
SmartBits
Advanced Multiport Performance Tester/Simulator/Analyzer

SmartLib
User Guide

Programming Library Version 3.05

FEBRUARY 1999

Supporting these development environments:

Microsoft Windows Version 3.1
Windows 95
Windows NT
UNIX
Borland C/C++
Microsoft Visual C/C++
GNU C/C++
Microsoft Visual Basic
Borland Delphi
Tcl

P/N 340-0029-002 Rev G

ii SmartLib User Guide

Netcom Systems, Inc.
(818) 700-5100 Phone
(818) 709-7881 FAX

Copyright 1993-1998 Netcom Systems, Inc. All Rights Reserved. Printed February 1999.

Disclaimer

The information contained in this manual is the property of Netcom Systems, Inc. and is
furnished for use by recipient only for the purpose stated in the Software License Agreement
accompanying the user documentation. Except as permitted by such License Agreement, no
part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any
form or by any means, without the prior written permission of Netcom Systems, Inc.

Information contained in the user documentation is subject to change without notice and does not
represent a commitment on the part of Netcom Systems, Inc. Netcom Systems, Inc. assumes no
responsibility or liability for any errors or inaccuracies that may appear in the user documentation.

Trademarks

SmartBits is a trademark of Netcom Systems, Inc.

Warranty

Netcom Systems, Inc. warrants to recipient that hardware which it supplies with this user
documentation (“Product”) will be free from significant defects in materials and workmanship
for a period of twelve (12) months from the date of delivery (the “Warranty Period”), under
normal use and conditions.

Defective Product under warranty shall be, at Netcom Systems’ discretion, repaired or replaced or
a credit issued to recipient’s account for an amount equal to the price paid for such Product
provided that: (a) such Product is returned to Netcom Systems after first obtaining a return
authorization number and shipping instructions, freight prepaid, to Netcom Systems’ location in
the United States; (b) recipient provide a written explanation of the defect claimed; and (c) the
claimed defect actually exists and was not caused by neglect, accident, misuse, improper
installation, improper repair, fire, flood, lightning, power surges, earthquake or alteration.
Netcom Systems will ship repaired Product to recipient, freight prepaid, within ten (10) working
days after receipt of defective Product. Except as otherwise stated, any claim on account of
defective materials or for any other cause whatsoever will conclusively be deemed waived by
recipient unless written notice thereof is given to Netcom Systems within the Warranty Period.
Product will be subject to Netcom Systems’ standard tolerances for variations.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, ALL IMPLIED WARRANTIES, INCLUDING
BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NONINFRINGEMENT
AND FITNESS FOR A PARTICULAR PURPOSE, ARE HEREBY EXCLUDED, AND THE LIABILITY OF
NETCOM, IF ANY, FOR DAMAGES RELATING TO ANY ALLEGEDLY DEFECTIVE PRODUCT
SHALL BE LIMITED TO THE ACTUAL PRICE PAID BY THE YOU FOR SUCH PRODUCT. IN NO
EVENT WILL NETCOM SYSTEMS BE LIABLE FOR COSTS OF PROCUREMENT OF SUBSTITUTE
PRODUCTS OR SERVICES, LOST PROFITS, OR ANY SPECIAL, DIRECT, INDIRECT,
CONSEQUENTIAL OR INCIDENTAL DAMAGES, HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, ARISING IN ANY WAY OUT OF THE SALE AND/OR LICENSE OF PRODUCTS OR
SERVICES TO RECIPIENT EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES AND
NOTWITHSTANDING ANY FAILURE OF ESSENTIAL PURPOSE OF ANY LIMITED REMEDY.

SmartLib User Guide iii

Contents
Chapter 1: Introduction 1

SmartLib ... 1

Backward Compatibility .. 1

SmartLib Documentation.. 2

The SmartLib Manuals ... 2

Understanding Prefixes: ET, HT, and HG ... 2

System Requirements .. 3

General Programming Notes ... 3

Link Timeout Issues ... 3

Creating a Keep-Alive Loop ... 3

SmartLib Response to a Broken Link (Time-out)... 4

Working with multiple SMB hubs.. 5

The Master Hub.. 6

Troubleshooting and Technical Support... 6

Chapter 2: Programming for MS Windows 7

Installing SmartLib for MS Windows .. 7

Win Directory Structure and Content ... 7

General Windows Programming Notes.. 8

Developing with C/C++... 9

File Descriptions (COMMLIB Directory) .. 9

Developing with Tcl .. 11

File Descriptions (Tcl Directory) ... 11

File Descriptions (Tcl\Tcl76 Directory).. 12

File Descriptions (Tcl/Tcl80 Directory).. 12

File Descriptions (Tcl\Tclfiles Directory) ... 12

Developing with Delphi ... 13

File Descriptions (Delphi Directory) ... 13

Developing with Visual Basic.. 13

Important Differences - VB vs. C/C++.. 13

File Descriptions Used for Visual Basic ... 14

Chapter 3: Programming for UNIX 15

Installing SmartLib for UNIX... 15

Step-by-Step UNIX Installation .. 15

iv SmartLib User Guide

UNIX Directory Structure and Content ... 17

Developing with C/C++... 19

Developing with TCL ... 19

Chapter 4: Examples 20

Example Code Location ... 20

The TCL Demo Scripts:.. 20

AllCards.. 21

ATM .. 21

ET1000.. 22

FastCard... 22

Layer3 ... 23

SmartAPI.. 24

Token Ring ... 24

The C Demo Modules: ... 24

Basic C Demo Configuration - Steps 1-5... 24

Files Contained in Each C Demo .. 26

Notes for Specific Demos.. 26

Running the C Demos .. 26

Additional Examples (in the manual).. 27

Error Handling Macros ... 27

Routines for SmartBits and the ET-1000 ... 28

Routines for SmartBits only .. 29

Routines for the ET-1000 only... 34

Routines that access ET-1000 functionality for 10Mbps SmartCards.......... 36

Chapter 5: Original Function Summary 38

Chapter 6: Data Structures 52

Usage ... 52

CaptureStructure .. 53

CollisionStructure ... 54

CountStructure ... 55

EnhancedCounterStructure.. 56

FrameSpec... 60

HTCountStructure .. 62

HTLatencyStructure ... 62

HTTriggerStructure .. 63

SmartLib User Guide v

HTVFDStructure... 64

Layer3Address ... 66

SwitchStructure .. 66

TimeStructure... 68

TokenRingLLCStructure... 68

TokenRingMACStructure ... 69

TokenRingPropertyStructure.. 70

TokenRingAdvancedStructure ... 70

TriggerStructure ... 72

VFDStructure.. 72

VGCardPropertyStructure .. 73

Chapter 7: SmartLib Detailed Description 74

ETAlignCount ... 74

ETBNC ... 75

ETBurst .. 77

ETCaptureParams ... 77

ETCaptureRun ... 77

ETCollision ... 78

ETDataLength .. 78

ETDataPattern.. 79

ETDribbleCount.. 79

ETEnableBackgroundProcessing .. 80

ETGap .. 80

ETGapScale ... 81

ETGetAlignCount ... 82

ETGetBaud... 82

ETGetBNC ... 83

ETGetBurstCount ... 83

ETGetBurstMode.. 83

ETGetCapturePacket ... 84

ETGetCapturePacketCount ... 84

ETGetCaptureParams.. 84

ETGetCollision ... 85

ETGetController ... 85

ETGetCounters .. 85

ETGetCRCError ... 85

ETGetCurrentLink .. 87

vi SmartLib User Guide

ETGetDataLength .. 87

ETGetDataPattern.. 87

ETGetDribbleCount .. 87

ETGetErrorStatus... 88

ETGetFirmwareVersion.. 88

ETGetGap .. 89

ETGetGapScale ... 89

ETGetHardwareVersion ... 90

ETGetLibVersion .. 90

ETGetLinkFromIndex ... 90

ETGetLinkStatus .. 91

ETGetJET210Mode.. 91

ETGetLNM ... 91

ETGetPreamble.. 92

ETGetReceiveTrigger... 92

ETGetRun .. 92

ETGetSel.. 93

ETGetSerialNumber ... 93

ETGetSwitch .. 93

ETGetTotalLinks .. 94

ETGetTransmitTrigger ... 94

ETGetVFDRun ... 94

ETIsBackgroundProcessing... 95

ETLink .. 95

ETLNM ... 96

ETLoopback ... 96

ETMake2DArray... 97

ETMake3DArray... 97

ETMFCounter... 98

ETPreamble ... 98

ETReceiveTrigger .. 99

ETRemote .. 99

ETReset ... 99

ETReturnAddress... 100

ETRun .. 100

ETSetBaud ... 101

ETSetCurrentLink... 101

SmartLib User Guide vii

ETSetCurrentSockLink... 102

ETSetJET210Mode.. 102

ETSetGPSDelay... 102

ETSetSel .. 103

ETSetTimeout .. 104

ETSetup ... 105

ETSocketLink ... 106

ETTransmitCRC... 106

ETTransmitTrigger ... 107

ETUnLink.. 107

ETVFDParams ... 107

ETVFDRun ... 108

HGAddtoGroup... 109

HGAlign .. 109

HGBurstCount .. 110

HGBurstGap... 110

HGBurstGapAndScale ... 111

HGClearGroup ... 111

HGClearPort... 112

HGCollision .. 112

HGCollisionBackoffAggressiveness... 112

HGCRC .. 113

HGDataLength ... 113

HGDribble... 113

HGDuplexMode.. 114

HGFillPattern.. 114

HGGap ... 115

HGGapAndScale.. 116

HGGetCounters.. 116

HGGetEnhancedCounters ... 117

HGGetGroupCount... 117

HGGetLEDs ... 117

HGIsPortInGroup.. 118

HGIsHubSlotPortInGroup... 118

HGMultiBurstCount .. 118

HGRemoveFromGroup .. 119

HGRemovePortIdFromGroup .. 120

viii SmartLib User Guide

HGResetPort .. 121

HGRun ... 121

HGSelectTransmit.. 122

HGSetGroup... 123

HGSetGroupType... 124

HGSetSpeed .. 125

HGSetTokenRingAdvancedControl.. 125

HGSetTokenRingErrors ... 126

HGSetTokenRingLLC... 126

HGSetTokenRingMAC ... 127

HGSetTokenRingProperty.. 127

HGSetTokenRingSrcRouteAddr .. 128

HGSetVGProperty.. 128

HGStart .. 129

HGStep... 129

HGStop... 129

HGSymbol .. 130

HGTransmitMode... 130

HGTrigger... 131

HGVFD... 132

HTAlign... 132

HTBurstCount... 133

HTBurstGap ... 133

HTBurstGapAndScale .. 134

HTCardModels ... 135

HTClearPort ... 136

HTCollision ... 136

HTCollisionBackoffAggressiveness ... 137

HTCRC... 137

HTDataLength .. 138

HTDribble ... 139

HTDuplexMode .. 140

HTFillPattern .. 141

HTFindMIIAddress ... 142

HTFrame .. 143

HTGap.. 144

HTGapAndScale .. 145

SmartLib User Guide ix

HTGetCardModel ... 146

HTGetCounters .. 147

HTGetEnhancedCounters .. 148

HTGetEnhancedStatus .. 148

HTGetHubLEDs ... 151

HTGetLEDs.. 151

HTGetHWVersion .. 152

HTGetStructure .. 153

HTGroupStart ... 154

HTGroupStep ... 154

HTGroupStop ... 155

HTHubId ... 155

HTHubSlotPorts ... 156

HTLayer3SetAddress ... 157

HTLatency .. 158

HTMultiBurstCount ... 159

HTPortProperty .. 159

HTPortType .. 161

HTReadMII ... 162

HTResetPort... 163

HTRun .. 163

HTSelectReceive.. 164

HTSelectTransmit .. 165

HTSendCommand ... 166

HTSeparateHubCommands... 167

HTSetCommand .. 168

HTSetSpeed... 169

HTSetStructure... 170

HTSetTokenRingAdvancedControl .. 171

HTSetTokenRingErrors.. 172

HTSetTokenRingLLC ... 173

HTSetTokenRingMAC.. 173

HTSetTokenRingProperty .. 175

HTSetTokenRingSrcRouteAddr ... 176

HTSetVGProperty .. 177

HTSymbol... 177

HTTransmitMode ... 178

x SmartLib User Guide

HTTrigger ... 179

HTVFD ... 180

HTWriteMII ... 181

NSCreateFrame ... 182

NSCreateFrameAndPayload.. 183

NSDeleteFrame.. 184

NSModifyFrame ... 185

NSSetPayLoad ... 186

Appendix A Error Code Definitions 187

Appendix B Notes on Tcl 190

Appendix C Revision History 198

Version 3.05 ... 198

Version 3.04 ... 199

Version 3.03 ... 201

Version 3.02 ... 202

Version 3.00 ... 202

Version 2.50-20 .. 203

Version 2.42 ... 204

Version 2.37 ... 204

Version 2.32 ... 204

Version 2.31 ... 205

Version 2.3 ... 205

Version 2.22 ... 206

Version 2.21 ... 206

Version 2.20 ... 206

Version 2.13 ... 207

Version 2.12 ... 207

Version 2.11 ... 207

Version 2.10 ... 207

New functions... 207

New advanced functions.. 208

Corrected Errors... 208

Version 2.01 ... 210

Version 2.0 ... 211

Software Additions .. 211

SmartLib User Guide xi

Notes on Using Microsoft Visual Basic... 211

Visual Basic Demonstration Application ... 213

Software Modifications.. 214

Version 1.32 ... 214

Software Additions .. 214

Software Modifications.. 214

Software Environment... 214

Corrected Errors... 215

Compatibility with previous version ... 215

Version 1.3 ... 216

Software.. 216

User's Manual .. 216

Compatibility with previous version ... 216

Appendix D Obsolete Functions and Structures 217

SetLatencyStructure... 218

ETGetCaptureTime .. 219

HGBurst.. 220

HGClear ... 220

HGEcho.. 220

HGSelectReceivePort .. 221

HGSelectTMTPort .. 221

HGSetLED.. 223

HTBurst .. 223

HTClear .. 224

HTEcho .. 224

HTGroup... 225

HTLatencyTest ... 225

HTSelectReceivePort ... 226

HTSelectTMTPort .. 227

HTSetLED .. 228

SmartLib User Guide 1

Chapter 1:
Introduction

The SmartLib User Guide contains a basic overview of the Smartlib programming
library, as well as a complete overview of the original library functions. The newer
Message Functions and the test modules (SmartAPI) are included in separate
manuals.

This User Guide includes information such as installation instructions, examples, and
notes for specific programming languages.

This chapter discusses basic concepts and uses for SmartLib, as well as general
information about SmartLib manuals.

SmartLib
SmartLib programming library helps developers create custom test applications for
Netcom Systems' SmartCards, SmartBits, and ET-1000.

SmartLib can be used to automate testing, or create applications that test a single,
unique network component. It can be used to create simple GUIs for results gathering
and analysis, making tests useful for a production line. Or, it can be used to create a
complex suite of tests. SmartLib is a powerful programming tool, fueled by the desire
to test the cutting edge.

SmartLib programming library supports:

• Ethernet 10 MB, 100 MB, and Gigabit systems,

• Token Ring 4MB and 16 MB systems,

• VG/AnyLan in Ethernet mode,

• ATM technologies including DS1, E1, 25MB, E3, DS3, OC-3c, and OC-12c with
Signaling control as well as traffic generation.

• Frame Relay V.35.

SmartLib offers three approaches to test application development.

1. The Original functions (Hardware API) which interfaces with the
hardware and firmware of older SmartCards.

2. The Message Functions (Hardware API) which provide a more
standardized syntax to interface with the hardware and firmware of
newer SmartCards: ATM, Frame Relay, Gigabit, Layer3, Ethernet/Fast
Ethernet, and Multi-Layer.

3. The SmartAPI test routines (pre-created test modules) that interface
with the Original and Message Functions.

Backward Compatibility
Additional features are constantly being added to Netcom Systems' suite of products.
New modules require changes to the library. Every attempt is made to keep updates
backwardly compatible so that applications developed for older modules function with
minimal modifications.

2 SmartLib User Guide

NOTE: Be sure to check the readme.txt file with each release, as
well as the Revisions section of this manual to see what changes
affect your programs.

SmartLib Documentation
SmartLib 3.04 documentation now consists of printed manuals as well as manuals in
PDF Format located on the CD. For the on-line manuals, look in:

<Your CD>: | Documents | Manuals | SmartLib |

Note that the SmartLib Training Material is on the CD in Microsoft PowerPoint
format (*.ppt).

To view and print PDF files, you can use one of the Acrobat readers (for UNIX or
Windows) located in:

<Your CD>: | Tools |

The SmartLib Manuals
SmartLib User Guide covers the first group of routines (original hardware API
functions and parameters). It also discusses SmartLib installation, examples, and
notes pertaining to specific programming languages.

Message Functions reference manual contains a thorough overview of the Message
Functions (used with newer SmartCards). Basic concepts and parameter break-down
are in the front, while the reference material for each parameter is covered in the body
of the book.

SmartAPI for Smart Applications presents an overview of the Smart Applications
(RFC-1242) Benchmark test series. Topics include basic test concepts, test
methodology, and reference material for each function and structure.

SmartAPI for Smart Signaling presents an overview of the Smart Signaling ATM test
series. Topics include basic test concepts, test methodology, and reference material for
each function and structure.

SmartLib Training Material is a Power Point presentation used by Netcom Systems
trainers. Although this material designed for training purposes, it contains useful
information, pointers, and examples.

NOTE: Although SmartLib provides interfaces for multiple
programming languages, the documentation is including
syntax entries are written with C/C++ programming
conventions unless otherwise noted.

For more helpful information see the Examples chapter in this manual.

Understanding Prefixes: ET, HT, and HG
In the SmartBits Library, function names are prefixed by either ET, HG, or HT. The
ET functions interact with the ET-1000 controller, and are not designed to work with
SmartCards. The HT prefix indicates communication to a single SmartCard, while the
HG prefix indicates communication to a group of SmartCards.

SmartLib User Guide 3

System Requirements
This version of the programming library has been tested with firmware release 10.06,
the most current release of SmartBits/ET-1000 firmware at the time of this writing.

The most current release of Netcom Systems' firmware is available from the Netcom
Systems web site. Go to www.netcomsystems.com and click the "Support" link.

This release of SmartLib does not function with an HT-40 and passive cards. Do NOT
install either this installation or the firmware upgrade if you are using an HT-40 and
passive cards.

General Programming Notes
• Source code modules that call SmartLib library routines must include the

appropriate header file (ET1000.H for “C/C++”, ET1000.B32 for 32-bit Visual
Basic, etc.). Each programming environment has a facility for configuring a list
of ‘include subdirectories’. The header file must reside in one of the directories
on the 'included subdirectories' list. See the appropriate "developing" section in
this manual for more information.

• Applications that call SmartLib functions must link with the appropriate
Smartlib library file. Each programming environment has a facility for
configuring a list of ‘library subdirectories’. The SmartLib library file must reside
in one of the directories on the 'library subdirectory' list. Some programming
environments require that this library be manually added to the project. See the
appropriate programming section in this manual for more information.

• 16-bit environments must have the compiler switch ‘struct member byte
alignment’ set to 1 byte. For 32-bit environments, set the compiler switch ‘struct
member byte alignment’ to 4 bytes.

For more specific information about the different programming environments, see
Chapter 2 and Chapter 3.

Link Timeout Issues
An Ethernet "Link" between the PC and a SmartBits chassis will timeout after 30
minutes of inactivity. This means that if there is no communication initiated by the PC
for 30 minutes, the socket will be closed by the chassis. The timeout feature frees the
SmartBits chassis to accept other link attempts should the initial link be lost.

A serial link has no time-out feature.

Creating a Keep-Alive Loop
If you want your link to stay connected after more than 30 minutes of inactivity, you
can insert a "Keep-Alive" loop in your application. This code loop issues a command to
the SMB chassis at a given interval (for example, 29 minutes). This prevents the link
from timing out. Examples of the Stay-Alive loops are given below.

NOTE: For SmartLib 3.03 and before, use HTGetHubLEDs in
place of ETGetLinkStatus. For SmartLib 3.05 and later, Do
NOT useHTGetHubLEDs since it won't keep the link alive
with an SMB 6000.

4 SmartLib User Guide

A Simple C Keep-Alive Routine.
This example loops forever. It keeps the link alive by communicating with the
SmartBits controller every 29 minutes.

while (ETGetLinkStatus() >= 0) {
 /* 29 minutes * 60 seconds/minute * 1000 millis/second
 NSDelay(29*60*1000);
}

A TCL Keep-Alive Routine
This keep-alive loop can be called periodically from within an existing loop. This would
allow code to continue to run - and would access the chassis only after a specified time
of no interaction with the SMB controller.

This Demo runs continuously and activates proc keepalive every 20 seconds (so you
can see the results). For an actual keep alive program, activate proc keepalive
every 1200 or 1400 seconds (since there are 1740 seconds in 29 minutes).

##
timeout.tcl
##

proc keepalive {} {
 #Access the SMB controller so it doesn't time-out.
 ETGetLinkStatus
 puts ""
 puts "***"
 puts "* 20 seconds have passed: Access SMB *"
 puts "***"
 puts ""
}

Initialize a beginning time.
set starttime [clock seconds]

 # Loop for 20 seconds.
 while {1 == 1} {

 # Get the current time.
 set nowtime [clock seconds]

 # Test for values - run keepalive if 20 seconds has passed.
 if { [expr $nowtime - $starttime] > 20} {
 keepalive
 # Reset the starttime.
 set starttime [clock seconds]
 } else {
 puts "A one second pause inserted to emulate your program
running"
 after 1000
}
}

SmartLib Response to a Broken Link (Time-out)
Usually a link is closed by using the ETUnLink command. Occasionally a link is
broken due to network failure, power loss, or chassis time-out, for example. If this
occurs while a SmartLib script or application is executing, the next SmartLib command

SmartLib User Guide 5

issued will attempt to elicit a response from the SMB link for 30 seconds before
reporting an error.

NOTE: Prior releases of SmartLib attempted to get a response
for a default 5 minutes before assuming a broken link.

You can increase or decrease the SmartLib timeout value with the ETSetTimeout
command on page 104.

Working with multiple SMB hubs.
SmartCards are mounted in a SmartBits hub (also called a card-cage, or a chassis). In
order to control a SmartCard, you must identify which hub it is in, the slot in the hub,
and the port on the card you wish to use. At this time, SmartCards have one port so set
the port to 0.

Each element is numbered starting from zero. So, to specify the first (and only) port on
the third card in the first hub, you would set the values: iHub 0, iSlot 2, and iPort 0.

When you work with multiple hubs, there is a variation on the number system
depending on if and how you have linked stacks of hubs. See the diagram below.

Controller
Hub 8

Hub 3

Hub 2

Hub 1

Controller
Hub 0

Controller
Hub 4

Hub 5

Not Present

PC
PC Links

Master Hub

Because of the expansion
connections in this example,
this is the only hub to receive
synchronized commands like
HGStart.

See:
HTSeparateHubCommands.

Expansion
Connection

Between
Hub stacks

Hub
Connection

Between Hubs

Not Present

Not Present

Not Present

Not Present

Controller

Hubs 0, 4, and 8 are
linked directly to the
PC, and control the
other SMB hubs in the
stack.

Hub Stack 3Hub Stack 2Hub Stack 1

6 SmartLib User Guide

Diagram of three SMB hub stacks linked to a PC.

Each hub stack is comprised of a single link to the PC and up to four hubs connected
via the 37 pin hub connections. The hub that is linked to the PC becomes the
Controller and acts as the brains for the entire stack (effectively disabling the
controllers of the other hubs). There can be a total of eight links to the PC. Whether
that is comprised of eight hubs, or eight stacks of hubs is left up to you.

If the controller hubs are SMB 2000s, the stacks of hubs can be connected and
synchronized via the small Expansion ports in the upper corners of the controlling
hubs. They can also be synchronized via GPS connections.

Each controller (i.e., hub linked to the PC) is given a number in increments of four.
This is true whether it is connected to other hubs or not. In the diagram example, the
first controller hub is 0. It is connected to three subordinate hubs: 1, 2, and 3. The
second controller hub is 4 with one subordinate hub, the third controller hub is 8 with
no subordinate hubs, and a subsequent controller hub would be 12.

NOTE: Each controller hub ID increments by four whether the
previous stack contains four hubs or not.

The Master Hub
When working with synchronized stacks of hubs, each stack has one active controller,
but the entire system can have only one master controller. The Master controller is the
controller that uses only the OUT expansion slot, and uses no IN expansion slot.

It is important to understand which controllers are slaves and which is the master so
that you transmit commands in the proper order.

Troubleshooting and Technical Support
If you have difficulty obtaining desired results when working with the SmartLib
Programming Library, consider these pointers:

• Make sure your manual is up-to-date. For the most current documentation,
check the Netcom Systems web site at www.netcomsystems.web under
"Support".

NOTE: The part-number in the lower right corner of each
manual can help you determine if you have the current
version.

• Create your programs one module at a time and test often. The programming
language, Tcl, (provided with SmartLib) is particularly useful for this task as it
allows you to test a command without compiling. You can send function calls
directly from the command line.

If you have SmartLib-specific questions you can call Netcom Systems Technical
Support at (818) 885-2152.

SmartLib User Guide 7

Chapter 2:
Programming for MS Windows

This chapter contains information about programming in the Microsoft Windows
environment. It includes installation instructions, directory and file definitions,
general SmartLib tips, and information specific to these compilers: C/C++, Tcl, Visual
Basic, and Delphi.

Installing SmartLib for MS Windows
AutoPlay for CDs automatically runs the installation script when you put the CD into
your PC. If AutoPlay is not enabled, run the Setup.exe from the root directory of your
CD. follow the step-by-step instructions. SmartLib will be installed in the directory of
your choice. The Setup program creates the directory structure illustrated below.

NOTE: You can specify any directory name. SmartLib is the
suggested main directory.

Win Directory Structure and Content

The directories contain files grouped together for specific programming languages.
Descriptions of the files are documented later in this chapter with the appropriate
programming language. The general contents of the folders are listed below.

NOTE: SmartLib provides multiple program interfaces with
header and project files repeated for each program
environment.. Complete source code comments are in the C/C++
files contained in the Commlib directory.

• SmartLib - (or whichever directory you installed SmartLib into) contains
directories which hold program-specific files.

• Commlib - contains SmartLib's compiled DLL files for 16 bit and 32 bit
Microsoft Windows. It also contains project and header files for C\C++. These
files contain functions for the Original functions, the newer Message Functions,
and the SmartAPI functions.

8 SmartLib User Guide

This directory additionally contains some legacy Visual Basic *.txt files used
for backward compatibility.

• Delphi - contains the source files needed to create SmartLib applications using
Delphi programming language. This directory also contains DEL_TIPS.TXT , an
informative file with information about using SmartLib with Delphi.

• Tcl - Contains a README.TXT file with important TCL information such has
how to install TCL, and locations of DLLs. Also included is the TCL_TIPS.TXT
file which contains information about programming with SmartLib under TCL.

• Tcl\Tcl76 - Contains DLLs used when working with SmartLib under TCL 7.6.
This directory also contains the executable file needed to install TCL 7.6.

• Tcl\Tcl80 - Contains DLLs used when working with SmartLib under TCL 8.0.

• Tcl\TclFiles - This directory contains the SmartLib's single, complete Tcl
header file, ET1000.TCL . This file must be "sourced" in your Tcl applications. It
also contains SHOW.TCL, a Tcl utility used for viewing elements of a structure.
Lastly, this directory contains MISC.TCL , an important error handler for Tcl.

• Vb - Contains SmartLib project and header files for Microsoft Visual Basic.
These files include the 16 and 32 bit versions of the Visual Basic programming
interface files. This directory also contains Vb_tips.txt with information
specific to using SmartLib with Visual Basic.

NOTE: Sample code in both TCL and C can be found on the
CD under the SAMPLES directory. Since the examples cover
different information, it's advisable to look at both TCL and C
examples.

This set of library functions can be used for development of Microsoft Windows™ based
applications on IBM PC and compatibles. SmartLib functions work on a hardware
platform capable of supporting MS Windows.

SmartLib functions can be called from any program using the cdecl convention or the
FAR PASCAL convention. Microsoft Windows applications capable of calling a
Dynamic Link Library can use these functions. This includes applications such as
Excel, National Instruments LabView, and Visual Basic. Although a wide variety of
applications can use SmartLib functions, your Software Developer's Kit includes four
interfaces to the library specifically designed for use with C/C++, Tcl, Visual Basic, and
Delphi.

General Windows Programming Notes
The MS Windows link libraries are compiled with the "Large" memory model.

For MS Windows 16 bit applications, create an "import" library. To do this, open a DOS
box and go the directory where etsmbw16.dll is located. Issue the command,
“implib etsmbw16.lib etsmbw16.dll. " The library will be created automatically.

Every effort will be made to keep Smartlib compatible with earlier versions. As more
functions are added, you may only need to relink your application with the new library.
For Microsoft Windows applications using the DLL, relinking may not be necessary.

SmartLib User Guide 9

Developing with C/C++
This section describes the list of files used for programming with C or C++. It also
contains some notes about using SmartLib in the C/C++ environment. For additional
information, see the "readme" file on your installation diskette.

For “C/C++” program development, ET1000.H should be referenced (included) in your
source files. This file provides the function prototypes, defined values, and structure
declarations used by the library. You must also link with the SmartLib *.LIB files
which matches your development environment.

If you develop with Borland's C/C++, compile using SMBW32BC.LIB . If you develop
using Microsoft's C/C++, compile using SMBW32VC.LIB . Applications from either
compiler use the same SmartLib *.DLL during run time.

File Descriptions (COMMLIB Directory)
Below is a description of the files installed in the COMMLIB directory. These files are
predominantly used for developing with C/C++. However, this directory also contains
SmartLib's central DLL files, as well as some legacy Visual Basic files.

File Name File Type

ATMAPI.H In development for future release.

ATMITEMS.H Library header file of defines and structure definitions for ATM
SmartCards.

ATMITM32.TXT Visual Basic 5 legacy file, needed only for backward compatibility with
earlier Visual Basic/SmartLib applications.

ATMSGAPI.H Library header file of the Smart API for ATM Signaling tests.

ET1000.H Library header file of basic defines, structure definitions, and all
function prototypes.

ETHITEMS.H Library header file of defines and structure definitions for the new
Ethernet Message Functions.

ETSMBAPI.TXT Visual Basic 3 legacy file, needed only for backward compatibility with
earlier Visual Basic/SmartLib applications.

ETSMBW16.DLL The dynamic link library for use with 16-bit applications developed for
Windows 95 or NT.

ETSMBW32.DLL The dynamic link library for use with 32-bit applications developed for
Windows 95 or NT.

ETSMBW32.TXT Visual Basic 5 legacy file, needed only for backward compatibility with
earlier Visual Basic/SmartLib applications.

ETTYPES.H Library header file of necessary ETSMB variable types (like U64 for
working with 64 bit numbers).

FRAME.H Library header file for the new, easier, frame-building functions:
NSCreateFrame, NSSetPayLoad, HTFrame, NSDeleteFrame,
NSCreateFrameAndPayLoad, NSModifyFrame.

10 SmartLib User Guide

FRITEMS.H Library header file of defines and structure definitions for the Frame
Relay SmartCards.

FSTITEMS.H Library header file of defines and structure definitions for the Fast
Ethernet (100 MB) SmartCards.

GIGITEMS.H Library header file of defines and structure definitions for the Gigabit
Ethernet SmartCard.

L3ITEMS.H Library header file of defines and structure definitions for the Layer3
and Multi-Layer SmartCards.

SMBW32VC.LIB The Visual C/C++ compatible import library used with the
ETSMBW32.DLL for 32-bit applications.

SMBW32BC.LIB The Borland C/C++ compatible import library used with the
ETSMBW32.DLL for 32-bit applications.

STMITEMS.H Library header file of defines and structure definitions for some
common Stream items.

TCPISP.H In development for future release.

TCPITEMS.H In development for future release.

TESTAPI.H Library header file of the Smart API for RFC-1242 and RFC-1944
Tests.

TESTCMMN.H Library header file of common defines and structure definitions for the
Smart APIs.

WANITEMS.H Library header file of defines and structure definitions common to
both Wide Area Network SmartCards (ATM and Frame Relay). This
file includes defines such as DSI, EI, and DS3.

SmartLib User Guide 11

Developing with Tcl
Tcl is a flexible programming language, noted for its on-the-fly command-line
capabilities. With Tcl, you can test a function call from the text-based command line,
with out having to compile a program. This allows you to test the logic of your code,
line-by-line.

Tcl programming language (7.6 and 8.0) are included with your SmartLib Software
Developer's Kit as well as the SmartLib files needed to develop test applications with
Tcl.

NOTE: for an in-depth discussion of working with the SmartLib
TCL interface, see Appendix B on page 190 of this manual .

At this time, the SmartLib documentation uses C/C++ conventions. To understand
syntax differences. Compare this simple Tcl example below, with the identical example
written for C on page 28.

Example: ET-1000/SMB-1000 -Connecting and Disconnecting

source et1000.tcl

set iRsp [ETLink $ETCOM1]

if {$iRsp < 0} then {

puts "Could not connect to the ET-1000/SMB-1000"

}

set iRsp [ETUnLink]

if {$iRsp < 0} then {

puts "Could not disconnect from ET-1000/SMB-1000"

}

For information about installing Tcl and using SmartLib with Tcl, read the
Readme.txt file located in the Tcl directory.

For an extensive discussion about using SmartLib with Tcl, see Appendix B Notes on
Tcl or read the TCL_TIPS.TXT located in the Tcl directory. For extensive TCL
examples see the files under <your CD> :\Samples\Tcl\

File Descriptions (Tcl Directory)
Below is a description of the files installed in the Tcl directory.

File Name File Type

README.TXT Information about installation of TCL as well as setting up your
environment to work with SmartLib under TCL.

TCL_TIPS.TXT Notes and information specific to using SmartLib with Tcl.

12 SmartLib User Guide

File Descriptions (Tcl\Tcl76 Directory)
Below is a description of the files installed in the Tcl76 directory.

File Name File Type

TCL76.DLL Tcl project library, used when creating applications.

TCLSTRUC.DLL Tcl DLL used for creating structures.

TCLET100.DLL SmartLib API for Tcl. This file maps Tcl calls to the main
ETSMB*.DLL.

WIN76P2.EXE Executable file for installing Tcl 7.6 programming language.

File Descriptions (Tcl/Tcl80 Directory)
Below is a description of the files installed in the Tcl directory.

File Name File Type

TCL80.DLL Tcl project library, used when creating applications.

TCLSTRUC.DLL Tcl DLL used for creating structures.

TCLET100.DLL SmartLib API for Tcl. This file maps Tcl calls to the main
ETSMB*.DLL.

File Descriptions (Tcl\Tclfiles Directory)
Below is a description of the files installed in the Tcl\Tclfiles directory.

File Name File Type

SAMPLE.TCL A sample Tcl script.

SHOW.TCL Tcl Utility used for viewing elements in a structure.

ET1000.TCL SmartLib header file containing SmartLib defines, structure
definitions, and function prototypes.

SmartLib User Guide 13

Developing with Delphi
The Delphi source files have been added to this version of SmartLib. For information
about using SmartLib with Delphi, read the DEL_TIPS.TXT located in the DELPHI
directory.

File Descriptions (Delphi Directory)
The necessary interface files needed for using SmartLib with Delphi are located in the
DELPHI directory. Each *.PAS file corresponds to a C/C++ Header file or “.H” file. For
detailed descriptions of these files, see the "File Descriptions (COMMLIB Directory)"
section above.

NOTE: The central SmartLib DLL is located in the Commlib
directory.

Developing with Visual Basic
SmartLib Programming Library includes files specifically for the Microsoft Visual
Basic environment. Although much of the information that applies to C/C++ is also
valid for Visual Basic, exceptions and differences are noted in this section.

Important Differences - VB vs. C/C++

• Because C/C++ is case sensitive and Visual Basic is not, there is a group of
parameters that have different names in Visual Basic than they do in C/C++.

Use the chart below to see which name to use. Remember, only the names are
different; the functionality is identical.

For C/C++ (SmartLib
Previous) - VB

(SmartLib 3.02) - VB

HTSTOP HTRUN_STOP Use either name

HTSTEP HTRUN_STEP Use either name

HTRUN HTRUN_RUN HTRUN_RUN or HTRUN_ VALUE

ETSTOP ETRUN_STOP Use either name

ETSTEP ETRUN_STEP Use either name

ETRUN ETRUN_RUN Use either name

NOTE: The HTRUN name-change applies to the constant
parameter only. Do not change the name of the HTRUN function.

• In Visual Basic, integers require the same amount of space whether you use the
16 bit or 32 bit version. However, if you are programming with C/C++, "int"

14 SmartLib User Guide

requires a larger memory allocation in the 32 bit version than it does in the 16
bit version.

This means that items that appear in the manual as int, are declared as Long
within SmartLib's header and LIB files for 32 bit Visual Basic.

In addition, Visual Basic does not support unsigned types. In some cases where
unsigned types are specified, conversions must be made. An example is a counter
result where all thirty-two bits are used to represent a positive number.

• In this version of SmartLib, the parameters for HTVFDStructure have been
renamed to more closely match the parameter names used with C/C++.

For C/C++ (SmartLib
Previous) - VB

(SmartLib 3.02) - VB

*Data iPointer pData

DataCount iLength DataCount

File Descriptions Used for Visual Basic
The necessary interface files needed for using SmartLib with Visual Basic are located
in the Vb directory; with DLLs and legacy files located in the Commlib directory. Each
of the *.B16 or *.B32 files corresponds to a C/C++ Header file. For detailed file
descriptions, see the "File Descriptions (COMMLIB Directory)" section above. Below is
a general list of the files used when developing with Visual Basic.

File Name File Type

ETSMBW16.DLL The dynamic link library for use with 16-bit applications
developed for Windows 95 or NT. This file is located in the
Commlib directory, and installed in your Windows\System
directory.

ETSMBW32.DLL The dynamic link library for use with 32-bit applications
developed for Windows 95 or NT. This file is located in the
Commlib directory, and installed in your Windows\System
directory.

 *.B16 Library header files of defines, structure definitions, and
function prototypes. These files are used for VB 16 bit.

 *.B32 Library header files of defines, structure definitions, and
function prototypes. These files are used for VB 32 bit.

ETSMBAPI.TXT Visual Basic legacy files located in the Commlib directory.

ETSMBW32.TXT Visual Basic legacy files located in the Commlib directory.

ATMITM32.TXT Visual Basic legacy files located in the Commlib directory.

To use the SmartLib functions, data structures, and constants, include the appropriate
*.b16 or *.b32 files in your VB project.

SmartLib User Guide 15

Chapter 3:
Programming for UNIX

SmartLib 3.04 supports both C and TCL (7.6 and 8.0.3) programming environments. It
also supplies extensive TCL and C code examples, and the SmartLib manuals in PDF
format (both on the CD).

SmartLib tested under UNIX versions listed below:

• SunOS 4.1.4.

• Solaris 2.5.1 - on SPARC architecture.

• Solaris 2.5.1 - on x86 architecture.

• Linux 2.0.0 and above - on x86 architecture.

Installing SmartLib for UNIX
The installation for UNIX is now more automated and flexible. To install SmartLib
3.04 for UNIX, you can run the setup.sh installation utility and pick the specific files
you wish to install.

The CD contains both source code and pre-compiled shared libraries.

NOTE: These programs must be installed on your system and
993in your PATH before you install SmartLib for UNIX:
gcc (including the standard C++ library), make, and gunzip .

Step-by-Step UNIX Installation
1. Insert the SmartLib CD-ROM into your CD drive.

2. Mount the CD.

� Under Solaris, this is automatic. Your CD will be mounted at /cdrom/netcom.

� Under Linux, enter mount -r /dev/cdrom /mnt/cdrom . Your CD will be
mounted at /mnt/cdrom.

� Under SunOS, use the correct mount command.

3. Change to the directory where the CD is mounted.

4. Run the script setup.sh . The Setup script will prompt you to answer a
number of questions so that your SmartLib installation is customized to your
needs. Key concepts to consider when you install are:

� Where should SmartLib files be installed?

Several subdirectories are created depending on which features you elect to
install. For system-wide access, it is best to install as root and place SmartLib
in /usr/local. If you don't have root access, you can install in your account. (For

16 SmartLib User Guide

example, if your home directory is /export/home/jdoe, enter
/export/home/jdoe/smartlib.)

� Do I want precompiled versions of SmartLib, or do I want to compile the source
files on my system?

In most cases use the precompiled versions. They have been tested, and will
install much faster. On Linux, however, you may be unable to use the
precompiled libraries. If you elect not to install the pre-compiled version of the
library, source files are installed instead, and then compiled in your
environment during the install process.

When installing with Linux, libc.so and libn.so may have been renamed so that
our installation script cannot find them. To correct this problem create a
symbolic link (a small pointer file) in the directory where you libc.so.n and
libn.so.n reside.

An example of creating a symbolic link is shown below.
ln -s libc.so libc.so.5
ln -s libn.so libn.so.5

� Will I write scripts with TCL?

If so, which version: 7.6. or 8.0? There is also an option to install the TCL
programming language (provided on the CD).

SmartLib User Guide 17

Below is part of an example Setup script for a UNIX SmartLib installation:

Please enter the installation directory:

/export/home/build/test

Do you want to install the Programming Library? [y/n]

y

Do you want to install the precompiled Programming Library? [y/n]

If not, it will be built from source.

y

Do you want to install Tcl 8.0? [y/n]

If yes, the installed versions will be removed.

Say n if you want to install Tcl 7.6 instead.

y

Do you want to install TclStruct 1.3 (requiring Tcl 7.5 or later)? {y/n]

It is required if you are using the Programming Library with Tcl.

y

Do you want to install the precompiled TclStruct? [y/n]

If not, it will be built from the source files.

y

Do you want to install the Tcl Extension to the Programming Library? [y/n]

y

Do you want to install the precompiled Tcl Extension? [y/n]

If not, it will be built from the source files.

y

--

 Installing Programming Library...

--

--

 Installing Tcl 8.0...

--

UNIX Directory Structure and Content
Below is a list of the possible directories created during a UNIX installation of
SmartLib 3.04.

NOTE: Depending on your selections during installation, a
subset of these directories are loaded on your computer.

18 SmartLib User Guide

Though the directory structure can be expanded, this section gives a general overview
of all the top level directories.

• /bin - Contains files to run the TCL shell. (tclsh is a pointer to the current
TCL shell file.)

• /include - Contains header files used when coding with SmartLib. (For file
definitions, see the Windows "Developing with C/C++" in the previous chapter.

This directory also includes files used for compiling *.so files.

• /lib - Contains the compiled *.so files. This directory may include *.so files for
TCL if the TCL interface was selected.

• /lib/tcl8.0 - Contains TCL 8.0.3 programming files, if the 8.0 TCL compiler was
installed.

• /lib/tcl7.6 - Contains TCL 7.6 programming files, if the 7.6 TCL compiler was
installed.

• /man - If a TCL compiler is installed, numerous TCL topics are added to the
/man/* directories.

• /tmp - Contains other directories used if source code is compiled on the
computer (instead of installing pre-compiled files). Once SmartLib and/or TCL
library files are compiled, this directory can be deleted.

• /tmp/proglib - contains SmartLib's C source files for compiling the main
SmartLib *.os file: libetsmb.so . This file supports the Original functions,
Message Functions, and the SmartAPI functions.

• tmp/Tcl8.0 - Contains files and subdirectories used for installing TCL 8.0.3.

• tmp/Tcl7.6 - Contains files and subdirectories used for installing TCL 7.6.

• tmp/tclstruct - Contains TCL files used when compiling libtclstruct.so .
Once compiled, this file is used for working with structures in TCL. It is stored in
the /lib directory, and must be included when working with SmartLib in TCL.

• tmp/tclext - Contains TCL files used when compiling tclet100.so . This file is
the TCL interface to the C function calls. Once compiled it is stored in the /lib
directory, and must be included when working with SmartLib in TCL.

• tmp/tcl - More temp files.

SmartLib User Guide 19

Developing with C/C++
For information and file descriptions specific to the SmartLib C/C++ interface, see
Developing with C/C++ in the Windows section of this book, on page 9.

Developing with TCL
For information and file descriptions specific to the SmartLib TCL interface, see
Developing with C/C++ in the Windows section of this book, on page 9.

NOTE: For extensive TCL and C code examples on the CD
under: <Your CD>/Samples .

SmartLib manuals can be found in *.PDF format under <Your
CD>/Documents/Manuals/SmartLib .

20 SmartLib User Guide

Chapter 4:
Examples

SmartLib 3.04 provides an extensive series of example source code both in C++ and
TCL programming languages. These Demos are designed to guide you through the
basic tasks with the SmartLib programming library.

Although there are two example groups (C++, and TCL), it is beneficial to look at both
regardless of your programming environment. The TCL demo scripts contain code that
is used both in the field and in training. It contains pertinent comments for every step.
The C examples walk you through a series of basic tasks while configuring different
SmartCards for Traditional and SmartMetrics traffic.

Example Code Location
The SmartLib Examples are located on the CD in these directories:

<Your CD>

Samples
C

Layer2
Layer3

Tcl
All Cards
ATM
ET1000
FastCard
Layer3
SmartAPI
TokenRing

The TCL Demo Scripts:
The TCL Demo scripts are a group of useful, heavily-commented modules which cover
key tasks you need to accomplish with SmartLib. This collection of scripts has been
created, refined, and used by our Technical Support Specialists. These samples offer
practical information, answering actual questions received by Netcom Systems
customers.

