

bdi

GDB

JTAG interface for GNU Debugger

ARM7 / ARM9

User Manual

Manual Version 1.18 for BDI2000

©1997-2006 by Abatron AG

bdi

GDB

 for GNU Debugger, BDI2000 (ARM) User Manual 2

© Copyright 1997-2006 by ABATRON AG Switzerland V 1.18

1 Introduction ... 4

1.1 BDI2000... 4
1.2 BDI Configuration .. 5

2 Installation ... 6

2.1 Connecting the BDI2000 to Target... 6
2.1.1 Changing Target Processor Type ... 8
2.1.2 Adaptive Clocking... 9

2.2 Connecting the BDI2000 to Power Supply... 11
2.2.1 External Power Supply ... 11
2.2.2 Power Supply from Target System ... 12

2.3 Status LED «MODE»... 13
2.4 Connecting the BDI2000 to Host ... 14

2.4.1 Serial line communication .. 14
2.4.2 Ethernet communication .. 15

2.5 Installation of the Configuration Software .. 16
2.5.1 Configuration with a Linux / Unix host.. 17
2.5.2 Configuration with a Windows host .. 19
2.5.3 Recover procedure... 20

2.6 Testing the BDI2000 to host connection .. 21
2.7 TFTP server for Windows NT... 21

3 Using bdiGDB.. 22

3.1 Principle of operation... 22
3.2 Configuration File .. 23

3.2.1 Part [INIT]... 24
3.2.2 Part [TARGET] ... 27
3.2.3 Part [HOST].. 32
3.2.4 Part [FLASH] .. 33
3.2.5 Part [REGS] ... 40

3.3 Debugging with GDB ... 42
3.3.1 Target setup.. 42
3.3.2 Connecting to the target... 42
3.3.3 Breakpoint Handling... 43
3.3.4 GDB monitor command.. 43
3.3.5 Target serial I/O via BDI ... 44
3.3.6 Target DCC I/O via BDI .. 45

3.4 Telnet Interface .. 46
3.4.1 Command list ... 47
3.4.2 CP15 Registers .. 48

3.5 Multi-Core Support .. 50

4 Specifications.. 51

5 Environmental notice .. 52

6 Declaration of Conformity (CE).. 52

7 Warranty ... 53

bdi

GDB

 for GNU Debugger, BDI2000 (ARM) User Manual 3

© Copyright 1997-2006 by ABATRON AG Switzerland V 1.18

7 Appendices

A Troubleshooting .. 54

B Maintenance.. 55

C Trademarks .. 57

bdi

GDB

 for GNU Debugger, BDI2000 (ARM) User Manual 4

© Copyright 1997-2006 by ABATRON AG Switzerland V 1.18

1 Introduction

bdiGDB enhances the GNU debugger (GDB), with JTAG debugging for ARM7/ARM9 based targets.
With the builtin Ethernet interface you get a very fast download speed of up to 70Kbytes/sec. No tar-
get communication channel (e.g. serial line) is wasted for debugging purposes. Even better, you can
use fast Ethernet debugging with target systems without network capability. The host to BDI commu-
nication uses the standard GDB remote protocol.

An additional Telnet interface is available for special debug tasks (e.g. force a hardware reset,
program flash memory).

The following figure shows how the BDI2000 interface is connected between the host and the target:

1.1 BDI2000

The BDI2000 is the main part of the bdiGDB system. This small box implements the interface be-
tween the JTAG pins of the target CPU and a 10Base-T ethernet connector. The firmware and the
programable logic of the BDI2000 can be updated by the user with a simple Windows / Linux config-
uration program. The BDI2000 supports 1.8 – 5.0 Volts target systems (3.0 – 5.0 Volts target systems
with Rev. A/B).
.

UNIX / PC Host

GNU Debugger
(GDB)

BDI2000

AAAAbbbbaaaattttrrrroooonnnn AAAAGGGG SSSSwwwwiiiissssssss MMMMaaaaddddeeee

Target System

JTAG Interface

Ethernet (10 BASE-T)

ARM
7TDMI

bdi

GDB

 for GNU Debugger, BDI2000 (ARM) User Manual 5

© Copyright 1997-2006 by ABATRON AG Switzerland V 1.18

1.2 BDI Configuration

As an initial setup, the IP address of the BDI2000, the IP address of the host with the configuration
file and the name of the configuration file is stored within the flash of the BDI2000.
Every time the BDI2000 is powered on, it reads the configuration file via TFTP.
Following an example of a typical configuration file:

; bdiGDB configuration file for ARM PID7T board
; ---
;
[INIT]
WM32 0x0B000020 0x00000000 ; Clear Reset Map
;
[TARGET]
CPUTYPE ARM7TDMI
CLOCK 1 ;JTAG clock (0=Adaptive, 1=8MHz, 2=4MHz,...)
ENDIAN LITTLE ;memory model (LITTLE | BIG)
VECTOR CATCH ;catch unhandled exceptions
BDIMODE AGENT ;the BDI working mode (LOADONLY | AGENT)
BREAKMODE SOFT ;SOFT or HARD
;
[HOST]
IP 151.120.25.100
FILE E:\cygnus\root\usr\demo\arm\myapp
FORMAT COFF
LOAD MANUAL ;<AGENT> load application MANUAL or AUTO after reset

[FLASH]
WORKSPACE 0x00000000 ;workspace in target RAM for fast programming algorithm
CHIPTYPE AM29F ;Flash type (AM29F | AM29BX8 | AM29BX16 | I28BX8 | I28BX16)
CHIPSIZE 0x20000 ;The size of one flash chip in bytes (e.g. AM29F010 = 0x20000)
BUSWIDTH 8 ;The width of the flash memory bus in bits (8 | 16 | 32)
FILE E:\cygnus\root\usr\demo\arm\boot.hex ;The file to program
ERASE 0x04000000 ;erase sector 0 of flash in U12 (AM29F010)
ERASE 0x04004000 ;erase sector 1 of flash
ERASE 0x04008000 ;erase sector 2 of flash
ERASE 0x0400C000 ;erase sector 3 of flash
ERASE 0x04010000 ;erase sector 4 of flash
ERASE 0x04014000 ;erase sector 5 of flash
ERASE 0x04018000 ;erase sector 6 of flash
ERASE 0x0401C000 ;erase sector 7 of flash

Based on the information in the configuration file, the target is automatically initialized after every re-
set.

bdi

GDB

 for GNU Debugger, BDI2000 (ARM) User Manual 6

© Copyright 1997-2006 by ABATRON AG Switzerland V 1.18

2 Installation

2.1 Connecting the BDI2000 to Target

The enclosed cables to the target system are designed for the ARM Development Boards. In case
where the target system has the same connector layout, the cable (14 pin or 20 pin) can be directly
connected.

In order to ensure reliable operation of the BDI (EMC, runtimes, etc.) the target cable length must not
exceed 20 cm (8").

For BDI MAIN / TARGET A connector signals see table on next page.

!

BDI TRGT MODE BDI MAIN BDI OPTION

14 pin Target

BDI2000

AAAAbbbbaaaattttrrrroooonnnn AAAAGGGG SSSSwwwwiiiissssssss MMMMaaaaddddeeee

Target System

ARM

9

 1 13

 14 2

1

10 2

The green LED «TRGT» marked light up when target is powered up

Rev. A
 1 19

 20 2

 Connector

 1 - Vcc Target
 2 - NC
 3 - TRST
 4 - NC
 5 - TDI
 6 - NC
 7 - TMS
 8 - GROUND
 9 - TCK
10 - GROUND
11 - NC
12 - NC
13 - TDO
14 - NC
15 - RESET
16 - NC
17 - NC
18 - NC
19 - NC
20 - NC

 1 - Vcc Target
 2 - GROUND
 3 - TRST
 4 - GROUND
 5 - TDI
 6 - NC
 7 - TMS
 8 - NC
 9 - TCK
10 - NC
11 - TDO
12 - RESET
13 - NC
14 - NC

20 pin Multi-ICE
 Connector

BDI2000

AAAAbbbbaaaattttrrrroooonnnn AAAAGGGG SSSSwwwwiiiissssssss MMMMaaaaddddeeee

Target System

ARM 1 13

 14 2

The green LED «TRGT» marked light up when target is powered up

BDI TRGT MODE TARGET A TARGET B

9 1

10 2

Rev. B/C

14 pin Target
 Connector

 1 - Vcc Target
 2 - GROUND
 3 - TRST
 4 - GROUND
 5 - TDI
 6 - NC
 7 - TMS
 8 - NC
 9 - TCK
10 - NC
11 - TDO
12 - RESET
13 - NC
14 - NC

 1 - Vcc Target
 2 - NC
 3 - TRST
 4 - NC
 5 - TDI
 6 - NC
 7 - TMS
 8 - GROUND
 9 - TCK
10 - GROUND
11 - NC
12 - NC
13 - TDO
14 - NC
15 - RESET
16 - NC
17 - NC
18 - NC
19 - NC
20 - NC

20 pin Multi-ICE
 Connector

 1 19

 20 2

bdi

GDB

 for GNU Debugger, BDI2000 (ARM) User Manual 7

© Copyright 1997-2006 by ABATRON AG Switzerland V 1.18

BDI MAIN / TARGET A Connector Signals

The BDI2000 works also with targets which have no dedicated TRST pin. For this kind of targets, the
BDI cannot force the target to debug mode immediately after reset. The target always begins execu-
tion of application code until the BDI has finished programming the Debug Control Register.

Pin Name Describtion

1 reserved This pin is currently not used.

2 TRST

JTAG Test Reset

This open-drain / push-pull output of the BDI2000 resets the JTAG TAP controller on the
target. Default driver type is open-drain.

3+5 GND

System Ground

4 TCK

JTAG Test Clock

This output of the BDI2000 connects to the target TCK line.

6 TMS

JTAG Test Mode Select

This output of the BDI2000 connects to the target TMS line.

7 RESET This open collector output of the BDI2000 is used to reset the target system.

8 TDI

JTAG Test Data In

This output of the BDI2000 connects to the target TDI line.

9 Vcc Target

1.8 – 5.0V:

This is the target reference voltage. It indicates that the target has power and it is also used
to create the logic-level reference for the input comparators. It also controls the output logic
levels to the target. It is normally fed from Vdd I/O on the target board.

3.0 – 5.0V with Rev. A/B :

This input to the BDI2000 is used to detect if the target is powered up. If there is a current
limiting resistor between this pin and the target Vdd, it should be 100 Ohm or less.

10 TDO

JTAG Test Data Out

This input to the BDI2000 connects to the target TDO line.

bdi

GDB

 for GNU Debugger, BDI2000 (ARM) User Manual 8

© Copyright 1997-2006 by ABATRON AG Switzerland V 1.18

2.1.1 Changing Target Processor Type

Before you can use the BDI2000 with an other target processor type (e.g. ARM <--> PPC), a new
setup has to be done (see chapter 2.5). During this process the target cable must be disconnected
from the target system. The BDI2000 needs to be supplied with 5 Volts via the BDI OPTION connec-
tor (Rev. A) or via the POWER connector (Rev. B/C). For more information see chapter 2.2.1
«External Power Supply»).

To avoid data line conflicts, the BDI2000 must be disconnected from the target system while
programming the logic for an other target CPU.

!

bdi

GDB

 for GNU Debugger, BDI2000 (ARM) User Manual 9

© Copyright 1997-2006 by ABATRON AG Switzerland V 1.18

2.1.2 Adaptive Clocking

Adaptive clocking is a feature which ensures that the BDI2000 never loses synchronization with the
target device, whatever the target clock speed is. To achieve this, BDI2000 uses two signals TCK and
RTCK. When adaptive clocking is selected, BDI2000 issues a TCK signal and waits for the Returned
TCK (RTCK) to come back. BDI2000 does not progress to the next TCK until RTCK is received. For
more information about adaptive clocking see ARM documentation.

Note

:
Adaptive clocking is only supported with BDI2000 Rev.B/C and a special target cable. This special
cable can be ordered separately from Abatron.

For TARGET B connector signals see table on next page.

