LA

EJTAG interface for GNU Debugger

MIPS32

User Manual

Manual Version 1.10 for BDI2000

AAR N

©1997-2006 by Abatron AG

M for GNU Debugger, BDI2000 (MIPS32) User Manual 2

I 4 go To 1¥ o4 { o o O EPTP PP 3
00 R = 0T 20 PSSRSO 3
RV = 1D Tl @fe] 1 1o U] £= 1110 o HEU PP PPRPPTR T PPPPP 4

P2 | K= = I = L1 o] o R 5
2.1 Connecting the BDI2000 tO TarQet.......cuuuuuiiiiii e eeiiiis e e e et e e e e e e e e e e e e e e erenn s 5

2.1.1 Changing Target ProOCESSOr TYPEuuuuuuuuuuuuueiuueeuuunuuenneenneenneeenneeneseeenenennnnesnnnessneseennees 7
2.2 Connecting the BDI2000 tO POWET SUPPIY.....utrriiiieiiiiiiiiiiiieeee et 8
2.2.1 EXtErnal POWET SUPPIY ...ttt e e 8
2.2.2 Power Supply from Target SYSIEMuuuuiuiiiiiiiiiiiiiiiiiiiiiierirrrieererrrrerrreree—————————. 9
2.3 StAtUS LED «MODED......cuiiiiiiiiiiiiiiiii ittt ettt e e e e e e e s e e e e e e e e e nnnbbaeeeeeaeeeaanns 10
2.4 Connecting the BDI2000 t0 HOSL........oouiiiiiii i e e e e e e 11
2.4.1 Serial line@ COMMUNICALION ... e eneenne 11
2.4.2 Ethernet COMMUNICALION ... e nnnnnne 12
2.5 Installation of the Configuration SOftWAIEccoiiiiiiiiiiiiiii e 13
2.5.1 Configuration with a Linux / UNiX NOSE...........uuiiiiiieaenennennnes 14
2.5.2 Configuration with @ WIiNdOWS NOST ... 16
2.5.3 RECOVEI PrOCEAUIE.....uuiei i e e et e et e e e e e e e e e et r e e e e e e e e e eeta e e e e e e e eeeenannnanas 17
2.6 Testing the BDI2000 t0 hOSt CONNECHIONcoeeiiieiieeiieeeeee e, 18
2.7 TETP server for WINAOWS NT.......ooiiiiiiiiiiiiiee e 18

G T U L] 1 o T o T 1T I = PP 19
3.1 Principle of OPEratioNocvvviiiiiii 19
3.2 Configuration FilEccoiiiiiii e e 20

07 A =~ Y o 1 PR PSPRERR 21
3.2.2 Part [TARGET] ittt e e e et e e e e e e e st e e e e e e e e e asnrrnenaeeeaeaans 23
G B ==Y | [1S I PSPPSR 27
3.2.4 PaArt [FLASHY] ..ttt e e e e e e e e 28
3.2.5 Pt [REGS] ... oottt e e e e e e et e e e e e e e e eeeaeeaaan 32
3.3 Debugging With GDBcoouiiiiiii e e e e e e 34
TR 0 R - o [1= (1 o BT TTR PSP 34
3.3.2 CoNNECHING T0 the TArGET........eiiieiii e e e e 34
3.3.3 Breakpoint HaNGIiNGoooiiiiiieiee et 35
3.3.4 GDB MONItOr COMMAND........uuuiiiiiiieeiiiiiiiiii e e e e s e e e e e e s aibb e e e e e s s snsbbrereeeeeeeaaann 35
3.3.5 Targetserial O VIaBDI ... 36
3.3.6 Embedded LinUX MIMU SUPPOIT.....cccoiiieeeiici e e e e e e e e e e 37
I 1= | o= | 1= 7= T = PSP 39
3.5 MUILI-COIE SUPPOIT ..ttt e e e e et e e e e e e e r e e e e e e e s annb e e e e e e e eeaann 41

Y o T=Tod o= U Lo] o =3P 42

5 ENVIroNMENTal NOTICE .coiiiiiiiiiiiiiiee e 43

6 Declaration of Conformity (CE)........cooviiiiiiiiiiii 43

A4 =1 =10 1 PP PPTTR PPN 44

7 Appendices

F N I (oW o 113 o T) o Yo SRR 45
ST Y =T gL A= =TT 46
OB 1= 1o 1= 0 1 =T €T 48

© Copyright 1997-2006 by ABATRON AG Switzerland VvV 1.10

M for GNU Debugger, BDI2000 (MIPS32) User Manual 3

1 Introduction

bdiGDB enhances the GNU debugger (GDB), with EJTAG debugging for MIPS32 based targets. With
the builtin Ethernet interface you get a very fast download speed of up to 100 kBytes/sec. No target
communication channel (e.g. serial line) is wasted for debugging purposes. Even better, you can use
fast Ethernet debugging with target systems without network capability. The host to BDI communica-
tion uses the standard GDB remote protocol.

An additional Telnet interface is available for special debug tasks (e.g. force a hardware reset,
program flash memory).

The following figure shows how the BDI2000 interface is connected between the host and the target:

Target System

EJTAG Inferface

UNIX / PC Host

GNU Debugger
(GDB)

Ethernet (10 BASE-T)

I J i]

1.1 BDI2000

The BDI2000 is the main part of the bdiGDB system. This small box implements the interface be-
tween the EJTAG pins of the target CPU and a 10Base-T ethernet connector. The firmware and the
programabile logic of the BDI2000 can be updated by the user with a simple setup tool. The BDI2000
supports 1.8 — 5.0 Volts target systems (3.0 — 5.0 Volts target systems with Rev. A/B).

© Copyright 1997-2006 by ABATRON AG Switzerland VvV 1.10

(A

1.2 BDI Configuration

As an initial setup, the IP address of the BDI2000, the IP address of the host with the configuration
file and the name of the configuration file is stored within the flash of the BDI12000.

Every time the BDI2000 is powered on, it reads the configuration file via TFTP.

Following an example of a typical configuration file:

for GNU Debugger, BDI2000 (MIPS32) User Manual 4

bdi @B configuration file for | DI79S334A board

[INT]
; Setup Internal Bus

B2 OxFFFFE200 OxAA82AAAA ;CPU Port Wdth Register, Flash 32bit
WV/B2 OxFFFFE204 Ox3FFFFFFF ; CPU BTA Regi ster

W/B2 0xB8000000 Ox 3FFFFFFF ; BTA Regi ster

WVB2 0xB8000004 0x00000007 ; Address Latch Tining Register

WCPO 12 0x10010000 ; Setup Status Register, clear BEV
WCPO 13 0x00000000 ; A ear Cause Register

WCPO 16 0x00000003 ; Set ksegO coherency

WV/B2 0xB8000730 0x00000000 ; D sabl e Wat chdog Ti ner

; Init memory controller

WB2 0xB8000080 0x1FQ00000 ; Menory Base Address Bank 0, Flash

WB2 0xB8000084 OxFFQD0000 ; Menory Base Mask Bank 0, Flash

WVB2 0xB8000088 0x04000000 ; Menory Base Address Bank 1, SRAM

WB2 0xB800008C 0xFFFO0000 ; Menory Base Mask Bank 1, SRAM

WV/B2 0xB8000200 0x00002884 ;Menory Control Bank O, Flash 32bit

VB2 0xB8000204 0x00002863 ;Mermory Control Bank 1, SRAM

[TARCET]

JTACCLOCK 1 ;use 8 Mz JTAG cl ock

CPUTYPE RC32300 ;the used target CPU type

ENDI AN LI TTLE ;target is little endian

WCRKSPACE 0xA0000080 ;workspace in target RAMfor fast downl oad

BREAKMCDE SCFT ; SOFT or HARD, HARD uses hardware breakpoints

VECTCR CATCH ; catch unhandl ed excepti ons

[HOBT]

IP 151. 120. 25. 115

FI LE E \ cygnus\ r oot \ usr\ deno\ m ps\ v i nus

FCRVAT ELF

LQAD MANUAL ;1 oad code MANUAL or AUTO after reset

[FLASH

WCRKSPACE 0xa0000000 ;workspace in target RAMfor fast programmi ng al gorithm
CH PTYPE AMPOF ; Flash type (AMROF | AMVRIBX8 | AMROBX16 | |28BX8 | |28BX16)
CH PSI ZE 0x80000 ; The size of one flash chip in bytes (e.g. AV9F040 = 0x80000)
BUSW DTH 32 ; The width of the flash nmenory bus in bits (8 | 16 | 32)
FI LE E:\ cygnus\ r oot \ usr\ deno\ m ps\ | oop_| e. sss

ERASE 0xBFC00000 ;erase sector O

[REGT]

DWL 0xFF300000 ; DSU base address

DWV\VR 0xB8000000 ; Menory mapped registers

FI LE E: \ cygnus\ r oot \ usr\ deno\ m ps\r eg32334. def

Based on the information in the configuration file, the target is automatically initialized after every re-

set.

© Copyright 1997-2006 by ABATRON AG Switzerland

VvV 1.10

M for GNU Debugger, BDI2000 (MIPS32) User Manual 5

2 Installation

2.1 Connecting the BDI2000 to Target

The cables to the target system are designed for the IDT RC32300 Development Boards (optional
available: Part# 90070) and for EJTAG 2.5 compatible boards (enclosed). In case where the target
system has the same connector layout, the cable (14 pin or 24 pin) can be directly connected.

VAN

In order to ensure reliable operation of the BDI (EMC, runtimes, etc.) the target cable length must not
exceed 25 cm (10").

