculations on molecular systems of even modest size.” [1].

The ERI engine of any competitive quantum chemistry software package will be one of the most

complicated aspects of the package as whole. Coupled with the importance of such an engine’s

efficiency, a useful yardstick of a program’s anticipated performance can be quickly measured

by considering the components of its ERI engine. In recent times, developers at Q-Chem, Inc.

have made significant contributions to the advancement of ERI algorithm technology (for example

see [1–10]), and it is not surprising that Q-Chem’s AOINTS package is considered the most

advanced of its kind.

B.2 Historical Perspective

Prior to the 1950s, the most difficult step in the systematic application of Schrödinger wave

mechanics to chemistry was the calculation of the notorious two–electron integrals that measure

the repulsion between electrons. Boys [11] showed that this step can be made easier (although still

time consuming) if Gaussian, rather than Slater, orbitals are used in the basis set. Following the

landmark paper of computational chemistry [12] (again due to Boys) programs were constructed

that could calculate all the ERIs that arise in the treatment of a general polyatomic molecule with

s and p orbitals. However, the programs were painfully slow and could only be applied to the

smallest of molecular systems.

In 1969, Pople constructed a breakthrough ERI algorithm, a hundred time faster than its prede-

cessors. The algorithm remains the fastest available for its associated integral classes and is now

referred to as the Pople–Hehre axis–switch method [13].
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Over the two decades following Pople’s initial development, an enormous amount of research effort

into the construction of ERIs was documented, which built on Pople’s original success. Essentially,

the advances of the newer algorithms could be identified as either better coping with angular

momentum (L) or, contraction (K); each new method increasing the speed and application of

quantum mechanics to solving real chemical problems.

By 1990, another barrier had been reached. The contemporary programs had become sophisti-

cated and both academia and industry had begun to recognize and use the power of ab initio

quantum chemistry, but the software was struggling with ”dusty deck syndrome” and it had be-

come increasingly difficult for it to keep up with the rapid advances in hardware development.

Vector processors, parallel architectures and the advent of the graphical user interface were all

demanding radically different approaches to programming and it had become clear that a fresh

start, with a clean slate, was both inevitable and desirable. Furthermore, the integral bottleneck

had re–emerged in a new guise and the standard programs were now hitting the N 2 wall. Irre-

spective of the speed at which ERIs could be computed, the unforgiving fact remained that the

number of ERIs required scaled quadratically with the size of the system.

The Q-Chem project was established to tackle this problem and to seek new methods that cir-

cumvent the N2 wall. Fundamentally new approaches to integral theory were sought and the

ongoing advances that have resulted [14–18] have now placed Q-Chem firmly at the vanguard of

the field. It should be emphasized, however, that the O(N) methods that we have developed still

require short–range ERIs to treat interactions between nearby electrons, thus the importance of

contemporary ERI code remains.

The chronological development and evolution of integral methods can be summarized by consider-

ing a time line showing the years in which important new algorithms were first introduced. These

are best discussed in terms of the type of ERI or matrix elements that the algorithm can compute

efficiently.

1950 Boys [11] ERIs with low L and low K

1969 Pople [13] ERIs with low L and high K

1976 Dupuis [19] Integrals with any L and low K

1978 McMurchie [20] Integrals with any L and low K

1982 Almlöf [21] Introduction of the direct SCF approach

1986 Obara [22] Integrals with any L and low K

1988 Head–Gordon [8] Integrals with any L and low K

1991 Gill [1, 6] Integrals with any L and any K

1994 White [14] J matrix in linear work

1996 Schwegler [18, 24] HF exchange matrix in linear work

1997 Challacombe [17] Fock matrix in linear work

B.3 AOINTS: Calculating ERIs with Q-Chem

The area of molecular integrals with respect to Gaussian basis functions has recently been reviewed

[2] and the user is referred to this review for deeper discussions and further references to the general

area. The purpose of this short account is to present the basic approach, and in particular, the

implementation of ERI algorithms and aspects of interest to the user in the AOINTS package

which underlies the Q-Chem program.

We begin by observing that all of the integrals encountered in an ab initio calculation, of which

overlap, kinetic energy, multipole moment, internuclear repulsion, nuclear–electron attraction and

interelectron repulsion are the best known, can be written in the general form
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(ab|cd) =

∫∫
φa(r1)φb(r1)θ(r12)φc(r2)φd(r2)dr1dr2 (B.1)

where the basis functions are contracted Gaussian’s (CGTF)

φa(r) = (x−Ax)
ax (y −Ay)

ay (z −Az)az
Ka∑

i=1

Daie
−αi|r−A|2 (B.2)

and the operator θ is a two–electron operator. Of the two–electron operators (Coulomb, CASE,

anti–Coulomb and delta–function) used in the Q-Chem program, the most significant is the

Coulomb, which leads us to the ERIs.

An ERI is the classical Coulomb interaction (θ(x) = 1/x in B.1) between two charge distributions

referred to as bras (ab| and kets |cd).

B.4 Shell–Pair Data

It is common to characterize a bra, a ket and a bra–ket by their degree of contraction and angular

momentum. In general, it is more convenient to compile data for shell–pairs rather than basis–

function–pairs. A shell is defined as that sharing common exponents and centers. For example,

in the case of a number of Pople derived basis sets, four basis functions, encompassing a range of

angular momentum types (i.e., s, px, py, pz on the same atomic center sharing the same exponents

constitute a single shell.

The shell–pair data set is central to the success of any modern integral program for three main

reasons. First, in the formation of shell–pairs, all pairs of shells in the basis set are considered

and categorized as either significant or negligible. A shell–pair is considered negligible if the shells

involved are so far apart, relative to their diffuseness, that their overlap is negligible. Given the

rate of decay of Gaussian basis functions, it is not surprising that most of the shell–pairs in a

large molecule are negligible, that is, the number of significant shell–pairs increases linearly with

the size of the molecule. Second, a number of useful intermediates which are frequently required

within ERI algorithms should be computed once in shell–pair formation and stored as part of

the shell–pair information, particularly those which require costly divisions. This prevents re–

evaluating simple quantities. Third, it is useful to sort the shell–pair information by type (i.e.,

angular momentum and degree of contraction). The reasons for this are discussed below.

Q-Chem’s shell–pair formation offers the option of two basic integral shell–pair cutoff criteria;

one based on the integral threshold ( � rem variable THRESH) and the other relative to machine

precision.

Intelligent construction of shell–pair data scales linearly with the size of the basis set, requires a

relative amount of CPU time which is almost entirely negligible for large direct SCF calculations,

and for small jobs, constitutes approximately 10% of the job time.

B.5 Shell–Quartets and Integral Classes

Given a sorted list of shell–pair data, it is possible to construct all potentially important shell–

quartets by pairing of the shell–pairs with one another. Because the shell–pairs have been sorted,

it is possible to deal with batches of integrals of the same type or class (e.g., (ss|ss), (sp|sp),
(dd|dd), etc.) where an integral class is characterized by both angular momentum (L) and degree

of contraction (K). Such an approach is advantageous for vector processors and for semi–direct
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integral algorithms where the most expensive (high K or L integral classes can be computed once,

stored in memory (or disk) and only less expensive classes rebuilt on each iteration.

While the shell–pairs may have been carefully screened, it is possible for a pair of significant

shell–pairs to form a shell–quartet which need not be computed directly. Three cases are:

� The quartet is equivalent, by point group symmetry, to another quartet already treated.� The quartet can be ignored on the basis of cheaply computed ERI bounds [7] on the largest

quartet bra–ket.� On the basis of an incremental Fock matrix build, the largest density matrix element which

will multiply any of the bra–kets associated with the quartet may be negligibly small.

Note: Significance and negligibility is always based on the level of integral threshold set by the� rem variable THRESH.

B.6 Fundamental ERI

The fundamental ERI [2] and the basis of all ERI algorithms is usually represented

[0](0) = [ss|ss](0)

= DADBDCDD

∫∫
e−α|r1−A|2e−β|r1−B|2

[
1

r12

]
e−γ|r2−C|2e−δ|r2−D|2dr1dr2 (B.3)

which can be reduced to a one–dimensional integral of the form

[0](0) = U(2ϑ2)1/2

(
2

π

)1/2
1∫

0

e−Tu
2

du (B.4)

and can be efficiently computed using a modified Chebyshev interpolation scheme [5]. Equation

(B.4) can also be adapted for the general–case [0](m) integrals required for most calculations.

Following the fundamental ERI, building up to the full bra–ket ERI (or intermediary matrix

elements, see later) are the problems of angular momentum and contraction.

Note: Square brackets denote primitive integrals and parentheses fully contracted.

B.7 Angular Momentum Problem

The fundamental integral is essentially an integral without angular momentum (i.e., it is an integral

of the type [ss|ss]). Angular momentum, usually depicted by L, has been problematic for efficient

ERI formation, evident in the above time line. Initially, angular momentum was calculated by

taking derivatives of the fundamental ERI with respect to one of the Cartesian coordinates of the

nuclear center. This is an extremely inefficient route, but it works and was appropriate in the

early development of ERI methods. Recursion relations [22, 25] and the newly developed tensor

equations [3] are the basis for the modern approaches.
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B.8 Contraction Problem

The contraction problem may be described by considering a general contracted ERI of s–type

functions derived from the STO-3G basis set. Each basis function has degree of contraction K =

3. Thus, the ERI may be written

(ss|ss) =

3∑

i=1

3∑

j=1

3∑

k=1

3∑

l=1

DAiDBjDCkDDl×
∫∫

e−αi|r1−A|2e−βj |r1−B|2
[

1

r12

]
e−γk|r2−C|2e−δl|r2−D|2dr1dr2

=

3∑

i=1

3∑

j=1

3∑

k=1

3∑

l=1

[sisj |sksl] (B.5)

and requires 81 primitive integrals for the single ERI. The problem escalates dramatically for

more highly contracted sets (STO-6G, 6-311G) and has been the motivation for the development

of techniques for shell–pair modeling [26] in which a second shell–pair is constructed with fewer

primitives that the first, but introduces no extra error relative to the integral threshold sought.

The Pople–Hehre axis–switch method [13] is excellent for high contraction low angular momentum

integral classes.

B.9 Quadratic Scaling

The success of quantitative modern quantum chemistry, relative to its primitive, qualitative be-

ginnings, can be traced to two sources: better algorithms and better computers. While the two

technologies continue to improve rapidly, efforts are heavily thwarted by the fact that the total

number of ERIs increases quadratically with the size of the molecular system. Even large in-

creases in ERI algorithm efficiency yield only moderate increases in applicability, hindering the

more widespread application of ab initio methods to areas of, perhaps, biochemical significance

where semi–empirical techniques [27, 28] have already proven so valuable.

Thus, the elimination of quadratic scaling algorithms has been the theme of many research efforts

in quantum chemistry throughout the 1990’s and has seen the construction of many alternative

algorithms to alleviate the problem. Johnson was the first to implement DFT exchange/correlation

functionals whose computational cost scaled linearly with system size [23]. This paved the way for

the most significant breakthrough in the area with the linear scaling CFMM algorithm [14] leading

to linear scaling DFT calculations [29]. Further breakthroughs have been made with traditional

theory in the form of the QCTC [17, 30, 31] and ONX [18, 24] algorithms, whilst more radical

approaches [15,16,32] may lead to entirely new approaches to ab initio calculations. Investigations

into the quadratic Coulomb problem has not only yielded linear scaling algorithms, but is also

providing large insights into the significance of many molecular energy components.

Linear scaling Coulomb and SCF exchange/correlation algorithms are not the end of the story

as the O(N3) diagonalization step has been rate limiting in semi–empirical techniques and, been

predicted [33] to become rate limiting in ab initio approaches in the medium term. However,

divide–and–conquer techniques [34–37] and the recently developed quadratically convergent SCF

algorithm [38] show great promise for reducing this problem.



Appendix B: AOINTS 311

B.10 Algorithm Selection

No single ERI algorithm is available to efficiently handle all integral classes; rather, each tends

to have specific integral classes where the specific algorithm out–performs the alternatives. The

PRISM algorithm [6] is an intricate collection of pathways and steps in which the path chosen is

that which is the most efficient for a given class. It appears that the most appropriate path for a

given integral class depends on the relative position of the contraction step (lowly contracted bra–

kets prefer late contraction, highly contracted bra–kets are most efficient with early contraction

steps).

Careful studies have provided FLOP counts which are the current basis of integral algorithm

selection, although care must be taken to ensure that algorithms are not rate limited by MOPs [4].

Future algorithm selection criteria will take greater account of memory, disk, chip architecture,

cache size, vectorization and parallelization characteristics of the hardware, many of which are

already exist within Q-Chem.

B.11 More Efficient Hartree–Fock Gradient and Hessian

Evaluations

Q-Chem combines the Head–Gordon–Pople (HGP) method [8] and the COLD prism method [3]

for Hartree–Fock gradient and Hessian evaluations. All two–electron four–center integrals are

classified according to their angular momentum types and degrees of contraction. For each type

of integrals, the program chooses one with a lower cost. In practice, the HGP method is chosen

for most integral classes in a gradient or Hessian calculation, and thus it dominates the total CPU

time.

Recently the HGP codes within Q-Chem were completely rewritten for the evaluation of the P

IIx P term in the gradient evaluation, and the P IIxy P term in the Hessian evaluation. Our

emphasis is to improve code efficiency by reducing cache misses rather than by reducing FLOP

counts. Some timing results from a Hartree–Fock calculation on azt are shown below.

Basis Set AIX Linux

Gradient Evaluation: P IIx P Term

Old New New/Old Old New New/Old

3-21G 34 s 20 s 0.58 25 s 14 s 0.56

6-31G** 259 s 147 s 0.57 212 s 120 s 0.57

DZ 128 s 118 s 0.92 72 s 62 s 0.86

cc-pVDZ 398 s 274 s 0.69 308 s 185 s 0.60

Hessian Evaluation: P IIxy P term

Old New New/Old Old New New/Old

3-21G 294 s 136 s 0.46 238 s 100 s 0.42

6-31G** 2520 s 976 s 0.39 2065 s 828 s 0.40

DZ 631 s 332 s 0.53 600 s 230 s 0.38

cc-pVDZ 3202 s 1192 s 0.37 2715 s 866 s 0.32

Table B.1: The AIX timings were obtained on an IBM RS/6000 workstation with AIX4 operating

system, and the Linux timings on an Opteron cluster where the Q-Chem executable was compiled

with an intel 32–bit compiler.
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B.12 User Controllable Variables

AOINTS has been optimally constructed so that the fastest integral algorithm for ERI calculation

is chosen for the given integral class and batch. Thus, the user has not been provided with the nec-

essary variables for over–riding the program’s selection process. The user is, however, able to con-

trol the accuracy of the cutoff used during shell–pair formation (METECO) and the integral thresh-

old (THRESH). In addition, the user can force the use of the direct SCF algorithm (DIRECT SCF)

and increase the default size of the integrals storage buffer (INCORE INTS BUFFER).

Currently, some of Q-Chem’s linear scaling algorithms, such as QCTC and ONX algorithms,

require the user to specify their use. It is anticipated that further research developments will lead

to the identification of situations in which these, or combinations of these and other algorithms,

will be selected automatically by Q-Chem in much the same way that PRISM algorithms choose

the most efficient pathway for given integral classes.
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Appendix C

Q-Chem Quick Reference

C.1 Q-Chem Text Input Summary

Keyword Description� molecule Contains the molecular coordinate input (input file requisite).� rem Job specification and customization parameters (input file requisite).� end Terminates each keyword section.� basis User–defined basis set information (see Chapter 7).� comment User comments for inclusion into output file.� ecp User–defined effective core potentials (see Chapter 8).� external charges External charges and their positions.� intracule Intracule parameters (see Chapter 10).� isotopes Isotopic substitutions for vibrational calculations (see Chapter 10).� multipole field Details of a multipole field to apply.� nbo Natural Bond Orbital package.� occupied Guess orbitals to be occupied.� opt Constraint definitions for geometry optimizations.� svp Special parameters for the SS(V)PE module.� svpirf Initial guess for SS(V)PE) module.� plots Generate plotting information over a grid of points (see Chapter 10).� van der waals User–defined atomic radii for Langevin dipoles solvation (see Chapter 10).� xc functional Details of user–defined DFT exchange–correlation functionals.

Table C.1: Q-Chem user input section keywords. See the � QC/samples directory with your

release for specific examples of Q-Chem input using these keywords.

Note: (1) Users are able to enter keyword sections in any order.

(2) Each keyword section must be terminated with the � end keyword.

(3) Not all keywords have to be entered, but � rem and � molecule are compulsory.

(4) Each keyword section will be described below.

(5) The entire Q-Chem input is case–insensitive.

(6) Multiple jobs are separated by the string @@@ on a single line.