BDI2000

AAAAbbbbaaaattttrrrroooonnnn AAAAGGGG SSSSwwwwiiiissssssss MMMMaaaaddddeeee

Target System

ARM

The green LED «TRGT» marked light up when target is powered up

Rev. B/C

 1 - Vcc Target
 2 - NC
 3 - TRST
 4 - NC
 5 - TDI
 6 - NC
 7 - TMS
 8 - GROUND
 9 - TCK
10 - GROUND
11 - RTCK
12 - NC
13 - TDO
14 - NC
15 - RESET
16 - NC
17 - NC
18 - NC
19 - NC
20 - NC

20 pin Multi-ICE
 Connector

 1 19

 20 2

BDI TRGT MODE TARGET A TARGET B

15 1

16 2

bdi

GDB

 for GNU Debugger, BDI2000 (ARM) User Manual 10

© Copyright 1997-2006 by ABATRON AG Switzerland V 1.18

BDI TARGET B Connector Signals:

Pin Name Describtion

1 TDO

JTAG Test Data Out

This input to the BDI2000 connects to the target TDO line.

2 reserved

3 TDI

JTAG Test Data In

This output of the BDI2000 connects to the target TDI line.

4 reserved

5 RTCK Returned JTAG Test Clock
This input to the BDI2000 connects to the target RTCK line.

6 Vcc Target 1.8 – 5.0V:
This is the target reference voltage. It indicates that the target has power and it is also used
to create the logic-level reference for the input comparators. It also controls the output logic
levels to the target. It is normally fed from Vdd I/O on the target board.

3.0 – 5.0V with Rev. A/B :
This input to the BDI2000 is used to detect if the target is powered up. If there is a current
limiting resistor between this pin and the target Vdd, it should be 100 Ohm or less.

7 TCK JTAG Test Clock
This output of the BDI2000 connects to the target TCK line.

8 TRST JTAG Test Reset
This open-drain / push-pull output of the BDI2000 resets the JTAG TAP controller on the
target. Default driver type is open-drain.

9 TMS JTAG Test Mode Select
This output of the BDI2000 connects to the target TMS line.

10 reserved

11 reserved

12 GROUND System Ground

13 RESET System Reset
This open-drain output of the BDI2000 is used to reset the target system.

14 reseved

15 reseved

16 GROUND System Ground

bdiGDB for GNU Debugger, BDI2000 (ARM) User Manual 11

© Copyright 1997-2006 by ABATRON AG Switzerland V 1.18

2.2 Connecting the BDI2000 to Power Supply

2.2.1 External Power Supply

The BDI2000 needs to be supplied with 5 Volts (max. 1A) via the BDI OPTION connector (Rev. A)
or via POWER connector (Rev. B/C). The available power supply from Abatron (option) or the en-
closed power cable can be directly connected. In order to ensure reliable operation of the BDI2000,
keep the power supply cable as short as possible.

For error-free operation, the power supply to the BDI2000 must be between 4.75V and 5.25V DC.
The maximal tolerable supply voltage is 5.25 VDC. Any higher voltage or a wrong polarity
might destroy the electronics.

Please switch on the system in the following sequence:

• 1 --> external power supply

• 2 --> target system

!

BDI TRGT MODE BDI MAIN BDI OPTION

13

1

14 2

BDI OPTION

 1 - NOT USED
 2 - GROUND
 3 - NOT USED
 4 - GROUND
 5 - NOT USED
 6 - GROUND
 7 - NOT USED
 8 - GROUND
 9 - NOT USED
10 - GROUND
11 - NOT USED
12 - Vcc (+5V)
13 - Vcc Target (+5V)
14 - Vcc (+5V)

Vcc GND

 Connector

The green LED «BDI» marked light up when 5V power is connected to the BDI2000

Rev. A

BDI TRGT MODE TARGET A TARGET B

POWER

 1 - Vcc (+5V)
 2 - VccTGT
 3 - GROUND
 4 - NOT USED

 Connector

The green LED «BDI» marked light up when 5V power is connected to the BDI2000

RS232 POWER LI TX RX 10 BASE-T

1 Vcc

2

 GND 3

 4

Rev. B VersionRev. B/C

bdiGDB for GNU Debugger, BDI2000 (ARM) User Manual 12

© Copyright 1997-2006 by ABATRON AG Switzerland V 1.18

2.2.2 Power Supply from Target System

The BDI2000 needs to be supplied with 5 Volts (max. 1A) via BDI MAIN target connector (Rev. A) or
via TARGET A connector (Rev. B/C). This mode can only be used when the target system runs with
5V and the pin «Vcc Target» is able to deliver a current up to 1A@5V. For pin description and layout
see chapter 2.1 «Connecting the BDI2000 to Target». Insert the enclosed Jumper as shown in figure
below. Please ensure that the jumper is inserted correctly.

For error-free operation, the power supply to the BDI2000 must be between 4.75V and 5.25V DC.
The maximal tolerable supply voltage is 5.25 VDC. Any higher voltage or a wrong polarity
might destroy the electronics.

!

BDI TRGT MODE BDI MAIN BDI OPTION

13

1

14 2

BDI OPTION
 Connector

The green LEDs «BDI» and «TRGT» marked light up when target is powered up

Jumper

and the jumper is inserted correctly

 1 - NOT USED
 2 - GROUND
 3 - NOT USED
 4 - GROUND
 5 - NOT USED
 6 - GROUND
 7 - NOT USED
 8 - GROUND
 9 - NOT USED
10 - GROUND
11 - NOT USED
12 - Vcc (+5V)
13 - Vcc Target (+5V)
14 - Vcc BDI2000 (+5V)

Rev. A

BDI TRGT MODE TARGET A TARGET B

POWER

1 - Vcc BDI2000 (+5V)
2 - Vcc Target (+5V)
3 - GROUND
4 - NOT USED

 Connector

RS232 POWER LI TX RX 10 BASE-T

1

2

 3

 4

The green LEDs «BDI» and «TRGT» marked light up when target is powered up
and the jumper is inserted correctly

Jumper

Rev. B/C

bdiGDB for GNU Debugger, BDI2000 (ARM) User Manual 13

© Copyright 1997-2006 by ABATRON AG Switzerland V 1.18

2.3 Status LED «MODE»

The built in LED indicates the following BDI states:

MODE LED BDI STATES

OFF The BDI is ready for use, the firmware is already loaded.

ON The power supply for the BDI2000 is < 4.75VDC.

BLINK The BDI «loader mode» is active (an invalid firmware is loaded or loading firmware is active).

BDI TRGT MODE BDI MAIN BDI OPTION

BDI TRGT MODE TARGET A TARGET B

Rev. A

Rev. B/C

bdiGDB for GNU Debugger, BDI2000 (ARM) User Manual 14

© Copyright 1997-2006 by ABATRON AG Switzerland V 1.18

2.4 Connecting the BDI2000 to Host

2.4.1 Serial line communication

Serial line communication is only used for the initial configuration of the bdiGDB system.

The host is connected to the BDI through the serial interface (COM1...COM4). The communication
cable (included) between BDI and Host is a serial cable. There is the same connector pinout for the
BDI and for the Host side (Refer to Figure below).

RS232 Connector
(for PC host)

5 2 3 7 8 6 1 4

5 2 3 7 8 6 1 4

GND

RD

TD

RTS

CTS

DSR

DCD

DTR

GND

RD

TD

RTS

CTS

DSR

DCD

DTR

BDI2000

AAAAbbbbaaaattttrrrroooonnnn AAAAGGGG SSSSwwwwiiiissssssss MMMMaaaaddddeeee

Target System

RS232

ARM
7TDMI

RS232 LI TX RX 10 BASE-T

54321

9876

PC Host

Rev. A

RS232 Connector
(for PC host)

5 2 3 7 8 6 1 4

5 2 3 7 8 6 1 4

GND

RD

TD

RTS

CTS

DSR

DCD

DTR

GND

RD

TD

RTS

CTS

DSR

DCD

DTR

BDI2000

AAAAbbbbaaaattttrrrroooonnnn AAAAGGGG SSSSwwwwiiiissssssss MMMMaaaaddddeeee

Target System

RS232

ARM
7TDMI

PC Host

RS232 POWER LI TX RX 10 BASE-T

54321

9876

Rev. B/C

bdiGDB for GNU Debugger, BDI2000 (ARM) User Manual 15

© Copyright 1997-2006 by ABATRON AG Switzerland V 1.18

2.4.2 Ethernet communication

The BDI2000 has a built-in 10 BASE-T Ethernet interface (see figure below). Connect an UTP (Un-
shilded Twisted Pair) cable to the BD2000. For thin Ethernet coaxial networks you can connect a
commercially available media converter (BNC-->10 BASE-T) between your network and the
BDI2000. Contact your network administrator if you have questions about the network.

The following explains the meanings of the built-in LED lights:

LED Name Description

LI Link When this LED light is ON, data link is successful between the UTP

port of the BDI2000 and the hub to which it is connected.

TX Transmit When this LED light BLINKS, data is being transmitted through the UTP

port of the BDI2000

RX Receive When this LED light BLINKS, data is being received through the UTP

port of the BDI2000

10 BASE-T

PC Host

Target System

Ethernet (10 BASE-T)

 1 - TD+
 2 - TD-
 3 - RD+
 4 - NC
 5 - NC
 6 - RD-
 7 - NC
 8 - NC

Connector

ARM
7TDMI

RS232 LI TX RX 10 BASE-T

BDI2000

AAAAbbbbaaaattttrrrroooonnnn AAAAGGGG SSSSwwwwiiiissssssss MMMMaaaaddddeeee

1 8

RS232 POWER LI TX RX 10 BASE-T

Rev. A

Rev. B/C

1 8

bdiGDB for GNU Debugger, BDI2000 (ARM) User Manual 16

© Copyright 1997-2006 by ABATRON AG Switzerland V 1.18

2.5 Installation of the Configuration Software

On the enclosed diskette you will find the BDI configuration software and the firmware required for
the BDI2000. For Windows NT users there is also a TFTP server included.

The following files are on the diskette.

b20armgd.exe Windows configuration program

b20armgd.hlp Windows help file for the configuration program

b20armgd.xxx Firmware for the BDI2000

armjed20.xxx JEDEC file for the BDI2000 (Rev. A/B) logic device

armjed21.xxx JEDEC file for the BDI2000 (Rev. C) logic device

tftpsrv.exe TFTP server for WindowsNT/ Windows95 (WIN32 console application)

*.cfg Configuration files

*.def Register definition files

bdisetup.zip ZIP Archive with the Setup Tool sources for Linux / UNIX hosts.

Overview of an installation / configuration process:

• Create a new directory on your hard disk

• Copy the entire contents of the enclosed diskette into this directory

• Linux only: extract the setup tool sources and build the setup tool

• Use the setup tool to load/update the BDI firmware/logic
Note: A new BDI has no firmware/logic loaded.

• Use the setup tool to transmit the initial configuration parameters
- IP address of the BDI.
- IP address of the host with the configuration file.
- Name of the configuration file. This file is accessed via TFTP.
- Optional network parameters (subnet mask, default gateway).

Activating BOOTP:
The BDI can get the network configuration and the name of the configuration file also via BOOTP.
For this simple enter 0.0.0.0 as the BDI’s IP address (see following chapters). If present, the subnet
mask and the default gateway (router) is taken from the BOOTP vendor-specific field as defined in
RFC 1533.

With the Linux setup tool, simply use the default parameters for the -c option:
[root@LINUX_1 bdisetup]# ./bdisetup -c -p/dev/ttyS0 -b57

The MAC address is derived from the serial number as follows:
MAC: 00-0C-01-xx-xx-xx , repace the xx-xx-xx with the 6 left digits of the serial number
Example: SN# 93123457 ==>> 00-0C-01-93-12-34

bdiGDB for GNU Debugger, BDI2000 (ARM) User Manual 17

© Copyright 1997-2006 by ABATRON AG Switzerland V 1.18

2.5.1 Configuration with a Linux / Unix host

The firmware / logic update and the initial configuration of the BDI2000 is done with a command line
utility. In the ZIP Archive bdisetup.zip are all sources to build this utility. More information about this
utility can be found at the top in the bdisetup.c source file. There is also a make file included.
Starting the tool without any parameter displays information about the syntax and parameters.

To avoid data line conflicts, the BDI2000 must be disconnected from the target system while
programming the logic for an other target CPU (see Chapter 2.1.1).