Although these scripts are written in TCL, they contain information useful to
SmartLib programmers working in any environment.

These TCL scripts do not contain examples directly related to the SmartAPIs.

SmartLib User Guide 21

AllCards
This group of scripts is a collection of basic, preliminary tasks executed by the
SmartLib programming library.

1stlink.tcl A simple serial port link routine between
the PC and a Smartbits controller.

Backoff.tcl Sets the backoff time - how quickly an
Ethernet card attempts to transmit after
a collision.

cardmod.tcl Returns the model of the SmartCards.
Example of a 2 dimensional array in TCL.

gap2.tcl Sets the interframe gap, decrementing the
gap with each code loop.

Group.tcl Creates a "Group" of two SmartCards, and
then transmits traffic.

GroupCount.tcl Creates a "Group" of two cards. It then
transmits traffic, and retrieves and
displays group counter information.

LibVer.tcl Example of passing strings in TCL. Gets
SmartLib version.

misc.tcl Important error handler for TCL.

multi-link.tcl Links and unlinks from multiple
controllers (stack of chassis). There is a
possible stack of four chassis per
controller link.

Show.tcl Utility provided with TCL to display
structure elements.

SocketLink.tcl A simple Ethernet link routine between
the PC and a Smartbits controller.

Startup.tcl Sample code to include at the beginning of
a TCL script.

vfd.tcl Creates traffic with VFD 1, 2, and 3.
Explains differences between the VFDs.

ATM
This group of scripts works with the ATM SmartCards.

1stATM.tcl Creates a series of PVC connections, and
then transmits data.

ATMDATA.tcl Gets and displays the configuration data
for an ATM card.

22 SmartLib User Guide

ET1000
These examples deal with ET1000 functionality. The ET1000 is the precursor to the
SMB1000. It supports two ports and does not have removable SmartCards. These
samples include code for an actual ET1000, as well as for ST-64XX cards emulating an
ET1000. This functionality can be useful if, for example, you have ST-6410 SmartCards
and you want to capture test frames.

ET1000MODE.tcl Defines frames with VFDs and then
transmits traffic.

These routines use ST-64XX cards and an
SMB chassis to accesses ET-1000
functionality.

ETVFD_CYCLE.TCL Defines frames with VFDs and then
transmits traffic.

These routines executes the same
functions as ET1000Mode.tcl, except that
they control an actual ET1000.

multi.tcl General overview of the ET1000
capabilities.

FastCard
This group of examples works with the SX-7210 and SX7410 Fast Ethernet
SmartCards. These cards support 10/100 Mb traffic. They do not support Histograms
and VTEs (i.e., no Signature field).

capture.tcl Configures a main traffic stream, as well
as an alternate stream (e.g., an error
stream). It transmits the traffic. It then
captures incoming traffic and displays the
capture.

gap1.tcl Sets the interframe gap, transmits traffic,
and displays the rate so that user can see
the effect of gap change.

mii.tcl Reads and writes from the MII registers.
It changes the baudrate so that the cards
auto-negotiate to correct the speed.

misc.tcl Important error handler used for TCL.
This routine provides error messages for
anywhere in the script, as opposed to only
reporting errors for the last function call.

setspeed.tcl Uses the HT commands to set speed,
mode, and duplex for individual cards and
for groups of cards.

SmartLib User Guide 23

Layer3
This group of examples covers creating streams with "Layer3" SmartCards, such as the
L3-6710 and the ML-7710.

L3stack.tcl Configures the SmartCards local IP
address, Gateway, etc.

This is for background traffic such as
PING frames, SNMP frames, etc., in
addition to the regular test traffic.

l3min.tcl This script does the minimum
configuration of a Layer 3 card, with the
exception of setting up the actual traffic
streams.

ipstream.tcl Creates multiple streams using
L3_DEFINE_IP_STREAM and
L3_DEFINE_MULTI_IP_STREAM
(described in the Message Function
manual).

ipxstream.tcl Creates multiple IPX streams.

udpstream.tcl Creates multiple UDP streams.

L3mod_stream_array.tcl Creates a group of IP streams, and then
modifies only the packet length of some of
the streams.

L3Trigger.tcl Illustrates the use of
L3_CAPTURE_ALL_TYPE and
L3_CAPTURE_TRIGGERS_TYPE.

l3_v2_hist_lat.tcl Uses L3_HIST_V2_LATENCY and
L3_HIST_V2_LATENCY_INFO to
capture and display latency information
over time intervals.

L3Zero.tcl Uses
L3_DEFINED_STREAM_COUNT_INFO
to display the number of streams
currently defined on the target card.

L3_STREAM_INFO.tcl Uses L3_STREAM_INFO to display IP
stream data.

L2-L3.tcl Shows how to switch a SmartCard from
"Layer 2" mode to "Layer 3" mode.

24 SmartLib User Guide

SmartAPI
This example work with the SmartLib API.

SmartAPI.tcl Demonstrates the four SmartAPPs tests:
Throughput, Back-to-Back, Packet Loss,
and Latency.

Token Ring
This example works with Token Ring SmartCards.

TokenRing.tcl Sets up transmission perameters and two
VFDs on a Token Ring SmartCard

The C Demo Modules:
This next section describes the two C demo modules. Each module is divided into a
number of steps. This allows you to see the actions needed for basic testing with the
SmartLib programming library.

• Layer 2 - Provides a basic demonstration of setting up unidirectional traffic
between source and destination with the SmartCard in Traditional mode. The card
configurations cover each type of SmartCard when set to "Layer 2"/Traditional
mode.

In Traditional mode, the complex Layer2,3, and 4 testing requires more effort than
in "Layer 3"/SmartMetrics mode. Traditional mode uses VFDs (Variable Field
Definitions) to set up one or more traffic streams. ARP responses and Histogram
results are not available.

• Layer 3 - Provides a basic demonstration of setting up unidirectional traffic
between source and destination with SmartCards in SmartMetrics mode. The card
configurations cover each type of SmartCard when set to "Layer 3/"SmartMetrics
mode. In SmartMetrics mode, a card uses VFDs as well as the more complex VTEs
to set up traffic streams. ARP responses and other network interactions are
automatic. Relational Histogram results are available. Not all card types support
SmartMetrics mode.

Basic C Demo Configuration - Steps 1-5
Although the Demos are different, the Demos follow a basic course arranged in Steps.
Below is a list of the steps with general descriptions of each.

Example: Code Snippet from demo.cpp (the main routine in the Layer 2
demo).
Note the five Step-procedures called by the routine.

SmartLib User Guide 25

Step1_ExamineSystem(); /* Show card types, models and version
information */

Step2_DetermineConnections(); /* Determine connections */

Step3_ResetAndSetupAll(); /* Reset and setup each card */

Step4_Transmit(STAGGERED_START); /* Transmit packets */
Step5_ShowAllCounters(); /* Show counters */

Step4_Transmit(SYNCHRONIZED_START); /* Transmit packets */
Step5_ShowAllCounters(); /* Show counters */

/* Terminate our session with SmartBits */
printf("\nPress any key to UnLink and close the window\n");

Basic Steps for the C Demos:

Step 1 - Queries the SmartCards to see the kinds of cards present in the
chassis.

Step 2 - Pairs cards so that each destination card has a source card.
� For Layer2 and Layer3 demos, the next like card is configured as the

destination card. Un-paired cards are not used in the test.

� The cards in the SmartAPI demo are paired according to the test
configuration.

Step 3 - Sets cards to a know state and then sends the proper configuration
for each card type. Step 3 is the most complex step of this demo
series.

Step 4 - Starts the test traffic.

Step 5 - Displays the result information.

26 SmartLib User Guide

Files Contained in Each C Demo
Although each of the C Demo modules contains a slightly different set of files, there
are common features throughout. Below is a list of file types you can expect to see.

Demo*.cpp (or) *Main.cpp - The central file used to link the computer to the
chassis and call the test Steps.

Step1.cpp (through) *Step5*.cpp - Files which contain code that executes the
demo steps. See the "Basic Steps Explained" above for Step definitions.

Utils.cpp - The catch-all file. For example, it contains certain constants, error
code, and the routines used for reading from the *.ini files found in Smart Signaling
and SmartAPI.

*.h - The header file for the specific demo project.

Notes for Specific Demos
This section provides additional notes and tips for working with specific demos. Use it
in conjunction with the basic information previously mentioned.

Layer 3

As mentioned earlier, if a SmartCard is in "Layer 3"/SmartMetrics mode, numerous
capabilities are available such multiple streams configurable on a per-stream basis,
true ARP interaction, and most importantly for this module, Histogram results.
Depending on whether you wish to view Latency over Time, Latency per Stream,
Sequence Tracking, etc, a different Histogram is enabled on the SmartCard. Note that
for the Layer 3 Demo, there is no Step 5 cpp file. This is because you display the
results using one of the Histogram modules.

Running the C Demos
To compile and run the C demos:

For MS Windows:
1. Create a 32bit Console Applications Project.

2. Add the source files for the desired demo and the appropriate Netcom Systems
library into the project.

3. Compile the demo, and run the program.

For UNIX:
1. Create a makefile that compiles all cpp files, then links them with libetsmb.so to

produce an executable.

2. Run the executable.

SmartLib User Guide 27

Additional Examples (in the manual)
Here are a number of previously included examples that appear only in the SmartLib
User Guide.

The examples in this section are divided into five categories:

• Error Handling Macros.

• Routines for SmartBits/SmartCards and the ET-1000.

• Routines for SmartBits/SmartCards only.

• Routines for the ET-1000 only.

• Routines that access ET-1000 functionality with 10Mbps SmartCards.

All example routines in this section use the Error Handling Macros (ET_INT and
ET_LONG) defined below. Netcom Systems recommends that you use error handling
macros such as these to check each call to a SmartLib Programming Library routine.
Resulting error messages can then be used to track and troubleshoot problems.

Error Handling Macros
// Also assumes that an int iRsp is in scope

#define ET_INT(a) \

 { \

 iRsp = (a); \

 if (iRsp<0) printf(“Error in Command: %d\n”,iRsp); \

 }

// Also assumes that a long lRsp is in scope

#define ET_LONG(a) \

 { \

 lRsp = (a); \

 if (lRsp<0) printf(“Error in Command: %ld\n”,lRsp);\

 }

28 SmartLib User Guide

Routines for SmartBits and the ET-1000

Connecting and disconnecting (SmartBits/ET-1000)
int iRsp;

ET_INT(ETLink(ETCOM1));

if (iRsp<0)

 printf(“Could not connect to the ET/SMB-1000\n”);

ET_INT(ETUnLink());

if (iRsp<0)

 printf(“Could not disconnect from the ET/SMB-1000\n”);

Multiple connect and disconnect (SmartBits/ET-1000)
#define MAX_ETSYSTEM 4

int iRsp, iIndex = 0;

int i;

int iPorts[MAX_ETSYSTEM] = {ETCOM1,ETCOM2,ETCOM3,ETCOM4};

for (i = 0; i < MAX_ETSYSTEM; i++)

 { //Link to all in list

 ET_INT(ETLink(iPorts[i]));

 if (iRsp<0)

 printf(“Connect error to ET/SMB-1000 ETCOM%d\n”,

 iPorts[i] + 1);

 else

 {

 iPorts[iIndex] = iPorts[i]; //update actual ComPort

 iIndex++; // for this link

 }

 }

for (i = 0; i< iIndex; i++)

 {

 ETSetCurrentLink(iPorts[i]);

 ET_INT(ETUnLink()); //Unlink each connect

 if (iRsp<0) //On error,

 printf(“Disconnect error from ET/SMB-1000 ETCOM%d\n”,

 iPorts[i] + 1);

 }

iIndex = 0; //no links now

SmartLib User Guide 29

Routines for SmartBits only

Restore all SmartCards to a known state (SmartBits)

To ensure accuracy of test results, it is important to set SmartCards to a known state
before running a test. There are numerous types of SmartCards, each with different
features and configurations. The reset routine you create will depend on the tests you
run and the SmartCards you are working with. The routine below is an example of a
minimal reset for Ethernet and Token Ring cards.

#include “et1000.h”

void ResetSmartBits()

{

int iRsp;

int iSMBPorts[MAX_HUBS][MAX_SLOTS][MAX_PORTS];

int iHub;

int iSlot;

int iPort;

HTVFDStructure htVFD;

HTTriggerStructure htTrig;

int* piData;

piData = (int*)malloc(60*sizeof(int));

memset(piData,0,60*sizeof(int)); //Zero packet content

memset(&htVFD,0,sizeof(htVFD));

memset(&htTrig,0,sizeof(htTrig));

ET_INT(HGSetGroup(NULL));

ET_INT(HTHubSlotPorts(iSMBPorts));

//Set all SmartCards found into a group

for (iHub=0;iHub<MAX_HUBS;iHub++)

for (iSlot=0;iSlot<MAX_SLOTS;iSlot++)

for (iPort=0;iPort<MAX_PORTS;iPort++)

 if (iSMBPorts[iHub][iSlot][iPort]==CT_ACTIVE)

 ET_INT(HGAddtoGroup(iHub,iSlot,iPort));

ET_INT(HGSelectTransmit(HTTRANSMIT_OFF));

ET_INT(HTSelectReceive(-1,-1,-1));

ET_INT(HGDataLength(60)); //Packet length w/o CRC

ET_INT(HGFillPattern(60,piData)); //Packet content

ET_INT(HGTransmitMode(CONTINUOUS_PACKET_MODE));

ET_INT(HGGap(96L));

ET_INT(HGAlign(0)); //Reset any errors

ET_INT(HGDribble(0));

ET_INT(HGCRC(ET_OFF));

htVFD.Configuration = HVFD_NONE; //Reset VFDs

30 SmartLib User Guide

ET_INT(HGVFD(HVFD_1,&htVFD));

ET_INT(HGVFD(HVFD_2,&htVFD));

ET_INT(HGVFD(HVFD_3,&htVFD));

ET_INT(HGTrigger(HTTRIGGER_1,HTTRIGGER_OFF,&htTrig));

ET_INT(HGTrigger(HTTRIGGER_2,HTTRIGGER_OFF,&htTrig));

free(piData); //Reset triggers

ET_INT(HGSetGroup(NULL));

}

SmartLib User Guide 31

Send 100 packets to each of 10 MAC addresses from 1 port (SmartBits)

This routine uses two VFDs. The first, either VFD1 or VFD2, is static and is used as
the source MAC address. The second, VFD3, contains ten destination MAC addresses.
Ten packets are transmitted using a different destination address from VFD3 for each
packet. Once each of the addresses has been used, the routine recycles to the beginning
of VFD3 and begins the process again until all hundred packets have been transmitted.

#include “et1000.h”

void SmartXmt1000to10()

{

int iRsp;

HTVFDStructure htVFD;

int i,j;

int* pi;

int iDest[6] = {1,0,0,0,0,0}; //Source address

ET_INT(HTRun(HTSTOP,0,0,0)); //First, stop sending

memset(&htVFD,0,sizeof(htVFD)); //Setup VFD fields

pi = (int*)malloc(10*6*sizeof(int));

memset(pi,0,10*6*sizeof(int));

//Set source address via static HTVFD field

htVFD.Configuration = HVFD_STATIC;

htVFD.Range = 6;

htVFD.Offset = 48; //Bit position of source address

htVFD.Data = iDest;

htVFD.DataCount = 0;

ET_INT(HTVFD(HVFD_1,&htVFD,0,0,0));

/*

Set destination addresses to:

000000000001,000000000002,000000000003,000000000004,

000000000005,000000000006,000000000007,000000000008,

000000000009,00000000000a,

*/

for (i=0;i<10;i++) //Fill integer array

 { //with 10 MAC addresses

 for (j=0;j<5;j++) //Start all at 0, last

 pi[i*5+j] = 0; //digit increments as

 pi[i*5+5] = i+1; // shown in comments

 }

htVFD.Configuration = HVFD_ENABLED;

htVFD.Range = 6; //Size of MAC address

htVFD.Offset = 0; //Bit position of destination address

htVFD.Data = pi;

htVFD.DataCount = 10*6;

32 SmartLib User Guide

ET_INT(HTVFD(HVFD_3,&htVFD,0,0,0));

 //Enable the VFD3

ET_INT(HTTransmitMode(SINGLE_BURST_MODE,0,0,0));

 //set single burst

ET_INT(HTBurstCount(100L*10L,0,0,0));

 //set burst count

ET_INT(HTRun(HTRUN,0,0,0)); //Send 1000 packet (100 per port)

free(pi);

}

This procedure uses any previously set up error conditions, packet content (other than
MAC addresses), interpacket gap, and packet length.

SmartBits - Measuring Latency

This example transmits a packet from Hub 0 - Slot 0 to Hub 0 - Slot 1. Then it
measures the latency time in .1 microsecond units.

///

/////////////// Latency Test using Trig and DFill //////

///

void LatencyFrom1To2(void)

{

#define PACKET_SIZE 60

int iRsp;

int i, j, FillPattern[PACKET_SIZE];

HTLatencyStructure HTLat1;

HTLatencyStructure HTLat2;

unsigned long ulResult, ulFirstValue;

for(i=0; i<PACKET_SIZE; i++)

 FillPattern[i] = i;

ET_INT(HGSetGroup(NULL)); // clear group

// set up one transmitter

ET_INT(HGAddtoGroup(0, 0, 0));

ET_INT(HGDataLength(PACKET_SIZE));

ET_INT(HGFillPattern(PACKET_SIZE, FillPattern));

// set up for one packet burst

ET_INT(HGBurstCount(1));

ET_INT(HGTransmitMode(SINGLE_BURST_MODE));

// Set up latency data

HTLat1.Range = 12; // use this many of iData array

HTLat1.Offset = 0; // start at this may bits

SmartLib User Guide 33

// put in reverse order so MAC addresses will be correct!
for(i=0, j=11; i<12; i++, j--)

 HTLat1.iData[j] = FillPattern[i];

memset(&HTLat2, 0 , sizeof(HTLat2));

ET_INT(HTLatency(HT_LATENCY_RXTX,&HTLat1,0,0,0));

ET_INT(HTLatency(HT_LATENCY_RX, &HTLat1,0,1,0));

HGStop();

HTRun(HTSTOP, 0, 1, 0);

ET_INT(HTClearPort(0, 0, 0)); // clear counters

ET_INT(HTClearPort(0, 1, 0)); // clear counters

HGRun(HTRUN);

do {

 ET_INT(HTLatency(HT_LATENCY_REPORT,&HTLat1,0,1,0));

 delay(2000);

 ET_INT(HTLatency(HT_LATENCY_REPORT,&HTLat2,0,1,0));

 }while((HTLat1.ulLatency != HTLat2.ulLatency)

 && (HTLat1.ulLatency < 20000000L));

ulFirstValue = HTLat1.ulLatency;

do {

ET_INT(HTLatency(HT_LATENCY_REPORT,&HTLat1,0,0,0));

 delay(2000);

 ET_INT(HTLatency(HT_LATENCY_REPORT,&HTLat2,0,0,0));

 }while((HTLat1.ulLatency != HTLat2.ulLatency)

 && (HTLat1.ulLatency < 20000000L));

ulResult = ulFirstValue - HTLat1.ulLatency;

printf("Port 1 latency: %lu\n", ulResult);

ET_INT(HTLatency(HT_LATENCY_OFF, &HTLat1, 0, 0, 0));

ET_INT(HTLatency(HT_LATENCY_OFF, &HTLat1, 0, 1, 0));

HGStop();

}

34 SmartLib User Guide

Routines for the ET-1000 only.

Restoring to a known state (ET-1000)

At power-up, the previous state of the ET1000 is restored. A battery backed NVRAM
stores the last configuration used. To ensure that the ET1000 is set to a known state
prior to running a test, a routine similar to the one below should be used.

void ResetET1000()

{

int iRsp;

CollisionStructure cs;

TriggerStructure ts;

VFDStructure* pVS;

pVS = (VFDStructure*)malloc(sizeof(VFDStructure));

memset(&cs,0,sizeof(cs)); //Zero structures used

memset(&ts,0,sizeof(ts));

memset(pVS,0,sizeof(VFDStructure));

ET_INT(ETRun(ETSTOP));

ET_INT(ETTransmitCRC(ETCRC_OFF)); //Reset CRC error state

ET_INT(ETAlignCount(0));

ET_INT(ETDribbleCount(0));

cs.Mode = COLLISION_OFF; //Reset collision state

ET_INT(ETCollision(&cs));

ts.Range = 0x0008;

ET_INT(ETReceiveTrigger(&ts)); //Reset triggers

ET_INT(ETTransmitTrigger(&ts));

ET_INT(ETVFDParams(pVS)); //Reset VFD

ET_INT(ETVFDRun(ETVFD_DISABLE));

ET_INT(ETBurst(ETBURST_OFF,1L)); //Set burst mode off

free(pVS);

}

Transmit 1000 packets with minimum interpacket gap (ET-1000)

Any ETRun(ETRUN) command after this routine will still produce a burst of 1000
packets with 9.6 microsecond gap.

void ETBurst1000()

{

int iRsp;

ET_INT(ETSetSel(ETSELA)); //Transmit on Port A

ET_INT(ETGapScale(ETGAP_100NS)) //Use .1µ resolution

ET_INT(ETGap(90L)); //use 90 + 6 .1µsec

SmartLib User Guide 35

ET_INT(ETBurst(ETBURST_ON,1000L));

ET_INT(ETRun(ETSTEP));

ET_INT(ETRun(ETRUN));

}

Capturing packets (ET-1000)

Captures the burst of packets generated by ETBurst1000 above on Port B.
void ETCapture()

{

int iRsp;

CaptureStructure cs;

memset(&cs,0,sizeof(CaptureStructure));

cs.Offset = 0;

cs.Range = (unsigned)(1518*8);

cs.Filter = CAPTURE_ALL;

cs.Port = PORT_B;

cs.BufferMode = BUFFER_ONESHOT;

cs.TimeTag = TIME_TAG_OFF;

cs.Mode = CAPTURE_ENTIRE_PACKET;

ET_INT(ETCaptureParams(&cs));

ETBurst1000();

}

36 SmartLib User Guide

Routines that access ET-1000 functionality for 10Mbps
SmartCards.
Although the early 10Mbps SmartCards contain most of the functionality of their for-
runner, the ET-1000, there are a few additional features contained in the ET-1000.
These features are:

• Control of the number of preamble bits on transmitted packets.

• A 4KB buffer available for VFD packet data versus 2KB on a SmartCard.

• A 1MB capture buffer for received data.

• Output BNC pulse and clock data

• Jitter control via the Netcom Systems JET-210 jitter simulator

• Control over collisions

• Additional counter for SQE pulses

• Additional Preamble Bits and Gap Bits counters for the last received packet

The later SmartCards contain many of these additional features, but the full ET-1000
feature set can still be accessed by the 10Mbps SmartCards. You can use functions
within a routine to generate packets from the controller (either SmartBits or the ET-
1000), passing the packets through the SmartCards.

The following example routines are designed to take advantage of the multi-port
capability of the 10Mbs SmartCards, while utilizing the additional features residing
controller.

SmartBits Collision Testing using ET-1000

To force a packet collision using the ET-1000 with 10Mbps SmartCards, the ET1000
and SmartBits are set to a known state. Then commands are sent to select the ET1000
transmit and receive functions for a particular port. After the port is set, the Collision
function of the ET1000 is employed. This causes the first 100 packets that are received
on the selected Hub/Slot/Port of SmartBits to collide.

void SMBCollide()

{

int iRsp;

CollisionStructure cs;

memset(&cs,0,sizeof(cs));

ResetET1000(); //Reset to known states

ResetSmartBits();

ET_INT(HTSelectTransmit(HTTRANSMIT_COL,0,0,0));

 //Set transmit from

 // ET1000 PortB

ET_INT(HTSelectReceive(0,0,0)); //Set receive from

 // ET1000 PortB

ET_INT(ETLNM(ETLNM_OFF)); //Live Network Mode
off

SmartLib User Guide 37

//Set elements of collision structure

cs.Offset = 32+64; //32 bits into frame

cs.Duration = 96; //Collide for 96 bits

cs.Count = 100; //Against 100 packets

cs.Mode = CORP_B; //Must use ET1000 PortB

ET_INT(ETCollision(&cs)); //Make it so

}

38 SmartLib User Guide

Chapter 5:
Original Function Summary

The table below contains a brief summary of each "Original" functions covered in the
SmartLib User Guide 3.04. They are grouped by category. Although there are some
new functions in this module of the SmartLib programming library, they do not
incorporate the newer methods supported in the Message Functions.

For more information about each of these Original functions, consult Chapter 6
SmartLib Detailed Description.

Category Function Name Description

BNC int ETBNC
(int BNCid,
 int Config)

Defines the mode for all rear panel
BNC connectors.

BNC int ETGetBNC
(int BNCid)

Retrieves the configuration of the
BNC identified by BNCid

BNC int ETGetJET210Mode
(void)

Returns the current JET-210
mode.

BNC int ETSetJET210Mode
(int Mode)

Enables or disables the JET-210
mode.

Burst int ETBurst
(int Mode,
 long Count)

Specifies the Burst Mode and
Count.

Burst long ETGetBurstCount
(void)

Returns the current Burst Count.

Burst int ETGetBurstMode
(void)

Returns the current Burst Mode.

Capture int ETCaptureParams
(CaptureStructure* CStruct)

Specifies Capture Offset, Range,
Port, memory mode and run mode.
All parameters must be put into
CStruct before calling this
function.

Capture int ETCaptureRun() Starts or Aborts Capturing,
depending on the value of Start.
Parameters must be previously set
up in ETCaptureParams(...).

Capture int ETGetCapturePacket
(long PI,
 int* Buffer,
 int BufferSize)

Dumps the data from a captured
packet, referenced by PI, into a
memory location pointed to by
Buffer. Up to Max characters are
returned in Buffer. Buffer is NOT
null terminated. Returns number
of characters placed in Buffer.

SmartLib User Guide 39

Capture long ETGetCapturePacketCount
(void)

Returns the number of complete
packets captured.

Capture int ETGetCaptureParams
(CaptureStructure* CStruct)

Returns current capture
parameters in the structure
pointed to by CaptureStructure.

Collision int ETCollision
(CollisionStructure* CStruct)

Determines the collision mode,
offset, duration and count. All
parameters are put into CStruct
before calling this function.

Collision int ETGetCollision
(CollisionStructure* CStruct)

Returns the current mode of the
collision.

Comm int
ETEnableBackgroundProcessing
(int bFlag)

Allows enhanced responsiveness of
foreground applications.

Comm long ETGetBaud
(void)

Returns the current baud rate
setting.

Comm int ETGetCurrentLink
(void)

Returns the current ET ComPort.

Comm int ETGetErrorStatus
(void)

Returns the error status of the
serial link.

Comm int ETGetLinkFromIndex
(int iLink)

Returns the ET ComPort
associated with the specified link
number in iLink.

Comm int ETGetLinkStatus
(void)

Returns 0 if remote link not
established, otherwise, returns the
identity of the COM port that has
been successfully linked to the
attached ET-1000.

Comm int ETGetTotalLinks
(void)

Returns total number of ET-1000
links.

Comm int ETIsBackgroundProcessing
(void)

Returns 1 if the Programming
Library is currently executing a
function.

Comm int ETLink
(int ComPort)

Establishes a communication link
to an ET-1000 using the port
specified in ComPort. Baud Rate
automatically adjusts to the baud
rate of the ET-1000.

Comm int ETSetBaud
(int Baud)

Adjusts the Baud rate of the serial
link.

Comm int ETSetCurrentLink
(int ComPort)

Sets the attached ET-1000 link
specified in the ComPort as the
current link for ET commands in
the Programming Library.

40 SmartLib User Guide

Comm int ETSetCurrentSockLink

(char* IPAddr)

Specify which SmartLib Link
(SMB to PC) is the current Link.

If you have multiple Links, use
this command prior to sending
"ET" controller-specific commands
such as ETGetHardwareVersion.
You do not need to used this
command prior to sending
SmartCard-specific commands.

Comm int ETSetTimeout
(unsigned TimeOutValue)

Specifies the time-out value used
by the serial port in timing the
response from the attached ET-
1000.

Comm int ETUnLink
(void)

Unlinks the communication
session with the attached ET-
1000.

Comm unsigned ETRemote
(int Mode)

Sets the attached ET-1000 in the
remote or manual mode.

Control int ETGetLNM
(void)

Returns the current Live Network
Mode state of the attached ET-
1000.

Control int ETGetRun
(void)

Returns the current run state of
the attached ET-1000.

Control int ETGetSel
(void)

Returns the current Sel Setting of
the attached ET-1000; A, A/B or B.

Control int ETGetSwitch
(SwitchStructure* SStruct)

Loads SStruct with the front panel
switch settings.

Control int ETLNM
(int Mode)

Activates or Deactivates the Live
Network Mode in the attached ET-
1000.

Control int ETLoopback
(int ABPort,
 int Status)

Controls whether or not a port (A
or B) is looped back on itself.

Control int ETRun
(int RunValue)

Sets the run state of the ET-1000.

Control int ETSetGPSDelay
(ulong ulSeconds)

Determines what the HGRun start
time will be if GPS if available.
Calculations are based on the
estimated time to send a message
to the remote hub.

Control int ETSetSel
(int SelValue)

Sets the Sel switch to A, A/B or B.

Control int ETSetup
(int Mode,
 int SetupId)

Stores the current setup internally
in ET-1000 using the reference
number in SetupId. Also used to
recall setup in ET-1000 referenced
by SetupId.

SmartLib User Guide 41

Counters int ETGetCounters
(CountStructure* CStruct)

Gets all counter information and
loads them into the structure
pointed to by CountStructure.

Counters int ETMFCounter
(int ABPort,
 int Mode)

Identifies the item to be counted
by the Multi-Function counters.
Port identifies Port A or Port B.

Counters int ETReset
(void)

Resets all counters and logic on
the attached ET-1000.

Data int ETDataLength
(long Count)

Specifies the number of bytes per
packet to be used in transmitting
data from the ET-1000.

Data int ETDataPattern
(int Pattern)

Defines the background data
pattern to transmit.

Data long ETGetDataLength
(void)

Returns the current length of
transmitted data packet, in bytes.

Data int ETGetDataPattern
(void)

Returns the identity of the current
background transmit data pattern.

Data/VFD int ETGetVFDRun
(void)

Returns the current run state of
the VFD.

Data/VFD int ETVFDParams
(VFDStructure* VFDdata)

Sends VFD data to the ET-1000.
Structure VFDdata includes a
start pattern array, an increment
pattern array, the offset value and
the range value.

Data/VFD int ETVFDRun
(int Start)

Starts or halts VFD transmission.

Gap int ETGap
(long Count)

Specifies the gap value that is
scaled by ETGapScale(...).

Gap int ETGapScale
(int TimeOfGap)

Specifies that either the 100ns gap
scale or the 1µs gap scale is to be
used in determining the gap time

Gap long ETGetGap
(void)

Returns the gap value currently
being transmitted.

Gap int ETGetGapScale
(void)

Returns the current scale being
used for the Gap.

General int ETGetFirmwareVersion
(char* Buffer)

Returns the firmware version
identifier for the attached ET-
1000.

General int ETGetHardwareVersion
(char* Buffer)

Returns the Hardware version
identifier for the attached ET-
1000.

General int ETGetLibVersion
(char* pszDescription,
(char* pszVersion)

Returns the version information
for the current rev of the
programming library.

42 SmartLib User Guide

General int ETGetSerialNumber
(char* Buffer)

Returns the Serial Number
identifier for the attached ET-
1000.

General void* ETReturnAddress
(void* pVoid)

Returns the same pointer passed.
This is a special function for
VisualBasic.

Preamble int ETGetPreamble
(void)

Returns the current preamble
count being placed in the transmit
stream.

Preamble int ETPreamble
(int Count)

Specifies the preamble bit count.

TError int ETAlignCount
(int Count)

Specifies the number of alignment
error bits to insert into the
transmit stream.

TError int ETDribbleCount
(int Count)

Specifies the number of dribble
bits to insert into the transmit
stream.

TError int ETGetAlignCount
(void)

Returns the current alignment
error bits being inserted into the
transmit data stream.

TError int ETGetCRCError
(void)

Retrieves the current state of CRC
error injection.

TError int ETGetDribbleCount
(void)

Returns the current dribble bits
being inserted into the transmit
data stream.

TError int ETTransmitCRC
(int Active)

Enables or disables transmission
of CRC errors.

Trigger int ETGetReceiveTrigger
(TriggerStructure* RStruct)

Fills RStruct with the receive
trigger parameters currently being
implemented in the attached ET-
1000.

Trigger int ETGetTransmitTrigger
(TriggerStructure* TStruct)

Fills TStruct with the transmit
trigger parameters currently being
implemented in the attached ET-
1000.

Trigger int ETReceiveTrigger
(TriggerStructure* RStruct)

Sends the receive trigger
parameters to the ET-1000. All
trigger information is contained in
RStruct.

Trigger int ETTransmitTrigger
(TriggerStructure* TStruct)

Sends the transmit trigger
parameters to the ET-1000. All
trigger information is contained in
TStruct.

SmartBits int HGAlign(int iBits) Creates alignment bit errors on
transmission.

SmartLib User Guide 43

SmartBits int HGBurstCount
(long lVal)

Sets the amount of packets to be
sent in each burst when in a burst
mode.

SmartBits int HGBurstGap
(long lVal)

Sets the time gap in between each
burst when in a multiburst
transmit mode.

SmartBits int HGBurstGapAndScale
(long lVal,
 int iScale)

Sets the time gap in between each
burst when in a multiburst
transmit mode, according to the
given scale.

SmartBits int HGClearGroup
(void)

Ungroups a number of ports that
were previously grouped together
with the HGSetGroup or the
HGAddtoGroup command.

SmartBits int HGClearPort
(void)

Clears the counters.

SmartBits int
HGCollisionBackoffAggressivenes
s
(unsigned int uiAggressiveness)

Sets a flag to determine the upper
bound for the delay during
multiple collisions. This value is a
power of 2 of the uiAggressiveness
factor.

SmartBits int HGCRC
(int iMode)

Creates CRC errors on
transmission.

SmartBits int HGDataLength
(int iLength)

Determines the packet data length
on each transmitted packet. Also
can be used to produce random
data length packets.

SmartBits int HGDribble
(int iBits)

Creates dribbling bit errors on
transmission.

SmartBits int HGFillPattern
(int iSize,
 int* piData)

Defines the fill pattern to be
transmitted in the data field of
each packet.

SmartBits int HGDuplexMode
(int iMode)

Sets the Duplex Mode of the
current group

SmartBits int HGGap
(long lPeriod)

Determines the gap period
between transmitted packets on
each port of a group of SmartBits
ports, and automatically adjusts
the gap period to match the hub
card being addressed. Also can be
used to produce random gap
periods.

SmartBits int HGGapAndScale
(long lPeriod, int iScale)

Determines the gap period
between transmitted packets on
each port of a group of SmartBits
ports using the user specified
scale. Also can be used to produce
random gap periods.

44 SmartLib User Guide

SmartBits int HGGetCounters
(HTCountStructure htCount)

Retrieves counter information
from the cards in the current
group.

SmartBits int HGMultiBurst
(long lVal)

Sets the amount of bursts to send
when in a multiburst transmit
mode.

SmartBits int HGRun
(int Mode)

Sets the run mode for each port of
a group of SmartCards.

SmartBits int HGStart
(void)

Used to start transmission on a
group of SmartBits ports.

SmartBits int HGStep
(void)

Used to send a single packet on
each port of a group of SmartBits
ports.

SmartBits int HGStop
(void)

Used to stop transmission on each
port of a group of SmartBits ports.

SmartBits int HGTransmitMode
(int iMode)

Sets up to send packets in the
transmit mode selected.

SmartBits int HGTrigger
(int TrigId,
 int Config,
 TriggerStructure* ptsInfo)

Sets up the trigger pattern and
mode on each port of a group of
SmartBits ports.

SmartBits int HGVFD
(int VFDId,
 HTVFDStructure* phtvfdInfo)

Sets up the VFD data and
operating state on each port of a
group of SmartBits ports.

SmartBits int HGSelectTransmit
(int Mode)

Selects the mode for the ET-1000’s
Port B to transmit using the
current group. This command can
be used on both SmartCards and
Passive Hub Cards.

SmartBits int HTBurstCount
(long lVal,
 int iHub,
 int iSlot,
 int iPort)

Sets the amount of packets to be
sent in each burst when in a burst
mode.

SmartBits int HTBurstGap
(long lVal,
 int iHub,
 int iSlot,
 int iPort)

Sets the time gap in between each
burst when in a multiburst
transmit mode.

SmartBits int HTBurstGapAndScale
(long lVal,
 int iScale,
 int iHub,
 int iSlot,
 int iPort)

Sets the time gap in between each
burst when in a multiburst
transmit mode, according to the
given scale.

SmartLib User Guide 45

SmartBits int HTTransmitMode
(int iMode,
 int iHub,
 int iSlot,
 int iPort)

Sets up to send packets in the
transmit mode selected.

SmartBits int HTDuplexMode
(int iMode,
 int iHub,
 int iSlot,
 int iPort)

Sets the Duplex Mode of the
selected port

SmartBits
Group

int HGAddtoGroup
(int iHub,
 int iSlot,
 int iPort)

Along with HGSetGroup, this
command can be used to add
individual hub/slot/port cards to a
group.

SmartBits
Group

int HGGetGroupCount
(void)

Returns the number of ports
currently in the configured group.

SmartBits
Group

int HGIsPortInGroup
(int iPortId)

Used to check if an individual port
is currently in the configured
group.

SmartBits
Group

int HGIsHubSlotPortInGroup
(int iHub,
 int iSlot,
 int iPort)

Used to check if an individual
hub/slot/port is in the currently
configured group.

SmartBits
Group

int HGRemoveFromGroup
(int iHub,
 int iSlot,
 int iPort)

Used to remove an individual
hub/slot/port cards from a
currently configured group.

SmartBits
Group

int HGRemovePortIdFromGroup
(int iPortId)

Used to remove an individual
iPortId from a currently
configured group.

SmartBits
Group

int HGSetGroup
(char* PortIdGroup)

Used to set group ports on a
SmartBits for purposes of
concurrently configuring, starting,
stopping, and stepping the
transmission of packets from
several ports.

SmartBits
Group

int HGSetGroupType
(int Index,
 int *PortIdList)

Used to set group ports on a
SmartBits by card type for
purposes of concurrently
configuring, starting, stopping,
and stepping the transmission of
packets from several ports.

SmartCard int HTAlign
(int iBits,
 int iHub,
 int iSlot,
 int iPort)

Creates alignment errors on
transmission.

46 SmartLib User Guide

SmartCard int HTClearPort
(int iHub,
 int iSlot,
 int iPort)

Clears the counters.

SmartCard int
HTCollisionBackoffAggressivenes
s
(unsigned int uiAggressiveness,
int iHub,
int iSlot,
int iPort)

Sets a flag to determine the upper
bound for the delay during
multiple collisions. This value is a
power of 2 of the uiAggressiveness
factor.

SmartCard int HTCRC
(int iMode,
 int iHub,
 int iSlot,
 int iPort)

Creates CRC errors on
transmission.

SmartCard int HTDataLength
(int iLength,
 int iHub,
 int iSlot,
 int iPort)

Determines the packet data length
on each transmitted packet. This
command can also be used to
produce random data length
packets.

SmartCard int HTDribble
(int iBits,
 int iHub,
 int iSlot,
 int iPort)

Creates dribbling bit errors on
transmission.

SmartCard int HTFillPattern
(int iSize,
 int* piData,
 int iHub,
 int iSlot,
 int iPort)

Defines the fill pattern to be
transmitted in the data field of
each packet.

SmartCard long HTFrame
(long iFrameID,
int iHub,
int iSlot,
int iPort,
unsigned short uiStreamIndex)

Puts specified frame elements into
the SmartCard frame buffer.

SmartCard int HTGap
(long lPeriod,
 int iHub,
 int iSlot,
 int iPort)

Determines the gap period
between transmitted packets, and
automatically adjusts the gap
period to match the hub card being
addressed. Also can be used to
produce random gap periods.

SmartCard int HTGapAndScale
(long lPeriod,
 int iScale,
 int iHub,
 int iSlot,
 int iPort)

Sets the gap period between
transmitted packets based on the
desired scale. Also can be used to
produce random gap periods.

SmartLib User Guide 47

SmartCard int HTGetCounters
(HTCountStructure* htCount,
 int iHub,
 int iSlot,
 int iPort)

Retrieves counter information
from a SmartCard.

SmartCard int HTGetHWVersion
(unsigned long* pulVersion,
 int iHub,
 int iSlot,
 int iPort)

Retrieves Card specific version
information from a SmartCard.

SmartCard int HTGroupStart
(int iHub)

Used to simultaneously start
transmission in a group of ports of
a single SmartBits.

SmartCard int HTGroupStep
(int iHub)

Used to simultaneously send
individual packets in a group of
ports of a single SmartBits.

SmartCard int HTGroupStop
(int iHub)

Used to simultaneously stop
transmission in a group of ports of
a single SmartBits.

SmartCard int HTHubId
(char
PortTypes[MAX_HUBS][MAX_SL
OTS][MAX_PORTS])

Fills an array with the currently
connected port types with internal
character code.

SmartCard int HTHubSlotPorts
(int
iPortTypes[MAX_HUBS][MAX_S
LOTS][MAX_PORTS])

Fills an array with the currently
connected port types.

SmartCard int HTLatency
(HTLatencyStructure* pHTLat,
 int iHub,
 int iSlot,
 int iPort)

Used to run latency tests on ports
in a SmartBits. The
HTLatencyStructure data
structure contains all information
necessary to run the test, results
are returned in the ulResults
value when checking for latency
reports.

SmartCard int HTLayer3SetAddress
(Layer3Address*
pLayer3Address,
int iHub,
int iSlot,
int iPort)

Configures the card to send/receive
background traffic such as PING,
SNMP, etc.

This command is not used to set
up regular L3 test streams.

SmartCard int HTMultiBurst
(long lVal,
 int iHub,
 int iSlot,
 int iPort)

Sets the amount of bursts to send
when in a multiburst transmit
mode.

SmartCard int HTPortProperty
(unsigned long* pulProp,
 int iHub,
 int iSlot,
 int iPort)

Identifies the properties of the port
at the specified Hub/Slot/Port.

48 SmartLib User Guide

SmartCard int HTPortType
(int iHub,
 int iSlot,
 int iPort)

Identifies the card type at the
specified Hub/Slot/Port.

SmartCard int HTRun

 (int iMode,
 int iHub,
 int iSlot,
 int iPort)

Sets up the run mode.

SmartCard int HTSelectReceive
(int iHub,
 int iSlot,
 int iPort)

Selects a single receive port on the
SmartBits which is to be routed to
the ET-1000's Port B for analysis.
Only one port can be selected at a
time. This command can be used
on both SmartCards and Passive
Hub cards.

SmartCard int HTSelectTransmit
(int iMode,
 int iHub,
 int iSlot,
 int iPort)

Selects a port on the SmartBits(s)
which is to transmit the ET-1000's
Port B signals. This command can
be used on both SmartCards and
Passive Hub Cards.

SmartCard int HTSendCommand
(int iState)

Causes SmartCard commands to
be deferred or executed, according
to the State input.

SmartCard int HTSeparateHubCommands

(int iFlag)

Determines how commands are
synchronized across multiple hubs,
including whether GPS is used or
not.

Used in conjunction with HGRun,
HGStart, HGStop, HGStep,
HTSendCommand.

SmartCard int HTTrigger
(int TrigId,
 int Config,
 TriggerStructure* ptsInfo,
 int iHub,
 int iSlot,
 int iPort)

Sets up the trigger pattern and
mode.

SmartCard long NSCreateFrame
(FrameSpec_Type* framespec)

Automates and simplifies creation
of frames with the use of the
structure: Framespec.

SmartCard long NSCreateFrameAndPayload
(FrameSpec_Type* framespec,
int iPayloadSize,
unsigned char* pucPayload)

Uses a single function for
simplified creation of frame with a
customized payload (fill pattern).

SmartLib User Guide 49

SmartCard long NSDeleteFrame
(long lFrameID)

Deletes single frame prototype
specified by the frame ID.

Use in conjunction with
NSCreateFrame or
NSCreateFrameAndPayload.

SmartCard long NSModifyFrame
(long lFrameID,
int iIdentifier,
unsigned char* pucBytes,
int iNumBytes)

Modifies frame components
without the need for byte offset.
Modifications based on a created
frame prototype. A large list of
values is defined for iIdentifier
parameter.

SmartCard long NSSetPayLoad
(long lFrameID,
int iSize,
unsigned char* pucPayload)

Used in conjunction with
NSCreateFrame; this function
configures the customized payload
(background pattern).

VG
SmartCard

int HTSetVGProperty
(VGCardPropertyStructure *
 pVGPStructure,
 int iHub,
 int iSlot,
 int iPort)

Configures End/Master node,
priority mode, and
Ethernet/TokenRing operation
parameters for the VG SmartCard.
VGCardPropertyStructure
contains setup information,

VG
SmartCard

int HGSetVGProperty
(VGCardPropertyStructure *
pVGPStructure)

Sets up VG property information
of a group of VG SmartCards.

SmartCard
100 Mbps

int HGCollision
(CollisionStructure* pCS)

Determines the collision mode,
and count. All parameters are put
into pCS before calling this
function.

SmartCard

100 Mbps

int HGSymbol
(int iMode)

Generates invalid waveform data
pattern.

SmartCard
100 Mbps

int HTCollision
(CollisionStructure* pCS,
 int iHub,
 int iSlot,
 int iPort)

Determines the collision mode,
and count. All parameters are put
into pCS before calling this
function.