C.1.1 Keyword: 	 molecule

Four methods are available for inputing geometry information:
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� Z –matrix (Angstroms and degrees):�
molecule

{Z –matrix}
{blank line, if parameters are being used}
{Z –matrix parameters, if used}�

end

� Cartesian Coordinates (Angstroms):�
molecule

{Cartesian coordinates}
{blank line, if parameter are being used}
{Coordinate parameters, if used}�

end

� Read from a previous calculation:�
molecule

read�
end

� Read from a file:�
molecule

read filename�
end

C.1.2 Keyword: 	 rem

See also the list of � rem variables at the end of this Appendix. The general format is:

$rem

REM_VARIABLE VALUE [optional comment]

$end

C.1.3 Keyword: 	 basis

The format for the user–defined basis section is as follows:

�
basis

X 0

L K scale

α1 CLmin1 CLmin+1
1 . . . CLmax1

α2 CLmin2 CLmin+1
2 . . . CLmax2

...
...

...
. . .

...

αK CLminK CLmin+1
K . . . CLmaxK

****�
end

where
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X Atomic symbol of the atom (atomic number not accepted)

L Angular momentum symbol (S, P, SP, D, F, G)

K Degree of contraction of the shell (integer)

scale Scaling to be applied to exponents (default is 1.00)

ai Gaussian primitive exponent (positive real number)

CLi Contraction coefficient for each angular momentum (non–zero real numbers).

Atoms are terminated with **** and the complete basis set is terminated with the � end keyword

terminator. No blank lines can be incorporated within the general basis set input. Note that more

than one contraction coefficent per line is one required for compound shells like SP. As with all

Q-Chem input deck information, all input is case–insensitive.

C.1.4 Keyword: 	 comment

Note that the entire input deck is echoed to the output file, thus making the � comment keyword

largely redundant.

$comment

User comments - copied to output file

$end

C.1.5 Keyword: 	 ecp

�
ecp

For each atom that will bear an ECP

Chemical symbol for the atom

ECP name; the L value for the ECP; number of core electrons removed

For each ECP component (in the order unprojected, P̂0, P̂1, , P̂L−1

The component name

The number of Gaussians in the component

For each Gaussian in the component

The power of r; the exponent; the contraction coefficient

****�
end

Note: (1) All of the information in the � ecp block is case–insensitive.

(2) The L value may not exceed 4. That is, nothing beyond G projectors is allowed.

(3) The power of r (which includes the Jacobian r2 factor) must be 0, 1 or 2.

C.1.6 Keyword: 	 external charges

All input should be given in atomic units.

$external_charges

x-coord1 y-coord1 z-coord1 charge1

x-coord2 y-coord2 z-coord2 charge2

$end
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C.1.7 Keyword: 	 intracule�
intracule

int type 0 Compute P (u) only

1 Compute M(v) only

2 Compute W (u, v) only

3 Compute P (u), M(v) and W (u, v)

4 Compute P (u) and M(v)

5 Compute P (u) and W (u, v)

6 Compute M(v) and W (u, v)

u points Number of points, start, end.

v points Number of points, start, end.

moments 0–4 Order of moments to be computed (P (u) only).

derivs 0–4 order of derivatives to be computed (P (u) only).

accuracy n (10−n) specify accuracy of intracule interpolation table (P (u) only).�
end

C.1.8 Keyword: 	 isotopes

Note that masses should be given in atomic units.

$isotopes

number_extra_loops tp_flag

number_of_atoms [temp pressure]

atom_number1 mass1

atom_number2 mass2

...

$end

C.1.9 Keyword: 	 multipole field

Multipole fields are all in atomic units.

$multipole_field

field_component1 value1

field_component2 value2

...

$end

C.1.10 Keyword: 	 nbo

Refer to Chapter 10 and the NBO manual for further information. Note that the NBO � rem

variable must be set to ON to initiate the NBO package.

$nbo

[ NBO options ]

$end
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C.1.11 Keyword: 	 occupied

$occupied

1 2 3 4 ... nalpha

1 2 3 4 ... nbeta

$end

C.1.12 Keyword: 	 opt

Note that units are in Angstroms and degrees. Also see the summary in the next section of this

Appendix.

$opt

CONSTRAINT

stre atom1 atom2 value

...

bend atom1 atom2 atom3 value

...

outp atom1 atom2 atom3 atom4 value

...

tors atom1 atom2 atom3 atom4 value

...

linc atom1 atom2 atom3 atom4 value

...

linp atom1 atom2 atom3 atom4 value

...

ENDCONSTRAINT

FIXED

atom coordinate_reference

...

ENDFIXED

DUMMY

idum type list_length defining_list

...

ENDDUMMY

CONNECT

atom list_length list

...

ENDCONNECT

$end

C.1.13 Keyword: 	 svp

$svp

<KEYWORD>=<VALUE>, <KEYWORD>=<VALUE>,...

<KEYWORD>=<VALUE>

$end

For example, the section may look like this:
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$svp

RHOISO=0.001, DIELST=78.39, NPTLEB=110

$end

C.1.14 Keyword: 	 svpirf

$svpirf

<# point> <x point> <y point> <z point> <charge> <grid weight>

<# point> <x normal> <y normal> <z normal>

$end

C.1.15 Keyword: 	 plots

�
plots

One comment line

Specification of the 3–D mesh of points on 3 lines:

Nx xmin xmax

Ny ymin ymax

Nz zmin zmax

A line with 4 integers indicating how many things to plot:

NMO NRho NTrans NDA

An optional line with the integer list of MO’s to evaluate (only if NMO > 0)

MO(1) MO(2) . . . MO(NMO)

An optional line with the integer list of densities to evaluate (only if NRho > 0)

Rho(1) Rho(2) . . . Rho(NRho)

An optional line with the integer list of transition densities (only if NTrans > 0)

Trans(1) Trans(2) . . . Trans(NTrans)

An optional line with states for detachment/attachment densities (if NDA > 0)

DA(1) DA(2) . . . DA(NDA)�
end

C.1.16 Keyword 	 van der waals

Note: all radii are given in angstroms.

$van_der_waals

1

atomic_number VdW_radius

$end

(alternative format)

$van_der_waals

2

sequential_atom_number VdW_radius

$end
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C.1.17 Keyword: 	 xc functional

$xc_functional

X exchange_symbol coefficient

X exchange_symbol coefficient

...

C correlation_symbol coefficient

C correlation_symbol coefficient

...

K coefficient

$end

C.2 Geometry Optimization with General Constraints

CONSTRAINT and ENDCONSTRAINT define the beginning and end, respectively, of the constraint

section of � opt within which users may specify up to six different types of constraints:
interatomic distances

Values in angstroms; value > 0:

stre atom1 atom2 value

angles

Values in degrees, 0 ≤ value ≤ 180; atom2 is the middle atom of the bend:

bend atom1 atom2 atom3 value

out–of–plane–bends

Values in degrees, −180 ≤ value ≤ 180 atom2 ; angle between atom4 and the atom1–atom2–atom3

plane:

outp atom1 atom2 atom3 atom4 value

dihedral angles

Values in degrees, −180 ≤ value ≤ 180; angle the plane atom1–atom2–atom3 makes with the

plane atom2–atom3–atom4 :

tors atom1 atom2 atom3 atom4 value

coplanar bends

Values in degrees, −180 ≤ value ≤ 180; bending of atom1–atom2–atom3 in the plane atom2–

atom3–atom4 :

linc atom1 atom2 atom3 atom4 value

perpendicular bends

Values in degrees, −180 ≤ value ≤ 180; bending of atom1–atom2–atom3 perpendicular to the

plane atom2–atom3–atom4 :

linp atom1 atom2 atom3 atom4 value

C.2.1 Frozen Atoms

Absolute atom positions can be frozen with the FIXED section. The section starts with the

FIXED keyword as the first line and ends with the ENDFIXED keyword on the last. The format

to fix a coordinate or coordinates of an atom is:

atom coordinate reference
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coordinate reference can be any combination of up to three characters X , Y and Z to specify the

coordinate(s) to be fixed: X , Y , Z, XY, XZ, YZ, XYZ. The fixing characters must be next to each

other. e.g.,

FIXED

2 XY

ENDFIXED

C.3 � rem Variable List

The general format of the � rem input for Q-Chem text input files is simply as follows:

$rem

rem_variable rem_option [comment]

rem_variable rem_option [comment]

$end

This input is not case sensitive. The following sections contain the names and options of available� rem variables for users. The format for describing each � rem variable is as follows:

REM VARIABLE

A short description of what the variable controls

TYPE:

Defines the variable as either INTEGER, LOGICAL or STRING.

DEFAULT:

Describes Q-Chem’s internal default, if any exists.

OPTIONS:

Lists options available for the user

RECOMMENDATION:

Gives a quick recommendation.

C.3.1 General

BASIS BASIS LIN DEP THRESH

EXCHANGE CORRELATION

ECP JOBTYPE

PURECART

C.3.2 SCF Control

BASIS2 BASISPROJTYPE

DIIS PRINT DIIS SUBSPACE SIZE

DIRECT SCF INCFOCK

MAX DIIS CYCLES MAX SCF CYCLES

PSEUDO CANONICAL SCF ALGORITHM

SCF CONVERGENCE SCF FINAL PRINT

SCF GUESS SCF GUESS MIX

SCF GUESS PRINT SCF PRINT

THRESH THRESH DIIS SWITCH

UNRESTRICTED VARTHRESH
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C.3.3 DFT Options

CORRELATION EXCHANGE

FAST XC INC DFT

INCDFT DENDIFF THRESH INCDFT GRIDDIFF THRESH

INCDFT DENDIFF VARTHRESH INCDFT GRIDDIFF VARTHRESH

XC GRID XC SMART GRID

C.3.4 Large Molecules

CFMM ORDER DIRECT SCF

EPAO ITERATE EPAO WEIGHTS

GRAIN INCFOCK

INTEGRAL 2E OPR INTEGRALS BUFFER

LIN K MEM STATIC

MEM TOTAL METECO

OMEGA PAO ALGORITHM

PAO METHOD THRESH

VARTHRESH

C.3.5 Correlated Methods

See also � rem variables that start CC which control the coupled–cluster package within Q-Chem.

AO2MO DISK CD ALGORITHM

CORE CHARACTER CORRELATION

MEM STATIC MEM TOTAL

N FROZEN CORE N FROZEN VIRTUAL

PRINT CORE CHARACTER

C.3.6 Excited States

CC NHIGHSPIN CC NLOWSPIN

CC REFSYM CC SPIN FLIP

CC SYMMETRY CC TRANS PROP

CIS CONVERGENCE CIS GUESS DISK

CIS GUESS DISK TYPE CIS NROOTS

CIS RELAXED DENSITY CIS SINGLETS

CIS STATE DERIV CIS TRIPLETS

MAX CIS CYCLES RPA

CC STATE DERIV XCIS
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C.3.7 Geometry Optimizations

CIS STATE DERIV FDIFF STEPSIZE

GEOM OPT COORDS GEOM OPT DMAX

GEOM OPTHESSIAN GEOM OPT LINEAR ANGLE

GEOM OPT MAX CYCLES GEOM OPT MAX DIIS

GEOM OPT MODE GEOM OPT PRINT

GEOM OPTSYMFLAG GEOM OPT PRINT

GEOM OPTTOL ENERGY GEOM OPT TOL DISPLACEMENT

GEOM OPT TOL ENERGY GEOM OPT TOL GRADIENT

GEOMP OPT UPDATE IDERIV

JOBTYPE SCF GUESS ALWAYS

CC STATE DERIV

C.3.8 Vibrational Analysis

DORAMAN CPSCF NSEG

FDIFF STEPSIZE IDERIV

ISOTOPES JOBTYPE

VIBMAN PRINT

C.3.9 Reaction Coordinate Following

JOBTYPE RPATH COORDS

RPATH DIRECTION RPATH MAX CYCLES

RPATH MAX STEPSIZE RPATH PRINT

RPATH TOL DISPLACEMENT

C.3.10 NMR Calculations

D CPSCF PERTNUM D SCF CONV 1

D SCF CONV 2 D SCF DIIS

D SCF MAX 1 D SCF MAX 2

JOBTYPE

C.3.11 Wavefunction Analysis and Molecular Properties

CHEMSOL CHEMSOL EFIELD

CHEMSOL NN CHEM SOL PRINT

CIS RELAXED DENSITY IGDESP

INTRACULE MULTIPOLE ORDER

NBO POP MULLIKEN

PRINT DIST MATRIX PRINT ORBITALS

READ VDW SOLUTE RADIUS

SOLVENT DIELECTRIC STABILITY ANALYSIS

WAVEFUNCTION ANALYSIS WRITE WFN
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C.3.12 Symmetry

CC SYMMETRY CC REF SYM

SYM IGNORE SYMMETRY

SYMMETRY DECOMPOSITION SYM TOL

C.3.13 Printing Options

CC PRINT CHEMSOL PRINT

DIIS PRINT GEOM OPT PRINT

MOM PRINT PRINT CORE CHARACTER

PRINT DIST MATRIX PRINT GENERAL BASIS

PRINT ORBITALS RPATH PRINT

SCF FINAL PRINT SCF GUESS PRINT

SCF PRINT VIBMAN PRINT

WRITE WFN

C.3.14 Resource Control

AO2MO DISK CC CLCK TNSR BUFFSIZE

CC TMPBUFFSIZE DIRECT SCF

INTEGRALS BUFFER MAX SUB FILE NUM

MEM TOTAL MEM STATIC
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C.3.15 Alphabetical Listing

AIMD FICT MASS
Specifies the value of the fictitious electronic mass µ, in atomic units, where µ has

dimensions of (energy)×(time)2.
TYPE:

INTEGER

DEFAULT:

None

OPTIONS:

User-specified

RECOMMENDATION:
Values in the range of 50–200 a.u. have been employed in test calculations; consult

[12] for examples and discussion.

AIMD INIT VELOC

Specifies the method for selecting initial nuclear velocities.

TYPE:

STRING

DEFAULT:

None

OPTIONS:
THERMAL Random sampling of nuclear velocities from a Maxwell–Boltzmann

distribution. The user must specify the temperature in Kelvin via

the � rem variable AIMD TEMP.

ZPE Choose velocities in order to put zero–point vibrational energy into

each normal mode, with random signs. This option requires that a

frequency job to be run beforehand.
RECOMMENDATION:

This variable need only be specified in the event that velocities are not specified

explicitly in a � velocity section.

AIMD METHOD

Selects an ab initio molecular dynamics algorithm.

TYPE:

STRING

DEFAULT:

BOMD

OPTIONS:
BOMD Born–Oppenheimer molecular dynamics.

CURVY Curvy–steps Extended Lagrangian molecular dynamics.
RECOMMENDATION:

BOMD yields exact classical molecular dynamics, provided that the energy is

tolerably conserved. ELMD is an approximation to exact classical dynamics whose

validity should be tested for the properties of interest.
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AIMD MOMENTS

Requests that multipole moments be output at each time step.

TYPE:

INTEGER

DEFAULT:

0 Do not output multipole moments.

OPTIONS:

n Output the first n multipole moments.

RECOMMENDATION:

None

AIMD STEPS

Specifies the requested number of molecular dynamics steps.

TYPE:

INTEGER

DEFAULT:

None.

OPTIONS:

User–specified.

RECOMMENDATION:

None.

AIMD TEMP

Specifies a temperature (in Kelvin) for Maxwell–Boltzmann velocity sampling.

TYPE:

INTEGER

DEFAULT:

None

OPTIONS:

User-specified number of Kelvin.

RECOMMENDATION:
This variable is only useful in conjunction with AIMD INIT VELOC = THERMAL.

Note that the simulations are run at constant energy, rather than constant tem-

perature, so the mean nuclear kinetic energy will fluctuate in the course of the

simulation.
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ANHAR
Performing various nuclear vibrational theory (TOSH, VPT2, VCI) calculations

to obtain vibrational anharmonic frequencies.
TYPE:

LOGICAL

DEFAULT:

FALSE

OPTIONS:
TRUE Carry out the anharmonic frequency calculation.

FALSE Do harmonic frequency calculation.
RECOMMENDATION:

Since this calculation involves the third and fourth derivatives at the

minimum of the potential energy surface, it is recommended that the

GEOM OPT TOL DISPLACEMENT, GEOM OPT TOL GRADIENT and

GEOM OPT TOL ENERGY tolerances are set tighter. Note that VPT2 cal-

culations will fail if the system involves resonances (either accidental or due to

symmetry). See the VCI � rem variable for more details about increasing the

accuracy of anharmonic calculations.

AO2MO DISK

Sets the amount of disk space (in megabytes) available for MP2 calculations.

TYPE:

INTEGER

DEFAULT:

2000 Corresponding to 2000 Mb.

OPTIONS:

n User–defined number of megabytes.

RECOMMENDATION:

Should be set as large as possible, discussed in Section 5.3.1.

BASIS2

Sets the small basis set to use in basis set projection.

TYPE:

STRING

DEFAULT:

No second basis set default.

OPTIONS:

Symbol Use standard basis sets as per Chapter 7.

RECOMMENDATION:
BASIS2 should be smaller than BASIS. There is little advantage to using a basis

larger than a minimal basis.