Following the steps to bring-up a new BDI2000:

1. Build the setup tool:
The setup tool is delivered only as source files. This allows to build the tool on any Linux / Unix host.
To build the tool, simply start the make utility.

[root@LINUX_1 bdisetup]# make
cc -O2 -c -o bdisetup.o bdisetup.c
cc -O2 -c -o bdicnf.o bdicnf.c
cc -O2 -c -o bdidll.o bdidll.c
cc -s bdisetup.o bdicnf.o bdidll.o -o bdisetup

2. Check the serial connection to the BDI:
With "bdisetup -v" you may check the serial connection to the BDI. The BDI will respond with infor-
mation about the current loaded firmware and network configuration.
Note: Login as root, otherwise you probably have no access to the serial port.

[root@LINUX_1 bdisetup]# ./bdisetup -v -p/dev/ttyS0 -b57
BDI Type : BDI2000 Rev.C (SN: 92152150)
Loader : V1.05
Firmware : unknown
Logic : unknown
MAC : 00-0c-01-92-15-21
IP Addr : 255.255.255.255
Subnet : 255.255.255.255
Gateway : 255.255.255.255
Host IP : 255.255.255.255
Config : ??????????????????

3. Load/Update the BDI firmware/logic:
With "bdisetup -u" the firmware is loaded and the CPLD within the BDI2000 is programmed. This con-
figures the BDI for the target you are using. Based on the parameters -a and -t, the tool selects the
correct firmware / logic files. If the firmware / logic files are in the same directory as the setup tool,
there is no need to enter a -d parameter.

[root@LINUX_1 bdisetup]# ./bdisetup -u -p/dev/ttyS0 -b57 -aGDB -tARM
Connecting to BDI loader
Erasing CPLD
Programming firmware with ./b20armgd.103
Programming CPLD with ./armjed21.102

!

bdiGDB for GNU Debugger, BDI2000 (ARM) User Manual 18

© Copyright 1997-2006 by ABATRON AG Switzerland V 1.18

4. Transmit the initial configuration parameters:
With "bdisetup -c" the configuration parameters are written to the flash memory within the BDI.
The following parameters are used to configure the BDI:

BDI IP Address The IP address for the BDI2000. Ask your network administrator for as-
signing an IP address to this BDI2000. Every BDI2000 in your network
needs a different IP address.

Subnet Mask The subnet mask of the network where the BDI is connected to. A subnet
mask of 255.255.255.255 disables the gateway feature. Ask your network
administrator for the correct subnet mask. If the BDI and the host are in
the same subnet, it is not necessary to enter a subnet mask.

Default Gateway Enter the IP address of the default gateway. Ask your network administra-
tor for the correct gateway IP address. If the gateway feature is disabled,
you may enter 255.255.255.255 or any other value.

Config - Host IP Address Enter the IP address of the host with the configuration file. The configura-
tion file is automatically read by the BDI2000 after every start-up.

Configuration file Enter the full path and name of the configuration file. This file is read via
TFTP. Keep in mind that TFTP has it’s own root directory (usual /tftpboot).
You can simply copy the configuration file to this directory and the use the
file name without any path.
For more information about TFTP use "man tftpd".

[root@LINUX_1 bdisetup]# ./bdisetup -c -p/dev/ttyS0 -b57 \
> -i151.120.25.101 \
> -h151.120.25.118 \
> -feval7t.cnf
Connecting to BDI loader
Writing network configuration
Writing init list and mode
Configuration passed

5. Check configuration and exit loader mode:
The BDI is in loader mode when there is no valid firmware loaded or you connect to it with the setup
tool. While in loader mode, the Mode LED is flashing. The BDI will not respond to network requests
while in loader mode. To exit loader mode, the "bdisetup -v -s" can be used. You may also power-off
the BDI, wait some time (1min.) and power-on it again to exit loader mode.

[root@LINUX_1 bdisetup]# ./bdisetup -v -p/dev/ttyS0 -b57 -s
BDI Type : BDI2000 Rev.C (SN: 92152150)
Loader : V1.05
Firmware : V1.03 bdiGDB for ARM
Logic : V1.02 ARM
MAC : 00-0c-01-92-15-21
IP Addr : 151.120.25.101
Subnet : 255.255.255.255
Gateway : 255.255.255.255
Host IP : 151.120.25.118
Config : eval7t.cnf

The Mode LED should go off, and you can try to connect to the BDI via Telnet.

[root@LINUX_1 bdisetup]# telnet 151.120.25.101

bdiGDB for GNU Debugger, BDI2000 (ARM) User Manual 19

© Copyright 1997-2006 by ABATRON AG Switzerland V 1.18

2.5.2 Configuration with a Windows host

First make sure that the BDI is properly connected (see Chapter 2.1 to 2.4).

To avoid data line conflicts, the BDI2000 must be disconnected from the target system while
programming the logic for an other target CPU (see Chapter 2.1.1).

dialog box «BDI2000 Update/Setup»

Before you can use the BDI2000 together with the GNU debugger, you must store the initial config-
uration parameters in the BDI2000 flash memory. The following options allow you to do this:

Channel Select the communication port where the BDI2000 is connected during
this setup session.

Baudrate Select the baudrate used to communicate with the BDI2000 loader during
this setup session.

Connect Click on this button to establish a connection with the BDI2000 loader.
Once connected, the BDI2000 remains in loader mode until it is restarted
or this dialog box is closed.

Current Press this button to read back the current loaded BDI2000 software and
logic versions. The current loader, firmware and logic version will be
displayed.

Update This button is only active if there is a newer firmware or logic version
present in the execution directory of the bdiGDB setup software. Press this
button to write the new firmware and/or logic into the BDI2000 flash mem-
ory / programmable logic.

!

bdiGDB for GNU Debugger, BDI2000 (ARM) User Manual 20

© Copyright 1997-2006 by ABATRON AG Switzerland V 1.18

BDI IP Address Enter the IP address for the BDI2000. Use the following format:
xxx.xxx.xxx.xxx e.g.151.120.25.101
Ask your network administrator for assigning an IP address to this
BDI2000. Every BDI2000 in your network needs a different IP address.

Subnet Mask Enter the subnet mask of the network where the BDI is connected to.
Use the following format: xxx.xxx.xxx.xxxe.g.255.255.255.0
A subnet mask of 255.255.255.255 disables the gateway feature.
Ask your network administrator for the correct subnet mask.

Default Gateway Enter the IP address of the default gateway. Ask your network administra-
tor for the correct gateway IP address. If the gateway feature is disabled,
you may enter 255.255.255.255 or any other value..

Config - Host IP Address Enter the IP address of the host with the configuration file. The configura-
tion file is automatically read by the BDI2000 after every start-up.

Configuration file Enter the full path and name of the configuration file.
e.g. D:\ada\target\config\bdi\evs332.cnf
For information about the syntax of the configuration file see the bdiGDB
User manual. This name is transmitted to the TFTP server when reading
the configuration file.

Transmit Click on this button to store the configuration in the BDI2000 flash
memory.

2.5.3 Recover procedure

In rare instances you may not be able to load the firmware in spite of a correctly connected BDI (error
of the previous firmware in the flash memory). Before carrying out the following procedure, check
the possibilities in Appendix «Troubleshooting». In case you do not have any success with the
tips there, do the following:

• Switch OFF the power supply for the BDI and open the unit as
described in Appendix «Maintenance»

• Place the jumper in the «INIT MODE» position

• Connect the power cable or target cable if the BDI is powered
from target system

• Switch ON the power supply for the BDI again and wait until the
LED «MODE» blinks fast

• Turn the power supply OFF again

• Return the jumper to the «DEFAULT» position

• Reassemble the unit as described in Appendix «Maintenance»

INIT MODE

DEFAULT

bdiGDB for GNU Debugger, BDI2000 (ARM) User Manual 21

© Copyright 1997-2006 by ABATRON AG Switzerland V 1.18

2.6 Testing the BDI2000 to host connection

After the initial setup is done, you can test the communication between the host and the BDI2000.
There is no need for a target configuration file and no TFTP server is needed on the host.

• If not already done, connect the bdiGDB system to the network.

• Power-up the BDI2000.

• Start a Telnet client on the host and connect to the BDI2000 (the IP address you entered dur-
ing initial configuration).

• If everything is okay, a sign on message like «BDI Debugger for ARM» should be displayed
in the Telnet window.

2.7 TFTP server for Windows NT

The bdiGDB system uses TFTP to access the configuration file and to load the application program.
Because there is no TFTP server bundled with Windows NT, Abatron provides a TFTP server appli-
cation tftpsrv.exe. This WIN32 console application runs as normal user application (not as a system
service).

Command line syntax: tftpsrv [p] [w] [dRootDirectory]

Without any parameter, the server starts in read-only mode. This means, only read access request
from the client are granted. This is the normal working mode. The bdiGDB system needs only read
access to the configuration and program files.

The parameter [p] enables protocol output to the console window. Try it.
The parameter [w] enables write accesses to the host file system.
The parameter [d] allows to define a root directory.

tftpsrv p Starts the TFTP server and enables protocol output

tftpsrv p w Starts the TFTP server, enables protocol output and write accesses are
allowed.

tftpsrv dC:\tftp\ Starts the TFTP server and allows only access to files in C:\tftp and its
subdirectories. As file name, use relative names.
For example "bdi\mpc750.cfg" accesses "C:\tftp\bdi\mpc750.cfg"

You may enter the TFTP server into the Startup group so the server is started every time you logon.

bdiGDB for GNU Debugger, BDI2000 (ARM) User Manual 22

© Copyright 1997-2006 by ABATRON AG Switzerland V 1.18

3 Using bdiGDB
3.1 Principle of operation

The firmware within the BDI handles the GDB request and accesses the target memory or registers
via the JTAG interface. There is no need for any debug software on the target system. After loading
the code via TFTP debugging can begin at the very first assembler statement.

Whenever the BDI system is powered-up the following sequence starts:

Power On

initial
configuration

valid?

Get configuration file
via TFTP

Process target init list

via TFTP and set the PC
Load program code

Process GDB request

Power OFF

activate BDI2000 loader

Power OFF

no

yes

RUN selected?

Start loaded program code

bdiGDB for GNU Debugger, BDI2000 (ARM) User Manual 23

© Copyright 1997-2006 by ABATRON AG Switzerland V 1.18

Breakpoints:
There are two breakpoint modes supported. One of them (SOFT) is implemented by replacing appli-
cation code with a special pattern. The other (HARD) uses the built in breakpoint logic. If HARD is
used, only up to 2 breakpoints can be active at the same time.
The following example selects SOFT as the breakpoint mode:

BREAKMODE SOFT ;SOFT or HARD, HARD uses hardware breakpoints

All the time the application is suspended (i.e. caused by a breakpoint) the target processor remains
in debug mode.

3.2 Configuration File

The configuration file is automatically read by the BDI2000 after every power on.
The syntax of this file is as follows:

; comment
[part name]
core# identifier parameter1 parameter2 parameterN ; comment
core# identifier parameter1 parameter2 parameterN
.....
[part name]
core# identifier parameter1 parameter2 parameterN
core# identifier parameter1 parameter2 parameterN
.....

etc.

Numeric parameters can be entered as decimal (e.g. 700) or as hexadecimal (0x80000).

The core# is optional. If not present the BDI assume core #0. See also chapter "Multi-Core Support".

bdiGDB for GNU Debugger, BDI2000 (ARM) User Manual 24

© Copyright 1997-2006 by ABATRON AG Switzerland V 1.18

3.2.1 Part [INIT]

The part [INIT] defines a list of commands which should be executed every time the target comes out
of reset. The commands are used to get the target ready for loading the program file.

WGPR register value Write value to the selected general purpose register.
register the register number 0 .. 15
value the value to write into the register
Example: WGPR 0 5

WREG name value Write value to the selected CPU register by name
name the register name (CPSR)
value the value to write into the register
Example: WREG CPSR 0x600000D3

WCP15 register value Write value to the selected Coprocessor 15 register.
register the register number (see chapter CP15 registers)
value the value to write into the register
Example: WCP15 2 0x00004000 ; set Translation Base Address

WM8 address value Write a byte (8bit) to the selected memory place.
address the memory address
value the value to write to the target memory
Example: WM8 0xFFFFFA21 0x04 ; SYPCR: watchdog disable ...