SmartCard
100 Mb

int HTFindMIIAddress
(unsigned int* puiAddress,
 unsigned short* puiControlBits,
 int iHub,
 int iSlot,
 int iPort)

Finds the first MII Address on a
FastCard transceiver, and fills in
the Address and the control
register values found.

SmartCard
100 Mb

int HTReadMII
(unsigned int uiAddress,
 unsigned int uiRegister,
 unsigned short* puiBits,
 int iHub,
 int iSlot,
 int iPort)

Reads a specific MII
Address/Register

50 SmartLib User Guide

SmartCard

100 Mbps

int HTSymbol
(int iMode,
 int iHub,
 int iSlot,
 int iPort)

Generates invalid waveform data
pattern.

TCL int ETMake2DArray
(char* pszArrayName,
int iSizeFirstDim,
int iSizeSecondDim)

This function creates a virtual 2
dimensional array with the TCL
programming language.

TCL int ETMake3DArray
(char* pszArrayName,
int iSizeFirstDim,
int iSizeSecondDim,
int iSizeThirdDim)

This function creates a virtual 3
dimensional array with the TCL
programming language.

TokenRing
SmartCard

int HGGetEnhancedCounters
(EnhancedCounterStructure*
pEnCounter)

Retrieves standard counters
information and card related
counter information from the cards
in the current group.

TokenRing
SmartCard

int
HGSetTokenRingAdvancedContr
ol
(TokenRingAdvancedStructure*
pTRAdvancedStructure)

Configures frames to explore ring
operation for a group of TokenRing
SmartCards.

TokenRing
SmartCard

int HGSetTokenRingErrors
(int ErrorTrafficRatio,
 int iTRErrors)

Configures frames to include
errors for a group of TokenRing
SmartCards.

TokenRing
SmartCard

int HGSetTokenRingLLC
(TokenRingLLCStructure*
pTRLStructure)

Transmit LLC frames for a group
of TokenRing SmartCards.
TokenRingLLCStructure data
structure contains information to
setup LLC frame.

TokenRing
SmartCard

int HGSetTokenRingMAC
(TokenRingMACStructure*
pTRMStructure)

Sets up MAC header for a group of
TokenRing SmartCards.
TokenRingMACStructure data
structure contains information to
configure MAC frame.

TokenRing
SmartCard

int HGSetTokenRingProperty
(TokenRingPropertyStructure*
pTRPStructure)

Configures speed, early token
release, duplex selection and
port/station ring operation mode
for a group of TokenRing
SmartCards. TokenRingProperty
data structure contains setup
information.

TokenRing
SmartCard

int
HGSetTokenRingSrcRouteAddr
(int UseSRA,
 int* piData)

Sets up source route address for a
group of TokenRing SmartCards.
piData parameter contains source
route address.

SmartLib User Guide 51

TokenRing
SmartCard

int HTGetEnhancedCounters
(EnhancedCounterStructure*
 pEnCounter,
 int iHub,
 int iSlot,
 int iPort)

Retrieves standard counter and
card related counter information
from the cards.

TokenRing
SmartCard

int HTGetEnhancedStatus
(int* piData,
 int iHub,
 int iSlot,
 int iPort)

Retrieves status information from
the cards.

TokenRing
SmartCard

int
HTSetTokenRingAdvancedContro
l
(TokenRingAdvancedStructure*
pTRAdvancedStructure,
 int iHub,
 int iSlot,
 int iPort)

Configures frames to explore ring
operation for the TokenRing
SmartCard.

TokenRing
SmartCard

int HTSetTokenRingErrors
(int ErrorTrafficRatio,
 int iTRErrors,
 int iHub,
 int iSlot,
 int iPort)

Configures frames to include
errors for the TokenRing
SmartCard.

TokenRing
SmartCard

int HTSetTokenRingLLC
(TokenRingLLCStructure*
 pTRLStructure,
 int iHub,
 int iSlot,
 int iPort)

Transmit LLC frames for the
TokenRing SmartCard.
TokenRingLLCStructure data
structure contains information to
setup LLC frame.

TokenRing
SmartCard

int HTSetTokenRingMAC
(TokenRingMACStructure*
 pTRMStructure,
 int iHub,
 int iSlot,
 int iPort)

Sets up MAC header for the
TokenRing SmartCard.
TokenRingMACStructure data
structure contains information to
configure MAC frame.

TokenRing
SmartCard

int HTSetTokenRingProperty
(TokenRingPropertyStructure*
 pTRPStructure,
 int iHub,
 int iSlot,
 int iPort)

Configures speed, early token
release, duplex selection and
port/station ring operation mode
for the TokenRing SmartCard.
TokenRingProperty data structure
contains setup information.

TokenRing
SmartCard

int
HTSetTokenRingSrcRouteAddr
(int UseSRA,
 int* piData,
 int iHub,
 int iSlot,
 int iPort)

Sets up source route address for
the TokenRing SmartCard. piData
parameter contains source route
address.

52 SmartLib User Guide

Chapter 6:
Data Structures

This chapter contains detailed information about a group of structures in the SmartLib
programming library. These structures are used in conjunction with specific commands
documented in. They can be used with all Ethernet SmartCards as well as with Token
Ring SmartCards.

The structures that are not contained in this chapter are structures used by the
SetStructure and the GetStructure commands. This second group of structures is
documented in Message Functions manual of this Software Development Kit.

Usage
Some data structures require additional memory allocation.

In most cases, define the structure at the beginning of your function. For example:

int SetETCollision(void)
 {
 CollisionStructure Collide; //Collision structure
 Collide.Offset = 0x20;
 Collide.Duration = 0x36;
 Collide.Count = 14486;
 Collide.Mode = CORP_A;
 ETCollision(&Collide); //Set it so
 }

Some library functions will automatically put information into the structures you
declare. In these cases, declare the functions and then call the appropriate library
routine. For example:

int GetETCollision(void)
 {
 CollisionStructure Collide; //defines a structure
 ETGetCollision(&Collide); //which the library fills
 printf("Collision Offset is: %d\n",Collide.Offset);
 printf("Collision Duration is: %d\n",Collide.Duration);
 }

Some library functions require you to put information into the declared data structures
before calling them. If this is not done, the library might produce unpredictable
results. For example:

int BadSetETCollision(void)
 {
 CollisionStructure Collide; //defines a structure, but

//contents unspecified
 ETCollision(&Collide); //call with unintended
 //results
 }

SmartLib User Guide 53

CaptureStructure
unsigned Offset

Integer value specifying the offset (in bit times) from the first
bit after the preamble. Ranges from 0 to 65535 (0x0000 to
0xFFFF). This value is returned as 0 in ETGetCaptureParams
if Mode is CAPTURE_ENTIRE_PACKET.

unsigned Range
Integer value specifying the number of bits to capture within
each packet, once the capture criteria have been met. Ranges
from 0 to 65535 (0x0000 to 0xFFFF). If Range is larger than
the packet size, then capturing on that packet is halted at the
end of the packet. This value is returned as 0 in
ETGetCaptureParams if Mode is
CAPTURE_ENTIRE_PACKET.

int Filter
Specifies the type of data to capture and filter. The Filter type
can be any one or a combination of the following. To get a
combination, create an integer by "OR-ing" together criteria
from the list. Remember that the range and offset values still
apply. Thus when "All Data" is selected, only that data that
satisfies the range and offset criteria is actually captured and
stored.

CAPTURE_NONE None (off)

CAPTURE_ANY Any data on the line

CAPTURE_NOT_GOOD Non standard Ethernet packets

CAPTURE_GOOD Packets without error

CAPTURE_ERRS_RXTRIG Packets with any following errors (same
as previous version’s “All Data”)

CAPTURE_RXTRIG Specified by Receive Trigger

CAPTURE_CRC CRC erred packets

CAPTURE_ALIGN Alignment erred packets

CAPTURE_OVERSIZE Oversize packets

CAPTURE_UNDERSIZE Undersize packets

CAPTURE_COLLISION Collision packets

int Port
Identifies the port used in capturing data:

PORT_A Port A

PORT_B Port B

int BufferMode
Specifies how the capture buffer is to be used:

BUFFER_CONTINUOUS Continuous capture; when the capture buffer
fills up, it continues capturing data,
which overwrites the previously captured
data.

BUFFER_ONESHOT One-shot; when the capture buffer fills
up, capturing is stopped.

54 SmartLib User Guide

int TimeTag
This Value must always be off to get valid capture data. [Use of
TIME_TAG_ON will result in unpredictable results]:

TIME_TAG_OFF Time tagging is disabled

int Mode
Determines the capture mode:

CAPTURE_ENTIRE_PACKET Capture all data

CAPTURE_RANGE Capture only the portions of packets
specified by Range and Offset

CAPTURE_OFF Off (no capture)

CollisionStructure
unsigned Offset

Specifies the offset, in bits, starting from the first bit of the
preamble where the collision is to take place. This value is only
used when the Collision Mode is COLLISION_ADJ, CORP_A
or CORP_B. It is ignored when the Collision Mode is
COLLISION_LONG. Ranges from 0 to 65535 (0x0000 to
0xFFFF). Note that the Offset value entered here also
pertains to the collisions produced on the SmartBits when it is
attached to the ET-1000.

unsigned Duration
Specifies the duration in bits that the collision is to be asserted.
This value is only used when the Collision Mode is
COLLISION_ADJ, CORP_A or CORP_B. It is ignored when
the Collision Mode is COLLISION_LONG. Ranges from 1 to
65535 (0x0000 to 0xFFFF). A duration of 0 is invalid. Note
that the Duration value entered here also pertains to the
collisions produced on the SmartBits when it is attached to the
ET-1000.

int Count
Specifies the number of consecutive collisions to produce (one in
each packet) before the collision goes inactive. This number is
limited to the range 0 to 1024. A count of 0 essentially disables
the collision counting mechanism, thus producing continuous
collisions of the specified type.

int Mode
Specifies the collision mode:

COLLISION_OFF Collision Off

COLLISION_LONG Long Collision

COLLISION_ADJ Adjustable Collision (on transmission)

CORP_A Collision on receive packet, Port A

CORP_B Collision on receive packet, Port B

SmartLib User Guide 55

CountStructure
unsigned long ERAEvent Event count for CRC errors on Port A
unsigned long ERARate Rate count for CRC errors on Port A
unsigned long ERBEvent Event count for CRC errors on Port B
unsigned long ERBRate Rate count for CRC errors on Port B
unsigned long TXAEvent Event count for transmitted bits on Port A
unsigned long TXARate Rate count for transmitted bits on Port A
unsigned long TXBEvent Event count for transmitted bits on Port B
unsigned long TXBRate Rate count for transmitted bits on Port B
unsigned long RXAEvent Event count for received bits on Port A
unsigned long RXARate Rate count for received bits on Port A
unsigned long RXBEvent Event count for received bits on Port B
unsigned long RXBRate Rate count for received bits on Port B
unsigned long CXAEvent Event count for collisions on Port A
unsigned long CXARate Rate count for collisions on Port A
unsigned long CXBEvent Event count for collision on Port B
unsigned long CXBRate Rate count for collisions on Port B
unsigned long ALAEvent Event count for alignment errors Port A
unsigned long ALARate Rate count for alignment errors Port A
unsigned long ALBEvent Event count for alignment errors Port B
unsigned long ALBRate Rate count for alignment errors Port B
unsigned long UPAEvent Event count for undersize pkts Port A
unsigned long UPARate Rate count for undersize pkts Port A
unsigned long UPBEvent Event count for undersize pkts Port B
unsigned long UPBRate Rate count for undersize pkts Port B
unsigned long OPAEvent Event count for oversize pkts Port A
unsigned long OPARate Rate count for oversize pkts Port A
unsigned long OPBEvent Event count for oversize pkts Port B
unsigned long OPBRate Rate count for oversize pkts Port B
unsigned long MFAEvent Event Multi-Function Count, Port A
unsigned long MFARate Rate Multi-Function Count, Port A
unsigned long MFBEvent Event Multi-Function Count, Port B
unsigned long MFBRate Rate Multi-Function Count, Port B

56 SmartLib User Guide

EnhancedCounterStructure
int iMode

Counter mode control

0 Set to Count

1 Set to Rate

int iPortType
Card type is returned in this member variable

CT_ACTIVE 10Mb Ethernet

CT_FASTX 10/100Mb Ethernet

CT_TOKENRING 4/16Mb TokenRing

CT_VG VG/AnyLan

unsigned long ulMask1
Bit mask for the Standard counters. The Standard counter type
can be any one, (or a combination calculated by performing a
bitwise "or") of the applicable constants below:

SMB_STD_TXFRAMES Transmitted Packets

SMB_STD_TXBYTES Transmitted Bytes

SMB_STD_TXTRIGGER Transmitted Trigger Packets

SMB_STD_RXFRAMES Received Packets

SMB_STD_RXBYTES Received Bytes

SMB_STD_RXTRIGGER Received Trigger Packets

SMB_STD_ERR_CRC Checksum Packets

SMB_STD_ERR_ALIGN Alignment Packets

SMB_STD_ERR_UNDERSIZE Undersized Packets

SMB_STD_ERR_OVERSIZE Oversized Packets

SMB_STD_ERR_COLLISION Collision Packets

(Get a combination of the above by "OR-
ing" together criteria from the above
list.)

For Example:

EnhancedCounterStructure ECSTx;

int iErr = 0;

memset(&ECSTx, 0, sizeof(ECSTx));

ECSTx.ulMask2 = L3_ARP_REQ + L3_ARP_REPLIES;

iErr = HTGetEnhancedCounters(&ECSTx, TxHub, TxSlot, TxPort);

printf (msg, "ECSTx Arp Requests: %u\n", CSTx.ulData[39]);

printf (msg, "ECSTx Arp Replies: %u\n", CSTx.ulData[41]);

SmartLib User Guide 57

unsigned long ulMask2
Bit mask for the Additional counters on some of the
SmartCards. The Additional counter type can be any one (or a
combination calculated by performing a bitwise "or") of the
applicable constants below:

TR_MASK Allowable possible bits.

The following are recognized in ulMask2 for the Token Ring
SmartCard:

TR_LATENCY Latency time in 100ns counts

TR_TOKEN_RT Rotation time in microseconds.
Counters indicated by TR_MAC are derived
from Ring Error Monitor MAC frames,
others are from direct counts. Consult
the TR architectural specification for
the definition of these counts.

TR_RXMAC Received MAC frames. Mac frames are used
to manage a ring.

TR_RXABORTFRAMES Abort Frames. These frames end with an
"Abort Delimiter" rather than the normal
"End Delimiter." These are frames that
the transmitter stopped sending before
they were complete.

TR_LINEERRORS Line errors counter. Line errors occur
when the line ceases to have signal for
a designated length of time. Typically
this is caused by an unplugged wire.

TR_BURSTERRORS Burst errors counter. Burst Errors are
when the line is disconnected for a
short time, typically less than 5 bit
times.

TR_BADTOKEN Corrupted tokens. Bad Tokens are when
there is garbage instead of tokens
(which look like small frames).

TR_PURGEEVENTS Purge MAC frames detected. The presence
of "Purge" MAC frames occurs just before
the ring starts working normally.

TR_BEACONEVENTS Beacon MAC frames detected. Beacons are
MAC frames used to determine if the ring
is complete. Stations send them if they
can't establish a ring.

TR_CLAIMEVENTS Claim MAC frames detected. Claims are
MAC frames used to let stations bid to
throw and monitor the token.

TR_INSERTIONS Request initializations. Request
Initialization frames are MAC frames
sent as a station joins the ring. They
can be used to indicate how often
stations join the ring.

The MAC type error counts below are
taken from "Ring Error Monitor"
reporting frames. Stations keep track of
errors Internally. Periodically, (or
when the counters overflow), they report

58 SmartLib User Guide

the errors to the "Ring Error Monitor."
For your convenience, SmartLib tracks
these errors. This information, however,
will not be as complete at that from a
program such as "LAN Manager."

For definitions of the errors below, see
the "Architectural Reference" or
standards documents.

TR_MAC_LINEERRORS Isolating line errors.

TR_MAC_INTERNALERRORS Internal errors.

TR_MAC_BURSTERRORS Burst errors

TR_MAC_ACERRORS AMP detects circulating frame

TR_MAC_ABORTTX Abort delimiter detected

TR_MAC_LOSTFRAME Incompletely stripped frame

TR_MAC_RXCONGESTED Receiver congestion

TR_MAC_FRAMECOPIED Possible duplicate address

TR_MAC_FREQUENCYERROR Excessive jitter detected

TR_MAC_TOKENERROR Circulating frames

SMB_VG_MASK Allowable possible bits

The following are recognized in ulMask2 for the VG
SmartCard:

SMB_VG_INV_PKTMARK Invalid packet marker errors

SMB_VG_ERR_PKT Errored packets received

SMB_VG_TRANSTRAIN_PKT Transition into training

SMB_VG_PRIO_PROM_PKT Priority promoted packets received or
transmitted

L3_MASK Allowable possible bits

SmartLib User Guide 59

The following are used in ulMask2 for Layer 3 SmartCards.

L3_FRAMEERROR Framing errors. Framing Errors, caused
by dribbling, occur when the total
number of bits received by the card is
not a multiple of 8. On a 10 Mbps card,
1 to 7 additional bits are possible. On
a 100 Mbps card, the error is off by 4
bits.

L3_TX_RETRIES Number of transmit collisions/retries

L3_TX_EXCESSIVE Number of times a frame needed more than
16 retries. (This is only available for
L3-6705 and L3-6710.)

L3_TX_LATE Number of collisions that occurred more
than 64 bytes into a frame. (This is
only available for L3-6705 and L3-6710.)

L3_RX_TAGS Number of number of received frames that
have "signature" fields

L3_TX_STACK Number of frames transmitted from the
SmartCard's local stack

L3_RX_STACK Number of Number of frames received by
the SmartCard's local stack

L3_ARP_REQ Number of ARP request frames

 originating on the SmartCard

L3_ARP_SEND Number of ARP reply frames originating
on the SmartCard

L3_ARP_REPLIES Number of ARP request frames received by
the SmartCard

L3_PINGREP_SENT Number of ICMP Ping reply frames sent by
the SmartCard

L3_PINGREQ_SENT Number of ICMP Ping request frames sent
by the SmartCard

L3_PINGREQ_RECV Number of ICMP Ping request frames
received by the SmartCard

unsigned long ulData[64]
Array of counters returned. ulMask1 and ulMask2 are bit
masks that identify the 64 possible counters, with bit 0 of
ulMask1 corresponding to ulData[0], bit 1 of ulMask1
corresponding to ulData[1], bit 0 of ulMask2 corresponding to
ulData[32] and so on.

60 SmartLib User Guide

FrameSpec
This structure is used in conjunction with NSCreateFrame and
NSCreateFrameAndPayload.

int Encap
The type of frame encapsulation used. In addition to iEncap,
this information determines the value of the iSize variable.

ENCAP_ETHERNET

ENCAP_ATM_PVC

ENCAP_ATM_SVC_SNAP

ENCAP_ATM_SVC_LANE802_3

ENCAP_ATM_SVC_LANE802_5

ENCAP_ATM_SVC_CLASSICAL_IP

ENCAP_TOKEN_RING

ENCAP_BRIDGE_FR Frame Relay

ENCAP_ROUTE_FR Frame Relay

int iSize
Specifies the size of the frame prototype being created. The
maximum size is 2K bytes. Set the frame size to be large
enough to contain the encapsulation information and protocol
header. Any extra space left over will be filled by the iPattern
value.

CRC and Preamble are not included in this frame size.

An example size for a frame is:

(Encapsulation w/ 2 bytes for protocol added once protocol is
selected) + (protocol) +(optional payload bytes)

int iProtocol
Specifies what type of protocol header is used. In addition to
iEncap, this information determines the value of the iSize
variable.

FRAME_PROTOCOL_NULL No protocol header used. The
background-fill pattern pads the
frame after the encapsulation bytes.

FRAME_PROTOCOL_IP

FRAME_PROTOCOL_UDP

FRAME_PROTOCOL_TCP

FRAME_PROTOCOL_ARP

FRAME_PROTOCOL_RARP

FRAME_PROTOCOL_IPX

FRAME_PROTOCOL_ICMP

int iPattern

SmartLib User Guide 61

The background fill pattern that is added to the frame once the
encapsulation bits and the protocol bits have been set. How
many bits of pattern are added to the frame is determined by
how much of the iSize is used up by the encap and protocol bits.

PAT_0000 Fills extra frame space with 0000000

PAT_1111 Fills extra frame space with 1111111

PAT_AAAA Fills extra frame space with AAAAA

PAT_5555 Fills extra frame space with 5555555

PAT_F0F0 Fills extra frame space with F0F0F0F

PAT_0F0F Fills extra frame space with 0F0F0F0F

PAT_FF00 Fills extra frame space with FF00FF00

PAT_00FF Fills extra frame space with 00FF00FF

PAT_FFFF Fills extra frame space with FFFFFFF

PAT_INCB First byte is 0x 00. The value of each
byte after, increments by 1 and wraps at
0x FF.

PAT_INCW First word is 0x 0000. The value of each
word after, increments by 1 and wraps at
0x FFFF.

PAT_DECB First byte is 0x FF. The value of each
byte after, decrements by 1 and wraps at
0x FF.

PAT_DECW First word is 0x FFFF. The value of each
word after, decrements by 1 and wraps at
0x 0000.

PAT_CUST Custom - No pattern is defined, so use
NSSetPayload to add a custom pattern, or
use NSCreateFrameAndPayload.

PAT_RAND Randomly generates fill pattern.

62 SmartLib User Guide

HTCountStructure
unsigned long RcvPkt Current number of packets received
unsigned long TmtPkt Current number of packets transmitted
unsigned long Collision Current number of collisions
unsigned long RcvTrig Current number of Trigger received
unsigned long RcvByte Current number of Bytes received
unsigned long CRC Current number of CRC errors received
unsigned long Align Current number of Alignment errors detected
unsigned long Oversize Current number of Oversize errors detected
unsigned long Undersize Current number of Undersize errors detected
unsigned long RcvPktRate Number of received packets per second
unsigned long TmtPktRate Number of transmitted packets per second
unsigned long CRCRate Number of CRC errors received per second
unsigned long OversizeRate Number of Oversize errors received per second
unsigned long UndersizeRate Number of Undersize errors received per second
unsigned long CollisionRate Number of Collisions detected per second
unsigned long AlignRate Number of Alignment errors received per second
unsigned long RcvTrigRate Number of triggers received per second
unsigned long RcvByteRate Number of bytes received per second

HTLatencyStructure
int Range

This is the size of the iData array to use, in bytes.

int Offset
Offset in bits for the first bit of the iData trigger from the first
bit of the transmitted packet.

int iData[12]
The actual data that will stop the latency counter.

unsigned long ulLatency
Receives the latency value when using
HT_LATENCY_REPORT. See function HTLatency for more
details.

SmartLib User Guide 63

HTTriggerStructure
unsigned Offset

Specifies the number of bit times that pass between the first
non-preamble bit and when the trigger word is searched for in
the data stream. Ranges from 0 to 65535 (0x0000 to 0xFFFF),
where 0 matches the first bit after the preamble.

int Range
Specifies the size of the trigger word, in bytes. Ranges from 1
to 6.

int Pattern[6]
Array of bytes containing the trigger word. Pattern[0] is the
LSByte, Pattern[5] is the MSByte. For triggers 1 & 2, enter the
data pattern array in reverse order.

64 SmartLib User Guide

HTVFDStructure
int Configuration

Determines the capabilities of the VFD being implemented.
Select the constant that applies.

Configurations specific to VFD1 and VFD2 are:

HVFD_NONE VFD off

HVFD_RANDOM Random pattern

HVFD_INCR Incrementing pattern

HVFD_DECR Decrementing pattern

HVFD_STATIC Static pattern

Configuration options for VFD3 are:

HVFD_NONE VFD3 off

HVFD_ENABLED VFD3 on

NOTE: VFD3 operates differently from 1 and 2. It is a large
buffer that can be used in segments to create more complex
patterns than increment or decrement.

int Range
Determines the length of the VFD field that will be laid into the
frame.

For VFD1 and VFD2:
To specify the length in units of bytes, use a positive integer
from 1 to 6.

To specify the length in units of bits, use a negative integer
from -1 to -48. The minus symbol flags the library that the
number represents bits instead of bytes. Since 100MB
Ethernet cards send traffic in increments of four bits, a range
that is not in multiples of four will be rounded up to the nearest
nibble for these cards.

For VFD3:
The length of VFD3 is set in bytes. For Gigabit Ethernet cards,
the bit length is from 1 to 16384. For all other SmartCards the
bit length is from 1 to 2047.

int Offset
Determines the bit number in the frame where VFD is
overlaid. Measurement begins immediately after the preamble.
Ranges from 0 to 12,112.

For a 100MB Ethernet SmartCard, values that are not
multiples of four are rounded up to the next 4 bit (nibble)
increment.

int* Data
Points to an array of integers which constitute the pattern for
the VFD.

SmartLib User Guide 65

NOTE: For Visual Basic, use int*iData instead of int*Data.

NOTE For VFD1 and VFD2 only:
Elements values are entered into the array with the most
significant bit first.
For example:
iDate[0] 0
iDate[1] 1
iDate[2] 2
iDate[3] 3
iDate[4] 4
iDate[5] 5

Creates the VFD pattern: 543210

int DataCount

NOTE: This value has a different use for VFD1 and 2 than it
does for VFD3.

For VFD1 and VFD2:
The DataCount is used in conjunction with Configuration to
limit the number of patterns generated.

DataCount is the Cycle-count (number of different patterns
that will be generated before being repeated). If DataCount is
set to 0, Cycle-count is disabled.

Example 1:
If Configuration = HVFD_INCR
And if DataCount = 6
Results in six VFD patterns. The initial pattern is used in the
first frame. The next five values increment, creating a series of
five new patterns. The initial pattern is then used again, and
the cycle repeats itself.

Example 2:
If Configuration = HVFD_INCR
And if DataCount = 0
The VFD increments the full value that the Range allows, and
then cycles over again.

For VFD3:
The buffer size of the Data array. Used in combination with the
Range to determine how often a pattern is repeated. For
example, if the DataCount is 24 and the Range is 6, there will
be four six byte patterns before the first is repeated.

66 SmartLib User Guide

Layer3Address
Use this structure with the HTLayer3SetAddress function to set background traffic in
addition to the defined test streams (See the Message Functions manual for creation of
Layer 3 streams).

unsigned char szMACAddress[6] sets MAC addr of this SmartCard
unsigned char IP[4] sets IP addr of this SmartCard
unsigned char Netmask[4] sets Netmask for this SmartCard
unsigned char Gateway[4] sets Gateway addr for this Card
unsigned char PingTargetAddress[4] the addr PINGs are sent to

int iControl
L3_CTRL_ARP_RESPONSES Enables Tx of ARP frames.

L3_CTRL_PING_RESPONSES Enables Tx of PING frames.

L3_CTRL_SNMP_OR_RIP_RESPONSES Enables Tx of SNMP/RIP frames.

The intervals at which frames

are transmitted is determined

by paramaters below.

int iPingTime How often (in seconds) a PING frame
is transmitted. 0 = no PING frames.

int iSNMPTime How often (in seconds) an SNMP frame
is transmitted. 0 = no SNMP frames.

int iRIPTime How often (in seconds) a RIP frame
is transmitted. 0 = no RIP frames.

int iGeneralARPResponse Obsolete.

SwitchStructure
unsigned long Gap

Current Gap Switch setting

unsigned long Data
Current Data Switch setting

unsigned Disp
Current Disp Switch setting

unsigned Mode
Current Mode Switch setting

int Run

SmartLib User Guide 67

Current Run Switch setting: Run = ETRUN when the system
is in the RUN state, Run = ETSTEP when the system is in the
STEP state, and Run = ETSTOP when the system is in the
STOP state.

int Sel
Current Sel Switch setting: Sel = ETSELA when transmitting
out Port A, Sel = ETSELB when transmitting out Port B, and
Sel = ETPINGPONG when the system is in the "Ping Pong"
mode.

68 SmartLib User Guide

TimeStructure
unsigned days

Specifies the day of the month, as read from the ET-1000's
internal clock.

unsigned hours
Specifies the hours since midnight, as read from the ET-1000's
internal clock.

unsigned minutes
Specifies the minutes of the current hour, as read from the ET-
1000's internal clock.

unsigned seconds
Specifies the seconds of the current minute, as read from the
ET-1000's internal clock.

unsigned milliseconds
Specifies the milliseconds of the current second, as read from
the ET-1000's internal clock.

unsigned microseconds
Specifies the microseconds of the current second, as read from
the ET-1000's internal clock.

TokenRingLLCStructure
int UseLLC

Logical Link Control (LLC)

0 No LLC added to MAC frame header.

1 Add LLC to the MAC frame header

int DSAP
Destination Service Access Point. Ranges from 0 to 255 (0x00
to 0xFF).

int SSAP
Source Service Access Point Ranges from 0 to 255 (0x00 to
0xFF).

int LLCCommand
Sets the type of LLC field to be added to the frame header.

0 TEST frame set to ‘Poll’

1 SNAP frame (used to encapsulate an Ethernet frame
from the ‘type’ field)

SmartLib User Guide 69

TokenRingMACStructure
int UseMAC

MAC header control. The MAC header consists of AC and FC
bytes, followed by MAC destination and source addresses,
followed by optional LLC control, followed by optional
SourceRouteAddress information. AC and FC are always
prepended to frame data.

0 No MAC header prepended to frame data.

1 Prepend a MAC header to the frame data.

int Stations
(Reserved - Must be 1 for now)

int MACSrc[6]
The Source MAC Address

int MACDest[6]
The Destination MAC Address

int FramesPerToken
The number of frames to be transmitted for each token. Range
from 1 to 340 (0x01 to 0x154)

int FrameControl
This is the value of the Frame Control byte put on the front of
each frame. This byte is independent of the fill pattern and any
preformed header but may be overwritten by a VFD field. This
byte is defined fully in the Token Ring Architectural
Specification and should not be altered from the default value
of 0x40 (TRFC_DEFAULT) without knowledge of the
consequences. There are several other values defined in the
header file:

TRFC_DEFAULT Standard frame

TRFC_PCF_BEACON Beacon

TRFC_ PCF_CLAIMTOKEN Claim Token

TRFC_ PCF_RINGPURGE Ring Purge

TRFC_ PCF_AMP Active Monitor Present

TRFC_ PCF_SMP Standby Monitor Present

TRFC_ PCF_DAT Duplicate Address Test

TRFC_ PCF_RRS Remove Ring Station

70 SmartLib User Guide

TokenRingPropertyStructure
int SpeedSetting

Ring speed

TR_SPEED_4MBITS 4 Mbits/Sec

TR_SPEED_16MBITS 16 Mbits/Sec

int EarlyTokenRelease
Allows a station to transmit a token immediately after a frame
was sent. This feature only applies to a ring running at 16
Mbits/Sec

TR_TOKEN_DEFAULT Do not allow

TR_TOKEN_EARLY_RELEASE Allow

int DuplexMode
Half duplex or full duplex

TR_DUPLEX_HALF TKP Half duplex

TR_DUPLEX_FULL TXI Full duplex

int DeviceOrMAUMode
Configures the TokenRing SmartCard to be a port or a station

TR_MODE_MAU Port

TR_MODE_DEVICE Station

TokenRingAdvancedStructure
int UseHoldingGap

Token holding gap control.

1 Activate advanced gap control.

0 Do not issue advanced gap control.

int GapValue
Time between frames when the token is not released between
frames. Range from 1 to 1,600,000, which equals the number of
100 nanosecond periods between frames. The default value is 1.

int GapScale
Scale value.

NANO_SCALE Scale in nanoseconds

MICRO_SCALE Scale in microseconds

MILLI_SCALE Scale in milliseconds

int UseIntermediateFrameBits
Sets the Intermediate frame bit in the EDEL field of the frame.
This bit is defined in the Token Ring Specification as being
used to indicate that another frame is to follow immediately,
with no token being released between the frames. (See the
Token Ring Architectural Reference.)

1 Set Intermediate frame

0 Clear Intermediate frame

SmartLib User Guide 71

int UseAC
Activates a user-specified Access Control field in transmitted
frames.

1 Set AC from ACdata field

0 Set AC from captured token

int ACdata
Access Control byte value.
NOTE - Consult the Token Ring Architectural Reference for
details of bit fields in this byte. This byte is used to distinguish
between tokens and frames and to operate the Token Priority
Protocol. Casual setting of bits in this byte will probably cause
ring errors.

int AdvancedControl1
Advanced control byte 1. This byte gives the user control over
how the card connects to the ring on startup and how it
responds to ring errors.

Bit 3-2: Controls connection on startup

0 No affect (previous settings in NVRAM are used)

1 Connects to the ring on startup (default)

2 Stays off the ring on startup

3 Stays off the ring on startup and allows bit 1 to
control the connection.

Bit 1: Connection control

0 Deinserted

1 Inserted

Bit 0: ‘Halt on Error’ - stops the card from
transmitting when a Beacon, Claim or Purge frame
is received by the card,

0 Inactive

1 Active

int AdvancedControl2
Advanced control byte 2.

Bit 4: Internal Loopback

0 Off

1 On

Bit 3: Test Mode (this mode is used to simulate an
Active Monitor when running as a Station so that
the card can be used standalone to test passive
Token Ring components.)

0 Off

1 On

unsigned long AReserved1
Reserved field

unsigned long AReserved2
Reserved field

72 SmartLib User Guide

TriggerStructure
unsigned Offset

Specifies the number of bit times that pass between the first
non-preamble bit and when the trigger word is searched for in
the data stream. Ranges from 0 to 65535 (0x0000 to 0xFFFF).

int Range
Specifies the size of the trigger word, in bits. Ranges from 1 to
96 (0x0001 to 0x0060)

int Pattern[12]
Array of bytes containing the trigger word. Pattern[0] is the
LSByte, Pattern[11] is the MSByte. (Lower 8 bits of each
element contains trigger information. The upper 8 bits are
"don't cares")

VFDStructure
unsigned Offset

Specifies the position in the transmit data stream where VFD
data begins. Measured in bit times elapsed since the final
preamble bit. Ranges from 0 to 65535 (0x0000 to 0xFFFF)

unsigned Range
Specifies the size of the VFD word, in bytes. Ranges from 1 to
4095(0x0001 to 0xFFF)

int Start[4096]
Contains the VFD Start pattern. Start[0] is the LSByte,
Start[4095] is the MSByte.

int Increment[4096]
Contains the VFD Increment (decrement) word. Increment[0]
is the LSByte, Increment[4095] is the MSByte.

NOTE: Due to the large memory requirements of this structure, it
is recommended that you dynamically allocate (and deallocate)
memory space for it in your program. For example:

SmartLib User Guide 73

main()

 {

 VFDStructure *VFD; //pointer to a VFD structure

 VFD = (VFDStructure*)malloc(sizeof(VFDStructure));

//allocates memory

 VFD->Range = 32;

 VFD->Offset = 8; //for example:

//code to set up the data patterns

 ETVFD(VFD); //send to ET1000/SMB-1000

 {} // other code...

 free(VFD); //deallocates far memory

 }

VGCardPropertyStructure
int EndOrMasterNode

Allows a VG SmartCard to be configured as an End node or a
Master node.

VG_CFG_END_NODE End Node

VG_CFG_MASTER Master Node

int PriorityPromotion
Priority promotion

VG_CFG_NO_PRIO_PROMO No promotion

VG_CFG_PRIORITY_PROMO Yes

int EtherNetOrTokenRing
Configures the VG SmartCard to be operated in Ethernet or in
TokenRing

VG_CFG_ETHERNET Ethernet

CG_CFG_TOKENRING TokenRing

74 SmartLib User Guide

Chapter 7:
SmartLib Detailed Description

Each of the library functions is described below in detail. The functions are arranged
in alphabetical order.

Functions prefixed with “ET” pertain to the ET-1000.

Functions prefixed with “HT” pertain to a single port on a SmartBits, and will require
a “Hub Slot Port” designation in the parameter list.

Functions prefixed with “HG” operate on a group of SmartBits Ports as defined by the
user in a string passed to the HGSetGroup(PortIdGroup) command. This group of ports
can be maintained and modified through use of the following commands:

int HGAddtoGroup(iHub,iSlot,iPort),

int HGRemoveFromGroup(),

int HGRemovePortIdFromGroup(),

int HGIsPortInGroup(),

int HGIsHubSlotPortInGroup(),

int HGGetGroupCount().

See the detailed descriptions below for how to use each command.

NOTE: Some functions may require a lot of time to execute. This is
particularly true of the VFD and Capture related functions when
passing large amounts of data.

ETAlignCount
Description Specifies the number of alignment error bits to insert into the transmit

stream. This is used to generate alignment errors. If Count is zero, then
alignment errors are not introduced into the transmit stream.

Syntax int ETAlignCount(int Count)

Parameters Count int Specifies the number of alignment error bits to
introduce into every transmitted packet. Ranges from 0
to 7. Numbers outside this range are invalid and will
not have an effect on the alignment error count.

Return
Value

The return value is >= 0 if the function executed successfully. The return
value is < 0 if the function failed. See Appendix A.

Comments None

SmartLib User Guide 75

ETBNC
Description Defines the function associated with the rear panel BNC connectors.

Syntax int ETBNC(int BNCid, int Config)

Parameters BNCid int Identifies the rear panel BNC connector being
addressed.
ETBNC_1 = BNC#1
ETBNC_2 = BNC#2
ETBNC_3 = BNC#3
All other values are invalid and will not have an effect
on the current BNC mode.

Config int Identifies the specific function associated with the
BNC. The following arguments are valid:

ETBNC_INPUT Input (Hi-Z)

ETBNC_RXEA Receive enable, Port A

ETBNC_RXEB Receive enable, Port B

ETBNC_RCKA Receive Clock, Port A

ETBNC_RCKB Receive Clock, Port B

ETBNC_RDATA Receive Data, Port A

ETBNC_RDATB Receive Data, Port B

ETBNC_TXEA Transmit Enable, Port A

ETBNC_TXEB Transmit Enable, Port B

ETBNC_TDAT Transmit Data

ETBNC_COLLISIONA Collision, Port A

ETBNC_COLLISIONB Collision, Port B

ETBNC_CRCA CRC Error, Port A

ETBNC_CRCB CRC Error, Port B

ETBNC_UNDRA Undersize Error, Port A

ETBNC_UNDRB Undersize Error, Port B

ETBNC_OVRA Oversize Error, Port A

ETBNC_OVRB Oversize Error, Port B

ETBNC_ALA Alignment Error, Port A

ETBNC_ALB Alignment Error, Port B

ETBNC_TXTRIG Transmit Trigger

ETBNC_RXTRIG Receive Trigger

ETBNC_10MHZ 10 MHz internal clock

ETBNC_10MHZINV 10 MHz internal clock, inverted

ETBNC_20MHZ 20 MHz internal clock

ETBNC_20MHZINV 20 MHz internal clock, inverted

ETBNC_EXTCLK External Clock input, BNC#3 only

ETBNC_EXTCLKINV External Clock inverted input, BNC#3 only

All other values are invalid and will not have an effect
on the current BNC mode

Return
Value

The return value is >= 0 if the function executed successfully. The return
value is < 0 if the function failed. See Appendix A.

76 SmartLib User Guide

Comments If the JET-210 mode had previously been active, then the execution of this
function for BNCid will place BNCid in the requested mode and the other
two BNCid's in the input mode. Conversely, any subsequent execution of
the SetJET210Mode(1) function will place all three BNCid's in the JET-
210 mode.

ADVICE: When in doubt, use function ETGetBNC(...) to find out
specifically what mode the BNC's are in.

SmartLib User Guide 77

ETBurst
Description Specifies the Burst Mode and the Burst Count

Syntax int ETBurst(int Mode, long Count)

Parameters Mode int Identifies whether or not the Burst Mode is on or off:

ETBURST_ON Burst mode ON

ETBURST_OFF Burst mode OFF

All other values are invalid and will not have an effect
on the current burst mode.

Count long Specifies the number of packets to be transmitted
during the Burst. Ranges from 1 to 224-1 (1-16777215)
All values outside this range are invalid and will not
have an effect on the current burst mode.

Return
Value

The return value is >= 0 if the function executed successfully. The return
value is < 0 if the function failed. See Appendix A.

Comments Once the Burst Mode is enabled, the ETRun function takes on a different
characteristic: "Step" causes the ET-1000 to internally load the Burst
Count. "Run" causes the ET-1000 to either transmit the number of
packets previously loaded (using "Step") OR transmit a single packet if no
internal Burst Counts were previously loaded.

ETCaptureParams
Description Specifies Capture Offset, Range, Filter, Port, Buffer mode, Time-tag and

run mode. All parameters must be put into CStruct before calling this
function.

Syntax int ETCaptureParams(CaptureStructure* CStruct)

Parameters CStruct CaptureStructure* Points to the CStruct structure
that holds all the capture parameters. The structure
must be loaded before calling this routine. If CStruct
contains values outside appropriate ranges, this
function will not execute.

Return
Value

The return value is >= 0 if the function executed successfully. The return
value is < 0 if the function failed. See Appendix A.

Comments See CaptureStructure definition in Data Structures chapter of this
manual.

ETCaptureRun
Description Starts (or restarts) the capture process.

Syntax int ETCaptureRun(void)

Parameters None

Return The return value is >= 0 if the function executed successfully. The return

78 SmartLib User Guide

Value value is < 0 if the function failed. See Appendix A.

Comments It is advised that you set up the desired capture parameters with the
ETCaptureParams(CaptureStructure *CStruct) function before
calling this function. Otherwise, the attached ET-1000 will run whatever
capture sequence was previously left in it. Use the
ETGetCapturePacketCount function to monitor the number of packets
successfully captured after you initiate the capture process with this
command. Use the ETGetCapturePacket(...) function to retrieve
packets captured. To clear the buffer, you must turn the Capture off and
then back on. If a capture is currently in progress when this function is
executed, all captured data obtained thus far will be discarded and
replaced with new capture information.

ETCollision
Description Determines the collision mode, offset, duration and count.

Syntax int ETCollision(CollisionStructure* CStruct)

Parameters CStruct CollisionStructure* Holds information pertaining to
the collision mode (off, long, adjustable, Port A receive
packet or Port B receive packet), the collision offset (in
bits), duration (bit-times) and count.

Return
Value

The return value is >= 0 if the function executed successfully. The return
value is < 0 if the function failed. See Appendix A.

Comments See the definition of CollisionStructure in the Data Structures portion
of this manual.

ETDataLength
Description Specifies the number of bytes per packet to be used in transmitting data

from the ET-1000.

Syntax int ETDataLength(long Count)

Parameters Count long Contains the number of bytes that are to be
inserted in each packet. Ranges from 0 to 999,999.
Values outside this range are invalid and will not have
an effect on the transmitted data length.

Return
Value

The return value is >= 0 if the function executed successfully. The return
value is < 0 if the function failed. See Appendix A.

Comments Count does not include the 4 CRC bytes appended to every normal
Ethernet packet.

SmartLib User Guide 79

ETDataPattern
Description Defines the background data pattern to transmit

Syntax int ETDataPattern(int Pattern)

Parameters Pattern int Determines the type of pattern that is transmitted
out Port A and/or Port B. The choices are:

ETDP_ALLZERO All 0

ETDP_ALLONE All 1

ETDP_RANDOM Random

ETDP_AAAA Continuous AAAA(hex)

ETDP_5555 Continuous 5555(hex)

ETDP_F0F0 Continuous F0F0(hex)

ETDP_0F0F Continuous 0F0F(hex)

ETDP_00FF Continuous 00FF00FF(hex)

ETDP_FF00 Continuous FF00FF00(hex)

ETDP_0000FFFF Continuous 0000FFFF0000FFFF(hex)

ETDP_FFFF0000 Continuous FFFF0000FFFF0000(hex)

ETDP_00000000FFFFFFFF Continuous 00000000FFFFFFFF(hex)

ETDP_FFFFFFFF00000000 Continuous FFFFFFFF00000000(hex)

ETDP_INCR8 Incrementing 8 bit pattern

ETDP_INCR16 Incrementing 16 bit pattern

ETDP_DECR8 Decrementing 8 bit pattern

ETDP_DECR16 Decrementing 16 bit pattern

All other values are invalid and will result in no
changes to the currently transmitted data pattern

Return
Value

The return value is >= 0 if the function executed successfully. The return
value is < 0 if the function failed. See Appendix A.

Comments If VFD is active, then its pattern will be transmitted for the duration and
offset specified in the applicable VFDStructure. Any transmitted data
outside this envelope will consist of the data pattern specified in this
function.

ETDribbleCount
Description Specifies the number of dribble bits to insert into the transmit stream.

Syntax int ETDribbleCount(int Count)

Parameters Count int Determines the number of dribble bits to insert.
Range is 0 to 7. A value of 0 inserts no dribble bits.
Any value outside this range is invalid and will result in
no changes to the current dribble count.

Return
Value

The return value is >= 0 if the function executed successfully. The return
value is < 0 if the function failed. See Appendix A.

Comments None

80 SmartLib User Guide

ETEnableBackgroundProcessing
Description Allows enhanced responsiveness of foreground applications.

Syntax int ETEnableBackgroundProcessing(int bFlag)

Parameters bFlag int 0 to disallow, 1 to allow.

Return
Value

The return value is the previous state of BackgroundProcessing.

Comments Use this function with extreme care. All commands to the Programming
library are executed completely then returned.