BASISPROJTYPE

Determines which method to use when projecting the density matrix of BASIS2

TYPE:

STRING

DEFAULT:

FOPPROJECTION

OPTIONS:
FOPPROJECTION Construct the Fock matrix in the second basis

OVPROJECTION Projects MO’s from BASIS2 to BASIS.
RECOMMENDATION:

None
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BASIS LIN DEP THRESH

Sets the threshold for determining linear dependence in the basis set

TYPE:

INTEGER

DEFAULT:

6 Corresponding to a threshold of 10−6

OPTIONS:

n Sets the threshold to 10−n

RECOMMENDATION:
Set to 5 or smaller if you have a poorly behaved SCF and you suspect linear

dependence in you basis set. Lower values (larger thresholds) may affect the

accuracy of the calculation.

BASIS

Specifies the basis sets to be used.

TYPE:

STRING

DEFAULT:

No default basis set

OPTIONS:
General, Gen User defined ( � basis keyword required).

Symbol Use standard basis sets as per Chapter 7.

Mixed Use a mixture of basis sets (see Chapter 7).
RECOMMENDATION:

Consult literature and reviews to aid your selection.

CC AMPL RESP
If set to TRUE, adds amplitude response terms to one–particle and two–particle

CCSD density matrices before calculation of properties. CC PROP must be set to

TRUE.
TYPE:

LOGICAL

DEFAULT:

FALSE (no amplitude response terms will be added to density matrices)

OPTIONS:

FALSE, TRUE

RECOMMENDATION:
The cost is always about the cost of an analytic gradient calculation, independent

of whether or not the two–particle properties are requested. Besides, adding am-

plitude response terms without orbital response will unlikely improve the quality

of the properties. However, it can be used for debugging purposes.

CC BLCK TNSR BUFFSIZE
Specifies the maximum size, in Mb, of the buffers for in–core storage of block–

tensors.
TYPE:

INTEGER

DEFAULT:

50% of MEM TOTAL

OPTIONS:

n Integer number of Mb

RECOMMENDATION:
Larger values can give better I/O performance and are recommended for systems

with large memory (add to your .qchemrc file)
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CC CANONIZE FINAL

Whether to semi–canonicalize orbitals at the end of the ground state calculation.

TYPE:

LOGICAL

DEFAULT:

FALSE unless required

OPTIONS:

TRUE/FALSE

RECOMMENDATION:

Should not normally have to be altered.

CC CANONIZE FREQ
The orbitals will be semi–canonicalized every n theta resets. The thetas (orbital

rotation angles) are reset every CC RESET THETA iterations. The counting of

iterations differs for active space (VOD, VQCCD) calculations, where the orbitals

are always canonicalized at the first theta–reset.
TYPE:

INTEGER

DEFAULT:

50

OPTIONS:

n User–defined integer

RECOMMENDATION:

Smaller values can be tried in cases that do not converge.

CC CANONIZE
Whether to semi–canonicalize orbitals at the start of the calculation (i.e. Fock

matrix is diagonalized in each orbital subspace)
TYPE:

LOGICAL

DEFAULT:

TRUE

OPTIONS:

TRUE/FALSE

RECOMMENDATION:

Should not normally have to be altered.

CC CONVERGENCE
Overall convergence criterion for the coupled–cluster codes. This is designed

to ensure at least n significant digits in the calculated energy, and automat-

ically sets the other convergence–related variables (CC E CONV, CC T CONV,

CC THETA CONV, CC THETA GRAD CONV, CC Z CONV) [10−n].
TYPE:

INTEGER

DEFAULT:
8 Energies.

8 Gradients.
OPTIONS:

n Corresponding to 10−n convergence criterion.

RECOMMENDATION:

None
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CC DCONVERGENCE

Convergence criterion for the RMS residuals of excited state vectors

TYPE:

INTEGER

DEFAULT:

5 Corresponding to 10−5

OPTIONS:

n Corresponding to 10−n convergence criterion

RECOMMENDATION:

Use default. Should normally be set to the same value as CC DTHRESHOLD.

CC DIIS12 SWITCH
When to switch from DIIS2 to DIIS1 procedure, or when DIIS2 procedure is

required to generate DIIS guesses less frequently. Total value of DIIS error vector

must be less than 10−n, where n is the value of this option.
TYPE:

INTEGER

DEFAULT:

5

OPTIONS:

n User–defined integer

RECOMMENDATION:

None

CC DIIS FREQ
DIIS extrapolation will be attempted every n iterations. However, DIIS2 will be

attempted every iteration while total error vector exceeds CC DIIS12 SWITCH.

DIIS1 cannot generate guesses more frequently than every 2 iterations.
TYPE:

INTEGER

DEFAULT:

2

OPTIONS:

N User–defined integer

RECOMMENDATION:

None

CC DIIS MAX OVERLAP
DIIS extrapolations will not begin until square root of the maximum element of

the error overlap matrix drops below this value.
TYPE:

DOUBLE

DEFAULT:

100 Corresponding to 1.0

OPTIONS:

abcde Integer code is mapped to abc× 10−de

RECOMMENDATION:

None
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CC DIIS MIN OVERLAP
The DIIS procedure will be halted when the square root of smallest element of

the error overlap matrix is less than 10−n, where n is the value of this option.

Small values of the B matrix mean it will become near–singular, making the DIIS

equations difficult to solve.
TYPE:

INTEGER

DEFAULT:

11

OPTIONS:

n User–defined integer

RECOMMENDATION:

None

CC DIIS SIZE

Specifies the maximum size of the DIIS space.

TYPE:

INTEGER

DEFAULT:

7

OPTIONS:

n User–defined integer

RECOMMENDATION:

Larger values involve larger amounts of disk storage.

CC DIIS START

Iteration number when DIIS is turned on. Set to a large number to disable DIIS.

TYPE:

INTEGER

DEFAULT:

3

OPTIONS:

n User–defined

RECOMMENDATION:
Occasionally DIIS can cause optimized orbital coupled–cluster calculations to di-

verge through large orbital changes. If this is seen, DIIS should be disabled.

CC DIIS
Specify the version of Pulay’s Direct Inversion of the Iterative Subspace (DIIS)

convergence accelerator to be used in the coupled–cluster code.
TYPE:

INTEGER

DEFAULT:

0

OPTIONS:
0 Activates procedure 2 initially, and procedure 1 when gradients are smaller

than DIIS12 SWITCH.

1 Uses error vectors defined as differences between parameter vectors from

successive iterations. Most efficient near convergence.

2 Error vectors are defined as gradients scaled by square root of the

approximate diagonal Hessian. Most efficient far from convergence.
RECOMMENDATION:

DIIS1 can be more stable. If DIIS problems are encountered in the early stages of

a calculation (when gradients are large) try DIIS1.



Appendix C: Q-Chem Quick Reference 333

CC DIP

Initializes a EOM–DIP–CCSD calculation

TYPE:

INTEGER

DEFAULT:

0

OPTIONS:
0 Do not perform an EOM–DIP–CCSD calculation

1 Do perform an EOM–DIP–CCSD calculation
RECOMMENDATION:

None

CC DMAXITER

Maximum number of iteration allowed for Davidson diagonalization procedure.

TYPE:

INTEGER

DEFAULT:

30

OPTIONS:

n User–defined number of iterations

RECOMMENDATION:

Default is usually sufficient

CC DMAXVECTORS
Specifies maximum number of vectors in the subspace for the Davidson diagonal-

ization.
TYPE:

INTEGER

DEFAULT:

60

OPTIONS:

n Up to n vectors per root before the subspace is reset

RECOMMENDATION:

Larger values increase storage but accelerate and stabilize convergence.

CC DOV THRESH
Specifies the minimum allowed values for the coupled–cluster energy denominators.

Smaller values are replaced by this constant during early iterations only, so the

final results are unaffected, but initial convergence is improved when the guess is

poor.
TYPE:

DOUBLE

DEFAULT:

2502 Corresponding to 0.25

OPTIONS:

abcde Integer code is mapped to abc× 10−de

RECOMMENDATION:

Increase to 0.5 or 0.75 for non–convergent coupled–cluster calculations.
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CC DO CISDT

Controls the calculation of CISDT

TYPE:

INTEGER

DEFAULT:

0

OPTIONS:
0 Do not compute triples (do CISD only)

1 Do compute the triples correction (full CISDT)
RECOMMENDATION:

None

CC DO DISCONECTED

Determines whether disconnected terms included in the EOM-OD equations

TYPE:

LOGICAL

DEFAULT:

FALSE

OPTIONS:

TRUE/FALSE

RECOMMENDATION:

Inclusion of disconnected terms has very small effects and is not necessary.

CC DO SMALL TRIPLES
Preconverges the EOM–CCSD block of the Hamiltonian by doing several EOM–

CCSD iterations before switching to EOM(3)-CCSD using the EOM-CCSD vectors

as a guess for EOM-CC(2,3)
TYPE:

INTEGER

DEFAULT:

0 Do not do any EOM–CCSD iterations

OPTIONS:

n Do n iterations

RECOMMENDATION:

None

CC DO TRIPLES

This keyword intitializes a EOM-CC(2,3) calculation

TYPE:

INTEGER

DEFAULT:

0

OPTIONS:
0 No EOM-CC(2,3) calculation

1 Perform a EOM-CC(2,3) calculation
RECOMMENDATION:

None
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CC DTHRESHOLD
Specifies threshold for including a new expansion vector in the iterative Davidson

diagonalization. Their norm must be above this threshold.
TYPE:

INTEGER

DEFAULT:

00105 Corresponding to 0.00001

OPTIONS:

abcde Integer code is mapped to abc× 10−de

RECOMMENDATION:
Use default unless converge problems are encountered. Should normally be set

to the same values as CC DCONVERGENCE, if convergence problems arise try

setting to a value less than CC DCONVERGENCE.

CC EA
If TRUE, calculates EOM–EA–CCSD excitation energies and properties (upon

request).
TYPE:

LOGICAL

DEFAULT:

FALSE (no EOM–EA–CCSD states will be calculated)

OPTIONS:

FALSE, TRUE

RECOMMENDATION:

See comments above for CC IP

CC EOM AMPL RESP
If set to TRUE, adds amplitude response terms to one–particle and

two–particle EOM–CCSD density matrices before calculation of properties.

CC EXSTATES PROP must be set to TRUE.
TYPE:

INTEGER

DEFAULT:

FALSE (no amplitude response terms will be added to density matrices)

OPTIONS:

FALSE, TRUE

RECOMMENDATION:
The cost is always about the cost of an analytic gradient calculation for each state,

independent of whether or not the two–particle properties are requested. Besides,

adding amplitude response terms without orbital response will unlikely improve

the quality of the properties. However, it can be used for debugging purposes.



Appendix C: Q-Chem Quick Reference 336

CC EOM FULL RESP
If set to TRUE, adds both amplitude and orbital response terms to one– and

two–particle EOM–CCSD density matrices before calculation of the properties.

CC EXSTATES PROP must be set to TRUE. If both CC EOM AMPL RESP=TRUE

and CC EOM FULL RESP=TRUE, the CC EOM AMPL RESP=TRUE will be ig-

nored.
TYPE:

LOGICAL

DEFAULT:
FALSE No orbital response terms will be added to density matrices, and no

amplitude response will be calculated if CC EOM AMPL RESP = FALSE

OPTIONS:

FALSE, TRUE

RECOMMENDATION:
The cost for the full response properties calculation is about the same as the cost of

the analytic gradient for each state. Adding full response terms improves quality

of calculated properties, but ususally it is a small but expensive correction. Use it

only if you really need accurate properties.

CC EOM TWOPART PROP
Request for calculation of non–relaxed two–particle EOM–CCSD target state prop-

erties. The two-particle properties currently include 〈S2〉. The one–particle

properties also will be calculated, since the additional cost of the one–particle

properties calculation is inferior compared to the cost of 〈S2〉. The variable

CC EXSTATES PROP must be also set to TRUE.
TYPE:

LOGICAL

DEFAULT:

FALSE (no two-particle properties will be calculated)

OPTIONS:

FALSE, TRUE

RECOMMENDATION:
The two–particle properties are extremely computationally expensive, since they

require calculation and use of the two–particle density matrix (the cost is approx-

imately the same as the cost of an analytic gradient calculation for each state).

Do not request the two–particle properties unless you really need them.
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CC EXSTATES PROP
Whether or not the non–relaxed (expectation value) one–particle EOM–CCSD

target state properties will be calculated. The properties currently include perma-

nent dipole moment, the second moments 〈X2〉, 〈Y 2〉, and 〈Z2〉 of electron density,

and the total 〈R2〉 = 〈X2〉 + 〈Y 2〉 + 〈Z2〉 (in atomic units). Incompatible with

JOBTYPE=FORCE, OPT, FREQ.
TYPE:

LOGICAL

DEFAULT:

FALSE (no one–particle properties will be calculated)

OPTIONS:

FALSE, TRUE

RECOMMENDATION:
Additional equations (EOM–CCSD equations for the left eigenvectors) need to

be solved for properties, approximately doubling the cost of calculation for each

irrep. Sometimes the equations for left and right eigenvectors converge to dif-

ferent sets of target states. In this case, the simultaneous iterations of left and

right vectors will diverge, and the properties for several or all the target states

may be incorrect! The problem can be solved by varying the number of requested

states, specified with CC NLOWSPIN and CC NHIGHSPIN, or the number of guess

vectors (CC NGUESS SINGLES). The cost of the one–particle properties calcula-

tion itself is low. The one–particle density of an EOM–CCSD target state can

be analyzed with NBO package by specifying the state with CC REFSYM and

CC STATE DERIV and requesting NBO=TRUE and CC EXSTATES PROP=TRUE.

CC E CONV

Convergence desired on the change in total energy, between iterations.

TYPE:

INTEGER

DEFAULT:

10

OPTIONS:

n 10−n convergence criterion.

RECOMMENDATION:

None

CC FULL RESP
If set to TRUE, adds both amplitude and orbital response terms to one–

and two–particle CCSD density matrices before calculation of the proper-

ties. CC PROP must be set to TRUE. If both CC AMPL RESP=TRUE and

CC FULL RESP=TRUE, the CC AMPL RESP=TRUE will be ignored.
TYPE:

LOGICAL

DEFAULT:
FALSE No orbital response terms will be added to density matrices, and no

amplitude response will be calculated if CC AMPL RESP = FALSE

OPTIONS:

FALSE, TRUE

RECOMMENDATION:
The cost for the full response properties calculation is about the same as the cost

of the analytic gradient. Adding full response terms improves quality of calculated

properties, but ususally it is a small but expensive correction. Use it only if you

really need accurate properties.
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CC HESS THRESH
Minimum allowed value for the orbital Hessian. Smaller values are replaced by

this constant.
TYPE:

DOUBLE

DEFAULT:

102 Corresponding to 0.01

OPTIONS:

abcde Integer code is mapped to abc× 10−de

RECOMMENDATION:

None

CC INCL CORE CORR
Whether to include the correlation contribution from frozen core orbitals in non-

iterative (2) corrections, such as OD(2) and CCSD(2).
TYPE:

LOGICAL

DEFAULT:

TRUE

OPTIONS:

TRUE/FALSE

RECOMMENDATION:
Use default unless no core–valence or core correlation is desired (e.g., for compari-

son with other methods or because the basis used cannot describe core correlation).

CC IP
If TRUE, calculates EOM–IP–CCSD excitation energies and properties (upon re-

quest).
TYPE:

LOGICAL

DEFAULT:

FALSE (no EOM–IP–CCSD states will be calculated)

OPTIONS:

FALSE, TRUE

RECOMMENDATION:
When CC IP is set to TRUE, it can change the convergence of Hartree–Fock iter-

ations compared to the same job with CC IP=FALSE, because a very diffuse basis

function is added to a center of symmetry before the Hartree–Fock iterations start.

For the same reason, BASIS2 keyword is incompatible with CC IP=TRUE. In order

to read Hartree–Fock guess from a previous job, you must specify CC IP=TRUE

(even if you do not request for any correlation or excited states) in that previ-

ous job. Currently, the second moments of electron density are incorrect for the

EOM–IP–CCSD target states. CC NLOWSPIN should also be set to specify the

nmber of target EOM-IP states.
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CC ITERATE ON
In active space calculations, use a “mixed” iteration procedure if the value is

greater than 0. Then if the RMS orbital gradient is larger than the value of

CC THETA GRAD THRESH, micro–iterations will be performed to converge the

occupied–virtual mixing angles for the current active–space. The maximum num-

ber of space iterations is given by this option.
TYPE:

INTEGER

DEFAULT:

0

OPTIONS:

n Up to n occupied–virtual iterations per overall cycle

RECOMMENDATION:

Can be useful for non–convergent active space calculations

CC ITERATE OV
In active space calculations, use a “mixed” iteration procedure if the value is

greater than 0. Then, if the RMS orbital gradient is larger than the value of

CC THETA GRAD THRESH, micro–iterations will be performed to converge the

occupied–virtual mixing angles for the current active space. The maximum number

of such iterations is given by this option.
TYPE:

INTEGER

DEFAULT:

0 No “mixed” iterations

OPTIONS:

n Up to n occupied–virtual iterations per overall cycle

RECOMMENDATION:

Can be useful for non–convergent active space calculations.