‘ 24 pin RC32300
’ Connector

1 23

1-TRST
0000000000 2 - GROUND
Target System eeeccccoo0 3-TDI
5 4 - GROUND
22222727 2 optional 94 5-TDO
13 available 6 - GROUND
.- — L (P/N 90070) 7-TMS
. am 14 pin EJTAG 8- GROUND
/DT < Connector 2 T¢K
Key 10 - GROUND
1-TRST 11 - RESET
12 - GROUND
3-TDI
14 - GROUND
5-TDO
RGT BDI MAIN 6 - GROUND 16 - GROUND
9 1 7-TMS
T 8 - GROUND 18 - GROUND
P . see . 9-TCK
? T 20 - GROUND
10 2 11 - RESET 21 - DBGBOOT
22 - GROUND
13- DINT 23 - VIO Target

The green LED «TRGT» marked light up when target is powered up 14 - v|0 Target 24 - GROUND

Rev. B/C 24 pin RC32300
’ Connector

1 23

1-TRST
Target System 0000000000 2 - GROUND
eeecccc0oo0 3-TDI
22222227 optional 4 ;' - ?ggUND
1 13 i)
4 available 6 - GROUND
I S (PN 90070) 7-TMS
pRARED T 14 pin EJTAG 5 STOUND
2 Key Connector o) GROUND
1-TRST 11 - RESET
BD|2000 12 - GROUND
- 3-TDI
14 - GROUND
5-TDO
TRGT TARGET A 6 - GROUND 16 - GROUND
9 1 7-TMS
oot 8 - GROUND 18 - GROUND
o sevee 9-TCK
i i 20 - GROUND
10 2 11 - RESET 21 - DBGBOOT
22 - GROUND
13- DINT 23 - VIO Target

The green LED «TRGT» marked light up when target is powered up 14 - VIO Target 24 - GROUND

For BDI MAIN / TARGET A connector signals see table on next page.

© Copyright 1997-2006 by ABATRON AG Switzerland VvV 1.10

A

for GNU Debugger, BDI2000 (MIPS32) User Manual 6
BDI MAIN / TARGET A Connector Signhals

Pin Name Describtion

1 DINT EJTAG Debug Interrupt
EJTAG 2.5: This output of the BDI2000 connects to the target DINT line.
RC32300: This output of the BDI2000 connects to the target DebugBoot line.

2 TRST EJTAG Test Reset
This output of the BDI2000 resets the JTAG TAP controller on the target.

3+5 GND System Ground

4 TCK EJTAG Test Clock
This output of the BDI2000 connects to the target TCK line.

6 T™MS EJTAG Test Mode Select
This output of the BDI2000 connects to the target TMS line.

7 RESET This open collector output of the BDI2000 is used to reset the target system.

8 TDI EJTAG Test Data In
This output of the BDI2000 connects to the target TDI line.

9 VIO Target 1.8 -5.0V:
This is the target reference voltage. It indicates that the target has power and it is also used
to create the logic-level reference for the input comparators. It also controls the output logic
levels to the target. It is normally fed from Vdd 1/O on the target board.
3.0 - 5.0V with Rev. A/B :
This input to the BDI2000 is used to detect if the target is powered up. If there is a current
limiting resistor between this pin and the target Vdd, it should be 100 Ohm or less.

10 TDO EJTAG Test Data Out
This input to the BDI2000 connects to the target TDO line.

© Copyright 1997-2006 by ABATRON AG Switzerland VvV 1.10

M for GNU Debugger, BDI2000 (MIPS32) User Manual 7

2.1.1 Changing Target Processor Type

Before you can use the BDI2000 with an other target processor type (e.g. ARM <--> MIPS), a new
setup has to be done (see chapter 2.5). During this process the target cable must be disconnected
from the target system. The BDI2000 needs to be supplied with 5 Volts via the BDI OPTION connec-
tor (Rev. A) or via the POWER connector (Rev. B/C). For more information see chapter 2.2.1

«External Power Supply»).

To avoid data line conflicts, the BDI2000 must be disconnected from the target system while
programming the logic for an other target CPU.

© Copyright 1997-2006 by ABATRON AG Switzerland VvV 1.10

M for GNU Debugger, BDI2000 (MIPS32)

User Manual

8

2.2 Connecting the BDI2000 to Power Supply

2.2.1 External Power Supply

The BDI2000 needs to be supplied with 5 Volts (max. 1A) via the BDI OPTION connector (Rev. A)
or via POWER connector (Rev. B/C). The available power supply from Abatron (option) or the en-
closed power cable can be directly connected. In order to ensure reliable operation of the BDI2000,

keep the power supply cable as short as possible.

VAN

For error-free operation, the power supply to the BDI2000 must be between 4.75V and 5.25V DC.
The maximal tolerable supply voltage is 5.25 VDC. Any higher voltage or a wrong polarity

might destroy the electronics.

BDI

13

14

BDI OPTION
> © 6 6 60 O
Ve | GND

The green LED «BDI» marked light up when 5V power is connected to the BDI2000

[rev oic

GND 3

S &
XN

POWER

1Vee

BDI

The green LED «BDI» marked light up when 5V power is connected to the BDI2000

Please switch on the system in the following sequence:

» 1 --> external power supply

* 2 --> target system

BDI OPTION
Connector

2

4-

10 -

12 -

14 -

1

3

- GROUND
GROUND
- GROUND
- GROUND
GROUND
Vce (+5V)

Vcce (+5V)

POWER

Connector

-Vcce (+5V)

- GROUND

© Copyright 1997-2006 by ABATRON AG Switzerland

VvV 1.10

M for GNU Debugger, BDI2000 (MIPS32) User Manual 9

2.2.2 Power Supply from Target System

The BDI2000 needs to be supplied with 5 Volts (max. 1A) via BDI MAIN target connector (Rev. A) or
via TARGET A connector (Rev. B/C). This mode can only be used when the target system runs with
5V and the pin «Vcc Target» is able to deliver a current up to 1A@5V. For pin description and layout
see chapter 2.1 «Connecting the BDI2000 to Target». Insert the enclosed Jumper as shown in figure
below. Please ensure that the jumper is inserted correctly.

VAN

For error-free operation, the power supply to the BDI2000 must be between 4.75V and 5.25V DC.
The maximal tolerable supply voltage is 5.25 VDC. Any higher voltage or a wrong polarity
might destroy the electronics.

BDI OPTION
Connector

BDI TRGT BDI MAIN BDI OPTION
13 1

o o i
14 2
LJumper

The green LEDs «BDI» and «TRGT» marked light up when target is powered up
and the jumper is inserted correctly

13 - Vcc Target (+5V)
14 - Vcc BDI2000 (+5V)

Rev. B/C POWER

Connector
3 1

1 -Vcc BDI2000 (+5V)
» 2 - Vcc Target (+5V)
4 Jumper

POWER

BDI TRGT

The green LEDs «BDI» and «TRGT» marked light up when target is powered up
and the jumper is inserted correctly

© Copyright 1997-2006 by ABATRON AG Switzerland VvV 1.10

A

for GNU Debugger, BDI2000 (MIPS32) User Manual 10

2.3 Status LED «MODE»
The built in LED indicates the following BDI states:

MODE

Rev. B/C

MODE

MODE LED BDI STATES
OFF The BDI is ready for use, the firmware is already loaded.
ON The power supply for the BDI2000 is < 4.75VDC.
BLINK The BDI «loader mode» is active (an invalid firmware is loaded or loading firmware is active).

© Copyright 1997-2006 by ABATRON AG Switzerland VvV 1.10

M for GNU Debugger, BDI2000 (MIPS32)

User Manual 11

2.4 Connecting the BDI2000 to Host
2.4.1 Serial line communication

Serial line communication is only used for the initial configuration of the bdiGDB system.

The host is connected to the BDI through the serial interface (COM1...COM4). The communication
cable (included) between BDI and Host is a serial cable. There is the same connector pinout for the

BDI and for the Host side (Refer to Figure below).

RS232 Connector
(for PC host)

GND U1~ (1 GND
RD N N RD
™ ¢ >< w T
RTS ~J ~ RTS
CTS oo >< o CTS
DSR O o DSR
DCD H} E = DCD
DTR p » DTR

[rev 5

RS232 Connector
(for PC host)

GND U1 ™ (1 GND
RD N N RD
™ ¢ w ™
RTS ~J ~ RTS
CTS oo >< o CTS
DSR O o) DSR
DCD } { j DCD
DTR » DR

Target System

12345

PC Host

BDIl2000

RS232
[
Target System
12345 ﬂ
(9 T
6789
RS232
BDI2000
PC Host
|
RS232

© Copyright 1997-2006 by ABATRON AG Switzerland

VvV 1.10

M for GNU Debugger, BDI2000 (MIPS32) User Manual 12

2.4.2 Ethernet communication

The BDI2000 has a built-in 10 BASE-T Ethernet interface (see figure below). Connect an UTP (Un-
shilded Twisted Pair) cable to the BD2000. For thin Ethernet coaxial networks you can connect a
commercially available media converter (BNC-->10 BASE-T) between your network and the
BDI2000. Contact your network administrator if you have questions about the network.

1 8
10 BASE-T W
Connector 00
1-TD+
2 .TD- u TX RX 10 BASE-T
3 - RD+

Target System
6 - RD- Rev. B/C

i |

1
LI TX RX 10 BASE-T ||

BDI2000

PC Host

Ethernet (10 BASE-T) W

I) ()

The following explains the meanings of the built-in LED lights:

LED Name Description

LI Link When this LED light is ON, data link is successful between the UTP
port of the BDI2000 and the hub to which it is connected.

TX Transmit When this LED light BLINKS, data is being transmitted through the UTP
port of the BDI2000

RX Receive When this LED light BLINKS, data is being received through the UTP

port of the BDI2000

© Copyright 1997-2006 by ABATRON AG Switzerland VvV 1.10

M for GNU Debugger, BDI2000 (MIPS32) User Manual 13

2.5 Installation of the Configuration Software

On the enclosed diskette you will find the BDI configuration software and the firmware required for
the BDI2000. For Windows users there is also a TFTP server included.

The following files are on the diskette.

b20r4kgd.exe
b20r4kgd.hlp
b20r4kgd.xxx
rdkjed20.xxx

rdkjed21.xxx

Configuration program (16bit Windows application)
Windows help file for the configuration program

Firmware for the BDI2000

JEDEC file for the BDI2000 (Rev. A/B) logic device (CPLD)

JEDEC file for the BDI2000 (Rev. C) logic device (CPLD)

tftpsrv.exe TFTP server for Windows (WIN32 console application)

*.cfg Configuration files

*.def Register definition files

loop_le.sss S-record file with a short little endian endless loop mapped to 0xBFC00000
loop_be.sss S-record file with a short big endian endless loop mapped to 0OxBFC00000
bdisetup.zip ZIP Archive with the Setup Tool sources for Linux / UNIX hosts.

Overview of an installation / configuration process:
* Create a new directory on your hard disk
» Copy the entire contents of the enclosed diskette into this directory
* Linux only: extract the setup tool sources and build the setup tool

* Use the setup tool to load/update the BDI firmware/logic
Note: A new BDI has no firmware/logic loaded.

