itrac wireless

GE-2525LPX User Manual

Version 1.0

This document contains information highly confidential to iTrac Wireless. It is provided for the sole purpose of the business discussions between customer and iTrac Wireless and is covered under the terms of the applicable Non-Disclosure Agreements. Disclosure of this information to other parties is prohibited without the written consent of iTrac Wireless.

Content

1.	Introduction	2
2.	Software Interface	14
3.	GPS Receiver User's Tip	20
3.1	Package Specification and Order Information	20
3.2	Lead-Free Standard Reflow	21

1. Introduction

GE-2525LPX low power and small form factor board is the newest generation of GPS module. The module is powered by latest SiRF Star III single chip and iTrac Wireless proprietary navigation technology that provides you with stable and accurate navigation data. The smallest form factor and miniature design is the best choice to be embedded in a device such as portable navigation device, personal locator, speed camera detector and vehicle locator.

Product Features

- ♦ 20 parallel channels
- ♦ SMT type with stamp holes
- ♦ TCXO design
- ♦ 0.1 second reacquisition time
- ♦ Small form factor with embedded SiRF Star III single chip technology.
- ♦ NMEA-0183 compliant protocol/customize protocol.
- ♦ Enhanced algorithm for navigation stability
- ♦ Excellent sensitive for urban canyon and foliage environments.
- ♦ DGPSBAS (WAAS, EGNOS and MSAS) support
- ♦ Auto recovery while RTC crashes
- ♦ Trickle power supported
- ♦ Build-in LNA and saw filter

1.1 Product Applications

- \diamond Automotive navigation
- ♦ Personal positioning and navigation
- \diamond Marine navigation
- \diamond Timing application

1.2 Product Pictures GE-2525LPX

Pin No.	GE-2525LPX	Pin No.	GE-2525LPX
1	VCC	16	GND
2	GND	17	RF-IN
3	Bootselect	18	GND
4	RXA	19	V-ANT
5	ТХА	20	VCC-RF
6	ТХВ	21	V-BAT
7	RXB	22	RESET-IN
8	GPIO14	23	GPIO10
9	RF-ON	24	GPIO1
10	GND	25	GPIO4
11	GND	26	GPIO0
12	<mark>GND</mark>	27	GPIO13
13	GND	28	GPIO15
14	GND	29	PPS
15	GND	30	GND

Table 1-1	The interface	board pir	definition
-----------	---------------	-----------	------------

1.3 GE-2525LPX Series Block Diagram

GE-2525LPX engine board consists of SiRF star III single chipset technology; 4Mbits flash memory, and proprietary software. The system is described as follows.

- a. External antenna.
- b. 4 Mega bits flash memory.

1.4 GE-2525LPX Technical Specification Impedance : 50Ω

No	Function	Specification		
GPS re	eceiver			
1	Chipset	SiRF Star III, GSC3f/LPx		
		(Digital, RF in a single package)		
2	Frequency	L1 1575.42MHz.		
3	Code	C.A. Code.		
4	Channels	20 parallel		
5	Chip Sensitivity	-159dBm.		
6	Chip Cold start	35 sec @ open sky (Typical)		
7	Chip Warm start	35 sec @ open sky (Typical)		
8	Chip Hot start	1 sec @ open sky (Typical)		
9	Reacquisition	less than 1s		
10	Position accuracy	10meters at 2D RMS.		
11	Maximum altitude	18000 m		
12	Maximum velocity	514 m/s		
13	Trickle power mode	Duty cycle \leq 34%. (Variable)		
14	Update rate	Continuous operation: 1Hz		
15	DGPS	WAAS, EGNOS		
Interfa	ce			
16	LNA	15dB Gain. (Typical)		
17	I/O Pin	30pin		
Power	consumption			
18	Vcc	DC 3.3 ±5%		
19	Current	Avg. 48mA@3.3V(without ext. antenna)		
Enviro	nment			
20	Temperature	Operating : $-40 \sim 85^{\circ}C$		
		Storage : $-40 \sim 85^{\circ}C$		
21	Humidity	≦95%		

Table 1-2 Technical Specifications

1.5 Application Circuit

Figure 1-6 Application Circuit Reference

Note:

(1) Ground Planes:

These pins (2, 10~16, 18, 30) should be connect to ground.

