
Comments?
E-mail your comments about Synopsys
documentation to doc@synopsys.com

PowerMill User Guide
Release 5.4, January 2000



Copyright Notice and Proprietary Information
Copyright  2000 Synopsys, Inc. All rights reserved. This software and documentation contain confidential and proprietary
information that is the property of Synopsys, Inc. The software and documentation are furnished under a license agreement and may
be used or copied only in accordance with the terms of the license agreement. No part of the software and documentation may be
reproduced, transmitted, or translated, in any form or by any means, electronic, mechanical, manual, optical, or otherwise, without
prior written permission of Synopsys, Inc., or as expressly provided by the license agreement.

Right to Copy Documentation
The license agreement with Synopsys permits licensee to make copies of the documentation for its internal use only. Each copy shall
include all copyrights, trademarks, service marks, and proprietary rights notices, if any. Licensee must assign sequential numbers to
all copies. These copies shall contain the following legend on the cover page:

“This document is duplicated with the permission of Synopsys, Inc., for the exclusive use of
__________________________________________ and its employees. This is copy number __________.”

Destination Control Statement
All technical data contained in this publication is subject to the export control laws of the United States of America. Disclosure to
nationals of other countries contrary to United States law is prohibited. It is the reader’s responsibility to determine the applicable
regulations and to comply with them.

Disclaimer
SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO
THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE.

Registered Trademarks
Synopsys, the Synopsys logo, AMPS, Arcadia, CMOS-CBA, COSSAP, Cyclone, DelayMill, DesignPower, DesignSource, DesignWare,
dont_use, Eagle Design Automation, Eaglei, EPIC, ExpressModel, Formality, in-Sync, Logic Automation, Logic Modeling, Memory
Architect, ModelAccess, ModelTools, PathBlazer, PathMill, PowerArc, PowerMill, PrimeTime, RailMill, SmartLicense, SmartModel,
SmartModels, SNUG, SOLV-IT!, SolvNET, Stream Driven Simulator, Synthetic Designs, TestBench Manager, and TimeMill are
registered trademarks of Synopsys, Inc.

Trademarks
ACE, Behavioral Compiler, BOA, BRT, CBA, CBAII, CBA Design System, CBA-Frame, Cedar, Chip Architect, Chronologic, CoreMill,
DAVIS, DC Expert, DC Expert Plus, DC Professional, DC Ultra, DC Ultra Plus, Design Advisor, Design Analyzer, DESIGN (ARROWS),
Design Compiler, DesignTime, DesignWare Developer, Direct RTL, Direct Silicon Access, dont_touch, dont_touch_network, DW 8051,
DWPCI, Eagle, EagleV, ECL Compiler, ECO Compiler, Falcon Interfaces, Floorplan Manager, Foundation, FoundryModel, FPGA
Compiler, FPGA Compiler II, FPGA Express, Frame Compiler, Fridge, General Purpose Post-Processor, GPP, HDL Advisor, HDL
Compiler, Integrator, Interactive Waveform Viewer, Liberty, Library Compiler, Logic Model, MAX, ModelSource, Module Compiler, MS-
3200, MS-3400, Nanometer Design Experts, Nanometer IC Design, Nanometer Ready, Odyssey, PowerCODE, PowerGate, Power
Compiler, ProFPGA, ProMA, Protocol Compiler, RMM, RoadRunner, RTL Analyzer, Schematic Compiler, Shadow Debugger, Silicon
Architects, SmartModel Library, Source-Level Design, SWIFT, Synopsys Graphical Environment, Synopsys ModelFactory, Test
Compiler, Test Compiler Plus, Test Manager, TestGen, TestSim, TetraMAX, TimeTracker, Timing Annotator, Trace-On-Demand, VCS,
VCS Express, VCSi, VERA, VHDL Compiler, VHDL System Simulator, Visualyze, VMC, and VSS are trademarks of Synopsys, Inc.

Service Marks
TAP-in is a service mark of Synopsys, Inc.

All other product or company names may be trademarks of their respective owners.
Printed in the U.S.A.

Document Order Number: 32647-014 HB
PowerMill User Guide, Release 5.4



PowerMill User Guide

Table of Contents
About This Manual  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

1 Introduction to PowerMill
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Major Functions and Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Inputs, Outputs, and Interfaces  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Getting Started
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

The PowerMill Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
The PowerMill Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Batch Versus Interactive Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Environment File. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Netlist Files  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Using HSPICE/SPICE Format  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

HSPICE Netlist Compatibility . . . . . . . . . . . . . . . . . . . . . . 11
Using Other Formats. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Configuration Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Technology Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12



iv Table of Contents
Stimulus Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Creating the Environment (.epicrc) File  . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Running a Basic Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 PowerMill Tutorials
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Tutorials Included in this Chapter . . . . . . . . . . . . . . . . . . . . . . . . . 21
Getting the Input Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
A Basic PowerMill Simulation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Tutorial 1: Running a Basic Simulation . . . . . . . . . . . . . . . . . . . . . 22
Procedure  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Advanced PowerMill Simulations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Before You Begin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Tutorial 2: Performing a Full-Chip Power Analysis . . . . . . . . . . . . 29

Files Needed for this Tutorial  . . . . . . . . . . . . . . . . . . . . . . 29
Procedure  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Tutorial 3: Performing a Block-Level Power Analysis  . . . . . . . . . . 31
Files Needed for this Tutorial  . . . . . . . . . . . . . . . . . . . . . . 32
Procedure  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Differences Between the Resulting Block Power
Reports  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Tutorial 4: Finding DC Paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Procedure  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Tutorial 5: Estimating Maximum Power for Combinational
Circuits  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Files Needed for this Tutorial  . . . . . . . . . . . . . . . . . . . . . . 42
Procedure  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Tutorial 6: Estimating Maximum Power for Sequential
Circuits  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Identifying the Pseudo-Primary Inputs . . . . . . . . . . . . . . . 52
Testing Latch Functionality for Flip-Flops with
Non-Buffered Outputs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Files Needed for this Tutorial  . . . . . . . . . . . . . . . . . . . . . . 54
Procedure  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Using PathMill to Detect PPIs . . . . . . . . . . . . . . . . . . . . . . 64



v

Tutorial 7: Customizing a GAP Objective Function using an
ADFMI Code File. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Procedure  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Tutorial 8: Finding Static Leakage Paths . . . . . . . . . . . . . . . . . . . . 79

Procedure  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4 Power Analysis
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Analyzing Power Consumption  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Analyzing Power at Full-Chip Level . . . . . . . . . . . . . . . . . . . . . . . . 86
Analyzing Power Block-by-Block. . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Measuring Wasted Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Measuring True Power in Watts . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Measuring Power Hierarchically. . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Assigning Power Budgets  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Retrieving Power Information Interactively . . . . . . . . . . . . . . . . . . 94
Controlling Power Reporting Resolution and Accuracy  . . . . . . . . . 97
Printing and Reporting Branch Currents . . . . . . . . . . . . . . . . . . . . 98
Printing and Reporting Internal Node Currents  . . . . . . . . . . . . . . 99
Working with Probes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Current Histograms and Tracking Windows  . . . . . . . . . . . . . . . . 101

Using the GAP Feature to Estimate Maximum Power  . . . . . . . . . . . . . . 103
Running a Basic GAP Estimation . . . . . . . . . . . . . . . . . . . . . . . . . 104

Procedure  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Creating a Customized Fitness Function . . . . . . . . . . . . . . . . . . . 108

Performing a Dynamic Power Consumption Analysis . . . . . . . . . . . . . . . 111
Checking Dynamic Rise and Fall Times (U-State Nodes). . . . . . . 111
Detecting Dynamic Floating Nodes (Z-State Nodes). . . . . . . . . . . 112
Detecting Excessive Branch Currents. . . . . . . . . . . . . . . . . . . . . . 112
Analyzing Hot-Spot Node Currents. . . . . . . . . . . . . . . . . . . . . . . . 112
Detecting Dynamic DC Paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Performing a Static Power Consumption Diagnosis  . . . . . . . . . . . . . . . . 116
Detecting Static DC Paths. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Static Excessive Rise/Fall Time Detection  . . . . . . . . . . . . . . . . . . 119
PowerMill User Guide



vi Table of Contents
Analyzing Power Using the RC and UD Simulation Modes  . . . . . . . . . . 119
Technical Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Running a Simulation in RC or UD Mode. . . . . . . . . . . . . . . . . . . 121

5 Using the ACE Feature
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

Included in this Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Selecting Autodetection Rules  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

Applying Multiple Autodetection Rules  . . . . . . . . . . . . . . . . . . . . 127
Controlling Node Sensitivity  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Controlling the Simulation Time Resolution . . . . . . . . . . . . . . . . . . . . . . 129
Changing the Time Step Selection Parameter . . . . . . . . . . . . . . . . . . . . . 129
Applying Multiple Time Steps (Multi-Rate Simulations)  . . . . . . . . . . . . 130
Controlling Waveform Print Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Applying Multiple Simulation Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Activating Double-Precision Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

Simulation Speed and Double-Precision . . . . . . . . . . . . . . . . . . . . 132
Controlling Voltage and Current Resolution . . . . . . . . . . . . . . . . . . . . . . 132
Simulating BJTs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

Procedure for Simulating BJTs . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6 ACE Tutorials
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Getting the Input Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

Tutorial 1: CV Curve Generation  . . . . . . . . . . . . . . . . . . . . . . . . . 139
Files Needed for this Tutorial  . . . . . . . . . . . . . . . . . . . . . 140
Procedure  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

Tutorial 2: Operational Amplifier Simulations. . . . . . . . . . . . . . . 142
Voltage Follower Simulation  . . . . . . . . . . . . . . . . . . . . . . 143
Step Input Simulation  . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
Integrator Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
Differentiator Simulation . . . . . . . . . . . . . . . . . . . . . . . . . 149

Tutorial 3: PLL SPICE Macro Modeling . . . . . . . . . . . . . . . . . . . . 151



vii
Files Needed for this Tutorial  . . . . . . . . . . . . . . . . . . . . . 152
Procedure  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

Tutorial 4: Crystal Oscillator Simulation . . . . . . . . . . . . . . . . . . . 156
Files Needed for this Tutorial  . . . . . . . . . . . . . . . . . . . . . 156
Procedure  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

7 Using the PowerMill Graphical Analyst
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
Running a Basic PowerMill Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . 161
Starting the Graphical Analyst  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

Main Window. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
File Menu. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
Options Menu  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
Help Menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
Simulation Setup Button. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
Start Simulation Button . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
Result Analysis Button . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
Hierarchy Browser Button  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
Simulation Log Display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
Error/Warning Display  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
Result Display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
Sort By Menu. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

Setting Up a Run  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
Specifying a Work File  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

Using the File Finder Form  . . . . . . . . . . . . . . . . . . . . . . . 170
Importing Existing Run Scripts  . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Specifying Netlist and Technology Files . . . . . . . . . . . . . . . . . . . . 171
Setting the Simulation Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
Design Library. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
Command-Line Options. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
Saving, Clearing or Cancelling Your Changes  . . . . . . . . . . . . . . . 172

Power Supply Setup  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
Block Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

Selecting Blocks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
PowerMill User Guide



viii Table of Contents
Saving, Clearing or Cancelling Your Changes  . . . . . . . . . . . . . . . 175
Power Diagnosis Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

Static Power Checks  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
Excessive Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
Tristate Check . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
Report Hazards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
Power Distribution  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
Showing or Hiding Help Messages  . . . . . . . . . . . . . . . . . . . . . . . . 178
Saving or Clearing Checks  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

Running a Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
Analyzing a Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

Power Consumption. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
Sort By Menu  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
Hierarchical View of Power Consumption . . . . . . . . . . . . 182

Results Analysis  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
Power Histogram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

File Menu  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
View Menu  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
Options Menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

DC Path Browser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
File Menu  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
Option Menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
Analyzing DC Paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
Standalone Version of DC Path Browser . . . . . . . . . . . . . 189

Power Diagnostics Browser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
Selecting Checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
File Menu  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

Waveform Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
Hierarchy Browser  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

File Menu  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
Hierarchy Display  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
Panning Display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
Tree Display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
Show Info  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
Show Internal Nets  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196



ix
Show Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
Ordering Instance Information  . . . . . . . . . . . . . . . . . . . . 196
Set Expansion Threshold . . . . . . . . . . . . . . . . . . . . . . . . . 197
Select Instances to Display  . . . . . . . . . . . . . . . . . . . . . . . 198
Displaying Connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . 199
Drag and Drop  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

8 PowerMill Graphical Analyst Tutorial
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
Getting the Input Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
Starting the Graphical Analyst  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
Setting Up for a Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

Specifying Design Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
Setting Up the Power Supply and Blocks . . . . . . . . . . . . . . . . . . . 208
Specifying Diagnosis Checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

Running the Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
Analyzing Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

Viewing Histogram Information . . . . . . . . . . . . . . . . . . . . . . . . . . 216
Viewing the DC Paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
Viewing the Power Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

Appendix A: Sample Power Reports . . . . . . . . . . . . . . . . . . . . . . . . . 223

Appendix B: Using Shared Memory . . . . . . . . . . . . . . . . . . . . . . . . . . 229

Combined Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

Index  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
PowerMill User Guide



x Table of Contents



About This Manual

The PowerMill User Guide describes how to use the PowerMill
simulator to do power simulations on and analysis of integrated
circuit designs.