WM16 address value Write a half word (16bit) to the selected memory place.
address the memory address
value the value to write to the target memory
Example: WM16 0x02200200 0x0002 ; TBSCR

WM32 address value Write a word (32bit) to the selected memory place.
address the memory address
value the value to write to the target memory
Example: WM32 0x02200000 0x01632440 ; SIUMCR

WBIN address filename Write a binary image to the selected memory place. The binary image is
read via TFTP from the host. Up to 4 such entries are supported.

address the memory address
filename the filename including the full path
Example: WBIN 0x4000 pagetable.bin

bdiGDB for GNU Debugger, BDI2000 (ARM) User Manual 25

© Copyright 1997-2006 by ABATRON AG Switzerland V 1.18

RM8 address value Read a byte (8bit) from the selected memory place.
address the memory address
Example: RM8 0x00000000

RM16 address value Read a half word (16bit) from the selected memory place.
address the memory address
Example: RM16 0x00000000

RM32 address value Read a word (32bit) from the selected memory place.
address the memory address
Example: RM32 0x00000000

MMAP start end Because a memory access to an invalid memory space via JTAG leads to
a deadlock, this entry can be used to define up to 32 valid memory ranges.
If at least one memory range is defined, the BDI checks against this
range(s) and avoids accessing of not mapped memory ranges.

start the start address of a valid memory range
end the end address of this memory range
Example: MMAP 0xFFE00000 0xFFFFFFFF ;Boot ROM

DELAY value Delay for the selected time.
value the delay time in milliseconds (1...30000)
Example: DELAY 500 ; delay for 0.5 seconds

bdiGDB for GNU Debugger, BDI2000 (ARM) User Manual 26

© Copyright 1997-2006 by ABATRON AG Switzerland V 1.18

Using a startup program to initialize the target system:
For targets where initialization can not be done with a simple initialization list, there is the possibility
to download and execute a special startup code. The startup code must be present in a file on the
host. The last instruction in this startup code should be a SWI. After processing the initlist, the BDI
downloads this startup code to RAM, starts it and waits until it completes. If there is no SWI instruc-
tion in the startup code, the BDI terminates it after a timeout of 5 seconds.

FILE filename The name of the file with the startup code. This name is used to access
the startup code via TFTP.

filename the filename including the full path
Example: FILE F:\gdb\target\config\pid7t\startup.hex

FORMAT format The format of the startup file. Currently COFF, S-Record, a.out, Binary and
ELF file formats are supported. If the startup code is already stored in
ROM on the target, select ROM as the format.

format COFF, SREC, AOUT, BIN, ELF or ROM
Example: FORMAT COFF

START address The address where to start the startup code. If this value is not defined and
the core is not in ROM, the address is taken from the code file. If this value
is not defined and the core is already in ROM, the PC will not be set before
starting the code.

address the address where to start the startup code
Example: START 0x10000

Note:
If an init list and a startup code file are present, the init list is processed first and then the startup code
is loaded and executed. Therefore it is possible first to enable some RAM with the init list before the
startup code is loaded and executed.

[INIT]
WM32 0x0B000020 0x00000000 ;Clear Reset Map

FILE d:\gdb\bdi\startup.hex
FORMAT SREC
START 0x100

bdiGDB for GNU Debugger, BDI2000 (ARM) User Manual 27

© Copyright 1997-2006 by ABATRON AG Switzerland V 1.18

3.2.2 Part [TARGET]

The part [TARGET] defines some target specific values.

CPUTYPE type This value gives the BDI information about the connected CPU.
type The CPU type from the following list:

ARM7TDMI, ARM7DI, ARM710T,ARM720T,ARM740T
ARM9TDMI, ARM920T, ARM940T, TMS470
ARM9E, ARM946E, ARM966E, ARM926E
TI925T, MAC7100, FA526

Example: CPUTYPE ARM920T

CLOCK main [init] With this value(s) you can select the JTAG clock rate the BDI2000 uses
when communication with the target CPU. The "main" entry is used after
processing the initialization list. The "init" value is used after target reset
until the initialization list is processed. If there is no "init" value defined, the
"main" value is used all the times.
Adaptive clocking is only supported with BDI2000 Rev.B/C and needs a
special target connector cable.

main,init: 0 = Adaptive
1 = 16 MHz 6 = 200 kHz
2 = 8 MHz 7 = 100 kHz
3 = 4 MHz 8 = 50 kHz
4 = 1 MHz 9 = 20 kHz
5 = 500 kHz 10 = 10 kHz

Example: CLOCK 1 ; JTAG clock is 16 MHz

RESET type [time] Normally the BDI drives the reset line during startup. If reset type is
NONE, the BDI does not assert a hardware reset during startup. This entry
can also be used to change the default reset time.

type NONE
HARD (default)
SGOLD (enables S-GOLD ARM9 TAP during reset)

time The time in milliseconds the BDI assert the reset signal.
Example: RESET NONE ; no reset during startup

RESET HARD 1000 ; assert RESET for 1 second

TRST type Normally the BDI uses an open drain driver for the TRST signal. This is in
accordance with the ARM recommendation. For boards where TRST is
simply pulled low with a weak resistor, TRST will always be asserted and
JTAG debugging is impossible. In that case, the TRST driver type can be
changed to push-pull. Then the BDI actively drives also high level.

type OPENDRAIN (default)
PUSHPULL

Example: TRST PUSHPULL ; Drive TRST also high

bdiGDB for GNU Debugger, BDI2000 (ARM) User Manual 28

© Copyright 1997-2006 by ABATRON AG Switzerland V 1.18

STARTUP mode [runtime]This parameter selects the target startup mode. The following modes are
supported:

RESET This default mode forces the target to debug mode im-
mediately out of reset. No code is executed after reset.

STOP In this mode, the BDI lets the target execute code for
"runtime" milliseconds after reset. This mode is useful
when monitor code should initialize the target system.

RUN After reset, the target executes code until stopped by the
Telnet "halt" command.

Example: STARTUP STOP 3000 ; let the CPU run for 3 seconds

WAKEUP time This entry in the init list allows to define a delay time (in ms) the BDI inserts
between releasing the reset line and starting communicating with the tar-
get. This delay is necessary when a target needs some wake-up time after
a reset (e.g. Cirrus EP7209).

time the delay time in milliseconds
Example: WAKEUP 3000 ; insert 3sec wake-up time

BDIMODE mode param This parameter selects the BDI debugging mode. The following modes are
supported:

LOADONLY Loads and starts the application code. No debugging via
JTAG interface.

AGENT The debug agent runs within the BDI. There is no need
for any debug software on the target. This mode accepts
a second parameter. If RUN is entered as a second pa-
rameter, the loaded application will be started immedi-
ately, otherwise only the PC is set and BDI waits for GDB
requests.

Example: BDIMODE AGENT RUN

ENDIAN format This entry defines the endiannes of the memory system.
format The endiannes of the target memory:

LITTLE (default)
BIG

Example: ENDIAN LITTLE

VECTOR CATCH [mask] When this line is present, the BDI catches exceptions. For ARM7 targets
or when there is no mask value present, catching exceptions is only pos-
sible if the memory at address 0x00000000 to 0x0000001F is writable.
For ARM9 targets, the mask is used to setup the EmbeddedICE Vector
catch register. Do not define a mask for ARM7 targets.

mask ARM9 only, selects the exceptions to catch
Example: VECTOR CATCH ; catch all unhandled exception

VECTOR CATCH 0x1F ;catch Abort, SWI, Undef, Reset

bdiGDB for GNU Debugger, BDI2000 (ARM) User Manual 29

© Copyright 1997-2006 by ABATRON AG Switzerland V 1.18

BREAKMODE mode [opc]This parameter defines how breakpoints are implemented and optional
the GDB breakpoint opcode (See also 3.3.3 Breakpoint Handling).

mode = SOFTThis is the normal mode. Breakpoints are implemented
by replacing code with a special pattern.

mode = HARDIn this mode, the breakpoint hardware is used. Only 2
breakpoints at a time are supported.

opc The BDI needs to know which opcode GDB uses to set
a breakpoint. By default a pattern of 0xE7FFDEFE is as-
sumed. If a GDB build uses a different pattern the cor-
rect opcode patter has to be specified here. If your GDB
version supports Z-packets then it is recommended to
define the pattern 0xDFFFDFFF. This pattern allows to
debug mixed ARM/Thumb applications.
Note: For ARM9E cores, the BKPT instruction is always
used for software breakpoints.

Example: BREAKMODE HARD
BREAKMODE SOFT 0xdfffdfff

STEPMODE mode This parameter defines how single step (instruction step) is implemented.
The alternate step mode (HWBP) may be useful when stepping instruc-
tions should not enter exception handling.

JTAG This is the default mode. For ARM9 targets, the JTAG
single step feature is used. For ARM7 targets, a range
breakpoint that excludes the current instruction is used.

HWBP In this mode, a hardware breakpoint on the next instruc-
tion(s) is used to implement single stepping.

Example: STEPMODE HWBP

WORKSPACE address If a workspace is defined, the BDI uses a faster download mode via the
ARM’s Debugger Communications Channel (DCC). The workspace is
used for a short code sequence that reads from the DDC and writes to
memory. There must be at least 32 bytes of RAM available for this code.
There is no handshake between the BDI and the code consuming the data
transferred via DCC. If the helper code on the target executes to slow, this
download mode may fail and you have to disable it.

address the address of the RAM area
Example: WORKSPACE 0x00000020

bdiGDB for GNU Debugger, BDI2000 (ARM) User Manual 30

© Copyright 1997-2006 by ABATRON AG Switzerland V 1.18

SIO port [baudrate] When this line is present, a TCP/IP channel is routed to the BDI’s RS232
connector. The port parameter defines the TCP port used for this BDI to
host communication. You may choose any port except 0 and the default
Telnet port (23). On the host, open a Telnet session using this port. Now
you should see the UART output in this Telnet session. You can use the
normal Telnet connection to the BDI in parallel, they work completely inde-
pendent. Also input to the UART is implemented.

port The TCP/IP port used for the host communication.
baudrate The BDI supports 2400 ... 115200 baud
Example: SIO 7 9600 ;TCP port for virtual IO

DCC port When this line is present, a TCP/IP channel is routed to the ARM debug
communication channel (DCC). The port parameter defines the TCP port
used for this BDI to host communication. You may choose any port except
0 and the default Telnet port (23). On the host, open a Telnet session using
this port. Now you should see the DCC output in this Telnet session. You
can use the normal Telnet connection to the BDI in parallel, they work
completely independent. Also input to DCC is implemented.

port The TCP/IP port used for the host communication.
Example: DCC 7 ;TCP port for DCC I/O

Daisy chained JTAG devices:
For ARM targets, the BDI can also handle systems with multiple devices connected to the JTAG scan
chain. In order to put the other devices into BYPASS mode and to count for the additional bypass
registers, the BDI needs some information about the scan chain layout. Enter the number (count) and
total instruction register (irlen) length of the devices present before the ARM chip (Predecessor). En-
ter the appropriate information also for the devices following the ARM chip (Successor):

SCANPRED count irlen This value gives the BDI information about JTAG devices present before
the ARM chip in the JTAG scan chain.

count The number of preceding devices
irlen The sum of the length of all preceding instruction regis-

ters (IR).
Example: SCANPRED 1 8 ; one device with an IR length of 8

SCANSUCC count irlen This value gives the BDI information about JTAG devices present after the
ARM chip in the JTAG scan chain.

count The number of succeeding devices
irlen The sum of the length of all succeeding instruction reg-

isters (IR).
Example: SCANSUCC 2 12 ; two device with an IR length of 8+4

bdiGDB for GNU Debugger, BDI2000 (ARM) User Manual 31

© Copyright 1997-2006 by ABATRON AG Switzerland V 1.18

Low level JTAG scan chain configuration:
Sometimes it is necessary to configure the test access port (TAP) of the target before the ARM debug
interface is visible and accessible in the usual way. The BDI supports this configuration in a very ge-
neric way via the SCANINIT and SCANPOST configuration commands. Both accept a string that de-
fines the JTAG sequences to execute. The following example shows how to use these commands:

; Configure ICEPick module to make ARM926 TAP visible
SCANINIT t1:w1000:t0:w1000: ;toggle TRST
SCANINIT i6=07:d8=89:i6=02: ;connect and select router
SCANINIT d32=81000082: ;set IP control
SCANINIT d32=a018206f: ;configure TAP0
SCANINIT d32=a018216f:cl5: ;enable TAP0, clock 5 times in RTI
SCANINIT i10=ffff ;scan bypass
;
; Between SCANINIT and SCANPOST the ARM ICEBreaker is configured
; and the DBGRQ bit in the ARM debug control register is set.
;
SCANPOST i10=002f: ;IP(router) - ARM(bypass)
SCANPOST d33=0102000106: ;IP control = SysReset
SCANPOST i10=ffff ;scan bypass

The following low level JTAG commands are supported in the string. Use ":" between commands.