ETEnableBackgroundProcessing allows for the same process or other
processes to proceed while a Programming library function is being
executed. A guard flag is enabled around reentrancy in the library, but
you could end up in “deadly-embrace” situations. If this function is
enabled, while a command in the Programming Library is executing, you
are performing operations on the stack. So, do not use WM_TIMER
messages, or button press messages to call Programming Library
functions if this function is enabled. The code executed when background
processing is enabled is below. Note the PeekMessage loop does not
process WM_USER+n messages.

if (bAllowIdleProcessing)

 {

 bIdling = TRUE;

 while(PeekMessage(&Msg,NULL,WM_NULL,WM_USER-
1,PM_REMOVE))

 {

 TranslateMessage(&Msg);

 DispatchMessage(&Msg);

 }

 }

 bIdling = FALSE;

ETGap
Description Specifies the inter-packet gap value that is to be transmitted.

Syntax int ETGap(long Count)

Parameters Count long Determines the gap value to be inserted in the transmit
stream of both ports. Ranges from 0 to 999,999. Any values
outside this range are invalid and result in no changes to the
current gap setting.

SmartLib User Guide 81

Return
Value

The return value is >= 0 if the function executed successfully. The return
value is < 0 if the function failed. See Appendix A.

Comments The value of Count is further scaled by the most recent value left in
function ETGapScale(int TimeOfGap). If the scale is set to the "100ns"
setting, then the number left in Count will produce an inter-packet gap
according to the following formula:

 GAP = 600+(100*Count) nanoseconds

If the scale is set to the "1µs" setting, then the number left in Count will
produce an inter-packet gap according to the following formula:

 GAP = 0.6+Count microseconds

The ETGap and ETGapScale functions may appear in any order;
however, keep in mind that the attached ET-1000 will execute each
instruction in the order in which it is received. Thus, setting the scale
before setting the Gap value will result in the sending of two or more
consecutive packets with an interim value for the gap. To avoid this
problem, stop transmission (ETRun function) before changing the Gap
parameters, and then re-start transmission when done.

ETGapScale

Description Specifies that either a 100ns gap scale or a 1µs gap scale is to be used in
determining the gap time.

Syntax int ETGapScale(int TimeOfGap)

Parameters TimeOfGap int Determines the scale to be used for setting the gap
time:

ETGAP_100NS 100 nanosecond gap scale

ETGAP_1US 1 microsecond gap scale

All other values are invalid and will result in no
changes to the gap scale setting.

Return
Value

he return value is >= 0 if the function executed successfully. The return
value is < 0 if the function failed. See Appendix A.

Comments See the comment section under function ETGap(long Count).

82 SmartLib User Guide

ETGetAlignCount

Description This function returns the number of alignment error bits currently being
inserted into the transmit data stream.

Syntax int ETGetAlignCount(void)

Parameters None

Return
Value

The return value will range from 0 to 7 -- corresponding to the number of
alignment error bits being inserted. If the return value is less than zero,
then a failure occurred. See Appendix A.

Comments To set the number of alignment error bits for transmission, use function
ETAlignCount.

ETGetBaud

Description This function is used to obtain the current baud rate settings for the
communications port.

Syntax long ETGetBaud(void)

Parameters None

Return
Value

The return value indicates the baud rate as a long value.

Comments None

SmartLib User Guide 83

ETGetBNC
Description Retrieves the configuration of the BNC identified by BNCid.

Syntax int ETGetBNC(int BNCid)

Parameters BNCid int Identifies the BNC connector whose configuration is
needed:

ETBNC_1 BNC #1

ETBNC_2 BNC #2

ETBNC_3 BNC #3

Any values outside this range are invalid and will
return a failure code.

Return
Value

The return value corresponds to the most recent command which set the
function for the BNC. See ETBNC for an identification of these values.
(Note that a return value of 99 indicates that the BNCs are in the JET-210
mode.) If the return value is less than zero, then a failure occurred. See
Appendix A.

Comments See function ETBNC to set the configuration for a particular BNC.

ETGetBurstCount
Description Returns the current Burst Count.

Syntax int

Parameters long ETGetBurstCount(void)

Return
Value Returns the current Burst Count, which ranges from 1 to 224-1. If the

return value is less than zero, then a failure occurred. See Appendix A.

Comments The Burst Mode need not be enabled in order to execute this function. See
the ETBurst function to establish the burst mode and count.

ETGetBurstMode
Description Returns the current Burst Mode.

Syntax int ETGetBurstMode(void)

Parameters None

Return
Value

Returns the current Burst Mode, which ranges from ET_OFF (0) to
ET_ON (1). If the return value is less than zero, then a failure code has
been returned. See Appendix A.

Comments See the ETBurst function to establish the burst mode and count.

84 SmartLib User Guide

ETGetCapturePacket
Description Dumps the data from a captured packet into a specified location.

Syntax int ETGetCapturePacket(long PI, int far * Buffer, int BufferSize)

Parameters PI long Identifies the packet whose contents are to be read
into Buffer. Packet numbers start at zero.

Buffer int* (far pointer) Points to an area in memory where the
packet data is to be placed.

BufferSize int Determines the maximum number of characters to
be put into Buffer.

Return
Value

The return value specifies the number of characters written into Buffer
(not counting NULL, if any) if the function executed successfully. It will
be a positive number greater than or equal to zero. If the return value is
less than zero, then a failure occurred. See Appendix A.

Comments To determine the number of packets before actually retrieving them, use
ETGetCapturePacketCount(...).

ETGetCapturePacketCount
Description eturns the number of complete packets captured thus far.

Syntax long ETGetCapturePacketCount(void)

Parameters None

Return
Value

This function returns a long integer if it executed correctly. The integer
indicates the number of packets successfully captured by the attached ET-
1000. If the return value is less than zero, then it is a failure code. See
Appendix A.

Comments If in Continuous Capture mode, you must stop capture before getting the
CapturePacketCount.

ETGetCaptureParams
Description Returns the current capture parameters.

Syntax int ETGetCaptureParams(CaptureStructure* CStruct)

Parameters CStruct CaptureStructure* Pointer to the CaptureStructure
structure that is to hold the capture parameters.

Return
Value

The return value is >= 0 if the function executed successfully. The return
value is < 0 if the function failed. See Appendix A.

Comments Use function ETCaptureParams to define the capture parameters on the
attached ET-1000. You need not define the capture parameters before
calling this function. The information returned in the CaptureStructure
structure represents the current setup on the attached ET-1000. See the
definition of CaptureStructure in the Data Structures portion of this
manual.

SmartLib User Guide 85

ETGetCollision
Description Returns the current mode of the collision.

Syntax int ETGetCollision(CollisionStructure* CStruct)

Parameters CStruct CollisionStructure* Points to the structure to be filled
with information pertaining to the collision setup inside
the attached ET-1000.

Return
Value

The return value is >= 0 if the function executed successfully. The return
value is < 0 if the function failed. See Appendix A.

Comments See the definition of CollisionStructure in the Data Structures portion
of this manual.

ETGetController
Description Returns the current type of SMB controller.

Syntax int ETGetCollision(void)

Parameters None

Return
Value

CONTROLLER_ET1000
CONTROLLER_SMB1000
CONTROLLER_SMB2000
CONTROLLER_SMB200
CONTROLLER_SMB6000

Comments

ETGetCounters
Description Retrieves all counter information from the attached ET-1000.

Syntax int ETGetCounters(CounterStructure* CStruct)

Parameters CStruct CounterStructure* Points to the CounterStructure
structure which is to hold all the information pertaining
to the ET-1000's internal counters.

Return
Value

The return value is >= 0 if the function executed successfully. The return
value is < 0 if the function failed. See Appendix A.

Comments See the definition of CounterStructure in the Data Structures portion
of this manual.

ETGetCRCError
Description This function is used to inquire whether or not CRC errors are currently

being transmitted by the attached ET-1000.

Syntax int ETGetCRCError(void)

Parameters None

86 SmartLib User Guide

Return
Value

This function returns ET_OFF (0) if CRC errors are currently NOT being
transmitted. A value of ET_ON (1) is returned if CRC errors ARE
currently being transmitted. A return value less than zero is a failure
code. See Appendix A.

Comments None

SmartLib User Guide 87

ETGetCurrentLink
Description This function is used to inquire which attached ET-1000s in the

Programming Library is the current one.

Syntax int ETGetCurrentLink(void)

Parameters None

Return
Value

This function returns the ET-1000 ComPort which is associated with
“current” ET-1000.

Comments See ETSetCurrentLink, ETLink.

ETGetDataLength
Description Returns the current length, in bytes, of the transmitted data packet.

Syntax long ETGetDataLength(void)

Parameters None

Return
Value

This function returns the length, in bytes, of the attached ET-1000's
transmitted data packets. The number does not include the four bytes of
CRC. If this function is successful, the returned value will range from 0 to
999,999. A returned value less than zero is a failure code, indicating that
the function failed. See Appendix A.

Comments None

ETGetDataPattern
Description Returns the identity of the current background transmit data pattern.

Syntax int ETGetDataPattern(void)

Parameters None

Return
Value

If the function executed successfully, it returns a value corresponding to
the current background data pattern. These values have the same
meaning as parameter Pattern in function ETDataPattern. This function
returns a failure code if it failed. (Failure codes are less than zero.) See
Appendix A.

Comments None

ETGetDribbleCount
Description Returns the current number of dribble bits being inserted into the

transmit stream of the attached ET-1000.

Syntax int ETGetDribbleCount(void)

Parameters None

Return
Value

Returns the number of dribble bits being inserted. Ranges from 0 to 7.
This function returns a failure code if it failed. (Failure codes are less
than zero.) See Appendix A.

88 SmartLib User Guide

Comments None

ETGetErrorStatus
Description This function is used to inquire the nature of the most recent failure on

the communications port.

Syntax int ETGetErrorStatus(void)

Parameters None

Return
Value

The return value indicates the failure code of the most recent serial port
failure. See Appendix A. If no failures have been detected, this function
returns a zero.

Comments See Appendix A to interpret the return value from this function.

ETGetFirmwareVersion
Description This function is used to retrieve the current SmartBits firmware version of

the attached ET-1000. It is expressed as an eight character array (with a
terminating NULL character), which is left in Buffer. Buffer must have
enough room for at least 9 characters.

Syntax int ETGetFirmwareVersion(char* Buffer)

Parameters Buffer char* Points to a memory location where the version
information is to be placed. NOTE: Buffer must be at
least 9 characters long.

Return
Value

The return value is >= 0 if the function executed successfully. The return
value is < 0 if there was a failure. See Appendix A.

Comments The version is returned as a character string, not an integer.

SmartLib User Guide 89

ETGetGap
Description Returns the gap value currently being transmitted by the attached ET-

1000.

Syntax long ETGetGap(void)

Parameters None

Return
Value

Returns the gap value currently in use by the attached ET-1000. Ranges
from 0 to 999,999. This function returns a failure code if it failed.
(Failure codes are less than zero.) See Appendix A.

Comments The correspondence between the gap value and the actual gap time in the
ET-1000's transmit stream depends on the current gap scale in use. Use
function ETGetGapScale to find out what scale is currently in use.

-- If the scale is set to the "100ns" setting (ETGAP_100NS), then the
physical gap value is expressed as:

GAP = 600+(100*ReturnValue) nanoseconds

-- If the scale is set to the "1µs" setting (ETGAP_1US), then the physical
gap value is expressed as:

GAP = 9.6+ReturnValue microseconds.

ETGetGapScale
Description Returns the current gap scale in use by the attached ET-1000.

Syntax int ETGetGapScale(void)

Parameters None

Return
Value

If the function is successful, then the return value is 0 when the ET-1000
gap scale is set to the 1 microsecond scale. The return value is 1 when the
gap scale is 100 nanoseconds. This function returns a failure code if it
failed. See Appendix A.

Comments See the comment section of function ETGetGap.

90 SmartLib User Guide

ETGetHardwareVersion
Description This function is used to retrieve the current hardware version of the

attached ET-1000. It is expressed as an eight character array (with a
terminating NULL character), which is left in Buffer. Buffer must have
enough room for at least 9 characters.

Syntax int ETGetHardwareVersion(char* Buffer)

Parameters Buffer char* Points to a memory location where the version
information is to be placed. NOTE: Buffer must be at
least 9 characters wide.

Return
Value

The return value is >= 0 if the function executed successfully. The return
value is < 0 if there was a failure. See Appendix A.

Comments The version is returned as a character string, not an integer.

ETGetLibVersion
Description This function is used to retrieve the version information for the

programming library currently in use by the program making the call. The
first string is a text description of the library. The second string is the
version number in ASCII.

Syntax int ETGetLibVersion(char* pszDescription, char* pszVersion)

Parameters pszDescription char* Points to a memory location where the library
description is to be placed. NOTE: Buffer must be at
least 50 characters wide.

pszVersion char* Points to a memory location where the version
information is to be placed. NOTE: Buffer must be at
least 20 characters wide.

Return
Value

The return value is >= 0 if the function executed successfully. The return
value is < 0 if there was a failure. See Appendix A.

Comments The version is returned as a character string, not an integer.

ETGetLinkFromIndex
Description Returns the ET-1000 ComPort.

Syntax int ETGetLinkFromIndex(int iLink)

Parameters iLink int Specifies which ET-1000 connection. A value of 1
meaning the first ET-1000 connection to the
Programming Library.

Return
Value

This function returns the ET-1000 ComPort which is associated with the
specified ETLink attempt. The return value is < 0 if there was a failure.
See Appendix A.

Comments See ETSetCurrentLink.

SmartLib User Guide 91

ETGetLinkStatus
Description Indicates the current status of the link between the PC and the attached

ET-1000.

Syntax int ETGetLinkStatus(void)

Parameters None

Return
Value

Returns the identity of the COM port if the link is established. Returns a
failure code if the function failed. See Appendix A.

Comments Use this function to determine whether or not there is a communication
link established with an attached ET-1000. If the link has already been
established and then is abruptly broken (due to a physical break in the
connecting device or cable) this function will return a 0.

ETGetJET210Mode
Description Returns the current ET-1000 JET210 mode.

Syntax int ETGetJET210Mode(void)

Parameters None

Return
Value

ET_OFF JET-210 mode disabled

ET_ON JET-210 mode enabled

Returns a failure code if the function failed. See Appendix A.

Comments None

ETGetLNM
Description Returns the current Live Network Mode status of the attached ET-1000.

Syntax int ETGetLNM(void)

Parameters None

Return
Value

The return value is either ETLNM_ON to indicate that the attached ET-
1000's Live Network Mode is active, or ETLNM_OFF to indicate that the
attached ET-1000's Live Network Mode is inactive. If the return value is
neither of these, then an error condition has been detected. The return
value will be less than zero in this case, indicating the failure code. See
Appendix A.

Comments Live Network Mode is currently only available for the ET-1000's Port A.

92 SmartLib User Guide

ETGetPreamble
Description Returns the current number of preamble bits being inserted into the

transmit stream by the attached ET-1000.

Syntax int ETGetPreamble(void)

Parameters None

Return
Value

Returns the number of preamble bits being used. Ranges from 10 to 128.
A return value less than 0 indicates a failure. See Appendix A.

Comments None

ETGetReceiveTrigger
Description Returns with the receive trigger parameters currently being implemented

by the attached ET-1000.

Syntax int ETGetReceiveTrigger(TriggerStructure* RStruct)

Parameters RStruct TriggerStructure* Points to a TriggerStructure
structure which is to contain the trigger parameters

Return
Value

The return value is >= 0 if the function executed successfully. The return
value is < 0 if there was a failure. See Appendix A.

Comments See the definition of TriggerStructure in the Data Structures portion
of this manual.

ETGetRun
Description Returns the current run state of the attached ET-1000.

Syntax int ETGetRun(void)

Parameters None

Return
Value

The return value depends on the run state:
ETSTOP "Stop" mode

ETSTEP "Step" mode

ETRUN "Run" mode

A return value less than 0 indicates a failure. See Appendix A.

Comments

SmartLib User Guide 93

ETGetSel
Description Returns the current Select state of the attached ET-1000.

Syntax int ETGetSel(void)

Parameters None

Return
Value

Return value depends on the current Select state:
ETSELA Transmit on A, receive on B

ETSELB Transmit on B, receive on A

ETPINGPONG Ping Pong mode

Return value is less than zero if the function failed. See Appendix A.

Comments

ETGetSerialNumber
Description This function is used to retrieve the current serial number of the attached

ET-1000. It is expressed as an eight character array (with a terminating
NULL character), which is left in Buffer. Buffer must have enough room
for at least 9 characters.

Syntax int ETGetSerialNumber(char* Buffer)

Parameters Buffer char* Points to a memory location where the serial
number is to be placed. NOTE: Buffer must be at
least 9 characters wide.

Return
Value

The return value is >= 0 if the function executed successfully. The return
value is < 0 if there was a failure. See Appendix A.

Comments The serial number is returned as a character string, not an integer.

ETGetSwitch
Description Reads the front panel settings of the attached ET-1000 and returns the

settings.

Syntax int ETGetSwitch(SwitchStructure* SStruct)

Parameters SStruct SwitchStructure* Points to a SwitchStructure
structure that is to be loaded with information
pertaining to the attached ET-1000's front panel switch
settings.

Return
Value

Return value is >= 0 if the function executed successfully. Return value is
< 0 if the function failed. See Appendix A.

Comments See SwitchStructure definition in Data Structures portion of this
manual.

94 SmartLib User Guide

ETGetTotalLinks
Description Returns total ET-1000 connections.

Syntax int ETGetTotalLinks(void)

Parameters None

Return
Value

This function returns the total ET-1000 system connected to Programming
Library. A value of 2 meaning there are two ET-1000 connected.

Comments See ETSetCurrentLink.

ETGetTransmitTrigger
Description Returns with the transmit trigger parameters currently being

implemented by the attached ET-1000.

Syntax int ETGetTransmitTrigger(TriggerStructure* TStruct)

Parameters TStruct TriggerStructure* Points to a TriggerStructure
structure which is to contain the trigger parameters

Return
Value

The return value is >= 0 if the function executed successfully. A failure
code, which is less than zero, is returned if this function failed to execute.
See Appendix A.

Comments See the definition of TriggerStructure in the Data Structures portion
of this manual.

ETGetVFDRun
Description This function returns the current run state of the VFD pattern on the

attached ET-1000.

Syntax int ETGetVFDRun(void)

Parameters None

Return
Value

Return value depends on the VFD run state:

ET_OFF VFD NOT being transmitted

ET_ON VFD being transmitted

A failure code, which is less than zero, is returned if this function failed to
execute. See Appendix A.

Comments None

SmartLib User Guide 95

ETIsBackgroundProcessing
Description Determine if the Programming Library is currently executing a function.

Syntax int ETIsBackgroundProcessing(void)

Parameters None

Return
Value

The return value is >0 if true, 0 if false. A failure code, which is less than
zero, is returned if the function failed. See Appendix A.T

Comments This returns the state of the guard flag used to control reentrancy in the
Programming Library.

ETLink
Description Forges a communication link between the PC and the attached ET-1000.

Syntax int ETLink(int ComPort)

Parameters ComPort int Determines the COM port to be used to run the
remote link to the attached ET-1000:

ETCOM1 Serial COM port 1

ETCOM2 Serial COM port 2

ETCOM2 Serial COM port 3

ETCOM4 Serial COM port 4

 Any ComPort values outside this range are discarded
and will have no effect on the link status.

Return
Value

The return value is less than or equal to 0 if the function failed to
establish a link with the attached ET-1000.

Comments This function must execute successfully before any communication
between the host PC and the remote ET-1000 can take place. While
executing this function, the PC will search for the Baud rate at which the
attached ET-1000 responds. It may take a while (up to 30 seconds) for this
function to execute, as it must seek out and search several Baud rates
before deciding whether or not the attached ET-1000 is responding
correctly.

96 SmartLib User Guide

ETLNM
Description Activates or de-activates Live Network Mode.

Syntax int ETLNM(int Type)

Parameters Type int Determines the state of the live network mode:
ETLNM_ON Live Network Mode ON

ETLNM_OFF Live Network Mode OFF

Return
Value

The return value is >= 0 if the function executed successfully. A failure
code, which is less than zero, is returned if this function failed to execute.
See Appendix A.

Comments ive Network Mode is currently available only on Port A of the attached ET-
1000.

ETLoopback
Description Activates or de-activates internal loopback of the specified Port.

Syntax int ETLoopback(int Port, int Status)

Parameters Port int Determines the ET-1000 port for activation or
deactivation of the internal loopback:

LOOP_PORT_A Loopback on Port A

LOOP_PORT_B Loopback on Port B

Any other values are invalid and will have no effect on
the attached ET-1000.

Status int Determines the loopback status of Port:
ETLOOPBACK_ON Loopback the port

ETLOOPBACK_OFF Do not loopback the port

Return
Value

The return value is >= 0 if the function executed successfully. A failure
code, which is less than zero, is returned if this function failed to execute.
See Appendix A.

Comments None

SmartLib User Guide 97

ETMake2DArray
Description This function creates virtual 2 dimensional arrays with the TCL

programming language.

Syntax int ETMake2DArray (char* pszArrayName, int iSizeFirstDim, int
iSizeSecondDim)

Parameters pszArrayName char* A pointer to the name of the virtual array created
with TCL. Use pszArrayName for any functions that
require 2D arrays.

iSizeFirstDim int Specifies the number of elements in the first
dimension of the array.

iSizeSecondDim int Specifies the number of elements in the second
dimension of the array.

Return
Value

The return value is >= 0 if the function executed successfully. A failure
code, which is less than zero, is returned if this function failed to execute.
See Appendix A.

Comments This is a TCL work-around, only found in ET1000.TCL.

This TCL utility function can be used, for example, with HTCardModels
where the first array is MAX_HUBS and the second array is MAX_SLOTS.

For more information, see Tcl_tips.txt in your SmartLib installation.

ETMake3DArray
Description This function creates virtual 3 dimensional arrays with the TCL

programming language.

Syntax int ETMake3DArray (char* pszArrayName, int iSizeFirstDim, int
iSizeSecondDim, int iSizeThirdDim)

Parameters pszArrayName char* A pointer to the name of the virtual array created
with TCL. Use pszArrayName for any functions that
require 3D arrays.

iSizeFirstDim int Specifies the number of elements in the first
dimension of the array.

iSizeSecondDim int Specifies the number of elements in the second
dimension of the array.

iSizeThirdDim int Specifies the number of elements in the third
dimension of the array.

Return
Value

The return value is >= 0 if the function executed successfully. A failure
code, which is less than zero, is returned if this function failed to execute.
See Appendix A.

Comments This is a TCL work-around, only found in ET1000.TCL.

This TCL utility function can be used, for example, with HTFrame where
the first array is iHub, the second is iSlot, and the third is iPort.

For more information, see Tcl_tips.txt in your SmartLib installation.

98 SmartLib User Guide

ETMFCounter
Description This function establishes the item to be counted by the associated Multi-

Function counter.

Syntax int ETMFCounter(int Port, int Mode)

Parameters Port int Determines the ET-1000 port whose associated
Multi-Function counter is to be re-assigned:

MFPORT_A ET-1000 Port A

MFPORT_B ET-1000 Port B

All other values are invalid and will not have any effect
on the ET-1000.

Mode int Identifies the item to be counted by the Port's Multi-
Function counter. Values are:

ETMF_PACKET_LENGTH Packet Length

ETMF_RXTRIG_COUNT Receive Trigger Count

ETMF_TXTRIB_COUNT Transmit Trigger Count

ETMF_TIME_ROUNDTRIPTime from Port to Port

ETMF_TIME_PORT2PORTTime from Port to other Port

ETMF_RXTRIG_RATE Receive Trigger Rate

ETMF_TXTRIG_RATE Transmit Trigger Rate

ETMF_PREAMBLE_COUNTNumber of preamble bits in Port

ETMF_GAP_TIME Packet Gap Time in Port

ETMF_SQE_COUNT SQE count in Port

ETMF_TOTAL_LENGTH Total packet length in Port

All other values are invalid and will not have any effect on the ET-1000.

Return
Value

The return value is >= 0 if the function executed successfully. A failure
code, which is less than zero, is returned if the function failed. See
Appendix A.

Comments None

ETPreamble
Description This function is used to set the preamble bit count that is to be

transmitted by the attached ET-1000.

Syntax int ETPreamble(int Count)

Parameters Count int Specifies the number of preamble bits to be inserted
into the transmit stream of the attached ET-1000.
Ranges anywhere from 10 to 128. Any values outside
this range are invalid and will have no effect on the
attached ET-1000.

Return
Value

The return value is >= 0 if the function executed successfully. A failure
code, which is less than zero, is returned if the function failed. See
Appendix A.

Comments None

SmartLib User Guide 99

ETReceiveTrigger
Description This function is used to set up the receive trigger on the attached ET-1000.

Syntax int ETReceiveTrigger(TriggerStructure* RStruct)

Parameters RStruct TriggerStructure* Points to a TriggerStructure
structure that contains all the trigger information
necessary to set up the receive trigger on the attached
ET-1000.

Return
Value

The return value is >= 0 if the function executed successfully. A failure
code, which is less than zero, is returned if the function failed. See
Appendix A.

Comments ee the definition of TriggerStructure in the Data Structures portion of
this manual.

ETRemote
Description This function is used to set the attached ET-1000 in either the local or

remote mode.

Syntax unsigned ETRemote(int Mode)

Parameters Mode int Determines the mode in which the attached ET-
1000 operates:

ETLOCALMODE Local Mode

ETREMOTEMODE Remote Mode

All other values are invalid and will have no effect on
the attached ET-1000.

Return
Value

The return value is >= 0 if the function executed successfully. A failure
code, which is less than zero, is returned if the function failed. See
Appendix A.

Comments Once the attached ET-1000 is placed in the local mode, it will no longer
respond to instructions sent to it by the PC -- except, of course, the
instruction generated by ETRemote. This function will typically be used
to place the attached ET-1000 in local mode so that it responds to user
input from its front panel. (In remote mode, all front panel functions,
except DISPLAY and RESET are inoperative.)

ETReset
Description Resets all counters on the attached ET-1000.

Syntax int TReset(void)

Parameters None

Return
Value

The return value is >= 0 if the function executed successfully. A failure
code, which is less than zero, is returned if the function failed. See
Appendix A.

Comments This function essentially emulates the activation of the attached ET-
1000's front panel RESET switch.

100 SmartLib User Guide

ETReturnAddress
Description Returns the same void pointer passed.

Syntax void * ETReturnAddress(void *)

Parameters p void* Standard pointer.

Return
Value

avoid * (32 bit value, which in Visual Basic is a long)

Comments Visual Basic does not have a pointer type, yet can pass arguments by
reference. The HTVFD structure includes a pointer. This function is a
workaround to allow a long to be used as a pointer for the
HTVFDStructure. This is seen in the example snippet in the VFD bug fix
above.

ETRun
Description This function sets the run state on the attached ET-1000.

Syntax int ETRun(int RunValue)

Parameters RunValue int Determines the run state to be executed on the
attached ET-1000:

ETSTOP Halts transmission

ETSTEP Sends a single packet

ETRUN Sends continuous packets

All other values are invalid and will have no effect on
the attached ET-1000.

Return
Value

The return value is >= 0 if the function executed successfully. A failure
code, which is less than zero, is returned if the function failed. See
Appendix A.

Comments The result of executing this function differs somewhat when the attached
ET-1000 is in the BURST mode. See function ETBurst for a complete
description.

SmartLib User Guide 101

ETSetBaud
Description Adjusts the Baud rate of the ET-1000's serial link.

Syntax int ETSetBaud(int Baud)

Parameters Baud int Determines the Baud rate at which the attached ET-
1000 operates:

ETBAUD2400 2400 Baud

ETBAUD4800 4800 Baud

ETBAUD9600 9600 Baud

ETBAUD19200 19.2 kBaud

ETBAUD38400 38.4 kBaud

All other values are invalid and will have no effect on
the attached ET-1000.

Return
Value

The return value is >= 0 if the function executed successfully. A failure
code, which is less than zero, is returned if the function failed. See
Appendix A.

Comments Once the Baud rate of the attached ET-1000 has been changed, it will no
longer be able to communicate with the PC. After executing this function,
you should break and re-establish the link using the ETUnLink and
ETLink functions. (The ETLink function automatically finds the Baud
rate at which the attached ET-1000 is currently operating.) ADVICE: If
problems occur while trying to link at a different baud rate, place the ET-
1000 in the local mode by pressing its RESET switch. Then activate mode
A4 and SET the baud rate as appropriate.

ETSetCurrentLink
Description Specify which SmartLib Link (SMB to PC) is the current Link.

If you have multiple Links, use this command prior to sending "ET"
controller-specific commands such as ETGetHardwareVersion. You do not
need to used this command prior to sending SmartCard-specific
commands.

Syntax int ETSetCurrentLink(int ComPort)

Parameters ComPort int Specified the attached ET-1000 with ComPort to be
used in SmartLib for related ET commands:

ETCOM1 Serial COM port 1

ETCOM2 Serial COM port 2

ETCOM2 Serial COM port 3

ETCOM4 Serial COM port 4

Any ComPort values outside this range are discarded and
will have no effect on the link status.

Return
Value

The return value is >= 0 if the function executed successfully. A failure
code, which is less than zero, is returned if the function failed. See
Appendix A.

102 SmartLib User Guide

Comments Instead of changing ET related commands, to include another parameter
to specify which ET-1000 system in the Programming Library functions in
order to support multiple ET-1000 connections, use ETSetCurrentLink to
specify “Current” ET-1000 for the related ET commands.

ETSetCurrentSockLink
Description Specify which SmartLib Link (SMB to PC) is the current Link.

If you have multiple Links, use this command prior to sending "ET"
controller-specific commands such as ETGetHardwareVersion. You do not
need to used this command prior to sending SmartCard-specific
commands.

Syntax int ETSetCurrentSockLink(char* IPAddr)

Parameters IPAddr char* Specifies the IP address of the SMB controller you
want to send a command to.

Return
Value

The return value is >= 0 if the function executed successfully. A failure
code, which is less than zero, is returned if the function failed. See
Appendix A.

Comments

ETSetJET210Mode
Description To set up the attached ET-1000 to operate with or without a JET-210

(Jitter Simulator) attached.

Syntax int ETSetJET210Mode(int Mode)

Parameters Mode int Sets the JET-210 mode of the attached ET-1000:

ET_OFF Disable the JET-210 mode

ET_ON Enable the JET-210 mode

All other values are invalid and will not work on ET-
1000.

Return
Value

The return value is >= 0 if the function executed successfully. A failure
code, which is less than zero, is returned if the function failed. See
Appendix A.

Comments Since the JET-210 Jitter Simulator assumes control over the three rear
panel BNC connectors on the attached ET-1000, the BNC functions will be
pre-empted. Use the ETBNC function to re-establish BNC functionality
after disabling the JET-210 mode. Disabling the JET-210 mode with this
function effectively puts the three BNC connectors into Input mode.

ETSetGPSDelay
Description Determines the actual start time communicated to a remote hub by

SmartLib User Guide 103

HGRun, and HGStart, HGStop, and HGStep when GPS is available.
Calculations are based on the estimated time to send a message to the
remote hub.

The default delay used by HGRun, and HGStart, HGStop, and HGStep for
GPS synchronized starts is 20 seconds plus an additional 10 seconds for
each hub. Use this function to change the default start time if:
* There is not enough time for the remote host to receive the message.
This can cause the local hubs to start before the remote hubs receive the
command.
* The default delay is unnecessarily long.

Syntax int ETSetGPSDelay(ulong ulSeconds)

Parameters ulSeconds ulong Determines the delay added to the current time
so that local and remote hubs can start synchronously.

Return
Value

The return value is >= 0 if the function executed successfully. A failure
code, which is less than zero, is returned if the function failed. See
Appendix A.

Comments This command is only used by HGRun, HGStart, HGStop, and HGStep
when GPS is available.

ETSetSel
Description This function determines the transmission function associated with Port A

and Port B of the attached ET-1000.

Syntax int ETSetSel(int SelValue)

Parameters SelValue int Determines mode associated with the ET-1000
ports:

ETSELA Transmit on A, receive on B

ETSELB Transmit on B, receive on A

ETPINGPONG "Ping Pong" mode

All other values are invalid and will not work on the ET-
1000

Return
Value

The return value is >= 0 if the function executed successfully. A failure
code, which is less than zero, is returned if the function failed. See
Appendix A.

Comments None

104 SmartLib User Guide

ETSetTimeout
Description This function how long SmartLib will wait for a response from the SMB

controller before timing out. The default timeout value is 5 seconds.

Syntax int ETSetTimeout(unsigned TimeOutValue)

Parameters TimeOutValue unsigned int Determines the time-out value, in
milliseconds. Ranges from 1 to 2,147,483,647
milliseconds (0x7FFFFFFF).

Return
Value

The return value is >= 0 if the function executed successfully. A failure
code, which is less than zero, is returned if the function failed. See
Appendix A.

Comments Passing a value of 0 will set the timeout to approximately 24 days,
effectively disabling timeout for most purposes.

SmartLib User Guide 105

ETSetup
Description Stores and recalls the current setup internally in the attached ET-1000.

Syntax int ETSetup(int Mode, int SetupId)

Parameters Mode int Determines the mode of the setup function:
ETSTORESETUP store the current setup

ETRECALLSETUP recall a stored setup

All other values are invalid and will have no effect on
the ET-1000.

SetupId int Identifies the specific setup to store or recall. For
recall, this value ranges from 0 to 8; whereas 0 is the
"factory default" setup. (It cannot be changed.) You are
allowed to store setups 1 to 8. Any values outside these
ranges are invalid and will have no effect on the ET-
1000.

Return
Value

The return value is >= 0 if the function executed successfully. A failure
code, which is less than zero, is returned if the function failed. See
Appendix A.

Comments The setups referenced in this function refer to setups that are stored
internally within the attached ET-1000. There are no library functions
available for storing and recalling setups from the PC's disk.

NOTE: Recalling a previous setup in the ET-1000 will probably result in
the loss of the communication link. After executing this function, your
application program should unlink itself from the attached ET-1000 and
then re-link. Use the following procedure:

1. Issue the ETUnLink command

2. Wait 4 seconds. This allows the ET-1000's serial port to settle after the
recall operation.

3. Re-link using the ETLink(...) function.

You may find that a re-link will result in a different Baud rate than
before. Use the ETSetBaud(...) function if you wish to re-establish the link
at a particular Baud rate. (Note that after issuing ETSetBaud, you must
again UnLink and then Link.)

106 SmartLib User Guide

ETSocketLink
Description This function is used to connect to a SmartBits system over an IP socket

connection. First use the serial connection to configure the SmartBits
chassis with an appropriate IP address.

Syntax int ETSocketLink(char* hostname, int port)

Parameters hostname char* Specified the IP address of the SmartBits system
to attempt to link to.

port int The user specified port number of IP device to which
we want to link. Default value should place this at
16385.

Return
Value

The return value is >= 0 if the function executed successfully. A failure
code, which is less than zero, is returned if the function failed. See
Appendix A.

Comments The IP address of a SmartBits device may be changed using the serial port
interface. Use a terminal emulation program such as "Terminal" to
connect the PC to the chassis.

Once connected to SmartBits, transmit the command ipaddr to view the
current IP address. Transmit ipaddr (new address) to set the new IP
address. For example:

ipaddr 129.186.145.5

ETTransmitCRC
Description Enables or disables transmission of CRC errors on the attached ET-1000.

Syntax int ETTransmitCRC(int Active)

Parameters Active int Determines the state of the CRC error insertion on
the attached ET-1000:

ETCRC_ON Enable CRC transmission

ETCRC_OFF Disable CRC transmission

All other values are invalid and will not have an effect
on the attached ET-1000.

Return
Value

The return value is >= 0 if the function executed successfully. A failure
code, which is less than zero, is returned if the function failed. See
Appendix A.

Comments None

SmartLib User Guide 107

ETTransmitTrigger
Description This function is used to set up the transmit trigger on the attached ET-

1000.

Syntax int ETTransmitTrigger(TriggerStructure* TStruct)

Parameters TStruct TriggerStructure* Points to a TriggerStructure
structure that contains all the trigger information
necessary to set up the transmit trigger on the attached
ET-1000.

Return
Value

The return value is >= 0 if the function executed successfully. A failure
code, which is less than zero, is returned if the function failed. See
Appendix A.

Comments See the definition of TriggerStructure in the Data Structures portion
of this manual.

ETUnLink
Description This function causes the communication link between the PC and the

attached ET-1000 to be broken. The allocated COM port will be freed up
for other applications to use.

Syntax int ETUnLink(void)

Parameters None

Return
Value

The return value is >= 0 if the function executed successfully. A failure
code, which is less than zero, is returned if the function failed. See
Appendix A.

Comments It is highly recommended that this function be performed as part of
shutting down the ET-1000 application. This guarantees that DOS will
recognize the allocated COM port as having been freed from any
application, and is thus available. Also, the execution of this function
automatically puts the attached ET-1000 in the manual mode.

ETVFDParams
Description This function sends VFD information to the attached ET-1000.

Syntax int ETVFDParams(VFDStruct* VFDdata)

Parameters VFDdata VFDStruct* Points to a VFDStruct structure which
contains all the VFD information required to implement
a VFD pattern on the attached ET-1000.

Return
Value

The return value is >= 0 if the function executed successfully. A failure
code, which is less than zero, is returned if the function failed. See
Appendix A.

Comments Depending on the size of the Range parameter of VFDdata, this function
may take some time to download its information to the attached ET-1000.
See the definition of VFDStruct in the Data Structures portion of this
manual.

108 SmartLib User Guide

ETVFDRun
Description This function starts or halts the transmission of VFD data from the

attached ET-1000.

Syntax int ETVFDRun(int Start)

Parameters Start int Determines the state of the VFD transmission:
ETVFD_ENABLE Enable VFD transmission

ETVFD_DISABLE Disable VFD transmission

All other values are invalid and will not have an effect
on the attached ET-1000.

Return
Value

The return value is >= 0 if the function executed successfully. A failure
code, which is less than zero, is returned if the function failed. See
Appendix A.

Comments VFD information must first be sent to the attached ET-1000 using the
ETVFDParams function. Once the ETVFDParams function has set up
the VFD parameters, VFD transmission may be enabled and disabled
numerous times without the need to execute ETVFDParams again -- as
long as the VFD data doesn't need to be changed. If ETVFDParams is
not executed before this function, the attached ET-1000 will implement
whatever VFD information it contains. NOTE: Sometimes the ET-1000
will power-up with VFD active and running. Use ETGetVFDRun to
determine whether or not this is so, and then use ETVFDRun(...) to place
the ET-1000 in a known state.

SmartLib User Guide 109

HGAddtoGroup
Description Along with HGSetGroup, this command can be used to add individual

hub/slot/port cards to a group.

Syntax int HGAddtoGroup (int iHub, int iSlot, int iPort)

Parameters iHub int Identifies the hub where the SmartCard is located.
The range is 0 (first hub) through N(number of hubs) -1.
Remember to subtract one since the hub identification
starts at 0.

Important: See Working with Multiple Hubs in Chapt 1.

iSlot int Identifies the slot where the SmartCard is located.
Ranges from 0 (first slot in Hub) to 19 (last card in
Hub).

iPort int Identifies the SmartCard port. On the current
SmartCards, iPort is always 0.

Return
Value

The return value is >= 0 if the function executed successfully. A failure
code, which is less than zero, is returned if the function failed. See
Appendix A.

Comments Currently, this command should be used in Hub/Slot/Port ascending order.
Example:

HGSetGroup(NULL);

HGAddtoGroup(0,0,0);

HGAddtoGroup(0,1,0);

This will add the first two cards in the first hub to a group.

HGAlign
Description Create alignment errors on the previously selected group. This function is

valid for SmartCards only.

Syntax int HGAlign(int iBits)

Parameters iBits int Sets the number of extra alignment bits to transmit.
Valid range is 0 to 7. Setting this value to 0 disables
generation of packets with alignment bit errors.

Return
Value

The return value is >= 0 if the function executed successfully. A failure
code, which is less than zero, is returned if the function failed. See
Appendix A.

Comments None

110 SmartLib User Guide

HGBurstCount
Description Sets the number of packets transmitted in a single burst from all ports

associated with the PortIdGroup defined by the
HGSetGroup(PortIdGroup) command.

Syntax int HGBurstCount(long lVal)

Parameters lVal long Specifies the burst count. Ranges anywhere from
1 to 16,777,215.

Return
Value

The return value is >= 0 if the function executed successfully. A failure
code, which is less than zero, is returned if the function failed. See
Appendix A.

Comments This instruction does not cause a burst of packets to be sent. Use
HGTransmitMode, or HTTransmitMode to select a burst mode, and
then use HGRun, HGStart, HGStep, HTGroupStart, HTGroupStep,
or HTRun to actually start the transmission of the burst.

HGBurstGap
Description Sets up the time gap between bursts of packets from all ports associated

with the PortIdGroup defined by the HGSetGroup(PortIdGroup)
command.

Syntax int HGBurstGap(long lVal)

Parameters lVal long Specifies the inter-burst gap in tenths of a
microsecond. Ranges anywhere from 1 to 16 million.

Return
Value

The return value is >= 0 if the function executed successfully. A failure
code, which is less than zero, is returned if the function failed. See
Appendix A.

Comments This instruction is only applied if HGTransmitMode, or
HTTransmitMode has selected one of the MULTI_BURST_MODE, or
CONTINUOUS_BURST mode selections. Use HGRun, HGStart,
HTGroupStart, and HTRun to actually start the transmission of the
bursts.

SmartLib User Guide 111

HGBurstGapAndScale
Description Sets up the time gap between bursts of packets, at the given scale from all

ports associated with the PortIdGroup defined by the
HGSetGroup(PortIdGroup) command.

Syntax int HGBurstGapAndScale(long lVal, int iScale)

Parameters lVal long Specifies the inter-burst gap value. Legal values
range anywhere from the lowest gap possible on the
group being addressed up to a maximum of 1.6 sec.

iScale int Specifies the scale of the gap value according to
following:

NANO_SCALE = nanoseconds scale

MICRO_SCALE = microseconds scale

MILLI_SCALE = milliseconds scale.

Return
Value

The return value is >= 0 if the function executed successfully. A failure
code, which is less than zero, is returned if the function failed. See
Appendix A.

Comments This instruction is only applied if HGTransmitMode, or
HTTransmitMode has selected one of the MULTI_BURST_MODE, or
CONTINUOUS_BURST mode selections. Use HGRun, HGStart,
HTGroupStart, and HTRun to start the transmission of the bursts.

HGClearGroup
Description Ungroups a number of ports that were previously grouped together with

the HGSetGroup command.

Syntax int HGClearGroup(void)

Parameters None

Return
Value

The return value is >= 0 if the function executed successfully. A failure
code, which is less than zero, is returned if the function failed. See
Appendix A.

Comments Since there can only be one group defined at a time, HGClearGroup needs
no arguments.

112 SmartLib User Guide

HGClearPort
Description This command is used to clear internal counters from all ports associated

with the PortIdGroup defined by the previous HGSetGroup(PortIdGroup)
command.

Syntax int HGClearPort(void)

Parameters None

Return
Value

The return value is >= 0 if the function executed successfully. A failure
code, which is less than zero, is returned if the function failed. See
Appendix A.

Comments This command is used on SmartCards. For Passive Hub cards, use the
HGClear command.

HGCollision
Description Determines the collision mode, and count for the 100 Mbits Fast

SmartCard.

Syntax int HGCollision(CollisionStructure* CStruct)

Parameters CStruct CollisionStructure* Holds information pertaining to
the collision mode (off, on), and count.

Return
Value

The return value is >= 0 if the function executed successfully. The return
value is < 0 if the function failed. See Appendix A.

Comments See the definition of CollisionStructure in the Data Structures portion
of this manual. The offset and length fields are not used for 100 Mbits
SmartCard.

HGCollisionBackoffAggressiveness
Description Determines the wait factor for backing off from multiple collisions only on

SmartCards in a previously selected group.

Syntax int HGCollisionBackoffAggressiveness(unsigned int uiAggressiveness)

Parameters uiAggressiveness unsigned int Set the backoff factor. The amount of
time actually delayed follows as powers of two using
this factor.

Return
Value

The return value is >= 0 if the function executed successfully. A failure
code, which is less than zero, is returned if the function failed. See
Appendix A.

Comments None

SmartLib User Guide 113

HGCRC
Description Create packets with CRC errors on the previously selected group. This

function is valid for SmartCards only.

Syntax int HGCRC(int iMode)

Parameters iMode int Set the error facility on or off. Valid flags: ET_ON
and ET_OFF

Return
Value

The return value is >= 0 if the function executed successfully. A failure
code, which is less than zero, is returned if the function failed. See
Appendix A.

Comments None

HGDataLength
Description This command is used to specify the length of the data field in the packets

being transmitted by the SmartBits ports associated with the PortIdGroup
defined by the previous HGSetGroup(PortIdGroup) command.. Applies
only to SmartCards. A random packet size can also be selected.

Syntax int HGDataLength(int iLength)

Parameters iLength int Specifies the length of the packets that are to be
transmitted on the addressed port. The length is specified in
bytes, and it includes everything between the preamble and the
CRC. The actual transmitted packet will be extended four
bytes for the CRC. Length can range from 1 to 8191. A Length
of 0 will cause random packet sizes to be transmitted.

Return
Value

he return value is >= 0 if the function executed successfully. A failure
code, which is less than zero, is returned if the function failed. See
Appendix A.

Comments None

HGDribble
Description Create dribbling bit errors on the previously selected group. This function

is valid for SmartCards only.

Syntax int HGDribble(int iBits)

Parameters iBits int Sets the number of dribbling bits to transmit. Valid
range is 0 to 7. Setting this value to 0 disables
generation of packets with dribbling bit errors.