- (2) Serial Interface:
 - (I) The TXA pin is the serial output data. (Default NMEA)
 - ($\scriptstyle\rm II$) The TXB pin is the serial output data (Default Null)
 - (${\rm I\hspace{-.1em}I}$) The RXA pin is the serial output data (Default NMEA)
 - (IV) The RXB pin is the serial input data (Default Null).
- (3) Backup Battery:

When module is working, must to supply VCC_3V3(P1) and V_RTC_3V3 (P21) power at the same time. It's recommended to connect a backup battery to V RTC 3V3 pin.

In order to enable the warm start and hot start features of the GPS receiver.

If you use backup battery, should be add a bypassing capacitor (10uF) at

V_RTC_3V3 pin. It can reduce noise and increase the stability.

(4) RF_IN:

Connecting to the antenna has to be routed on the PCB. The transmission line must to be control impedance from RF_IN pin to the antenna or antenna connector of your choice. (Impedance 50Ω)

(5) Power:

Connect V_GPS_3V3 pin to DC +3.3V. The power supply must add bypass capacitor (10 μ F and 1 μ F). It can reduce the Noise from power supply and increase power stability.

(6) Active antenna bias voltage:

The VCC_RF_OUT pin (pin 20) is provide voltage 2.85V. If you use active antenna, you can connect this pin to V_ANT_IN pin (pin 19) to provide bias voltage of active antenna. The bias voltage will be through GPS_RF_IN pin to provide active antenna bias voltage from Vcc_RF_OUT pin. If your bias voltage of active antenna isn't 2.85V, you can input bias voltage to V_ANT_IN pin (pin 19).And input bias voltage of you need. The input bias voltage will through GPS_RF_IN pin to provide active antenna bias voltage from V_ANT_IN pin (pin 19).And input bias voltage of you need. The input bias voltage from V_ANT_IN pin.

PS:

(1) The maximum power consumption of active antenna is about 85mW.

(2) The input gain ranges are 19~22dB.

(7) GPIO:

The GPIO pin is recommended to connect to serial resistance(220), if use the GPIO function.

If no use GPIO functions, it doesn't connect anything.

1.6 Recommend Layout PAD:

Figure 1-7 Recommended Layout Pad

Figure 1-8 Mechanical Layout

No	Function	Specification
1	Clock offset	88000Hz ≦Test rate≦ 104000Hz
2	Clock Drift	Test rate≦ 200Hz
3	C/No Hi Power Mean	Test rate≦ 39dB
4	C/No Hi Power Sigma	Test rate≦ 2dB
5	Bit Sync	Test rate≦5 Sec
6	Frame Sync	Test rate≦28 Sec
7	Phase Error	Test rate≦0.22
8	RTC	
	RTC Frequency	31000≦Test rate≦33500

1.8 GE-2525LPX-Test Software Specification:

Reliability and quality target

MTBF > 10000 hours.

1.9 Hardware interface

Figure 1-9 Hardware Interface

Pin #	Signal Name	I/O	Description	Characteristics	
1	VCC_3V3	Ι	DC Supply	DC + 2.2V + 50/	
			Voltage input	DC + 5.5 V ± 570	
2	GND	G	Ground	Reference Ground	
3	Bootselect	Ι	Boot mode	$3.15V {\triangleq} V_{IH} {\triangleq} 2.0V \text{-}0.3V {\triangleq} V_{IL} {\triangleq} 0.86V$	
4	RXA	0	Serial port A	$3.15V \! \geq \! V_{IH} \! \geq 2.0V \text{-}0.3V \! \geq \! V_{IL} \! \geq 0.86V$	
5	TXA	0	Serial port A	$2.85V {\triangleq} V_{OH} {\triangleq} 2.14V \qquad V_{OL} {\leq} 0.71V$	
6	TXB	0	Serial port B	$2.85V {\triangleq} V_{OH} {\triangleq} 2.14V \qquad V_{OL} {\leq} 0.71V$	
7	RXB	Ι	Serial port B	$3.15V \! \geq \! V_{IH} \! \geq 2.0V \text{-}0.3V \! \geq \! V_{IL} \! \geq 0.86V$	
8	GPIO [14]	GPIO [14] I/O	General	$3.15 {\triangleq} V_{IH} {\triangleq} 2.0V \text{-}0.3V {\triangleq} V_{IL} {\triangleq} 0.86V$	
			purpose I/O	$2.85V {\triangleq} V_{\text{OH}} {\triangleq} 2.14V \qquad V_{\text{OL}} {\leq} 0.71V$	
			Indicates		
9	RF_ON	0	power state	$V_{OH} = 2.85V V_{OL} = 0V$	
			of RF part		
10	GND	G	Ground	Reference Ground	
11	GND	G	Ground	Reference Ground	