CC MAXITER

Maximum number of iterations to optimize the coupled–cluster energy.

TYPE:

INTEGER

DEFAULT:

200

OPTIONS:

n up to n iterations to achieve convergence.

RECOMMENDATION:

None
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CC MP2NO GRAD
If CC MP2NO GUESS is TRUE, what kind of one–particle density matrix is used

to make the guess orbitals?
TYPE:

LOGICAL

DEFAULT:

FALSE

OPTIONS:
TRUE 1 PDM from MP2 gradient theory.

FALSE 1 PDM expanded to 2nd order in perturbation theory.
RECOMMENDATION:

The two definitions give generally similar performance.

CC MP2NO GUESS
Will guess orbitals be natural orbitals of the MP1 wavefunction? Alternatively,

it is possible to use an effective one-particle density matrix to define the natural

orbitals.
TYPE:

LOGICAL

DEFAULT:

FALSE

OPTIONS:
TRUE Use natural orbitals from an MP2 one–particle density matrix (see CC MP2NO GRAD).

FALSE Use current molecular orbitals from SCF.
RECOMMENDATION:

None

CC NGUESS DOUBLES

Specifies number of excited state guess vectors which are double excitations.

TYPE:

INTEGER

DEFAULT:

0

OPTIONS:

n Include n guess vectors that are double excitations

RECOMMENDATION:
This should be set to the expected number of doubly excited states (see also

CC PRECONV DOUBLES), otherwise they may not be found.

CC NGUESS SINGLES

Specifies number of excited state guess vectors that are single excitations.

TYPE:

INTEGER

DEFAULT:

Equal to the number of excited states requested

OPTIONS:

n Include n guess vectors that are single excitations

RECOMMENDATION:

Should be greater or equal than the number of excited states requested.
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CC NHIGHSPIN
Sets the number of high–spin excited state roots to find. Works only for singlet

reference states and triplet excited states.
TYPE:

INTEGER/INTEGER ARRAY

DEFAULT:

0 Do not look for any excited states.

OPTIONS:

[i, j, k . . .] Find i excited states in the first symmetry, j states in the second symmetry etc.

RECOMMENDATION:

None

CC NLOWSPIN
Sets the number of low–spin excited state roots to find. In the case of closed-shell

reference states, excited singlet states will be found. For any other reference state,

all states (e.g. both singlet and triplet) will be calculated.
TYPE:

INTEGER/INTEGER ARRAY

DEFAULT:

0 Do not look for any excited states.

OPTIONS:

[i, j, k . . .] Find i excited states in the first symmetry, j states in the second symmetry etc.

RECOMMENDATION:

None

CC ORBS PER BLOCK

Specifies target (and maximum) size of blocks in orbital space.

TYPE:

INTEGER

DEFAULT:

16

OPTIONS:

n Orbital block size of n orbitals.

RECOMMENDATION:

None

CC PRECONV DOUBLES
When TRUE, doubly–excited vectors are converged prior to a full excited states

calculation.
TYPE:

LOGICAL

DEFAULT:

FALSE

OPTIONS:

TRUE/FALSE

RECOMMENDATION:

Occasionally necessary to ensure a doubly excited state is found.
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CC PRECONV FZ
In active space methods, whether to preconverge other wavefunction variables for

fixed initial guess of active space.
TYPE:

INTEGER

DEFAULT:

0

OPTIONS:
0 No pre–iterations before active space optimization begins.

n Maximum number of pre–iterations via this procedure.
RECOMMENDATION:

None

CC PRECONV SD
Solves the EOM–CCSD equations, prints energies, then uses EOM–CCSD vectors

as initial vectors in EOM-CC(2,3)
TYPE:

INTEGER

DEFAULT:

0

OPTIONS:

1 Turns the preconverging on

RECOMMENDATION:

Turning this option on is recommended

CC PRECONV SINGLES
When TRUE, singly–excited vectors are converged prior to a full excited states

calculation.
TYPE:

LOGICAL

DEFAULT:

FALSE

OPTIONS:

TRUE/FALSE

RECOMMENDATION:

None

CC PRECONV T2Z EACH
Whether to pre–converge the cluster amplitudes before each change of the orbitals

in optimized orbital coupled–cluster methods. The maximum number of iterations

in this pre–convergence procedure is given by the value of this parameter.
TYPE:

INTEGER

DEFAULT:

0 (FALSE)

OPTIONS:
0 No pre–convergence before orbital optimization.

n Up to n iterations in this pre–convergence procedure.
RECOMMENDATION:

A very slow last resort option for jobs that do not converge.
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CC PRECONV T2Z
Whether to pre-converge the cluster amplitudes before beginning orbital optimiza-

tion in optimized orbital cluster methods.
TYPE:

INTEGER

DEFAULT:
0 (FALSE)

10 If CC RESTART, CC RESTART NO SCF or CC MP2NO GUESS are TRUE
OPTIONS:

0 No pre–convergence before orbital optimization.

n Up to n iterations in this pre–convergence procedure.
RECOMMENDATION:

Experiment with this option in cases of convergence failure.

CC PROP
Whether or not the non–relaxed (expectation value) one–particle CCSD prop-

erties will be calculated. The properties currently include permanent dipole

moment, the second moments 〈X2〉, 〈Y 2〉, and 〈Z2〉 of electron density, and

the total 〈R2〉 = 〈X2〉 + 〈Y 2〉 + 〈Z2〉 (in atomic units). Incompatible with

JOBTYPE=FORCE, OPT, FREQ.
TYPE:

LOGICAL

DEFAULT:

FALSE (no one–particle properties will be calculated)

OPTIONS:

FALSE, TRUE

RECOMMENDATION:
Additional equations need to be solved (lambda CCSD equations) for proper-

ties with the cost approximately the same as CCSD equations. Use default if

you do not need properties. The cost of the properties calculation itself is low.

The CCSD one–particle density can be analyzed with NBO package by specifying

NBO=TRUE, CC PROP=TRUE and JOBTYPE=FORCE.

CC QCCD THETA SWITCH
QCCD calculations switch from OD to QCCD when the rotation gradient is below

this threshold [10−n]
TYPE:

INTEGER

DEFAULT:

2 10−2 switchover

OPTIONS:

n 10−n switchover

RECOMMENDATION:

None
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CC REFSYM
Together with CC STATE DERIV, selects which EOM state is to be optimized.

Note that the symmetries are numbered from 0 up, as are the roots.
TYPE:

INTEGER

DEFAULT:

0 Corresponding to the first symmetry

OPTIONS:

n n < order of the symmetry point group.

RECOMMENDATION:

None

CC RESET THETA
The reference MO coefficient matrix is reset every n iterations to help overcome

problems associated with the theta metric as theta becomes large.
TYPE:

INTEGER

DEFAULT:

15

OPTIONS:

n n iterations between resetting orbital rotations to zero.

RECOMMENDATION:

None

CC RESTART NO SCF
Should an optimized orbital coupled cluster calculation begin with optimized or-

bitals from a previous calculation? When TRUE, molecular orbitals are initially or-

thogonalized, and CC PRECONV T2Z and CC CANONIZE are set to TRUE while

other guess options are set to FALSE

TYPE:

LOGICAL

DEFAULT:

FALSE

OPTIONS:

TRUE/FALSE

RECOMMENDATION:

None

CC RESTART
Allows an optimized orbital coupled cluster calculation to begin with an initial

guess for the orbital transformation matrix U other than the unit vector. The

scratch file from a previous run must be available for the U matrix to be read

successfully.
TYPE:

LOGICAL

DEFAULT:

FALSE

OPTIONS:
FALSE Use unit initial guess.

TRUE Activates CC PRECONV T2Z, CC CANONIZE, and

turns off CC MP2NO GUESS

RECOMMENDATION:

Useful for restarting a job that did not converge, if files were saved.
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CC RESTR AMPL

Controls the restriction on amplitudes is there are restricted orbitals

TYPE:

INTEGER

DEFAULT:

1

OPTIONS:
0 All amplitudes are in the full space

1 Amplitudes are restricted, if there are restricted orbitals
RECOMMENDATION:

None

CC RESTR TRIPLES

Controls which space the triples correction is computed in

TYPE:

INTEGER

DEFAULT:

0

OPTIONS:
0 Triples are computed in the full space

1 Triples are restricted ot the active space
RECOMMENDATION:

None

CC REST OCC

Sets the number of restricted occupied orbitals including frozen occupied orbitals.

TYPE:

INTEGER

DEFAULT:

0

OPTIONS:

n Restrict n occupied orbitals.

RECOMMENDATION:

None

CC REST VIR

Sets the number of restricted virtual orbitals including frozen virtual orbitals.

TYPE:

INTEGER

DEFAULT:

0

OPTIONS:

n Restrict n virtual orbitals.

RECOMMENDATION:

None
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CC SPIN FLIP MS

Controls the spin projection of the excitation operator

TYPE:

INTEGER

DEFAULT:
0 For α→ α excitation

1 For α→ β excitations
OPTIONS:

2 Allows double spin–flip calculations , i.e., two electrons are

flipped in the excitation operator: αα→ ββ.
RECOMMENDATION:

This keyword should be used together with CC SPIN FLIP = 1.

CC SPIN FLIP
Selects whether do perform a standard excited state calculation, or a spin–flip

calculation. Spin multiplicity should be set to 2 for systems with an odd number

of electrons, and 3 for systems with an even number of electrons.
TYPE:

LOGICAL

DEFAULT:

FALSE

OPTIONS:

TRUE/FALSE

RECOMMENDATION:

None

CC STATE DERIV
Together with CC REFSYM, selects which EOM state is to be considered for opti-

mization or property calculations. If CC TRANS PROP is also selected, the tran-

sition properties will be calculated between this state and all the other states.
TYPE:

INTEGER

DEFAULT:

-1 Turns off optimization/property calculations

OPTIONS:

n Optimize the nth excited state.

RECOMMENDATION:

None

CC SYMMETRY

Controls the use of symmetry in coupled-cluster calculations

TYPE:

LOGICAL

DEFAULT:

TRUE

OPTIONS:
TRUE Use the point group symmetry of the molecule

FALSE Do not use point group symmetry (all states will be of A symmetry).
RECOMMENDATION:

Should be turned off for any finite difference calculations, e.g. second derivatives.
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CC THETA CONV
Convergence criterion on the RMS difference between successive sets of orbital

rotation angles [10−n].
TYPE:

INTEGER

DEFAULT:
5 Energies

6 Gradients
OPTIONS:

n 10−n convergence criterion.

RECOMMENDATION:

Use default

CC THETA GRAD CONV
Convergence desired on the RMS gradient of the energy with respect to orbital

rotation angles [10−n].
TYPE:

INTEGER

DEFAULT:
7 Energies

8 Gradients
OPTIONS:

n 10−n convergence criterion.

RECOMMENDATION:

Use default

CC THETA GRAD THRESH
RMS orbital gradient threshold [10−n] above which “mixed iterations” are per-

formed in active space calculations if CC ITERATE OV is TRUE.
TYPE:

INTEGER

DEFAULT:

2

OPTIONS:

n 10−n threshold.

RECOMMENDATION:

Can be made smaller if convergence difficulties are encountered.

CC THETA STEPSIZE
Scale factor for the orbital rotation step size. The optimal rotation steps should

be approximately equal to the gradient vector.
TYPE:

INTEGER

DEFAULT:

100 Corresponding to 1.0

OPTIONS:
abcde Integer code is mapped to abc× 10−de

If the initial step is smaller than 0.5, the program will increase step

when gradients are smaller than the value of THETA GRAD THRESH,

up to a limit of 0.5.
RECOMMENDATION:

Try a smaller value in cases of poor convergence and very large orbital gradients.

For example, a value of 01001 translates to 0.1
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CC TMPBUFFSIZE
Maximum size, in Mb, of additional buffers for temporary arrays used to work

with individual blocks or matrices.
TYPE:

INTEGER

DEFAULT:

3% of MEM TOTAL

OPTIONS:

n Integer number of Mb

RECOMMENDATION:

Should not be smaller than the size of the largest possible block.

CC TRANS PROP
Whether or not the transition dipole moment (in atomic units) and oscillator

strength for the EOM–CCSD target states will be calculated. By default, the

transition dipole moment is calculated between the CCSD reference and the EOM–

CCSD target states. In order to calculate transition dipole moment between a

set of EOM–CCSD states and another EOM–CCSD state, the CC REFSYM and

CC STATE DERIV must be specified for this state.
TYPE:

LOGICAL

DEFAULT:

FALSE (no transition dipole and oscillator strength will be calculated)

OPTIONS:

FALSE, TRUE

RECOMMENDATION:
Additional equations (for the left EOM–CCSD eigenvectors plus lambda CCSD

equations in case if transition properties between the CCSD reference and EOM–

CCSD target states are requested) need to be solved for transition properties,

approximately doubling the computational cost. The cost of the transition prop-

erties calculation itself is low.

CC TWOPART PROP
Request for calculation of non–relaxed two–particle CCSD properties. The two–

particle properties currently include 〈S2〉. The one–particle properties also will be

calculated, since the additional cost of the one–particle properties calculation is

inferior compared to the cost of 〈S2〉. The variable CC PROP must be also set to

TRUE.
TYPE:

LOGICAL

DEFAULT:

FALSE (no two–particle properties will be calculated)

OPTIONS:

FALSE, TRUE

RECOMMENDATION:
The two–particle properties are extremely computationally expensive, since they

require calculation and use of the two–particle density matrix (the cost is approx-

imately the same as the cost of an analytic gradient calculation). Do not request

the two–particle properties unless you really need them.
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CC T CONV
Convergence criterion on the RMS difference between successive sets of coupled–

cluster doubles amplitudes [10−n]
TYPE:

INTEGER

DEFAULT:
8 energies

10 gradients
OPTIONS:

n 10−n convergence criterion.

RECOMMENDATION:

Use default

CC Z CONV
Convergence criterion on the RMS difference between successive doubles Z–vector

amplitudes [10−n].
TYPE:

INTEGER

DEFAULT:
8 Energies

10 Gradients
OPTIONS:

n 10−n convergence criterion.

RECOMMENDATION:

Use Default

CC PRINT

Controls the output from post–MP2 coupled–cluster module of Q-Chem

TYPE:

INTEGER

DEFAULT:

1

OPTIONS:

0→ 7 higher values can lead to deforestation. . .

RECOMMENDATION:

Increase if you need more output and don’t like trees

CD ALGORITHM

Determines the algorithm for MP2 integral transformations.

TYPE:

STRING

DEFAULT:

Program determined.

OPTIONS:
DIRECT Uses fully direct algorithm (energies only).

SEMI DIRECT Uses disk–based semi–direct algorithm.

LOCAL OCCUPIED Alternative energy algorithm (see 5.3.1).
RECOMMENDATION:

Semi–direct is usually most efficient, and will normally be chosen by default.
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CFMM ORDER

Controls the order of the multipole expansions in CFMM calculation.

TYPE:

INTEGER

DEFAULT:
15 For single point SCF accuracy

25 For tighter convergence (optimizations)
OPTIONS:

n Use multipole expansions of order n

RECOMMENDATION:

Use default.

CHEMSOL EFIELD
Determines how the solute charge distribution is approximated in evaluating the

electrostatic field of the solute.
TYPE:

INTEGER

DEFAULT:

1

OPTIONS:
1 Exact solute charge distribution is used.

0 Solute charge distribution is approximated by Mulliken atomic charges.

This is a faster, but less rigorous procedure.
RECOMMENDATION:

None.

CHEMSOL NN

Sets the number of grids used to calculate the average hydration free energy.

TYPE:

INTEGER

DEFAULT:

5 ∆Ghydr will be averaged over 5 different grids.

OPTIONS:

n Number of different grids (Max = 20).

RECOMMENDATION:

None.

CHEMSOL PRINT

Controls printing in the ChemSol part of the Q-Chem output file.

TYPE:

INTEGER

DEFAULT:

0

OPTIONS:
0 Limited printout.

1 Full printout.
RECOMMENDATION:

None
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CHEMSOL

Controls the use of ChemSol in Q-Chem.

TYPE:

INTEGER

DEFAULT:

0

OPTIONS:
0 Do not use ChemSol.

1 Perform a ChemSol calculation.
RECOMMENDATION:

None

CISTR PRINT

Controls level of output

TYPE:

LOGICAL

DEFAULT:

FALSE Minimal output

OPTIONS:

TRUE Increase output level

RECOMMENDATION:

None

CIS CONVERGENCE

CIS is considered converged when error is less than 10−CIS CONVERGENCE

TYPE:

INTEGER

DEFAULT:

6 CIS convergence threshold 10−6

OPTIONS:

n Corresponding to 10−n

RECOMMENDATION:

None

CIS GUESS DISK TYPE

Determines the type of guesses to be read from disk

TYPE:

INTEGER

DEFAULT:

Nil

OPTIONS:
0 Read triplets only

1 Read triplets and singlets

2 Read singlets only
RECOMMENDATION:

Must be specified if CIS GUESS DISK is TRUE.