Return
Value

The return value is >= 0 if the function executed successfully. A failure
code, which is less than zero, is returned if the function failed. See
Appendix A.

Comments None

114 SmartLib User Guide

HGDuplexMode
Description Indicates whether to set full duplex or half duplex mode for all ports

associated with the PortIdGroup defined by the previous
HGSetGroup(PortIdGroup) command.

Syntax int HGDuplexMode(int iMode)

Parameters iMode int Sets the Duplex mode where iMode should be one of
the following:

FULLDUPLEX_MODE Full duplex mode on

HALFDUPLEX_MODE Half duplex mode on

Return
Value

The return value is >= 0 if the function executed successfully. A failure
code, which is less than zero, is returned if the function failed. See
Appendix A.

Comments None

HGFillPattern
Description Specifies the data pattern that is to be transmitted from all ports

associated with the PortIdGroup defined by the previous
HGSetGroup(PortIdGroup) command. This command applies only to
SmartCards. Any VFD data will overwrite this pattern.

Syntax int HGFillPattern(int iSize, int* piData)

Parameters iSize int Identifies the size, in bytes, of the fill pattern
contained in the Data array. Size may range from 60 to
2044. A value of 0 (zero) will cause a random data
pattern to be generated.

piData int* Points to the array which contains the data pattern
to be transmitted. A value of NULL will cause a random
data pattern to be generated.

Return
Value

The return value is >= 0 if the function executed successfully. A failure
code, which is less than zero, is returned if the function failed. See
Appendix A.

Comments None

SmartLib User Guide 115

HGGap
Description Specifies the inter-packet gap that is to be transmitted from all ports

associated with the PortIdGroup defined by the previous
HGSetGroup(PortIdGroup) command. Also allows random gaps to be
transmitted. This command applies only to SmartCards.

Syntax int HGGap(long lPeriod)

Parameters lPeriod long On 10Mbit cards, this value equals the number of tenths of
microseconds between transmitted packets. On 100Mbit cards,
this value equals the number of tens of nanoseconds between
transmitted packets. In either case, lPeriod may range from 10
(=1us) to 1,600,000. A value of 0 (long) will cause a random gap
to be generated. For example, if lPeriod = 96, for 10Mbit cards,
the Gap will be 96*0.1us = 9.6us, and for 100Mbit cards, the
Gap will be 96*10ns = 960ns. In both cases, the cards get the
minimum legal interpacket gap. For TokenRing cards at 4Mbit,
the minimum legal “Gap” is 250ns, and for TokenRing cards at
16Mbits, the minimum legal “Gap” is 65ns.

Return
Value

The return value is >= 0 if the function executed successfully. A failure
code, which is less than zero, is returned if the function failed. See
Appendix A.

Comments None

116 SmartLib User Guide

HGGapAndScale
Description Specifies the inter-packet gap that is to be transmitted on the addressed

port. Also allows random gaps to be transmitted. Applies only to
SmartCards.

Syntax int HGGapAndScale(long lPeriod, int iScale)

Parameters lPeriod long Identifies the number of “scaled” units to be between
transmitted packets. Period may range from 1 to
1,600,000,000. A value of 0 (long) will cause a random gap to be
generated.

iScale int Determines the scale for the lPeriod parameter based on:
1 lPeriod is in nanoseconds

2 lPeriod is in microseconds,

3 lPeriod is in milliseconds.

Return
Value

The return value is >= 0 if the function executed successfully. A failure
code, which is less than zero, is returned if the function failed. See
Appendix A.

Comments None

HGGetCounters
Description Retrieves counters from all ports in the group defined by the previous

HGSetGroup/HGAddtoGroup command. This information is placed into
the HTCountStructures pointed to in the input argument. This command
applies only to SmartCards.

Syntax int HGGetCounters(HTCountStructure* phtCountStruct)

Parameters phtCountStruct HTCountStructure* A pointer to the first element of
an array of counter structures in which count
information is to be placed. See section 5 of this
document for a description of the HTCountStructure
structure.

Return
Value

The return value is >= 0 if the function executed successfully. A failure
code, which is less than zero, is returned if the function failed. See
Appendix A.

Comments It is assumed that the calling function has declared the
HTCountStructure array and reserved sufficient memory for it.

SmartLib User Guide 117

HGGetEnhancedCounters
Description Retrieves standard counters and card related counters from all ports in

the group defined by the previous HGSetGroup/HGAddtoGroup
commands. This information is placed into the
EnhancedCounterStructure pointed to in the input argument. Applies to
SmartCards and TokenRing SmartCard.

Syntax int HGGetEnhancedCounters(EnhancedCountStructure* pEnCounter)

Parameters pEnCounter EnhancedCounterStructure* A pointer to the first
element of an array of counter structures in which count
information is to be placed. See section 5 for a
description of the EnhancedCountStructure structure.

Return
Value

The return value is >= 0 if the function executed successfully. A failure
code, which is less than zero, is returned if the function failed. See
Appendix A.

Comments It is assumed that the calling function has declared the
EnhancedCountStructure array and reserved sufficient memory for it.

HGGetGroupCount
Description Returns the number of ports currently configured in the group.

Syntax int HGGetGroupCount(void)

Parameters None

Return
Value

Returns the number of ports currently configured in the group. The return
value is >= 0 if the function executed successfully. A failure code, which is
less than zero, is returned if the function failed. See Appendix A.

Comments

HGGetLEDs
Description Determine the state of the LEDs on ports in the currently defined group.

Syntax int HGGetLEDs(int* piLEDs)

Parameters piLEDs int* a pointer to an integer array of at least the number
of cards in the group size that receives the LED states of
all SmartCards in the current group.

Return
Value

The return value is >= 0 if the function executed successfully. A failure
code, which is less than zero, is returned if the function failed. See
Appendix A.

Comments Behavior of this function is undefined if the port group contains passive
cards.

118 SmartLib User Guide

HGIsPortInGroup
Description Returns whether the specified port is currently configured in the group.

Syntax int HGIsPortInGroup(int iPortId)

Parameters iPortId int the counting ordinal ID of the port in the test bay
whose inclusion in the group is to be checked.

Return
Value

Returns a positive (non-zero) number if TRUE, zero if FALSE. The return
value is >= 0 if the function executed successfully. A failure code, which
is less than zero, is returned if the function failed. See Appendix A.

Comments None

HGIsHubSlotPortInGroup
Description Returns whether the specified port is currently configured in the group.

Syntax int HGIsHubSlotPortInGroup(int Hub, int Slot, int Port)

Parameters iHub int Identifies the hub where the SmartCard is located.
The range is 0 (first hub) through N(number of hubs) -1.
Remember to subtract one since the hub identification
starts at 0.

Important: See Working with Multiple Hubs in Chapt 1.

iSlot int Identifies the slot where the SmartCard is located.
Ranges from 0 (first slot in Hub) to 19 (last card in
Hub).

iPort int Identifies the SmartCard port. (On the current
SmartCard, Port is always 0.)

Return
Value

Returns a positive (non-zero) number if TRUE, zero if FALSE. The return
value is >= 0 if the function executed successfully. A failure code, which is
less than zero, is returned if the function failed. See Appendix A.

Comments None

HGMultiBurstCount
Description Sets up the number of bursts for transmitting out a SmartCard while in

MULTI_BURST_MODE.

Syntax int HGMultiBurstCount(long lVal)

Parameters lVal long Specifies the burst count. Ranges anywhere from
1 to 16,777,215.

Return
Value

The return value is >= 0 if the function executed successfully. A failure
code, which is less than zero, is returned if the function failed. See
Appendix A.

Comments This instruction is only applied if HGTransmitMode, or
HTTransmitMode has selected MULTI_BURST_MODE. Use HGRun,
HGStart, HTGroupStart, and HTRun to start the transmission of the
bursts.

SmartLib User Guide 119

HGRemoveFromGroup
Description Along with HGSetGroup, this command can be used to remove individual

hub/slot/port designations from a currently configured group.

Syntax int HGRemoveFromGroup (int iHub, int iSlot, int iPort)

Parameters iHub int Identifies the hub where the SmartCard is located.
The range is 0 (first hub) through N(number of hubs) -1.
Remember to subtract one since the hub identification
starts at 0.

Important: See Working with Multiple Hubs in Chapt 1.

iSlot int Identifies the slot where the SmartCard is located.
Ranges from 0 (first slot in Hub) to 19 (last card in
Hub).

iPort int Identifies the SmartCard port. On the current
SmartCards, iPort is always 0

Return
Value

The return value is >= 0 if the function executed successfully. A failure
code, which is less than zero, is returned if the function failed. See
Appendix A.

Comments None

120 SmartLib User Guide

HGRemovePortIdFromGroup
Description This command can be used to remove individual hub/slot/port designations

from a currently configured group which has been set up using
HGSetGroup.

Syntax int HGRemovePortIdFromGroup (int iPortId)

Parameters iPortId int Identifies the port which is to be removed from the
currently configured group. The value used for the
iPortId is determined from the ordinal counting number
of existing ports in the test bay.

Return
Value

The return value is >= 0 if the function executed successfully. A failure
code, which is less than zero, is returned if the function failed. See
Appendix A.

Comments The first hub in the daisy chain from the control section would contain the
first set of ports to be identified. The port in the left-most (lowest
numbered) slot in the first hub is identified as iPortId=1, the next port in
the sequence going left to right across the slots, would be identified as
iPortId=2, and so on until all existing ports in the first hub have been
identified. Any empty slots are skipped over for the purposes of assigning
PortId numbers. The next hub in the daisy chain connection (at the back
of the test bay) would then continue with the next counting number as the
iPortId identifier.

Example 1: Assume you have a 4 hub test bay with 20 ports in each hub.
Then the ports in the first hub are identified left to right as ports 1
through 20. The second hub ports are identified left to right as ports 21
through 40. The third hub ports are identified left to right as ports 41
through 60. And the fourth hub ports are identified left to right as ports 61
through 80.

Example 2: Assume you have a four hub test bay with 7 ports in the first
hub, 4 ports in the second hub, no ports in the third hub and 3 ports in the
fourth hub. The first hub ports are identified left to right as ports 1
through 7. The second hub ports are identified left to right as ports 8
through 11. The third hub is skipped over as any other empty slots are
and the counting continues at the next port, which happens to be in the
fourth hub. The ports in the fourth hub are then identified left to right as
ports 12 through 15.

SmartLib User Guide 121

HGResetPort
Description Resets the SmartCards defined in the current group to a default condition

with all errors off.

Syntax int HGResetPort(int iResetType)

Parameters iResetType int Identifies the run mode of the board. Legal modes
can be conveyed using the following constants:

RESET_FULL Reset all card parameters including
hardware interface parameters (e.g. Token
Ring Speed)

RESET_PARTIAL Reset all card parameters except hardware
interface parameters (e.g. Token Ring
Speed)

Return
Value

The return value is >= 0 if the function executed successfully. A failure
code, which is less than zero, is returned if the function failed. See
Appendix A.

Comments This command is not implemented on the ATM and WAN(FR) SmartCards
at this time.

HGRun
Description Sets up the run state for all ports associated with the PortIdGroup defined

by the previous HGSetGroup(PortIdGroup) command. The port can be set
up to transmit a series of packets ("RUN" state), transmit a single packet
("STEP" state) or stop transmission altogether ("STOP" state). If the
Burst mode has been set up to transmit a burst of packets (using the
HTTransmit command), then transitioning from "STOP" to "RUN" will
cause the specified number of packets to be transmitted. This command
applies only to SmartCards.

This command works in conjunction with HTSeparateHubCommands. If
no setting is specified, the default used for HGRun is
HUB_DEFAULT_ACTION.

Syntax int HGRun(int iMode)

Parameters iMode int Identifies the run mode of the board. Legal modes
can be conveyed using the following constants:

HTRUN

HTRUN_VALUE Transmit continuously or send a burst of
packets. **Use HTRun_Value for Visual
Basic.**

HTSTEP Transmit a single packet.

HTSTOP Halt transmission of packets altogether.

Return
Value

The return value is >= 0 if the function executed successfully. A failure
code, which is less than zero, is returned if the function failed. See
Appendix A.

Comments Because VisualBasic does not distinguish by case, this value has been put
in the ETSMBAPI.TXT file:

HTRUN_VALUE Transmit continuously or send a burst of
packets.

122 SmartLib User Guide

HGSelectTransmit
Description Enables the PortB transmission of the ET-1000 to be transmitted to the

ports in the currently defined group. Transmission mode is determined by
iMode. This function is valid for both Passive and SmartCards.

Syntax int HGSelectTransmit(int iMode)

Parameters iMode int Determines the function of the Port:
HTTRANSMIT_OFF Transmitter is turned off

HTTRANSMIT_STD Transmitter transmits standard packets

HTTRANSMIT_COL Transmitter transmits collision packets

All other values are invalid and will not have an effect
on the SmartBits.

Return
Value

The return value is >= 0 if the function executed successfully. A failure
code, which is less than zero, is returned if the function failed. See
Appendix A.

Comments This function assumes that at least one SmartBits is attached to the ET-
1000. It will be ignored by the ET-1000 if there is not an SmartBits
present.

SmartLib User Guide 123

HGSetGroup
Description Groups an number of SmartBits ports. These ports may then be

manipulated as a group using the any of the SmartLib “HG” commands.

Syntax int HGSetGroup(char* pszPortIdGroup)

Parameters pszPortIdGroup char* A NULL terminated ASCII character string with
a maximum of 512 characters. This string defines which
ports are members of the active group.

Although a port is usually specified by identifying the
iHub, iSlot, and iPort, group members are identified by
a single number. This number is the actual sequence
number of the port - with numbers starting at the
Master controller.
The pszPortIdGroup numbers:
* Start at 1 (as opposed to 0).
* Do not count blank slots as part of the sequence.
* Do not account for the hub number.

So, for example, if you had four different hubs with one
card each, you could include them all in the group with
these values: "1,2,3,4"

Ports may be separated by commas and/or spaces. Any
number of commas or blank spaces may be inserted
between the port numbers, as long as the overall length
of the string doesn't exceed 512.

Dashes may also be used to identify the group. For
example: "1-100, 105, 256" groups the first one hundred
ports as well as the hundred and fifth, and the two
hundred and fifty-sixth port.

You can group ports in ascending or descending order so
that "4 - 1" is a valid value.

Port numbers are asigned from left to right, top to
bottom, first link to last link.

To clear an old group selection, use HGClearGroup. You
can also pass NULL as the PortIdGroup.

Return
Value

The return value is >= 0 if the function executed successfully. A failure
code, which is less than zero, is returned if the function failed. See
Appendix A.

Comments Only one group can exist at a time. All “HG” commands will act upon the
last PortIdGroup defined by HGSetGroup(PortIdGroup). Groups may be
defined and redefined at any time. See also HGAddtoGroup.

The first hub in the daisy chain from the control section would contain the
first set of ports to be identified. The port in the left-most (lowest
numbered) slot in the first hub is identified as iPortId=1, the next port in
the sequence going left to right across the slots, would be identified as
iPortId=2, and so on until all existing ports in the first hub have been
identified. Any empty slots are skipped over for the purposes of assigning
PortId numbers. The next hub in the stack would then continue with the

124 SmartLib User Guide

next counting number as the iPortId identifier.

HGSetGroupType
Description Reserves a group of ports by card types within a SmartBits configuration.

These ports may then be manipulated simultaneously with one another
(as a group) using the any of the “HG” commands defined herein.

Syntax int HGSetGroupType(int Index, int* pPortIdList)

Parameters Index int Size of card type array. The default setting is
CT_MAX_CARD_TYPE. A value of -1 will select all
types of cards, a value of 0 will clear the group selection.

pPortIdList int* An array of integers which describes the ports that
are to be grouped. pPortIdList[0] is designates
CT_ACTIVE (10 MB Ethernet) card types to be included
in the group. PPortIdList[1] is for CT_PASSIVE card
types, pPortIdList[2] is for CT_FASTX card types, and
so on for each of the CT_xxx card types.

For each value of pPortIdList[]:

0 means do not select this card type,

1 means to include this card type in the group.

For example:

Index = 8, and {0, 0, 1, 1, 0, 0, 0, 1} will select all the FAST, TOKENRING,
and GIGABIT cards.

To clear an old group selection, pass 0 in the Index.

Return
Value

The return value is >= 0 if the function executed successfully. A failure
code, which is less than zero, is returned if the function failed. See
Appendix A.

Comments Only one group can exist at any time for the “HG” commands. Groups can
cross hub boundaries. Groups may be defined and redefined at any time.
All “HG” commands will act upon the last PortIdList defined by
HGSetGroupType(Index, PortIdList). This command can be used to reset
a group previously set by HGSetGroup command.

SmartLib User Guide 125

HGSetSpeed
Description Sets selected speed for all ports associated with the PortIdGroup defined

by the previous HGSetGroup(PortIdGroup) command.. The speed selected
must be appropriate to the addressed SmartCard type.

Syntax int HGSetSpeed(int iSpeed)

Parameters iSpeed int Determines the speed of the Port:
SPEED_10MHZ Sets a 10 MB capable SmartCard to a 10 MHZ

Signaling rate

SPEED_100MHZ Sets a 100 MB capable SmartCard to a 100
MHZ Signaling rate

SPEED_4MHZ Sets a 4 MB capable SmartCard to a 4 MHZ
Signaling rate

SPEED_16MHZ Sets a 16 MB capable SmartCard to a 16 MHZ
Signaling rate

SPEED_155MHZ Sets a 155 MB capable SmartCard to a 155
MHZ Signaling rate

SPEED_25MHZ Sets a 25 MB capable SmartCard to a 25 MHZ
Signaling rate

Return
Value

The return value is >= 0 if the function executed successfully. A failure
code, which is less than zero, is returned if the function failed. See
Appendix A.

Comments None

HGSetTokenRingAdvancedControl
Description Generates specialized frames for all ports associated with the

PortIdGroup defined by the previous HGSetGroup(PortIdGroup)
command. This command only works for TokenRing SmartCard.

Syntax int HGSetTokenRingAdvancedControl(TokenRingAdvancedStructure
*pTRAdvancedStructure)

Parameters pTRAdvancedStructure TokenRingAdvancedStructure* Points to a
TokenRingAdvancedStructure (see page 70)
which contains all the information required to
transmit special control frames.

Return
Value

The return value is >= 0 if the function executed successfully. A failure
code, which is less than zero, is returned if the function failed. See
Appendix A.

Comments This command will cause ring operation to fail if not used with full
knowledge of the Token Ring Architectural Specification.

126 SmartLib User Guide

HGSetTokenRingErrors
Description Simultaneously generates error frame traffic for all ports associated with

the PortIdGroup defined by the previous HGSetGroup(PortIdGroup)
command. This command only works for TokenRing SmartCard.

Syntax int HGSetTokenRingErrors(int ErrorTrafficRatio, int iTRErrors)

Parameters ErrorTraficRatio int Specifies the error traffic ratio in tenths of percent.
Ranges anywhere from 0 to 1000. A value of 0 will turn
off error generation.

iTRErrors int Specifies the type of frame errors to generate. Value
can be a combined OR of the following defines:

TR_ERR_FCS FCS errors

TR_ERR_FRAME_COPY Frame copy errors

TR_ERR_FRAME_BIT Frame Bit errors

TR_ERR_FRAME_FS FS Frame errors

TR_ERR_ABORT_DELIMITER Abort delimiter errors

TR_ERR_BURST Burst errors

Return
Value

The return value is >= 0 if the function executed successfully. A failure
code, which is less than zero, is returned if the function failed. See
Appendix A.

Comments The number in the ratio is nominally in tenths of a percent. However, as it
is rationalized to a count the precision will be poor at large percentage
values.

HGSetTokenRingLLC
Description Simultaneously configures an LLC frame for all ports associated with the

PortIdGroup defined by the previous HGSetGroup(PortIdGroup)
command. This command only works for TokenRing SmartCards.

Syntax int HGSetTokenRingLLC(TokenRingLLCStructure *pTRLStructure)

Parameters pTRLStructure TokenRingLLCStructure* Points to a
TokenRingLLCStructure which contains all the
information required to preform LLC Type 1 frames.

Return
Value

The return value is >= 0 if the function executed successfully. A failure
code, which is less than zero, is returned if the function failed. See
Appendix A.

Comments TokenRing MAC header also has to be defined for this command to take
effect.

SmartLib User Guide 127

HGSetTokenRingMAC
Description Simultaneously configures a TokenRing MAC header for all ports

associated with the PortIdGroup defined by the previous
HGSetGroup(PortIdGroup) command. This command only works for
TokenRing SmartCard.

Syntax int HGSetTokenRingMAC(TokenRingMACStructure *pTRMStructure)

Parameters pTRMStructure TokenRingMACStructure* Points to a
TokenRingMACStructure (see page 69) which defines a
preformed MAC header.

Return
Value

The return value is >= 0 if the function executed successfully. A failure
code, which is less than zero, is returned if the function failed. See
Appendix A.

Comments None

HGSetTokenRingProperty
Description Simultaneously configures ring operation characteristics for all ports

associated with the PortIdGroup defined by the previous
HGSetGroup(PortIdGroup) command. This command only works for
TokenRing SmartCard.

Syntax int HGSetTokenRingProperty(TokenRingPropertyStructure
*pTRPStructure)

Parameters pTRPStructure TokenRingPropertyStructure* Points to a
TokenRingPropertyStructure (see page 70) which
contains all the information required to configure ring
operation.

Return
Value

The return value is >= 0 if the function executed successfully. A failure
code, which is less than zero, is returned if the function failed. See
Appendix A.

Comments This command defines card properties which are retained in non-volatile
storage. These parameters should not be altered on a live ring as they will
probably cause ring malfunction (usually Beaconing by other stations
which might cause them to close down pending a hard reset).

128 SmartLib User Guide

HGSetTokenRingSrcRouteAddr
Description Simultaneously configures a Source Route Address(SRA) for all ports

associated with the PortIdGroup defined by the previous
HGSetGroup(PortIdGroup) command. This command only works for
TokenRing SmartCard.

Syntax int HGSetTokenRingSrcRouteAddr(int UseSRA, int *piData)

Parameters UseSRA int specifies whether an SRA field will be included in a
TokenRing frame.

0 No SRA defined

1 Use SRA defined in piData parameter.

piData int * Points to an array of int which contains the Source
Route Address information. The maximum length of
this array is 32 and the length information is encoded in
the lower 5 bits of the first byte of SRA.

Return
Value

The return value is >= 0 if the function executed successfully. A failure
code, which is less than zero, is returned if the function failed. See
Appendix A.

Comments his field is part of a pre-formed header and so the MAC header has to be
active for it to be active. The data in this field will be parsed by the card to
determine the size of the source routing field to use and the maximum
frame size to transmit. (See the Token Ring Architectural Reference for
details of how to code this field.)

HGSetVGProperty
Description Simultaneously configures VG SmartCards operation characteristics for

all ports associated with the PortIdGroup defined by the previous
HGSetGroup(PortIdGroup) command.

Syntax int HGSetVGProperty(VGCardPropertyStructure *pVGPStructure)

Parameters pVGPStructure VGCardPropertyStructure* Points to a
VGCardPropertyStructure (see the section on Data
Structures) which contains all the information required
to configure VG Cards.

Return
Value

The return value is >= 0 if the function executed successfully. A failure
code, which is less than zero, is returned if the function failed. See
Appendix A.

Comments None

SmartLib User Guide 129

HGStart
Description Simultaneously starts transmission of packets from all ports associated

with the PortIdGroup defined by previous HGSetGroup(PortIdGroup)
command.

Syntax int HGStart(void)

Parameters None

Return
Value

The return value is >= 0 if the function executed successfully. A failure
code, which is less than zero, is returned if the function failed. See
Appendix A.

Comments This command works in conjunction with HTSeparateHubCommands. If
no setting is specified, the default used for HGStart is
HUB_DEFAULT_ACTION.

HGStep
Description Simultaneously causes the transmission of a single packet or burst from

all ports associated with the PortIdGroup defined by the previous
HGSetGroup(PortIdGroup) command.

Syntax int HGStep(void)

Parameters None

Return
Value

The return value is >= 0 if the function executed successfully. A failure
code, which is less than zero, is returned if the function failed. See
Appendix A.

Comments This command works in conjunction with HTSeparateHubCommands. If
no setting is specified, the default used for HGStep is
HUB_DEFAULT_ACTION.

HGStop
Description Simultaneously halts the transmission of packets from all ports associated

with the PortIdGroup defined by the previous HGSetGroup(PortIdGroup)
command.

Syntax int GStop(void)

Parameters None

Return
Value

he return value is >= 0 if the function executed successfully. A failure
code, which is less than zero, is returned if the function failed. See
Appendix A.

Comments This command works in conjunction with HTSeparateHubCommands. If
no setting is specified, the default used for HGStop is
HUB_DEFAULT_ACTION.

130 SmartLib User Guide

HGSymbol
Description Generates symbol error for the 100 Mbits SmartCard. The group of ports

can be set up to transmit a series of packets which generates invalid wave
form data pattern. This command applies only to 100 Mbits SmartCards.

Syntax int HGSymbol(int Mode)

Parameters Mode int Identifies the symbol mode of the board. Legal
modes can be conveyed using the following constants:

SYMBOL_OFF Turn off symbol errors

SYMBOL_ON Turn on symbol errors

Return
Value

The return value is >= 0 if the function executed successfully. A failure
code, which is less than zero, is returned if the function failed. See
Appendix A.

Comments None

HGTransmitMode
Description Indicates how to control the transmission of packets when running for all

ports associated with the PortIdGroup defined by the previous
HGSetGroup(PortIdGroup) command.

Syntax int HGTransmitMode(int iMode)

Parameters iMode int Indicates the mode of operation when transmitting
packets according to the following defined values:

CONTINUOUS_PACKET_MODE Sets port to transmit single packets
continuously.

SINGLE_BURST_MODE Sets port to transmit a single burst of
packets, and then stop.

MULTI_BURST_MODE Sets port to transmit multiple bursts of
packets, indicated by the HxMultiBurstCount
command, with each burst being separated by
the amount specified in the HxBurstGap
command, and then stop.

CONTINUOUS_BURST_MODE Sets port to continuously send bursts
of packets with each burst being separated
by the amount specified in the HxBurstGap
command.

ECHO_MODE Sets port to transmit a single packet upon
receiving a Receive Trigger event.

Return
Value

The return value is >= 0 if the function executed successfully. A failure
code, which is less than zero, is returned if the function failed. See
Appendix A.

Comments None

SmartLib User Guide 131

HGTrigger
Description Sets up the triggering mechanism from all ports associated with the

PortIdGroup defined by the previous HGSetGroup(PortIdGroup)
command. HTTrigger specifies the trigger number (1 or 2), the
operational configuration, trigger pattern range, trigger pattern offset and
trigger pattern data. This function applies only to SmartCards.

Syntax int HGTrigger(int iTrigId, int iConfig, HTTriggerStructure* phtTStruct)

Parameters iTrigId int Identifies the trigger source. There are two possible
triggers on each SmartCard. They are identified as
follows:

HTTRIGGER_1 Trigger 1

HTTRIGGER_2 Trigger 2

iConfig int There are three possible types of configurations for
the triggers on the SmartCards:

HTTRIGGER_OFF disables the triggering mechanism for
TrigId

HTTRIGGER_ON enables the triggering mechanism for TrigId

HTTRIGGER_DEPENDENTenables the triggering mechanism for TrigId
after the other trigger has triggered.

phtTStruct HTTriggerStructure* A structure containing the
trigger pattern, offsets and ranges. Note that the
maximum range is 6 bytes. Though the range is
specified in bytes, the specified number is rounded up to
the nearest byte multiple. i.e.; the SmartCards can only
trigger on patterns that are a length that is a multiple
of 8 bits. The offset ranges from 1 to 12,112 bits
(specified in bits). See section 5 of this document for
more information on the HTTriggerStructure.

Return
Value

The return value is >= 0 if the function executed successfully. A failure
code, which is less than zero, is returned if the function failed. See
Appendix A.

Comments It is possible to misconfigure triggers when using
HTTRIGGER_DEPENDENT.

A TrigId set to HTTRIGGER_DEPENDENT is to be active after the
other TrigId trigger has occurred. So, if trigger 2 is set to be dependent on
trigger 1:

A properly configured trigger dependent combination would be:
HGTrigger(HTTRIGGER_1,HTTRIGGER_ON,&TStruct)

HGTrigger(HTTRIGGER_2,HTTRIGGER_DEPENDENT,&TStruct)

A misconfigured trigger combination would be:
HGTrigger(HTTRIGGER_1,HTTRIGGER_OFF,&TStruct)

HGTrigger(HTTRIGGER_2,HTTRIGGER_DEPENDENT,&TStruct)

Here, trigger 2 will never fire because trigger 1 is off.

132 SmartLib User Guide

HGVFD
Description Sends VFD information to all ports in the group defined by the previous

HGSetGroup(PortIdGroup) command. Applies only to SmartCards.

Syntax int HGVFD(int VFDId, HTVFDStructure* HStruct)

Parameters VFDId int Identifies the VFD pattern being addressed. There are a
total of three VFD patterns. They are identified as shown
below:

HVFD_1 VFD Pattern 1

HVFD_2 VFD Pattern 2

HVFD_3 VFD Pattern 3

HStruct HTVFDStructure* Structure holds VFD information used
with a SmartCard (VFD Configuration, Range, Offset and
Pattern).

Return
Value

The return value is >= 0 if the function executed successfully. A failure
code, which is less than zero, is returned if the function failed. See
Appendix A.

Comments None

HTAlign
Description Create alignment errors on the selected Hub/Slot/Port. This function is

valid for SmartCards only.

Syntax int HTAlign(int iBits, int iHub, int iSlot, int iPort)

Parameters iBits int Sets the number of extra alignment bits to transmit. Valid
range is 0 to 7. Setting this value to 0 disables generation of
packets with alignment bit errors.

iHub int Identifies the hub where the SmartCard is located.
The range is 0 (first hub) through N(number of hubs) -1. Remember
to subtract one since the hub identification starts at 0.

Important: See Working with Multiple Hubs in Chapt 1.

iSlot int Identifies the slot where the SmartCard is located. Ranges
from 0 (first slot in iHub) to 19 (last card in Hub).

iPort int Identifies the SmartCard port. With current cards, iPort is
always 0.

Return
Value

The return value is >= 0 if the function executed successfully. A failure
code, which is less than zero, is returned if the function failed. See
Appendix A.

Comments None

SmartLib User Guide 133

HTBurstCount
Description Sets the number of packets to transmit in a single burst from a

SmartCard.

Syntax int HTBurstCount(long lVal, iHub, iSlot, iPort)

Parameters lVal long Specifies the burst count. Ranges from 1 to 16,777,215.

iHub int Identifies the hub where the SmartCard is located.
The range is 0 (first hub) through N(number of hubs) -1. Remember
to subtract one since the hub identification starts at 0.

Important: See Working with Multiple Hubs in Chapt 1.

iSlot int Identifies the slot where the SmartCard is located. Ranges
from 0 (first slot in Hub) to 19 (last card in Hub).

iPort int Identifies the SmartCard port. On current cards, Port is always
0.

Return
Value

The return value is >= 0 if the function executed successfully. A failure
code, which is less than zero, is returned if the function failed. See
Appendix A.

Comments This instruction does not cause a burst of packets to be sent. Use
HGTransmitMode, or HTTransmitMode to select a burst mode, and
then use HGRun, HGStart, HGStep, HTGroupStart, HTGroupStep,
or HTRun to actually start the transmission of the burst.

HTBurstGap
Description Sets up the time gap between bursts of packets from a SmartCard.

Syntax int HTBurstGap(long lVal, iHub, iSlot, iPort)

Parameters lVal long Specifies the inter-burst gap in tenths of a microsecond.
Ranges anywhere from 1 to 16,777,215.

iHub int Identifies the hub where the SmartCard is located.
The range is 0 (first hub) through N(number of hubs) -1. Remember to
subtract one since the hub identification starts at 0.

Important: See Working with Multiple Hubs in Chapt 1.

iSlot int Identifies the slot where the SmartCard is located. Ranges
from 0 (first slot in Hub) to 19 (last card in Hub).

iPort int Identifies the SmartCard port. On current cards, Port is always
0.

Return
Value

he return value is >= 0 if the function executed successfully. A failure
code, which is less than zero, is returned if the function failed. See
Appendix A.

Comments This instruction is only applied if HGTransmitMode, or
HTTransmitMode has selected one of the MULTI_BURST_MODE, or
CONTINUOUS_BURST mode selections. Use HGRun, HGStart,
HTGroupStart, and HTRun to actually start the transmission of the
bursts.

134 SmartLib User Guide

HTBurstGapAndScale
Description Sets up the time gap between bursts of packets, at the given scale from a

SmartCard.

Syntax int TBurstGapAndScale(long lVal, int iScale, iHub, iSlot, iPort)

Parameters lVal long Specifies the inter-burst gap value. Legal values
range anywhere from the lowest gap possible on the
card being addressed up to a maximum of 1.6 sec.

iScale int Specifies the scale of the gap value according to
following:

NANO_SCALE = nanoseconds scale

MICRO_SCALE = microseconds scale

MILLI_SCALE = milliseconds scale.

iHub iHub int Identifies the hub where the SmartCard is
located.
The range is 0 (first hub) through N(number of hubs) -1.
Remember to subtract one since the hub identification
starts at 0.

Important: See Working with Multiple Hubs in Chapt 1.

iSlot int Identifies the slot where the SmartCard is located.
Ranges from 0 (first slot in Hub) to 19 (last card in
Hub).

iPort int Identifies the SmartCard port. (On the current
SmartCards, Port is always 0.)

Return
Value

The return value is >= 0 if the function executed successfully. A failure
code, which is less than zero, is returned if the function failed. See
Appendix A.

Comments This instruction is only applied if HGTransmitMode, or
HTTransmitMode has selected one of the MULTI_BURST_MODE, or
CONTINUOUS_BURST mode selections. Use HGRun, HGStart,
HTGroupStart, and HTRun to actually start the transmission of the
bursts.

SmartLib User Guide 135

HTCardModels
Description Retrieves an array of integers which corresponds to the card model written

at the top of the SmartCard front panel.

Syntax int HTCardModels(int iCardModels[MAX_HUBS][MAX_SLOTS])

Parameters iCardModels int On return, this array will be filled with CM_ values
where the hub and slot indices of the array refer to an
iCardModel entry which correspond to the model of the
SmartCard actually plugged into the SmartBits chassis.
The returned values will be one of the following:

CM_UNKOWN

CM_NOT_PRESENT

CM_SE_6205

CM_SC_6305

CM_ST_6405

CM_ST_6410

CM_SX_7205

CM_SX_7405

CM_SX_7410

CM_TR_8405

CM_VG_7605

CM_L3_6705

CM_AT_9025

CM_AT_9155

CM_AS_9155

CM_GX_1405

CM_WN_3405

CM_AT_9015

CM_AT_9020

CM_AT_9034

CM_AT_9045

CM_AT_9622

CM_L3_6710

CM_SX_7210

CM_ML_7710

Return
Value

The return value is >= 0 if the function executed successfully. A failure
code, which is less than zero, is returned if the function failed. See
Appendix A.

Comments None

136 SmartLib User Guide

HTClearPort
Description This command is used to clear internal counters in a SmartCards port.

Syntax int HTClearPort(int iHub, int iSlot, int iPort)

Parameters iHub int Identifies the hub where the SmartCard is located.
The range is 0 (first hub) through N(number of hubs) -1.
Remember to subtract one since the hub identification
starts at 0.

Important: See Working with Multiple Hubs in Chapt 1.

iSlot int Identifies the slot where the SmartCard is located.
Ranges from 0 (first slot in Hub) to 19 (last card in
Hub).

iPort int Identifies the SmartCard port. (On the current
SmartCards, Port is always 0.)

Return
Value

The return value is >= 0 if the function executed successfully. A failure
code, which is less than zero, is returned if the function failed. See
Appendix A.

Comments None

HTCollision
Description etermines the collision mode, and count for the 100 Mbits Fast

SmartCard.

Syntax int HTCollision(CollisionStructure* CStruct, int iHub, int iSlot, int iPort)

Parameters CStruct CollisionStructure* Holds information pertaining to the
collision mode (off, on), and count.

iHub int Identifies the hub where the SmartCard is located.
The range is 0 (first hub) through N(number of hubs) -1.
Remember to subtract one since the hub identification starts
at 0.

Important: See Working with Multiple Hubs in Chapt 1.

iSlot int Identifies the slot where the SmartCard is located.
Ranges from 0 (first slot in Hub) to 19 (last card in Hub).

iPort int Identifies SmartCard port. On current cards, Port is
always 0.

Return
Value

The return value is >= 0 if the function executed successfully. The return
value is < 0 if the function failed. See Appendix A.

Comments See the definition of CollisionStructure in the Data Structures portion
of this manual. The offset and length fields are not used for 100 Mbits
SmartCard.

SmartLib User Guide 137

HTCollisionBackoffAggressiveness
Description Determines the wait factor for backing off from multiple collisions.

Syntax int HTCollisionBackoffAggressiveness(unsigned int uiAggressiveness, int
iHub, int iSlot, int iPort)

Parameters uiAggressiveness unsigned int Set the backoff factor. The amount of
time actually delayed follows as powers of two using this
factor.

iHub int Identifies the hub where the SmartCard is located.
The range is 0 (first hub) through N(number of hubs) -1.
Remember to subtract one since the hub identification starts at 0.

Important: See Working with Multiple Hubs in Chapt 1.

iSlot int Identifies the slot where the SmartCard is located. Ranges
from 0 (first slot in Hub) to 19 (last card in Hub).

iPort int Identifies the SmartCard port. On the current SmartCards,
iPort is always 0.

Return
Value

The return value is >= 0 if the function executed successfully. A failure
code, which is less than zero, is returned if the function failed. See
Appendix A.

Comments None

HTCRC
Description Create packets with CRC errors on the selected Hub/Slot/Port. This

function is valid for SmartCards only.

Syntax int HTCRC(int iMode, int iHub, int iSlot, int iPort)

Parameters iMode int Set the error facility on or off. Valid flags: ET_ON and
ET_OFF

iHub int Identifies the hub where the SmartCard is located.
The range is 0 (first hub) through N(number of hubs) -1.
Remember to subtract one since the hub identification starts at
0.

Important: See Working with Multiple Hubs in Chapt 1.

iSlot int Identifies the slot where the SmartCard is located. Ranges
from 0 (first slot in Hub) to 19 (last card in Hub).

iPort int Identifies SmartCard port. On current cards, iPort is
always 0.

Return
Value

The return value is >= 0 if the function executed successfully. A failure
code, which is less than zero, is returned if the function failed. See
Appendix A.

Comments (Not used by the TokenRing SmartCard)

138 SmartLib User Guide

HTDataLength
Description This command is used to specify the length of the data field in the packets

being transmitted by the specified SmartBits port. This command applies
only to SmartCards. A random packet size can also be selected.

Syntax int HTDataLength(int iLength, int iHub, int iSlot, int iPort)

Parameters iLength int Specifies the length of the packets that are to be transmitted
on the addressed port. The length is specified in bytes, and it
includes everything between the preamble and the CRC. The
actual transmitted packet will be extended four bytes for the
CRC. Length can range from 1 to 8191. A Length of 0 will
cause random packet sizes to be transmitted.

iHub int Identifies the hub where the SmartCard is located.
The range is 0 (first hub) through N(number of hubs) -1.
Remember to subtract one since the hub identification starts at
0.

Important: See Working with Multiple Hubs in Chapt 1.

iSlot int Identifies the slot where the SmartCard is located. Ranges
from 0 (first slot in Hub) to 19 (last card in Hub).

iPort int Identifies the SmartCard port. (On the current SmartCards,
Port is always 0.)

Return
Value

The return value is >= 0 if the function executed successfully. A failure
code, which is less than zero, is returned if the function failed. See
Appendix A.

Comments None

SmartLib User Guide 139

HTDribble
Description Create dribbling bit errors on the selected Hub/Slot/Port.

Syntax int HTDribble(int iBits, int iHub, int iSlot, int iPort)

Parameters iBits int Sets the number of dribbling bits to transmit. Valid
range is 0 to 7. Setting this value to 0 disables
generation of packets with dribbling bit errors.

iHub int Identifies the hub where the SmartCard is located.
The range is 0 (first hub) through N(number of hubs) -1.
Remember to subtract one since the hub identification
starts at 0.

Important: See Working with Multiple Hubs in Chapt 1.

iSlot int Identifies the slot where the SmartCard is located.
Ranges from 0 (first slot in Hub) to 19 (last card in
Hub).

iPort int Identifies the SmartCard port. On the current
SmartCards, iPort is always 0.

Return
Value

The return value is >= 0 if the function executed successfully. A failure
code, which is less than zero, is returned if the function failed. See
Appendix A.

Comments None

140 SmartLib User Guide

HTDuplexMode
Description Indicates whether to set full duplex or half duplex mode for the

hub/slot/port indicated.

Syntax int HTDuplexMode(int iMode, int iHub, int iSlot, int iPort)

Parameters iMode int Sets the Duplex mode where iMode should be one of
the following:

FULLDUPLEX_MODE Full duplex mode on

HALFDUPLEX_MODE Half duplex mode on

iHub int Identifies the hub where the SmartCard is located.
The range is 0 (first hub) through N(number of hubs) -1.
Remember to subtract one since the hub identification
starts at 0.

Important: See Working with Multiple Hubs in Chapt 1.

iSlot int Identifies the slot where the SmartCard is located.
Ranges from 0 (first slot in Hub) to 19 (last card in
Hub).

iPort int Identifies the SmartCard port. On the current
SmartCards, iPort is always 0.

Return
Value

The return value is >= 0 if the function executed successfully. A failure
code, which is less than zero, is returned if the function failed. See
Appendix A.

Comments (Not used by the TokenRing SmartCard)

SmartLib User Guide 141

HTFillPattern
Description Specifies the background fill pattern that is laid into the frame. This

pattern is written over by other fields such as VFDs and Signature fields.

If the Fill Pattern is not specified, the default is all 0s.

Syntax int HTFillPattern(int iSize, int* piData, int iHub, int iSlot, int iPort)

Parameters iSize int Identifies the size, in bytes, of the fill pattern
contained in the Data array. Size may range from 60 to
2044. A value of 0 (zero) will cause a random data
pattern to be generated.

piData int* Points to the array which contains the data pattern
to be transmitted. A value of NULL will cause a random
data pattern to be generated.

iHub int Identifies the hub where the SmartCard is located.
The range is 0 (first hub) through N(number of hubs) -1.
Remember to subtract one since the hub identification
starts at 0.

Important: See Working with Multiple Hubs in Chapt 1.

iSlot int Identifies the slot where the SmartCard is located.
Ranges from 0 (first slot in Hub) to 19 (last card in
Hub).

iPort int Identifies the SmartCard port. (On the current
SmartCards, Port is always 0.)

Return
Value

The return value is >= 0 if the function executed successfully. A failure
code, which is less than zero, is returned if the function failed. See
Appendix A.

Comments A random data pattern will be generated if either the iSize parameter is 0,
or the piData array pointer parameter in NULL.

142 SmartLib User Guide

HTFindMIIAddress
Description This function will find the first MII PHY address which appears to have a

legal device present. This command applies only to 100 Mb SmartCards.

Syntax int HTFindMIIAddress(unsigned int* puiAddress, unsigned short*
puiControl Bits, int Hub, int Slot, int Port)

Parameters puiAddress unsigned int* Specific address found is returned here.

puiControlBits unsigned short* Control register bits read are
returned here.

iHub int Identifies the hub where the SmartCard is located.
The range is 0 (first hub) through N(number of hubs) -1.
Remember to subtract one since the hub identification
starts at 0.

Important: See Working with Multiple Hubs in Chapt 1.

iSlot int Identifies the slot where the SmartCard is located.
Ranges from 0 (first slot in iHub) to 19 (last card in
Hub).

iPort int Identifies the SmartCard port. (On the current
SmartCards, Port is always 0.)

Return
Value

The return value is >= 0 if the function executed successfully. A failure
code, which is less than zero, is returned if the function failed. See
Appendix A.

Comments Of the 32 possible addresses on an MII transceiver, this command will find
the lowest address which returns a legal control register value.

SmartLib User Guide 143

HTFrame
Description Puts specified frame elements into the SmartCard frame buffer.

Use HTFrame in conjunction with NSCreateFrame, NSModifyFrame, and
NSCreateFrameAndPayload.

Syntax long HTFrame (long iFrameID, int iHub, int iSlot, int iPort, unsigned
short uiStreamIndex)

Parameters lFrameID long The FrameID number is unique for each frame
created with NSCreateFrame. It is returned when a
frame is created, and is used to identify the specified
frame "blueprint". This number does not change when
NSModifyFrame is used.

iHub int Identifies the hub where the SmartCard is located.
The range is 0 (first hub) through N(number of hubs) -1.
Remember to subtract one since the hub identification
starts at 0.

Important: See Working with Multiple Hubs in Chapt 1.

iSlot int Identifies the slot where the SmartCard is located.
Ranges from 0 (first slot in Hub) to 19 (last card in
Hub).

iPort int Identifies the SmartCard port. (On the current
SmartCards, Port is always 0.)

uiStreamIndex unsigned short This uiStreamIndex has a value of 0
(not used), unless you are working with ATM. Because
of the complexity of an ATM stream setup, each ATM
stream must be indexed. ATM streams include traffic
information as well as frame content.

See ATM_STREAM in the Message Functions manual
for more information.

Since NSCreateFrame functions are intended for "layer
2" mode, VTEs and Signature fields are not part of
these frames.

Return
Value

The return value is >= 0 if the function executed successfully. A negative
value is returned if the function fails. See Appendix A.