 I<n>=<...b2b1b0> write IR, b0 is first scanned
 D<n>=<...b2b1b0> write DR, b0 is first scanned
 n : the number of bits 1..256
 bx : a data byte, two hex digits
 W<n> wait for n (decimal) micro seconds
 T1 assert TRST
 T0 release TRST
 R1 assert RESET
 R0 release RESET
 CH<n> clock TCK n (decimal) times with TMS high
 CL<n> clock TCK n (decimal) times with TMS low

The following diagram shows the parts of the standard reset sequence that are replaced with the
SCAN string. Only the appropriate part of the reset sequence is replaced. If only a SCANINIT string
is defined, then the standard "post" sequence is still executed.

If (reset mode == hard) Assert reset
Toggle TRST

If (reset mode == hard) Delay for reset time
Execute SCANINIT string

Check if Bypass register(s) present
Read and display ID code

Check if ICEBreaker is accessible
If (startup == reset) Set DBGRQ bit

If (reset mode == hard) Release reset
Wait until reset is really release

Delay for wake-up time
Execute SCANPOST string

bdiGDB for GNU Debugger, BDI2000 (ARM) User Manual 32

© Copyright 1997-2006 by ABATRON AG Switzerland V 1.18

3.2.3 Part [HOST]

The part [HOST] defines some host specific values.

IP ipaddress The IP address of the host.
ipaddress the IP address in the form xxx.xxx.xxx.xxx
Example: IP 151.120.25.100

FILE filename The default name of the file that is loaded into RAM using the Telnet ’load’
command. This name is used to access the file via TFTP. If the filename
starts with a $, this $ is replace with the path of the configuration file name.

filename the filename including the full path or $ for relative path.
Example: FILE F:\gnu\demo\arm\test.elf

FILE $test.elf

FORMAT format [offset] The format of the image file and an optional load address offset. If the im-
age is already stored in ROM on the target, select ROM as the format. The
optional parameter "offset" is added to any load address read from the im-
age file.

format SREC, BIN, AOUT, ELF, COFF or ROM
Example: FORMAT ELF

FORMAT ELF 0x10000

LOAD mode In Agent mode, this parameters defines if the code is loaded automatically
after every reset.

mode AUTO, MANUAL
Example: LOAD MANUAL

START address The address where to start the program file. If this value is not defined and
the core is not in ROM, the address is taken from the code file. If this value
is not defined and the core is already in ROM, the PC will not be set before
starting the target. This means, the program starts at the normal reset ad-
dress (0x00000000).

address the address where to start the program file
Example: START 0x10000

DEBUGPORT port The TCP port GDB uses to access the target.
port the TCP port number (default = 2001)
Example: DEBUGPORT 2001

PROMPT string This entry defines a new Telnet prompt. The current prompt can also be
changed via the Telnet interface.

Example: PROMPT AT91>

DUMP filename The default file name used for the Telnet DUMP command.
filename the filename including the full path
Example: DUMP dump.bin

TELNET mode By default the BDI sends echoes for the received characters and supports
command history and line editing. If it should not send echoes and let the
Telnet client in "line mode", add this entry to the configuration file.

mode ECHO (default), NOECHO or LINE
Example: TELNET NOECHO ; use old line mode

bdiGDB for GNU Debugger, BDI2000 (ARM) User Manual 33

© Copyright 1997-2006 by ABATRON AG Switzerland V 1.18

3.2.4 Part [FLASH]

The Telnet interface supports programming and erasing of flash memories. The bdiGDB system has
to know which type of flash is used, how the chip(s) are connected to the CPU and which sectors to
erase in case the ERASE command is entered without any parameter.

CHIPTYPE type [fsys] This parameter defines the type of flash used. It is used to select the cor-
rect programming algorithm.

format AM29F, AM29BX8, AM29BX16, I28BX8, I28BX16,
AT49, AT49X8, AT49X16, STRATAX8, STRATAX16,
MIRROR, MIRRORX8, MIRRORX16,
M58X32, AM29DX16, AM29DX32, CFM32, CFM16,
LPC2000, STA2051, STR710F, ST30F, ADUC7000,
AT91SAM7S

fsys For the CMF32, CMF16 and LPC2000, the BDI needs to
know the system frequency. Enter the correct value for
fsys in kHz.

Example: CHIPTYPE AM29F
CHIPTYPE CFM32 8000 ; fsys is 8 MHz

CHIPSIZE size The size of one flash chip in bytes (e.g. AM29F010 = 0x20000). This value
is used to calculate the starting address of the current flash memory bank.

size the size of one flash chip in bytes
Example: CHIPSIZE 0x80000

BUSWIDTH width Enter the width of the memory bus that leads to the flash chips. Do not en-
ter the width of the flash chip itself. The parameter CHIPTYPE carries the
information about the number of data lines connected to one flash chip.
For example, enter 16 if you are using two AM29F010 to build a 16bit flash
memory bank.

with the width of the flash memory bus in bits (8 | 16 | 32)
Example: BUSWIDTH 16

FILE filename The default name of the file that is programmed into flash using the Telnet
’prog’ command. This name is used to access the file via TFTP. If the file-
name starts with a $, this $ is replace with the path of the configuration file
name. This name may be overridden interactively at the Telnet interface.

filename the filename including the full path or $ for relative path.
Example: FILE F:\gnu\arm\bootrom.hex

FILE $bootrom.hex

FORMAT format [offset] The format of the file and an optional address offset. The optional param-
eter "offset" is added to any load address read from the program file.

format SREC, BIN, AOUT, ELF or COFF
Example: FORMAT SREC

FORMAT ELF 0x10000

WORKSPACE address If a workspace is defined, the BDI uses a faster programming algorithm
that runs out of RAM on the target system. Otherwise, the algorithm is pro-
cessed within the BDI. The workspace is used for a 1kByte data buffer and
to store the algorithm code. There must be at least 2kBytes of RAM avail-
able for this purpose.

address the address of the RAM area
Example: WORKSPACE 0x00000000

bdiGDB for GNU Debugger, BDI2000 (ARM) User Manual 34

© Copyright 1997-2006 by ABATRON AG Switzerland V 1.18

ERASE addr [increment count] [mode [wait]]
The flash memory may be individually erased or unlocked via the Telnet
interface. In order to make erasing of multiple flash sectors easier, you can
enter an erase list. All entries in the erase list will be processed if you enter
ERASE at the Telnet prompt without any parameter. This list is also used
if you enter UNLOCK at the Telnet without any parameters. With the "in-
crement" and "count" option you can erase multiple equal sized sectors
with one entry in the erase list.

address Address of the flash sector, block or chip to erase
increment If present, the address offset to the next flash sector
count If present, the number of equal sized sectors to erase
mode BLOCK, CHIP, UNLOCK

Without this optional parameter, the BDI executes a sec-
tor erase. If supported by the chip, you can also specify
a block or chip erase. If UNLOCK is defined, this entry is
also part of the unlock list. This unlock list is processed
if the Telnet UNLOCK command is entered without any
parameters.

wait The wait time in ms is only used for the unlock mode. Af-
ter starting the flash unlock, the BDI waits until it pro-
cesses the next entry.

Example: ERASE 0xff040000 ;erase sector 4 of flash
ERASE 0xff060000 ;erase sector 6 of flash
ERASE 0xff000000 CHIP ;erase whole chip(s)
ERASE 0xff010000 UNLOCK 100 ;unlock, wait 100ms
ERASE 0xff000000 0x10000 7 ; erase 7 sectors

RECOVER clkd If this entry is present, the BDI automatically executes a "JTAG lockout re-
covery" during reset processing if the MAC7100 flash is secured. Use this
entry only if you really need to recover a secured a MAC7100 device.

clkd The value for the CFMCLKD register used during the
JTAG lockout recovery. Calculate this entry based on the
reset system frequency (PLL disabled).

Example: RECOVER 19 ; CLKD for 8 MHz system clock

Example for the ARM PID7T board (AM29F010 in U12):

[FLASH]
WORKSPACE 0x00000000 ;Workspace in target RAM for faster programming algorithm
CHIPTYPE AM29F ;Flash type
CHIPSIZE 0x20000 ;The size of one flash chip in bytes (e.g. AM29F010 = 0x20000)
BUSWIDTH 8 ;The width of the flash memory bus in bits (8 | 16 | 32)
FILE C:\gdb\pid7t\bootrom.hex ;The file to program
ERASE 0x04000000 ;erase sector 0 of flash SIMM
ERASE 0x04004000 ;erase sector 1 of flash SIMM
ERASE 0x04008000 ;erase sector 2 of flash SIMM
ERASE 0x0400C000 ;erase sector 3 of flash SIMM
ERASE 0x04010000 ;erase sector 4 of flash SIMM
ERASE 0x04014000 ;erase sector 5 of flash SIMM

bdiGDB for GNU Debugger, BDI2000 (ARM) User Manual 35

© Copyright 1997-2006 by ABATRON AG Switzerland V 1.18

MAC7110 Internal Flash:

WORKSPACE 0x40000000 ;workspace in internal SRAM
CHIPTYPE CFM32 8000 ;select Program flash, fsys = 8MHz
CHIPSIZE 0x80000 ;512k internal program flash
BUSWIDTH 32 ;32-bit bus
FILE mac7100.cfg ;The file to program
FORMAT BIN 0xfc101000
ERASE 0xfc100000 PAGE ;erase page 0 (security byte will be restored)
ERASE 0xfc101000 PAGE ;erase page 1
ERASE 0xfc102000 PAGE ;erase page 2
ERASE 0xfc103000 PAGE ;erase page 3
;ERASE 0xfc100000 MASS ;mass erase (security byte will be restored)

LPC2000 Internal Flash:

The LPC2100 (LPC2000) internal flash is programmed using the LPC2100 built-in flash program-
ming driver via the so called IAP Commands. Details about the IAP commands you find in the
LPC2100 user's manual. This driver needs the current System Clock Frequency (CCLK) in KHz. This
frequency has to be provided via the CHIPTYPE parameter:

CHIPTYPE LPC2000 <fsys(kHz)>
CHIPTYPE LPC2000 14745 ;select LPC2100 flash, fsys = 14.745MHz

The erase parameter has a different meaning. It is not an address but a bit map of the sectors
to erase (bit0 = erase sector 0, bit1 = erase). If you add BLANK after the sector map, then a blank
check is executed after the erase. Following some examples:

ERASE 0x000000F0 BLANK ;erase sector 4...7 with blank check
ERASE 0x00007FFF BLANK ;erase sector 0...14 with blank check
ERASE 0x00000002 ;erase only sector 1, no blank check

The BDI needs also a workspace of 2k bytes in the internal SRAM. It is used to store the data to
program and to create a context from which the flash drivers can be called.

[FLASH]
CHIPTYPE LPC2000 14745 ;select LPC2100 flash, fsys = 14.745MHz
CHIPSIZE 0x20000 ;128k internal flash
WORKSPACE 0x40001000 ;internal SRAM for buffer, code and stack
FILE E:\cygwin\home\bdidemo\arm\lpc2100.bin
FORMAT BIN 0x00000000
ERASE 0x00007FFF BLANK ;erase sector 0...14 with blank check

For LPC213x/LPC214x define always 0x80000 as CHIPSIZE, independent of the actual implement-
ed flash memory size. Based on this CHIPSSIZE the BDI selects the correct sector table.