Appendix C: Q-Chem Quick Reference 352

CIS GUESS DISK

Read the CIS guess from disk (previous calculation)

TYPE:

LOGICAL

DEFAULT:

False

OPTIONS:
False Create a new guess

True Read the guess from disk
RECOMMENDATION:

Requires a guess from previous calculation.

CIS N ROOTS

Sets the number of CI-Singles (CIS) excited state roots to find

TYPE:

INTEGER

DEFAULT:

0 Do not look for any excited states

OPTIONS:

n n > 0 Looks for n CIS excited states

RECOMMENDATION:

None

CIS RELAXED DENSITY

Use the relaxed CIS density for attachment/detachment density analysis

TYPE:

LOGICAL

DEFAULT:

False

OPTIONS:
False Do not use the relaxed CIS density in analysis

True Use the relaxed CIS density in analysis.
RECOMMENDATION:

None

CIS SINGLETS

Solve for singlet excited states in RCIS calculations (ignored for UCIS)

TYPE:

LOGICAL

DEFAULT:

TRUE

OPTIONS:
TRUE Solve for singlet states

FALSE Do not solve for singlet states.
RECOMMENDATION:

None
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CIS STATE DERIV

Sets CIS state for excited state optimizations and vibrational analysis

TYPE:

INTEGER

DEFAULT:

0 Does not select any of the excited states

OPTIONS:

n Select the nth state.

RECOMMENDATION:

Check to see that the states do no change order during an optimization

CIS TRIPLETS

Solve for triplet excited states in RCIS calculations (ignored for UCIS)

TYPE:

LOGICAL

DEFAULT:

TRUE

OPTIONS:
TRUE Solve for triplet states

FALSE Do not solve for triplet states.
RECOMMENDATION:

None

CORE CHARACTER

Selects how the core orbitals are determined in the frozen–core approximation.

TYPE:

INTEGER

DEFAULT:

0

OPTIONS:
0 Use energy–based definition.

1-4 Use Muliken–based definition (see Table 5.3.2 for details).
RECOMMENDATION:

Use default, unless performing calculations on molecules with heavy elements.
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CORRELATION

Specifies the correlation level of theory, either DFT or wavefunction-based.

TYPE:

STRING

DEFAULT:

None No Correlation

OPTIONS:
None No Correlation.

VWN Vosko–Wilk–Nusair parameterization #5

LYP Lee–Yang–Parr

PW91, PW GGA91 (Perdew)

LYP(EDF1) LYP(EDF1) parameterization

Perdew86, P86 Perdew 1986

PZ81, PZ Perdew-Zunger 1981

Wigner Wigner

MP2

Local MP2 Local MP2 calculations (TRIM and DIM models)

CIS(D) MP2–level correction to CIS for excited states

MP3

MP4SDQ

MP4

CCD

CCD(2)

CCSD

CCSD(T)

CCSD(2)

QCISD

QCISD(T)

OD

OD(T)

OD(2)

VOD

VOD(2)

QCCD

VQCCD
RECOMMENDATION:

Consult the literature and reviews for guidence

CPSCF NSEG

Controls the number of segments used to calculate the CPSCF equations.

TYPE:

INTEGER

DEFAULT:

0

OPTIONS:
0 Do not solve the CPSCF equations in segments.

n User–defined. Use n segments when solving the CPSCF equations.
RECOMMENDATION:

Use default.
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CUTOCC

Specifies occcupied orbital cutoff

TYPE:

INTEGER: CUTOFF=CUTOCC/100

DEFAULT:

50

OPTIONS:

0-200

RECOMMENDATION:

None

CUTVIR

Specifies virtual orbital cutoff

TYPE:

INTEGER: CUTOFF=CUTVIR/100

DEFAULT:

0 No truncation

OPTIONS:

0-100

RECOMMENDATION:

None

CVGLIN
Convergence criterion for solving linear equations by the conjugate gradient iter-

ative method (relevant if LINEQ=1 or 2).
TYPE:

FLOAT

DEFAULT:

1.0E-7

OPTIONS:

Real number specifying the actual criterion.

RECOMMENDATION:

The default value should be used unless convergence problems arise.

DEUTERATE

Requests that all hydrogen atoms be replaces with deuterium.

TYPE:

LOGICAL

DEFAULT:

FALSE Do not replace hydrogens.

OPTIONS:

TRUE Replace hydrogens with deuterium.

RECOMMENDATION:
Replacing hydrogen atoms reduces the fastest vibrational frequencies by a factor

of 1.4, which allow for a larger fictitious mass and time step in ELMD calculations.

There is no reason to replace hydrogens in BOMD calculations.
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DIELST

The static dielectric constant.

TYPE:

FLOAT

DEFAULT:

78.39

OPTIONS:

real number specifying the constant.

RECOMMENDATION:

The default value 78.39 is appropriate for water solvent.

DIIS ERR RMS

Changes the DIIS convergence metric from the maximum to the RMS error.

TYPE:

LOGICAL

DEFAULT:

FALSE

OPTIONS:

TRUE, FALSE

RECOMMENDATION:

Use default, the maximum error provides a more reliable criterion.

DIIS PRINT

Controls the output from DIIS SCF optimization.

TYPE:

INTEGER

DEFAULT:

0

OPTIONS:
0 Minimal print out.

1 Chosen method and DIIS coefficients and solutions.

2 Level 1 plus changes in multipole moments.

3 Level 2 plus Multipole moments.

4 Level 3 plus extrapolated Fock matrices.
RECOMMENDATION:

Use default

DIIS SUBSPACE SIZE

Controls the size of the DIIS subspace during the SCF.

TYPE:

INTEGER

DEFAULT:

15

OPTIONS:

User–defined

RECOMMENDATION:

None
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DIRECT SCF

Controls direct SCF.

TYPE:

LOGICAL

DEFAULT:

Determined by program.

OPTIONS:
TRUE Forces direct SCF.

FALSE Do not use direct SCF.
RECOMMENDATION:

Use default; direct SCF switches off in–core integrals.

DORAMAN

Controls calculation of Raman intensities. Requires JOBTYPE to be set to FREQ

TYPE:

LOGICAL

DEFAULT:

FALSE

OPTIONS:
FALSE Do not calculate Raman intensities.

TRUE Do calculate Raman intensities.
RECOMMENDATION:

None

DUAL BASIS ENERGY

Activates dual-basis SCF (HF or DFT) energy correction.

TYPE:

LOGICAL

DEFAULT:

FALSE

OPTIONS:
Analytic first derivative available for HF (see JOBTYPE)

Can be used in conjunction with MP2 or RI-MP2

See BASIS, BASIS2, BASISPROJTYPE
RECOMMENDATION:

Use Dual-Basis to capture large-basis effects at smaller basis cost. Particularly

useful with RI–MP2, in which HF often dominates. Use only proper subsets for

small–basis calculation.

D CPSCF PERTNUM

Specifies whether to do the perturbations one at a time, or all together.

TYPE:

INTEGER

DEFAULT:

0

OPTIONS:
0 Perturbed densities to be calculated all together.

1 Perturbed densities to be calculated one at a time.
RECOMMENDATION:

None
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D SCF CONV 1
Sets the convergence criterion for the level–1 iterations. This preconditions the

density for the level–2 calculation, and does not include any two–electron integrals.

TYPE:

INTEGER

DEFAULT:

4 corresponding to a threshold of 10−4.

OPTIONS:

n < 10 Sets convergence threshold to 10−n.

RECOMMENDATION:
The criterion for level–1 convergence must be less than or equal to the level–2

criterion, otherwise the D–CPSCF will not converge.

D SCF CONV 2

Sets the convergence criterion for the level–2 iterations.

TYPE:

INTEGER

DEFAULT:

4 Corresponding to a threshold of 10−4.

OPTIONS:

n < 10 Sets convergence threshold to 10−n.

RECOMMENDATION:

None

D SCF DIIS

Specifies the number of matrices to use in the DIIS extrapolation in the D–CPSCF.

TYPE:

INTEGER

DEFAULT:

11

OPTIONS:

n n = 0 specifies no DIIS extrapolation is to be used.

RECOMMENDATION:

Use the default.

D SCF MAX 1

Sets the maximum number of level–1 iterations.

TYPE:

INTEGER

DEFAULT:

100

OPTIONS:

n User defined.

RECOMMENDATION:

Use default.
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D SCF MAX 2

Sets the maximum number of level–2 iterations.

TYPE:

INTEGER

DEFAULT:

30

OPTIONS:

n User defined.

RECOMMENDATION:

Use default.

ECP

Defines the effective core potential and associated basis set to be used

TYPE:

STRING

DEFAULT:

No pseudopotential

OPTIONS:
General, Gen User defined. ( � ecp keyword required)

Symbol Use standard pseudopotentials discussed above.
RECOMMENDATION:

Pseudopotentials are recommended for first row transition metals and heavier

elements. Consul the reviews for more details.

ENG DER
Controls what types of gradient information are used to compute higher deriva-

tives. The default uses a combination of energy, gradient and Hessian information,

which makes the force field calculation faster.
TYPE:

INTEGER

DEFAULT:

0

OPTIONS:
0 Use energy, gradient, and Hessian information.

1 Use energy information only.

1 Use Hessian information only.
RECOMMENDATION:

When the molecule is larger than benzene, ENG DER=2 is recommended.

EPAO ITERATE

Controls iterations for EPAO calculations (see PAO METHOD).

TYPE:

INTEGER

DEFAULT:

0 Use uniterated EPAOs based on atomic blocks of SPS.

OPTIONS:

n Optimize the EPAOs for up to n iterations.

RECOMMENDATION:
Use default. For molecules that are not too large, one can test the sensitivity of

the results to the type of minimal functions by the use of optimized EPAOs in

which case a value of n = 500 is reasonable.
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EPAO WEIGHTS

Controls algorithm and weights for EPAO calculations (see PAO METHOD).

TYPE:

INTEGER

DEFAULT:

115 Standard weights, use 1st and 2nd order optimization

OPTIONS:

15 Standard weights, with 1st order optimization only.

RECOMMENDATION:

Use default, unless convergence failure is encountered.

EXCHANGE

Specifies the exchange level of theory.

TYPE:

STRING

DEFAULT:

HF for wavefunction correlation methods. Otherwise none.

OPTIONS:
HF Hartree–Fock

Slater, S Slater

Becke, B Becke 1988

Gill96, Gill Gill 1996

GG99 Gilbert and Gill, 1999

Becke(EDF1), B(EDF1) Becke (EDF1)

PW91, PW Perdew

B3PW91, Becke3PW91, B3P B3PW91 hybrid

B3LYP, Becke3LYP B3LYP

B3LYP5 B3LYP based on correlation functional #5 of

Vosko, Wilk, and Nusair rather than their functional #3

EDF1 EDF1

M05 M05

M05-2X M05-2X

M06-L M06-L

M06-HF M06-HF

M06 M06

M06-2X M06-2X

General, Gen User defined combination of K, X and C

(refer DFT section, Chapter 4).
RECOMMENDATION:

Consult the literature and reviews for guidence

FAST XC

Controls direct variable thresholds to accelerate exchange correlation (XC) in DFT.

TYPE:

LOGICAL

DEFAULT:

FALSE

OPTIONS:
TRUE Turn FAST XC on.

FALSE Do not use FAST XC.
RECOMMENDATION:

Caution: FAST XC improves the speed of a DFT calculation, but may occasionally

cause the SCF calculation to diverge.
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FDIFF STEPSIZE

Displacement used for calculating derivatives by finite difference.

TYPE:

INTEGER

DEFAULT:

100 Corresponding to 0.001 Å.

OPTIONS:

n Use a step size of n× 10−5.

RECOMMENDATION:
Use default, unless on a very flat potential, in which case a larger value should be

used.

FOCK EXTRAP ORDER

Specifies the polynomial order N for Fock matrix extrapolation.

TYPE:

INTEGER

DEFAULT:

0 Do not perform Fock matrix extrapolation.

OPTIONS:

N Extrapolate using an Nth–order polynomial (N > 0).

RECOMMENDATION:

None

FOCK EXTRAP POINTS
Specifies the number Mof old Fock matrices that are retained for use in extrapo-

lation.
TYPE:

INTEGER

DEFAULT:

0 Do not perform Fock matrix extrapolation.

OPTIONS:

M Save M Fock matrices for use in extrapolation (M > N)

RECOMMENDATION:
Higher–order extrapolations with more saved Fock matrices are faster and conserve

energy better than low–order extrapolations, up to a point. In many cases, the

scheme (N = 6, M = 12), in conjunction with SCF CONVERGENCE = 6, is found

to provide about a 50% savings in computational cost while still conserving energy.
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FTC CLASS THRESH MULT
Together with FTC CLASS THRESH ORDER, determines the cutoff threshold for

included a shell–pair in the dd class, i.e., the class that is expanded in terms of

plane waves.
TYPE:

INTEGER

DEFAULT:
5 Multiplicative part of the FTC classification threshold. Together with

the default value of the FTC CLASS THRESH ORDER this leads to

the 5× 10−5 threshold value.
OPTIONS:

n User specified.

RECOMMENDATION:
Use the default. If diffuse basis sets are used and the molecule is relatively big then

tighter FTC classification threshold has to be used. According to our experiments

using Pople–type diffuse basis sets, the default 5 × 10−5 value provides accurate

result for an alanine5 molecule while 1 × 10−5 threshold value for alanine10 and

5× 10−6 value for alanine15 has to be used.

FTC CLASS THRESH ORDER
Together with FTC CLASS THRESH MULT, determines the cutoff threshold for

included a shell–pair in the dd class, i.e., the class that is expanded in terms of

plane waves.
TYPE:

INTEGER

DEFAULT:

5 Logarithmic part of the FTC classification threshold. Corresponds to 10−5

OPTIONS:

n User specified

RECOMMENDATION:

Use the default.

FTC SMALLMOL
Controls whether or not the operator is evaluated on a large grid and stored in

memory to speed up the calculation.
TYPE:

INTEGER

DEFAULT:

1

OPTIONS:
1 Use a big pre-calculated array to speed up the FTC calculations

0 Use this option to save some memory
RECOMMENDATION:

Use the default if possible and use 0 (or buy some more memory) when needed.
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FTC

Controls the overall use of the FTC.

TYPE:

INTEGER

DEFAULT:

0

OPTIONS:
0 Do not use FTC in the Coulomb part

1 Use FTC in the Coulomb part
RECOMMENDATION:

Use FTC when bigger and/or diffuse basis sets are used.

GEOM OPT COORDS

Controls the type of optimization coordinates.

TYPE:

INTEGER

DEFAULT:

-1

OPTIONS:
0 Optimize in Cartesian coordinates.

1 Generate and optimize in internal coordinates, if this fails abort.

-1 Generate and optimize in internal coordinates, if this fails at any stage of the

optimization, switch to Cartesian and continue.

2 Optimize in Z-matrix coordinates, if this fails abort.

-2 Optimize in Z-matrix coordinates, if this fails during any stage of the

optimization switch to Cartesians and continue.
RECOMMENDATION:

Use the default; delocalized internals are more efficient.

GEOM OPT DMAX

Maximum allowed step size. Value supplied is multiplied by 10−3.

TYPE:

INTEGER

DEFAULT:

300 = 0.3

OPTIONS:

n User–defined cutoff.

RECOMMENDATION:

Use default.

GEOM OPT HESSIAN

Determines the initial Hessian status.

TYPE:

STRING

DEFAULT:

DIAGONAL

OPTIONS:
DIAGONAL Set up diagonal Hessian.

READ Have exact or initial Hessian. Use as is if Cartesian, or transform

if internals.
RECOMMENDATION:

An accurate initial Hessian will improve the performance of the optimizer, but is

expensive to compute.
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GEOM OPT LINEAR ANGLE

Threshold for near linear bond angles (degrees).

TYPE:

INTEGER

DEFAULT:

165 degrees.

OPTIONS:

n User–defined level.

RECOMMENDATION:

Use default.

GEOM OPT MAX CYCLES

Maximum number of optimization cycles.

TYPE:

INTEGER

DEFAULT:

50

OPTIONS:

n User defined positive integer.

RECOMMENDATION:
The default should be sufficient for most cases. Increase if the initial guess geom-

etry is poor, or for systems with shallow potential wells.

GEOM OPT MAX DIIS

Controls maximum size of subspace for GDIIS.

TYPE:

INTEGER

DEFAULT:

0

OPTIONS:
0 Do not use GDIIS.

-1 Default size = min(NDEG, NATOMS, 4) NDEG = number of molecular

degrees of freedom.

n Size specified by user.
RECOMMENDATION:

Use default or do not set n too large.

GEOM OPT MODE

Determines Hessian mode followed during a transition state search.

TYPE:

INTEGER

DEFAULT:

0

OPTIONS:
0 Mode following off.

n Maximize along mode n.
RECOMMENDATION:

Use default, for geometry optimizations.
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GEOM OPT PRINT

Controls the amount of Optimize print output.