For information on: See:

A general overview of the
features and capabilities of
the PowerMill simulator

Chapter 1, “Introduction to
PowerMill”

The basic steps for preparing
initial files, running a
simulation, and viewing the
results of a PowerMill
simulation

Chapter 2, “Getting Started”

Tutorials that give detailed
instructions and scenarios of
how to use PowerMill

Chapter 3, “PowerMill
Tutorials”

Procedures for doing different
types of power analyses

Chapter 4, “Power Analysis”

General information on using
the ACE feature to simulate
analog and mixed-signal
designs

Chapter 5, “Using the ACE
Feature”



xii About This Manual
Audience
This manual is for integrated circuit engineers and designers
performing power simulations to test and verify integrated
circuit designs. Knowledge of UNIX, high-level design
techniques, and circuit description tools, such as SPICE, is
assumed.

Related Manuals
The following Synopsys manuals in the EPIC tool set provide
additional information on using PowerMill:

■ PowerMill Reference Guide
■ EPIC Tools Reference Guide
■ ADFMI Manual

Tutorials that give detailed
instructions and scenarios of
how to use the Analog Circuit
Engine (ACE) option of the
PowerMill simulator

Chapter 6, “ACE Tutorials”

Instructions for using the
PowerMill Graphical Analyst

Chapter 7, “Using the
PowerMill Graphical Analyst”

A tutorial on the PowerMill
Graphical Analyst

Chapter 8, “PowerMill
Graphical Analyst Tutorial”

Sample output files Appendix A, “Sample Power
Reports”

Using shared memory Appendix B, “Using Shared
Memory”

For information on: See:



xiii
Conventions
This manual uses certain style conventions to indicate
commands, menus, examples, and filenames.

Commands

SYNTAX:

command_name [argument(s)]

argument types: keyword | value | tag=value | tag=keyword

Command
Argument

Definition

keyword Keywords are identifiers that must be used as they
appear. They are shown in base font.

value Values are user-determined. They are shown in
italic text to distinguish them from commands and
keywords.

tag=
value
keyword

Tags can be followed by either a value or a keyword.
Tags and keywords are in the base font. Argument
values are in italics to distinguish them from
commands, keywords, and tags.

Symbol Definition

| A pipe symbol ( | ) represents the word “or” and
separates choices between two or more arguments.

... An ellipsis (...) indicates that more than one
argument can be specified. Ellipses are used only for
multiple arguments with tags.
PowerMill User Guide



xiv About This Manual
SYNTAX:

report_node_i a[vg] | r[ms] | p[eak] | h[ist] node_name(s)

For this command, a[vg], r[ms], p[eak], and h[ist] are keywords–
choose one of these. The node_name(s) are user-determined.

EXAMPLE 1:
report_node_i a VDD GND

In this example, a is a keyword, and VDD and GND are values.

SYNTAX:

report_node_ic [a[ll]] [q[uoted]] [for=epic | spice] [time(s)]

For this command, a[ll] and q[uoted] are optional keywords. The
tag for= is part of an optional argument for which you can choose
the keyword epic or spice. The time(s) are user-determined and,
in this case, optional.

EXAMPLE 2:
report_node_ic all for=spice 1u

In this example, all  is a keyword, for=  is a tag, spice  is a
keyword, and 1u  is a value.

Menu Text, Filenames, and Examples

Menu text appears in bold, as shown in the following example.

EXAMPLE 1:
To start setting up a run, select File→Design Data Setup.

[ ] Open and closed square brackets indicate that the
enclosed arguments are optional.

( ) Open and closed parenthesis indicate that there is a
choice between the enclosed arguments (two or
more). These are used only when a command has
several groups of argument choices; multiple pipe
symbols ( | ), in this case, would result in
ambiguous syntax.

Symbol Definition



xv
Filenames are shown in the same font as the surrounding text,
but in italics.

EXAMPLE 2:
This is an example of the file filename.out being shown in text.

Examples are shown in courier font as they might appear on
your screen. Sometimes explanations follow examples, and in
such cases, anything shown in the example that appears in the
explanation is shown in the same courier font used in the
example.

EXAMPLE 3:
add_node_cap RS100 275

In the example, the capacitance value of node RS100 is increased
by 275  femtofarads.
PowerMill User Guide



xvi About This Manual



Chapter 1

Introduction to PowerMill



2 Chapter 1 Introduction to PowerMill



Overview 3
Overview
PowerMill is a transistor-level power simulator and analyzer for
CMOS and BiCMOS circuit designs. As more components are
integrated into smaller silicon chips, power consumption
becomes a major concern. Detailed current information about
each circuit component is critically important to the designer.
Designs must be optimized for minimum power consumption.

PowerMill’s effective power and current simulation and
diagnosis capabilities not only enable you to successfully
engineer the design of an integrated circuit, but also
significantly improve its reliability.

Major Functions and Features

The PowerMill simulator can perform the following functions:

■ Run transistor-level simulations (with SPICE-like accuracy)
with a run time 10 to 1000 times faster than SPICE.

■ Display instantaneous current waveforms.

■ Display first derivative di/dt waveforms.

■ Report peak, average, and RMS currents.

■ Report DC-leakage paths.

■ Perform static power diagnosis.

■ Provide block power statistics that identify hot-spots—blocks
with excessive power dissipation.

■ Run in batch mode with different parameters.

■ Automatic vector generation for maximum power estimation.

PowerMill also provides the following features:

■ An Analog Circuit Engine (ACE) feature that allows you to
perform accurate SPICE-like circuit simulation on much
PowerMill User Guide



4 Chapter 1 Introduction to PowerMill
larger designs than those traditionally handled by SPICE.
This feature supports bipolar transistors.

■ An algorithm to efficiently handle node-to-node coupling
capacitance and crosstalk.

■ Two graphical analysts (one for the base simulator and the
other for ACE) for setting up simulation runs and analyzing
results.

■ Interactive debugging tool.

■ Technology migration requiring limited technology-related
data.

■ Automatic technology file generation.

■ Standard MKS engineering units for all data. Values for
time, voltage, current, capacitance, resistance, and
inductance are represented as seconds, volts, amps, farads,
ohms, and henries, respectively.

In addition, PowerMill supports these modeling features:

■ The use of multi-level models, comprised of behavioral, gate,
switch, and transistor models.

■ The Analog Digital Functional Model Interface (ADFMI) for
writing functional models using the C programming
language (see the ADFMI Manual).

Inputs, Outputs, and Interfaces
PowerMill’s inputs are a netlist, configuration file, technology
file, and stimulus. See Chapter 2, “Getting Started” for more
information on input files.

PowerMill’s outputs can be textual or graphical. The SimWave
tool from System Science, the turboWave from E-Team Design
Systems, the waveform tools in Cadence Design Framework II,
or VIEWlogic PowerView can be used to view analog current and
voltage waveforms.



Major Functions and Features 5
A PowerMill interface is available in Cadence (Opus and Edge),
VIEWlogic, System Science in addition to the PowerMill
Graphical Analyst and the ACE Graphical Analyst.

PowerMill also reports the peak, average, di/dt, and RMS
current statistics of individual components, subcircuit blocks,
and global power supply pads.
PowerMill User Guide



6 Chapter 1 Introduction to PowerMill



Chapter 2

Getting Started



8 Chapter 2 Getting Started



Overview 9
Overview

This chapter provides the basic information you need to start
using the PowerMill simulator. It lists the required and optional
input files and provides a basic procedure for running a
PowerMill simulation.

You can learn to run both basic and advanced PowerMill
simulations by performing the tutorials provided in Chapter 3,
“PowerMill Tutorials.”

The PowerMill Environment
Figure 1 graphically represents the PowerMill environment.

In this figure, solid arrows indicate the necessary input files for
PowerMill. Arrows with dashed lines indicate optional files.
Netlist files, technology files, and stimulus functions are fully
described in the EPIC Tools Reference Guide.

Model LibrariesNetlist Files

Configuration PowerMill

Vector/
Stimulus Files

PowerMill
Output Files

Display

Files Simulator

Technology
Files

Figure 1 The PowerMill Environment
PowerMill User Guide



10 Chapter 2 Getting Started
The PowerMill Command
PowerMill is executed by typing the powrmill command
followed by a series of command-line options. The -n command-
line option is the only required option. The -p (to specify the
technology file) and -c (to specify a configuration file) options are
optional, but frequently used.

EXAMPLE:
powrmill -n netlist.spi -c cfg -o test -p typ_tech*

If no configuration file is specified and a SPICE or HSPICE
netlist is used, the use_sim_case configuration command with
the l (lowercase letter L) argument specified, will be set as the
default. This is because HSPICE is case-insensitive and sets all
characters to lowercase.

See Chapter 1, “The PowerMill Command” in the PowerMill
Reference Guide for details on all of the PowerMill command-line
options.

Batch Versus Interactive Mode
PowerMill can be run in batch mode or interactive mode. The
default is batch mode. In this mode, PowerMill runs to
completion without intervention. To use PowerMill interactively,
you must specify the -i option or type Control-c while the
simulation is running (that is, after netlist compilation). The
interactive commands are described in Chapter 2,
“Configuration and Interactive Commands” in the PowerMill
Reference Guide.

Environment File

PowerMill lets you define certain simulation environment
parameters in the .epicrc file. The PowerMill simulator uses
these parameters, but they can be overridden with options on the
command line. The syntax, description, and example of this file



Netlist Files 11
are included in the section “Creating the Environment (.epicrc)
File” on page 13.

Netlist Files
The netlist file describes the system or circuit to be simulated,
and is required to run a simulation. The following formats are
accepted by PowerMill: EPIC, HSPICE/SPICE, EDIF, LSIM,
Verilog, and Cadence SPF. More than one netlist, with the same
or different formats, can be specified simultaneously; for
example, you can combine SPICE, EPIC, Verilog, and EDIF in
the same run. If a format is not specified, PowerMill uses the file
extension to determine the format. For information on supported
netlist formats and their corresponding extensions, see Chapter
3, “Netlist Compiler and Translators” in the EPIC Tools
Reference Guide.

Using HSPICE/SPICE Format
If a netlist file with a .sp or .spi extension is used, the parser
assumes the netlist is in an HSPICE format and sets all nodes
and elements to lowercase. Don’t use case-sensitive node names
and element names if you are going to use SPICE netlists.

If a SPICE netlist is not specified, the netlist input, by default,
is case sensitive. You can override this default setting with the
use_sim_case configuration command.

HSPICE Netlist Compatibility
PowerMill is capable of recognizing .measure commands in
HSPICE netlists. For more information about HSPICE netlist
commands, see“HSPICE Netlist Syntax” in Chapter 3 of the
EPIC Tools Reference Guide.
PowerMill User Guide



12 Chapter 2 Getting Started
Using Other Formats
For information on supported netlist formats, see
Chapter 3, “Netlist Compiler and Translators” in the EPIC Tools
Reference Guide.