 Use the setup tool to transmit the initial configuration parameters
- IP address of the BDI.
- IP address of the host with the configuration file.
- Name of the configuration file. This file is accessed via TFTP.
- Optional network parameters (subnet mask, default gateway).

Activating BOOTP:

The BDI can get the network configuration and the name of the configuration file also via BOOTP.
For this simple enter 0.0.0.0 as the BDI's IP address (see following chapters). If present, the subnet
mask and the default gateway (router) is taken from the BOOTP vendor-specific field as defined in
RFC 1533.

With the Linux setup tool, simply use the default parameters for the -c option:
[root @I NUX_1 bdi setup]# ./bdisetup -c -p/dev/ttySO -b57

The MAC address is derived from the serial number as follows:
MAC: 00-0C-01-xx-xx-xx , repace the xx-xx-xx with the 6 left digits of the serial number
Example: SN# 93123457 ==>> 00-0C-01-93-12-34

© Copyright 1997-2006 by ABATRON AG Switzerland VvV 1.10

M for GNU Debugger, BDI2000 (MIPS32) User Manual 14

2.5.1 Configuration with a Linux / Unix host

The firmware / logic update and the initial configuration of the BDI2000 is done with a command line
utility. In the ZIP Archive bdisetup.zip are all sources to build this utility. More information about this
utility can be found at the top in the bdisetup.c source file. There is also a make file included.
Starting the tool without any parameter displays information about the syntax and parameters.

VAN

To avoid data line conflicts, the BDI2000 must be disconnected from the target system while
programming the logic for an other target CPU (see Chapter 2.1.1).

Following the steps to bring-up a new BDI2000:

1. Build the setup tool:
The setup tool is delivered only as source files. This allows to build the tool on any Linux / Unix host.
To build the tool, simply start the make utility.

[root @I NUX_1 bdi setup] # make

cc - -c -0 bdisetup.o bdisetup.c

cc -@ -c -0 bdicnf.o bdicnf.c

cc-@ -c -o bdidll.o bdidll.c

cc -s bdisetup.o bdicnf.o bdidll.o -o bdisetup

2. Check the serial connection to the BDI:

With "bdisetup -v" you may check the serial connection to the BDI. The BDI will respond with infor-
mation about the current loaded firmware and network configuration.

Note: Login as root, otherwise you probably have no access to the serial port.

[root @I NUX_1 bdi setup]# ./bdisetup -v -p/dev/ttySO -b57
BD Type : BDI 2000 Rev.C (SN 92152150)

Loader © V1.05

Firmnare : unknown

Logi c :unknown

MAC o ff-ff-ff-ff-ff-ff
IP Addr : 255.255. 255. 255
Subnet . 255, 255. 255. 255

Gateway : 255.255.255. 255
Host I P : 255.255. 255. 255
Config @ ??22227772722722277

3. Load/Update the BDI firmware/logic:
With "bdisetup -u" the firmware is loaded and the CPLD within the BDI2000 is programmed. This con-
figures the BDI for the target you are using. Based on the parameters -a and -t, the tool selects the
correct firmware / logic files. If the firmware / logic files are in the same directory as the setup tool,
there is no need to enter a -d parameter.

[root @I NUX 1 bdisetup]# ./bdisetup -u -p/dev/ttyS0 -b57 -a@B -tMPS
Connecting to BD | oader

Erasi ng CPLD

Programmng firmware with ./b20r4kgd. 100

Programmng CPLD with ./r4kjed21. 100

© Copyright 1997-2006 by ABATRON AG Switzerland VvV 1.10

M for GNU Debugger, BDI2000 (MIPS32) User Manual 15

4. Transmit the initial configuration parameters:
With "bdisetup -c" the configuration parameters are written to the flash memory within the BDI.
The following parameters are used to configure the BDI:

BDI IP Address The IP address for the BDI2000. Ask your network administrator for as-
signing an IP address to this BDI2000. Every BDI2000 in your network
needs a different IP address.

Subnet Mask The subnet mask of the network where the BDI is connected to. A subnet
mask of 255.255.255.255 disables the gateway feature. Ask your network
administrator for the correct subnet mask. If the BDI and the host are in
the same subnet, it is not necessary to enter a subnet mask.

Default Gateway Enter the IP address of the default gateway. Ask your network administra-
tor for the correct gateway IP address. If the gateway feature is disabled,
you may enter 255.255.255.255 or any other value.

Config - Host IP Address Enter the IP address of the host with the configuration file. The configura-
tion file is automatically read by the BDI2000 after every start-up.

Configuration file Enter the full path and name of the configuration file. This file is read via
TFTP. Keep in mind that TFTP has it's own root directory (usual /tftpboot).
You can simply copy the configuration file to this directory and the use the
file name without any path.
For more information about TFTP use "man tftpd".

[root @I NUX_1 bdisetup]# ./bdisetup -c -p/dev/ttyS0 -b57 \
> -i151.120.25.101 \

> -h151. 120. 25. 118 \

> -fs334a. cnf

Connecting to BD | oader

Witing network configuration

Witing init list and node

Confi guration passed

5. Check configuration and exit loader mode:

The BDI is in loader mode when there is no valid firmware loaded or you connect to it with the setup
tool. While in loader mode, the Mode LED is flashing. The BDI will not respond to network requests
while in loader mode. To exit loader mode, the "bdisetup -v -s" can be used. You may also power-off
the BDI, wait some time (1min.) and power-on it again to exit loader mode.

[root @I NUX_1 bdisetup]# ./bdisetup -v -p/dev/ttySO -b57 -s
BD Type : BD 2000 Rev.C (SN 92152150)

Loader : V1.05

Firmmware : V1.00 bdi @B for M PS32
Logi c : V1.00 M PS32

MAC . 00-0c-01-92-15-21

IP Addr : 151.120.25.101

Subnet . 255. 255, 255. 255

Gateway : 255.255.255. 255
Host I P : 151.120.25.118
Config : s334a.cnf

The Mode LED should go off, and you can try to connect to the BDI via Telnet.

[root @I NUX_1 bdisetup] # tel net 151.120. 25. 101

© Copyright 1997-2006 by ABATRON AG Switzerland VvV 1.10

A

for GNU Debugger, BDI2000 (MIPS32) User Manual 16

2.5.2 Configuration with a Windows host

First make sure that the BDI is properly connected (see Chapter 2.1 to 2.4).

VAN

To avoid data line conflicts, the BDI2000 must be disconnected from the target system while
programming the logic for an other target CPU (see Chapter 2.1.1).

BDIZ000 Update/Setup

r~ Conkect BD12000 Loader
Channel

SH: 95111242-C

Fart IEDM2 j' MaAC: 000CO1951112
Speed |1152DD 'I
Laoninect I

— BDI2000 Firmware 4 Logic

Current Mewest Current |
Loader 1.05 Eraze
Firrresare 112 112 —l
Logic 1.00 100 | Updde |

— Configuration
EDI [P &ddress |151.‘I2D.25.1D1
Subnet Mask |255.255.255.255

Drefault Gateway |255.255.255.255
Config - Host IP Address |1 B1.120.25119

Configuration file
E:\cygwinthome\bdidema'mipstdb1100.cfg

Caneel Ok | Transrnit |

Wwirting setup data passed

dialog box «BDI2000 Update/Setup»

Before you can use the BDI2000 together with the GNU debugger, you must store the initial config-
uration parameters in the BDI2000 flash memory. The following options allow you to do this:

Channel

Baudrate

Connect

Current

Update

Select the communication port where the BDI2000 is connected during
this setup session.

Select the baudrate used to communicate with the BDI2000 loader during
this setup session.

Click on this button to establish a connection with the BDI2000 loader.
Once connected, the BDI2000 remains in loader mode until it is restarted
or this dialog box is closed.

Press this button to read back the current loaded BDI2000 software and
logic versions. The current loader, firmware and logic version will be
displayed.

This button is only active if there is a newer firmware or logic version
present in the execution directory of the bdiGDB setup software. Press this
button to write the new firmware and/or logic into the BDI2000 flash mem-
ory / programmable logic.

© Copyright 1997-2006 by ABATRON AG Switzerland VvV 1.10

M for GNU Debugger, BDI2000 (MIPS32) User Manual 17

BDI IP Address

Subnet Mask

Default Gateway

Config - Host IP Address

Configuration file

Transmit

Enter the IP address for the BDI2000. Use the following format:

XXX XXX XXX XXX €.9.151.120.25.101

Ask your network administrator for assigning an IP address to this
BDI2000. Every BDI2000 in your network needs a different IP address.

Enter the subnet mask of the network where the BDI is connected to.
Use the following format: xxx.xxx.xxx.xxxe.g.255.255.255.0

A subnet mask of 255.255.255.255 disables the gateway feature.
Ask your network administrator for the correct subnet mask.

Enter the IP address of the default gateway. Ask your network administra-
tor for the correct gateway IP address. If the gateway feature is disabled,
you may enter 255.255.255.255 or any other value..

Enter the IP address of the host with the configuration file. The configura-
tion file is automatically read by the BDI2000 after every start-up.

Enter the full path and name of the configuration file.

e.g. D:\ada\target\config\bdi\evs332.cnf

For information about the syntax of the configuration file see the bdiGDB
User manual. This name is transmitted to the TFTP server when reading
the configuration file.

Click on this button to store the configuration in the BDI2000 flash
memory.

2.5.3 Recover procedure

In rare instances you may not be able to load the firmware in spite of a correctly connected BDI (error
of the previous firmware in the flash memory). Before carrying out the following procedure, check
the possibilities in Appendix «Troubleshooting». In case you do not have any success with the
tips there, do the following:

» Switch OFF the power supply for the BDI and open the unit as
described in Appendix «Maintenance»

* Place the jumper in the «INIT MODE» position

» Connect the power cable or target cable if the BDI is powered

from target system [A
+ Switch ON the power supply for the BDI again and wait until the INIT MODE
LED «MODE>» blinks fast
* Turn the power supply OFF again DEFAULT

* Return the jumper to the «DEFAULT> position

* Reassemble the unit as described in Appendix «Maintenance»

© Copyright 1997-2006 by ABATRON AG Switzerland VvV 1.10

M for GNU Debugger, BDI2000 (MIPS32) User Manual 18

2.6 Testing the BDI2000 to host connection

After the initial setup is done, you can test the communication between the host and the BDI2000.
There is no need for a target configuration file and no TFTP server is needed on the host.

* If not already done, connect the bdiGDB system to the network.