Table 1-3 Definition of Pin assignment

12	GND	G	Ground	Reference Ground
13	GND	G	Ground	Reference Ground
14	GND	G	Ground	Reference Ground
15	GND	G	Ground	Reference Ground
16	GND	G	Ground	Reference Ground
17	RF_IN	Ι	GPS Signal input	50 Ω@1.57542GHz
18	GND	G	Ground	Reference Ground
19	V_ANT_IN	Ι	Active Antenna Bias voltage	Receiving DC power supply for active antenna bias.
20	VCC_RF_OUT	0	Supply Antenna Bias voltage	DC +2.85V ±2% Current < 30mA
21	V_RTC_3V3	Ι	Backup voltage supply	$\begin{array}{rcl} DC +2.5V & +3.6V \\ Current & \leq & 10 \text{ uA} \end{array}$
22	Reset	Ι	Reset (Active low)	$V_{IH} > 2.3V$ $V_{IL} < 0.8V$
23	GPIO[10]	I/O	General Purpose I/O	$\begin{array}{ll} 3.15 V \! \geq \! V_{IH} \! \geq 2.0 V & \text{-}0.3 V \! \geq \! V_{IL} \! \geq 0.86 V \\ 2.85 V \! \geq \! V_{OH} \! \geq 2.14 V & V_{OL} \! \leq 0.71 V \end{array}$
24	GPIO[1]	I/O	General Purpose I/O	$\begin{array}{l} 3.15 V \! \geq \! V_{IH} \! \geq 2.0 V & \text{-}0.3 V \! \geq \! V_{IL} \! \geq 0.86 V \\ 2.85 V \! \geq \! V_{OH} \! \geq 2.14 V & V_{OL} \! \leq 0.71 V \end{array}$
25	GPIO4	I/O	General Purpose I/O	$\begin{array}{l} 3.15 V \! \geq \! V_{IH} \! \geq 2.0 V & \text{-}0.3 V \! \geq \! V_{IL} \! \geq 0.86 V \\ 2.85 V \! \geq \! V_{OH} \! \geq 2.14 V & V_{OL} \! \leq 0.71 V \end{array}$
26	GPIO0	I/O	General Purpose I/O	$ \begin{array}{ll} 3.15 V \geqq V_{IH} \geqq 2.0 V & -0.3 V \geqq V_{IL} \geqq 0.86 V \\ 2.85 V \geqq V_{OH} \geqq 2.14 V & V_{OL} \leqq 0.71 V \end{array} $
27	GPIO[13]	I/O	General Purpose I/O	$\begin{array}{ll} 3.15V \! \geq \! V_{IH} \! \geq 2.0V & \text{-}0.3V \! \geq \! V_{IL} \! \geq 0.86V \\ 2.85V \! \geq \! V_{OH} \! \geq 2.14V & V_{OL} \! \leq 0.71V \end{array}$
28	GPIO[15]	I/O	General Purpose I/O	$ \begin{array}{l} 3.15 V \geqq V_{IH} \geqq 2.0 V \text{-}0.3 V \geqq V_{IL} \geqq 0.86 V \\ 2.85 V \geqq V_{OH} \geqq 2.14 V V_{OL} \leqq 0.71 V \end{array} $
29	PPS	0	One pulse per second	$3.15V \ge V_{IH} \ge 2.0V -0.3V \ge V_{IL} \ge 0.86V$

30 0	GND	G	Ground	Reference Ground
------	-----	---	--------	------------------

Definition of Pin assignment

VCC_3V3 (+3.3V DC power Input)

This is the DC power supply input pin for GPS system. It provides voltage to module.

GND

GND provides the ground .

Boot

Set this pin to high for programming flash.

RXA

This is the main receiver channel and is used to receive software commands to the board from SIRFdemo software or from user written software.

RXB

This is the auxiliary receiving channel and is used to input differential corrections to the board to enable DGPS navigation.

ТХА

This is the main transmitting channel and is used to output navigation and measurement data to SiRFdemo or user written software.

ТХВ

For user's application (not currently used).

RF_ON

This pin indicates state of RF voltage.

GPS_RF_IN

This pin receives GPS analog signal. The line on the PCB between the antenna(or antenna connector) has to be a controlled impedance line (Microstrip at 50).

V_ANT_IN

This pin is reserved as external DC power supply input for active antenna.

If using 2.85V active antenna, pin 20 has to be connected to pin 19.

If using 3.3V or 5V active antenna ,this pin has to be connected to 3.3V or 5V power supply.

PS: The current must be \leq 100mA and voltage \leq 12V, if using external power supply.