Configuration Files
The configuration file contains information that tells PowerMill
how to perform the simulation. Any number of configuration
files, including none, can be used. The configuration file contains
run parameters data:

■ Nodes to display during simulation (analog or digital values).

■ Power analysis to be performed.

■ Circuit modification.

■ Simulation accuracy control.

The configuration commands are fully documented in Chapter 2,
“Configuration and Interactive Commands” and Chapter 3, “ACE
Configuration Commands” in the PowerMill Reference Guide.

Technology Files
The technology file describes the key features of the process
technology that PowerMill uses to predict the transistor
behavior in the circuit. This technology file is created using a
utility called Gentech. It can be created automatically or
manually.

For information on how to automatically create a technology file
see the “Automatic Technology File Generation” section in
Chapter 4 of the EPIC Tools Reference Guide.

For more information on manually running the Gentech utility,
see the “Gentech” section in Chapter 4 of the EPIC Tools
Reference Guide.



Stimulus Files 13
Directly Supported Models

If you are using BSIM1, BSIM2, BSIM3 v.3, MOS9 (HSPICE
level 50), MESFET, or JFET models, you don’t need to specify a
technology file. The technology data lookup tables are created
internally at run time.

Stimulus Fi les
Stimulus information can be placed inside the netlist or included
on the command line as a separate file. Types of stimulus include
SPICE piecewise linear (PWL) or PULSE waveforms, EPIC clk or
tgl patterns, and digital vector files.

To learn more about stimulus types, see Chapter 5, “Stimuli and
State Checking” in the EPIC Tools Reference Guide.

Creating the Environment (.epicrc) File
A file named .epicrc can be used to specify most of the command-
line options for the powrmill command. Although not required,
it is recommended for specifying options that are used
frequently. For detailed information on PowerMill command-line
options, see Chapter 1, “The PowerMill Command” in the
PowerMill Reference Guide.

PowerMill searches for the .epicrc file in three directories in the
following order:

1 Your current working directory.

2 Your home directory.

3 The EPIC installation directory, as defined by
$EPIC_HOME.
PowerMill User Guide



14 Chapter 2 Getting Started
If there are multiple .epicrc files in these directories and/or
command-line options to control the settings, the precedence in
descending order is:

1 Command-line option settings

2 The .epicrc file settings in your current working directory

3 The .epicrc file settings in your home directory

4 The .epicrc file settings in $EPIC_HOME

CAUTION: If a file named .epicrc already exists in your home directory for a
different simulator, a warning message is printed when
PowerMill is run.

The following table lists PowerMill command-line options and
their corresponding keywords in the .epicrc file.

Command-Line
Option

Corresponding Keyword in the .epicrc File

-A analog_mode

-c config_files
default_config_files

-d delay_mode

-F no_ace

-fm user_adfm_obj_modules

-FM user_adfm_obj_modules_force

-L cell_lib_path

-m top_cell

-n netlist_files

-o output_pefix_name

-out print_format

-p technology

-t running_time

-u user_obj_modules



Running a Basic Simulation 15
NOTE: The -c command-line option will not override the
default_config_files  keyword, instead, they are
concatenated.

NOTE: You can use the user_libraries keyword, which does not have
a corresponding command-line option, to specify the full path to
the libFuncModel library, used with built-in ADFMI models.
See Chapter 7, “Built-in Models” in the 5.4 ADFMI Manual for
more information on the libFuncModel library.

Sample .epicrc File

The semicolon (;) begins a comment line in the .epicrc file.

Running a Basic Simulation
This section describes the procedure for running a basic
PowerMill simulation in batch mode. For information on running
a simulation using the Graphical Analyst, see Chapter 7, “Using
the PowerMill Graphical Analyst.”

1 Set up your environment so you can access the directory that
contains the current PowerMill release.

2 Have the following input files in your current directory:

-U user_obj_modules_force

user_libraries

Command-Line
Option

Corresponding Keyword in the .epicrc File

; This is a sample .epicrc file.
powrmill:netlist_files:dram.net
powrmill:config_files:cfg
powrmill:running_time:1000
powrmill:output_root_name:dram
powrmill:technology:techfile
powrmill:user_adfm_obj_modules:dram.o
powrmill:analog_mode
PowerMill User Guide



16 Chapter 2 Getting Started
◆ A .epicrc file (optional)

◆ Netlist files in any supported format including, SPICE
(xxx.spi), HSPICE (xxx.spi), and EPIC format (xxx.ntl)

◆ Technology files (optional)

◆ Configuration files (optional)

◆ Stimulus files (optional)

3 Create a run script for your simulation. This script should
contain the powrmill command with the appropriate options
specifying your input files.

EXAMPLE:
powrmill -n adder.spi -c cfg -p techfile -o adder

4 Give the script a meaningful name such as runpw or
runpw.scr.

5 Run the simulation by entering the name of the run script.

EXAMPLE:
runpw

These output files will be generated: adder.log, adder.err,
and adder.out.

For more information on output files, see Chapter 4,
“PowerMill Output Files” in the PowerMill Reference Guide.

6 View the output files with the turboWave or SimWave
waveform viewer. To do so, type in the name of the viewer
followed by the name of the output file you want to view.

EXAMPLE:
turboWave -f adder.out



Chapter 3

PowerMill Tutorials



18 Chapter 3 PowerMill Tutorials



Overview 19
Overview
This tutorial demonstrates both basic and advanced PowerMill
simulations using the 4-bit adder shown in Figure 1.

This circuit contains 164 transistors and is simulated with 150
vectors. Figure 2 and Figure 3 further illustrate the adder
circuit used in this tutorial.

Figure 1 Logic diagram of the four-bit adder circuit

N3

CIN

CIN
AIN

ADDR
BIN

COUT

SUM S[0]A[0]

B[0]

A[1]

X4

CIN
AIN

ADDR

BIN
COUT

SUM

X3

COUT

CIN

AIN

ADDR
BIN

COUT

SUM

CIN
AIN

ADDR

BIN
COUT

SUM

B[1]

A[2]

B[2]

A[3]

B[3]

X2

X1

S[3]

N2

N1

S[1]

S[2]

MNDC

N1

MPDC
PowerMill User Guide



20 Chapter 3 PowerMill Tutorials
BIN

AIN

C
IN

C
O

U
T

SUM
X3 X4

X5 X6

X8

X1

X9 X7 mp1

mn1

X2

ADDER

40/140/1

10/120/120/1

20/1

40/1 40/1

20/1

5/1

K

mn2

5/1

5/1

10/1

5/1

10/1

5/1

P

10/1

Figure 2  Logic diagram of the adder cell

bn

an

b

a

n1 n2

k

p

IN1

IN2

10/1

5/1

X1

5/
1

10
/1

10/1

5/1

X2
10/1

5/1

X4

10/1
mp1

5/1
mn1

OUT

Figure 3 Logic diagram of an XOR2 cell

n4

n2

n3

X
3



Getting the Input Files 21
Tutorials Included in this Chapter

This chapter includes the following tutorials:

■ Tutorial 1: Running a Basic Simulation
■ Tutorial 2: Performing a Full-Chip Power Analysis
■ Tutorial 3: Performing a Block-Level Power Analysis
■ Tutorial 4: Finding DC Paths
■ Tutorial 5: Estimating Maximum Power for Combinational

Circuits
■ Tutorial 6: Estimating Maximum Power for Sequential

Circuits
■ Tutorial 7: Customizing a GAP Objective Function using an

ADFMI Code File
■ Tutorial 8: Finding Static Leakage Paths

NOTE: The turboWave screens in this chapter are displayed with
altered colors and signal height to improve readability.
Therefore, the waveforms you actually see in turboWave will look
significantly different from the screens in this chapter.

Getting the Input Files
Before you can run any of the tutorials in this chapter, you need
to copy the required input files to your current working directory.
The following procedure shows you how to do this.

1 Set the correct path for the EPIC_HOME environment
variable. If $EPIC_HOME is not set, see your system
administrator.

2 Copy, recursively, the files from $EPIC_HOME/tutorials/
pw_basic and pw_advanced to your local working directory.
The files in these directories (and their subdirectories) are
needed for the tutorials in this chapter.

cp -R $EPIC_HOME/tutorials/pw_basic .
cp -R $EPIC_HOME/tutorials/pw_advanced .
PowerMill User Guide



22 Chapter 3 PowerMill Tutorials
These commands copy the pw_basic and pw_advanced
directories, respectively, into the current directory (the
period tells the cp command to copy to the current directory).

3 Verify that your newly copied pw_advanced directory
contains the following subdirectories: block_powr, dc_path
full_chip, max_powr1, and max_powr2. Each of these
directories corresponds to and contains the files needed for
an advanced tutorial in this chapter.

SPICE Netlists

All tutorials in this chapter use SPICE format netlists.
Conversion to EPIC format is not necessary.

A Basic PowerMill Simulation
The tutorial in this section demonstrates a basic PowerMill
simulation using the UNIX batch mode.

Tutorial 1: Running a Basic Simulation
The following table lists the files needed for this tutorial. These
files are located in the pw_basic directory.

Procedure
Use the following procedure to run the basic tutorial.

Filename Description

cfg Batch run configuration file

adder.spi SPICE netlist for adder circuit

adder.vcd Verilog description file

adder.vtran Control file for changing Verilog into EPIC
format

run Run script for this tutorial

tech.typ.25c_5v Technology file



A Basic PowerMill Simulation 23
1 Use the UNIX cat command to display the contents of the
run script.

cat run

This script contains the following line:

powrmill -n adder.spi adder.cmd -c cfg -o adder
-p tech*

The run script specifies the SPICE netlist, adder.spi  and
the command file for processing the netlist, adder.cmd . It
also specifies the cfg  and tech*  configuration and
technology files. In addition, the -o option setting instructs
PowerMill to use a prefix of adder  for all output files
resulting from this run.

See Chapter 1, “The PowerMill Command” in the PowerMill
Reference Guide for more information on command-line
options.

NOTE: There is no “e” in the powrmill command.

2 Use the UNIX cat command to display the contents of the
configuration file.

cat cfg

This file contains the following configuration commands:

print_node_logic *

print_node_v *

report_node_powr gnd vdd

The first command prints all nodes in a digital format. The
second command prints all nodes as voltage waveforms. The
last command creates a report, in the adder.log file, of the
average, RMS, and the five highest peak currents in the
circuit. Average and RMS waveforms are also be printed to
the adder.out file.
PowerMill User Guide



24 Chapter 3 PowerMill Tutorials
See Chapter 2, “Configuration and Interactive Commands” in
the PowerMill Reference Guide for more information on these
commands.

3 Use the VTRAN program to create the vector stimulus file
for this simulation.

vtran adder.vtran

Messages indicating the execution of the vtran command are
displayed. VTRAN generates two files: adder.cmd and
adder.vec. The adder.vec file contains the tabular vectors for
this simulation.

The adder.cmd file contains the following line:

(is=vec) (en=adder.vec) (ot=cin,a[3-0],b[3-0]);

This line calls the adder.vec file and provides the signal
order, for the vector file, to the simulator.

See the VTRAN 3.5 User Manual for more information.

4 Run the simulation with the run script.

5 When the simulation is finished, list the directory contents.

Several output files with the prefix adder  are created.

6 Use turboWave to view the waveforms.

turboWave &

7 From the turboWave main window, select File→Open to
open the adder.out file.



Advanced PowerMill Simulations 25
8 Use the Signal pull-down menu to select the signals to view
(see Figure 4).

9 When finished viewing the waveforms, select File→Exit to
exit the program.

Advanced PowerMill Simulations
This section illustrates some of the power analyses you can do
with the PowerMill simulator. Figure 5 shows the adder circuit
used for these advanced simulations. This circuit is the same as
that used in tutorial 1 except that here a 4-bit register has been
added to the output.