» Power-up the BDI12000.

« Start a Telnet client on the host and connect to the BDI2000 (the IP address you entered dur-
ing initial configuration).

* If everything is okay, a sign on message like «BDI Debugger for ARM» should be displayed
in the Telnet window.

2.7 TFTP server for Windows NT

The bdiGDB system uses TFTP to access the configuration file and to load the application program.
Because there is no TFTP server bundled with Windows, Abatron provides a TFTP server application
tftpsrv.exe. This WIN32 console application runs as normal user application (not as a system ser-
vice).

Command line syntax: tftpsrv [p] [w] [dRootDirectory]

Without any parameter, the server starts in read-only mode. This means, only read access request
from the client are granted. This is the normal working mode. The bdiGDB system needs only read
access to the configuration and program files.

The parameter [p] enables protocol output to the console window. Try it.
The parameter [w] enables write accesses to the host file system.
The parameter [d] allows to define a root directory.

tftpsrv p Starts the TFTP server and enables protocol output
tftpsrv p w Starts the TFTP server, enables protocol output and write accesses are
allowed.

tftpsrv dC\tftp\ Starts the TFTP server and allows only access to files in C:\tftp and its
subdirectories. As file name, use relative names.
For example "bdi\mpc750.cfg" accesses "C:\tftp\bdi\mpc750.cfg"

You may enter the TFTP server into the Startup group so the server is started every time you login.

© Copyright 1997-2006 by ABATRON AG Switzerland VvV 1.10

M for GNU Debugger, BDI2000 (MIPS32) User Manual 19

3 Using bdiGDB
3.1 Principle of operation

The firmware within the BDI handles the GDB request and accesses the target memory or registers
via the JTAG interface. There is no need for any debug software on the target system. After loading
the code via TFTP debugging can begin at the very first assembler statement.

Whenever the BDI system is powered-up the following sequence starts:

initial
configuration
valid?

no

activate BDI2000 loader

Get configuration file
via TFTP

Power OFF
Process target init list

Load program code
via TFTP and set the PC

RUN selected?

Start loaded program code

<
)l

Process GDB request

Power OFF

© Copyright 1997-2006 by ABATRON AG Switzerland VvV 1.10

M for GNU Debugger, BDI2000 (MIPS32)

User Manual

20

3.2 Configuration File

The configuration file is automatically read by the BDI2000 after every power on.

The syntax of this file is as follows:

; comrent

[part name]

identifier parameterl parameter2 par amet er N
identifier parameterl parameter2 par aret er N
[part nane]

identifier parameterl paraneter2 par amet er N
identifier parameterl paraneter2 par amet er N

etc.

;. comrent

Numeric parameters can be entered as decimal (e.g. 700) or as hexadecimal (0x80000).

Note for IDR RC32300 processors:

The debug boot function on IDT RC323000 processors does not work. Therefore the EJTAG debug
interface can not always get control over the processor if there is no valid code in the boot ROM. If
there is an empty boot flash, the BDI may need multiple reset sequences until it gets control over the
processor. It is recommended to program at least a small endless loop into the boot flash. On the
distribution diskette you will find the appropriate S-record files with this small loop code. One for little

endian and one for big endian systems.

Also the hardware breakpoint logic inside the RC32300 does not always work as expected. Itis highly
recommended to use only BREAKMODE SOFT and STEPMODE SWBP. In cases where it is abso-
lutely necessary to use hardware breakpoints (debugging ROM code) use the HWBP's very defen-
sive. Do not set breakpoints following load/store instructions or following a branch with a load/store
instruction in the branch delay slot. This is especially important if the code is cached.

© Copyright 1997-2006 by ABATRON AG Switzerland

VvV 1.10

M for GNU Debugger, BDI2000 (MIPS32) User Manual 21

3.2.1 Part [INIT]

The part [INIT] defines a list of commands which should be executed every time the target comes out
of reset. The commands are used to get the target ready for loading the program file.

WGPR register value Write value to the selected general purpose register.
register the register number 0 .. 31
value the value to write into the register
Example: WGPR 0 5

WCPO register value Write value to the selected Coprocessor O register.
register the register number 0 .. 31, add 0xOn0O0 for Select n
value the value to write into the register

Example: WCPO 13 0x00000000 ;Clear Cause Register

RCPO register Read the selected Coprocessor 0 register.
register the register number 0 .. 31, add 0xOn0O0 for Select n
Example: RCPO 16 ; Read Config0

WMB8 address value Write a byte (8bit) to the selected memory place.
address the memory address
value the value to write to the target memory

Example: WM8 OxFFFFFA21 0x04 ; SYPCR: watchdog disable ...

WM16 address value Write a half word (16bit) to the selected memory place.
address the memory address
value the value to write to the target memory
Example: WM16 0x02200200 0x0002 ; TBSCR

WM32 address value Write a word (32bit) to the selected memory place.
address the memory address
value the value to write to the target memory
Example: WM32 0x02200000 0x01632440 ; SIUMCR

RM8 address value Read a byte (8bit) from the selected memory place.
address the memory address
Example: RM8 0x00000000

RM16 address value Read a half word (16bit) from the selected memory place.
address the memory address
Example: RM16 0x00000000

RM32 address value Read a word (32bit) from the selected memory place.
address the memory address
Example: RM32 0x00000000

© Copyright 1997-2006 by ABATRON AG Switzerland VvV 1.10

M for GNU Debugger, BDI2000 (MIPS32) User Manual 22

DELAY value Delay for the selected time.
value the delay time in milliseconds (1...30000)
Example: DELAY 500 ; delay for 0.5 seconds

IVIC ways sets This entry invalidates the instruction cache.

way the number of ways in the IC

sets the number of sets in the IC

Example: IVIC 2 256 ;Invalidate IC, 2 way, 256 sets
IVDC ways sets This entry invalidates the data cache.

way the number of ways in the DC

sets the number of sets in the DC

Example: IVDC 2 64 ;Invalidate DC, 2 way, 64 sets
WTLB vpn rpn Adds an entry to the TLB array. For parameter description see below.

vpn the virtual page number, size and ASID

rpn the real page number, coherency and DVG bits

Example: WTLB 0x00000500 0x01FCO0017 ;Boot ROM 2 x 1MB

Adding entries to the TLB:

Sometimes it is necessary to setup the TLB before memory can be accessed. This is because on a
MIPS the MMU is always enabled. The init list entry WTLB allows an initial setup of the TLB array.
The first WTLB entry clears also the whole TLB array.

The vpn parameter defines the effective page number, size and ASID:

R S e +
| VPN |-1SIzE] ASID |
S B +
19 1 4 8
The SIZE field decodes as follows:
0 = (1KB) 1 = 4KB 2 = 16KB 3 = 64KB 4 = 256KB
5 = 1MB 6 = 4MB 7 = 16MB 8 = 64MB 9 = 256MB

oo R

| ERPN RPN |--] C|DVG

oo S S
4 20 2 3 3

The field ERPN (extended real page number) is used for physical address bits 35:32.
The field positions are selected so the physical address becomes readable.

The following example clears the TLB and adds one entry to access ROM via address 0x00000000.

[INT]
; Setup TLB
WLB 0x00000500 Ox01FQ0017 ;Boot ROM 2 x 1MB, uncached DVG

© Copyright 1997-2006 by ABATRON AG Switzerland VvV 1.10

M for GNU Debugger, BDI2000 (MIPS32) User Manual 23

3.2.2 Part [TARGET]
The part [TARGET] defines some target specific values.

CPUTYPE type [MIPS16] This value gives the BDI information about the connected CPU. The op-
tional parameter MIPS16 forces the BDI to use 16-bit software breakpoints
in any case. If this parameter is not present, the "length" parameter of the
GDB Z0 packet selects between 32-bit and 16-bit breakpoints.

type RC32300, AU1000, M4K, M4KE, M24K

Example: CPUTYPE RC32300
CPUTYPE M24K MIPS16 ;force MIPS16 breakpoints

ENDIAN format This entry defines the endiannes of the memory system.

format The endiannes of the target memory:
BIG (default), LITTLE

Example: ENDIAN LITTLE

JTAGCLOCK value With this value you can select the JTAG clock rate the BDI2000 uses when
communication with the target CPU.
value 0=16.6 MHz 2=5.5MHz
1= 8.3MHz 3=4.1MHz

Example: CLOCK 1 ; JTAG clock is 8.3 MHz

BDIMODE mode [param] This parameter selects the BDI debugging mode. The following modes are

supported:
LOADONLY Loads and starts the application core. No debugging via
JTAG port.
AGENT The debug agent runs within the BDI. There is no need

for any debug software on the target. This mode accepts
a second parameter. If RUN is entered as a second pa-
rameter, the loaded application will be started immedi-
ately, otherwise only the PC is set and BDI waits for GDB
requests.

Example: BDIMODE AGENT RUN

RESET type This parameter selects the type of reset the BDI applies to the target dur-
ing power-up or when "reset" is entered via Telnet:

NONE No reset is applied.

JTAG Reset is forces via the EJTAG control register.
HARD Reset is applied via the EJTAG connector reset pin.
Example: RESET JTAG

POWERUP delay This parameter defines a delay in milliseconds the BDI waits after the tar-
get has been powered-up until JTAG communications starts.

delay the power-up start delay in milliseconds (default 2 sec.)
Example: POWERUP 5000 ;start delay after power-up

© Copyright 1997-2006 by ABATRON AG Switzerland VvV 1.10

M for GNU Debugger, BDI2000 (MIPS32) User Manual 24

WAKEUP time This entry in the init list allows to define a delay time (in ms) the BDI inserts
between releasing the RESET line and starting communicating with the
target. This init list entry may be necessary if RESET is delayed on its way
to the processors reset pin.

time the delay time in milliseconds

Example: WAKEUP 3000 ; insert 3sec wake-up time

STARTUP mode [runtime] This parameter selects the target startup mode:

RESET This default mode forces the target to debug mode im-
mediately out of reset. No code is executed after reset.
STOP In this mode, the BDI lets the target execute code for

"runtime" milliseconds after reset. This mode is useful
when monitor code should initialize the target system.

RUN After reset, the target executes code until stopped by the
Telnet "halt" command.

Example: STARTUP STOP 3000 ; let the CPU run for 3 seconds

BREAKMODE mode This parameter defines how breakpoints are implemented. The current
mode can also be changed via the Telnet interface

SOFT This is the normal mode. Breakpoints are implemented
by replacing code with a SDBBR instruction.