[FLASH]
CHIPTYPE LPC2000 12000 ;select LPC2100 flash, fsys = 12.000 MHz
CHIPSIZE 0x80000 ;select LPC213x/4x sector layout
WORKSPACE 0x40001000 ;internal SRAM for buffer, code and stack
FILE E:\cygwin\home\bdidemo\arm\mcb2130.bin
FORMAT BIN 0x00000000
ERASE 0x007FFFFF BLANK ;erase sector 0...26 with blank check

bdiGDB for GNU Debugger, BDI2000 (ARM) User Manual 36

© Copyright 1997-2006 by ABATRON AG Switzerland V 1.18

STA2051/ STR710F Internal Flash:

For the STA2051 / STR710F internal flash, the BDI assumes the following structure of the address.

Select the sectors to erase by setting the appropriate bit in the bank0 or bank1 field. You can only set
bits in one bank at the same time. It is not possible to erase both banks in one step.
Following some examples:

ERASE 0x00000080 ;erase sector B0F7
ERASE 0x000000FF ;erase all sectors of bank 0
ERASE 0x00030000 ;erase all sectors of bank 1

[FLASH]
WORKSPACE 0x20000000 ;workspace in internal SRAM
CHIPTYPE STA2051 ;STA2051 internal flash
CHIPSIZE 0x40000 ;256k internal program flash
BUSWIDTH 32 ;select 32 for this flash
FILE $sta2051b0.bin ;The file to program
FORMAT BIN 0x40000000
ERASE 0x000000FF ;erase all sectors of bank 0

ST30F7xx Internal Flash:

The ST30F7xx flash is handled like the STA2051 flash. The only difference is, that there exists only
flash bank 0 but with 12 sectors.

ERASE 0x00000FFF ;erase all sectors of bank 0

ADuC7000 Internal Flash:

The BDI2000 supports programming of the ADuC7000 internal flash. As second parameter for the
ERASE command, PAGE (default) or MASS can be entered. Following a configuration example:

[FLASH]
WORKSPACE 0x00010020 ;workspace in internal SRAM
CHIPTYPE ADUC7000 ;ADuC7000 internal flash
CHIPSIZE 0x10000 ;64k internal program flash
BUSWIDTH 16 ;select 16 for this flash
FILE E:\temp\aduc8k.bin
FORMAT BIN 0x00080000
ERASE 0x88000 ;erase page
ERASE 0x88200 ;erase page
ERASE 0x88400 ;erase page
ERASE 0x88600 ;erase page

reserved bank 0
14 bit 2 bit 8 bit 8 bit

reservedbank 1

bdiGDB for GNU Debugger, BDI2000 (ARM) User Manual 37

© Copyright 1997-2006 by ABATRON AG Switzerland V 1.18

AT91SAM7S Internal Flash:

The BDI2000 supports programming of the Atmel AT91SAM7S internal flash. Before using any flash
function it is important that the MC_FMR is programmed with the correct values for FMCN and FWS.
This can be done via the initialization list. Following a configuration example:

[INIT]
WM32 0xFFFFFD44 0x00008000 ;Disable watchdog
WM32 0xFFFFFD08 0xA5000001 ;Enable user reset
;
; Setup PLL
WM32 0xFFFFFC20 0x00000601 ;CKGR_MOR : Enabling the Main Oscillator
DELAY 20
WM32 0xFFFFFC2C 0x10480a0e ;CKGR_PLLR: 96.1MHz (DIV=14,MUL=72+1)
DELAY 20
WM32 0xFFFFFC30 0x00000007 ;PMC_MCKR : MCK = PLL / 2 = 48MHz
DELAY 20
;
; Setup Internal Flash for 48MHz Master Clock
WM32 0xFFFFFF60 0x00300100 ;MC_FMR: Flash mode (FWS=1,FMCN=48)
;

[TARGET]
CPUTYPE ARM7TDMI
CLOCK 1 10 ;JTAG clock, start with a slow clock
RESET HARD 300 ;Assert reset line for 300 ms
BREAKMODE HARD ;SOFT or HARD
STEPMODE HWBP

[FLASH]
CHIPTYPE AT91SAM7S ;Don't forget to set MC_FMR[FMCN] and MC_FMR[FWS]
CHIPSIZE 0x10000 ;The AT91SAM7S64 has 64kB internal flash
BUSWIDTH 32 ;Use 32-bit for AT91SAM7S
FILE at91\sam7s.bin
FORMAT BIN 0x00100000

An explicit erase is not necessary because a page is automatically erased during programming. But
the BDI2000 supports also erasing a page or the complete flash memory. The ERASE command
supports a second parameter, PAGE (default) or CHIP can be used. A page is erased by program-
ming it with all 0xFF. Following an example how to erase the complete flash via Telnet:

BDI> erase 0x00100000 chip

bdiGDB for GNU Debugger, BDI2000 (ARM) User Manual 38

© Copyright 1997-2006 by ABATRON AG Switzerland V 1.18

Supported standard Flash Memories:
There are currently 3 standard flash algorithm supported. The AMD, Intel and Atmel AT49 algorithm.
Almost all currently available flash memories can be programmed with one of this algorithm. The
flash type selects the appropriate algorithm and gives additional information about the used flash.

For 8bit only flash: AM29F (MIRROR), I28BX8, AT49

For 8/16 bit flash in 8bit mode: AM29BX8 (MIRRORX8), I28BX8 (STRATAX8), AT49X8

For 8/16 bit flash in 16bit mode: AM29BX16 (MIRRORX16), I28BX16 (STRATAX16), AT49X16

For 16bit only flash: AM29BX16, I28BX16, AT49X16

For 16/32 bit flash in 16bit mode: AM29DX16

For 16/32 bit flash in 32bit mode: AM29DX32

For 32bit only flash: M58X32

The AMD and AT49 algorithm are almost the same. The only difference is, that the AT49 algorithm
does not check for the AMD status bit 5 (Exceeded Timing Limits).
Only the AMD and AT49 algorithm support chip erase. Block erase is only supported with the AT49
algorithm. If the algorithm does not support the selected mode, sector erase is performed. If the chip
does not support the selected mode, erasing will fail. The erase command sequence is different only
in the 6th write cycle. Depending on the selected mode, the following data is written in this cycle (see
also flash data sheets): 0x10 for chip erase, 0x30 for sector erase, 0x50 for block erase.
To speed up programming of Intel Strata Flash and AMD MirrorBit Flash, an additional algorithm is
implemented that makes use of the write buffer. This algorithm needs a workspace, otherwise the
standard Intel/AMD algorithm is used.

The following table shows some examples:

Flash x 8 x 16 x 32 Chipsize

Am29F010 AM29F - - 0x020000

Am29F800B AM29BX8 AM29BX16 - 0x100000

Am29DL323C AM29BX8 AM29BX16 - 0x400000

Am29PDL128G - AM29DX16 AM29DX32 0x01000000

Intel 28F032B3 I28BX8 - - 0x400000

Intel 28F640J3A STRATAX8 STRATAX16 - 0x800000

Intel 28F320C3 - I28BX16 - 0x400000

AT49BV040 AT49 - - 0x080000

AT49BV1614 AT49X8 AT49X16 - 0x200000

M58BW016BT - - M58X32 0x200000

SST39VF160 - AT49X16 - 0x200000

Am29LV320M MIRRORX8 MIRRORX16 - 0x400000

bdiGDB for GNU Debugger, BDI2000 (ARM) User Manual 39

© Copyright 1997-2006 by ABATRON AG Switzerland V 1.18

Note:
Some Intel flash chips (e.g. 28F800C3, 28F160C3, 28F320C3) power-up with all blocks in locked
state. In order to erase/program those flash chips, use the init list to unlock the appropriate blocks:

WM16 0xFFF00000 0x0060 unlock block 0
WM16 0xFFF00000 0x00D0
WM16 0xFFF10000 0x0060 unlock block 1
WM16 0xFFF10000 0x00D0

....
WM16 0xFFF00000 0xFFFF select read mode

 or use the Telnet "unlock" command:

UNLOCK [<addr> [<delay>]]

addr This is the address of the sector (block) to unlock

delay A delay time in milliseconds the BDI waits after sending the unlock com-
mand to the flash. For example, clearing all lock-bits of an Intel J3 Strata
flash takes up to 0.7 seconds.

If "unlock" is used without any parameter, all sectors in the erase list with the UNLOCK option are
processed.

To clear all lock-bits of an Intel J3 Strata flash use for example:

BDI> unlock 0xFF000000 1000

To erase or unlock multiple, continuos flash sectors (blocks) of the same size, the following Telnet
commands can be used:

ERASE <addr> <step> <count>
UNLOCK <addr> <step> <count>

addr This is the address of the first sector to erase or unlock.

step This value is added to the last used address in order to get to the next sec-
tor. In other words, this is the size of one sector in bytes.

count The number of sectors to erase or unlock.

The following example unlocks all 256 sectors of an Intel Strata flash (28F256K3) that is mapped to
0x00000000. In case there are two flash chips to get a 32bit system, double the "step" parameter.

BDI> unlock 0x00000000 0x20000 256

bdiGDB for GNU Debugger, BDI2000 (ARM) User Manual 40

© Copyright 1997-2006 by ABATRON AG Switzerland V 1.18

3.2.5 Part [REGS]

In order to make it easier to access target registers via the Telnet interface, the BDI can read in a
register definition file. In this file, the user defines a name for the register and how the BDI should
access it (e.g. as memory mapped, memory mapped with offset, ...). The name of the register defi-
nition file and information for different registers type has to be defined in the configuration file.
The register name, type, address/offset/number and size are defined in a separate register definition
file. This way, you can create one register definition file for a specific target processor that can be
used for all possible positions of the internal memory map. You only have to change one entry in the
configuration file.

An entry in the register definition file has the following syntax:

name type addr size

name The name of the register (max. 12 characters)

type The register type
GPR General purpose register
CP15 Coprocessor 15 register
MM Absolute direct memory mapped register
DMM1...DMM4 Relative direct memory mapped register
IMM1...IMM4 Indirect memory mapped register

addr The address, offset or number of the register

size The size (8, 16, 32) of the register

The following entries are supported in the [REGS] part of the configuration file:

FILE filename The name of the register definition file. This name is used to access the
file via TFTP. The file is loaded once during BDI startup.

filename the filename including the full path
Example: FILE C:\bdi\regs\reg40400.def

DMMn base This defines the base address of direct memory mapped registers. This
base address is added to the individual offset of the register.

base the base address
Example: DMM1 0x01000

IMMn addr data This defines the addresses of the memory mapped address and data reg-
isters of indirect memory mapped registers. The address of a IMMn regis-
ter is first written to "addr" and then the register value is access using
"data" as address.

addr the address of the Address register
data the address of the Data register
Example: DMM1 0x04700000

bdiGDB for GNU Debugger, BDI2000 (ARM) User Manual 41

© Copyright 1997-2006 by ABATRON AG Switzerland V 1.18

Example for a register definition (AT91M40400):

Entry in the configuration file:

[REGS]
DMM1 0x04700000 ;Internal Memory Map Base Address
FILE E:\bdi\reg40400.def ;The register definition file

The register definition file:

;name type addr size
;---
;
;
; External Bus Interface (EBI) Registers
;
csr0 MM 0xFFE0000032
csr1 MM 0xFFE0000432
csr2 MM 0xFFE0000832
csr3 MM 0xFFE0000c32
csr4 MM 0xFFE0001032
csr5 MM 0xFFE0001432
csr6 MM 0xFFE0001832
csr7 MM 0xFFE0001c32
rcr MM 0xFFE0002032
mcr MM 0xFFE0002432

Now the defined registers can be accessed by name via the Telnet interface:

BDI> rd csr0
BDI>rm csr0 0x01002535

Example for CP15 register definition (ARM720T):

;
id CP15 0x0000 32
control CP15 0x0001 32
ttb CP15 0x0002 32
dac CP15 0x0003 32
fsr CP15 0x0005 32
far CP15 0x0006 32
iidc CP15 0x0007 32 ;invalidate ID cache
itlb CP15 0x0008 32 ;invalidate TLB
itlbs CP15 0x2008 32 ;invalidate TLB single entry
pid CP15 0x000d 32 ;process identifier

bdiGDB for GNU Debugger, BDI2000 (ARM) User Manual 42

© Copyright 1997-2006 by ABATRON AG Switzerland V 1.18

3.3 Debugging with GDB

Because the target agent runs within BDI, no debug support has to be linked to your application.
There is also no need for any BDI specific changes in the application sources. Your application must
be fully linked because no dynamic loading is supported.