Figure 4 Waveform of basic adder circuit (selected signals)
PowerMill User Guide



26 Chapter 3 PowerMill Tutorials
Tutorials 2–6 illustrate the use of configuration commands
related to different types and levels of power analyses. Once you
understand how these commands work in separate simulations,
you can combine them into a single run. Tutorials 2–4 cover only
digital simulation.

Tutorials 2–6 are written with the assumption that you know
how to run vi (or another text editor) and turboWave; therefore,
the specific steps needed to open and reopen files, using these
tools, are not described.



Advanced PowerMill Simulations 27
Before You Begin
Before beginning any of the following tutorials, we recommend
that you examine the run scripts and the configuration files for
each tutorial in which you are interested.

1 Use the UNIX cat command to display the contents of each
run script as needed.

N3

CIN
AIN
ADDR
BIN

COUT

SUM
S[0]

S[1]

A[0]

B[0]

A[1]

D

DFF

Q

X5

D[0]

X4

CIN
AIN

ADDR
BIN

COUT

SUM

X3

D[1]

D[2]

D[3]

COUT

CIN
AIN
ADDR
BIN

COUT

SUM

CIN
AIN
ADDR
BIN

COUT

SUM

B[1]

A[2]

B[2]

A[3]

B[3]

X2

X1

D

DFF

Q

D

DFF

Q

D

DFF

Q

X6

X7

X8

INV
CIN

INV
CLK

X9 X10

CK

S[2]

S[3]

N2

N1

CIN

v
v

v
v

Figure 5 Logic diagram of the circuit for the advanced tutorials
PowerMill User Guide



28 Chapter 3 PowerMill Tutorials
cat full_chip/run_full
cat block_powr/run1_block
cat block_powr/run2_block
cat block_powr/run3_block
cat dc_path/run_dcpath
cat max_powr1/run_max_power
cat max_powr2/run_max_seq_power
cat max_powr3/run_custom

The preceding scripts contain the following command lines,
respectively:

powrmill -n full.spi adder.cmd -c cfg_full
-o full -p tech*

powrmill -n block.spi adder.cmd -c cfg1_block
-o block1 -p tech*

powrmill -n block.spi adder.cmd -c cfg2_block
-o block2 -p tech*

powrmill -n block.spi adder.cmd -c cfg3_block
-o block3 -p tech*

powrmill -n dcpath.spi adder.cmd -c cfg_dcpath
-o dcpath -p tech*

powrmill -n max_com_power.spi -c cfg_max_power
-o maxpower -p tech*

powrmill -n max_seq_power.spi -c cfg_max_power
-o maxpower -p tech*

powrmill -n max_seq_power.spi -c cfg_max_power -fm
gap_customize.c -o custom

All of the run scripts contain the powrmill command with
the -n, -c, -p, and -o options specified.

See Chapter 1, “The PowerMill Command” in the PowerMill
Reference Guide for more information on command-line
options.

Although all of the simulations in this chapter use SPICE
netlists, you can combine SPICE, EPIC, Verilog, and EDIF in



Advanced PowerMill Simulations 29
the same run. If a netlist file with a .sp or .spi extension is
used, the parser assumes it is an HSPICE netlist and sets all
nodes and elements to lowercase by default.

2 Use the UNIX cat command to display the contents of the
configuration files as needed.

cat cfg_full
cat cfg1_block
cat cfg2_block
cat cfg3_block
cat cfg_dcpath
cat cfg_max_power

Tutorial 2: Performing a Full-Chip Power Analysis
This tutorial shows you how to determine the power
consumption of a complete circuit or full chip. In this case the
“full chip” is a small adder circuit, with an output register. A
small circuit is used in these tutorials so that simulations finish
quickly.

Files Needed for this Tutorial
The following table lists the input files needed for this tutorial.
These files are located in the pw_advanced/full_chip
subdirectory in your working directory.

Filename Description

adder.cmd EPIC format netlist file that describes the
filename for the vector file and the node
names and port ordering for the vector file

adder.vec Tabular digital vector file used as the digital
stimulus for the simulation

cfg_full Configuration file for full-chip power
analysis

full.spi SPICE netlist for full-chip power analysis
PowerMill User Guide



30 Chapter 3 PowerMill Tutorials
Procedure
Use the following procedure to run the full-chip analysis
tutorial.

1 Using the UNIX cat command, look at the contents of the
cfg_full configuration file.

The following file sample shows the contents of this
configuration file.

The commands as set in this configuration file, perform the
following functions:

◆ print_node_logic: prints all nodes in digital format.

◆ print_node_v: prints all nodes as voltage waveforms.

◆ report_block_powr: provides the averages for supply,
ground, input, output, and biput as well as instantaneous
waveforms in the .out file. It also provides a report on the
percent of wasted power (short-circuit current).

◆ print_probe_i: prints the instantaneous, average, and
RMS current waveforms.

2 Run the simulation using the run_full script.

run_full Run script for full-chip power analysis

tech.typ.25c_5v Technology file

Filename Description

print_node_logic *
print_node_v *

;Power reports for average, capacitive, percent wasted
power
report_block_powr top track_gnd=1 track_wasted=1 *
;Print instantaneous, average, and rms waveforms
to.out file
print_probe_i inst top.*
print_probe_i avg top.*
print_probe_i rms top.*



Advanced PowerMill Simulations 31
3 Examine the full.log file.

Notice the reports at the end of the file.

4 Load the full.out file in turboWave and display the average
power waveforms in each block, which are preceded by an
upper-case I (see Figure 6).

Tutorial 3: Performing a Block-Level Power Analysis
As part of the design process you probably need to determine
how much power is consumed by each block. This information
allows you to optimize blocks using the most power. PowerMill
provides some configuration commands useful for retrieving
information on power consumption at the block level. See
“Analyzing Power Block-by-Block” on page 87 for details on the

Figure 6 Waveform of advanced adder circuit (selected signals)
PowerMill User Guide



32 Chapter 3 PowerMill Tutorials
configuration commands for block analysis. This tutorial
illustrates how you can use the PowerMill simulator to analyze
power block-by-block.

Files Needed for this Tutorial

The following table lists the files needed for this tutorial. These
files are located in the pw_advanced/block_powr subdirectory in
your working directory.

Procedure
Use the following procedure to run the block-level power
analysis tutorial.

1 Open each of the configuration files and study the commands
used.

Each configuration file illustrates a different way to get block
power information. The information returned is different for

Filename Description

adder.cmd EPIC format netlist file that describes the
filename for the vector file and the node
names and port ordering for the vector file

adder.vec Tabular digital vector file used as the digital
stimulus for the simulation

cfg1_block
cfg2_block
cfg3_block

Configuration files for block power analysis

block.spi SPICE netlist of the circuit for block power
analysis

run1_block
run2_block
run3_block

Run scripts for block power analysis

tech.typ.25c_5v Technology file



Advanced PowerMill Simulations 33
each file. Each command separates the VDD and GND current
for each block by assigning unique probe names.

2 Run the simulation three times, once for each run script.

3 When the simulation is finished, list the directory contents.

The directory now contains several output files with the
block1 , block2 , and block3  prefixes.

4 Open and examine the block1.log, block2.log, and block3.log
files.

Notice the differences between the block-level reports in the
different .log files. In this case, only the current for each
adder cell is reported; therefore, the blocks are small. The
block power reporting principle applies to large blocks of a
chip. See “Differences Between the Resulting Block Power
Reports” on page 34 for a detailed analysis of each report.
PowerMill User Guide



34 Chapter 3 PowerMill Tutorials
5 Load the block3.out file in turboWave and display the
average power waveforms for _gnd and _src in each block
(see Figure 7).

Differences Between the Resulting Block Power Reports
As this tutorial demonstrates, you can use the
report_block_powr command with different options to produce
reports specifically tailored to your needs. This section details
the differences between the reports produced by the three block
power runs in this tutorial.

block1.log

Figure 8 shows a portion of the block power reports printed in
the block1.log file. These condensed reports provide information

Figure 7 Waveforms of block analysis of output file block3.out (selected signals)



Advanced PowerMill Simulations 35
on the basic current consumption for each block. This
information includes the average and RMS current for the block
as well as the reported current peaks and the times at which
they occurred. By default, the simulator provides the five highest
peaks over the reporting interval. In this case, the reporting
interval is the entire simulation. You can use the
set_print_ipeak command to request the printing of additional
current peaks.

block2.log

Figure 9 shows a portion of the block power reports printed in
the block2.log file. This particular excerpt provides a block power
report for the x1  block and was generated by the following
command:

report_block_powr x1 track_src=1 track_gnd=1 x1.*

The report generated by this command lists the contents of and
partitioning information for the reported block. This information
consists of the number of stages used, the number of nodes in the
block, and the total number of elements in the block.

Node: x1_vdd
    Average current     : -5.98305e+01 uA
    RMS current         :  3.13568e+02 uA

Current peak #1 : -4.90200e+03 uA at 2.50100e+02 ns
Current peak #2 : -4.89100e+03 uA at 4.10100e+02 ns
Current peak #3 : -4.89000e+03 uA at 5.70100e+02 ns
Current peak #4 : -4.82500e+03 uA at 9.01000e+01 ns
Current peak #5 : -4.82500e+03 uA at 7.30100e+02 ns

Node: x1_gnd
    Average current     :  6.10597e+01 uA
    RMS current         :  3.11328e+02 uA

Current peak #1 : 4.90200e+03 uA at 2.50100e+02 ns
Current peak #2 : 4.89100e+03 uA at 4.10100e+02 ns
Current peak #3 : 4.89000e+03 uA at 5.70100e+02 ns
Current peak #4 : 4.82500e+03 uA at 9.01000e+01 ns
Current peak #5 : 4.82500e+03 uA at 7.30100e+02 ns

Figure 8 Excerpt from block power reports in block1.log file
PowerMill User Guide



36 Chapter 3 PowerMill Tutorials
This report also provides a detailed analysis of the current
contributions from different parts of the circuit (inputs, outputs,
and bidirectional ports, etc.).

block3.log

Figure 10 shows a portion of the block power reports printed in
the block3.log file. This excerpt shows the block power report for
the x1  block and was generated by the following command:

report_block_powr x1 track_wasted=1 track_power=1
track_gnd=1 x1.*

Block: x1
    Number of nodes in block            :  18
    Number of elements in block         :  41
    Number of block supply nodes        :  1
    Number of block ground nodes        :  1
    Number of block biput nodes         :  1
    Number of block input nodes         :  2
    Number of block output nodes        :  0
    Number of block stages              :  10
    Number of block partial stages      :  1

    Average supply current              : -59.873924 uA
    RMS supply current                  :  313.624995 uA

    Average ground current              :  61.049494 uA
    RMS ground current                  :  311.347667 uA

    Average input current               :  0.000000 uA
    RMS input current                   :  0.000000 uA

    Average output current              :  0.000000 uA
    RMS output current                  :  0.000000 uA

    Average biput current               : -1.172278 uA
    RMS biput current                   :  30.454213 uA

Figure 9 Excerpt from block power reports in block2.log file



Advanced PowerMill Simulations 37
This report is the same as that in the block2.log file with the
addition of reports on capacitive contributions, wasted current,
and power in watts.

Tutorial 4: Finding DC Paths
This tutorial illustrates how you can use the PowerMill
simulator to find DC paths. The following table lists the files

Block: x1
    Number of nodes in block            :  18
    Number of elements in block         :  41
    Number of block supply nodes        :  1
    Number of block ground nodes        :  1
    Number of block biput nodes         :  1
    Number of block input nodes         :  2
    Number of block output nodes        :  0
    Number of block stages              :  10
    Number of block partial stages      :  1

    Average supply current              : -59.873924 uA
    RMS supply current                  :  313.624995 uA

Average ground current              :  61.049494 uA
    RMS ground current                  :  311.347667 uA

    Average input current               :  0.000000 uA
    RMS input current                   :  0.000000 uA

    Average output current              :  0.000000 uA
    RMS output current                  :  0.000000 uA

    Average biput current               : -1.172278 uA
    RMS biput current                   :  30.454213 uA

    Average capacitive current          : -41.307089 uA
    RMS capacitive current              :  263.016049 uA

    Average wasted current              : -21.971519 uA
    RMS wasted current                  :  79.569210 uA

    Wasted current percentage           :  34.721875%

    Average block power                 :  302.205535 uW
    RMS block power                     :  1565.245971 uW

Figure 10 Excerpt from block power reports in block3.log file
PowerMill User Guide



38 Chapter 3 PowerMill Tutorials
needed for this tutorial. These files are located in the
pw_advanced/dc_path subdirectory in your working directory.