TYPE:

INTEGER

DEFAULT:

3 Error messages, summary, warning, standard information and gradient print out.

OPTIONS:
0 Error messages only.

1 Level 0 plus summary and warning print out.

2 Level 1 plus standard information.

3 Level 2 plus gradient print out.

4 Level 3 plus Hessian print out.

5 Level 4 plus iterative print out.

6 Level 5 plus internal generation print out.

7 Debug print out.
RECOMMENDATION:

Use the default.

GEOM OPT SYMFLAG

Controls the use of symmetry in Optimize.

TYPE:

INTEGER

DEFAULT:

1

OPTIONS:
1 Make use of point group symmetry.

0 Do not make use of point group symmetry.
RECOMMENDATION:

Use default.

GEOM OPT TOL DISPLACEMENT

Convergence on maximum atomic displacement.

TYPE:

INTEGER

DEFAULT:

1200 ≡ 1200× 10−6 tolerance on maximum atomic displacement.

OPTIONS:

n Integer value (tolerance = n× 10−6).

RECOMMENDATION:
Use the default. To converge GEOM OPT TOL GRADIENT and one of

GEOM OPT TOL DISPLACEMENT and GEOM OPT TOL ENERGY must be sat-

isfied.
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GEOM OPT TOL ENERGY

Convergence on energy change of successive optimization cycles.

TYPE:

INTEGER

DEFAULT:

100 ≡ 100× 10−8 tolerance on maximum gradient component.

OPTIONS:

n Integer value (tolerance = value n× 10−8).

RECOMMENDATION:
Use the default. To converge GEOM OPT TOL GRADIENT and one of

GEOM OPT TOL DISPLACEMENT and GEOM OPT TOL ENERGY must be sat-

isfied.

GEOM OPT TOL GRADIENT

Convergence on maximum gradient component.

TYPE:

INTEGER

DEFAULT:

300 ≡ 300× 10−6 tolerance on maximum gradient component.

OPTIONS:

n Integer value (tolerance = n× 10−6).

RECOMMENDATION:
Use the default. To converge GEOM OPT TOL GRADIENT and one of

GEOM OPT TOL DISPLACEMENT and GEOM OPT TOL ENERGY must be sat-

isfied.

GEOM OPT UPDATE

Controls the Hessian update algorithm.

TYPE:

INTEGER

DEFAULT:

-1

OPTIONS:
-1 Use the default update algorithm.

0 Do not update the Hessian (not recommended).

1 Murtagh–Sargent update.

2 Powell update.

3 Powell/Murtagh-Sargent update (TS default).

4 BFGS update (OPT default).

5 BFGS with safeguards to ensure retention of positive definiteness

(GDISS default).
RECOMMENDATION:

Use default.



Appendix C: Q-Chem Quick Reference 367

GEOM PRINT

Controls the amount of geometric information printed at each step.

TYPE:

LOGICAL

DEFAULT:

FALSE

OPTIONS:
TRUE Prints out all geometric information; bond distances, angles, torsions.

FALSE Normal printing of distance matrix.
RECOMMENDATION:

Use if you want to be able to quickly examine geometric parameters at the begin-

ning and end of optimizations. Only prints in the beginning of single point energy

calculations.

GRAIN

Controls the number of lowest–level boxes in one dimension for CFMM.

TYPE:

INTEGER

DEFAULT:

-1 Program decides best value, turning on CFMM when useful

OPTIONS:
-1 Program decides best value, turning on CFMM when useful

1 Do not use CFMM

n ≥ 8 Use CFMM with n lowest–level boxes in one dimension
RECOMMENDATION:

This is an expert option; either use the default, or use a value of 1 if CFMM is

not desired.

GUI

Controls the output of auxiliary information for third party packages.

TYPE:

INTEGER

DEFAULT:

0

OPTIONS:
0 No auxiliary output is printed.

2 Auxiliary information is printed to the file Test.FChk.
RECOMMENDATION:

Use default unless the additional information is required. Please note that any

existing Test.FChk file will be overwritten.

GVB AMP SCALE
Scales the default orbital amplitude iteration step size by n/1000 for IP/RCC. PP

amplitude equations are solved analytically, so this parameter does not affect PP.
TYPE:

INTEGER

DEFAULT:

1000 Corresponding to 100%

OPTIONS:

n User-defined, 0–1000

RECOMMENDATION:
Default is usually fine, but in some highly–correlated systems it can help with

convergence to use smaller values.
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GVB GUESS MIX
Similar to SCF GUESS MIX, it breaks alpha–beta symmetry for UPP by mixing

the alpha HOMO and LUMO orbitals according to the user–defined fraction of

LUMO to add the HOMO. 100 corresponds to a 1:1 ratio of HOMO and LUMO

in the mixed orbitals.
TYPE:

INTEGER

DEFAULT:

0

OPTIONS:

n User–defined, 0 ≤ n ≤ 100

RECOMMENDATION:

25 often works well to break symmetry without overly impeding convergence.

GVB LOCAL

Sets the localization scheme used in the initial guess wave function.

TYPE:

INTEGER

DEFAULT:

2 Pipek–Mezey orbitals

OPTIONS:
1 Boys localized orbitals

2 Pipek–Mezey orbitals
RECOMMENDATION:

Different initial guesses can sometimes lead to different solutions. It can be helpful

to try both to ensure the global minimum has been found.

GVB N PAIRS
Alternative to CC REST OCC and CC REST VIR for setting active space size in

GVB and valence coupled cluster methods.
TYPE:

INTEGER

DEFAULT:

PP active space (1 occ and 1 virt for each valence electron pair)

OPTIONS:

n user–defined

RECOMMENDATION:
Use default unless one wants to study a special active space. When using small

active spaces, it is important to ensure that the proper orbitals are incorporated

in the active space. If not, use the � reorder mo feature to adjust the SCF orbitals

appropriately.

GVB ORB CONV
The GVB–CC wave function is considered converged when the root–mean–square

orbital gradient and orbital step sizes are less than 10−GVB ORB CONV. Adjust

THRESH simultaneously.
TYPE:

INTEGER

DEFAULT:

5

OPTIONS:

n User–defined

RECOMMENDATION:
Use 6 for PP(2) jobs or geometry optimizations. Tighter convergence (i.e. 7 or

higher) cannot always be reliably achieved.
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GVB ORB MAX ITER
Controls the number of orbital iterations allowed in GVB–CC calculations. Some

jobs, particularly unrestricted PP jobs can require 500–1000 iterations.
TYPE:

INTEGER

DEFAULT:

256

OPTIONS:

User–defined number of iterations.

RECOMMENDATION:
Default is typically adequate, but some jobs, particularly UPP jobs, can require

500–1000 iterations if converged tightly.

GVB ORB SCALE

Scales the default orbital step size by n/1000.

TYPE:

INTEGER

DEFAULT:

1000 Corresponding to 100%

OPTIONS:

n User–defined, 0–1000

RECOMMENDATION:
Default is usually fine, but for some stretched geometries it can help with conver-

gence to use smaller values.

GVB RESTART

Restart a job from previously–converged GVB–CC orbitals.

TYPE:

LOGICAL

DEFAULT:

FALSE

OPTIONS:

TRUE/FALSE

RECOMMENDATION:
Useful when trying to converge to the same GVB solution at slightly different

geometries, for example.

GVB UNRESTRICTED

Controls restricted versus unrestricted PP jobs. Usually handled automatically.

TYPE:

LOGICAL

DEFAULT:

same value as UNRESTRICTED

OPTIONS:

TRUE/FALSE

RECOMMENDATION:
Set this variable explicitly only to do a UPP job from an RHF or ROHF initial

guess.
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GVB PRINT

Controls the amount of information printed during a GVB–CC job.

TYPE:

INTEGER

DEFAULT:

0

OPTIONS:

n User–defined

RECOMMENDATION:

Should never need to go above 0 or 1.

IDERIV
Controls the order of derivatives that are evaluated analytically. The user is not

normally required to specify a value, unless numerical derivatives are desired. The

derivatives will be evaluated numerically if IDERIV is set lower than JOBTYPE

requires.
TYPE:

INTEGER

DEFAULT:

Set to the order of derivative that JOBTYPE requires

OPTIONS:
2 Analytic second derivatives of the energy (Hessian)

1 Analytic first derivatives of the energy.

0 Analytic energies only.
RECOMMENDATION:

Usually set to the maximum possible for efficiency. Note that IDERIV will be set

lower if analytic derivatives of the requested order are not available.

IGDEFIELD
Triggers the calculation of the electrostatic potential and/or the electric field at

the points given in the file ESPGrid.
TYPE:

INTEGER

DEFAULT:

UNDEFINED

OPTIONS:
O Computes ESP.

1 Computes ESP and EFIELD.

2 Computes EFIELD.
RECOMMENDATION:

Must use this � rem when IGDESP is specified.
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IGDESP
Controls evaluation of the electrostatic potential on a grid of points. If enabled,

the output is in an ACSII file, plot.esp, in the format x, y, z, esp for each point.
TYPE:

INTEGER

DEFAULT:

none no electrostatic potential evaluation

OPTIONS:
−1 read grid input via the � plots section of the input deck

0 Generate the ESP values at all nuclear positions.

+n read n grid points from the ACSII file ESPGrid.
RECOMMENDATION:

None

INCDFT DENDIFF THRESH

Sets the threshold for screening density matrix values in the IncDFT procedure.

TYPE:

INTEGER

DEFAULT:

SCF CONVERGENCE + 3

OPTIONS:

n Corresponding to a threshold of 10−n.

RECOMMENDATION:
If the default value causes convergence problems, set this value higher to tighten

the threshold.

INCDFT DENDIFF VARTHRESH
Sets the lower bound for the variable threshold for screening density matrix values

in the IncDFT procedure. The threshold will begin at this value and then vary

depending on the error in the current SCF iteration until the value specified by

INCDFT DENDIFF THRESH is reached. This means this value must be set lower

than INCDFT DENDIFF THRESH.
TYPE:

INTEGER

DEFAULT:

0 Variable threshold is not used.

OPTIONS:

n Corresponding to a threshold of 10−n.

RECOMMENDATION:
If the default value causes convergence problems, set this value higher to tighten

accuracy. If this fails, set to 0 and use a static threshold.

INCDFT GRIDDIFF THRESH

Sets the threshold for screening functional values in the IncDFT procedure

TYPE:

INTEGER

DEFAULT:

SCF CONVERGENCE + 3

OPTIONS:

n Corresponding to a threshold of 10−n.

RECOMMENDATION:
If the default value causes convergence problems, set this value higher to tighten

the threshold.
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INCDFT GRIDDIFF VARTHRESH
Sets the lower bound for the variable threshold for screening the functional values

in the IncDFT procedure. The threshold will begin at this value and then vary

depending on the error in the current SCF iteration until the value specified by

INCDFT GRIDDIFF THRESH is reached. This means that this value must be set

lower than INCDFT GRIDDIFF THRESH.
TYPE:

INTEGER

DEFAULT:

0 Variable threshold is not used.

OPTIONS:

n Corresponding to a threshold of 10−n.

RECOMMENDATION:
If the default value causes convergence problems, set this value higher to tighten

accuracy. If this fails, set to 0 and use a static threshold.

INCDFT

Toggles the use of the IncDFT procedure for DFT energy calculations.

TYPE:

LOGICAL

DEFAULT:

TRUE

OPTIONS:
FALSE Do not use IncDFT

TRUE Use IncDFT
RECOMMENDATION:

Turning this option on can lead to faster SCF calculations, particularly towards

the end of the SCF. Please note that for some systems use of this option may lead

to convergence problems.

INCFOCK

Iteration number after which the incremental Fock matrix algorithm is initiated

TYPE:

INTEGER

DEFAULT:

1 Start INCFOCK after iteration number 1

OPTIONS:

User–defined (0 switches INCFOCK off)

RECOMMENDATION:

May be necessary to allow several iterations before switching on INCFOCK.

INTCAV

A flag to select the surface integration method.

TYPE:

INTEGER

DEFAULT:

0

OPTIONS:
0 Single center Lebedev integration.

1 Single center spherical polar integration.
RECOMMENDATION:

The Lebedev integration is by far the more efficient.
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INTEGRALS BUFFER

Controls the size of in–core integral storage buffer.

TYPE:

INTEGER

DEFAULT:

15 15 Megabytes.

OPTIONS:

User defined size.

RECOMMENDATION:

Use the default, or consult your systems administrator for hardware limits.

INTEGRAL 2E OPR

Determines the two–electron operator.

TYPE:

INTEGER

DEFAULT:

-2 Coulomb Operator.

OPTIONS:
-1 Apply the CASE approximation.

-2 Coulomb Operator.
RECOMMENDATION:

Use default unless the CASE operator is desired.

INTRACULE
Controls whether intracule properties are calculated (see also the � intracule sec-

tion).
TYPE:

LOGICAL

DEFAULT:

FALSE

OPTIONS:
FALSE No intracule properties.

TRUE Evaluate intracule properties.
RECOMMENDATION:

None

IOPPRD

Specifies the choice of system operator form.

TYPE:

INTEGER

DEFAULT:

0

OPTIONS:
0 Symmetric form.

1 Non-symmetric form.
RECOMMENDATION:

The default uses more memory but is generally more efficient, we recommend its

use unless there is shortage of memory available.
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IROTGR

Rotation of the cavity surface integration grid.

TYPE:

INTEGER

DEFAULT:

2

OPTIONS:
0 No rotation.

1 Rotate initial xyz axes of the integration grid to coincide

with principal moments of nuclear inertia (relevant if ITRNGR=1)

2 Rotate initial xyz axes of integration grid to coincide with

principal moments of nuclear charge (relevant if ITRNGR=2)

3 Rotate initial xyz axes of the integration grid through user-specified

Euler angles as defined by Wilson, Decius, and Cross.
RECOMMENDATION:

The default is recommended unless the knowledgeable user has good reason oth-

erwise.

ISHAPE

A flag to set the shape of the cavity surface.

TYPE:

INTEGER

DEFAULT:

0

OPTIONS:
0 use the electronic isodensity surface.

1 use a spherical cavity surface.
RECOMMENDATION:

Use the default surface.

ISOTOPES

Specifies if non–default masses are to be used in the frequency calculation.

TYPE:

LOGICAL

DEFAULT:

FALSE

OPTIONS:
FALSE Use default masses only.

TRUE Read isotope masses from � isotopes section.
RECOMMENDATION:

None
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ITRNGR

Translation of the cavity surface integration grid.

TYPE:

INTEGER

DEFAULT:

2

OPTIONS:
0 No translation (i.e., center of the cavity at the origin

of the atomic coordinate system)

1 Translate to the center of nuclear mass.

2 Translate to the center of nuclear charge.

3 Translate to the midpoint of the outermost atoms.

4 Translate to midpoint of the outermost non-hydrogen atoms.

5 Translate to user-specified coordinates in Bohr.

6 Translate to user-specified coordinates in Angstroms.
RECOMMENDATION:

The default value is recommended unless the single–center integrations procedure

fails.

JOBTYPE

Specifies the type of calculation.

TYPE:

STRING

DEFAULT:

SP

OPTIONS:
SP Single point energy.

OPT Geometry Minimization.

TS Transition Structure Search.

FREQ Frequency Calculation.

FORCE Analytical Force calculation.

RPATH Intrinsic Reaction Coordinate calculation.

NMR NMR chemical shift calculation.
RECOMMENDATION:

Job dependent

LINEQ
Flag to select the method for solving the linear equations that determine the

apparent point charges on the cavity surface.
TYPE:

INTEGER

DEFAULT:

1

OPTIONS:
0 use LU decomposition in memory if space permits, else switch to LINEQ=2

1 use conjugate gradient iterations in memory if space permits, else use LINEQ=2

2 use conjugate gradient iterations with the system matrix stored externally on disk.
RECOMMENDATION:

The default should be sufficient in most cases.
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LIN K

Controls whether linear scaling evaluation of exact exchange (LinK) is used.

TYPE:

LOGICAL

DEFAULT:

Program chooses, switching on LinK whenever CFMM is used.

OPTIONS:
TRUE Use LinK

FALSE Do not use LinK
RECOMMENDATION:

Use for HF and hybrid DFT calculations with large numbers of atoms.

MAX CIS CYCLES

Maximum number of CIS iterative cycles allowed

TYPE:

INTEGER

DEFAULT:

30

OPTIONS:

n User–defined number of cycles

RECOMMENDATION:

Default is usually sufficient.

MAX DIIS CYCLES
The maximum number of DIIS iterations before switching to (geometric) di-

rect minimization when SCF ALGORITHM is DIIS GDM or DIIS DM. See also

THRESH DIIS SWITCH.
TYPE:

INTEGER

DEFAULT:

50

OPTIONS:
1 Only a single Roothaan step before switching to (G)DM

n n DIIS iterations before switching to (G)DM.
RECOMMENDATION:

None

MAX SCF CYCLES

Controls the maximum number of SCF iterations permitted.