3.3.1 Target setup

Target initialization may be done at two places. First with the BDI configuration file, second within the
application. The setup in the configuration file must at least enable access to the target memory
where the application will be loaded. Disable the watchdog and setting the CPU clock rate should
also be done with the BDI configuration file. Application specific initializations like setting the timer
rate are best located in the application startup sequence.

3.3.2 Connecting to the target

As soon as the target comes out of reset, BDI initializes it and loads your application code. If RUN is
selected, the application is immediately started, otherwise only the target PC is set. BDI now waits
for GDB request from the debugger running on the host.

After starting the debugger, it must be connected to the remote target. This can be done with the fol-
lowing command at the GDB prompt:

(gdb)target remote bdi2000:2001

bdi2000 This stands for an IP address. The HOST file must have an appropriate
entry. You may also use an IP address in the form xxx.xxx.xxx.xxx

2001 This is the TCP port used to communicate with the BDI

If not already suspended, this stops the execution of application code and the target CPU changes
to background debug mode.

Remember, every time the application is suspended, the target CPU is freezed. During this time no
hardware interrupts will be processed.

Note: For convenience, the GDB detach command triggers a target reset sequence in the BDI.
(gdb)...
(gdb)detach
... Wait until BDI has resetet the target and reloaded the image
(gdb)target remote bdi2000:2001

Note:
GDB sometimes fails to connect to the target after a reset because it tries to read an invalid stack
frame. With the following init list entries you can work around this GDB startup problem:

WGPR 11 0x00000020 ;set frame pointer to free RAM
WM32 0x00000020 0x00000028 ;dummy stack frame

bdiGDB for GNU Debugger, BDI2000 (ARM) User Manual 43

© Copyright 1997-2006 by ABATRON AG Switzerland V 1.18

3.3.3 Breakpoint Handling

If your GDB version does not support the Z-packet protocol unit, it inserts breakpoints by replacing
code via simple memory read / write commands. When breakpoint mode HARD is selected, the BDI
checks the memory write commands for such hidden "Set Breakpoint" actions. If such a write is de-
tected, the write is not performed and the BDI sets an appropriate hardware breakpoint. The BDI as-
sumes that this is a "Set Breakpoint" action when memory write length is 4 bytes and the pattern to
write is the one defined with the BREAKMODE parameter (default is 0xE7FFDEFE).

If your GDB version make use of the Z-Packet, then GDB tells the BDI to set / clear breakpoints with
this special protocol unit. The BDI will respond to this request by replacing code in memory or by set-
ting the appropriate hardware breakpoint. The pattern used to replace memory is the one defined
with the BREAKMODE parameter. It is recommended to define a pattern of 0xDFFFDFFF in this
case because this pattern allows to debug mixed ARM/Thumb applications.

The ARM IceBreaker supports two hardware breakpoints (watchpoints). For ARM7 and ARM9 one
of them is used to support software breakpoints and vector catching for ARM7 targets. The other can
be used for a hardware breakpoint. To make both available for hardware breakpoints, you should se-
lect BREAKMODE HARD and disable vector catching.
For ARM9E the BKPT instruction is always used to implement software breakpoints. In that case no
hardware breakpoint (watchpoint) is used to implement software breakpoints.

User controlled hardware breakpoints:
The ARM IceBreaker has a special watchpoint hardware integrated. Normally the BDI controls this
hardware in response to Telnet commands (BI, BDx) or when breakpoint mode HARD is selected.
Via the Telnet commands BI and BDx, you cannot access all the features of the breakpoint hardware.
Therefore the BDI assumes that the user will control / setup this watchpoint hardware as soon as the
appropriate Watchpoint Control register is written to. This way the debugger or the user via Telnet has
full access to all features of this watchpoint hardware. When setting a watchpoint, use the following
register numbers. The values will be written to the IceBreaker immediately before a target restart.

100 : Watchpoint 0 Address Value 110 : Watchpoint 1 Address Value
101 : Watchpoint 0 Address Mask 111 : Watchpoint 1 Address Mask
102 : Watchpoint 0 Data Value 112 : Watchpoint 1 Data Value
103 : Watchpoint 0 Data Mask 113 : Watchpoint 1 Data Mask
104 : Watchpoint 0 Control Value 114 : Watchpoint 1 Control Value
105 : Watchpoint 0 Control Mask 115 : Watchpoint 1 Control Mask

Example:

BDI> rmib 100 0x00104560

3.3.4 GDB monitor command

The BDI supports the GDB V5.x "monitor" command. Telnet commands are executed and the Telnet
output is returned to GDB.

(gdb) target remote bdi2000:2001
Remote debugging using bdi2000:2001
0x10b2 in start ()
(gdb) monitor md 0 1
00000000 : 0xe59ff018 - 442503144 ...

bdiGDB for GNU Debugger, BDI2000 (ARM) User Manual 44

© Copyright 1997-2006 by ABATRON AG Switzerland V 1.18

3.3.5 Target serial I/O via BDI

A RS232 port of the target can be connected to the RS232 port of the BDI2000. This way it is possible
to access the target’s serial I/O via a TCP/IP channel. For example, you can connect a Telnet session
to the appropriate BDI2000 port. Connecting GDB to a GDB server (stub) running on the target
should also be possible.

The configuration parameter "SIO" is used to enable this serial I/O routing.
The BDI asserts RTS and DTR when a TCP connection is established.

[TARGET]
....
SIO 7 9600 ;Enable SIO via TCP port 7 at 9600 baud

Warning!!!
Once SIO is enabled, connecting with the setup tool to update the firmware will fail. In this case either
disable SIO first or disconnect the BDI from the LAN while updating the firmware.

Target System

Ethernet (10 BASE-T)

BDI2000

AAAAbbbbaaaattttrrrroooonnnn AAAAGGGG SSSSwwwwiiiissssssss MMMMaaaaddddeeee

ARM

R
S

23
2

RS232 POWER LI TX RX 10 BASE-T

54321

9876

RS232 Connector

1 - CD
2 - RXD
3 - TXD
4 - DTR
5 - GROUND
6 - DSR
7 - RTS
8 - CTS
9 - RI

XXX BDI Output

bdiGDB for GNU Debugger, BDI2000 (ARM) User Manual 45

© Copyright 1997-2006 by ABATRON AG Switzerland V 1.18

3.3.6 Target DCC I/O via BDI

It is possible to route a TCP/IP port to the ARM’s debug communciation channel (DCC). This way, the
application running on the target can output messages via DCC that are displayed for example in a
Telnet window. The BDI routes every byte received via DCC to the connected TCP/IP channel and
vice versa. Below some simple functions you can link to your application in order to implement IO via
DCC.

#define DCC_OUTPUT_BUSY 2
#define DCC_INPUT_READY 1

static unsigned int read_dcc(void) {

 unsigned int c;

 __asm__(
 "mrc p14,0, %0, c1, c0\n"
 : "=r" (c));
return c;

}

static void write_dcc(unsigned int c) {

 __asm__(
 "mcr p14,0, %0, c1, c0\n"
 :
 : "r" (c));

}

static unsigned int poll_dcc(void) {

 unsigned int ret;

 __asm__(
 "mrc p14,0, %0, c0, c0\n"
 : "=r" (ret));

 return ret;
}

void write_dcc_char(unsigned int c) {

while(poll_dcc() & DCC_OUTPUT_BUSY);
write_dcc(c);

}

unsigned int read_dcc_char(void) {

while(!(poll_dcc() & DCC_INPUT_READY));
return read_dcc();

}

void write_dcc_string(const char* s)
{

while (*s) write_dcc_char(*s++);
}

bdiGDB for GNU Debugger, BDI2000 (ARM) User Manual 46

© Copyright 1997-2006 by ABATRON AG Switzerland V 1.18

3.4 Telnet Interface

A Telnet server is integrated within the BDI. The Telnet channel is used by the BDI to output error
messages and other information. Also some basic debug tasks may be done by using this interface.
Enter help at the Telnet command prompt to get a list of the available commands.

Telnet Debug features:

• Display and modify memory locations

• Display and modify registers

• Single step a code sequence

• Set hardware breakpoints (for code and data accesses)

• Load a code file from any host

• Start / Stop program execution

• Programming and Erasing Flash memory

During debugging with GDB, the Telnet is mainly used to reboot the target (generate a hardware reset
and reload the application code). It may be also useful during the first installation of the bdiGDB sys-
tem or in case of special debug needs.

Notes:
The DUMP command uses TFTP to write a binary image to a host file. Writing via TFTP on a Linux/
Unix system is only possible if the file already exists and has public write access. Use "man tftpd" to
get more information about the TFTP server on your host.

bdiGDB for GNU Debugger, BDI2000 (ARM) User Manual 47

© Copyright 1997-2006 by ABATRON AG Switzerland V 1.18

3.4.1 Command list

"MD [<address>] [<count>] display target memory as word (32bit)",
"MDH [<address>] [<count>] display target memory as half word (16bit)",
"MDB [<address>] [<count>] display target memory as byte (8bit)",
"DUMP <addr> <size> [<file>] dump target memory to a file",
"MM <addr> <value> [<cnt>] modify word(s) (32bit) in target memory",
"MMH <addr> <value> [<cnt>] modify half word(s) (16bit) in target memory",
"MMB <addr> <value> [<cnt>] modify byte(s) (8bit) in target memory",
"MT <addr> <count> memory test",
"MC [<address>] [<count>] calculates a checksum over a memory range",
"MV verifies the last calculated checksum",
"RD [<name>] display general purpose or user defined register",
"RDUMP [<file>] dump all user defined register to a file",
"RDALL display all ARM registers ",
"RDCP <number> display control processor 15 register",
"RDIB [<number>] display IceBreaker register",
"RM {<nbr>≠<name>} <value> modify general purpose or user defined register",
"RMCP <number> <value> modify control processor 15 register",
"RMIB <number> <value> modify IceBreaker register",
"BOOT reset the BDI and reload the configuration",
"RESET [HALT | RUN [time]] reset the target system, change startup mode",
"GO [<pc>] set PC and start current core",
"GO <n> <n> [<n>[<n>]] start multiple cores in requested order",
"TI [<pc>] single step an instruction",
"HALT [<n>[<n>[<n>[<n>]]]] force core(s) to debug mode (n = core number)",
"BI <addr> [<mask>] set instruction breakpoint",
"CI [<id>] clear instruction breakpoint(s)",
"BD [R|W] <addr> [<data>] set data watchpoint (32bit access)",
"BDH [R|W] <addr> [<data>] set data watchpoint (16bit access)",
"BDB [R|W] <addr> [<data>] set data watchpoint (8bit access)",
"BDM [R|W] <addr> [<mask>] set data watchpoint with address mask",
"CD [<id>] clear data watchpoint(s)",
"INFO display information about the current state",
"LOAD [<offset>] [<file> [<format>]] load program file to target memory",
"VERIFY [<offset>] [<file> [<format>]] verify a program file to target memory",
"PROG [<offset>] [<file> [<format>]] program flash memory",
" <format> : SREC, BIN, AOUT, ELF or COFF",
"ERASE [<address> [<mode>]] erase a flash memory sector, chip or block",
" <mode> : CHIP, BLOCK or SECTOR (default is sector)",
"ERASE <addr> <step> <count> erase multiple flash sectors",
"UNLOCK [<addr> [<delay>]] unlock a flash sector",
"UNLOCK <addr> <step> <count> unlock multiple flash sectors",
"FLASH <type> <size> <bus> change flash configuration",
"FENA <addr> <size> enable autoamtic programming to flash memory",
"FDIS disable autoamtic programming to flash memory",
"DELAY <ms> delay for a number of milliseconds",
"SELECT <core> change the current core",
"SCAN <nbr><len>[<...b2b1b0>] Access a JTAG scan chain, b0 is first scanned",
" len : the number of bits 1..256",
" bx : a data byte, two hex digits",
"HOST <ip> change IP address of program file host",
"PROMPT <string> defines a new prompt string",
"CONFIG display or update BDI configuration",
"CONFIG <file> [<hostIP> [<bdiIP> [<gateway> [<mask>]]]]",
"HELP display command list",
"QUIT terminate the Telnet session"

bdiGDB for GNU Debugger, BDI2000 (ARM) User Manual 48

© Copyright 1997-2006 by ABATRON AG Switzerland V 1.18

3.4.2 CP15 Registers

Via Telnet it is possible to access the Coprocessor 15 (CP15) registers. Following the two Telnet com-
mands that are used to access CP15 registers:

"RDCP <number> display control processor 15 register"
"RMCP <number> <value> modify control processor 15 register"

The parameter number selects the CP15 register. This parameter has a special numbering scheme
which depends of the ARM CPU type. More information is also found in the ARM documentation.