Procedure
Use the following procedure to run the DC path check tutorial.

1 Open and examine the cfg_dcpath configuration file. The
following file sample shows the contents of this configuration
file.

2 Run the simulation using the run_dcpath script.

Watch the on-screen messages as they scroll by during the
simulation. These messages are included in the .dcpath file.

3 When the simulation is finished, list the directory contents.

The directory now contains several output files with the
dcpath  prefix.

Filename Description

adder.cmd EPIC format netlist file that describes the
filename for the vector file and the node
names and port ordering for the vector file

adder.vec Tabular digital vector file used as the digital
stimulus for the simulation

cfg_dcpath Configuration file for DC path checks

dcpath.spi SPICE netlist of the circuit for DC path
checks

run_dcpath Run script for DC path checks

tech.typ.25c_5v Technology file

print_node_logic *
print_node_v *
report_node_powr vdd gnd
report_ckt_dcpath
set_dcpath_thresh 200u



Advanced PowerMill Simulations 39
4 Open at the dcpath.dcpath file and study the messages.

This file contains time stamps for when violations occur and
lists the transistor at fault. Figure 11 shows the first DC
path reported in the dcpath.dcpath file.

The report_ckt_dcpath command has other syntax options.
This particular option with no arguments finds all DC paths that
violate the 200 microamp threshold. In this case, the checks are
triggered by any signal change.

5 Load the dcpath.out file in turboWave and display the cout,
v(cout), n2, and v(n2) signals (see Figure 12).

------------------------------------------------------------------
transistor x2.x2.x1.mn1 (type NMOS) current = 345.30 uA
gate n2 voltage =   2.65 V
drain x2.x2.n4 voltage =   0.61 V
source gnd voltage =   0.00 V
transistor x2.x2.x1.mp1 (type PMOS) current =  -343.63 uA
gate n2 voltage =   2.65 V
drain x2.x2.n4 voltage =   0.61 V
source vdd voltage =   5.00 V
------------------------------------------------------------------

Figure 11 First DC path reported to dcpath.dcpath file
PowerMill User Guide



40 Chapter 3 PowerMill Tutorials
Figure 12 Waveform of DC path output file



Advanced PowerMill Simulations 41
Tutorial 5: Estimating Maximum Power for Combinational
Circuits

This tutorial shows you how to estimate the maximum power of
combinational circuits at the full-chip level. PowerMill’s GAP
(Genetic Algorithm for maximum Power estimation) feature
combines a genetic algorithm with advanced circuit simulation
techniques, to efficiently search for input vectors to maximize
the power dissipation of a given circuit. You can use the GAP
feature to generate a tight lower bound on the maximum power
of a given circuit, which you can use to analyze various design
issues (power management, for example.)

The GAP feature is able to maximize four objective functions:

■ Average power per clock cycle of the circuit

■ Instantaneous power of the circuit

■ Average value per clock cycle of the customized fitness
function

■ Instantaneous value of the customized fitness function

The usage model for GAP customization, which involves the last
two object functions, is illustrated in tutorial 7.

For combinational circuits, the maximum power (instantaneous
or average) is produced by two vectors, referred to as a vector
pair, applied in two consecutive clock cycles. The first vector sets
up states of the internal nodes of the circuit. The power is
measured in clock cycle II.

The GAP feature keeps a specific group of vector pairs as
candidates for maximizing power dissipation. The quality of each
vector pair is measured by the power consumption it produces.
Using a genetic algorithm, the GAP feature repeatedly improves
the quality of the vector pairs, in the group that was kept,
generation by generation until the result is recognized by the
simulator as satisfactory.
PowerMill User Guide



42 Chapter 3 PowerMill Tutorials
Files Needed for this Tutorial
The following table lists the files needed for this tutorial. These
files are located in the pw_advanced/max_powr1 subdirectory in
your working directory.

Procedure
Use the following procedure to run the tutorial on estimating
maximum power for combinational circuits.

1 Open and examine the cfg_max_power configuration file. The
following file sample shows the contents of this configuration
file.

The use_vec_gap command starts the GAP feature, and
specifies two vector files with type vec  to be used for the
power estimation. The two vector files for the GAP

Filename Description

cfg_max_power Configuration file for maximum
power estimation

max_com_power.spi SPICE netlist of the combinational
circuit (a 4-bit ADDER) to be
estimated

max_com_power1.vec First vector file to be used for
maximum power estimation

max_com_power2.vec Second vector file to be used for
maximum power estimation

run_max_power Run script for maximum power
estimation

tech.typ.25c_5v Technology file

use_vec_gap vec=max_com_power1.vec vec=max_com_power2.vec
set_gap_opt period=20ns vec_history=1
guide_gap_search fit=1 level=5
print_probe_i inst total_power[gap]



Advanced PowerMill Simulations 43
estimation contain the following statements: signal names,
type, radix (optional), and io (optional). Vector files for the
GAP estimation differ from normal vector files in the
following ways:

◆ A normal vector file must contain at least one vector.
However, as you can see by examining the
max_com_power1.vec and max_com_power2.vec files, a
vector file for a GAP simulation can contain 0 vectors.

◆ Normal vector files have four valid io types: i (input),
o (output), b (biput), and u (unused). Vector files for a
GAP simulation have three valid io types: i (input), p
(pseudo-primary input (PPI)), and b (biput). If no io
statement is specified, all signals in the file are
considered inputs.

Vector files for the GAP estimation can contain vector pairs
to be used as part of the first generation for the genetic
algorithm. All other first-generation vectors are randomly
generated. You can use the guide_gap_seach command to
specify the population size to control the number of input
vector pairs applied in a generation.

The GAP estimation does not work on circuits in a wave-
pipelining design; the clock period used in a GAP simulation
must be longer than the delay along the critical path of the
circuit. The default clock period is 20 ns. However, you can
use the set_gap_opt command to override the default (with
the period= option.) In the cfg_max_power configuration file,
the set_gap_opt command specifies a clock period of 20 ns
and a history option of 1 (the default value), therefore, only
the vector pairs of the generation producing the maximum
power are kept in the history files (.gav files). At the end of
the estimation, GAP generates a history file corresponding to
each vector file.

In this configuration file, the fit=1  option (default) of
guide_gap_search command instructs GAP to maximize the
average power per clock cycle. You can choose to set up
PowerMill User Guide



44 Chapter 3 PowerMill Tutorials
various stopping criteria for GAP using the
guide_gap_search command (for example, CPU time,
number of generations, and number of pairs). See the
command definition for the guide_gap_search command in
the PowerMill Reference Guide.

The level=5 option is the default search level. Each search
level (from 1 to 10) defines a corresponding parameter set
used in the genetic algorithm. Selecting a larger search level
generally produces a better (larger) estimate of the
maximum power, but increases the CPU time.

2 Run the simulation using the run_max_power script.

3 Type Control-c  to switch into the interactive mode.

In this mode, you can use the interactive GAP commands.

4 Type report_gap_progress  at the interactive prompt.

This command shows the progress of the GAP estimation in
a tabular format (default) to the screen. This table contains
the maximum power, corresponding vector pair, and CPU
time.

5 Type report_gap_progress mode=2  at the interactive
prompt.



Advanced PowerMill Simulations 45
This command displays GAP progress information, as a
graph of the curve of the maximum power vs. the number of
applied input vector pairs (see Figure 13).

6 Close the window containing the graph.

7 Specify the report_gap_parameters  command at the
interactive prompt.

Figure 13 Graphical format of GAP estimation progress report
PowerMill User Guide



46 Chapter 3 PowerMill Tutorials
This command shows the current settings of various GAP
options. In this tutorial, the following information is printed
to the screen:

8 Specify the report_gap_prediction  command at the
interactive prompt.

This command predicts a cut-off point for the estimation that
you can use to reduce the total CPU time of the GAP
estimation. The number returned is a prediction of the total
number of vector pairs that need to be applied before the
estimation converges. From this number, you can subtract
the number of pairs already applied (as reported by the
report_gap_progress command) to determine the number
of additional pairs that need to be applied before the
estimation converges.

For example, if the report_gap_prediction command
returns 1000 and the report_gap_progress command
reports that 700 vector pairs have already been applied, it is
likely that the estimation will converge (produce the best
result) after applying an additional 300 vector pairs. You can
then apply the guide_gap_search max_vec=300 command
to cut-off the estimation appropriately.

NOTE: As with other extrapolation processes, the accuracy
of the prediction from this command is limited.
Although this command might reduce the CPU time
for the simulation, it might also reduce the accuracy

Current settings of parameters/options for GAP:

 Fitness function is peak average power
 History option : 1
 Population size : 20
 Search_level : 5
 Clock period : 20 (ns)
 No upper limit on CPU time

No upper limit on number of generations
 No upper limit on number of vector pairs
 No upper limit on value of fitness function



Advanced PowerMill Simulations 47
of the result. Therefore, you should only follow the
prediction from report_gap_prediction command
when reducing the CPU time is critical.

9 Specify cont_sim  at the interactive prompt.

This restarts the GAP estimation.

10 When the estimate is done, list the contents of the current
directory.

This directory contains output files with a maxpower prefix.

11 Open and examine the maxpower.gap file (see Figure 14).

Estimates of maximum average power from the GAP
feature:
---------------------------------------------------
(only those generations increasing maximum power are
listed)

 Generation 0
 Maximum power: 0.00540997 (watts)
 Vec[0]: 010000000
 Vec[1]: 101011011

 Generation 1
 Maximum power: 0.00559405 (watts)
 Vec[0]: 101011001
 Vec[1]: 110100101

 Generation 6
 Maximum power: 0.00640677 (watts)
 Vec[0]: 010010100
 Vec[1]: 101101001

 Generation 22
 Maximum power: 0.00653965 (watts)
 Vec[0]: 000000000
 Vec[1]: 110101101

 Generation 125
 Maximum power: 0.00653967 (watts)
 Vec[0]: 000000000
 Vec[1]: 110101101
---------------------------------------------------
Total number of generations: 152
Total CPU time             : 144.29 (secs)

Figure 14 Contents of the maxpower.gap file
PowerMill User Guide



48 Chapter 3 PowerMill Tutorials
This file contains a summary of the GAP estimation. The
maxpower.gap file contains an entry for each generation that
improves the maximum power. Each entry contains the
following three fields: generation ID, maximum power
induced, and the input vector pair producing the maximum
power. The total CPU time and total number of generations
are printed at the end of the file.

12 Open and examine the max_com_power1.gav and
max_com_power2.gav files.

These are history files that save the input vectors used
during the estimation. GAP produces a separate .gav file for
each input vector file. The max_com_power1.gav and
max_com_power2.gav files generated by this tutorial contain
only the vectors of the generation producing the maximum
power. You can specify which vectors you want GAP to keep
using the vec_history= option of the set_gap_opt command.

See the PowerMill Reference Guide for details on all of the
GAP configuration and interactive commands.

NOTE: You can use the .gav files (generated by GAP) as
vector files for a regular PowerMill simulation (by
specifying the -nvec command-line option). However,
if you want to fully reproduce the GAP result for a
specific generation, you have to consider the state of
the circuit; therefore, you need to use the save and
restore mechanism (described in tutorial 6).

13 Load the maxpower.out file in turboWave and view the
mathematical signal gap.total_power. This signal represents
the instantaneous power (in watts) of the combinational
circuit used in this tutorial.