Comments A related function is NSDeleteFrame.

144 SmartLib User Guide

HTGap
Description pecifies the inter-packet gap that is to be transmitted on the addressed

port. Also allows random gaps to be transmitted. This command applies
only to SmartCards.

Syntax int HTGap(long lPeriod, int iHub, int iSlot, int iPort)

Parameters lPeriod long On 10Mbit cards, this value equals the number of
tenths of microseconds between transmitted packets in
bit time. On 100Mbit SmartCards, this value equals the
number of tens of nanoseconds between transmitted
packets. In either case, lPeriod may range from 10 to
1,600,000. A value of 0 (long) will cause a random gap
to be generated. For example, if lPeriod = 96, for
10Mbit cards, the Gap will be 96*0.1us = 9.6us, and for
100Mbit cards, the Gap will be 96*10ns = 960ns. In
both cases, the cards get the minimum legal interpacket
gap.

iHub int Identifies the hub where the SmartCard is located.
The range is 0 (first hub) through N(number of hubs) -1.
Remember to subtract one since the hub identification
starts at 0.

Important: See Working with Multiple Hubs in Chapt 1.

iSlot int Identifies the slot where the SmartCard is located.
Ranges from 0 (first slot in Hub) to 19 (last card in
Hub).

iPort int Identifies the SmartCard port. (On the current
SmartCards, Port is always 0.)

Return
Value

The return value is >= 0 if the function executed successfully. A failure
code, which is less than zero, is returned if the function failed. See
Appendix A.

Comments None

SmartLib User Guide 145

HTGapAndScale
Description Specifies the inter-packet gap (based on a selected time unit "scale") to be

transmitted from the specified port. Also allows random gaps to be
transmitted. This command applies only to SmartCards.

Syntax int HTGapAndScale(long lPeriod, int iScale, int iHub, int iSlot, int iPort)

Parameters lPeriod long Identifies the number of time units between transmitted
packets. Period may range from 1 to 1,600,000,000. A value of
0 (long) will cause a random gap to be generated.

iScale int Determines the size of the unit (scale) for the lPeriod
parameter based on the following:

NANO_SCALE = nanoseconds scale

MICRO_SCALE = microseconds scale

MILLI_SCALE = milliseconds scale.

iHub int Identifies the hub where the SmartCard is located.
The range is 0 (first hub) through N(number of hubs) -1.
Remember to subtract one since the hub identification starts at 0.

Important: See Working with Multiple Hubs in Chapt 1.

iSlot int Identifies the slot where the SmartCard is located. Ranges
from 0 (first slot in Hub) to 19 (last card in Hub).

iPort int Identifies the SmartCard port. (On the current SmartCards,
Port is always 0.)

Return
Value

The return value is >= 0 if the function executed successfully. A failure
code, which is less than zero, is returned if the function failed. See
Appendix A.

Comments Gap is set according to the valid increments of the network topography.
For example, if a 100 Mbps Ethernet network is being tested, the gap is
set in increments of 40 ns. Whether nanoseconds, microseconds, or
milliseconds is selected, SmartLib divides the increment (in this case, 40
ns) into the desired gap setting, and drops the remainder.

146 SmartLib User Guide

HTGetCardModel
Description Retrieves a character string which matches the card model written at the

top of the SmartCard front panel.

Syntax int HTGetCardModel(char* pszCardModel, int iHub, int iSlot, int iPort)

Parameters pszCardModelt char* A pointer to a character array into which the
Card Model identifier will be written. The card model
identifier is the front panel label on the SmartCard (e.g.
L3-6710, ML-7710, AT-9622, etc).

iHub int Identifies the hub where the SmartCard is located.
The range is 0 (first hub) through N(number of hubs) -1.
Remember to subtract one since the hub identification starts at 0.

Important: See Working with Multiple Hubs in Chapt 1.

iSlot int Identifies the slot where the SmartCard is located. Ranges
from 0 (first slot in Hub) to 19 (last card in Hub).

iPort int Identifies the SmartCard port. On current cards, Port is
always 0.

Return
Value

Upon success, the return value is the correct CM_ integer value for the
SmartCard addressed. Valid values are:

CM_NOT_PRESENT
CM_SE_6205
CM_SC_6305
CM_ST_6405
CM_ST_6410
CM_SX_7205
CM_SX_7405
CM_SX_7410
CM_TR_8405
CM_VG_7605
CM_L3_6705
CM_AT_9025
CM_AT_9155
CM_AS_9155
CM_GX_1405
CM_WN_3405
CM_AT_9015
CM_AT_9020
CM_AT_9034
CM_AT_9045
CM_AT_9622
CM_L3_6710
CM_SX_7210
CM_ML_7710

A failure code, which is less than zero, is returned if the function failed.
See Appendix A.

Comments None

SmartLib User Guide 147

HTGetCounters
Description Retrieves information from all the counters within the addressed

SmartBits port. This information is placed into the HTCountStructure
pointed to in the input argument. This command applies only to
SmartCards.

Syntax int HTGetCounters(HTCountStructure* phtHStruct, int iHub, int iSlot,
int iPort)

Parameters phtHStruct HTCountStructure* A pointer to the structure in
which count information is to be placed. See section 5 of
this document for a description of the
HTCountStructure structure.

iHub int Identifies the hub where the SmartCard is located.
The range is 0 (first hub) through N(number of hubs) -1.
Remember to subtract one since the hub identification
starts at 0.

Important: See Working with Multiple Hubs in Chapt 1.

iSlot int Identifies the slot where the SmartCard is located.
Ranges from 0 (first slot in Hub) to 19 (last card in
Hub).

iPort int Identifies the SmartCard port. (On the current
SmartCards, Port is always 0.)

Return
Value

The return value is >= 0 if the function executed successfully. A failure
code, which is less than zero, is returned if the function failed. See
Appendix A.

Comments It is assumed that the calling function has declared a HTCountStructure
and reserved memory for it.

148 SmartLib User Guide

HTGetEnhancedCounters
Description Retrieves standard counters and card related counters from the port. This

information is placed into the EnhancedCounterStructure pointed to in
the input argument.

Syntax int HTGetEnhancedCounters(EnhancedCountStructure* pEnCounter, int
iHub, int iSlot, int iPort)

Parameters pEnCounter EnhancedCounterStructure* A pointer to the first
element of an array of counter structures in which count
information is to be placed. (See page 56.)

iHub int Identifies the hub where the SmartCard is located.
The range is 0 (first hub) through N(number of hubs) -1.
Remember to subtract one since the hub identification
starts at 0.

Important: See Working with Multiple Hubs in Chapt 1.

iSlot int Identifies the slot where the TokenRing SmartCard
is located. Ranges from 0 (first slot in Hub) to 19 (last
card in Hub).

iPort int Identifies the TokenRing SmartCard port. (On the
current TokenRing SmartCard, Port is always 0.)

Return
Value

The return value is >= 0 if the function executed successfully. A failure
code, which is less than zero, is returned if the function failed. See
Appendix A.

Comments None

HTGetEnhancedStatus
Description Retrieves card related status information from the port. This information

is placed into the int pointed to in the input argument. This command
applies to SmartCards and TokenRing SmartCards.

Syntax int HTGetEnhancedStatus(unsigned long* piData, int iHub, int iSlot, int
iPort)

Parameters piData unsigned long* A pointer to an unsigned long in which
status information is to be placed.

iHub int Identifies the hub where the SmartCard is located.
The range is 0 (first hub) through N(number of hubs) -1.
Remember to subtract one since the hub identification
starts at 0.

Important: See Working with Multiple Hubs in Chapt 1.

iSlot int Identifies the slot where the TokenRing SmartCard
is located. Ranges from 0 (first slot in Hub) to 19 (last
card in Hub).

iPort int Identifies the TokenRing SmartCard port. (On the
current TokenRing SmartCard, Port is always 0.)

SmartLib User Guide 149

Return
Value

The return value is >= 0 if the function executed successfully. A failure
code, which is less than zero, is returned if the function failed. See
Appendix A. If the return is successful, then the following is true:

piData A bitmap of card status information is returned in the
high three bytes:

If bit set on a Token Ring SmartCard:
TR_STATUS_ACCESSED Card received stream

 download

TR_STATUS_BADSTREAM Not used

TR_STATUS_BURST_MODE Card is in burst mode

TR_STATUS_BEACONING Card received MAC beacon

 frame

TR_STATUS_DEVICE

 If set in half duplex, station

 If off in half duplex, MAU

 If set in full duplex, adapter

 If off in full duplex, concentrator

TR_STATUS_EARLY_TOKEN_RELEASE

 Early token release

 enabled

TR_STATUS_FULL_DUPLEX

 Full duplex

TR_STATUS_16MB 16 Mbps mode

TR_STATUS_RING_ALIVE

 Ready for TX

TR_STATUS_LATENCY_STABLE

 Latency value stable for

 readout.

TR_STATUS_TRANSMITTING

 Transmitting

If bit set on a Gigabit Ethernet SmartCard:
GIG_STATUS_LINK Link established

GIG_STATUS_TX_PAUSE Pause holdoff in process

GIG_STATUS_CAPTURED_FRAMES

 Frames captured

GIG_STATUS_CAPTURE_STOPPED

 Capture stopped

If bit set on an SX-7410 SmartCard:
FAST7410_STATUS_LINK

 Link established

150 SmartLib User Guide

FAST7410_STATUS_TX_PAUSE

 Pause holdoff in process

If bit set on a L3-6705 or L3-6710 SmartCard:
L3_STATUS_6710 If set, L3-6710,

 If off, L3-6705

If bit set on a VG-xxxx SmartCard:
VG_STATUS_MODE If set, Ethernet,

 If off, TokenRing

If bit set on a Frame Relay SmartCard:
FR_STATUS_LINK_OK link established

FR_STATUS_GROUP_MEMBER

 card is "grouped"

FR_STATUS_UNI_UP UNI is up

FR_STATUS_EIA_DSR DSR line is high

FR_STATUS_EIA_CTS CTS line is high

FR_STATUS_EIA_DCD DCD line is high

FR_STATUS_EIA_TM TM line is high

FR_STATUS_EIA_DTR DTR line is high

FR_STATUS_EIA_RTS RTS line is high

FR_STATUS_EIA_RDL RDL line is high

FR_STATUS_EIA_LLB LLB line is high

Comments The low byte contains card LED information. Please refer to the appendix
on LED values for more information.

SmartLib User Guide 151

HTGetHubLEDs
Description Determine the state of the LEDs on a SmartBits hub.

Syntax int HTGetHubLEDs(int iHub, int* piLEDs)

Parameters iHub int Identifies the hub where the SmartCard is located.
The range is 0 (first hub) through N(number of hubs) -1.
Remember to subtract one since the hub identification
starts at 0.

Important: See Working with Multiple Hubs in Chapt 1.

piLEDs int* a pointer to an integer array of MAX_SLOTS size
that receives the LED states of all SmartCards in hub
iHub.

Return
Value

The return value is >= 0 if the function executed successfully. A failure
code, which is less than zero, is returned if the function failed. See
Appendix A.

Comments Behavior of this function is undefined if the hub contains passive cards.

HTGetLEDs
Description Determine the state of the LEDs on an SmartCard type at the specified

hub/slot/port.

Syntax int HTGetLEDs(int iHub, int iSlot, int iPort)

Parameters iHub int Identifies the hub where the SmartCard is located.
The range is 0 (first hub) through N(number of hubs) -1.
Remember to subtract one since the hub identification
starts at 0.

Important: See Working with Multiple Hubs in Chapt 1.

iSlot int Identifies the slot where the card is located. Ranges
from 0 (first slot in Hub) to 19 (last card in Hub).

iPort int Identifies the card port.

Return
Value

The return value is the current state of the LEDs. This return value can
be and’ed against the following to determine if the LED is on.

HTLED_TXRED Unconfigured card

HTLED_TXGREEN Transmitting

HTLED_COLLRED Collision detected

HTLED_COLLGREEN Trigger detected

HTLED_RXRED Receive with errors

HTLED_RXGREEN Receive

A failure code, which is less than zero, is returned if the function failed.
See Appendix A.

Comments This function is available only for SmartCards. LED return states are not
a hardware function, but are derived from the states of the counters. If
both HTLED_COLLRED and HTLED_COLLGREEN are set, then the
LED is yellow. No other LED can be yellow.

152 SmartLib User Guide

HTGetHWVersion
Description Retrieves version information of the specified SmartCard. Information is

retrieved into pulData.

Syntax int HTGetHWVersion(unsigned long* pulData, int iHub, int iSlot, int
iPort)

Parameters pulData unsigned long* A pointer to an unsigned long array in which
version information is to be placed. The size of the array depends
on specific card inquired. An array size of 32 is recommended.
[See comments below.]

iHub int Identifies the hub where the SmartCard is located.
The range is 0 (first hub) through N(number of hubs) -1.
Remember to subtract one since the hub identification starts at 0.

For more information, see Working with Multiple Hubs in Chapt
1.

iSlot int Identifies the slot where the SmartCard is located. Ranges
from 0 (first slot in Hub) to 19 (last card in Hub).

iPort int Identifies the Card port. (On the current SmartCards, Port is
always 0.)

Return
Value

The return value is >= 0 if the function executed successfully and will
indicate the number of items in the pulData array which have been loaded
with version information related to this SmartCard. For example, a
TokenRing Card will return 3. A failure code, which is less than zero, is
returned if the function failed. See Appendix A.

Comments Each SmartCard will fill the pulData array with only that number of
items that is given as the return value. No other items in the pulData will
be changed. A TokenRing Card will return Firmware, Transmit, and
Receive information in the unsigned long array pointed at by pulData. It is
recommended to zero the pulData array items prior to this call.

SmartLib User Guide 153

HTGetStructure
Description Sends a command to a SmartCard which accepts HTGetStructure()

actions. The commands, defines, and structure definitions for this
command can be found in the Message Functions manual for Layer 3,
Multi-Layer, Gigabit, ATM, and Frame Relay SmartCards. These
SmartCards allow control using HTSetCommand(), HTSetStructure(), and
HTGetStructure(). The correct combination of iType parameter values and
the structure parameter cause the SmartCards to be setup in an elegant
and intricate manner.

Syntax int HTGetStructure(int iType1,int iType2,int iType3,int iType4,void*
pData,int iSize,int iHub, int iSlot, int iPort);

Parameters iType1 int defines the command action. The value (and action)
depends on the SmartCard being addressed.

iType2 int value depends on SmartCard

IType3 int value depends on SmartCard

IType4 int value depends on SmartCard

pData void* Pointer to a structure or an array in which returned data
will be placed.

iSize int indicates the maximum size of the pData pointer which
should be utilized. While in most cases this will be the size of
the structure, in some cases it is the size of an array of
structures or bytes. See the Message functions manual for
clarification.

iHub int Identifies the hub where the SmartCard is located.
The range is 0 (first hub) through N(number of hubs) -1.
Remember to subtract one since the hub identification starts at
0.

Important: See Working with Multiple Hubs in Chapt 1.

iSlot int Identifies the slot where the SmartCard is located.
Ranges from 0 (first slot in Hub) to 19 (last card in
Hub).

iPort int Identifies the SmartCard port. (On the current
SmartCard, Port is always 0.)

Return
Value

The return value is >= 0 if the function executed successfully. The exact
value will vary according to what iType parameters have been used The
return value is < 0 if the function failed. See Appendix A.

Comments See the Message functions manual for appropriate values for the iType and
structure parameters for HTSetCommand(), HTSetStructure(), and
HTGetStructure().

154 SmartLib User Guide

HTGroupStart
Description Simultaneously starts the transmission of packets in a group of

SmartCards within the specified hub. The group must have been
previously defined using the “Set Group” commands.

Syntax int HTGroupStart(int iHub)

Parameters iHub int Identifies the hub where the SmartCard is located.
The range is 0 (first hub) through N(number of hubs) -1.
Remember to subtract one since the hub identification
starts at 0.

Important: See Working with Multiple Hubs in Chapt 1.

Return
Value

The return value is >= 0 if the function executed successfully. A failure
code, which is less than zero, is returned if the function failed. See
Appendix A.

Comments None

HTGroupStep
Description Simultaneously causes the transmission of a single packet in each of a

group of SmartCards within the specified hub. The group must have been
previously defined using the “Set Group” commands.

Syntax int HTGroupStep(int iHub)

Parameters iHub int Identifies the hub where the SmartCard is located.
The range is 0 (first hub) through N(number of hubs) -1.
Remember to subtract one since the hub identification
starts at 0.

Important: See Working with Multiple Hubs in Chapt 1.

Return
Value

The return value is >= 0 if the function executed successfully. A failure
code, which is less than zero, is returned if the function failed. See
Appendix A.

Comments None

SmartLib User Guide 155

HTGroupStop
Description Simultaneously halts the transmission of packets in a group of

SmartCards within the specified hub. The group must have been
previously defined using the “Set Group” commands.

Syntax int HTGroupStop(int iHub)

Parameters iHub int Identifies the hub where the SmartCard is located.
The range is 0 (first hub) through N(number of hubs) -1.
Remember to subtract one since the hub identification
starts at 0.

Important: See Working with Multiple Hubs in Chapt 1.

Return
Value

The return value is >= 0 if the function executed successfully. A failure
code, which is less than zero, is returned if the function failed. See
Appendix A.

Comments None

HTHubId
Description Fill an array with the currently connected port types.

Syntax int HTHubId(char PortTypes[MAX_HUBS][MAX_SLOTS][MAX_PORTS])

Parameters PortTypes char An array of character that will be filled with one of
the available card types. The card types are:

A 10Mb Ethernet

F 10/100Mb Fast Ethernet

T 4/16Mb TokenRing

V VG/AnyLan

3 Layer 3 10Mb Ethernet

G Gigabit Ethernet

S ATM Signaling

N Not present

Return
Value

The return value is >= 0 if the function executed successfully. A failure
code, which is less than zero, is returned if the function failed. See
Appendix A.

Comments None

156 SmartLib User Guide

HTHubSlotPorts
Description Fill an array with the currently connected port types.

Syntax int HTHubSlotPorts(int
iPortTypes[MAX_HUBS][MAX_SLOTS][MAX_PORTS])

Parameters iPortTypes int An array of integers that will be filled with one of
the available card types. The card types are:

CT_ACTIVE 10Mb Ethernet

CT_FASTX 10/100Mb Ethernet

CT_TOKENRING 4/16Mb TokenRing

CT_VG VG/AnyLan

CT_L3 Layer 3 10Mb Ethernet

CT_GIGABIT Gigabit Ethernet

CT_ATM_SIGNALING ATM Signaling

CT_NOT_PRESENT Not present

Return
Value

The return value is >= 0 if the function executed successfully. A failure
code, which is less than zero, is returned if the function failed. See
Appendix A.

Comments For TCL: Use the utility function ETMake3DArray in order to create 3D
arrays in TCL.

SmartLib User Guide 157

HTLayer3SetAddress
Description Configures the card to send/receive background traffic such as PING,

SNMP, etc.

This command is not used to set up regular L3 test streams.

Syntax int HTLayer3SetAddress (Layer3Address* pLayer3Address, int iHub, int
iSlot, int iPort)

Parameters pLayer3Address Layer3Address A pointer to the structure containing
Layer 3 information such as IP address.

For more information about Layer3Address structure
elements, see Chapter 6:
Data Structures.

iHub int Identifies the hub where the SmartCard is located.

The range is:
0 (first hub) through n(number of hubs) -1.

Remember to subtract one since the hub identification
starts at 0. For more information, see Working with
Multiple Hubs in Chapt 1.

iSlot int Identifies the destination SmartCard.

iPort int Identifies the port on the SmartCard. At this time
the iPort value is set to 0.

Return
Value

The return value is >= 0 if the function executed successfully. A failure
code, which is less than zero, is returned if the function failed. See
Appendix A.

Comments Use HTLayer3SetAddress if you want to send additional frames during your
test process such as PING, SNMP, RIP, and Card ARP response.

This command is not necessary for defining test traffic. To set up test traffic
(traditional mode) see the NSCreateFrame series. To set up test traffic in
the more powerful SmartMetrics mode, see the Message Functions manual
under your specific SmartCard type.

For using this command with multiple SmartCards in TCL see also:
ETMake3DArray.

158 SmartLib User Guide

HTLatency
Description Tests latency using the SmartBits.

Syntax int HTLatency(int iMode, HTLatencyStructure* pHTLat, int iHub, int
iSlot, int iPort)

Parameters iMode int Set one of four specific modes of operation:
HT_LATENCY_OFF removes the SmartCard from participating in

any latency measurements.

HT_LATENCY_RX Sets the SmartCard as a latency receiver.
Only ports set as receivers can use the
latency report function.

HT_LATENCY_RXTX Set as latency receiver, and also as
latency transmitter. The receive setting
enables the latency report function on this
card

HT_LATENCY_TX Set as latency transmitter. (can not use
the latency report function)

HT_LATENCY_REPORT Enables latency counter value to be
returned in the ulReport member of the
HTLatencyStructure provided in pHTLat
below. (The Latency Counter value is in
units of 100 nanoseconds.) Only ports set
as receivers will obtain valid results when
using this mode. The latency counters start
running when a group transmit function
starts, and stops when a packet matching
the contents and at the position of data
set in pHTLat.

pHTLat HTLatencyStructure* This structure sets the position, size and
contents of packet data that will stop latency counters when a
complete match occurs, and holds the ulReport value when
retrieving the latency measurements on each port.

iHub int Identifies the hub where the SmartCard is located.
The range is 0 (first hub) through N(number of hubs) -1.
Remember to subtract one since the hub identification starts at 0.

Important: See Working with Multiple Hubs in Chapt 1.

iSlot int Identifies the slot where the SmartCard is located. Ranges
from 0 (first slot in Hub) to 19 (last card in Hub).

iPort int Identifies the SmartCard port. On current cards, iPort is
always 0.

Return
Value

The return value is >= 0 if the function executed successfully. A failure
code, which is less than zero, is returned if the function failed. See
Appendix A.

Comments Note - When using this command, VFD 3 of the transmitting port, and the
Triggers of any receiving ports are utilized. [Also, on 10MB cards, the
ByteCount counter function is disabled.]

The latency counter is a special counter in a SmartCard. It is enabled
when a card is set in latency mode, and starts counting when a group
transmit command [e.g. HGGroupStart()] is issued. It stops when a
packet is received which matches the characteristics specified in the
HTLatencyStructure when HT_LATENCY_RX or HT_LATENCY_RXTX
was issued.

SmartLib User Guide 159

The actual latency measurement is determined by subtracting the
HTLatencyStructure.ulReport values of the transmitting SmartCard from
the receiver SmartCard. This difference is the bit to bit latency
measurement. Your program will need to make any adjustments for cut-
through vs. store and forward operations of the device(s) attached to each
port.

On 10MB cards, the ByteCount counter function is superseded with the
Latency counter function. When getting the counters from a 10MB card
which is included in a Latency measurement, the ByteCount value will
reflect the raw Latency measurement.

HTMultiBurstCount
Description Sets up the number of bursts for transmitting out a SmartCard while in

MULTI_BURST_MODE.

Syntax int HTMultiBurstCount(long lVal, iHub, iSlot, iPort)

Parameters lVal long Specifies the burst count. Ranges anywhere from 1 to
16,777,215.

iHub int Identifies the hub where the SmartCard is located.
The range is 0 (first hub) through N(number of hubs) -1. Remember
to subtract one since the hub identification starts at 0.

Important: See Working with Multiple Hubs in Chapt 1.

iSlot int Identifies the slot where the SmartCard is located. Ranges
from 0 (first slot in Hub) to 19 (last card in Hub).

iPort int Identifies the SmartCard port. (On the current SmartCards,
Port is always 0.)

Return
Value

The return value is >= 0 if the function executed successfully. A failure
code, which is less than zero, is returned if the function failed. See
Appendix A.

Comments This instruction is only applied if HGTransmitMode, or
HTTransmitMode has selected MULTI_BURST_MODE. Use HGRun,
HGStart, HTGroupStart, and HTRun to start the transmission of the
bursts.

HTPortProperty
Description Determine the card type at the specified hub/slot/port.

Syntax int HTPortProperty(unsigned long *pulProperties, int iHub, int iSlot, int
iPort)

Parameters pulProperties unsigned long * The contents of this address gets filled
with the value of the properties for the specified port.
The value is filled with the logical OR values below.
This value can be AND’ed against the following to
determine if the Port Property is present:

160 SmartLib User Guide

CA_SIGNALRATE_10MB 10 MB capable

CA_SIGNALRATE_100MB 100 MB capable

CA_DUPLEX_FULL Full Duplex capable

CA_DUPLEX_HALF Half Duplex capable

CA_CONNECT_MII MMI connector

CA_CONNECT_TP Twisted Pair connector

CA_CONNECT_BNC BNC connector

CA_CONNECT_AUI AUI connector

CA_CAN_ROUTE Routing capable

CA_VFDRESETCOUNT Resets VFD1 &2 counter

CA_SIGNALRATE_4MB 4 MB capable

CA_SIGNALRATE_16MB 16 MB capable

CA_CAN_COLLIDE Generates collisions

CA_SIGNALRATE_25MB 25 MB capable

CA_SIGNALRATE_155MB 155 MB capable

CA_BUILT_IN_ADDRESS Has a built in address

CA_HAS_DEBUG_MONITOR Allows Debug monitoring

CA_SIGNALRATE_1000MB 1 GB capable

CA_CONNECT_FIBER Fiber optic connector

CA_CAN_CAPTURE Has capture capability

CA_ATM_SIGNALING Performs ATM Signaling

CA_CONNECT_V35

CA_SIGNALRATE_8MB

CA_SIGNALRATE_622MB

CA_SIGNALRATE_45MB

CA_SIGNALRATE_34MB

CA_SIGNALRATE_1_544MB

CA_SIGNALRATE_2_048MB

CA_HASVFDREPEATCOUNT

iHub int Identifies the hub where the SmartCard is located.
The range is 0 (first hub) through N(number of hubs) -1.
Remember to subtract one since the hub identification starts at 0.

Important: See Working with Multiple Hubs in Chapt 1.

iSlot int Identifies the slot where the card is located. Ranges from 0
(first slot in Hub) to 19 (last card in Hub).

iPort int Identifies the card port.

Return
Value

The return value is one of the following if the function executed
successfully:

CT_NOT_PRESENT 0 (Card not present)

CT_ACTIVE 1

CT_FASTX 3

CT_TOKENRING 4

CT_VG 5

SmartLib User Guide 161

CT_GIGABIT 8

CT_ATM_SIGNALING 9

CT_WAN_FRAME_RELAY 10

CT_MAX_CARD_TYPE CT_WAN_FRAME_RELAY

A failure code, which is less than zero, is returned if the function failed.
See Appendix A.

Comments For more detail about CA_VFDRESETCOUNT, see HT_VFD_Structure.

HTPortType
Description Determine the card type at the specified hub/slot/port.

Syntax int HTPortType(int iHub, int iSlot, int iPort)

Parameters iHub int Identifies the hub where the SmartCard is located.
The range is 0 (first hub) through N(number of hubs) -1.
Remember to subtract one since the hub identification
starts at 0.

Important: See Working with Multiple Hubs in Chapt
1.iSlot int Identifies the slot where the card is
located. Ranges from 0 (first slot in Hub) to 19 (last
card in Hub).

iPort int Identifies the card port.

Return
Value

The return value is one of the following if the function executed
successfully:

CT_NOT_PRESENT 0 (Card not present)

CT_ACTIVE 1

CT_FASTX 3

CT_TOKENRING 4

CT_VG 5

CT_GIGABIT 8

CT_ATM_SIGNALING 9

CT_WAN_FRAME_RELAY 10

CT_MAX_CARD_TYPE CT_WAN_FRAME_RELAY

A failure code, which is less than zero, is returned if the function failed.
See Appendix A.

Comments None

162 SmartLib User Guide

HTReadMII
Description Reads a specific MII Address/Register. This command applies only to 100

Mb SmartCards.

Syntax int HTReadMII(unsigned int uiAddress, unsigned int uiRegister, unsigned
short* puiBits, int iHub, int iSlot, int iPort)

Parameters uiAddress unsigned int Specific address. Must be from 0 to 31

uiRegister unsigned int Specific register. Must be from 0 to 31

puiBits unsigned short* Bits read are returned here

iHub int Identifies the hub where the SmartCard is located.
The range is 0 (first hub) through N(number of hubs) -1.
Remember to subtract one since the hub identification starts at
0.

Important: See Working with Multiple Hubs in Chapt 1.

iSlot int Identifies the slot where the SmartCard is located. Ranges
from 0 (first slot in Hub) to 19 (last card in Hub).

iPort int Identifies SmartCard port. On current cards, Port is always
0.

Return
Value

The return value is >= 0 if the function executed successfully. A failure
code, which is less than zero, is returned if the function failed. See
Appendix A.

Comments None

SmartLib User Guide 163

HTResetPort
Description Resets the addressed SmartCard to a default condition with all errors off.

Syntax int HTResetPort(int iResetType, int iHub, int iSlot, int iPort)

Parameters iResetType int Identifies the run mode of the board. Legal modes
can be conveyed using the following constants:

RESET_FULL Reset all card parameters including
hardware interface parameters (e.g. Token
Ring Speed)

RESET_PARTIAL Reset all card parameters except hardware
interface parameters. This option can be
used for Token Ring cards, to keep the card
in the ring.

iHub int Identifies the hub where the SmartCard is located.
The range is 0 (first hub) through N(number of hubs) -1.
Remember to subtract one since the hub identification starts at 0.

Important: See Working with Multiple Hubs in Chapt 1.

iSlot int Identifies the slot where the SmartCard is located. Ranges
from 0 (first slot in Hub) to 19 (last card in Hub).

iPort int Identifies the SmartCard port. (On the current SmartCards,
Port is always 0.)

Return
Value

The return value is >= 0 if the function executed successfully. A failure
code, which is less than zero, is returned if the function failed. See
Appendix A.

Comments This command is not implemented on the ATM and WAN (FR) card
families at this time.

HTRun
Description Sets up the run state of an SmartCard. A card can be set up to transmit a

series of packets ("RUN" state), transmit a single packet ("STEP" state) or
stop transmission altogether ("STOP" state). If the Burst mode has been
set up to transmit a burst of packets (using the HTTransmitMode
command), then transitioning from "STOP" to "RUN" will cause the
specified number of packets to be transmitted.

Syntax int HTRun(int Mode, int iHub, int iSlot, int iPort)

Parameters Mode int Identifies the run mode of the board. Legal modes can be
conveyed using the following constants:

HTRUN **For Visual Basic use HTRUN_VALUE. **
Transmit continuously or send a burst of
packets.

HTSTEP Transmit a single packet.

HTSTOP Halt transmission of packets.

iHub int Identifies the hub where the SmartCard is located.
The range is 0 (first hub) through N(number of hubs) -1.
Remember to subtract one since the hub identification starts at
0.

Important: See Working with Multiple Hubs in Chapt 1.

164 SmartLib User Guide

iSlot int Identifies the slot where the SmartCard is located. Ranges
from 0 (first slot in Hub) to 19 (last card in Hub).

iPort int Identifies the SmartCard port. (On the current
SmartCards, Port is always 0.)

Return
Value

The return value is >= 0 if the function executed successfully. A failure
code, which is less than zero, is returned if the function failed. See
Appendix A.

Comments Because VisualBasic does not distinguish by case, these values have been
put in the ETSMBAPI.TXT file to be used for the Mode parameter:

HTRUN_VALUE Transmit continuously or send a burst of
packets.

Note: Select a desired mode using HTTransmitMode before using the
HTRUN function. Otherwise the transmit mode will be the one used
previously.

HTSelectReceive
Description Selects a port on a SmartBits that is to be used for receive data. The

receive data from this port is routed directly back to the ET-1000's Port B
for detailed analysis. This function is valid for both Passive and
SmartCards.

Syntax int HTSelectReceive(int iHub, int iSlot, int iPort)

Parameters iHub int Identifies the destination hub where the SmartCard is located.
Can range anywhere from 0 (first hub) to 3 (fourth hub).

iSlot int Identifies the slot where the SmartCard is located. Ranges
from 0 (first slot in Hub) to 19 (last card in Hub).

iPort int Identifies the SmartCard port. On the current SmartCards,
iPort is always 0.

Return
Value

The return value is >= 0 if the function executed successfully. A failure
code, which is less than zero, is returned if the function failed. See
Appendix A.

Comments If any of iHub, iSlot, iPort are equal to -1, the last selected port will be
disabled.

If disabling HTSelectReceive and the last selected port is unknown, then
the first available active port will be selected, then deselected. No check is
made as to whether this card is currently transmitting. This function
assumes that at least one SmartBits is attached to the ET-1000. It will be
ignored by the ET-1000 if there is not a SmartBits present.

SmartLib User Guide 165

HTSelectTransmit
Description Enables the PortB transmission of the ET-1000 to be transmitted to the

port specified Transmission mode is determined by iMode. This function
is valid for both Passive and SmartCards.

Syntax int HTSelectTransmit(int iMode, int iHub, int iSlot, int iPort)

Parameters iMode int Determines the function of the Port:
HTTRANSMIT_OFF Transmitter is turned off

HTTRANSMIT_STD Transmitter transmits standard packets

HTTRANSMIT_COL Transmitter transmits collision packets

All other values are invalid and will not have an effect on the SmartBits.

iHub int Identifies the hub where the SmartCard is located.
The range is 0 (first hub) through N(number of hubs) -1. Remember
to subtract one since the hub identification starts at 0.

Important: See Working with Multiple Hubs in Chapt 1.

iSlot int Identifies the slot where the card is located. Ranges from 0
(first slot in Hub) to 19 (last card in Hub).

iPort int Identifies the card port. On current SmartCards, iPort is
always 0.

NOTE: If any of iHub, iSlot, iPort are equal to -1, then the last
selected port will be disabled.

Return
Value

The return value is >= 0 if the function executed successfully. A failure
code, which is less than zero, is returned if the function failed. See
Appendix A.

Comments This function assumes that at least one SmartBits is attached to the ET-
1000. It will be ignored by the ET-1000 if there is not a SmartBits
present.

166 SmartLib User Guide

HTSendCommand
Description This function is used to save a small amount of time by storing up

commands on the SMB, and then sending them to the SmartCards all at
once.

This function works in conjunction with HTSeparateHubCommands. The
default setting used by HTSendCommand is HUB_DEFAULT_ACTION.

Syntax int HTSendCommand(int State)

Parameters State int If zero, all commands that can be queued up are
queued up.

If non-zero, commands are not deferred; they are sent to
the SmartCards as soon as they reach the SMB
controller. Any commands that have been deferred are
sent first.

Return
Value

The return value is >= 0 if the function executed successfully. A failure
code, which is less than zero, is returned if the function failed. See
Appendix A.

Comments It is strongly advised that this function not be called unless the time
necessary to handle each function separately is intolerably long.

Call HTSendCommand at the beginning of a long series of commands with
"State" set to 0. This causes the SMB to start buffering certain commands
instead of forwarding them separately to the SmartCards. Before the last
command, call this function once again with "State" set to 1. This causes
the SMB to then send all the deferred commands to the cards at once,
shotgun style.

NOTE: This function is not useful if commands are sent to the SMB across
a network that adds more time than the time from controller to
SmartCard.

SmartLib User Guide 167

HTSeparateHubCommands
Description Determines how commands are synchronized across multiple hubs,

including whether GPS is used or not.

Used in conjunction with HGRun, HGStart, HGStop, HGStep, and
HTSendCommand.

Syntax int HTSeparateHubCommands (int iFlag)

Parameters iFlag int This value determines how if and how SmartBits
chassis are synchronized.

HUB_GROUP_DEFAULT_ACTION
Enables a group action across SMB hubs.
and stacks (GPS is not used).

This setting allows a single command for
stacks of hubs linked by the expansion
ports (see comment).

Use this value to skip GPS sync time if GPS
is available but you don't want to use it.

This value is the default for HGRun,
HGStart, HGStep, and HGStop.

HUB_GROUP_INDEPENDENT_ACTION
Enables a group start for each SMB hub. No
synchronization BETWEEN hubs.

This setting causes a separate command to
be sent for each SMB hub regardless of
whether there are stacks, expansion
connection, or GPS.

This parameter was originally used to deal
with older equipment that could not perform
a group start across hubs.

HUB_GROUP_SYNC_ACTION
Enables GPS capability for a synchronized
group start across multiple hubs.

This setting allows a single command for
stacks of hubs linked by the expansion
ports (see comment).

ERROR CONDITIONS:
1 - GPS enabled on a "Slave stack"
(expansion cable plugged in the IN port.)
2 - One or more active "Links" (direct to
the PC)with neither expansion con nor GPS.

Return
Value

The return value is the value HTSeparateHubCommands was previously
set to:
0 = HUB_DEFAULT_ACTION
1 = HUB_ACT_AS_LINK_UNIT
2 = HUB_ACT_INDEPENDENTLY
3 = HUB_ACT_AS_MASTER

Comments Expansion ports refer to ports available on the SMB 2000 or later.
Expansion ports are used to link one stack of chassis to another.

168 SmartLib User Guide

HTSetCommand
Description Sends a command to a SmartCard which accepts HTSetCommand()

actions. The commands, defines, and structure definitions for this
command can be found in the Message Functions manual for Layer 3,
Multi-Layer, Gigabit, ATM, and Frame Relay SmartCards. These
SmartCards allow control using HTSetCommand(), HTSetStructure(), and
HTGetStructure(). The correct combination of iType parameter values and
the structure parameter cause the SmartCards to be setup in an elegant
and intricate manner.

Syntax int HTSetCommand(int iType1,int iType2,int iType3,int iType4,void*
pData,int iHub, int iSlot, int iPort);

Parameters iHub int Identifies the hub where the SmartCard is located.
The range is 0 (first hub) through N(number of hubs) -1.
Remember to subtract one since the hub identification
starts at 0.

Important: See Working with Multiple Hubs in Chapt 1.

iSlot int Identifies the slot where the SmartCard is located.
Ranges from 0 (first slot in Hub) to 19 (last card in
Hub).

iPort int Identifies the SmartCard port. (On the current
SmartCard, Port is always 0.)

Return
Value

The return value is >= 0 if the function executed successfully. The return
value is < 0 if the function failed. See Appendix A.

Comments See the Message functions manual for appropriate values for the iType and
structure parameters for HTSetCommand(), HTSetStructure(), and
HTGetStructure().

SmartLib User Guide 169

HTSetSpeed
Description Sets the addressed port to the selected speed. The speed selected must be

appropriate to the addressed SmartCard type.

Syntax int HTSetSpeed(int iSpeed, int iHub, int iSlot, int iPort)

Parameters iSpeed int Determines the speed of the Port:
SPEED_10MHZ Sets a 10 MB capable SmartCard to a 10 MHZ

Signaling rate (Ethernet)

SPEED_100MHZ Sets a 100 MB capable SmartCard to a 100
MHZ Signaling rate (Ethernet)

SPEED_4MHZ Sets a 4 MB capable SmartCard to a 4 MHZ
Signaling rate (Token Ring)

SPEED_16MHZ Sets a 16 MB capable SmartCard to a 16 MHZ
Signaling rate (Token Ring)

All other values are invalid and will not have an effect on the SmartBits.

iHub int Identifies the hub where the SmartCard is located.
The range is 0 (first hub) through N(number of hubs) -1. Remember
to subtract one since the hub identification starts at 0.

Important: See Working with Multiple Hubs in Chapt 1.

iSlot int Identifies the slot where the card is located. Ranges from 0
(first slot in Hub) to 19 (last card in Hub).

iPort int Identifies the card port. On current SmartCards, iPort is
always 0.

Return
Value

The return value is >= 0 if the function executed successfully. A failure
code, which is less than zero, is returned if the function failed. See
Appendix A.

Comments On 100 MB Ethernet SmartCards, speed auto-negotiation can be enabled
by configuring the MII registers. See the HTWriteMII() command for more
information.

170 SmartLib User Guide

HTSetStructure
Description Sends a command to a SmartCard which accepts HTSetStructure()

actions. The commands, defines, and structure definitions for this
command can be found in the Message functions manual for Layer 3,
Multi-Layer, Gigabit, ATM, and Frame Relay SmartCards. These
SmartCards allow control using HTSetCommand(), HTSetStructure(), and
HTGetStructure(). The correct combination of iType parameter values and
the structure parameter cause the SmartCards to be setup in an elegant
and intricate manner.

Syntax int HTSetStructure(int iType1,int iType2,int iType3,int iType4,void*
pData,int iSize,int iHub, int iSlot, int iPort);

Parameters iType1 int defines the command action. The value (and action)
depends on the SmartCard being addressed.

iType2 int value depends on SmartCard.

IType3 int value depends on SmartCard.

IType4 int value depends on SmartCard.

pData void* Pointer to a structure or an array containing the data to
send.

iSize int indicates the size of the pData pointer which should be
utilized. While in most cases this will be the size of the
structure, in some cases it is the size of an array of structures
or bytes. See the Message Functions manual for clarification.

iHub int Identifies the hub where the SmartCard is located.
The range is 0 (first hub) through N(number of hubs) -1.
Remember to subtract one since the hub identification starts at
0.

Important: See Working with Multiple Hubs in Chapt 1.

iSlot int Identifies the slot where the SmartCard is located. Ranges
from 0 (first slot in Hub) to 19 (last card in Hub).

iPort int Identifies the SmartCard port. On current cards, Port is
always 0.

Return
Value

The return value is >= 0 if the function executed successfully. The return
value is < 0 if the function failed. See Appendix A.

Comments See the Message Functions manual for appropriate values for the iType
and structure parameters for HTSetCommand(), HTSetStructure(), and
HTGetStructure().

SmartLib User Guide 171

HTSetTokenRingAdvancedControl
Description Generates specialized frames for the selected TokenRing SmartCard.

Syntax int HTSetTokenRingAdvancedControl(TokenRingAdvancedStructure
*pTRAdvancedStructure, int iHub, int iSlot, int iPort)

Parameters pTRAdvancedStructure TokenRingAdvancedStructure* Points to a
TokenRingAdvancedStructure structure which contains
all the information required to transmit special control
frames. See Data Structure section of this document for
a description of the TokenRingAdvancedStructure
structure.

iHub int Identifies the hub where the SmartCard is located.
The range is 0 (first hub) through N(number of hubs) -1.
Remember to subtract one since the hub identification starts at 0.

Important: See Working with Multiple Hubs in Chapt 1.

iSlot int Identifies the slot where the TokenRing SmartCard is located.
Ranges from 0 (first slot in Hub) to 19 (last card in Hub).

iPort int Identifies the TokenRing SmartCard port. (On the current
TokenRing SmartCard, Port is always 0.)

Return
Value

The return value is >= 0 if the function executed successfully. A failure
code, which is less than zero, is returned if the function failed. See
Appendix A.

Comments This command will cause ring operation to fail if not used with caution.

172 SmartLib User Guide

HTSetTokenRingErrors
Description Generates traffic with error frames for the selected TokenRing SmartCard.

Syntax int HTSetTokenRingErrors(int ErrorTrafficRatio, int iTRErrors, int iHub,
int iSlot, int iPort)

Parameters ErrorTraficRatio int Specifies the error traffic ratio in tenths of seconds.
Ranges anywhere from 0 to 1000. A value of 0 will turn
off error generation.

iTRErrors int Specifies the type of frame errors to generate. Value
can be a combined OR of the following defines:

TR_ERR_FCS FCS errors

TR_ERR_FRAME_COPY Frame copy errors

TR_ERR_FRAME_BIT Frame Bit errors

TR_ERR_FRAME_FS FS Frame errors

TR_ERR_ABORT_DELIMITER Abort delimiter errors

TR_ERR_BURST Burst errors

iHub int Identifies the hub where the SmartCard is located.
The range is 0 (first hub) through N(number of hubs) -1.
Remember to subtract one since the hub identification
starts at 0.

Important: See Working with Multiple Hubs in Chapt 1.

iSlot int Identifies the slot where the TokenRing SmartCard
is located. Ranges from 0 (first slot in Hub) to 19 (last
card in Hub).

iPort int Identifies the TokenRing SmartCard port. (On the
current TokenRing SmartCard, Port is always 0.)

Return
Value

The return value is >= 0 if the function executed successfully. A failure
code, which is less than zero, is returned if the function failed. See
Appendix A.

Comments The number in the ratio is nominally in tenths of a percent. However, as it
is rationalized to a count the precision will be poor at large percentage
values.

SmartLib User Guide 173

HTSetTokenRingLLC
Description Configures LLC frame for the selected TokenRing SmartCard.

Syntax int HTSetTokenRingLLC(TokenRingLLCStructure *pTRLStructure, int
iHub, int iSlot, int iPort)

Parameters pTRLStructure TokenRingLLCStructure* Points to a
TokenRingLLCStructure (see page 68) which contains
all the information required to preform LLC Type 1
frames.

iHub int Identifies the hub where the SmartCard is located.
The range is 0 (first hub) through N(number of hubs) -1.
Remember to subtract one since the hub identification
starts at 0.

Important: See Working with Multiple Hubs in Chapt 1.

iSlot int Identifies the slot where the TokenRing SmartCard
is located. Ranges from 0 (first slot in Hub) to 19 (last
card in Hub).

iPort int Identifies the TokenRing SmartCard port. (On the
current TokenRing SmartCard, Port is always 0.)

Return
Value

The return value is >= 0 if the function executed successfully. A failure
code, which is less than zero, is returned if the function failed. See
Appendix A.

Comments A TokenRing MAC header has to be defined first for LLC to take effect.

HTSetTokenRingMAC
Description Configures TokenRing MAC header for the selected TokenRing

SmartCard.