HARD In this mode, the EJTAG breakpoint hardware is used.

Example: BREAKMODE HARD

STEPMODE mode This parameter defines how single step (instruction step) is implemented.
The alternate step modes (HWBP or SWBP) are useful when stepping in-
structions that causes a TLB miss exception. Not all targets allow to use
all step modes. Some of them do not implement the EJTAG step mode
(e.g. RC32300) others support only one hardware instruction breakpoint.

JTAG This is the default mode. The step feature of the EJTAG
debug interface is used for single stepping.

HWBP In this mode, one or two hardware breakpoints are used
to implement single stepping.

SWBP In this mode, one or two software breakpoints are used

to implement single stepping.
Example: STEPMODE HWBP

VECTOR CATCH When this line is present, the BDI catches all unhandled exceptions.
Catching exceptions is only possible if the vector table at 0x80000000 is
writable.

Example: VECTOR CATCH ; catch unhandled exception

© Copyright 1997-2006 by ABATRON AG Switzerland VvV 1.10

M for GNU Debugger, BDI2000 (MIPS32) User Manual 25

WORKSPACE address

MMU XLAT

PTBASE addr [64BIT]

SIO port [baudrate]

REGLIST list

If a workspace is defined, the BDI uses a faster download / upload mode.
The workspace is used for a short code sequence. There must be at least
64 bytes of RAM available for this purpose.

address the address of the RAM area

Example: WORKSPACE 0xA0000080

The BDI supports Linux kernel debugging when MMU is on. If this line is
present, the BDI assumes that all addresses received from GDB and Tel-
net are virtual addresses. If necessary the BDI creates appropriate TLB
entries before accessing memory based on information found in the kernel
or user page table.

Translation can be probed with the Telnet command PHYS.

For more information see also chapter "Embedded Linux MMU Support".

Example: MMU XLAT ;enable virtual addresses translation

This parameter defines the memory address where the BDI looks for the
two page table pointers. If the additional "64BIT" option is present, the BDI
assume 64-bit PTE’s. For more information see also chapter "Embedded
Linux MMU Support".
addr Address of the memory used to store the two page table
pointers.

Example: PTBASE 0x800002f0

When this line is present, a TCP/IP channel is routed to the BDI's RS232
connector. The port parameter defines the TCP port used for this BDI to
host communication. You may choose any port except 0 and the default
Telnet port (23). On the host, open a Telnet session using this port. Now
you should see the UART output in this Telnet session. You can use the
normal Telnet connection to the BDI in parallel, they work completely inde-
pendent. Also input to the UART is implemented.

port The TCP/IP port used for the host communication.

baudrate The BDI supports 2400 ... 115200 baud

Example: SIO 7 9600 ; TCP port for virtual 10

This parameter defines what registers are sent to GDB. By default only the
standard registers are sent (gpr’s, s, lo, hi, bad, cause, pc, dummy fpr’s).
The following names are use to select a register group:

STD The standard registers.
FPR The real floating point registers
CPO Some CPO registers.

Example: REGLIST STD FPR ; standard and FP registers

© Copyright 1997-2006 by ABATRON AG Switzerland VvV 1.10

M for GNU Debugger, BDI2000 (MIPS32) User Manual 26

Daisy chained JTAG devices:

For MIPS targets, the BDI can also handle systems with multiple devices connected to the JTAG scan
chain. In order to put the other devices into BYPASS mode and to count for the additional bypass
registers, the BDI needs some information about the scan chain layout. Enter the number (count) and
total instruction register (irlen) length of the devices present before the MIPS chip (Predecessor). En-
ter the appropriate information also for the devices following the MIPS chip (Successor):

SCANPRED count irlen This value gives the BDI information about JTAG devices present before
the MIPS chip in the JTAG scan chain.

count The number of preceding devices
irlen The sum of the length of all preceding instruction regis-
ters (IR).

Example: SCANPRED 1 8 ; one device with an IR length of 8

SCANSUCC count irlen This value gives the BDI information about JTAG devices present after the
MIPS chip in the JTAG scan chain.

count The number of succeeding devices
irlen The sum of the length of all succeeding instruction reg-
isters (IR).

Example: SCANSUCC 2 12 ; two device with an IR length of 8+4

© Copyright 1997-2006 by ABATRON AG Switzerland VvV 1.10

M for GNU Debugger, BDI2000 (MIPS32) User Manual 27

3.2.3 Part [HOST]
The part [HOST] defines some host specific values.

IP ipaddress The IP address of the host.
ipaddress the IP address in the form XxX.XXX.XXX.XXX
Example: IP 151.120.25.100
FILE filename The default name of the file that is loaded into RAM using the Telnet 'load’

command. This name is used to access the file via TFTP. If the filename
starts with a $, this $ is replace with the path of the configuration file name.

filename the filename including the full path or $ for relative path.

Example: FILE F:\gnu\demo\mips\test.elf
FILE $test.elf

FORMAT format [offset] The format of the image file and an optional load address offset. If the im-
age is already stored in ROM on the target, select ROM as the format. The
optional parameter "offset" is added to any load address read from the im-
age file.
format SREC, BIN, AOUT, ELF or ROM
Example: FORMAT ELF
FORMAT ELF 0x10000

LOAD mode In Agent mode, this parameters defines if the code is loaded automatically
after every reset.

mode AUTO, MANUAL
Example: LOAD MANUAL

START address The address where to start the program file. If this value is not defined and
the core is not in ROM, the address is taken from the code file. If this value
is not defined and the core is already in ROM, the PC will not be set before
starting the target. This means, the program starts at the normal reset ad-
dress (0x00000000).

address the address where to start the program file
Example: START 0x10000

DEBUGPORT port The TCP port GDB uses to access the target.
port the TCP port number (default = 2001)

Example: DEBUGPORT 2001

PROMPT string This entry defines a new Telnet prompt. The current prompt can also be
changed via the Telnet interface.

Example: PROMPT M4K>

DUMP filename The default file name used for the Telnet DUMP command.
filename the filename including the full path
Example: DUMP dump.bin

TELNET mode By default the BDI sends echos for the received characters and supports
command history and line editing. If it should not send echoes and let the
Telnet client in "line mode", add this entry to the configuration file.
mode ECHO (default), NOECHO or LINE
Example: TELNET NOECHO ; use old line mode

© Copyright 1997-2006 by ABATRON AG Switzerland VvV 1.10

M for GNU Debugger, BDI2000 (MIPS32) User Manual 28

3.2.4 Part [FLASH]

The Telnet interface supports programming and erasing of flash memories. The bdiGDB system has
to know which type of flash is used, how the chip(s) are connected to the CPU and which sectors to
erase in case the ERASE command is entered without any parameter.

CHIPTYPE type

CHIPSIZE size

BUSWIDTH width

FILE filename

FORMAT format [offset]

This parameter defines the type of flash used. It is used to select the cor-
rect programming algorithm.
format AM29F, AM29BX8, AM29BX16, 128BX8, 128BX16,
AT49, AT49X8, AT49X16, STRATAX8, STRATAX16,
MIRROR, MIRRORX8, MIRRORX186,
M58X32, AM29DX16, AM29DX32

Example: CHIPTYPE AM29F

The size of one flash chip in bytes (e.g. AM29F010 = 0x20000). This value
is used to calculate the starting address of the current flash memory bank.
size the size of one flash chip in bytes
Example: CHIPSIZE 0x80000

Enter the width of the memory bus that leads to the flash chips. Do not en-
ter the width of the flash chip itself. The parameter CHIPTYPE carries the
information about the number of data lines connected to one flash chip.
For example, enter 16 if you are using two AM29F010 to build a 16bit flash
memory bank.

with the width of the flash memory bus in bits (8 | 16 | 32)

Example: BUSWIDTH 32

The default name of the file that is programmed into flash using the Telnet
'prog’ command. This name is used to access the file via TFTP. If the file-
name starts with a $, this $ is replace with the path of the configuration file
name. This name may be overridden interactively at the Telnet interface.
filename the filename including the full path or $ for relative path.

Example: FILE F:\gnularm\bootrom.hex
FILE $bootrom.hex

The format of the file and an optional address offset. The optional param-
eter "offset" is added to any load address read from the program file.
format SREC, BIN, AOUT or ELF

Example: FORMAT SREC
FORMAT ELF 0x10000

© Copyright 1997-2006 by ABATRON AG Switzerland VvV 1.10

A

for GNU Debugger, BDI2000 (MIPS32) User Manual 29

WORKSPACE address

If a workspace is defined, the BDI uses a faster programming algorithm
that runs out of RAM on the target system. Otherwise, the algorithm is pro-
cessed within the BDI. The workspace is used for a 1kByte data buffer and
to store the algorithm code. There must be at least 2kBytes of RAM avail-
able for this purpose.

address the address of the RAM area

Example: WORKSPACE 0x00000000

ERASE addr [increment count] [mode [wait]]

The flash memory may be individually erased or unlocked via the Telnet
interface. In order to make erasing of multiple flash sectors easier, you can
enter an erase list. All entries in the erase list will be processed if you enter
ERASE at the Telnet prompt without any parameter. This list is also used
if you enter UNLOCK at the Telnet without any parameters. With the "in-
crement" and "count" option you can erase multiple equal sized sectors
with one entry in the erase list.

address Address of the flash sector, block or chip to erase
increment If present, the address offset to the next flash sector
count If present, the number of equal sized sectors to erase
mode BLOCK, CHIP, UNLOCK

Without this optional parameter, the BDI executes a sec-
tor erase. If supported by the chip, you can also specify
a block or chip erase. If UNLOCK is defined, this entry is
also part of the unlock list. This unlock list is processed
if the Telnet UNLOCK command is entered without any
parameters.

wait The wait time in ms is only used for the unlock mode. Af-
ter starting the flash unlock, the BDI waits until it pro-
cesses the next entry.