TYPE:

INTEGER

DEFAULT:

50

OPTIONS:

User–defined.

RECOMMENDATION:

Increase for slowly converging systems such as those containing transition metals.
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MAX SUB FILE NUM

Sets the maximum number of sub files allowed.

TYPE:

INTEGER

DEFAULT:

16 Corresponding to a total of 32Gb for a given file.

OPTIONS:

n User–defined number of gigabytes.

RECOMMENDATION:

Leave as default, or adjust according to your system limits.

MEM STATIC

Sets the memory for individual program modules.

TYPE:

INTEGER

DEFAULT:

64 corresponding to 64 Mb.

OPTIONS:

n User–defined number of megabytes.

RECOMMENDATION:
For direct and semi–direct MP2 calculations, this must exceed OVN + require-

ments for AO integral evaluation (32–160 Mb), as discussed above.

MEM TOTAL

Sets the total memory available to Q-Chem, in megabytes.

TYPE:

INTEGER

DEFAULT:

2000 (2 Gb)

OPTIONS:

n User–defined number of megabytes.

RECOMMENDATION:
Use default, or set to the physical memory of your machine. Note that if more

than 1GB is specified for a Coupled Cluster job, the memory is allocated as follows

12% MEM STATIC

3% CC TMPBUFFSIZE

50% CC CC BLCK TNSR BUFFSIZE

35% Other memory requirements:

METECO

Sets the threshold criteria for discarding shell–pairs.

TYPE:

INTEGER

DEFAULT:

2 Discard shell–pairs below 10−THRESH.

OPTIONS:
1 Discard shell–pairs four orders of magnitude below machine precision.

2 Discard shell–pairs below 10−THRESH.
RECOMMENDATION:

Use default.
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MM CHARGES

Requests the calculation of multipole–derived charges (MDCs).

TYPE:

LOGICAL

DEFAULT:

FALSE

OPTIONS:

TRUE Calculates the MDCs and also the traceless form of the multipole moments

RECOMMENDATION:
Set to TRUE if MDCs or the traceless form of the multipole moments are desired.

The calculation does not take long.

MOLDEN FORMAT
Requests a MolDen–formatted input file containing information from a Q-Chem

job.
TYPE:

LOGICAL

DEFAULT:

False

OPTIONS:

True Append MolDen input file at the end of the Q-Chem output file.

RECOMMENDATION:

None.

MOM PRINT

Switches printing on within the MOM procedure.

TYPE:

LOGICAL

DEFAULT:

FALSE

OPTIONS:
FALSE Printing is turned off

TRUE Printing is turned on.
RECOMMENDATION:

None

MOM START

Determines when MOM is switched on to stabilize DIIS iterations.

TYPE:

INTEGER

DEFAULT:

0 (FALSE)

OPTIONS:
0 (FALSE) MOM is not used

n MOM begins on cycle n.
RECOMMENDATION:

Set to 1 if preservation of initial orbitals is desired. If MOM is to be used to aid

convergence, an SCF without MOM should be run to determine when the SCF

starts oscillating. MOM should be set to start just before the oscillations.
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MOPROP CONV 1ST

Sets the convergence criterium for CPSCF and 1st order TDSCF.

TYPE:

INTEGER

DEFAULT:

6

OPTIONS:

n < 10 Convergence threshold set to 10−n.

RECOMMENDATION:

None

MOPROP CONV 2ND

Sets the convergence criterium for second–order TDSCF.

TYPE:

INTEGER

DEFAULT:

6

OPTIONS:

n < 10 Convergence threshold set to 10−n.

RECOMMENDATION:

None

MOPROP DIIS DIM SS

Specified the DIIS subspace dimension.

TYPE:

INTEGER

DEFAULT:

20

OPTIONS:
0 No DIIS.

n Use a subspace of dimension n.
RECOMMENDATION:

None

MOPROP DIIS

Controls the use of Pulays DIIS.

TYPE:

INTEGER

DEFAULT:

5

OPTIONS:
0 Turn off DIIS.

5 Turn on DIIS.
RECOMMENDATION:

None
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MOPROP MAXITER 1ST

The maximal number of iterations for CPSCF and first–order TDSCF.

TYPE:

INTEGER

DEFAULT:

50

OPTIONS:

n Set maximum number of iterations to n.

RECOMMENDATION:

Use default.

MOPROP MAXITER 2ND

The maximal number of iterations for second–order TDSCF.

TYPE:

INTEGER

DEFAULT:

50

OPTIONS:

n Set maximum number of iterations to n.

RECOMMENDATION:

Use default.

MOPROP PERTNUM

Set the number of perturbed densities that will to be treated together.

TYPE:

INTEGER

DEFAULT:

0

OPTIONS:
0 All at once.

n Treat the purturbed densities batchwise.
RECOMMENDATION:

Use default

MOPROP

Specifies the job for mopropman.

TYPE:

INTEGER

DEFAULT:

0 Do not run mopropman.

OPTIONS:
1 NMR chemical shielding tensors.

2 Static polarizability.

100 Dynamic polarizability.

101 First hyperpolarizability.

102 First hyperpolarizability, reading First order results from disk.

103 First hyperpolarizability using Wigner’s (2n+ 1) rule.

104 First hyperpolarizability using Wigner’s (2n+ 1) rule, reading

first order results from disk.
RECOMMENDATION:

None.
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MULTIPOLE ORDER
Determines highest order of multipole moments to print if wavefunction analysis

requested.
TYPE:

INTEGER

DEFAULT:

4

OPTIONS:

n Calculate moments to nth order.

RECOMMENDATION:

Use default unless higher multipoles are required.

NBO

Controls the use of the NBO package.

TYPE:

LOGICAL

DEFAULT:

FALSE

OPTIONS:
FALSE Do not invoke the NBO package.

TRUE Do invoke the NBO package.
RECOMMENDATION:

None

NPTLEB
The number of points used in the Lebedev grid for the single–center surface inte-

gration. (Only relavent if INTCAV=0).
TYPE:

INTEGER

DEFAULT:

1202

OPTIONS:
Valid choices are: 6, 18, 26, 38, 50, 86, 110, 146, 170, 194, 302, 350, 434, 590, 770,

974, 1202, 1454, 1730, 2030, 2354, 2702, 3074, 3470, 3890, 4334,

4802, or 5294.
RECOMMENDATION:

The default value has been found adequate to obtain the energy to within 0.1

kcal/mol for solutes the size of monosubstituted benzenes.

NPTTHE, NPTPHI
The number of (θ,φ) points used for single–centered surface integration (relevant

only if INTCAV=1).
TYPE:

INTEGER

DEFAULT:

8,16

OPTIONS:

θ,φ specifying the number of points.

RECOMMENDATION:
These should be multiples of 2 and 4 respectively, to provide symmetry sufficient

for all Abelian point groups. Defaults are too small for all but the tiniest and

simplest solutes.



Appendix C: Q-Chem Quick Reference 382

N FROZEN CORE

Sets the number of frozen core orbitals in a post–Hartree–Fock calculation.

TYPE:

INTEGER

DEFAULT:

0

OPTIONS:
FC Frozen Core approximation (all core orbitals frozen).

n Freeze n core orbitals.
RECOMMENDATION:

While the default is not to freeze orbitals, MP2 calculations are more efficient with

frozen core orbitals. Use FC if possible.

N FROZEN VIRTUAL

Sets the number of frozen virtual orbitals in a post–Hartree–Fock calculation.

TYPE:

INTEGER

DEFAULT:

0

OPTIONS:

n Freeze n virtual orbitals.

RECOMMENDATION:

None

N I SERIES

Sets summation limit for series expansion evaluation of in(x).

TYPE:

INTEGER

DEFAULT:

40

OPTIONS:

n > 0

RECOMMENDATION:

Lower values speed up the calculation, but may affect accuracy.

N J SERIES

Sets summation limit for series expansion evaluation of jn(x).

TYPE:

INTEGER

DEFAULT:

40

OPTIONS:

n > 0

RECOMMENDATION:

Lower values speed up the calculation, but may affect accuracy.
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N SOL

Specifies number of atoms or orbitals in $solute

TYPE:

INTEGER

DEFAULT:

No default

OPTIONS:

User defined

RECOMMENDATION:

None

N WIG SERIES

Sets summation limit for Wigner integrals.

TYPE:

INTEGER

DEFAULT:

10

OPTIONS:

n < 100

RECOMMENDATION:

Increase n for greater accuracy.

OMEGA

Controls the degree of attenuation of the Coulomb operator.

TYPE:

INTEGER

DEFAULT:

No default

OPTIONS:

n Corresponding to ω = n/1000

RECOMMENDATION:

None

PAO ALGORITHM

Algorithm used to optimize polarized atomic orbitals (see PAO METHOD)

TYPE:

INTEGER

DEFAULT:

0

OPTIONS:
0 Use efficient (and riskier) strategy to converge PAOs.

1 Use conservative (and slower) strategy to converge PAOs.
RECOMMENDATION:

None
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PAO METHOD

Controls evaluation of polarized atomic orbitals (PAOs).

TYPE:

STRING

DEFAULT:

EPAO For local MP2 calculations Otherwise no default.

OPTIONS:
PAO Perform PAO–SCF instead of conventional SCF.

EPAO Obtain EPAO’s after a conventional SCF.
RECOMMENDATION:

None

POP MULLIKEN

Controls running of Mulliken population analysis.

TYPE:

LOGICAL/INTEGER

DEFAULT:

TRUE (or 1)

OPTIONS:
FALSE (or 0) Do not calculate Mulliken Population.

TRUE (1) Calculate Mulliken population

2 Also calculate shell populations for each occupied orbital.
RECOMMENDATION:

Leave as TRUE. Trivial additional calculation

PRINT CORE CHARACTER

Determines the print level for the CORE CHARACTER option.

TYPE:

INTEGER

DEFAULT:

0

OPTIONS:
0 No additional output is printed.

1 Prints core characters of occupied MOs.

2 Print level 1, plus prints the core character of AOs.
RECOMMENDATION:

Use default, unless you are uncertain about what the core character is.

PRINT DIST MATRIX

Controls the printing of the inter–atomic distance matrix

TYPE:

INTEGER

DEFAULT:

15

OPTIONS:
0 Turns off the printing of the distance matrix

n Prints the distance matrix if the number of atoms in the molecule

is less than or equal to n.
RECOMMENDATION:

Use default unless distances are required for large systems
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PRINT GENERAL BASIS

Controls print out of built in basis sets in input format

TYPE:

LOGICAL

DEFAULT:

FALSE

OPTIONS:
TRUE Print out standard basis set information

FALSE Do not print out standard basis set information
RECOMMENDATION:

Useful for modification of standard basis sets.

PRINT ORBITALS

Prints orbital coefficients with atom labels in analysis part of output.

TYPE:

INTEGER/LOGICAL

DEFAULT:

FALSE

OPTIONS:
FALSE Do not print any orbitals.

TRUE Prints occupied orbitals plus 5 virtuals.

NVIRT Number of virtuals to print.
RECOMMENDATION:

Use TRUE unless more virtuals are desired.

PSEUDO CANONICAL
When SCF ALGORITHM = DM, this controls the way the initial step, and steps

after subspace resets are taken.
TYPE:

LOGICAL

DEFAULT:

FALSE

OPTIONS:
FALSE Use Roothaan steps when (re)initializing

TRUE Use a steepest descent step when (re)initializing
RECOMMENDATION:

The default is usually more efficient, but choosing TRUE sometimes avoids prob-

lems with orbital reordering.

PURECART

INTEGER

TYPE:

Controls the use of pure (spherical harmonic) or Cartesian angular forms

DEFAULT:

2111 Cartesian h–functions and pure g, f, d functions

OPTIONS:

hgfd Use 1 for pure and 2 for Cartesian.

RECOMMENDATION:

This is pre–defined for all standard basis sets
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QMMM CHARGES

Controls the printing of QM charges to file.

TYPE:

LOGICAL

DEFAULT:

FALSE

OPTIONS:
TRUE Writes a charges.dat file with the Mulliken charges from the QM region.

FALSE No file written.
RECOMMENDATION:

Use default unless running calculations with Charmm where charges on the QM

region need to be saved.

QMMM PRINT

Controls the amount of output printed from a QM/MM job.

TYPE:

LOGICAL

DEFAULT:

FALSE

OPTIONS:
TRUE Limit molecule, point charge, and analysis printing.

FALSE Normal printing.
RECOMMENDATION:

Use default unless running calculations with Charmm.

QM MM

Turns on the Q-Chem/Charmm interface.

TYPE:

LOGICAL

DEFAULT:

FALSE

OPTIONS:
TRUE Do QM/MM calculation through the Q-Chem/Charmm interface.

FALSE Turn this feature off.
RECOMMENDATION:

Use default unless running calculations with Charmm.

RADSPH

Sphere radius used to specify the cavity surface (Only relevant for ISHAPE=1).

TYPE:

FLOAT

DEFAULT:

Half the distance between the outermost atoms plus 1.4 Angstroms.

OPTIONS:

Real number specifying the radius in bohr (if positive) or in Angstroms (if negative).

RECOMMENDATION:

Make sure that the cavity radius is larger than the length of the molecule.
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RC R0
Determines the parameter in the Gaussian weight function used to smooth the

density at the nuclei.
TYPE:

INTEGER

DEFAULT:

0

OPTIONS:
0 Corresponds the traditional delta function spin and charge densities

n corresponding to n× 10−3 a.u.
RECOMMENDATION:

We recommend value of 250 for a typical spit valence basis. For basis sets with in-

creased flexibility in the nuclear vicinity the smaller values of r0 also yield adequate

spin density.

READ VDW

Controls the input of user–defined atomic radii for ChemSol calculation.

TYPE:

LOGICAL

DEFAULT:

FALSE

OPTIONS:
FALSE Use default ChemSol parameters.

TRUE Read from the � van der waals section of the input file.
RECOMMENDATION:

None.

RHOISO
Value of the electronic isodensity contour used to specify the cavity surface. (Only

relevant for ISHAPE = 0).
TYPE:

FLOAT

DEFAULT:

0.001

OPTIONS:

Real number specifying the density in electrons/bohr3.

RECOMMENDATION:
The default value is optimal for most situations. Increasing the value produces a

smaller cavity which ordinarily increases the magnitude of the solvation energy.

ROTTHE ROTPHI ROTCHI
Euler angles (θ, φ, χ) in degrees for user-specified rotation of the cavity surface.

(relevant if IROTGR=3)
TYPE:

FLOAT

DEFAULT:

0,0,0

OPTIONS:

θ, φ, χ in degrees

RECOMMENDATION:

None.
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RPATH COORDS

Determines which coordinate system to use in the IRC search.

TYPE:

INTEGER

DEFAULT:

1

OPTIONS:
1 Use mass–weighted coordinates.

2 Use Z –matrix coordinates.
RECOMMENDATION:

Use default.

RPATH DIRECTION
Determines the direction of the eigenmode to follow. This will not usually be

known prior to the Hessian diagonalization.
TYPE:

INTEGER

DEFAULT:

1

OPTIONS:
1 Descend in the positive direction of the eigenmode.

-1 Descend in the negative direction of the eigenmode.
RECOMMENDATION:

It is usually not possible to determine in which direction to go a priori, and

therefore both directions will need to be considered.

RPATH MAX CYCLES

Specifies the maximum number of points to find on the reaction path.

TYPE:

INTEGER

DEFAULT:

20

OPTIONS:

n User–defined number of cycles.

RECOMMENDATION:

Use more points if the minimum is desired, but not reached using the default.

RPATH MAX STEPSIZE

Specifies the maximum step size to be taken (in thousandths of a.u.).

TYPE:

INTEGER

DEFAULT:

150 corresponding to a step size of 0.15 a.u..

OPTIONS:

n Step size = n/1000.

RECOMMENDATION:

None.
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RPATH PRINT

Specifies the print output level.

TYPE:

INTEGER

DEFAULT:

2

OPTIONS:

n

RECOMMENDATION:
Use default, little additional information is printed at higher levels. Most of the

output arises from the multiple single point calculations that are performed along

the reaction pathway.

RPATH TOL DISPLACEMENT
Specifies the convergence threshold for the step. If a step size is chosen by the

algorithm that is smaller than this, the path is deemed to have reached the mini-

mum.
TYPE:

INTEGER

DEFAULT:

5000 Corresponding to 0.005 a.u.

OPTIONS:

n User–defined. Tolerance = n/1000000.

RECOMMENDATION:

None.

RPA

Do an RPA calculation in addition to a CIS calculation

TYPE:

LOGICAL

DEFAULT:

False

OPTIONS:
False Do not do an RPA calculation

True Do an RPA calculation.
RECOMMENDATION:

None

SAVE LAST GPX
Save last G [Px] when calculating dynamic polarizabilities in order to call moprop-

man in a second run with MOPROP = 102.
TYPE:

INTEGER

DEFAULT:

0

OPTIONS:
0 False

1 True
RECOMMENDATION:

None
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SCF ALGORITHM

Algorithm used for converging the SCF.

TYPE:

STRING

DEFAULT:

DIIS Pulay DIIS.