Syntax int HTSetTokenRingMAC(TokenRingMACStructure *pTRMStructure, int
iHub, int iSlot, int iPort)

Parameters pTRMStructure TokenRingMACStructure* Points to a
TokenRingMACStructure (see page 69) which defines a
preformed MAC header.

iHub int Identifies the hub where the SmartCard is located.
The range is 0 (first hub) through N(number of hubs) -1. Remember
to subtract one since the hub identification starts at 0.

Important: See Working with Multiple Hubs in Chapt 1.

iSlot int Identifies the slot where the TokenRing SmartCard is located.
Ranges from 0 (first slot in Hub) to 19 (last card in Hub).

iPort int Identifies the TokenRing SmartCard port. (On the current
TokenRing SmartCard, Port is always 0.)

Return
Value

The return value is >= 0 if the function executed successfully. A failure
code, which is less than zero, is returned if the function failed. See
Appendix A.

Comments None

174 SmartLib User Guide

SmartLib User Guide 175

HTSetTokenRingProperty
Description Configures ring operation characteristics for the selected TokenRing

SmartCard.

Syntax int HTSetTokenRingProperty(TokenRingPropertyStructure
*pTRPStructure, int iHub, int iSlot, int iPort)

Parameters pTRPStructure TokenRingPropertyStructure* Points to a
TokenRingPropertyStructure (see page 70) which
contains all the information required to configure ring
operation.

iHub int Identifies the hub where the SmartCard is located.
The range is 0 (first hub) through N(number of hubs) -1.
Remember to subtract one since the hub identification
starts at 0.

Important: See Working with Multiple Hubs in Chapt 1.

iSlot int Identifies the slot where the TokenRing SmartCard
is located. Ranges from 0 (first slot in Hub) to 19 (last
card in Hub).

iPort int Identifies the SmartCard port. (On the current
TokenRing SmartCard, Port is always 0.)

Return
Value

The return value is >= 0 if the function executed successfully. A failure
code, which is less than zero, is returned if the function failed. See
Appendix A.

Comments This command defines card properties which are retained in non-volatile
storage. These parameters should not be altered on a live ring as they will
probably cause ring malfunction (usually Beaconing by other stations
which might cause them to close down pending a hard reset).

176 SmartLib User Guide

HTSetTokenRingSrcRouteAddr
Description Configures Source Route Address(SRA) for the selected TokenRing

SmartCard.

Syntax int HTSetTokenRingSrcRouteAddr(int UseSRA, int *piData, int iHub, int
iSlot, int iPort)

Parameters UseSRA int specifies if a SRA field is included in a TokenRing frame.

0 No SRA defined

1 Use SRA filed defined in piData parameter.

piData int * Points to an array of int which contains the Source Route
Address information. The maximum length of this array is 32
and the length information is encoded in the lower 5 bits of the
first byte of this array of SourceRouteAddress information.

iHub int Identifies the hub where the SmartCard is located.
The range is 0 (first hub) through N(number of hubs) -1.
Remember to subtract one since the hub identification starts at
0.

Important: See Working with Multiple Hubs in Chapt 1.

iSlot int Identifies the slot where the TokenRing SmartCard is
located. Ranges from 0 (first slot in Hub) to 19 (last card in
Hub).

iPort int Identifies the TokenRing SmartCard port. (On the current
TokenRing SmartCard, Port is always 0.)

Return
Value

The return value is >= 0 if the function executed successfully. A failure
code, which is less than zero, is returned if the function failed. See
Appendix A.

Comments This field is part of a pre-formed header and so the MAC header has to be
active for it to be active. The data in this field will be parsed by the card to
determine the size of the source routing field to use and the maximum
frame size to transmit. (See the Token Ring Architectural Reference for
details of how to code this field.)

SmartLib User Guide 177

HTSetVGProperty
Description Configures ring operation characteristics for the selected VG SmartCard.

Syntax int HTSetVGProperty(VGCardPropertyStructure *pVGPStructure)

Parameters pVGPStructure VGCardPropertyStructure* Points to a
VGCardPropertyStructure (see page 70) which contains
all the information required to configure Card.

iHub int Identifies the hub where the SmartCard is located.
The range is 0 (first hub) through N(number of hubs) -1.
Remember to subtract one since the hub identification
starts at 0.

Important: See Working with Multiple Hubs in Chapt 1.

iSlot int Identifies the slot where the TokenRing SmartCard
is located. Ranges from 0 (first slot in Hub) to 19 (last
card in Hub).

iPort int Identifies the SmartCard port. (On the current
TokenRing SmartCard, Port is always 0.)

Return
Value

The return value is >= 0 if the function executed successfully. A failure
code, which is less than zero, is returned if the function failed. See
Appendix A.

Comments None

HTSymbol
Description Generates symbol error for the 100 Mbits SmartCard. The port can be set

up to transmit a series of packets which generates invalid wave form data
pattern. This command applies only to 100 Mbits SmartCards.

Syntax int HTSymbol(int Mode, int iHub, int iSlot, int iPort)

Parameters Mode int Identifies the symbol mode of the board. Legal
modes can be conveyed using the following constants:

SYMBOL_OFF Turn off symbol errors

SYMBOL_ON Turn on symbol errors

iHub int Identifies the hub where the SmartCard is located.
The range is 0 (first hub) through N(number of hubs) -1.
Remember to subtract one since the hub identification
starts at 0.

Important: See Working with Multiple Hubs in Chapt 1.

iSlot int Identifies the slot where the SmartCard is located.
Ranges from 0 (first slot in Hub) to 19 (last card in
Hub).

iPort int Identifies the SmartCard port. (On the current
SmartCards, Port is always 0.)

Return
Value

The return value is >= 0 if the function executed successfully. A failure
code, which is less than zero, is returned if the function failed. See
Appendix A.

178 SmartLib User Guide

Comments None

HTTransmitMode
Description Indicates to the selected Port how to control the transmission of packets

when running.

Syntax int HTTransmitMode(int iMode, int iHub, int iSlot, int iPort)

Parameters iMode int Indicates the mode of operation when transmitting
packets according to the following defines:

CONTINUOUS_PACKET_MODE Sets port to transmit single packets
continuously.

SINGLE_BURST_MODE Sets port to transmit a single burst of
packets, and then stop.

MULTI_BURST_MODE Sets port to transmit multiple bursts of
packets, indicated by the HxMultiBurstCount
command, with each burst being separated by
the amount specified in the HxBurstGap
command, and then stop.

CONTINUOUS_BURST_MODE Sets port to repetitively send bursts
of packets with each burst being separated
by the amount specified in the HxBurstGap
command.

ECHO_MODE Sets port to transmit a single packet upon
receiving a Receive Trigger event. The
packet transmitted will match the
programmed parameters of the port
addressed.

iHub int Identifies the hub where the SmartCard is located.
The range is 0 (first hub) through N(number of hubs) -1.
Remember to subtract one since the hub identification
starts at 0.

Important: See Working with Multiple Hubs in Chapt 1.

iSlot int Identifies the slot where the SmartCard is located.
Ranges from 0 (first slot in Hub) to 19 (last card in
Hub).

iPort int Identifies the SmartCard port. (On the current
SmartCards, Port is always 0.)

Return
Value

The return value is >= 0 if the function executed successfully. A failure
code, which is less than zero, is returned if the function failed. See
Appendix A.

Comments None

SmartLib User Guide 179

HTTrigger
Description Sets up the triggering mechanism for a SmartCard. HTTrigger specifies

the trigger number (1 or 2), the operational configuration, trigger pattern
range, trigger pattern offset and trigger pattern data. This function
applies only to SmartCards.

Syntax int HTTrigger(int iTrigId, int iConfig, HTTriggerStructure* phtTStruct,
int iHub, int iSlot, int iPort)

Parameters iTrigId int Identifies the trigger source. There are two possible
triggers on each SmartCard. They are identified as
follows:

HTTRIGGER_1 Trigger 1

HTTRIGGER_2 Trigger 2

iConfig int There are three possible types of configurations for
the triggers on the SmartCards:

HTTRIGGER_OFF disables the triggering mechanism for
TrigId

HTTRIGGER_ON enables the triggering mechanism for TrigId

HTTRIGGER_DEPENDENTenables the triggering mechanism for TrigId
after the other trigger has triggered.

phtTStruct HTTriggerStructure* A structure containing the
trigger pattern, offsets and ranges. Note that the
maximum range is 6 bytes, and. though the range is
specified in bits., the specified number is rounded up to
the nearest byte multiple. i.e.; the SmartCards can only
trigger on patterns that are a length that is a multiple
of 8 bits. The offset ranges from 1 to 12,112 bits
(specified in bits). See the Data Structures section of
this document for more information on the
HTTriggerStructure.

iHub int Identifies the hub where the SmartCard is located.
The range is 0 (first hub) through N(number of hubs) -1.
Remember to subtract one since the hub identification
starts at 0.

Important: See Working with Multiple Hubs in Chapt 1.

iSlot int Identifies the slot where the SmartCard is located.
Ranges from 0 (first slot in Hub) to 19 (last card in
Hub).

iPort int Identifies the SmartCard port. (On the current
SmartCards, Port is always 0.)

Return
Value

The return value is >= 0 if the function executed successfully. A failure
code, which is less than zero, is returned if the function failed. See
Appendix A.

Comments It is possible to misconfigure triggers when using
HTTRIGGER_DEPENDENT.

A TrigId set to HTTRIGGER_DEPENDENT is to be active after the
other TrigId trigger has occurred. So, if trigger 2 is set to be dependent on
trigger 1:

180 SmartLib User Guide

A properly configured trigger dependent combination would be:
HTTrigger(HTTRIGGER_1,HTTRIGGER_ON,&TStruct,0,0,1)

HTTrigger(HTTRIGGER_2,HTTRIGGER_DEPENDENT,&TStruct
,0,0,1)

A misconfigured trigger combination would be:
HTTrigger(HTTRIGGER_1,HTTRIGGER_OFF,&TStruct,0,0,1)

HTTrigger(HTTRIGGER_2,HTTRIGGER_DEPENDENT,&TStruct
,0,0,1)

Here, trigger 2 will never fire because trigger 1 is off.

HTVFD
Description Sends VFD information to a SmartCard. This function applies only to

SmartCards.

Syntax int HTVFD(int iVFDId, HTVFDStructure* phtHStruct,int iHub, int iSlot,
int iPort)

Parameters iVFDId int Identifies the VFD pattern being addressed. There
are a total of three VFD patterns. They are identified as
shown below:

HVFD_1 VFD Pattern 1

HVFD_2 VFD Pattern 2

HVFD_3 VFD Pattern 3

phtHStruct HTVFDStructure* pointer to a structure that holds
VFD information for use with a SmartCard. This
structure holds the VFD Configuration, Range, Offset
and Pattern. See section 5 of this document for more
details on this structure.

iHub int Identifies the hub where the SmartCard is located.
The range is 0 (first hub) through N(number of hubs) -1.
Remember to subtract one since the hub identification
starts at 0.

Important: See Working with Multiple Hubs in Chapt
1.iSlot int Identifies the slot where the
SmartCard is located. Ranges from 0 (first slot in Hub)
to 19 (last card in Hub).

iPort int Identifies the SmartCard port. (On the current
SmartCards, Port is always 0.)

Return
Value

The return value is >= 0 if the function executed successfully. A failure
code, which is less than zero, is returned if the function failed. See
Appendix A.

Comments None

SmartLib User Guide 181

HTWriteMII
Description Writes a specific MII Address/Register. This command applies only to 100

Mb SmartCards.

Syntax int HTWriteMII(unsigned int uiAddress, unsigned int uiRegister,
unsigned short uiBits, int iHub, int iSlot, int iPort)

Parameters uiAddress unsigned int Specific address. Must be from 0 to 31

uiRegister unsigned int Specific register. Must be from 0 to 31

uiBits unsigned short Bit value to write to address/register

iHub int Identifies the hub where the SmartCard is located.
The range is 0 (first hub) through N(number of hubs) -1.
Remember to subtract one since the hub identification
starts at 0.

Important: See Working with Multiple Hubs in Chapt 1.

iSlot int Identifies the slot where the SmartCard is located.
Ranges from 0 (first slot in Hub) to 19 (last card in
Hub).

iPort int Identifies the SmartCard port. (On the current
SmartCards, Port is always 0.)

Return
Value

The return value is >= 0 if the function executed successfully. A failure
code, which is less than zero, is returned if the function failed. See
Appendix A.

Comments None

182 SmartLib User Guide

NSCreateFrame
Description Automates and simplifies creation of frames with the use of the structure:

FrameSpec.

Syntax long NSCreateFrame(FrameSpec_Type* framespec)

Parameters framespec FrameSpec_Type* pointer to a structure that holds
information about the type of frame(s) to be created.
Elements shown below can have a wide variety of
values.

For values of iEncap, iSize, iProtocol, and iPattern, see
FrameSpec structure definition in Chapter 6:
Data Structures.

iEncap The type of frame (Ethernet, ATM, etc.)

iSize The size of the frame. If iSize value is
either too large or too small (based on
selected iEncap and iProtocol values), an
error value is returned.

iProtocol The type of Layer 3 protocol to use, e.g.,
IP, ARP, None, etc.

iPattern The background pattern to use. This pattern
is used to pad the frame (to match the
iSize value) after all specified bytes have
been inserted.

Return
Value

If successful, a Frame ID is returned. This ID represents a single frame
prototype. Use this ID to put the frame in the card buffer with HTFrame.

If failure occurs, a negative integer is returned. See Appendix A.

Comments For a custom payload (background pattern), set the iPattern to
PAT_CUST, and then create the custom pattern with NSSetPayload.

Once a frame is created, put it into the SmartCard transmit buffer using
the HTFrame function. (This function is similar to HTFillPattern.)

Related functions: NSDeleteFrame, NSCreateFrameAndPayload, and
NSModifyFrame.

Since NSCreateFrame functions are intended for "layer 2" mode, VTEs
and Signature fields are not part of these frames.

SmartLib User Guide 183

NSCreateFrameAndPayload
Description Automates and simplifies creation of frames with the use of the structure:

FrameSpec.

For use only with a customized payload (fill pattern). For predefined
SmartLib payload, use NSCreateFrame.

Syntax long NSCreateFrame(FrameSpec_Type* framespec, int iPayloadSize,
unsigned char* pucPayload)

Parameters framespec FrameSpec_Type* pointer to a structure that holds
information about the type of frame(s) to be created.
Structure elements shown below can have a wide variety
of values.

For values of iEncap, iSize, iProtocol, and iPattern, see
FrameSpec structure definition in Chapter 6:
Data Structures.

iEncap The type of frame (Ethernet, ATM, etc.)

iSize The size of the frame. If iSize value is
either too large or too small (based on
selected iEncap and iProtocol values), an
error value is returned.

iProtocol The type of Layer 3 protocol to use, e.g.,
IP, ARP, None, etc.

iPattern The background pattern to use. For this
function the only valid value is: PAT_CUST.

iPayloadSize int Specifies the length of the payload (fill pattern)
array.

pucPayload unsigned char Pointer to user-created array
containing the customized payload (fill pattern).

Return
Value

If successful, a Frame ID is returned. This ID represents a single frame
prototype. Use this ID to put the frame in the card buffer using the
HTFrame function. (This function is similar to HTFillPattern.)

If failure occurs, a negative integer is returned. See Appendix A.

Comments If you want to use a pre-created fill pattern, use NSCreateFrame.

A second way to accomplish the same task (a frame with a custom fill
pattern) is to use the NSCreateFrame function, using PAT_CUST for the
iPattern parameter, and then defining the custom pattern with
NSSetPayload.

Once a frame is created, put it into the SmartCard transmit buffer using
HTFrame. (This function is similar to HTFillPattern.)

Other related functions: NSDeleteFrame and NSModifyFrame.

184 SmartLib User Guide

NSDeleteFrame
Description Deletes a single frame prototype specified by the lFrameID.

The frame prototype is identified by the Frame ID (which is returned by
NSCreateFrame and NSCreateFrameAndPayload).

Syntax long NSDeleteFrame (long iFrameID)

Parameters lFrameID long The ID number is unique to each frame prototype,
and is returned when a frame is created.

Use the iFrameID value to put the frame in the card
buffer with HTFrame, and to delete the frame from the
SmartLib buffer with NSDeleteFrame.

Return
Value

The return value is >= 0 if the function executed successfully. A failure
value of less than zero is returned if the function failed. See Appendix A.

Comments Use NSDeleteFrame to clear the Prototype From the SmartLib buffer once
that type of frame is no longer needed.

Other related functions: HTFrame, NSCreateFrame, NSSetPayload,
NSCreateFrameAndPayload, and NSModifyFrame.

SmartLib User Guide 185

NSModifyFrame
Description Modifies a section of a frame created by NSCreateFrame, or by

NSCreateFrameAndPayload. This function can be used for a series of
frames based on an original frame prototype.

Syntax long NSModifyFrame (long lFrameID, int iIdentifier, unsigned char*
pucBytes, int iNumBytes)

Parameters lFrameID long The FrameID number is unique for each frame
prototype. It is returned by NSCreateFrame and
NSCreateFrameAndPayload.

iIdentifier int This value specifies which portion of the frame to
modify. For example, you might modify the Destination
MAC, or the Time-to-Live, etc. By selecting an element,
you do not need to know it's offset, only its size and
content.

Note: Some elements can modify "Only" one type of
frame, while others have multiple uses defined by "All
Followed."

FRAME_VERSION "ONLY" IP version.
FRAME_HEADER_LENGTH "ALL FOLLOWED:" IP length, IPX length.
FRAME_UDP_HEADER_LENGTH "ONLY" UDP length.
FRAME_TCP_HEADER_LENGTH "ONLY" TCP length.
FRAME_TYPE_SERVICE "ONLY" IP type of service.
FRAME_TOTAL_LENGTH "ONLY" IP total length.
FRAME_SEQUENCE "ALL FOLLOWED:" IP sequence, ICMP

sequence.
FRAME_UDP_SEQUENCE "ONLY" UDP sequence.
FRAME_TCP_SEQUENCE "ONLY" TCP sequence.
FRAME_FLAGS "ONLY" IP flags.
FRAME_FRAGMENTS_OFFSET "ONLY" IP fragment and offset.
FRAME_TIME_TO_LIVE "ONLY" IP time to live.
FRAME_PROTOCOL "ONLY" IP protocol.
FRAME_HEADER_CRC "ALL FOLLOWED:" IP checksum, IPX checksum.
FRAME_UDP_HEADER_CRC "ONLY" UDP checksum.
FRAME_TCP_HEADER_CRC "ONLY" TCP checksum.
FRAME_DST_IP_ADDR "ANY" frame Destination IP Address.
FRAME_SRC_IP_ADDR "ANY" frame Source IP Address.
FRAME_SRC_PORT "ANY" frame Source Port number
FRAME_DST_PORT "ANY" frame Destination Port number.
FRAME_ACKNOWLEDGE "ONLY" TCP Acknowledge number.
FRAME_RESERVED "ONLY" TCP reserved bits.
FRAME_URG_BIT "ONLY" TCP URG bit.
FRAME_ACK_BIT "ONLY" TCP ACK bit.
FRAME_PSH_BIT "ONLY" TCP PSH bit.
FRAME_RST_BIT "ONLY" TCP RST bit.
FRAME_SYN_BIT "ONLY" TCP SYN bit.
FRAME_FIN_BIT "ONLY" TCP FIN bit.
FRAME_WINDOW_SIZE "ONLY" TCP window size.
FRAME_URGENT_POINTER "ONLY" TCP urgent pointer.
FRAME_HARDWARE_TYPE "ALL FOLLOWED:" ARP, RARP hardware type.
FRAME_HEADER_TYPE "ALL FOLLOWED:" ICMP Header type, IPX

Header Type.
FRAME_HARDWARE_SIZE "ALL FOLLOWED:" ARP, RARP hardware size.
FRAME_PROTOCOL_TYPE "ALL FOLLOWED:" ARP, RARP protocol type.
FRAME_PROTOCOL_SIZE "ALL FOLLOWED:" ARP, RARP protocol size.
FRAME_OPERATION "ALL FOLLOWED:" ARP, RARP operations.
FRAME_HEADER_CODE "ONLY" ICMP Header codes.
FRAME_IDENTIFIER "ONLY" ICMP Identifier.
FRAME_SEN_MAC_ADDR "ANY" protocol MAC sender address.
FRAME_REC_MAC_ADDR "ANY" protocol MAC receiver address.
FRAME_HOP "ONLY" IPX Hop
FRAME_DST_SOCKET "ONLY" IPX destination socket.
FRAME_SRC_SOCKET "ONLY" IPX source socket.
FRAME_ICMP_HEADER_CRC "ONLY" ICMP Header checksum.

pucBytes unsigned char* Pointer to the replacement bytes
used to modify the frame component.

186 SmartLib User Guide

iNumBytes int Length of new segment (pucBytes). If this value does
not match the bytes being replace, an error will result.

Return
Value

The return value is >= 0 if the function executed successfully. A failure
code, which is less than zero, is returned if the function failed. See
Appendix A.

Comments Use this function after creating a frame with either NSCreateFrame or
NSCreateFrameAndPayload.

Other related functions: HTFrame and HSDeleteFrame.

NSSetPayLoad
Description Used in conjunction with NSCreateFrame; this function configures the

customized payload (background pattern).

Syntax long NSSetPayLoad (long lFrameID, int iSize, unsigned char* pucPayload)

Parameters lFrameID long The FrameID number is unique for each frame
prototype. It is returned by NSCreateFrame and
NSCreateFrameAndPayload.

iSize int The size of the array specifying the payload.

pucPayload unsigned char* The pointer to the array specifying
the payload (the background pattern).

Return
Value

The return value is >= 0 if the function executed successfully. A failure
code, which is less than zero, is returned if the function failed. See
Appendix A.

Comments NSSetPayLoad is only used in conjunction with NSCreateFrame, when the
value of iPattern (in the structure FrameSpec) is PAT_CUST. This causes
NSCreateFrame to not specify a background pattern.

Other pre-created payload patterns are available. However, when
PAT_CUST is specified, use NSSetPayLoad to specify a customized
pattern.

You can also use NSCreateFrameAndPayLoad to accomplish the same
task.

Other related functions: HTFrame, NSDeleteFrame, and
NSModifyFrame.

SmartLib User Guide 187

Appendix A
Error Code Definitions
Error codes are returned from the library functions in lieu of data. Error codes values
are less than zero. They may be signed integers or signed long integers. A description
of each of these codes is included in the table below.

Error Code Description

UNSPECIFIED_ERROR

Error value: -1

An error condition which could not be identified was
encountered. This will occur if the system
experienced an error that does not fit into any of the
above categories.

PORT_NOT_LINKED

Error value: -2

An attempt to use a Programming Library function
was made when no active link exists to the ET-1000
or SMB-1000.

UNLINK_FAILED

Error value: -3

An attempt to unlink the ET-1000 from the serial
port failed. This could occur if the ET-1000 is
already unlinked from the port before the
ETUnLink command is called.

INCORRECT_MODE

Error value: -4

The attached ET-1000 was put into a such a mode
of operation that the attempted call to the library
function was not applicable. For instance, you
cannot access any packet data unless the capture
mode has been enabled.

PARAMETER_RANGE

Error value: -5

An incorrect or invalid range was specified on a
parameter of a library function. This may include
ranges within structures whose pointers are passed
as a parameter to the function.

PACKET_NOT_AVAILABLE

Error value: -6

An attempt was made to access information from an
indexed packet that is not currently within the
capture buffer of the attached ET-1000.

SERIAL_PORT_DATA

Error value: -7

Though no errors were detected on the serial port,
the data returned from it doesn't appear to be
correct. This is indicative of a serial port with a lot
of interference. Try reducing the baud rate
(ETSetBaud(...)).

ET1000_OUT_OF_SYNC

Error value: -8

The attached ET-1000 is operating in a mode
different than what was expected. Perform an
ETUnLink command followed by Link.

PACKET_NOT_FOUND

Error value: -9

An attempt to locate a packet within the ET-1000's
capture buffer was made, but the packet contents
could not be found and/or verified.

FUNCTION_ABORT

Error value: -10

A function was aborted by the user before it could
run to completion.

188 SmartLib User Guide

ACTIVE_HUB_NOT_INITIALIZED

Error value: -11

An attempt to execute a command that requires a
SmartCard was unsuccessful due to the library's
failure to properly initialize the board. The library
will always try to initialize the board if it hasn't
been done so already, but for some reason, the
initialization failed. This could indicate a failed
SmartCard.

ACTIVE_HUB_NOT_PRESENT

Error value: -12

An attempt to execute a command that requires a
SmartCard was unsuccessful due to the fact that
the addressed port had no board installed in it.

WRONG_HUB_CARD_TYPE

Error value: -13

An attempt to execute a command that requires a
SmartCard was unsuccessful due to the fact that
the addressed port contained a Passive Hub board.

MEMORY_ALLOCATION_ERROR

Error value: -14

The library attempted to allocate memory for some
internal operations and was unsuccessful. This
indicates that the PC Memory Manager could not
find the necessary space to run the function.

UNSUPPORTED_INTERLEAVE

Error value: -15

Not currently implemented.

PORT_ALREADY_LINKED

Error value: -16

The Programming Library supports 1 connection at
a time to an ET-1000 or SMB-1000. An ETLink
command was issued when an active link already
exists.

HUB_SLOT_PORT_UNAVAILBLE

Error value: -17

A request was made to perform an operation on a
Hub/Slot/Port that does not exist in the current
configuration.

GROUP_HUB_SLOT_PORT_ERR
OR

Error value: -18

A request was made to create or perform an
operation on a group with a Hub/Slot/Port that does
not exist in the current configuration.

REENTRANT_ERROR

Error value: -19

An attempt was made to call a Programming
Library function while BackgroundProcessing was
enabled, and the Programming Library was already
performing a function.

DEVICE_NOT_FOUND_ERROR

Error value: -20

An attempt was made to address an attached device
which could not be found [e.g. an MII transceiver].

PORT_RELINK_REQUIRED

Error value: -21

The connection is down, but no disconnect action
was taken by either side.

DEVICE_NOT_READY

Error value: -22

At this time, this error value is returned when a
Token Ring is down.

GROUP_NOT_HOMOGENEOUS

Error value: - 23

Not currently implemented. (Only used by
undocumented commands).

SmartLib User Guide 189

INVALID_GROUP_COMMAND

Error value: - 24

Not currently implemented. (Only used by
undocumented commands).

ERROR_SMARTCARD_INIT_FAIL
ED

Error value: - 25

Unable to initialize SmartCard.

SOCKET_FAILED

Error value: - 26

Error in the socket connection for an Ethernet Link
(PC to SMB).

SOCKET_TIMEOUT

Error value: - 27

Timeout on the socket connection for an Ethernet
Link (PC to SMB).

COMMAND_RESPONSE_ERROR

Error value: - 28

Invalid command response received from
SmartBits.

CRC_ERROR

Error value: - 29

CRC error in the data transfer.

INVALID_LINK_PORT_TYPE

Error value: - 30

An attempt was made to link a PC to a SmartBits
chassis over a connection which is not recognized as
a normal Serial Comm Port, nor as a proper TCP/IP
Socket Link. (This error message should not occur.)

INVALID_SYNC_CONFIGURATION

Error value: - 31

User attempted to perform a GPS/sync action when
the SMB is not set for GPS. (Could indicate that
GPS is not ready.)

SERIAL_PORT_TIMEOUT

Error value: -98

The serial port timed out while waiting for a
response from the ET-1000. This usually indicates a
problem with the physical serial link.

190 SmartLib User Guide

Appendix B
Notes on Tcl

Introduction

The SmartLib Programming Library commands can be utilized

from Tcl just as they can from C++ or any other supported language. This

section describes how to use the SmartLib commands and data structures

through the Tcl interface.

Loading SmartLib

In order to use SmartLib with Tcl, you need to start your

Tcl script by "sourcing" the SmartLib Tcl interface header file,

et1000.tcl, with the following line:

source et1000.tcl

Of course, you may need to specify a path to et1000.tcl if your program

is running in a different directory. The et1000.tcl file will perform

the following tasks:

1. Loads the interface library (tclet100.dll in Windows, tclet100.so in

 Unix). This library maps the Tcl SmartLib commands to their

 corresponding C/C++ SmartLib commands. The interface library

 loads the actual C/C++ SmartLib (etsmbw32.dll in Windows,

 libetsmb.so in Unix).

2. Loads the TclStruct 1.3 library. TclStruct is an extension to Tcl

 which we use to represent data structures in Tcl. Using data structures

 will be discussed in more detail later in this document.

3. Initializes all the pre-defined constants. All the "#define" statements

 in the C/C++ SmartLib header files have been translated to "set"

 statements in Tcl, allowing you to use these constants in your scripts.

SmartLib User Guide 191

4. Creates all the SmartLib data structure types. All data structures

 used by the SmartLib are declared using the syntax dictated by the

 TclStruct extension.

Commands

SmartLib commands can be called in Tcl in much the same way as they are

in C/C++. The difference is that the function calls follow the standard

Tcl syntax instead of the C/C++ syntax. For example, compare the following

calls to ETLink and HGAddToGroup in C/C++ and Tcl:

C/C++:

ETLink(ETCOM2);

HGAddToGroup(iHub, iSlot, iPort);

Tcl:

ETLink $ETCOM2

HGAddToGroup $iHub $iSlot $iPort

Checking a command's return value, a common (and recommended) practice when

using the SmartLib, can also be done similarly through Tcl:

C/C++:

iResponse = HGAddToGroup(iHub, iSlot, iPort);

Tcl:

set iResponse [HGAddToGroup $iHub $iSlot $iPort]

Data Structures

Data structures are represented in Tcl using the TclStruct extension. All

data structure types are declared in et1000.tcl using the "struct_typedef"

command provided by TclStruct. To create a data structure of a previously

declared type, use the "struct_new" command. For example, to create a data

192 SmartLib User Guide

structure named "gt" of the type "GIGTransmit", use the following line:

struct_new gt GIGTransmit

Arrays of data structures can also be created by the struct_new command.

The following example creates the variable "strms" to be an array of five

"StreamIP" structures:

struct_new strms StreamIP*5

Data structure fields are referenced by a simple syntax. The structure

name is followed by an open parenthesis ("("), followed by the name of the

desired field to reference, followed by a close parenthesis (")").

Sub-fields are separated by periods ("."). For example, using the

"strms" variable created above, set the third stream's uiFrameLength

field to 60 with:

set strms(2.uiFrameLength) 60

For more examples of using data structures in Tcl, refer to the provided

samples: sample.tcl in the TclFiles directory and the Tcl scripts in the

Manufacturing directory.

Memory allocated for data structures using the struct_new command can be

freed like any other variable in Tcl, using the "unset" command. For

example:

unset gt

unset streams

Data types

The data structure types declared in et1000.tcl contain fields with

types corresponding to those in the C/C++ header files. Because of the

nature of Tcl, you must take care in setting character values. Tcl

assumes that any value assigned to a "char" or "uchar" field is meant to

be a character. However, it is common and sometimes necessary to assign

a numeric value to a character field. For example, suppose you wanted to

SmartLib User Guide 193

set the first byte of the ucVFD1Data field of the GIGTransmit structure to

the character with a value of 8. In C/++, this can be done like this:

gt.ucVFD1Data[0] = 8; // C/C++ syntax

In Tcl, however, a direct translation of this line of code would cause the

field to be set to the character '8' instead of the character

with the value 8. To specify a character value in Tcl, use the "format"

command:

set gt(ucVFD1Data.0.uc) [format %c 8] ;# Tcl syntax

A backslash can be used as a short-hand method to set simple character

values, such as 0 or 1.

set gt(ucLoopBackMode) \1

Tcl does support hexadecimal values. The syntax is identical to C/C++:

set gt(ucVFD1Data.0.uc) [format %c 0x8A]

You can use the backslash character notation with hex numbers as well:

set gt(ucLoopBackMode) \x01

Arrays

Many of the SmartLib data structures contain fields that are arrays of

basic types. In the Tcl interface to the SmartLib, arrays of basic

types are implemented as arrays of "utility structure" types which we

provide. These utility structures are structures containing a single field

which is one of the basic types. For example, the "ULong" structure contains

a single element of type "ulong" (unsigned long). The "Char" structure

contains a single "char" element. To illustrate this concept, let's examine

the "HTTriggerStructure". The HTTriggerStructure contains a "Pattern" field

which is an array of six integers. Notice that in et1000.tcl, the

194 SmartLib User Guide

HTTriggerStructure is declared as follows:

struct_typedef HTTriggerStructure {struct

{uint Offset}

{int Range}

{Int*6 Pattern}

}

As you can see, the Pattern field consists of an array of six "Int"s (not

"int"s). The Int type is the data structure used for arrays of integers

(specifically "short"s). It is defined as follows:

struct_typedef Int {struct

{short i}

}

In Tcl, to fill this structure with the desired data, you must specify the

"i" field. Compare the following equivalent C/C++ and Tcl code:

C/C++:

HTTriggerStructure trig;

trig.Offset = 0;

trig.Range = 6;

trig.Pattern[0] = 0x0A;

trig.Pattern[1] = 0x0B;

trig.Pattern[2] = 0x0C;

trig.Pattern[3] = 0x0D;

trig.Pattern[4] = 0x0E;

trig.Pattern[5] = 0x0F;

Tcl:

struct_new HTTriggerStructure trig

set trig(Offset) 0

set trig(Range) 6

set trig(Pattern.0.i) 0x0A

set trig(Pattern.1.i) 0x0B

set trig(Pattern.2.i) 0x0C

set trig(Pattern.3.i) 0x0D

SmartLib User Guide 195

set trig(Pattern.4.i) 0x0E

set trig(Pattern.5.i) 0x0F

Multi-Dimensional Arrays

Some of the SmartLib commands have multi-dimensional arrays arguments,

such as HTHubSlotPorts and HTCardModels. We have provided the utility

functions ETMake2DArray and ETMake3DArray that create 2-dimensional and

3-dimensional arrays, respectively. Observe the following example of how

to create and use a multi-dimensional array:

ETMake3DArray HSP $MAX_HUBS $MAX_SLOTS $MAX_PORTS

HTHubSlotPorts HSP

for {set iPort 0} {$iPort < $MAX_PORTS} {incr iPort} {

for {set iHub 0} {$iHub < $MAX_HUBS} {incr iHub} {

for {set iSlot 0} {$iSlot < $MAX_SLOTS} {incr iSlot} {

puts $HSP($iHub,$iSlot,$iPort)

}

}

}

Pointers

In rare cases in the SmartLib, structure fields may be pointers to a

particular data type. An example of this is the "Data" field of the

HTVFDStructure data structure. In C/C++ form, the HTVFDStructure is

declared in et1000.h like this:

typedef struct

{

int Configuration;

int Range;

int Offset;

int* Data;

int DataCount;

} HTVFDStructure;

196 SmartLib User Guide

The Data field is a pointer to an int. Since Tcl doesn't support pointers,

we use another form of indirection. The Data field is declared as a

character array instead. The Tcl structure as declared in et1000.tcl is

like this:

struct_typedef HTVFDStructure {struct

{int Configuration}

{int Range}

{int Offset}

{char*256 Data}

{int DataCount}

}

The Data field will be used to hold the name of an integer array created

locally. The integer array can be created as an array of Int structures:

struct_new localData Int*50

For example purposes, let's say we have created a variable of type

HTVFDStructure:

struct_new vfd HTVFDStructure

After filling in the local data array...

set localData(0.i) 0xAA

set localData(1.i) 0xAB

... etc ...

...we set the Data field to be the name of the newly created integer array:

set vfd(Data) localData

Notice that there is no "$" in front of "localData". This is because we are

setting the Data field to the actual string "localData", the name of the

variable, not the value of that variable.

Structure Commands

SmartLib User Guide 197

Advanced SmartLib programming is done through the use of the "structure

commands": HTSetStructure, HTGetStructure, and HTSetCommand. These

structure commands can be used in Tcl similar to how they are used in

C/C++. In some instances, these commands require you to pass an array of

basic elements as the "pData" argument. In these cases you must use

an array of one of the single element utility structures: UChar, Char,

Int, etc. Just create an array of these structures and use that as the

pData argument. The following example sets the background data to an

incrementing pattern of 60 bytes:

struct_new data UChar*60

for {set i 0} {$i < 60} {incr i} {

set data($i.uc) [format %c $i]

}

HTSetStructure $GIG_STRUC_FILL_PATTERN 0 0 0 data 60 $iHub $iSlot
$iPort

Although you may use the "uiLen" argument to specify the size of the data

being sent or received in the pData argument, it is not actually necessary

to do so when using the Tcl interface. The SmartLib Tcl interface

calculates the size of the data being sent or received itself and passes this

value on to the core SmartLib.

More Examples

For more examples of using the SmartLib with Tcl, refer the extensive collection of

TCL examples found in the Samples | Tcl directory of the installation CD.

198 SmartLib User Guide

Appendix C
Revision History

Version 3.05
- Added support for the SMB-6000 SmartBits chassis and the LAN-
6200A SmartCard, to the level of compatibility with the SMB-2000
SmartBits chassis and the GX-1405 SmartCard.

- New function: ETSetGPSDelay(unsigned long ulSeconds); to set the
delay time before a GPS synchronized start/stop.

- Fixed RemoveHubSlotPortFromGroup() - only worked in certain
cases. Now it should work all the time.

- Fixed bug in HTDuplexMode to allow half-duplex settings.

- Fixed bug in one-to-many test if ATM is on one side. (Bug #3920)

- Changed HTBurst "AH" for "mode" command.

- Fixed bug for throughput test. Rate never increased when ATM
card was the source.

- One-to-many ATM test improved to support result retrieval when
multiple streams have only one connection.

- Fixed bug where ATM cards after first card weren't being
initialized in one-to-many or many-to-one tests.

- Fixed bug where ATM card was being initialized several times.

- Added function ETIsSyncCapable for GPS support.

- Added one more decimal place of resolution to status results.

- Changed ucSearchType field to ulSearchType.

- Added utility functions for U64 structure

- Fixed SASA bug in ARP replies: IP destination was incorrect when
both "multiple trials" and "learning every trials" options elected.

- Report format modified to allow apps to create tabular reports.

- SASA corrected to check packet errors before calculating
throughput results.

- Store and Forward latency calculation fixed for Token Ring,
100Mbit Ethernet, and 1Gbit Ethernet.

- Extended frame relay timeout period to be 2 * NN1 * NT1 to fix a
reported bug.

- Fixed problem with decoding 2 bytes of the lecid returned back
from card.

- Per-Connection Burst Count (ATM-2). This feature enables
applications controlling the ATM cards to specify a quantity of
frames to transmit (and then stop) for each active connection.

- Per-Port Burst Count (ATM-2) This feature is the same as above
except here we specify it for each card or per-port basis inclusive
of all active connections)

SmartLib User Guide 199

- Cell Scheduling (ATM-2) This feature provides the ability to
schedule N connections equally and at a specific percentage of line
rate.

- Stream Copy, Stream Modify and Stream Fill for ATM cards. This
feature helps reduce the setup time associated with configuring
streams. Stream Copy creates a given number of streams (up to the
max for the card) which are identical to an already existing
"source" stream. Stream Modify modifies the parameters of a given
number of streams which already exist on a card, with an absolute
value. Stream Fill, is similar to the Stream Modify feature,
except here a delta value to increment, from the initial value, is
specified.

- Frame Copy for ATM cards. This feature helps reduce the setup
time with configuring frames. Frame Copy defines frames for
multiple existing streams in a single command.

- Histogram retrieval from the frame relay cards has been fixed.
Index and count now work as well for the FR_HIST_LATENCY_INFO
iType.

- Modified HTSeparateHubCommands(HUB_GROUP_SYNC_ACTION) to return
error if SmartBits is not configured properly for GPS or
synchronized start.

- Modified Tcl interface to allow either of the following syntaxes
for declaring a single element array: "struct_new ulVar ULong" OR
"struct_new ulVar ULong*1".

- Added SMB-200 support for ETGetController() function--returns
CONTROLLER_SMB200 constant.

- HGSetGroup fixed so it can support setting a group across
multiple links. (Bug #3767)

- ETLink, ETSocketLink fixed so that if it is successfully
executed, the return value will be the new link count.

- Added the capability to change gigabit latency adjustment factors
from the .ini file.

- Modified ETLink to check if a comport is already linked before
attempting to link again. (Bug #3894)

- Changed FieldCount member of Layer3ModifyStreamDelta to
FieldRepeat.

- Fixed problems with HGResetPort.

- Added capability to specify which histogram records to retrieve.

- Added new error codes.

- Fixed report file and log file problem for Unix (Bug #4278)

- New constant names for HTSeparateHubCommands.

- Modified ETSetTimeout to use max timeout when given 0 as the
timeout parameter.

- Fixed HTLatency to not require background pattern to be set
separately.

- Fixed Unix byte-ordering problems with SmartAPI.

Version 3.04
- Added Ethernet message functions.

200 SmartLib User Guide

- Support for starts synchronized by GPS added.

- Added support for ATMClassicalIPInfo structure.

- Added support for T1/E1 Frame Relay cards.

- Fixed bug where StopOnError failed to stop test under UNIX SmartAPI.

 for SmartApps default error callback.

- Fixed ETGetBaud bug with multiple links.

- Fixed HGSetSpeed function.

- Added TCL and C sample code.

- Fixed timeouts on high-latency connections.

- Added delay for UNI restart on ATM cards.

- Added option to setup Stream8023 streams for Frame Relay cards in

 the SmartAPI for SmartApps.

- Increased latency resolution from 32 to 64 bits with ATM cards.

- Added support for Gigabit autonegotiation to SmartAPI for SmartApps.

- Changed SmartAPI for SmartApps to allow back-to-back test to reach

 100% regardless of resolution setting.

- Changed SmartAPI for SmartApps to report packet loss based on the

 transmitter rate instead of the receiver.

- Added lUseIdenticalRate parameter to ATM setup for SmartAPI for

 SmartApps.

- Added uiMaxRateWithTeardown and uiMaxRateWithoutTeardown into

 ATMCardCapability structure.

- Changed HTResetPort to stop ping, SNMP, and ARP reply packets from

 being transmitted from Layer 3 cards.

- Fixed bug in HTGetStructure when used with ATM cards to retrieve

 more than 2048 bytes of data.

- Added VFD1, 2, and 3 Block count to support 7710.

- Added support for WN-3415 and -3420 to HTGetCardModel.

- Added commands for ATM Classical IP client establish/release

- Fixed bug causing L3 and ML cards to crash if reset while running.

- Fixed bug with WriteMII to register 0.

- Added new command for per-connection burst count.

- Added support for UNI 3.0 signaling in the back to back mode for the

 SmartSignaling API.

- Modified the test approach for the Call Capacity test of the

 SmartSignaling API. The test will now run until all connections

SmartLib User Guide 201

 have failed rather than quitting after the first failed connection.

- The timestamps in the Signaling API are now 64 bits long supporting

 time durations to 58,000+ years.

- Added HGClearGroup command to replace obscure HGSetGroup(NULL)

- Added "Frame" functions for easy static frame generation. Functions

 allow multiple frames to be created, modified, and set as the fill

 pattern. Sensible default frame values are placed into new frames,

 and the CRC is recalculated automatically as the frame contents are

 altered.

- Fixed installation problems under SunOS 4.1.4. The installation is

 now successful with the following items installed first: GCC shared

 library, GNU Make 3.77, and GNU ld 2.9.1 (which comes in GNU

 binutils 2.9.1).

- Programming Library extension to Tcl 7.6 or 8.0 now installs

 successfully under SunOS 4.1.4.

- Fixed excessively long timeout for duplicate socket link.

- Fixed excessively long timeout for unlink from dead SmartBits.

- Added embedded structure definitions in Message Functions manual.

- Corrected code omissions in SmartAPI Manual.

- Split SmartAPI manual into: SmartAPI for SmartApps and SmartAPI for Smart Sig.

- Manuals converted to full-size 8.5 X 11 page format.

- Extensive documentation about histograms (SmartMetrics Results).

Version 3.03
- Added Frame Relay SmartCard support to TestAPI.

- Implemented HTResetPort and HGResetPort for Gigabit SmartCards.

- Added Enable Pause Flow Control option to TestAPI for Gigabit and

 Fast Ethernet SmartCards.

- Added synchronized start capability between master and slave links.

- Support for Gigabit SmartCard VFD3 buffer sizes of up to 16K.

- Fixed minor Gigabit SmartCard VFD3 bugs.

- Added interface support for Tcl 8.0 to Windows SmartLib.

- Extended maximum number of calls for ATM SmartCards from 512 to 8388607.

- Added Linear Search for the ATM Peak Call Rate test in the TestAPI.

- Added option of no call teardowns for ATM Peak Call Rate test - affecting

 Message Functions and TestAPI.

202 SmartLib User Guide

- Additional Smart API results format.

- Other miscellaneous minor bug fixes and improvements. Contact Technical

 Support for complete list.

Documentation:

- New Manual, SmartLib Smart API, covering functionality and concepts.

- Corrected examples in SmartLib User Guide, Chapter 8.

- Miscellaneous updates and corrections.

Version 3.02
Added support for the following SmartCards:

 ML-7710 100Mb Multi-Layer 10/100 Mbps Ethernet SmartCard

Fixes and new features:

- Reworked all gap commands to send all data in nanoseconds to be consistent
 with SmartWindow

- Increased receive time-out for command downloads

- Fix of capture count retrieval

- Added Frame relay Get_Structure call to return WAN card version

- Corrected static ILMI command

- Full list available from Technical support

- Corrected report file results problem

- Corrected GbE gap size update

New Documentation:

- User Manual - Major update for new functions supported in Version 3.00 and
 3.02.