Advanced PowerMill Simulations 49
Figure 15 Waveform of m(gap.total_power) signal in maxpower.out file
PowerMill User Guide



50 Chapter 3 PowerMill Tutorials
Tutorial 6: Estimating Maximum Power for Sequential
Circuits

This tutorial shows you how to estimate the maximum power of
sequential circuits using PowerMill’s GAP feature. This tutorial
illustrates the following GAP features:

■ Detection of pseudo-primary inputs (PPIs) using the
mark_node_latch and set_ckt_cmd commands. Here PPIs
are defined as the output of the memory elements (for
example, latches and flip-flops).

■ PPI detection using the PathMill latch detection feature.

■ The save and restore feature using the save_history= option
of the set_vec_opt command.

It is recommended that you first read the section, “Using the
GAP Feature to Estimate Maximum Power” on page 103 in
Chapter 3 before running this tutorial.

The GAP feature allows you to maximize four different objective
(fitness) functions:

■ Average power per clock cycle of the circuit

■ Instantaneous power of the circuit

■ Average value per clock cycle of the customized fitness
function

■ Instantaneous value of the customized fitness function

The usage model for GAP customization, which encompasses the
last two bulleted items, is illustrated in tutorial 7.

For sequential circuits, such as the one shown in Figure 16, each
measured power number is induced by three vectors, known as a
vector triplet, that are applied in three consecutive clock cycles.

The first vector, which stimulates both primary inputs (PIs) and
pseudo-primary inputs (PPIs), drives the circuit into a reachable
state.The second and third vectors stimulate only PIs and leave



Advanced PowerMill Simulations 51
all PPIs in a floating state. The power is measured in clock cycle
III. This method allows both the primary input vectors and the
state of the circuit to “evolve” through the use of a genetic
algorithm to maximize the objective function.

For the vector-triplet method to work correctly on a sequential
design, it must meet the following requirements:

■ FFs (or latches) should be buffered at the output, so that the
GAP stimuli on the PPIs won’t accidentally overwrite the
content of the FFs.

If the FFs are not buffered at the output, you need to verify
some information about the circuit and perform an

Figure 16 Schematic of the max_seq_power.spi netlist

AIN

BIN

ADDR

CIN
SUM

AIN

BIN

ADDR

CIN
SUM

AIN

BIN

ADDR

CIN
SUM

AIN

BIN

ADDR

CIN
SUM

A[0]

A[1]

A[2]

A[3]

CLK

CIN1

B[0]

B[1]

B[2]

B[3]

D

DFF

Q AIN

BIN

ADDR

CIN
SUM

AIN

BIN

ADDR

CIN
SUM

AIN

BIN

ADDR

CIN
SUM

AIN

BIN

ADDR

CIN
SUM

CIN2

E[0]

E[1]

E[2]

E[3]

D

DFF

Q

D

DFF

Q

D

DFF

Q

S2[0]

S2[1]

S2[2]

S2[3]

COUT1 COUT2

S1[0]

S1[1]

S1[2]

S1[3] D[3]

D[2]

D[1]

D[0]

X14

N13

N12

N11 N21

N22

N23

XD4 X24

XD3 X23

X22

X21XD1

XD2X12

X11

X13
PowerMill User Guide



52 Chapter 3 PowerMill Tutorials
experimental GAP run to determine whether you should
apply the vector-triplet method.

■ FFs (latches) in the circuit should be universally positive
edge-triggered (positive sensitive) or negative edge-triggered
(negative sensitive).

■ Clock skew in the estimated circuit (or block) should be
optimized and negligible.

If the sequential circuit does not satisfy each of these
requirements, the vector-triplet method might produce an
unrealistic result. You can run the GAP feature on this type of
circuit using the vector-pair method described in tutorial 5.

NOTE: The vector-pair method requires only PI information and
estimates the design as a combinational circuit. The only
drawback is that the quality of the result can be degraded,
especially for large circuits, since there is no control over the
state of the circuit during the GAP search.

Identifying the Pseudo-Primary Inputs
Before running the GAP feature using the vector-triplet method,
the power estimation algorithm needs to identify the output of
flip-flops and latches (the PPIs), so that they can be stimulated
appropriately during the searching of optimal stimuli.

There are three different methods for identifying the PPIs:
manual identification, automatic detection using PowerMill,
detection using the PathMill simulator.

Manually Specifying the PPIs

You can manually specify the PPIs, along with PIs, in the GAP
vector files. The vector files used for a GAP simulation, which
use the same format as the EPIC vector files, provide
information regarding the signals to be stimulated (for example,
name, io, and radix).



Advanced PowerMill Simulations 53
This approach is only feasible for small sequential designs since
identifying PPIs manually can be time consuming and error
prone.

Using GAP’s Built-in Mechanism

In hierarchical designs, FFs or latches might have subcircuit
definitions. For these designs, you can use the
mark_node_latch command, together with the set_ckt_cmd
command, to identify their output automatically (see the
command definition for mark_node_latch in the PowerMill
Reference Guide). Similarly, you can use the mark_node_latch
command and the set_pattern_cmd together to identify PPIs if
FFs or latches are defined as patterns. Using this approach, you
only need to provide GAP with vector files that include the PIs.
GAP automatically generates and adds a vector file containing
all the PPIs, identified by the mark_node_latch command, to
the GAP estimation. This tutorial illustrates this method of PPI
detection.

Using PathMill’s Latch Detection Feature

If you have a circuit description that does not contain subcircuit
or pattern definitions for flip-flops and latches, and you own a
copy of the PathMill simulator, you can use PathMill on the
circuit with the pw_detect_ckt_latch configuration command
to detect latches. See “Using PathMill to Detect PPIs” on page 64
for details.

Testing Latch Functionality for Flip-Flops with Non-Buffered
Outputs

If FFs (or latches) within the circuit are not buffered at the
output, you have to perform an experimental GAP run to
determine whether or not you can apply the vector-triplet
method.

1 Use the print_node_logic command to print the logic
waveform of the inputs and outputs of two or three FFs (for
each type used in the circuit) for a few vector triplets.
PowerMill User Guide



54 Chapter 3 PowerMill Tutorials
2 For each triplet, verify that the values at the inputs by the
end of clock cycle I are equal to the values at the outputs at
the beginning of clock cycle II.

This test verifies that the FFs or latches correctly latch the
state driven by the first vector in the triplet, and that the
state is not contaminated by the PPI stimulus itself. This
procedure is illustrated in “Using PathMill to Detect PPIs”
on page 64.

If you cannot verify this, it is suggested that you run GAP on
the sequential design using the vector-pair approach (see
tutorial 5).

Files Needed for this Tutorial

The following table lists the files needed for this tutorial. These
files are located in the pw_advanced/max_powr2 subdirectory in
your working directory.

Filename Description

cfg_max_power Configuration file for maximum power
estimation

max_seq_power.spi SPICE netlist of the sequential circuit
(a segment of a datapath with two
pipelined stages) to be estimated

max_seq_power.vec Vector file to be used for maximum
power estimation

run_max_seq_power Run script for maximum power
estimation of sequential circuits

tech.typ.25c_5v Technology file

runpm Run script for latch detection by
PathMill

cfgpm Configuration file for latch detection
using PathMill



Advanced PowerMill Simulations 55
Procedure
Use the following procedure to run the tutorial on estimating
maximum power for sequential circuits.

1 Open and study the cfg_max_power configuration file.

The following file sample shows the contents of this
configuration file.

Each line in this file is critical to the function of the GAP
feature:

■ use_vec_gap vec=max_seq_power.vec

This line specifies the vector files for the GAP simulation.
The GAP function generates a history file, as the simulation
progresses, for each vector file. You can specify multiple
vector files to be used with the GAP feature.

■ set_gap_opt period=40ns save_history=on
vec_history=1

This command sets the following parameters for the GAP
algorithm:

◆ The period=40ns argument sets the clock period for the
circuit to 40 ns.

◆ The save_history=on argument saves the simulation
history, which allows you to stop the simulation and

use_vec_gap vec=max_seq_power.vec
set_gap_opt period=40ns save_history=on vec_history=1
guide_gap_search fit=2 level=7
set_ckt_cmd d-ff mark_node_latch no=q
print_probe_i inst gap.total_power
;report_block_powr stage1 track_power=1 x1*
;report_block_powr stage2 track_power=1 x2*
;report_block_powr ff_array track_power=1 xd*
;report_probe_i avg stage1.total_power
;report_probe_i avg stage2.total_power
;report_probe_i avg ff_array.total_power
;report_probe_i avg gap.total_power
PowerMill User Guide



56 Chapter 3 PowerMill Tutorials
restart it from where you left off. This feature can come
in handy when simulating large circuits, which can be
very CPU intensive and often require a long simulation
time. This option saves both the circuit state and vector
stimuli, which allows you to do further power analysis on
a specific generation without having to run the
simulation again.

◆ The vec_history=1  option saves the vector history for
only those generations that improve (increase) the
maximum power estimation.

■ guide_gap_search fit=2 level=7

This command sets up the fitness function and the search
level. The fit=2  option tells the simulator to maximize the
instantaneous power (fit=1 maximizes average power per
clock cycle).

NOTE: To ensure the quality of the resulting estimate, this
tutorial uses a larger search level (7) than that used
in tutorial 5 because the size of the solution space to
be searched is larger than it is in tutorial 5.

■ set_ckt_cmd d-ff mark_node_latch no=q

This command enables the automatic searching and
identification of latches and flip-flops in the circuit. The d-ff
subcircuit is identified and the mark_node_latch no=q
command is applied to all instances of the d-ff subcircuit.
If you have a circuit with FFs that have many different
subcircuit names, you have to apply a separate set_ckt_cmd
command to each subcircuit. Specifying the
mark_node_latch command causes the PPI vector file
(maxpower.ppi.vec) to be generated and added to the
simulation automatically.

■ print_probe_i inst gap.total_power
;report_block_powr stage1 track_power=1 x1*
;report_block_powr stage2 track_power=1 x2*
;report_block_powr ff_array track_power=1 xd



Advanced PowerMill Simulations 57
;report_probe_i avg stage1.total_power
;report_probe_i avg stage2.total_power
;report_probe_i avg ff_array.total_power
;report_probe_i avg gap.total_power

This section of the configuration file controls power
reporting. All but the first line are commented out.
See “Analyzing Generations with Saved State Files” on
page 63 for information on using these power reporting
commands.

NOTE: You can reduce the size of the resulting output file by
using the FSDB or ISDB output format. To do so,
simply add the set_print_format for=isdb  (or
for=fsdb ) command to the configuration file. This
setting does make the simulation run more slowly.

2 Open and study the max_seq_power.spi netlist file.

The described circuit contains four PPIs, which are the
output of the four DFFs. Notice that these DFFs are 1)
positive edge-triggered, 2) buffered at the output, and 3)
instances defined by the subcircuit definition d-ff . The clock
signal has a delay of 0 ns, a period of 40 ns, and a 50% duty
cycle as described by the PULSE independent source
function.

To work properly using the vector-triplet method, GAP needs
to be synchronized with the clock signal driving the circuit.
To achieve synchronization, you need to perform the
following procedure:

◆ Apply the period= option with the set_gap_opt command
to specify the period for the GAP estimation, which
should be equal to the clock period (40 ns, in this
tutorial), and

◆ Apply the delay= option with the set_gap_opt command
to specify the delay for the GAP time window, which
should be equal to the delay of the clock (0 ns, in this
tutorial).
PowerMill User Guide



58 Chapter 3 PowerMill Tutorials
NOTE: You don’t have to use the delay= option with the
set_gap_opt command for this circuit, since the
default starting time for GAP is 0.

The FF’s clock-to-Q time is not considered in this tutorial
(delay through the combinational part of the circuit is used to
satisfy the hold time). If you have a circuit for which the
clock-to-Q time needs to be taken into consideration, you
would need to specify the values correctly before running
GAP. For example, suppose the clock signal starts from
100 ns, and the clock-to-Q time of the FFs is 0.5 ns. To
synchronize GAP’s time window with the clock, you need to
specify the delay= option with a value of 100 ns with the
set_gap_opt command. In addition, to address the clock-to-
Q time, you would have to set the delay= option of the
set_vec_opt command to 0.5 ns.