VCC_RF_OUT

This pin can provide power 30mA@2.85V for active antenna.

Reset

This pin provides an active-low reset input to the board. It causes the board to reset and start searching for satellites. If not utilized, it may be left open. **PPS**

This pin provides one pulse-per-second output from the board, which is synchronized to GPS time. This is not available in Trickle Power mode.

V_RTC_3V3 (Backup battery)

This is the battery backup input that powers the SRAM and RTC when main power is removed. Typical current draw is 10uA.

The supply voltage should be between 2.5V and 3.6V.

GPIO Functions

Several I/Os are connected to the digital interface connector for custom applications.

2. Software Interface

2.1 NMEA Protocol

NMEA Output Messages: the Engine board outputs the following messages as shown in Table 2-1:

	1 8
NMEA Record	Description
GGA	Global positioning system fixed data
GSA	GNSS DOP and active satellites
GSV	GNSS satellites in view
RMC	Recommended minimum specific GNSS data
GLL	Geographic position – latitude/longitude
VTG	Course over ground and ground speed

Table 2-1 NMEA-0183 Output Messages

GGA-Global Positioning System Fixed Data

 Table 2 contains the values of the following example:

\$GPGGA, 161229.487, 3723.2475, N, 12158.3416, W, 1, 07, 1.0, 9.0, M, , , ,0000*18

Table 2 GGA Data Format

Name E	Example	Units	Description	

Message ID	\$GPGGA		GGA protocol header
UTC Position	161229.48		hhmmss.sss
	7		
Latitude	3723.2475		ddmm.mmmm
N/S Indicator	N		N=north or S=south
Longitude	12158.341		Dddmm.mmmm
	6		
E/W Indicator	W		E=east or W=west
Position Fix	1		See Table 2-1
Indicator			
Satellites Used	07		Range 0 to 12
HDOP	1.0		Horizontal Dilution of
			Precision
MSL Altitude	9.0	meters	
Units	М	meters	
Geoid Separation		meters	
Units	М	meters	
Age of Diff. Corr.		second	Null fields when DGPS is
			not used
Diff. Ref. Station	0000		
ID			
Checksum	*18		
<CR $>$ <lf<math>></lf<math>			End of message
			termination

Table 3 Position Fix Indicators

Value Description			
0	Fix not available or invalid		
1	GPS SPS Mode, fix valid		
2	Differential GPS, SPS Mode, fix valid		
3-5	Not Supported		
6	Dead Reckoning Mode, fix valid		

GSA-GNSS DOP and Active Satellites

Table 4 contains the values of the following example:

\$GPGSA, A, 3, 07, 02, 26, 27, 09, 04, 15, , , , , , 1.8, 1.0, 1.5*33

Table 4 GSA Data Format

Name Example Units	Description
--------------------	-------------

Message ID	\$GPGSA	GSA protocol header
Mode 1	А	See Table 5
Mode 2	3	See Table 6
ID of Satellite	07	Sv on Channel 1
Used		
ID of Satellite	02	Sv on Channel 2
Used		
ID of Satellite		Sv on Channel 12
Used		
PDOP	1.8	Position Dilution of Precision
HDOP	1.0	Horizontal Dilution of Precision
VDOP	1.5	Vertical Dilution of Precision
Checksum	*33	
<CR $>$ $<$ LF		End of message termination
>		

Table 5 Mode 1

Value	Description
М	Manual-forced to operate in 2D or 3D mode
А	Automatic-allowed to automatically switch 2D/3D

Table 6 Mode 2

Value	Description	
1	Fix not available	
2	2D	
3	3D	

GSV-GNSS Satellites in View

Table 7 contains the values of the following example:

\$GPGSV, 2, 1, 07, 07, 79, 048, 42, 02, 51, 062, 43, 26, 36, 256, 42, 27, 27, 138, 42*71

\$GPGSV, 2, 2, 07, 09, 23, 313, 42, 04, 19, 159, 41, 15, 12, 041, 42*41

Name	Exampl	Units	Description
	e		
Message ID	\$GPGS		GSV protocol header

Table 7 GSV Data Format

	V		
Total Number of	2		Range 1 to 3
Messages ¹			
Messages	1		Range 1 to 3
Number ¹			
Satellites in	07		
View			
Satellite ID	07		Channel 1(Range 1 to 32)
Elevation	79	degrees	Channel 1(Range 00 to 90)
Azimuth	048	degrees	Channel 1(True, Range 000 to 359)
SNR (C/No)	42	dBHz	Channel 1(Range 0 to 99, null when not
			tracking)
Satellite ID	27		Channel 4(Range 01 to 32)
Elevation	27	degrees	Channel 4(Range 00 to 90)
Azimuth	138	degrees	Channel 4(True, Range 000 to 359)
SNR (C/No)	42	dB-Hz	Channel 4(Range 00 to 99, null when not
			tracking)
Checksum	*71		
< CR > < LF >			End of message termination

¹Depending on the number of satellites tracked multiple messages of GSV data may be required.