ARM710T, ARM720T,ARM740T:
The 16bit register number is used to build the appropriate MCR/MRC instruction to access the CP15
register.

+-----+-+-------+-------+-------+
|opc_2|0| CRm |0 0 0 0| nbr |
+-----+-+-------+-------+-------+

Normally opc_2 and CRm are zero and therefore you can simply enter the CP15 register number.
In the register definition file "reg720t.def" you will find some examples.

ARM920T:
Via JTAG, CP15 registers are accessed either direct (physical access mode) or via interpreted MCR/
MRC instructions. Read also ARM920T manual, part "Debug Support - Scan Chain 15".

Register number for physical access mode (bit 12 = 0):

+-----+-+-----+-+-----+-+-------+
|0 0 0|0|0 0 0|i|0 0 0|x| nbr |
+-----+-+-----+-+-----+-+-------+

The bit "i" selects the instruction cache (scan chain bit 33), the bit "x" extends access to register 15
(scan chain bit 38).

Register number for interpreted access mode (bit 12 = 1):

+-----+-+-------+-----+-+-------+
|opc_2|1| CRm |opc_1|0| nbr |
+-----+-+-------+-----+-+-------+

The 16bit register number is used to build the appropriate MCR/MRC instruction.

ARM940T, ARM946E, ARM966E:
The CP15 registers are directly accessed via JTAG.

+-----+-+-----+-+-----+-+-------+
|0 0 0|0|0 0 0|i|0 0 0|x| nbr |
+-----+-+-----+-+-----+-+-------+

The bit "i" selects the instruction cache (scan chain bit 32), the bit "x" extends access to register 6
(scan chain bit 37). In the register definition file "reg940t.def" you will find some examples.

bdiGDB for GNU Debugger, BDI2000 (ARM) User Manual 49

© Copyright 1997-2006 by ABATRON AG Switzerland V 1.18

ARM926E:
The 16bit register number contains the fields of the appropriate MCR/MRC instruction that would be
used to access the CP15 register.

+-+-----+-+-----+-------+-------+
|-|opc_1|-|opc_2| CRm | nbr |
+-+-----+-+-----+-------+-------+

Normally opc_1, opc_2 and CRm are zero and therefore you can simply enter the CP15 register num-
ber. In the register definition file "reg926e.def" you will find some examples.

TI925T:
The CP15 registers are directly accessed via JTAG.
The following table shows the numbers used to access the CP15 registers and functions.

 0 (or 0x30) : ID
 1 (or 0x31) : Control
 2 (or 0x32) : Translation table base
 3 (or 0x33) : Domain access control
 5 (or 0x35) : Fault status
 6 (or 0x36) : Fault address
 8 (or 0x38) : Cache information
13 (or 0x3d) : Process ID

0x10 : TI925T Status
0x11 : TI925T Configuration
0x12 : TI925T I-max
0x13 : TI925T I-min
0x14 : TI925T Thread ID

0x18 : Flush I+D TLB
0x19 : Flush I TLB
0x1a : Flush I TLB entry
0x1b : Flush D TLB
0x1c : Flush D TLB entry

0x20 : Flush I cache
0x22 : Flush I cache entry
0x23 : Flush D cache
0x24 : Flush D cache entry address
0x25 : Clean D cache entry address
0x26 : Clean + Flush D cache entry address
0x27 : Flush D cache entry index
0x28 : Clean D cache entry index
0x29 : Clean + Flush D cache entry index
0x2a : Clean D cache
0x2b : Drain Write buffer

0x37 : I cache TLB Lock-Down
0x3a : D cache TLB Lock-Down

bdiGDB for GNU Debugger, BDI2000 (ARM) User Manual 50

© Copyright 1997-2006 by ABATRON AG Switzerland V 1.18

3.5 Multi-Core Support

The bdiGDB system supports concurrent debugging of up to 4 ARM cores connected to the same
JTAG scan chain. For every core you can start its own GDB session. The default port numbers used
to attach the remote targets are 2001 ... 2004. In the Telnet you switch between the cores with the
command "select <0..3>". In the configuration file, simply begin the line with the appropriate core
number. If there is no #n in front of a line, the BDI assumes core #0.

The following example defines two cores on the scan chain.

[TARGET]
CLOCK 1 ;JTAG clock (0=Adaptive, 1=8MHz, 2=4MHz, 3=2MHz)
WAKEUP 1000 ;wakeup time after reset

#0 CPUTYPE ARM7TDMI
#0 SCANPRED 0 0 ;JTAG devices connected before this core
#0 SCANSUCC 1 4 ;JTAG devices connected after this core
#0 VECTOR CATCH ;catch unhandled exceptions
#0 BREAKMODE SOFT 0xef180000 ;SOFT or HARD (X-Tools V1.0 break code)
#0 DCC 8 ;DCC I/O via TCP port 8

#1 CPUTYPE ARM7TDMI
#1 SCANPRED 1 4 ;JTAG devices connected before this core
#1 SCANSUCC 0 0 ;JTAG devices connected after this core
#1 VECTOR CATCH ;catch unhandled exceptions
#1 BREAKMODE SOFT 0xef180000 ;SOFT or HARD (X-Tools V1.0 break code)
#1 DCC 7 ;DCC I/O via TCP port 7

For a complete configuration example see "eb63_eval7t.cfg" on the diskette. This configuration was
used to debug an AT91EB63 daisy chained with an Evaluator-7T board.

bdiGDB for GNU Debugger, BDI2000 (ARM) User Manual 51

© Copyright 1997-2006 by ABATRON AG Switzerland V 1.18

4 Specifications

Operating Voltage Limiting 5 VDC ± 0.25 V

Power Supply Current typ. 500 mA
max. 1000 mA

RS232 Interface: Baud Rates 9’600,19’200, 38’400, 57’600,115’200
Data Bits 8
Parity Bits none
Stop Bits 1

Network Interface 10 BASE-T

Serial Transfer Rate between BDI and Target up to 16 Mbit/s

Supported target voltage 1.8 – 5.0 V (3.0 – 5.0 V with Rev. A/B)

Operating Temperature + 5 °C ... +60 °C

Storage Temperature -20 °C ... +65 °C

Relative Humidity (noncondensing) <90 %rF

Size 190 x 110 x 35 mm

Weight (without cables) 420 g

Host Cable length (RS232) 2.5 m

Specifications subject to change without notice

bdiGDB for GNU Debugger, BDI2000 (ARM) User Manual 52

© Copyright 1997-2006 by ABATRON AG Switzerland V 1.18

5 Environmental notice

Disposal of the equipment must be carried out at a designated disposal site.

6 Declaration of Conformity (CE)

bdiGDB for GNU Debugger, BDI2000 (ARM) User Manual 53

© Copyright 1997-2006 by ABATRON AG Switzerland V 1.18

7 Warranty
ABATRON Switzerland warrants the physical diskette, cable, BDI2000 and physical documentation
to be free of defects in materials and workmanship for a period of 24 months following the date of
purchase when used under normal conditions.

In the event of notification within the warranty period of defects in material or workmanship,
ABATRON will replace defective diskette, cable, BDI2000 or documentation. The remedy for breach
of this warranty shall be limited to replacement and shall not encompass any other damages, includ-
ing but not limited loss of profit, special, incidental, consequential, or other similar claims.
ABATRON Switzerland specifically disclaims all other warranties- expressed or implied, including but
not limited to implied warranties of merchantability and fitness for particular purposes - with respect
to defects in the diskette, cable, BDI2000 and documentation, and the program license granted here-
in, including without limitation the operation of the program with respect to any particular application,
use, or purposes. In no event shall ABATRON be liable for any loss of profit or any other commercial
damage, including but not limited to special, incidental, consequential, or other damages.

Failure in handling which leads to defects are not covered under this warranty. The warranty is void
under any self-made repair operation except exchanging the fuse.

bdiGDB for GNU Debugger, BDI2000 (ARM) User Manual 54

© Copyright 1997-2006 by ABATRON AG Switzerland V 1.18

Appendices

A Troubleshooting
Problem
The firmware can not be loaded.

Possible reasons

• The BDI is not correctly connected with the target system (see chapter 2).

• The power supply of the target system is switched off or not in operating range
(4.75 VDC ... 5.25 VDC) --> MODE LED is OFF or RED

• The built in fuse is damaged --> MODE LED is OFF

• The BDI is not correctly connected with the Host (see chapter 2).

• A wrong communication port (Com 1...Com 4) is selected.

Problem
No working with the target system (loading firmware is ok).

Possible reasons

• Wrong pin assignment (BDM/JTAG connector) of the target system (see chapter 2).

• Target system initialization is not correctly --> enter an appropriate target initialization list.
• An incorrect IP address was entered (BDI2000 configuration)

• BDM/JTAG signals from the target system are not correctly (short-circuit, break, ...).

• The target system is damaged.

Problem
Network processes do not function (loading the firmware was successful)

Possible reasons
• The BDI2000 is not connected or not correctly connected to the network (LAN cable or media

converter)
• An incorrect IP address was entered (BDI2000 configuration)

bdiGDB for GNU Debugger, BDI2000 (ARM) User Manual 55

© Copyright 1997-2006 by ABATRON AG Switzerland V 1.18

B Maintenance
The BDI needs no special maintenance. Clean the housing with a mild detergent only. Solvents such
as gasoline may damage it.

If the BDI is connected correctly and it is still not responding, then the built in fuse might be damaged
(in cases where the device was used with wrong supply voltage or wrong polarity). To exchange the
fuse or to perform special initialization, please proceed according to the following steps:

Observe precautions for handling (Electrostatic sensitive device)
Unplug the cables before opening the cover.

Use exact fuse replacement (Microfuse MSF 1.6 AF).

!

1

2

3

BD
I20

00

AAAA bbbb
aaaa tttt

rrrr oooo
nnnn

AAAA GGGG

SSSS wwww
iiii ssss ssss

 MMMM
aaaa dddd

eeee

1.1 Unplug the cables

BDI TRGT MODE BDI MAIN BDI OPTION

2.1 Remove the two plastic caps that cover the screws on target front side

2.2 Remove the two screws that hold the front panel

3.1 While holding the casing, remove the front panel and the red elastig sealing

(e.g. with a small knife)

front panel

elastic sealing

casing

bdiGDB for GNU Debugger, BDI2000 (ARM) User Manual 56

© Copyright 1997-2006 by ABATRON AG Switzerland V 1.18

Observe precautions for handling (Electrostatic sensitive device)
Unplug the cables before opening the cover.

Use exact fuse replacement (Microfuse MSF 1.6 AF).

4

5

4.1 While holding the casing, slide carefully the print in position as shown in

5.1 Slide back carefully the print. Check that the LEDs align with the holes in the

front panel

elastic sealing

Reinstallation

back panel.

5.2 Push carefully the front panel and the red elastig sealing on the casing.
Check that the LEDs align with the holes in the front panel and that the

5.3 Mount the screws (do not overtighten it)

5.4 Mount the two plastic caps that cover the screws

5.5 Plug the cables

position of the sealing is as shown in the figure below.

casing

figure below

Pull-out carefully the fuse and replace it
Type: Microfuse MSF 1.6AF
Manufacturer: Schurter

Jumper settings

DEFAULT INIT MODE

back panel

Fuse Position
Fuse Position
Rev. B/C

Rev. A

!

bdiGDB for GNU Debugger, BDI2000 (ARM) User Manual 57

© Copyright 1997-2006 by ABATRON AG Switzerland V 1.18

C Trademarks
All trademarks are property of their respective holders.