3 Open and study the max_seq_power.vec vector file.

Notice that this file contains only the PI signals; therefore,
the mark_node_latch command is used to generate a vector
file containing PPIs and add it to the GAP estimation
automatically.

4 Run the simulation using the run_max_seq_power script.

The autodetection simulation stops and restarts with the
following message:

Reading configuration files...
PPI dumping has been completed. Adding vec file
maxpower.ppi.vec to GAP and restarting GAP
estimation.

5 When you see that the simulation has progressed somewhere
beyond generation 4, type Control-c  to stop the simulator
in interactive mode.

6 Type quit  to quit the simulation.

7 List the directory contents.



Advanced PowerMill Simulations 59
Notice that the GAP feature automatically saved a file with a
name for similar to maxpower.save.7200.000000ns.Z for
generation 3, which improved the maximum power.

You can use this compressed file to restart the GAP run from
where you stopped it.

8 To restart (restore) the simulation from where you stopped it,
add the following command to the configuration file:

restore_ckt_state 7200ns

9 Start the simulation again using the run_max_seq_power
run script.

10 When the estimate is done, list the contents of the current
directory.

The GAP estimation produces several output files with a
maxpower prefix.
PowerMill User Guide



60 Chapter 3 PowerMill Tutorials
11 Open and examine the maxpower.gap file, which contains a
summary of the GAP simulation (see Figure 17).

Each generation of the GAP estimation simulates the circuit
with 20 input vector triplets (by default). The maxpower.gap
file contains an entry for each generation that improved the
maximum power. Each entry consists of the following fields:
generation ID, maximum power produced, and the input
vector triplet producing the maximum power. The total CPU

Estimates of maximum instantaneous power from the GAP
feature:
---------------------------------------------------
(only those generations increasing maximum power are
listed)

 Generation 0
 Maximum power: 0.080511 (watts)
 Vec[1]: 010000101101110011
 Vec[2]: 10001101011000zzzz
 Vec[3]: 11101011110111zzzz

 Generation 3
 Maximum power: 0.082563 (watts)
 Vec[1]: 101000001100110000
 Vec[2]: 00100010010010zzzz
 Vec[3]: 10011001101001zzzz

..........................

Generation 92
 Maximum power: 0.120024 (watts)
 Vec[1]: 000110100110111011
 Vec[2]: 00000000010000zzzz
 Vec[3]: 11111111101111zzzz

 Generation 93
 Maximum power: 0.121689 (watts)
 Vec[1]: 000110100010110001
 Vec[2]: 00000000000000zzzz
 Vec[3]: 11111111111111zzzz

------------------------------------------------------
Total number of generations: 256
Total CPU time             : 1244.61 (secs)

Figure 17 Contents (partial) of the maxpower.gap file



Advanced PowerMill Simulations 61
time and total number of generations are printed at the end
of the file.

12 Open and examine the max_seq_power.gav and
maxpower.ppi.gav files.

These are the history files for the max_seq_power.vec and
maxpower.ppi.vec vector files, respectively. The two .gav files
contain the vectors for all generations that increased the
maximum power. You can use the vec_history= option of the
set_gap_opt command to specify which vectors should be
kept.

See the PowerMill Reference Guide for details on all of the
GAP configuration and interactive commands.

NOTE: You can use the .gav files (generated by GAP) as
vector files for a regular PowerMill simulation (by
specifying the -nvec command-line option). However,
if you want to fully reproduce the GAP result for a
specific generation, you have to consider the state of
the circuit; therefore, you need to use the save and
restore mechanism (previously described in this
procedure).

13 Load the maxpower.out file in turboWave and view the
mathematical signal m(gap.total_power), which represents
PowerMill User Guide



62 Chapter 3 PowerMill Tutorials
the instantaneous power (in watts) of the sequential circuit
used in this tutorial (see Figure 18).

14 After a GAP estimation, you can use the generated state
files, which have a .Z extension, in two ways:

◆ You can resume a GAP estimation from the time the state
file was saved.

◆ You can perform further analysis on those generations
with saved state files without re-running the whole
simulation (see “Analyzing Generations with Saved State
Files” on page 63).

Figure 18 Waveform of m(gap.total_power) signal in maxpower.out file



Advanced PowerMill Simulations 63
Analyzing Generations with Saved State Files

The following procedure shows you how to analyze the average
power for different blocks within the two-stage pipeline circuit
for generation 3 (with a state file named
maxpower.save.7200.000000ns.Z).

1 Verify that the following command has been added to the
configuration file:

restore_ckt_state 7200ns

2 In the configuration file, uncomment the last seven
commands, which are currently commented out.

These commands create three blocks within the circuit
(the 4-bit adder at the first stage, the 4-bit adder at the
second stage, and the FFs), and report the average power for
individual blocks.

3 Run the simulation using the run_max_seq_power script.

When you see that the simulation has progressed somewhere
beyond generation 3, type Control-c  to stop the simulator
in the interactive mode.

4 Type guide_gap_search max_gen=1  at the interactive
prompt.

5 Resume the simulation by typing cont_sim .

The simulation stops right after generation 3 is finished.

6 Type quit  to end the simulation and exit.
PowerMill User Guide



64 Chapter 3 PowerMill Tutorials
7 Open and examine the maxpower.log file.

This file contains power reports for the following four blocks:

◆ The 4-bit adder at the first stage (stage1.total_power )

◆ The 4-bit adder at the second stage
(stage2.total_power )

◆ The flip-flops (ff_array.total_power )

◆ The whole circuit (gap.total_power )

This report also includes various current statistics (for
example, average and RMS supply current, and average and
RMS input current) for individual blocks.

Using PathMill to Detect PPIs
In this tutorial, the circuit description (in the max_seq_power.ppi
file) contains a subcircuit definition for FFs, therefore you can
use the mark_node_latch and set_ckt_cmd commands to do
PPI detection automatically. However, if your circuit does not
contain a subcircuit (or pattern) definition for FFs or latches and
you have a copy of the PathMill simulator, you can use PathMill’s
latch detection feature to generate a PPI vector file that you can
use with a GAP estimation.

Current information calculated over the intervals:

     0.00000e+00 -  2.40010e+03 ns

Node: stage1.total_power
    Average power       :  7.03574e+02 uW

Node: stage2.total_power
    Average power       :  7.87411e+02 uW

Node: ff_array.total_power
    Average power       :  9.66177e+03 uW

Node: gap.total_power
    Average power       :  1.11595e+04 uW



Advanced PowerMill Simulations 65
NOTE: If you use PathMill for PPI detection, you must verify the
functionality of the latches by running an additional GAP
simulation (see “Testing Latch Functionality for Flip-Flops with
Non-Buffered Outputs” on page 53).

Use the following procedure to generate a .ppi.vec file using the
PathMill simulator:

1 Open and study the cfgpm configuration file.

The file contains only one PathMill configuration command—
pw_detect_ckt_latch. This command instructs PathMill to
perform latch detection on the circuit and generate a vector
file containing the output of all the detected latches.

See the command definition for pw_detect_ckt_latch in the
PathMill Reference Guide.

2 Run PathMill using the runpm script, which consists of the
following PathMill command line:

pathmill -n max_seq_power.spi -c cfgpm

The latch-detection simulation starts and stops with the
following messages:

Start Latch Detection
Latch Detection completed

3 Open and study the pathmill.ppi.vec file. The following file
sample shows its contents.

The circuit described in max_seq_power.spi contains four
DFFs. Since each flip-flop in this circuit is comprised of two
cascaded latches, the pathmill.ppi.vec file includes eight
signals. Notice that the io type for all eight signals is
p (pseudo-primary input).

signal XD1.c XD1.f XD2.c XD2.f XD3.c XD3.f XD4.c XD4.f
type VEC
io pppppppp
PowerMill User Guide



66 Chapter 3 PowerMill Tutorials
NOTE: The signals in any GAP vector file can have one of
three different input/output types: i (input),
b (biput), and p (pseudo-primary input). Open the
cfg_max_power file.

4 Comment out the following line:

set_ckt_cmd d-ff mark_node_latch no=q

5 Add the pathmill.ppi.vec file, generated by PathMill, to the
PowerMill GAP simulation using the vec= option of the
use_vec_gap command:

use_vec_gap vec=max_seq_power.vec
vec=pathmill.ppi.vec

6 Add the following command to the cfg_max_power file to
verify the functionality of the FFs or latches.

print_node_logic s1[*] d[*]

7 Add the max_gen=1  option to the end of the
guide_gap_search  command specification:

guide_gap_search fit=2 level=7 max_gen=1

Setting the max_gen= option to 1 forces the GAP simulation
to stop after one generation.

This circuit contains only one type of FF, and the s1[*] and
d[*] nodes are the inputs and outputs for the FFs.

8 Run the simulation using the run_max_seq_power script.

9 After the simulation stops, type quit to get out of interactive
mode and the simulation.



Advanced PowerMill Simulations 67
10 Load the maxpower.out file in turboWave and view the two
bus signals d[3:0] and s1[3:0].

For the first vector triplet, the value of s1[3:0] at the end of clock
cycle I (“c”) is equal to the value of d[3:0] at the beginning of
clock cycle II. This is also true for the second and third vector
triplets, which verifies the functionality of the FFs or latches as
described in the section, “Testing Latch Functionality for Flip-
Flops with Non-Buffered Outputs” on page 53.

11 Open the cfg_max_power file.

12 Remove the following line:

print_node_logic s1[*] d[*]

Figure 19 Waveform of bus signals d[3:0] and s1[3:0] in the maxpower.out file
PowerMill User Guide



68 Chapter 3 PowerMill Tutorials
13 Remove the max_gen=1  argument from the
guide_gap_search  command specification.

14 Run the regular GAP simulation using the
run_max_seq_power script.

At this point, you can resume the regular GAP procedure
starting with step 5 on page 58.

NOTE: When you use PathMill, instead of PowerMill, to detect the PPIs
the maxpower.ppi.vec file is replaced by the pathmill.ppi.vec file;
therefore, the corresponding maxpower.ppi.gav is replaced by the
pathmill.ppi.gav file.



Advanced PowerMill Simulations 69
Tutorial 7: Customizing a GAP Objective Function using an
ADFMI Code File

This tutorial illustrates an advanced GAP feature which allows
you to customize the objective function using an ADFMI C file.
Using this feature, you can create your own objective function to
be maximized by GAP, instead of using the two default objective
functions.

A customized objective function is a regular C function in an
ADFMI C file. You can use various circuit parameters (for
example, node voltage, node current, element branch current,
and block power) to calculate the fitness measure.

The following table lists the files needed for this tutorial. These
files are located in the pw_advanced/max_powr3 subdirectory in
your working directory.

Procedure
Use the following procedure to customize the objective function
for a GAP simulation.

Filename Description

cfg_max_power Configuration file for maximum power
estimation

max_seq_power.spi SPICE netlist of the sequential circuit
(a segment of a datapath with two
pipelined stages) to be estimated

max_seq_power.vec Vector file to be used for maximum
power estimation

cmos35t.mod A BSIM3 v3 SPICE model used to run
the simulation in direct mode

gap_customize.c An ADFMI C file used to customize the
objective function for the GAP
simulation

run_custom Run script for GAP customization
PowerMill User Guide



70 Chapter 3 PowerMill Tutorials
1 Open and study the max_seq_power.spi file.

Notice that the clock is defined at the bottom of the file as a
pulse signal with a delay of 100ns and a period of 40ns. The
circuit contains four FFs (positive edge-triggered) which are
instances defined by the subcircuit d-ff . The output of the
subcircuit d-ff  is buffered.

2 Open and study the cfg_max_powr configuration file. The
following file sample shows the contents of this file.

Each line in this file is critical to the function of the GAP feature:

■ use_vec_gap vec=max_seq_power.vec

As in tutorial 6, the vector file max_seq_power.vec contains
only the PIs. This command registers this vector file to GAP
estimation. A vector history is tracked for this vector file as
the simulation progresses.

■ set_gap_opt delay=100ns period=40ns
vec_history=2

This command synchronizes GAP’s time window with the
clock driving the circuit by specifying a delay of 100ns and a
period of 40ns . This command also uses the vec_history=
option to tell the simulator to track the vector history for all
generations that improve the maximum value of the fitness
function. Notice that the save_history= option is disabled;
therefore, no state files, printed with a .Z extension, are
generated for this GAP simulation.