RMC-Recommended Minimum Specific GNSS Data

Table 8 contains the values of the following example:

\$GPRMC, 161229.487, A, 3723.2475, N, 12158.3416, W, 0.13, 309.62, 120598, ,*10

Tuble o Rive Data I officia				
Name	Example	Units	Description	
Message ID	\$GPRMC		RMC protocol header	
UTC Time	161229.487		hhmmss.sss	
Status	А		A=data valid or V=data not valid	
Latitude	3723.2475		ddmm.mmmm	
N/S Indicator	N		N=north or S=south	
Longitude	12158.3416		dddmm.mmmm	
E/W Indicator	W		E=east or W=west	
Speed Over	0.13	knots	True	
Ground				
Course Over	309.62	degrees		

Ground			
Date	120598		ddmmyy
Magnetic		degrees	
Variation			
Variation sense			E=east or W=west (Not shown)
Mode	А		A=Autonomous, D=DGPS,
			E=DR
Checksum	*10		
<cr><lf></lf></cr>			End of message termination

VTG-Course Over Ground and Ground Speed

Table 9 contains the values of the following example: \$GPVTG,79.65,T,,M,2.69,N,5.0,K,A*38

Name	Example	Units	Description
Message ID	\$GPVTG		VTG protocol header
Course over	79.65	degrees	Measured heading
rgound			
Reference	Т		True
Course over		degrees	Measured heading
ground			
Reference	М		Magnetic
Speed over	2.69	Knots	Measured speed
ground			
Units	Ν		Knots
Speed over	5.0	Km/hr	Measured speed
ground			
Units	K		Kilometer per hour
Mode	А		A-autonomous, D=DGPS,
			E=DR
Checksum	*38		
<cr><lf></lf></cr>			End of message termination

 Table 9 VTG Data Format

GLL-Geographic Position – Latitude/Longitude

Table 10 contains the values of the following example: \$GPGLL,2503.6319,N,12136.0099,E,053740.000,A,A*52

Table 10 GLL Data Format

Name	Example	Units	Description
Message ID	\$GPGLL		GLL protocol header
Latitude	2503.6319		ddmm.mmmm
N/S indicator	Ν		N=north or S=south
Longitude	12136.0099		Dddmm.mmmm
E/W indicator	E		E=east or W=west
UTC Time	053740.000		hhmmss.sss
Status	Α		A=data valid or V=data not valid
Mode	Α		A=autonomous, D=DGPS,
			E=DR
Checksum	*52		
<cr><lf></lf></cr>			End of message termination

3. GPS Receiver User's Tip

- A. GPS signal will be affected by weather and environment conditions, so it is recommended to use the GPS receiver under less shielding environments to ensure GPS receiver has better receiving performance.
- B. When GPS receiver is moving, it will prolong the time to fix the position, so it is recommended to wait for the satellite signals locked at a fixed point when first power-on the GPS receiver to ensure to lock the GPS signal at the shortest time.
- C. The following situation will affect the GPS receiving performance:
 - i. Solar control filmed windows.
 - ii. Metal shielded, such as umbrella, or in vehicle.
 - iii. Among high buildings.
 - iv. Under bridges or tunnels.
 - v. Under high voltage cables or near by radio wave sources, such as mobile phone base stations.
 - vi. Bad or heavy cloudy weather.
- D. If the satellite signals can not be locked or encounter receiving problem (while in the urban area), the following steps are suggested:
 - i. Please plug the external active antenna into GPS receiver and put the antenna on outdoor or the roof of the vehicle for better receiving performance.
 - ii. Move to another open space or reposition GPS receiver toward the direction with less blockage.
 - iii. Move the GPS receiver away from the interferences resources.
 - iv. Wait until the weather condition is improved.
- E. While a GPS with a backup battery, the GPS receiver can fix a position immediately at next power-on if the build-in backup battery is full-recharged.

3.1 Package Specification and Order Information

Shipment Method: Tape and reel

3.2 Lead-Free Standard Reflow

Profile

Lead-Free Standard Reflow Profile