Example: ERASE 0xff040000 ;erase sector 4 of flash
ERASE 0xff060000 :erase sector 6 of flash
ERASE 0xff000000 CHIP ;erase whole chip(s)
ERASE 0xff010000 UNLOCK 100 ;unlock, wait 100ms
ERASE 0xffO00000 0x10000 7 ; erase 7 sectors

Example for the AMD DB1100 board:

[FLASH
WWORKSPACE
CH PTYPE
CH PSI ZE
BUSW DTH
FI LE
FORMAT
ERASE
ERASE
ERASE
ERASE

0xA0001000;
M RRCRX16
0x800000

32

;there is a MrrorBit flash in x16 node
;the chip is AR9LV640MH
;there are two chips building a 32-bit system

E \'t enp\ dunp512k. bi n
Bl N OxBFCB80000;

0xBFC30000;
OxBFCAQ000;
0xBFCO0000;
0xBFCEQ000;

the above erase list maybe replaces with:

ERASE

0xBFC80000

0x20000 4 ;erase 4 sectors

© Copyright 1997-2006 by ABATRON AG Switzerland VvV 1.10

M for GNU Debugger, BDI2000 (MIPS32) User Manual 30

Supported Flash Memories:

There are currently 3 standard flash algorithm supported. The AMD, Intel and Atmel AT49 algorithm.
Almost all currently available flash memories can be programmed with one of this algorithm. The
flash type selects the appropriate algorithm and gives additional information about the used flash.

For 8bit only flash: AM29F (MIRROR), 128BX8, AT49

For 8/16 bit flash in 8bit mode: AM29BX8 (MIRRORXS), 128BX8 (STRATAXS8), AT49X8

For 8/16 bit flash in 16bit mode: AM29BX16 (MIRRORX16), 128BX16 (STRATAX16), AT49X16
For 16bit only flash: AM29BX16, 128BX16, AT49X16

For 16/32 bit flash in 16bit mode: AM29DX16

For 16/32 bit flash in 32bit mode: AM29DX32

For 32bit only flash: M58X32

The AMD and AT49 algorithm are almost the same. The only difference is, that the AT49 algorithm
does not check for the AMD status bit 5 (Exceeded Timing Limits).

Only the AMD and AT49 algorithm support chip erase. Block erase is only supported with the AT49
algorithm. If the algorithm does not support the selected mode, sector erase is performed. If the chip
does not support the selected mode, erasing will fail. The erase command sequence is different only
in the 6th write cycle. Depending on the selected mode, the following data is written in this cycle (see
also flash data sheets): 0x10 for chip erase, 0x30 for sector erase, 0x50 for block erase.

To speed up programming of Intel Strata Flash and AMD MirrorBit Flash, an additional algorithm is
implemented that makes use of the write buffer. This algorithm needs a workspace, otherwise the
standard Intel/AMD algorithm is used.

The following table shows some examples:

Flash X 8 x 16 x 32 Chipsize
Am29F010 AM29F - - 0x020000
Am29F800B AM29BX8 AM29BX16 - 0x100000
Am29DL323C AM29BX8 AM29BX16 - 0x400000
Am29PDL128G - AM29DX16 AM29DX32 0x01000000
Intel 28F032B3 128BX8 - - 0x400000
Intel 28F640J3A STRATAXS8 STRATAX16 - 0x800000
Intel 28F320C3 - 128BX16 - 0x400000
AT49BV040 AT49 - - 0x080000
AT49BV1614 AT49X8 AT49X16 - 0x200000
M58BW016BT - - M58X32 0x200000
SST39VF160 - AT49X16 - 0x200000
Am29LV320M MIRRORXS8 MIRRORX16 - 0x400000

© Copyright 1997-2006 by ABATRON AG Switzerland VvV 1.10

M for GNU Debugger, BDI2000 (MIPS32) User Manual 31

Note:
Some Intel flash chips (e.g. 28F800C3, 28F160C3, 28F320C3) power-up with all blocks in locked
state. In order to erase/program those flash chips, use the init list to unlock the appropriate blocks:

WML6 0xFFF00000 0x0060 unl ock bl ock 0
WML6 0xFFF00000 0x00D0
WWL6 OxFFF10000 0x0060 unl ock bl ock 1

WWLE OxFFF10000 0x00D0

WVLE OxFFFO0000 OxFFFF sel ect read node
or use the Telnet "unlock" command:

UNLOCK [<addr > [<del ay>]]
addr This is the address of the sector (block) to unlock

delay A delay time in milliseconds the BDI waits after sending the unlock com-
mand to the flash. For example, clearing all lock-bits of an Intel J3 Strata
flash takes up to 0.7 seconds.

If "unlock" is used without any parameter, all sectors in the erase list with the UNLOCK option are
processed.

To clear all lock-bits of an Intel J3 Strata flash use for example:

BDI > unl ock OxFFO00000 1000

To erase or unlock multiple, continuos flash sectors (blocks) of the same size, the following Telnet
commands can be used:

ERASE <addr> <step> <count >
UNLOXK <addr > <st ep> <count >

addr This is the address of the first sector to erase or unlock.

step This value is added to the last used address in order to get to the next sec-
tor. In other words, this is the size of one sector in bytes.

count The number of sectors to erase or unlock.

The following example unlocks all 256 sectors of an Intel Strata flash (28F256K3) that is mapped to
0x00000000. In case there are two flash chips to get a 32bit system, double the "step" parameter.

BDI > unl ock 0x00000000 0x20000 256

© Copyright 1997-2006 by ABATRON AG Switzerland VvV 1.10

M for GNU Debugger, BDI2000 (MIPS32) User Manual 32

3.2.5 Part [REGS]

In order to make it easier to access target registers via the Telnet interface, the BDI can read in a
register definition file. In this file, the user defines a name for the register and how the BDI should
access it (e.g. as memory mapped, memory mapped with offset, ...). The name of the register defi-
nition file and information for different registers type has to be defined in the configuration file.

The register name, type, address/offset/number and size are defined in a separate register definition
file. This way, you can create one register definition file for a specific target processor that can be
used for all possible positions of the internal memory map. You only have to change one entry in the
configuration file.

An entry in the register definition file has the following syntax:

nane type addr si ze

name The name of the register (max. 12 characters)
type The register type
GPR General purpose register
CPO Coprocessor 0 register
CP1 Coprocessor 1 control register
MM Absolute direct memory mapped register

DMM1...DMM4 Relative direct memory mapped register
IMML1...IMM4 Indirect memory mapped register

addr The address, offset or number of the register

size The size (8, 16, 32) of the register

The following entries are supported in the [REGS] part of the configuration file:

FILE filename The name of the register definition file. This name is used to access the
file via TFTP. The file is loaded once during BDI startup.

filename the filename including the full path
Example: FILE C:\bdi\regs\reg32334.def

DMMn base This defines the base address of direct memory mapped registers. This
base address is added to the individual offset of the register.

base the base address
Example: DMM1 0xB8000000

IMMn addr data This defines the addresses of the memory mapped address and data reg-
isters of indirect memory mapped registers. The address of a IMMnN regis-
ter is first written to "addr" and then the register value is access using
"data" as address.

addr the address of the Address register
data the address of the Data register
Example: DMM1 0x04700000

© Copyright 1997-2006 by ABATRON AG Switzerland VvV 1.10

M for GNU Debugger, BDI2000 (MIPS32) User Manual 33

Example for aregister definition (RC32334):

Entry in the configuration file:

[REGS]
DL 0xFF300000 ; DSU base address
DWR 0xB8000000 ; Menory mapped registers

FILE E\cygnus\root\ usr\deno\ m ps\reg32334. def

The register definition file:

; harre type addr si ze
; CPO Registers

i ndex CPO 0
random CPO 1
el 00 CPO 2
el ol CPO 3
cont ext PO 4
pnmask CPO 5
wi red CPO 6
bad CPO 8
ehi CPO 10
count PO 9
conpar e CPO 11
stat us CPO 12
cause CPO 13

; DSU Regi sters

dcr DwwL 0x0000
i bs DwvML 0x0004
dbs DivvL 0x0008
pbs DivivL 0x000c

; Internal Registers

BU Control Registers

bt a DwWwR 0x0000
al t DWR 0x0004
arb DWWR 0x0008
bec DWWR 0x0010
bea DWR 0x0014
sysi d Dvp 0x0018
; Base Address and Mask Registers
nba0 DWR 0x0080
nbn0 DWR 0x0084
nbal DWR 0x0088
nbnil DwWR 0x008c

© Copyright 1997-2006 by ABATRON AG Switzerland VvV 1.10

M for GNU Debugger, BDI2000 (MIPS32) User Manual 34

3.3 Debugging with GDB

Because the target agent runs within BDI, no debug support has to be linked to your application.
There is also no need for any BDI specific changes in the application sources. Your application must
be fully linked because no dynamic loading is supported.

3.3.1Target setup

Target initialization may be done at two places. First with the BDI configuration file, second within the
application. The setup in the configuration file must at least enable access to the target memory
where the application will be loaded. Disable the watchdog and setting the CPU clock rate should
also be done with the BDI configuration file. Application specific initializations like setting the timer
rate are best located in the application startup sequence.

3.3.2 Connecting to the target

As soon as the target comes out of reset, BDI initializes it and loads your application code. If RUN is
selected, the application is immediately started, otherwise only the target PC is set. BDI now waits
for GDB request from the debugger running on the host.

After starting the debugger, it must be connected to the remote target. This can be done with the fol-
lowing command at the GDB prompt:

(gdb)target renote bdi 2000: 2001

bdi2000 This stands for an IP address. The HOST file must have an appropriate
entry. You may also use an IP address in the form xxx.XXX.XXX.XXX

2001 This is the TCP port used to communicate with the BDI

If not already suspended, this stops the execution of application code and the target CPU changes
to background debug mode.

Remember, every time the application is suspended, the target CPU is freezed. During this time no
hardware interrupts will be processed.

Note: For convenience, the GDB detach command triggers a target reset sequence in the BDI.
(gdb). ..

(gdb) det ach

... Wit until BD has reseted the target and rel oaded the inage
(gdb)target renote bdi 2000: 2001

© Copyright 1997-2006 by ABATRON AG Switzerland VvV 1.10

M for GNU Debugger, BDI2000 (MIPS32) User Manual 35

3.3.3 Breakpoint Handling

GDB versions before V5.0:

GDB inserts breakpoints by replacing code via simple memory read / write commands. There is no
command like "Set Breakpoint” defined in the GDB remote protocol. When breakpoint mode HARD
is selected, the BDI checks the memory write commands for such hidden "Set Breakpoint" actions.
If such a write is detected, the write is not performed and the BDI sets an appropriate hardware
breakpoint. The BDI assumes that this is a "Set Breakpoint" action when memory write length is 4
bytes and the pattern to write is a BREAK opcode.