- SmartLib Message Functions manual - All new manual:

The SmartLib Message Functions manual is used in addition to the SmartLib
User Manual. It covers the newer SmartLib Hardware API functions in detail.

It contains a complete list of the SmartLib 3.02 message functions and all
related

parameters. It also includes basic concepts of the message function syntax, as
well as examples specific to different programming languages.

Version 3.00
Added support for the following SmartCards:

SmartLib User Guide 203

SX-7410 100Mb Fast Ethernet

AT-9622 622Mb OC-12c ATM

AT-9155 155Mb OC-3 ATM Signaling and Frame Generation

AT-9045 45Mb DS3 ATM Signaling and Frame Generation

AT-9034 34Mb E3 ATM Signaling and Frame Generation

AT-9020 2.048 E1 ATM Signaling and Frame Generation

AT-9015 1.544 T1 ATM Signaling and Frame Generation

GX-1405 Gigabit Ethernet

WN-3405 V.35 FrameRelay

Visual Basic Interface changes:

Added updated Visual Basic Interface files. These files are in the VB

directory with filenames matching their corresponding ".h" header files.

The 16-bit VB files have extensions ".b16" and the 32-bit VB files have

extensions ".b32". In addition to containing updated commands, structures,

and constants, the new VB interface files have the following changes from

the previously distributed VB interface files:

- HTVFDStructure: iPointer and iLength fields have been renamed to pData and
DataCount respectively, to more closely match the field
names in et1000.h.

The previously distributed VB interface files (etsmbapi.txt, etsmbw32.txt,

and atmitem32.txt) are still distributed in the CommLib directory, for use

with previously written tests. These do NOT contain updated commands,

structures, and constants, however.

Version 2.50-20
Added TestAPI functions to perform the RFC1242 tests and retrieve

the test results.

int NS1242TestStart(int iTestType,

PortPairStruct *pPortPair,

int iTestPairs,

TestSetup *pTestSetup,

StatusCallbackFunc StatusCallBack,

204 SmartLib User Guide

ErrorCallbackFunc ErrorCallBack);

int NS1242TestStartVB(int iTestType,

PortPairStruct *pPortPair,

int iTestPairs,

TestSetup *pTestSetup);

int NS1242TestStop(int iTestType);

int NS1242TestReport(int iTestType, char *pszReport);

Version 2.42
Added functions to set and save card speed and duplex modes.

Added functions to get the card specific minimum and maximum

interpacket gap allowed and acceptable, and length allowed and acceptable.

Version 2.37
Added functions to save trigger configurations.

Fixed bug where port 79 (hub 4, port 19) card type was being overwritten.

Fixed Interburst gap.

Added HGStartSetGroup and HxModifyFillPattern.

Fixed VB prototypes

Automatically defer sending group configure hub group command

until group start/stop/step is required. This can result in very large

speedups when using HGSetGroup and HGAddToGroup in a loop.

Added the STATUS_xxx items which are documented under the

GetEnhancedStatus() manual. However, entered the values as the correct

values being returned from the TokenRing card.

In HTHubSlotPorts(), added valid returns for CT_TOKENRING and CT_VG.

Version 2.32
Fixed behaviour for Multiburst gap for 100mb cards.

Added optimization for HGAddToGroup command where a

HGStartSetGroup()/HGEndSetGroup pair can bracket a multiple change

of ports in a group to speed up command processing time.

Added HGModifyFillPattern and HTModifyFillPattern to allow multiple

cards to be programmed followed by a difference file for particular

cards.

SmartLib User Guide 205

Version 2.31
Added library commands for VG SmartCard:

int HGSetVGProperty(pVGPStructure)

int HTSetVGProperty(pVGPStructure, iHub, iSlot, iPort)

Version 2.3
Added library commands for better “group” configuration control:

int HGGetGroupCount(void)

int HGRemoveFromGroup(int iHub, int iSlot, int iPort)

int HGRemovePortIdFromGroup(int iPortId)

int HGIsPortInGroup(int iPortId)

int HGIsHubSlotPortInGroup(int iHub, int iSlot, int iPort)

Added TokenRing SmartCard commands:

int HTPortProperty(unsigned long* pulProperties,int iHub, int iSlot, int iPort)

int HTSetTokenRingErrors(iTRErrors, iHub, iSlot, iPort)

int HTSetTokenRingAdvancedControl(pTRAdvancedStructure, iHub, iSlot, iPort)

int HGSetTokenRingAdvancedControl(pTRAdvancedStructure)

int HGSetTokenRingErrors(iTRErrors)

int HTSetTokenRingProperty(pTRPStructure, iHub, iSlot, iPort)

int HTSetTokenRingLLC(pTRLStructure, iHub, iSlot, iPort)

int HTSetTokenRingMAC(pTRMStructure, iHub, iSlot, iPort)

int HTSetTokenRingSrcRouteAddr(UseSRA, piData, iHub, iSlot, iPort)

int HTGetEnhancedCounters(pEnCounter, iHub, iSlot, iPort)

int HTGetEnhancedStatus(piData, iHub, iSlot, iPort)

int HGGetEnhancedCounters(pEnCounter)

int HGSetTokenRingProperty(pTRPStructure)

int HGSetTokenRingLLC(pTRLStructure)

int HGSetTokenRingMAC(pTRMStructure)

int HGSetTokenRingSRA(UseSRA, piData)

Added link status commands. These COM port “linkage” related functions now allow
multiple ET-1000 and/or ETSMB-1000 systems to be connected and controlled from a
single program using the ETSMB Programming Library.

int ETSetCurrentLink(ComPort)

int ETGetCurrentLink()

int ETGetLinkFromIndex(iLink)

206 SmartLib User Guide

int ETGetTotalLinks()

Version 2.22
Fixed Gap scale and gap range problem.

Documented HTCollisionBackoffAggressiveness().

Version 2.21
Added:

int ETGetLibVersion(pszDescription, pszVersion)

long ETGetBaud();

int HTFindMIIAddress(pAddress,pControlBits,hub,slot,port).

Now allow Range = 0 when HTVFD set to HVFD_NONE.

Fixed a bug in RecallSettings() when being issued to a 100 Mbit FastCard.

Version 2.20
Added support for 100 Mbit Fast cards.

Added HTReadMII and HTWriteMII functions to support the 100 Mbit Fast cards.

Added HTDuplexMode() and HGDuplexMode().

The Range for (ET)VFDStructure Base pattern and Increment buffer has been limited
to 4096 bytes.

The packet length may now range from 1 to 8191 bytes in the HTDataLength()
command to allow runts and jabbers. A value of zero still generates random lengths.

Extended the HTVFDStructure.Range member to allow specifying bit sized fields for
VFD1 and VFD2.

Added library commands for the following SmartCard controls:

int HTTransmitMode(iMode, hub, slot, port)

int HTBurstCount(lCount, hub, slot, port)

int HTInterBurstGap(lCount, hub, slot, port)

int HTInterBurstGapAndScale(lCount, iScale, hub, slot, port)

int HTMultiBurstCount(lCount, hub, slot, port)

int HTGapAndScale(lCount, iScale, hub, slot, port)

and the corresponding hub group commands:

int HGTransmitMode(iMode)

int HGBurstCount(lCount)

int HGInterBurstGap(lCount)

int HGInterBurstGapAndScale(lCount,iScale)

int HGMultiBurstCount(lCount).

SmartLib User Guide 207

int HGGapAndScale(lCount, iScale)

The two commands, HxTransmitMode(), and HxBurstCount() replaces the single
command HxBurst(). The HxBurst() cmd used to set the burst count, and then
immediately set the transmit mode. With the introduction of the HxTransmitMode()
command, the user now has explicit control over the transmit mode. Future
commands should use the HxTransmitMode(iMode), and HxBurstCount(lCount)
commands and no longer utilize the HxBurst() command.

The introduction of the HxGapAndScale() commands affect the interpretation of the
HxGap() command. Please review the detailed description of each command for specific
behaviors in common usage.

Version 2.13
Added missing HGSelectTransmit prototype.

Fixed sample ET1000 initialization code.

Version 2.12
Added support for Solaris, SunOS 4.x, and Linux.

HTGap and HGGap commands were limited to an unsigned int.

HTLatency did not set the appropriate trigger.

All references to Active port were changed to SmartCard.

Version 2.11
Visual Basic function prototypes for HTGetHubLEDs and HGGetLEDs were incorrect.

The SETUP program would not allow installation from a non-root directory.
A:\SETUP or C:\SETUP would work, C:\TEMP\SETUP would not.

Version 2.10

New functions
HGAddtoGroup now can be used along with HGSetGroup to create groups of ports.

HTLatency can now be used to measure latency using specific cards.

HTCRC and HGCRC can be used to generate CRC errors.

HTAlign and HGAlign can be used to generate alignment errors.

HTDribble and HGDribble can be used to generate dribbling bit errors.

HTPortType and HTHubSlotPorts can be used to determine what cards exist in a
SmartBits hub.

HTVFD now supports a static field definition for easy programming of MAC addresses.

HTGetLEDs and HGGetLEDs now returns LED states.

HTGetHubLEDs now returns LED states for an entire hub.

208 SmartLib User Guide

HTSelectTransmit now selects via Hub/Slot/Port ET-1000 transmission.

HTSelectReceive now selects via Hub/Slot/Port ET-1000 reception and capture.

New advanced functions
ETEnableBackgroundProcessing which can be used to enhance the responsiveness of
applications.

ETIsBackgroundProcessing determines if a background process is running.

ETReturnAddress returns a pointer to a Visual Basic data type. An example of this
call is shown in the VFD3 code snippet below.

Corrected Errors
Using ETSetup with ETRECALLSETUP and SetupId of 0 (return to factory defaults),
could leave an attached SmartBits hub in an unknown state. Now, all hubs and all
cards are reset to the default state when this command is issued. Also, the connection
to the ET-1000/SmartBits is maintained across this call. The baud rate in effect before
issuing this call is restored before the call returns. There is no need to disconnect and
reconnect after this call.

ETSetBaud now maintains a connection to the ET-1000/SmartBits. There is no longer
a need to disconnect and reconnect after using this call.

Initial connection time when using an ETLink command may be minimized by calling
ETSetBaud to the baud rate of the device prior to ETLink as below:

Visual Basic structure definition HTVFDStructure has changed. The new structure is:

ETSetBaud(ETBAUD_38400); //Start searching at 38400

ETLink(ETCOM2); //Try to connect to ET1000

//This will search all baud rates, but will set the baud

//rate to 38400 for the first search. If you want to

//guarantee the fastest possible connection after

//connect, use:

ETSetBaud(ETBAUD_38400); //Start searching at 38400

ETLink(ETCOM2); //Try to connect to ET1000

ETSetBaud(ETBAUD_38400); //Reset to 38400

SmartLib User Guide 209

Type HTVFDStructure

 Configuration As Integer

 Range As Integer

 Offset As Integer

 iPointer As Long

 iLength As Integer

End Type

An example Visual Basic snippet to set a VFD3 field is:

210 SmartLib User Guide

Static inData(24) As Integer

Static VFD As HTVFDStructure

inData(0) = 255 'Set up "VFD" data structure

inData(1) = 255 'to contain 2 source and dest

inData(2) = 255 'addresses

inData(3) = 255 '

inData(4) = 255 ' Destination:

inData(5) = 255 ' “FF-FF-FF-FF-FF-FF”

inData(6) = 0 ' Source:

inData(7) = 160 ' “00-A0-86-FF-00-00”

inData(8) = 134 '

inData(9) = 255 '

inData(10) = 0 '

inData(11) = 0

inData(12) = 0 'Start of 2nd packet structure

inData(13) = 160 ' Destination:

inData(14) = 134 ' “00-A0-86-FF-00-00”

inData(15) = 255 '

inData(16) = 0 '

inData(17) = 0 '

inData(18) = 0 ' Source:

inData(19) = 160 ' “00-A0-86-FF-00-01”

inData(20) = 134 '

inData(21) = 255 '

inData(22) = 0 '

inData(23) = 1 '

VFD.Configuration = HVFD_ENABLED

VFD.Range = 12 'Bytes in VFD

VFD.Offset = 0 'Offset in bits from first bit

VFD.iPointer = ETReturnAddress(inData(0))

 'VisualBasic does not support a

 'pointer type, so this is a

 'work-around.

VFD.iLength = 24 'two different destination/source

 'addresses

iRtn = HTVFD(HVFD_3, VFD, 0, 0, 0)

Version 2.01
HTSelectReceivePort and HGSelectReceivePort were incompletely documented.

SmartLib User Guide 211

Version 2.0

Software Additions
A new set of Hub “Group” commands have been added. All of these commands are
prefixed with an “HG” and are fully described in the Detailed Description section of
this manual. The customer should look to utilize these new “HG” commands any time
that multiple SmartBits ports are being sent the same “HT” command. Significant
performance improvements can be achieved in the ET-1000/SmartBits programming
time.

There are two main steps to utilizing the new “HG” commands. First, one must setup
a “PortIdGroup” string using the new HGSetGroup(char* PortIdGroup) command.
Then use the “HG” commands similar to how the HT commands are currently used.
Every subsequent “HG” command will take effect on all ports listed in the PortIdGroup
string.

This has benefits in coding and significant execution time improvements when dealing
with more than a few cards at a time. For most programmers, this will enable more
inline coding, thus preventing most need to repetitively loop through all the ports to be
set up using the HT commands. At run time, the combined overhead of the code loops,
operating system, serial communication, and instrument hardware response times are
cut by as much as twenty times. This can be quite a significant performance increase if
many commands are used to configure and reconfigure your SmartCards during and
between various test procedures. There is a new coding example with this distribution
which demonstrate the HG commands in C (PORTGRUP.EXE).

The library is now available as a Microsoft Windows Version 3.1 DLL. This file is
called ETSMBW16.DLL and should be copied to the \WINDOWS\SYSTEM directory.

The HTCountStructure was changed to use unsigned longs for all event counters.

Notes on Using Microsoft Visual Basic
Applications that are created in Visual Basic may call any exported DLL function.
Visual Basic calls these functions “external procedures”. These external procedures
must be defined by using the “Declare” statement in the Declarations section of a form
or module. Netcom distributes a file named “ETSMBAPI.TXT” which declares all the
functions and structures referenced in this manual. This file may be included in your
Visual Basic projects.

Structures are called “User-Defined Data Types” in Visual Basic. All structures
referenced in this manual have equivalent Type definitions in ETSMBAPI.TXT.

Some of the constants used have changed names. This is because Visual Basic does not
allow functions and global constants to have the same names.

212 SmartLib User Guide

C Visual Basic

HTSTOP HTRUN_STOP

HTSTEP HTRUN_STEP

HTRUN HTRUN_RUN

ETSTOP ETRUN_STOP

ETSTEP ETRUN_STEP

ETRUN ETRUN_RUN

The DLL opens the Comm port to communicate to the ET-1000 & SmartBits Hub. The
DLL creates and uses an internal memory block throughout the set of calls used to
communicate with the device. Visual Basic does not handle this situation in a normal
fashion. Normally, Visual Basic loads and unloads a DLL for each call or procedure
used. This would have the effect of removing the memory block in-between DLL calls.
So, to handle this situation, programs use the following code fragments:

In a global module,

Declare Function LoadLibrary Lib "Kernel" (ByVal
lpLibFileName As String) As Integer

Declare Sub FreeLibrary Lib "Kernel" (ByVal hLibModule As
Integer)

Global OpenedET As Integer

Global ETLibHandle As Integer

in the initial form load:

At the unload of this form, use:

Sub Form_Load ()

 ETLibHandle = LoadLibrary("etsmbw16.dll")

 OpenedET = ETLink(ETCOM2)

End Sub

SmartLib User Guide 213

This will load the DLL and keep it in memory throughout the application life.

Visual Basic Demonstration Application
There is a demonstration program, ETVBDEMO.EXE, written in Visual Basic, that
demonstrates several different capabilities of the device.

This demonstration is distributed the source code. The source code modules used are:

Form Description

SPLASH.FRM A introductory “splash” screen shown for a short time while
initializing the ET-1000

CONNECT.FRM A background form, not shown, that controls background
processing. This background processing is retrieving the counters
for display

MAIN.FRM The main sample form

ETSETUP.FRM Setup transmission of the ET-1000 ports

SMBSETUP.FR
M

Setup transmission of any of the SmartCards found.

PATTERN.FRM A dummy pattern editor

GLOBALS.BAS Global variables used by the forms above.

ETSMBAPI.BAS A module created by including the ETSMBAPI.TXT file.

Several capabilities are not implemented in this demonstration program:

• VFD fields do not have any effect.

• Hex pattern editors for the Fill and VFD fields are not implemented.

• Triggering is not implemented.

• Error generation is not implemented.

Sub Form_Unload (Cancel As Integer)

 If (OpenedET > 0) Then

 iRtn = ETUnLink()

 If (iRtn < 0) Then

 MsgBox "Bad Close of ET Connection", 48

 End If

 End If

 FreeLibrary ETLibHandle

End Sub

214 SmartLib User Guide

• Echo mode is not implemented.

• The program does not query the device state prior to displaying any information.
No checking is done prior to transmission of packet length, gap, data contents,
error generation or any other type of packet transmission capability.

• The SMB Hub/Port cards when switched, do not update the state of the
Run/Stop/Burst buttons

Software Modifications
HTTrigger was confusing to operate. HT_TRIGGER_ON, HT_TRIGGER_OFF, and
HT_TRIGGER_INDEPENDENT are now the only mode arguments required

Version 1.32

Software Additions
An HTEcho command has been added to the library. This command is detailed in a
new page in the reference section of the manual. Once a card is setup to trigger on an
event (e.g. data pattern received), then that card will echo the received packet by
transmitting it out the same port of that card.

Software Modifications
The HTVFDStructure now has a new parameter which is necessary for VFD_3. This
structure has been amended to add the integer variable member “DataCount” to the
end of the structure. The HTVFDStructure.DataCount member should be filled with
the byte count (the size) of the Data buffer your program wants VFD_3 to pull bytes
from to make up packet transmissions. This is the same buffer that is pointed to by
the HTVFDStructure.Data member. The HTVFDStructure.Range member is still the
packet size.

The HTSelectReceivePort(int PortId) now allows the programmer to turn off the
last selected Receive Port by entering a PortId of 0 (zero). This is equivalent to the
newly defined value in the ET1000.H file as defined in the following table.

Defined Value Value Meaning

HTRECEIVE_OFF OFF

This allows the programmer to turn off the receive mode of the last board routed to
PortB of the ET1000 for analysis.

Software Environment
The ET-1000 library now supports Borland C/C++ 4.02 as well as 4.0 and 3.1. To do
this, the name of the Borland 4.0 library has changed. Refer to the table below for the
correct library to use with your program. You must decide which library is compatible
before attempting to link.

SmartLib User Guide 215

File Name File Type

B4ET1000.LI
B

For development of Borland C/C++ version
4.02 applications

B40ET1K.LIB For development of Borland C/C++ version
4.0 applications

B3ET1000.LI
B

For development of Borland C/C++ version
3.1 applications

MSET1000.LI
B

For development of Microsoft C/C++ (Visual
C/C++ version 1.5) applications

ET1000.H Library header file

Corrected Errors
The VFD’s were not correctly generated.

The Trigger pattern was not correctly generated.

The Trigger_Off Mode parameter was not disabling the Trigger.

The HTSelectReceivePort command was not functional.

The HTSelectTMTPort command indexed SmartBits ports incorrectly. It now indexes
them like Passive Hub cards which assumes two ports per board.

IMPORTANT NOTE:

Even though SmartCards have only one port, they are indexed as if there are two
ports. This is important to note if you use any of the following three library calls which
take a single PortId parameter instead of the “Hub, Slot, Port“ addressing of other
commands. These three commands are:

HTSelectReceivePort(PortId, Mode),

HTSelectTMTPort(PortId, Mode),

HTSetLED(PortId, Color).

So, if you have all SmartCards, if PortId is equal to 1 or 2, it will address the first
SmartCard in the first Hub. Similarly, PortId equal to 3 or 4 will address the second
SmartCard in the first Hub. And so on through to PortId 159 or 160 will address
SmartCard 20 in the fourth Hub. For customers whose cards have two ports already,
those are Passive cards, so your code should not be affected.

Compatibility with previous version
Most code previously linked with version 1.3 of this library will link with version 1.32
without modifications other than what has been noted above. There have also been
upgrades to the Firmware that must be loaded before the HTEcho command will work.
For best results you should have firmware version 8 or above to avoid problems when
trying to control an attached SmartBits. Do NOT link your code with version 1.32
unless you have upgraded (or are about to upgrade) the firmware on your ET-1000 to
Version 8 or above.

216 SmartLib User Guide

A field upgrade of ET-1000 firmware is available from Netcom Systems. The firmware
is upgraded using a MS-DOS executable program (provided by Netcom Systems), and
it requires about five to ten minutes to complete the upgrade process.

Version 1.3

Software
Functions for controlling and monitoring a SmartBits with SmartCards installed have
been added. These additional commands allow you to exercise control over any
SmartCards installed within the SmartBits Hub Tester. Compatibility with the
previous HT-40 functions is maintained.

Structure HTCountStructure has been added; it is used to obtain statistical
information on the SmartBits SmartCards.

Structure HTVFDStructure has been added. HTVFDStructure is used to define VFD
information required by all SmartCards that are to implement VFD functions.

Functions for setting and reading the Live Network Mode (LNM) of the ET-1000 have
been added. These functions are ETGetLNM() for reading the current status of LNM
and ETLNM() for setting LNM in a specific mode.

The ET-1000 library now supports Borland C/C++ 3.1 as well as 4.0. Separate library
files have been released for each type of compiler. If you are using a Borland compiler,
you must decide which library is compatible before attempting to link.

A function for getting the timestamp of a captured packet has been provided. Function
ETGetCaptureTime() performs this task. A new structure, "TimeStructure," has been
provided with this release for holding the timestamp information.

User's Manual
There have been several modifications to this manual due to either A) the addition of
functions in the library, or B) correction of errors in the Version 1.2 User's Manual.

Compatibility with previous version
All code previously linked with version 1.2 of this library will link with version 1.3
without modification; however, attempting to run this new version on an ET-1000 that
does not have firmware version 8 or above may produce problems when trying to
control an attached HT-40. Thus, do NOT link your code with version 1.3 unless you
have upgraded (or are about to upgrade) the firmware on your ET-1000 to Version 8 or
above. Field upgrade firmware is available from Netcom Systems. The firmware is
upgraded using a MS-DOS executable program (provided by Netcom Systems), and it
requires about five to ten minutes to complete the upgrade process.

SmartLib User Guide 217

Appendix D
Obsolete Functions and Structures

Capture int ETGetCaptureTime
(TimeStructure*
TStruct)

OBSOLETE this function is not supported.

SmartBits int HGBurst

(long lVal)

OBSOLETE Sets the burst count and then sets burst
mode. Replaced by the two commands:
HGBurstCount and HGTransmitMode.

HT-40 int HGClear

(void)

OBSOLETE Used on an HT-40 with Passive Hub
cards only. Clears all ports of a PortIdGroup attached
to the ET-1000. Passive cards only. For non-Passive
SmartCards this function has been replaced by the
command: HTClearPort

SmartBits int HGEcho

(int iMode)

OBSOLETE When Mode is ON, the select port will
echo back the received packet when a trigger
condition is met. Replaced by the command:
HGTransmitMode

SmartBits int
HGSelectReceivePort

(int PortId)

OBSOLETE Selects a single receive port on the HT-
40 Hub Tester(s) which is to be routed to the ET-
1000's Port B for analysis. Only one port can be
selected at a time. This command can be used on both
SmartCards and Passive Hub cards. Replaced by the
command,: HGSelectReceive.

SmartBits int HGSelectTMTPort

(int Mode)

OBSOLETE Selects the HT-40 Hub Tester(s) to
transmit the ET-1000’s Port B signals through the
PortIds in the PortIdGroup. This command an be
used on both SmartCards and Passive Hub Cards.
Replaced by the command: HGSelectTransmit.

SmartBits int HGSetLED

(int Color)

OBSOLETE Illuminates an HT-40's LED associated
with a PortIdGroup in the specified color

SmartBits int HTBurst

(long lVal,

 int iHub,

 int iSlot,

 int iPort)

OBSOLETE Sets the burst count and then sets the
transmit mode to a single burst of packets. Replaced
by the two commands: HTBurstCount and
HTTransmitMode.

HT-40 int HTClear

(int HubId)

OBSOLETE Used on an HT-40 with Passive Hub
cards only. Clears one or all HT-40 Hub Testers
attached to the ET-1000.

Passive cards only. For non-Passive SmartCards this
function has been replaced by the command,
HTClearPort.

218 SmartLib User Guide

SmartBits int HTEcho

(int iMode,

 int iHub,

 int iSlot,

 int iPort)

OBSOLETE When Mode is ON, the select port will
echo back the received packet when a trigger
condition is met. Replaced by the command:
HTTransmitMode.

SmartBits int HTGroup

(int iHub,

 char*
pszGroupString)

OBSOLETE Use HGSetGroup

Used to group ports on a SmartBits for purposes of
coordinating starting, stopping and stepping the
transmission of Ethernet packets from different ports.
Replaced by the command: HGSetGroup and its
related “HG..” (group) commands.

SmartCard int HTLatencyTest

(SetLatencyStruc
ture* pSLS,

 unsigned long*
pulResults,

 int iMode)

OBSOLETE Used to run latency tests on a group of
ports of a SmartBits. Replaced by the command:
HTLatency.

SmartBits int
HTSelectReceivePort

(int PortId)

OBSOLETE Selects a single receive port on the HT-
40 Hub Tester(s) which is to be routed to the ET-
1000's Port B for analysis. Only one port can be
selected at a time. This command can be used on both
SmartCards and Passive Hub cards. Replaced by the
command: HTSelectReceive.

SmartBits int HTSelectTMTPort

(int PortId,

 int Mode)

OBSOLETE A transmit port on the HT-40 Hub
Tester(s) which is to transmit the ET-1000's Port B
signals. This command can be used on both
SmartCards and Passive Hub Cards. Replaced by the
command: HTSelectTransmit.

SmartBits int HTSetLED

(int PortId,

 int Color)

OBSOLETE Illuminates an HT-40's LED associated
with a particular port in the specified color. This
command can be used on both SmartCards and
Passive Hub Cards.

SetLatencyStructure
int Hub

Identifies the hub on which latency tests are to be run. Ranges
from 0 to 3.

int TransmitSlot
Identifies the transmit slot within the hub that is to transmit
the test pattern. This test pattern is used on receiving slots to
determine the latency.

int ReceiveSlot[20]

SmartLib User Guide 219

An array of 20 integers. A zero in a particular position of the
array indicates that the corresponding slot on the hub is NOT
used for latency testing. A one in a particular position of the
array indicates that the corresponding slot on the hub IS used
for latency testing.

int Offset
This is the offset, in bits, from the beginning of the packet
(after the preamble bits) that the bit pattern is located. Packets
containing the bit pattern are transmitted from the slot
identified in TransmitSlot and triggered upon in the slots
identified in the ReceiveSlot array.

int Range
unsigned char Pattern[12]

This is the size of the bit pattern, in bytes. This contains the bit
pattern, represented as unsigned characters across the entire
array. Pattern[12] contains the most significant byte,
Pattern[0] the least significant.

ETGetCaptureTime
Current implementation always forces TIME_TAG_OFF. This command does not
return valid information.

Description Returns time stamp information from the most recently acquired captured
packet

Syntax int ETGetCaptureTime(TimeStructure* Tstruct)

Parameters TStruct TimeStructure* Points to the structure to be filled
with time stamp information.

Return
Value

The return value is >= 0 if the function executed successfully. The return
value is < 0 if the function failed. See Appendix A.

Comments 1. See the definition of TimeStructure in the Data Structures portion of
this manual.

2. The TimeTag member of the CaptureStructure structure most recently
sent to the ET-1000 (via the ETCaptureParams function) must be set to
TIME_TAG_ON in order for this function to yield any useful information.
In other words, the ET-1000 must be told to save time tag
ETCaptureParams function) must be set to TIME_TAG_ON in order for
this function to yield any useful information. In other words, the ET-1000
must be told to save time tag information with each captured packet
before ETGetCaptureTime can be expected to produce any data.
Furthermore, function ETGetCapturePacket must be executed prior to
executing this function. ETGetCapturePacket actually acquires the time
tag information and puts it into an internal array – ETGetCaptureTime
simply copies this information into the provided TimeStructure structure.
Thus, the time tag information provided by this function pertains to the
packet most recently acquired by ETGetCapturePacket.

220 SmartLib User Guide

HGBurst
Description Sets up a burst count for transmitting a burst of packets from all ports

associated with the PortIdGroup defined by the
HGSetGroup(PortIdGroup) command.

Syntax int HGBurst(long lVal)

Parameters lVal long Specifies the burst count. Ranges anywhere from
0 to 16,777,215. A value of zero turns off the burst
mode, and a non-zero value automatically enables the
burst mode.

Return
Value

The return value is >= 0 if the function executed successfully. A failure
code, which is less than zero, is returned if the function failed. See
Appendix A.

Comments This instruction does not cause a burst of packets to be sent. Use HGRun,
HGStart, HGStep, HTGroupStart, HTGroupStep, and HTRun to
actually start the transmission of the burst.

HGClear
Description Clears one or all HT-40 Hub Testers attached to the ET-1000. This

instruction applies only to HT-40s populated with passive hub cards. For
SmartBits with SmartCards, use HTClearPort.

Syntax int HGClear()

Parameters None.

Return
Value

The return value is >= 0 if the function executed successfully. A failure
code, which is less than zero, is returned if the function failed. See
Appendix A.

Comments This function assumes that at least one HT-40 Hub Test device is attached
to the ET-1000. It will be ignored by the ET-1000 if there is not an HT-40
device present.

HGEcho
Description Indicates whether to echo back the received packet when a Trigger

condition is met from all ports associated with the PortIdGroup defined by
the previous HGSetGroup(PortIdGroup) command.

Syntax int HGEcho(int iMode)

Parameters iMode int Indicates whether the selected Port should turn ON
or OFF it’s echo mode. The OFF mode puts the card
into a continuous mode of operation.

HTECHO_ON Sets port to Echo mode

HTECHO_OFF Sets port to Continuous mode (disabling
Echo)

Return
Value

The return value is >= 0 if the function executed successfully. A failure
code, which is less than zero, is returned if the function failed. See
Appendix A.

SmartLib User Guide 221

Comments None

HGSelectReceivePort
Description Selects a port on an HT-40 Hub Tester(s) or SmartBits that is to be used

for receive data. The receive data from this port is routed directly back to
the ET-1000's Port B for detailed analysis. This function is valid for both
Passive and SmartCards.

Syntax int HGSelectReceivePort(int PortId)

Parameters PortId int Determines the specific port on the HT-40 Hub Tester or
SmartBits from which to route data back to the ET-1000’s
Port B for detailed analysis. Each HT-40 has up to 40
passive ports, or 20 active ports. Up to 4 HT-40s may be
cascaded for a total of 160 passive ports, or 80 active ports.
PortId ranges from 1 (Port 1 of the first HT-40) to 160, or 80
(last port on the last HT-40). The selected port will be used
for analysis of received data. If PortId is 0, the currently
selected receive port will be set off. Any values outside this
range are invalid and will not have an effect on the attached
ET-1000 or its HT-40 counterpart.

NOTE: This command follows the same PortId numbering
convention as the HGSetGroup command. The ports
are referenced according to their actual presence in the
Hub Tester. For example, if the first board in the first
Hub is not present, PortId = 1 will refer to the next
actual board in the Hub Tester system.

Return
Value

The return value is >= 0 if the function executed successfully. A failure
code, which is less than zero, is returned if the function failed. See
Appendix A.

Comments Because the ET-1000 circuitry only allows one channel to be fully detailed,
this command only works on the single port listed in the PortId
parameter, but is referenced the same as all ports in the “HG” commands
(See ”NOTE” above). This function assumes that at least one SmartBits or
HT-40 Hub Test device is attached to the ET-1000. It will be ignored by
the ET-1000 if there is not a SmartBits or HT-40 device present.

HGSelectTMTPort
Description Enables the PortB transmission of the ET-1000 to be transmitted to all

ports associated with the PortIdGroup defined by the previous
HGSetGroup(PortIdGroup) command. Transmission mode is determined
by Mode. This function is valid for both Passive and SmartCards.

Syntax int HGSelectTMTPort(int Mode)

Parameters Mode int Determines the function of the Port specified in
PortId:

HTTRANSMIT_OFF Transmitter is turned off

HTTRANSMIT_STD Transmitter transmits standard packets

HTTRANSMIT_COL Transmitter transmits collision packets

All other values are invalid and will not have an effect on the attached ET-
1000 or its HT-40 counterpart.

222 SmartLib User Guide

Return
Value

T he return value is >= 0 if the function executed successfully. A failure
code, which is less than zero, is returned if the function failed. See
Appendix A.

Comments 1. This function assumes that at least one SmartBits is attached to the
ET-1000. It will be ignored by the ET-1000 if there is not a SmartBits or
HT-40 device present.

2. Note that when the HTTRANSMIT_COL parameter is set in the Mode
argument, the collision type produced by the specified SmartBits or HT-40
port is determined by the most recent parameters placed in the
CollisionStructure and sent to the ET-1000 with the ETCollision
command. Specifically, only the Offset and Duration fields of the
CollisionStructure are used to determine the offset and duration of the
collisions produced by the specified HT-40 port. It doesn't matter what the
Count or Mode fields of the CollisionStructure are set to -- only the Offset
and Duration are used by the HT-40. (This is true even if the Mode field
of the CollisionStructure is set to COLLISION_OFF -- Collisions are
turned off for the ET-1000's ports but not necessarily the same is true for
the HT-40's ports.)

SmartLib User Guide 223

HGSetLED
Description Illuminates the HT-40's LED in the specified color for all ports associated

to the PortIdGroup defined by the previous HGSetGroup(PortIdGroup).

Syntax int HGSetLED(int Color)

Parameters Color int Determines the color in which to illuminate the
selected Port's LED:

HTLED_OFF LED is off

HTLED_RED LED is on and red

HTLED_GREEN LED is on and green

HTLED_ORANGE LED is on and orange

Any values outside this range are invalid and will not
have an effect on the attached ET-1000 or its HT-40
counterpart

Return
Value

T he return value is >= 0 if the function executed successfully. A failure
code, which is less than zero, is returned if the function failed. See
Appendix A.

Comments This function assumes that at least one HT-40 is attached to the ET-1000.
It will be ignored by the ET-1000 if there is not an HT-40 present.

HTBurst
Description Sets up a burst count for transmitting a burst of packets from a

SmartCard.

Syntax int HTBurst(long lVal, int iHub, int iSlot, int iPort)

Parameters lVal long Specifies the burst count. Ranges anywhere from
0 to 16,777,215. A value of zero turns off the burst
mode, and a non-zero value automatically enables the
burst mode.

iHub int Identifies the hub where the SmartCard is located.
The range is 0 (first hub) through N(number of hubs) -1.
Remember to subtract one since the hub identification
starts at 0.

Important: See Working with Multiple Hubs in Chapt
1.iSlot int Identifies the slot where the
SmartCard is located. Ranges from 0 (first slot in Hub)
to 19 (last card in Hub).

iPort int Identifies the SmartCard port. (On the current
SmartCards, Port is always 0.)

Return
Value

The return value is >= 0 if the function executed successfully. A failure
code, which is less than zero, is returned if the function failed. See
Appendix A.

Comments This instruction does not cause a burst of packets to be sent. The HTRun
command must be used to start the transmission of the burst.

224 SmartLib User Guide

HTClear
Description Clears one or all HT-40 Hub Testers attached to the ET-1000. This

instruction applies only to HT-40s populated with passive hub cards. For
SmartBits with SmartCards, use HTClearPort.

Syntax int HTClear(int iHubId)

Parameters iHubId int Identifies the specific Hub Tester that is to be
cleared:

HTHUBID_1 Hub Tester 1

HTHUBID_2 Hub Tester 2

HTHUBID_3 Hub Tester 3

HTHUBID_4 Hub Tester 4

HTHUBID_ALL All attached Hubs

Any other value is invalid and will not have an effect on
the attached ET-1000 or its HT-40 counterpart.

Return
Value

The return value is >= 0 if the function executed successfully. A failure
code, which is less than zero, is returned if the function failed. See
Appendix A.

Comments This function assumes that at least one HT-40 Hub Test device is attached
to the ET-1000. It will be ignored by the ET-1000 if there is not an HT-40
device present.

HTEcho
Description Indicates to the selected Port whether to echo back a programmed packet

when a Trigger condition is met.

Syntax int HTEcho(int iMode, int iHub, int iSlot, int iPort)

Parameters iMode int Indicates whether the selected Port should turn ON
or OFF it’s echo mode. The OFF mode puts the card
into a continuous mode of operation.

HTECHO_ON Sets port to Echo mode

HTECHO_OFF Sets port to Continuous mode (Disabling
Echo)

iHub int Identifies the hub where the SmartCard is located.
The range is 0 (first hub) through N(number of hubs) -1.
Remember to subtract one since the hub identification
starts at 0.

Important: See Working with Multiple Hubs in Chapt 1.

iSlot int Identifies the slot where the SmartCard is located.
Ranges from 0 (first slot in Hub) to 19 (last card in
Hub).

iPort int Identifies the SmartCard port. (On the current
SmartCards, Port is always 0.)

Return
Value

The return value is >= 0 if the function executed successfully. A failure
code, which is less than zero, is returned if the function failed. See
Appendix A.

SmartLib User Guide 225

Comments None

HTGroup
Description Reserves a group of ports within a specified hub. These ports may then be

manipulated simultaneously with one another (as a group) using the
HTGroupStart(), HTGroupStep() and HTGroupStop() instructions.

Syntax int HTGroup(int iHub, char* pszGroupString)

Parameters iHub int Identifies the hub where the SmartCard is located.
The range is 0 (first hub) through N(number of hubs) -1.
Remember to subtract one since the hub identification
starts at 0.

Important: See Working with Multiple Hubs in Chapt 1.

pszGroupString char* A NULL terminated ASCII character string of up
to 255 characters which describes the ports that are to
be grouped. Port descriptions consist of numbers
separated by commas and/or blank spaces. A range of
ports may be specified by inserting a hyphen between
two port numbers. For example:
0 ,, 3,5 11 - 7, 17 19 specifies ports 0, 3, 5, 7, 8,
9, 10, 11, 17 and 19. Note that though the range
appears to specify a descending order, it is still
interpreted correctly. Ranges are inclusive; thus, the
endpoints (7 and 11, in this case) are part of the group.
Also, any number of commas or blank spaces may be
inserted between the port numbers, as long as the
overall length of the string doesn't exceed 255.

Return
Value

The return value is >= 0 if the function executed successfully. A failure
code, which is less than zero, is returned if the function failed. See
Appendix A.

Comments Only one group can exist at any time within a hub. Groups cannot cross
hub boundaries. i.e.; you cannot group ports in one hub with ports in
another hub. This function can only group SmartCards together.
HTGroup() will not return an error indication if you attempt to group ports
that are not of the SmartBits type. Groups may be defined and redefined
at any time. Each SmartBits hub may have its own group defined.

HTLatencyTest
Description Sets up the hub identified in LStruct for latency testing. A single slot is

selected for transmission of a packet containing a bit pattern, and several
receive slots are set up to trigger on the reception of packets containing
the pattern. This function is also used to read the results of a latency test.
The results of the latency test are deposited in array "Data," which
contains 20 elements corresponding to each of the 20 possible slots.

Syntax int HTLatencyTest(SetLatencyStructure* LStruct, unsigned long* Data,
int Mode)

Parameters LStruct SetLatencyStructure* Points to a
SetLatencyStructure data structure which contains all
information necessary to set up a hub for latency
testing. This structure also contains the array in which

226 SmartLib User Guide

the results of latency test are deposited. See section 5 of
this document for a complete description of this
structure.

Data unsigned long* Points to an array large enough to hold
20 unsigned long types. The results of the latency
measurement are deposited in this array -- each
element in the array corresponds to a particular slot.
For example, slot 0's results are deposited into Data[0],
slot 1 into Data[1], and so on. A value of 0xFFFFFFFF
indicates an invalid reading. The results are provided
in terms of bit times. (i.e.; 100 ns increments.)

Mode int Defines the mode of operation for this command. If
Mode == HT_RUN_LATENCY, then a latency test is
run. i.e.; the transmitting slot is instructed to transmit
a packet with a particular bit sequence, and all the
requested receivers are instructed to trigger on that
same pattern. Results returned in Data may not be
valid upon return from this function. If Mode ==
HT_GET_LATENCY, then the results from a previous
function call (in which Mode == HT_RUN_LATENCY)
are scooped up from the receiving ports and returned in
the Data array. When HTLatencyTest is run in this
mode, only the "Hub" element of the HStruct needs to be
defined.

Return
Value

The return value is >= 0 if the function executed successfully. A failure
code, which is less than zero, is returned if the function failed. See
Appendix A.

Comments 1. The calling function must allocate sufficient room (20 unsigned longs)
within the space pointed to by Data before calling this routine.

2. When this function is run with Mode == HT_RUN_LATENCY, the
results returned in Data most likely will not be valid. In order to get valid
results, this function must be run again with Mode ==
HT_GET_LATENCY. It must follow the initial execution of this function,
but only after a period of time at which all trigger packets have arrived on
their receive ports. In other words, you must run this function twice: the
first time, the function sends out the packets and starts all the necessary
timers; the second time, the function gets results from all the timers.
Obviously, on the second time that this function is executed, you must be
reasonably sure that the trigger packets have had enough time to arrive at
the receive ports.

3. It typically requires 3 clock periods (300 nanoseconds) for the latency
pattern to circulate out the transmit slot and directly into a receive slot.
This must be subtracted off any latency measurements made with these
slots.

HTSelectReceivePort
Description Selects a port on an HT-40 or SmartBits that is to be used for receive data.

The receive data from this port is routed directly back to the ET-1000's
Port B for detailed analysis. This function is valid for both Passive and
SmartCards.

Syntax int HTSelectReceivePort(int PortId)

Parameters int Determines the specific port on the HT-40 Hub Tester or

SmartLib User Guide 227

SmartBits from which to route data back to the ET-
1000’s Port B for detailed analysis. Each HT-40 has up
to 40 ports, and up to 4 HT-40s may be cascaded for a
total of 160 ports. PortId ranges from 1 (Port 1 of the
first HT-40) to 160 (Port 40 on the last HT-40). The
selected port will be used for analysis of received data.
If PortId is 0, the currently selected receive port will be
set off. Any values outside this range are invalid and
will not have an effect on the attached ET-1000 or its
HT-40 counterpart.

NOTE: If you have all SmartCards, then Port numbers 1 and 2
will address your port on the card in slot 1, and Port
numbers 3 and 4 will address your port on the card in
slot 2, etc.

Return
Value

The return value is >= 0 if the function executed successfully. A failure
code, which is less than zero, is returned if the function failed. See
Appendix A.

Comments This function assumes that at least one SmartBits is attached to the ET-
1000. It will be ignored by the ET-1000 if there is not an HT-40 device
present.

HTSelectTMTPort
Description Selects a transmit port on an HT-40 or Smart Bits. Transmission mode is

determined by Mode. This function is valid for both Passive and
SmartCards.

Syntax int HTSelectTMTPort(int PortId, int Mode

Parameters PortId int Identifies the HT-40 port to which the data length
command is to be sent.

Mode int Determines the function of the Port specified in
PortId:

HTTRANSMIT_OFF Transmitter is turned off

HTTRANSMIT_STD Transmitter transmits standard packets

HTTRANSMIT_COL Transmitter transmits collision packets

All other values are invalid and will not have an effect
on the attached ET-1000 or its HT-40 counterpart.

Return
Value

The return value is >= 0 if the function executed successfully. A failure
code, which is less than zero, is returned if the function failed. See
Appendix A.

Comments 1. This function assumes that at least one SmartBits is attached to the
ET-1000. It will be ignored by the ET-1000 if there is not an HT-40 device
present.

2. Note that when the HTTRANSMIT_COL parameter is set in the Mode
argument, the collision type produced by the specified HT-40 port is
determined by the most recent parameters placed in the
CollisionStructure and sent to the ET-1000 with the ETCollision
command. Specifically, only the Offset and Duration fields of the
CollisionStructure are used to determine the offset and duration of the
collisions produced by the specified HT-40 port. It doesn't matter what the
Count or Mode fields of the CollisionStructure are set to -- only the Offset
and Duration are used by the HT-40. (This is true even if the Mode field

228 SmartLib User Guide

of the CollisionStructure is set to COLLISION_OFF -- Collisions are
turned off for the ET-1000's ports but not necessarily the same is true for
the HT-40's ports.)

HTSetLED
Description Illuminates an HT-40's LED associated with a particular port in the

specified color.

Syntax int HTSetLED(int PortId, int Color)

Parameters PortId int Identifies the HT-40 port to which the data length
command is to be sent..

Color int Determines the color in which to illuminate the
selected Port's LED:

HTLED_OFF LED is turned off

HTLED_RED LED is turned ON and is red

HTLED_GREEN LED is turned ON and is green

HTLED_ORANGE LED is turned ON and is orange

Any values outside this range are invalid and will not
have an effect on the attached ET-1000 or its HT-40
counterpart.

Return
Value

The return value is >= 0 if the function executed successfully. A failure
code, which is less than zero, is returned if the function failed. See
Appendix A.

Comments his function assumes that at least one HT-40 Hub Test device is attached
to the ET-1000. It will be ignored by the ET-1000 if there is not an HT-40
device present.

SmartLib User Guide 229