OPTIONS:
DIIS Pulay DIIS.

DM Direct minimizer.

DIIS DM Uses DIIS initially, switching to direct minimizer for later iterations

(See THRESH DIIS SWITCH, MAX DIIS CYCLES).

DIIS GDM Use DIIS and then later switch to geometric direct minimization

(See THRESH DIIS SWITCH, MAX DIIS CYCLES).

GDM Geometric Direct Minimization.

ROOTHAAN Roothaan repeated diagonalization.
RECOMMENDATION:

Use DIIS unless wanting ROHF, in which case geometric direct minimization is

recommended. If DIIS fails, DIIS GDM is the recommended fall–back option.

SCF CONVERGENCE
SCF is considered converged when the wavefunction error is less that

10−SCF CONVERGENCE. Adjust the value of THRESH at the same time. Note

that in Q-Chem 3.0 the DIIS error is measured by the maximum error rather

than the RMS error as in previous versions.
TYPE:

INTEGER

DEFAULT:
5 For single point energy calculations.

7 For geometry optimizations and vibrational analysis.

8 For SSG calculations, see Chapter 5.
OPTIONS:

User–defined

RECOMMENDATION:
Tighter criteria for geometry optimization and vibration analysis. Larger values

provide more significant figures, at greater computational cost.

SCF FINAL PRINT
Controls level of output from SCF procedure to Q-Chem output file at the end of

the SCF.
TYPE:

INTEGER

DEFAULT:

0 No extra print out.

OPTIONS:
0 No extra print out.

1 Orbital energies and break–down of SCF energy.

2 Level 1 plus MOs and density matrices.

3 Level 2 plus Fock and density matrices.
RECOMMENDATION:

The break–down of energies is often useful (level 1).
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SCF GUESS ALWAYS
Switch to force the regeneration of a new initial guess for each series of SCF

iterations (for use in geometry optimization).
TYPE:

LOGICAL

DEFAULT:

False

OPTIONS:
False Do not generate a new guess for each series of SCF iterations in an

optimization; use MOs from the previous SCF calculation for the guess,

if available.

True Generate a new guess for each series of SCF iterations in a geometry

optimization.
RECOMMENDATION:

Use default unless SCF convergence issues arise

SCF GUESS MIX
Controls mixing of LUMO and HOMO to break symmetry in the initial guess. For

unrestricted jobs, the mixing is performed only for the alpha orbitals.
TYPE:

INTEGER

DEFAULT:

0 (FALSE) Do not mix HOMO and LUMO in SCF guess.

OPTIONS:
0 (FALSE) Do not mix HOMO and LUMO in SCF guess.

1 (TRUE) Add 10% of LUMO to HOMO to break symmetry.

n Add n× 10% of LUMO to HOMO (0 < n < 10).
RECOMMENDATION:

When performing unrestricted calculations on molecules with an even number of

electrons, it is often necessary to break alpha–beta symmetry in the initial guess

with this option, or by specifying input for � occupied .

SCF GUESS PRINT

Controls printing of guess MOs, Fock and density matrices.

TYPE:

INTEGER

DEFAULT:

0

OPTIONS:
0 Do not print guesses.

SAD

1 Atomic density matrices and molecular matrix.

2 Level 1 plus density matrices.

CORE and GWH

1 No extra output.

2 Level 1 plus Fock and density matrices and, MO coefficients and

eigenvalues.

READ

1 No extra output

2 Level 1 plus density matrices, MO coefficients and eigenvalues.
RECOMMENDATION:

None
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SCF GUESS

Specifies the initial guess procedure to use for the SCF.

TYPE:

STRING

DEFAULT:
SAD Superposition of atomic density (available only with standard basis sets)

GWH For ROHF where a set of orbitals are required.
OPTIONS:

CORE Diagonalize core Hamiltonian

SAD Superposition of atomic density

GWH Apply generalized Wolfsberg–Helmholtz approximation

READ Read previous MOs from disk
RECOMMENDATION:

SAD guess for standard basis sets. For general basis sets, it is best to use the

BASIS2 � rem. Alternatively, try the GWH or core Hamiltonian guess. For ROHF

it can be useful to READ guesses from an SCF calculation on the corresponding

cation or anion. Note that because the density is made spherical, this may favor

an undesired state for atomic systems, especially transition metals.

SCF PRINT

Controls level of output from SCF procedure to Q-Chem output file.

TYPE:

INTEGER

DEFAULT:

0 Minimal, concise, useful and necessary output.

OPTIONS:
0 Minimal, concise, useful and necessary output.

1 Level 0 plus component breakdown of SCF electronic energy.

2 Level 1 plus density, Fock and MO matrices on each cycle.

3 Level 2 plus two–electron Fock matrix components (Coulomb, HF exchange

and DFT exchange-correlation matrices) on each cycle.
RECOMMENDATION:

Proceed with care; can result in extremely large output files at level 2 or higher.

These levels are primarily for program debugging.

SKIP CIS RPA
Skips the solution of the CIS, RPA, TDA or TDDFT equations for wavefunction

analysis.
TYPE:

LOGICAL

DEFAULT:

FALSE

OPTIONS:

TRUE / FALSE

RECOMMENDATION:
Set to true to speed up the generation of plot data if the same calculation has

been run previously with the scratch files saved.
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SOLUTE RADIUS

Sets the Onsager solvent model cavity radius.

TYPE:

INTEGER

DEFAULT:

No default.

OPTIONS:

n a0 = n× 10−5.

RECOMMENDATION:

Use equation (10.1).

SOLVENT DIELECTRIC

Sets the dielectric constant of the Onsager solvent continuum.

TYPE:

INTEGER

DEFAULT:

No default.

OPTIONS:

n ε = n× 10−5.

RECOMMENDATION:

As per required solvent.

SSG

Contols the calculation of the SSG wavefunction.

TYPE:

INTEGER

DEFAULT:

0

OPTIONS:
0 Do not compute the SSG wavefunction

1 Do compute the SSG wavefunction
RECOMMENDATION:

See also the UNRESTRICTED and DIIS SUBSPACE SIZE � rem variables.

STABILITY ANALYSIS

Performs stability analysis for a HF or DFT solution.

TYPE:

LOGICAL

DEFAULT:

FALSE

OPTIONS:
TRUE Perform stability analysis.

FALSE Do not perform stability analysis.
RECOMMENDATION:

Set to TRUE when a HF or DFT solution is suspected to be unstable.
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STATE TO OPT
An alternative to the above two � rem variables which allows the state and sym-

metry to be specified using a single variable
TYPE:

INTEGER ARRAY

DEFAULT:

None

OPTIONS:

[i,j] optimize the jth state of the ith irrep.

RECOMMENDATION:

Do not use in conjuction with CC REFSYM and CC STATE DERIV

SVP CAVITY CONV

Determines the convergence value of the iterative isodensity cavity procedure.

TYPE:

INTEGER

DEFAULT:

10

OPTIONS:

n Convergence threshold set to 10−n.

RECOMMENDATION:

The default value unless convergence problems arise.

SVP CHARGE CONV
Determines the convergence value for the charges on the cavity. When the change

in charges fall below this value, if the electron density is converged, then the

calculation is considered converged.
TYPE:

INTEGER

DEFAULT:

7

OPTIONS:

n Convergence threshold set to 10−n.

RECOMMENDATION:

The default value unless convergence problems arise.

SVP GUESS
Specifies how and if the solvation module will use a given guess for the charges

and cavity points.
TYPE:

INTEGER

DEFAULT:

0

OPTIONS:
0 No guessing.

1 Read a guess from a previous Q-Chem solvation computation.

2 Use a guess specified by the
�
svpirf section from the input

RECOMMENDATION:
It is helpful to also set SCF GUESS to READ when using a guess from a previous

Q-Chem run.
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SVP MEMORY

Specifies the amount of memory for use by the solvation module.

TYPE:

INTEGER

DEFAULT:

125

OPTIONS:

n corresponds to the amount of memory in MB.

RECOMMENDATION:
The default should be fine for medium size molecules with the default Lebedev

grid, only increase if needed.

SVP PATH
Specifies whether to run a gas phase computation prior to performing the solvation

procedure.
TYPE:

INTEGER

DEFAULT:

0

OPTIONS:
0 runs a gas-phase calculation and after

convergence runs the SS(V)PE computation.

1 does not run a gas-phase calculation.
RECOMMENDATION:

Running the gas-phase calculation provides a good guess to start the solvation

stage and provides a more complete set of solvated properties.

SVP

Sets whether to perform the isodensity solvation procedure.

TYPE:

LOGICAL

DEFAULT:

FALSE

OPTIONS:
FALSE Do not perform the SS(V)PE solvation procedure.

TRUE Perform the SS(V)PE solvation procedure.
RECOMMENDATION:

NONE

SYMMETRY DECOMPOSITION

Determines symmetry decompositions to calculate.

TYPE:

INTEGER

DEFAULT:

1

OPTIONS:
0 No symmetry decomposition.

1 Calculate MO eigenvalues and symmetry (if available).

2 Perform symmetry decomposition of kinetic energy and nuclear attraction

matrices.
RECOMMENDATION:

None
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SYMMETRY
Controls the efficiency through the use of point group symmetry for calculating

integrals.
TYPE:

LOGICAL

DEFAULT:

TRUE Use symmetry for computing integrals.

OPTIONS:
TRUE Use symmetry when available.

FALSE Do not use symmetry.
RECOMMENDATION:

Use default unless benchmarking.

SYM IGNORE

Controls whether or not Q-Chem determines the point group of the molecule.

TYPE:

LOGICAL

DEFAULT:

FALSE Do determine the point group.

OPTIONS:

TRUE/FALSE

RECOMMENDATION:

Use default unless you do not want the molecule to be reoriented.

SYM TOL
Controls the tolerance for determining point group symmetry. Differences in atom

locations less than 10−SYM TOL are treated as zero.
TYPE:

INTEGER

DEFAULT:

5 corresponding to 10−5.

OPTIONS:

User defined.

RECOMMENDATION:
Use the default unless the molecule has high symmetry which is not being correctly

identified. Note that relaxing this tolerance too much may introduce errors into

the calculation.

THRESH DIIS SWITCH
The threshold for switching between DIIS extrapolation and direct minimization of

the SCF energy is 10−THRESH DIIS SWITCH when SCF ALGORITHM is DIIS GDM

or DIIS DM. See also MAX DIIS CYCLES

TYPE:

INTEGER

DEFAULT:

2

OPTIONS:

User–defined.

RECOMMENDATION:

None
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THRESH

Cutoff for neglect of two electron integrals. 10−THRESH (THRESH ≤ 14).

TYPE:

INTEGER

DEFAULT:
8 For single point energies.

10 For optimizations and frequency calculations.
OPTIONS:

n for a threshold of 10−n.

RECOMMENDATION:
Should be at least three greater than SCF CONVERGENCE. Increase for more

significant figures, at greater computational cost.

TIME STEP

Specifies the molecular dynamics time step, in atomic units (1 a.u. = 0.0242 fs).

TYPE:

INTEGER

DEFAULT:

None.

OPTIONS:

User–specified.

RECOMMENDATION:
Smaller time steps lead to better energy conservation; too large a time step may

cause the job to fail entirely. Make the time step as large as possible, consistent

with tolerable energy conservation.

TRANX, TRANY, TRANZ
x, y, and z value of user-specified translation (only relevant if ITRNGR is set to 5

or 6
TYPE:

FLOAT

DEFAULT:

0, 0, 0

OPTIONS:

x, y, and z relative to the origin in the appropriate units.

RECOMMENDATION:

None.

TRNSS

Controls whether reduced single excitation space is used

TYPE:

LOGICAL

DEFAULT:

FALSE Use full excitation space

OPTIONS:

TRUE Use reduced excitation space

RECOMMENDATION:

None
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TRTYPE

Controls how reduced subspace is specified

TYPE:

INTEGER

DEFAULT:

1 Select orbitals localized on a set of atoms

OPTIONS:

2 Specify a set of orbitals

RECOMMENDATION:

None

UNRESTRICTED

Controls the use of restricted or unrestricted orbitals.

TYPE:

LOGICAL

DEFAULT:
FALSE (Restricted) Closed–shell systems.

TRUE (Unrestricted) Open–shell systems.
OPTIONS:

TRUE (Unrestricted) Open–shell systems.

FALSE Restricted open–shell HF (ROHF).
RECOMMENDATION:

Use default unless ROHF is desired. Note that for unrestricted calculations on sys-

tems with an even number of electrons it is usually necessary to break alpha–beta

symmetry in the initial guess, by using SCF GUESS MIX or providing � occupied

information (see Section 4.5 on initial guesses).

VARTHRESH
Controls the temporary integral cut–off threshold. tmp thresh = 10−VARTHRESH×
DIIS error

TYPE:

INTEGER

DEFAULT:

0 Turns VARTHRESH off

OPTIONS:

n User–defined threshold

RECOMMENDATION:

3 has been found to be a practical level, and can slightly speed up SCF evaluation.
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VCI

Specifies the number of quanta involved in the VCI calculation.

TYPE:

INTEGER

DEFAULT:

2

OPTIONS:

User-defined

RECOMMENDATION:
The availability depends on the memory of the machine. For example, a machine

with 1.5 GB memory and for molecules with fewer than 3 atoms, VCI(10) can

be carried out, for molecule containing fewer than 5 atoms, VCI(7) can be car-

ried out, for molecule containing fewer than 6 atoms, VCI(4) can be carried out.

For molecules larger than hexa–atomics, VCI(2) is usually available. VCI(1) and

VCI(3) usually overestimated the true energy while VCI(4) usually gives an answer

close to the converged energy.

VIBMAN PRINT

Controls level of extra print out for vibrational analysis.

TYPE:

INTEGER

DEFAULT:

1

OPTIONS:
1 Standard full information print out.

3 Level 1 plus vibrational frequencies in atomic units.

4 Level 3 plus mass–weighted Hessian matrix, projected mass–weighted Hessian

matrix.

6 Level 4 plus vectors for translations and rotations projection matrix.

7 Level 6 plus anharmonic cubic and quartic force field print out.
RECOMMENDATION:

Use default.

WAVEFUNCTION ANALYSIS

Controls the running of the default wavefunction analysis tasks.

TYPE:

LOGICAL

DEFAULT:

TRUE

OPTIONS:
TRUE Perform default wavefunction analysis.

FALSE Do not perform default wavefunction analysis.
RECOMMENDATION:

None
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WIG GRID

Specify angular Lebedev grid for Wigner intracule calculations.

TYPE:

INTEGER

DEFAULT:

194

OPTIONS:

Lebedev grids up to 5810 points.

RECOMMENDATION:

Larger grids if high accuracy required.

WIG LEB

Use Lebedev quadrature to evaluate Wigner integrals.

TYPE:

LOGICAL

DEFAULT:

FALSE

OPTIONS:
FALSE Evaluate Wigner integrals through series summation.

TRUE Use quadrature for Wigner integrals.
RECOMMENDATION:

None

WIG MEM

Reduce memory required in the evaluation of W (u, v).

TYPE:

LOGICAL

DEFAULT:

FALSE

OPTIONS:
FALSE Do not use low memory option.

TRUE Use low memory option.
RECOMMENDATION:

The low memory option is slower, use default unless memory is limited.

WRITE WFN
Specifies whether or not a wfn file is created, which is suitable for use with AIM-

PAC. Note that the output to this file is currently limited to f orbitals, which is

the highest angular momentum implemented in AIMPAC.
TYPE:

STRING

DEFAULT:

(NULL) No output file is created.

OPTIONS:
filename Specifies the output file name. The suffix .wfn will

be appended to this name.
RECOMMENDATION:

None
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XCIS

Do an XCIS calculation in addition to a CIS calculation

TYPE:

LOGICAL

DEFAULT:

False

OPTIONS:
False Do not do an XCIS calculation

True Do an XCIS calculation (requires ROHF ground state).
RECOMMENDATION:

None

XC GRID

Specifies the type of grid to use for DFT calculations.

TYPE:

INTEGER

DEFAULT:

0 SG–0/SG–1 hybrid

OPTIONS:
0 Use SG–0 for H, C, N, and O, SG–1 for all other atoms.

1 Use SG–1 for all atoms.

2 Low Quality.

mn The first six integers correspond to m radial points and the second six

integers correspond to n angular points where possible numbers of Lebedev

angular points are listed in section 4.3.4.

−mn The first six integers correspond to m radial points and the second six

integers correspond to n angular points where the number of Gauss–Legendre

angular points n = 2N2.
RECOMMENDATION:

Use default unless numerical integration problems arise. Larger grids may be

required for optimization and frequency calculations.

XC SMART GRID
Uses SG–0 (where available) for early SCF cycles, and switches to the (larger)

grid specified by XC GRID (which defaults to SG–1, if not otherwise specified)

for final cycles of the SCF.
TYPE:

LOGICAL

DEFAULT:

FALSE

OPTIONS:

TRUE/FALSE

RECOMMENDATION:

The use of the smart grid can save some time on initial SCF cycles.