GDB version V5.x:

GDB version 5.x uses the Z-packet to set breakpoints (watchpoints). For software breakpoints, the
BDI replaces code with a SDBBP instruction. When breakpoint mode HARD is selected, the BDI sets
an appropriate hardware breakpoint.

User controlled hardware breakpoints:

The MIPS processor has special watchpoint / breakpoint hardware integrated. Normally the BDI con-
trols this hardware in response to Telnet commands (BI, BDx) or when breakpoint mode HARD is
selected. Via the Telnet commands Bl and BDx, you cannot access all the features of the breakpoint
hardware. Therefore the BDI assumes that the user will control / setup this breakpoint hardware as
soon as an address in the range 0xFF300000 - OxFF3FFFFF is written to. This way the debugger or
the user via Telnet has full access to all features of this watchpoint / breakpoint hardware. A hardware
breakpoint set via Bl or BDx gives control back to the BDI.

3.3.4 GDB monitor command

The BDI supports the GDB V5.x "monitor" command. Telnet commands are executed and the Telnet
output is returned to GDB. This way you can for example switch the BDI breakpoint mode from within
your GDB session.

(gdb) target renote bdi 2000: 2001
Renot e debuggi ng usi ng bdi 2000: 2001
0x10b2 in start ()

(gdb) non break

Breakpoi nt node is SCFT

(gdb) non break hard

(gdb) non break
Br eakpoi nt node is HARD

(gdb)

© Copyright 1997-2006 by ABATRON AG Switzerland VvV 1.10

M for GNU Debugger, BDI2000 (MIPS32)

User Manual 36

3.3.5Target serial 1/0 via BDI

A RS232 port of the target can be connected to the RS232 port of the BDI2000. This way it is possible
to access the target’s serial I/O via a TCP/IP channel. For example, you can connect a Telnet session
to the appropriate BDI2000 port. Connecting GDB to a GDB server (stub) running on the target

should also be possible.

RS232 Connector

1-CD

2 -RXD
3-TXD

4 -DTR

5 - GROUND
6 - DSR
7-RTS
8-CTS
9-RI

XXX BDI Output

The configuration parameter "SIO" is used to enable this serial I/O routing.
The BDI asserts RTS and DTR when a TCP connection is established.

[TARGET]

SIO 7 9600

Warning!!!

12345

Target System

BDI2000

RS232

;Enable SIOvia TCP port 7 at 9600 baud

Ethernet (10 BASE-T)

Once SIO is enabled, connecting with the setup tool to update the firmware will fail. In this case either
disable SIO first or disconnect the BDI from the LAN while updating the firmware.

© Copyright 1997-2006 by ABATRON AG Switzerland

VvV 1.10

M for GNU Debugger, BDI2000 (MIPS32) User Manual 37

3.3.6 Embedded Linux MMU Support

The bdiGDB system supports debugging of Linux kernel code that is allocated in mapped kernel
space (kseg2). The MMU configuration parameter enables this mode of operation. Before the BDI
accesses mapped memory space it creates an appropriate TLB entry based on information found in
the kernel/user page tables. A temporary TLB entry is only created if there is not already a matching
one present.

In order to search the page tables, the BDI needs to know the start addresses of it. The configuration
parameter PTBASE defines the address in unmapped kernel space where the BDI looks for the ad-
dresses of the page tables. The first entry should point to the kernel page table (swapper_pg_dir),
the second one can point to a pointer (current_pgd) that itself points to the current user page table.
The second (user) page table is only searched if its address is not zero and there was no match in
the first one.

The pointer structure is as follows:

PTBASE (unmapped address) ->
PTE kernel pointer (unnapped address)
PTE poi nter pointer(unnmapped address) ->
PTE user pointer (unmapped address)

In order to let the kernel update the pointers needed by the BDI, you may add the following short code
sequences to "head.S" at the end of "kernel_entry" (see also patch example on next page):

/* Setup the PTE pointers for the Abatron bdi GB.
*/
l'i t0, 0x800002f0 /* must match the bdi GB config file */

la t1, swapper_pg_dir

sw t1, (t0)

addiu toO, 4

la t1, current_pgd or pgd_current
sw t1, (t0)

just before:
jal init_arch

nop
END(ker nel _entry)

In the configuration file define:

[TARCGET]

MwJ XLAT ; MWJ support enabl ed

PTBASE 0x800002f 0 ;here are the page tabl e pointers
Note:

You are free to change the address of the array with the two pointers. Select an address in unmapped
kernel space (ksegO) that is not actively used by any kernel code or data.

You may also manually setup the pointers via GDB or Telnet if you cannot change kernel code. Break
for example at "start_kernel" and write the appropriate values to PTBASE[0] and PTBASE[1].

© Copyright 1997-2006 by ABATRON AG Switzerland VvV 1.10

M for GNU Debugger, BDI2000 (MIPS32) User Manual

38
Example of a kernel patch that adds BDI support:
diff -ru linux.org/arch/m ps/Kconfig.debug |inux/arch/m ps/Kconfig. debug
--- linux.org/ arch/ m ps/ Kconf i g. debug2005- 11- 14 19: 58: 12. 000000000 - 0500
+++ | i nux/ arch/ m ps/ Kconfi g. debug2006- 06- 26 14: 44: 30. 000000000 - 0400
@@-38,6 +38,12 @@
better 32 MB RAMto avoid excessive linking tine. This is only
useful for kernel hackers. If unsure, say N
+config BD _SWTCH
+ bool "Abatron bdi GDB kernel nodul e debuggi ng support"”
+ depends on DEBUG KERNEL
+ hel p
+ Enabl es the Abatron bdi @B debugger to debug kernel nodul es
+
config GDB_CONSCLE
bool "Consol e output to GDB"
depends on KB
diff -ru linux.org/arch/mps/kernel/head. S |inux/arch/ m ps/kernel / head. S
--- linux.org/arch/ m ps/kernel / head. S2005- 11- 14 19: 58: 17. 000000000 - 0500
+++ | i nux/ arch/ m ps/ ker nel / head. S2006- 06- 26 13: 07: 44. 000000000 - 0400
@- 153,6 +153,16 @@
set _saved_spsp, tO, t1
PTR SUBWsp, 4 * SZREG# init stack pointer
+#i f def CONFI G BDI _SW TCH
+ /* Setup the PTE pointers for the Abatron bdi GDB. */
+ la t0, bdi_ptbase
+ latl, swapper_pg dir
+ swtl, (tO0)
+ addiu toO, 4
+ latl, pgd_current
+ swtl, (t0)
+#endi f
+
j start_kernel
END(ker nel _entry)
@m- 195, 3 +205, 7 @@
page invalid_pmd_table, _PMD CRDER
#endi f
page invalid_pte_table, _PTE CRDER
+
+#i f def CONFI G BDI _SW TCH
+ .comm bdi _ptbase, SZREG'2, SZREG /* BD PTBASE should point to this */
+#endi f
© Copyright 1997-2006 by ABATRON AG Switzerland VvV 1.10

M for GNU Debugger, BDI2000 (MIPS32) User Manual 39

3.4 Telnet Interface
A Telnet server is integrated within the BDI. The Telnet channel is used by the BDI to output error
messages and other information. Also some basic debug commands can be executed.
Telnet Debug features:
* Display and modify memory locations
* Display and modify general and special purpose registers
* Single step a code sequence
» Set hardware breakpoints
* Load a code file from any host
» Start / Stop program execution
» Programming and Erasing Flash memory
During debugging with GDB, the Telnet is mainly used to reboot the target (generate a hardware reset

and reload the application code). It may be also useful during the first installation of the bdiGDB sys-
tem or in case of special debug needs.

Example of a Telnet session:

DB1100>r eset

- TARCET: processing user reset request

- Core#0: ID code is 0x2020228F

- Core#0: |IMP reg i s 0x20404000

- TARCET: resetting target passed

- TARCET: processing target startup

- TARCET: processing target startup passed

DB1100>i nfo
Cor e nunber 0
Core state : Debug Mbdde
Debug entry cause : JTAG break request
Qurrent PC : Oxbf c00000
Qurrent SR : 0x00400004

Qurrent LR (r31) : Oxff210000

Qurrent SP (r29) : 0x00000000
DB1100>md Oxbf cO0000
bf cO0000 : 10000155 00000000 00000000 00000000 U.
bf c00010 : 00000000 00000000 00000000 00000000
bf c00020 : 00000000 00000000 00000000 00000000
bf cO0030 : 00000000 00000000 00000000 00000000

Note:

The DUMP command uses TFTP to write a binary image to a host file. Writing via TFTP on a Linux/
Unix system is only possible if the file already exists and has public write access. Use "man tftpd" to
get more information about the TFTP server on your host.

© Copyright 1997-2006 by ABATRON AG Switzerland VvV 1.10

M for GNU Debugger, BDI2000 (MIPS32) User Manual

40
The Telnet commands:
"MD [<address>] [<count>] display target nenmory as word (32bit)",
"MH [<address>] [<count>] display target nenmory as half word (16bit)",
"MDB [<address>] [<count>] display target menory as byte (8bit)",
"DUW <addr> <size> [<file>] dunp target nenory to a file",
"M <addr > <val ue> [<cnt>] nodify word(s) (32bit) in target nenory",
"MW <addr> <value> [<cnt>] nodify half word(s) (16bit) in target menory",
"MMB <addr> <value> [<cnt>] nodify byte(s) (8bit) in target menory",
" MI <addr > <count > menory test",
"MC [<address>] [<count>] calcul ates a checksum over a menory range",
"W verifies the | ast cal cul ated checksunt,
"RD [<nane>] di spl ay general purpose or user defined register",
"RDUWP [<fil e>] dunp all user defined register to a file",
"RDCPO <nunber > di spl ay CPO register",
" RDFP display floating point registers",
"RM {<nbr >| <nane>} <val ue> nodi fy general purpose or user defined register”,
"RMCPO <nunber> <val ue> nmodi fy CPO register”,
"RMFP <nunber> [<hi>]<lo> nodify floating point register”,
"TLB <fronp [<to>] di splay TLB entry",
"DTAG <frone [<to>] di spl ay data cache tag",
"I TAG <frony [<to>] di splay instruction cache tag",
"DFLUSH [<addr > [<si ze]] flush data cache",
"1 FLUSH [<addr > [<si ze]] inval i date instruction cache",
" BOOT reset the BD and reload the configuration”,
"RESET [HALT | RN [tinme]] reset the target system change startup node",
"BREAK [SOFT | HARD| di splay or set current breakpoint node",
" [<pc>] set PC and start target systent,
"0 <n> <n> [<n>[<n>]] start multiple cores in requested order",
"TI [<pc>] trace on instuction (single step)",
"HALT [<n>[<n>[<n>[<n>]]]] force core(s) to debug nmode (n = core nunber)",
"Bl <addr> [<nmask>] set instruction breakpoint",
"a [<id>] clear instruction breakpoint(s)",
"BD [RW <addr> [<nask>] set data breakpoint",
"D [<i d>] cl ear data breakpoint(s)",
"1 NFO di splay information about the current state",
"LOAD [<offset>] [<file> [<format>]] load programfile to target nenory",
"VER FY [<offset>] [<file> [<format>]] verify a programfile to target nenory",
"PROG [<offset>] [<file> [<format>]] program flash menory",
" <format> : SREC or BIN or AQUT or ELF",
"ERASE [<address> [<node>]] erase a flash menory sector, chip or bl ock",
" <mode> : CH P, BLOXK or SECTCR (default is sector)”,
"ERASE <addr> <step> <count> erase nultiple flash sectors",
"UNLOCK [<addr > [<del ay>]] unl ock a flash sector”,
"UNLOCK <addr> <step> <count> unlock multiple flash sectors",
"FLASH <type> <size> <bus> change flash configuration",
"DELAY <ns> delay for a nunber of mlliseconds",
" SELECT <core> change the current core",
"HOBT <ip> change | P address of programfile host",
"PROWPT <string> defines a new pronpt string",
"OONFI G di spl ay or update BD configuration",
"OONFI G <file> [<host| P> [<bdi | P> [<gat eway> [<mask>]]]]",
"HELP di splay command |ist",
"JTAG switch to JTAG command node",
"QUT termnate the Tel net session"
© Copyright 1997-2006 by ABATRON AG Switzerland VvV 1.10

M for GNU Debugger, BDI2000 (MIPS32) User Manual 41

3.5 Multi-Core Support

The bdiGDB system supports concurrent debugging of up to 4 MIPS32 cores connected to the same
JTAG scan chain. For every core you can start its own GDB session. The default port numbers used
to attach the remote targets are 2001 ... 2004. In the Telnet you switch between the cores with the
command "select <0..3>". In the configuration file, simply begin the line with the appropriate core
number. If there is no #n in front of a line, the BDI assumes core #0.

The following example defines two cores on the scan chain.

[TARGET]

; common confi gurations

JTACCLOCK 1 ;use 8 MHz JTAG cl ock
PONERUP 5000 ; power - up del ay

WAKEUP 2000 ;delay after rel easing reset

;configuration for core #0
#0 CPUTYPE MIKE
#0 SCANPRED 00

#0 SCANSUCC 15 ; bypass second core
#0 ENDI AN Bl G ;target is big endian
#0 BREAKMODE HWBP ; use hardwar e breakpoints

;configuration for core #1
#1 CPUTYPE MIKE

#1 SCANPRED 15 ; bypass first core

#1 SCANSUCC 00

#1 ENDI AN Bl G ;target is big endian

#1 BREAKMODE SCFT ;use software breakpoints

Multi-Core related Telnet commands:

" SELECT <core> change the current core"
"Q0 <n> <n> [<n>[<n>]] start multiple cores in request ed order",
"HALT [<n>[<n>[<n>[<n>]]]] force core(s) to debug nmode (n = core nunber)",

© Copyright 1997-2006 by ABATRON AG Switzerland VvV 1.10

A

for GNU Debugger, BDI2000 (MIPS32) User Manual 42
4 Specifications
Operating Voltage Limiting 5VDC £ 0.25V
Power Supply Current typ. 500 mA
max. 1000 mA
RS232 Interface: Baud Rates 9'600,19'200, 38’400, 57°600,115°200
Data Bits 8
Parity Bits none
Stop Bits 1
Network Interface 10 BASE-T
Serial Transfer Rate between BDI and Target up to 16 Mbit/s
Supported target voltage 1.8-5.0V (3.0 - 5.0 V with Rev. A/B)
Operating Temperature +5°C..+60°C
Storage Temperature -20 °C ... +65 °C
Relative Humidity (noncondensing) <90 %rF
Size 190 x 110 x 35 mm
Weight (without cables) 420 g
Host Cable length (RS232) 25m
Specifications subject to change without notice
© Copyright 1997-2006 by ABATRON AG Switzerland VvV 1.10

M for GNU Debugger, BDI2000 (MIPS32)

User Manual 43

5 Environmental notice

QY

%

Disposal of the equipment must be carried out at a designated disposal site.

6 Declaration of Conformity (CE)

q

DECLARATION OF CONFORMITY

This declaration is valid for following product:

Type of device: BDM/JTAG Interface
Product name: BDI2000

The signing authorities state, that the above mentioned equipment meets
the requirements for emission and immunity according to

EMC Directive 89/336/EEC

The evaluation procedure of conformity was assured according to the
following standards:

EN 50081-2
EN 50082-2

This declaration of conformity is based on the test report no.
QNL-E853-05-8-a of QUINEL, Zug, accredited according to EN 45001.

Manufacturer:
ABATRON AG

Stockenstrasse 4
CH-6221 Rickenbach

Authority:
VOl e (C
s > e
Max Vock Ruedi Dummermuth
Marketing Director Technical Director

Rickenbach, May 30, 1998

© Copyright 1997-2006 by ABATRON AG Switzerland

VvV 1.10

M for GNU Debugger, BDI2000 (MIPS32) User Manual 44

7 Warranty

ABATRON Switzerland warrants the physical diskette, cable, BDI2000 and physical documentation
to be free of defects in materials and workmanship for a period of 24 months following the date of
purchase when used under normal conditions.

In the event of naotification within the warranty period of defects in material or workmanship,
ABATRON will replace defective diskette, cable, BDI2000 or documentation. The remedy for breach
of this warranty shall be limited to replacement and shall not encompass any other damages, includ-
ing but not limited loss of profit, special, incidental, consequential, or other similar claims.
ABATRON Switzerland specifically disclaims all other warranties- expressed or implied, including but
not limited to implied warranties of merchantability and fitness for particular purposes - with respect
to defects in the diskette, cable, BDI2000 and documentation, and the program license granted here-
in, including without limitation the operation of the program with respect to any particular application,
use, or purposes. In no event shall ABATRON be liable for any loss of profit or any other commercial
damage, including but not limited to special, incidental, consequential, or other damages.

Failure in handling which leads to defects are not covered under this warranty. The warranty is void
under any self-made repair operation except exchanging the fuse.

© Copyright 1997-2006 by ABATRON AG Switzerland VvV 1.10

M for GNU Debugger, BDI2000 (MIPS32) User Manual 45

Appendices

A Troubleshooting
Problem
The firmware can not be loaded.
Possible reasons
» The BDI is not correctly connected with the target system (see chapter 2).

» The power supply of the target system is switched off or not in operating range
(4.75VDC ...5.25 VDC) --> MODE LED is OFF or RED

* The built in fuse is damaged --> MODE LED is OFF
» The BDI is not correctly connected with the Host (see chapter 2).
» A wrong communication port (Com 1...Com 4) is selected.
Problem
No working with the target system (loading firmware is ok).
Possible reasons
» Wrong pin assignment (BDM/JTAG connector) of the target system (see chapter 2).

» Target system initialization is not correctly --> enter an appropriate target initialization list.
* An incorrect IP address was entered (BDI2000 configuration)
* BDM/JTAG signals from the target system are not correctly (short-circuit, break, ...).

* The target system is damaged.

Problem
Network processes do not function (loading the firmware was successful)

Possible reasons

» The BDI2000 is not connected or not correctly connected to the network (LAN cable or media
converter)

* An incorrect IP address was entered (BDI2000 configuration)

© Copyright 1997-2006 by ABATRON AG Switzerland VvV 1.10

M for GNU Debugger, BDI2000 (MIPS32) User Manual 46

B Maintenance

The BDI needs no special maintenance. Clean the housing with a mild detergent only. Solvents such
as gasoline may damage it.

If the BDI is connected correctly and it is still not responding, then the built in fuse might be damaged
(in cases where the device was used with wrong supply voltage or wrong polarity). To exchange the
fuse or to perform special initialization, please proceed according to the following steps:

VANRERY-5N

Observe precautions for handling (Electrostatic sensitive device)
Unplug the cables before opening the cover.
Use exact fuse replacement (Microfuse MSF 1.6 AF).

1.1 Unplug the cables

Suiss Made

<+— =

BDIl2000

Alatron AG

E—

2.1 Remove the two plastic caps that cover the screws on target front side
(e.g. with a small knife)

2.2 Remove the two screws that hold the front panel

BDI TRGT MODE BDI MAIN BDI OPTION

— —
o YRR R o

® . ‘ . 0 000 ® 000000 ®

3.1 While holding the casing, remove the front panel and the red elastig sealing

casing

—]
"& elastic sealing
front panel

© Copyright 1997-2006 by ABATRON AG Switzerland VvV 1.10

for GNU Debugger, BDI2000 (MIPS32) User Manual 47

4.1 While holding the casing, slide carefully the print in position as shown in
figure below

[
tl —— Jumper settings

= 7 e omm

DEFAULT INIT MODE

-0 N N

o

Fuse Position
Fuse Position Rev. B/C

@ Rev. A []
AN | Pull-out carefully the fuse and replace it /

Type: Microfuse MSF 1.6AF

..__L Manufacturer: Schurter

IJI—IIJ

Reinstallation

5.1 Slide back carefully the print. Check that the LEDs align with the holes in the
back panel.

5.2 Push carefully the front panel and the red elastig sealing on the casing.
Check that the LEDs align with the holes in the front panel and that the
position of the sealing is as shown in the figure below.

casing

—]
k elastic sealing back panel

front panel

5.3 Mount the screws (do not overtighten it)
5.4 Mount the two plastic caps that cover the screws
5.5 Plug the cables

VAN

Observe precautions for handling (Electrostatic sensitive device)
Unplug the cables before opening the cover.
Use exact fuse replacement (Microfuse MSF 1.6 AF).

© Copyright 1997-2006 by ABATRON AG Switzerland VvV 1.10

M for GNU Debugger, BDI2000 (MIPS32) User Manual 48

C Trademarks

All trademarks are property of their respective holders.

© Copyright 1997-2006 by ABATRON AG Switzerland VvV 1.10