NOTE: The clock-to-Q time is not considered for the circuit in this
tutorial since delay through the combinational part of it can
satisfy the hold time of the FFs. Otherwise, you would need to set

use_vec_gap vec=max_seq_power.vec
set_gap_opt delay=100ns period=40ns vec_history=2
guide_gap_search fit=3 level=7
set_ckt_cmd d-ff mark_node_latch no=q
print_probe_i inst customize_gap_fitness



Advanced PowerMill Simulations 71
the delay= option, of the set_vec_opt command to be equal to
the clock-to-Q time.

■ guide_gap_search fit=3 level=7

This command enables GAP customization by setting the fit=
option to 3, which notifies GAP that the average value of the
fitness function (defined in an ADFMI C file) should be the
objective to maximize. This command also sets the search
level option (level=) to 7.

■ set_ckt_cmd d-ff mark_node_latch no=q

This line enables GAP’s built-in latch detection mechanism
to generate and register the PPI vector file with the GAP
feature. The mark_node_latch  command searches nodes
that have the name q under all instances of subcircuit d-ff .
Notice that the name of the output of subcircuit d-ff is q. A
PPI vector file containing these nodes is automatically
generated and registered with the GAP simulation.

■ print_probe_i inst customize_gap_fitness

This command instructs GAP to generate the waveform of
the value of the customized objective function (vs. time), and
print it to the output file. The name
customize_gap_fitness  is the default name for the math
signal representing the value of the customized objective
function. You can also choose to print out the average and
RMS values of this signal (see the definition of the
print_probe_i command in the PowerMill Reference Guide).

3 Open the gap_customize.c file.

This is the ADFMI C file in which you define and register
your customized fitness function. See “Creating a
Customized Fitness Function” on page 108 in Chapter 4 for
instructions on creating this file).
PowerMill User Guide



72 Chapter 3 PowerMill Tutorials
4 Locate the lines that are part of the RegisterUserModel()
function at the bottom of the file (see Figure 20).

The first two lines use the fmConfigCmd()  function to
specify a PowerMill configuration command that maps the
x1*  and x2*  blocks to the block1  and block2  power-
tracking variables. They also tell the simulator what to track
by setting the track_power= argument to 1.

Next, the fmRegisterGap()  function maps the power of
block1 and block2 variables into the GAP algorithm. They
are used in the fitness function.

NOTE: The asterisk (*) wild card specifies that all four
adders in each bank are to be included in the block
specifications.

/* Specify block power for block1 and block2 */
/* block1 will be the first bank of 4 adders */
/* and block2 the second bank of 4 adders */
fmConfigCmd ("report_block_powr block1 track_power=1 x1*");
fmConfigCmd ("report_block_powr block2 track_power=1 x2*");
/* Register arguments and function pointer of customized
objective function */
fmRegisterGap("p(block1) p(block2)", fitness);

Figure 20 Excerpt from registration function



Advanced PowerMill Simulations 73
Find the execution function at the top of the file
(see Figure 21).

The first section of this function checks to see if the simulator
is in the DC initialization phase prior to the start of the
transient simulation. If so, it sets the ID pointers. If it is not
in the DC initialization phase, the transient simulation has
already started.

The second section calculates the sum variable by adding up
the power from both blocks.

Notice that the power number you get is much lower than in
the previous tutorial, in which you calculated the maximum

Figure 21 Block Diagram of the Circuit

double fitness()
{
  static int id_4_block1_powr, id_4_block2_powr;
  double sum = 0;

  if (fmSimPhase() == FMDCINITPHASE) {
    /* get id for signals, which can be used later to
       access their value */
    id_4_block1_powr = fmGapGetSignalId ("p(block1)");
    id_4_block2_powr = fmGapGetSignalId ("p(block2)");
    return 0;
  }
  else {
    /* calculate fitness measure */
    sum =
fmGapGetValueById(id_4_block1_powr)+fmGapGetValueById(id_4
_block2_powr);
    return sum;
  }
}

Figure 21 Excerpt from execution function
PowerMill User Guide



74 Chapter 3 PowerMill Tutorials
power for the entire circuit. In contrast, this tutorial only
covers two blocks of the circuit (see Figure 22).

5 Open and study the run_custom script.

6 Locate the following option:

-fm gap_customize.c

This option identifies the gap_customize.c file as an ADFMI
C file. In addition to describing and registering ADFMI
models, an ADFMI C file can also describe and register a
GAP customized fitness function. Specifying the ADFMI C
file on the command line is required for GAP customization.

7 Run the simulation using the run_custom script.

S1[3]

S1[2]

S1[1]

S1[0]

S2[3]

S2[2]

S2[1]

S2[0]

B[3]

B[2]

B[1]

B[0]

E[3]

E[2]

E[1]

E[0]

D[3]

D[2]

D[1]

D[0]

A[3]

A[2]

A[1]

A[0]

CIN2CLKCIN1

COUT1 COUT2

d

d

d

d

q

q

q

qaddr

addr

addr

addr

addr

addr

addr

addr

d-ff

d-ff

d-ff

d-ff
x11

x12

x13

x14

x21

x22

x23

x24

xd1

xd3

xd4

Figure 22 Block diagram of the circuit

xd2

Block 1 Block 2



Advanced PowerMill Simulations 75
The simulation performs PPI detection first. After it
generates the custom.ppi.vec PPI vector file, it registers it
with GAP simulation.

The following messages appears on the screen:

Reading configuration files ...

PPI dumping has been completed. Adding vec file
custom.ppi.vec to GAP and restarting GAP estimation.

The simulation resumes automatically in GAP mode.

8 When you see that the simulation has progressed somewhere
beyond generation 8, type Control-c  to stop the simulator
in interactive mode.

9 Type report_gap_parameters  at the interactive prompt.

This interactive command prints a status report of GAP
parameters to the screen (see Figure 23).

This command allows you to view and check the current
setting of the GAP parameters, including the vector history
option, population size, search level, and various stopping
criteria (for example, CPU time, number of generations, and
number of triplets).

Current settings of parameters/options for GAP:

 Fitness function is peak average power
 History option                                : 2
 Population size                               : 20
 Search_level                                  : 7
 Clock period                                  : 40 (ns)
 No upper limit on CPU time
 No upper limit on number of generations
 No upper limit on number of vector triplets
 No upper limit on value of fitness function

Figure 23 Report of GAP parameter settings
PowerMill User Guide



76 Chapter 3 PowerMill Tutorials
10 Type report_gap_progress at the interactive prompt. This
command prints a progress report for the GAP simulation to
the screen (see Figure 24).

The simulator generates an entry in this file for each
generation that improves the maximum value of the fitness
function. Each file entry lists the time, number of triplets,
current value of the fitness function, and the stimuli.

GAP result so far:

time (secs)     num. of triplets    max power (watts)
--------------------------------------------------
 6.92                  20          0.000714735

 Vec[1] : 010000101101110011
 Vec[2] : 10001101011000zzzz
 Vec[3] : 11101011110111zzzz

 10.49                  40          0.000759248

 Vec[1] : 101101111000110111
 Vec[2] : 01000101100110zzzz
 Vec[3] : 10010010111111zzzz

 ......................................

  21.29                 100          0.000938212

 Vec[1] : 101101110001110101
 Vec[2] : 01000101011000zzzz
 Vec[3] : 10010011110111zzzz

 24.96                 120          0.00111505

 Vec[1] : 001101110111000010
 Vec[2] : 01000101010011zzzz
 Vec[3] : 10010010111101zzzz

--------------------------------------------------
Current CPU Time               : 33.47 (secs)
Maximum power so far           : 0.00111505 (watts)
Current number of generations  : 8

Figure 24 Report of GAP parameter settings



Advanced PowerMill Simulations 77
In addition, the current CPU time, maximum value, and
number of generations are printed at the bottom of the
report.

11 You can also use the guide_gap_search command to set
various criteria for stopping GAP at the interactive mode
command line. See the command definition for the
guide_gap_search command in the PowerMill Reference
Guide.

12 Type cont  to continue the GAP simulation.

13 When the simulation finishes, type quit  to quit the
simulation.

14 Open and study the custom.gap file (see Figure 25).

The simulator creates an entry in this summary file for each
generation that improves the maximum value.

15 Open and study the max_seq_power.gav and custom.ppi.gav
files. These two files are the vector history files for
max_seq_power.vec and custom.ppi.vec, respectively.

The custom.ppi.vec file is the PPI vector file generated by the
mark_node_latch command. Since the vec_history= option
of the set_gap_opt command is specified as 2, stimuli of all
the generations that improved the maximum value are
tracked in the two .gav file.
PowerMill User Guide



78 Chapter 3 PowerMill Tutorials
Estimates of maximum average power from the GAP feature:
-------------------------------------------------------
----
(only those generations increasing maximum power are
listed)

 Generation 0
 Maximum power: 0.000714735 (watts)
 Vec[1]: 010000101101110011
 Vec[2]: 10001101011000zzzz
 Vec[3]: 11101011110111zzzz

 Generation 1
 Maximum power: 0.000759248 (watts)
 Vec[1]: 101101111000110111
 Vec[2]: 01000101100110zzzz
 Vec[3]: 10010010111111zzzz

 Generation 2
 Maximum power: 0.000882713 (watts)
 Vec[1]: 101101111000110111
 Vec[2]: 01000101000110zzzz
 Vec[3]: 10010010111111zzzz

 Generation 3
 Maximum power: 0.000904537 (watts)
 Vec[1]: 101101111111000110
 Vec[2]: 01000101010011zzzz
 Vec[3]: 10010010111101zzzz

Figure 25 Contents (partial) of the custom.gap file



Advanced PowerMill Simulations 79
Tutorial 8: Finding Static Leakage Paths
This tutorial illustrates how you can use PowerMill to find static
DC short circuit paths. A static DC short circuit path exists if a
node has a static conducting path to VDD and a static conducting
path to GND. The report_ckt_leak command finds static DC
paths and detects several unusual topological conditions in
regular CMOS designs. Various topologies are listed in the
PowerMill Reference Guide under the description of the
report_ckt_leak command. This tutorial highlights the effect of
each of these topologies.

The following table lists the files needed for this tutorial. These
files are located in the pw_advanced/static_leak subdirectory in
your working directory.

Filename Description

cfg_static Configuration files for static leak analysis

static_powr.spi SPICE netlist of the circuit for block power
analysis (see Figure 26)

run_static Run scripts for static leak tutorial

tech.typ.25c_5v Technology file
PowerMill User Guide



80 Chapter 3 PowerMill Tutorials
Figure 26 Schematic of the static_powr.spi netlist

CLK

ENB

XI4

XI5

CKAF

CKBF

XI17

INA

C1

XI16

INB

CKA

CKB

XI0

XI7

XI1

XI6

BUS

MN1

OUTF

XI3

OUT

k

l

nps1

pps1pps

nps

xps3

xps1

xps2

xps4

VDDH

GNDLl -2.0V

+5.0Vl

R1

10K

Partial Swing Checks

net16

net18

nc_gnd

nc_vdd

kk

kl

mp22

mn22

mp21

mn21

mxn2

mxn1

mp24

static_leak stuck_at_1 stuck_at_0

VDDH

VDDL

forward_bias_n
GNDL

GNDH

forward_bias_p

mp23

mn23

mp25 mp26

mn25 mn26

koknkm

kp
kr

mp27

mp28

mp29

mn30
mp29

mn27

kq
ks

clk

bus



Advanced PowerMill Simulations 81
Procedure
Use the following procedure to run the static leakage path check
tutorial.

1 Open and examine the cfg_static configuration file (see
Figure 27).

2 Run the simulation using the run_static script.

3 When the simulation is finished, list the directory contents.

Notice that the directory now contains several output files
with the static prefix.

4 Open the static.log file and notice the number of errors
reported in the .err file.

5 Use the viewerror utility to view the errors reported in the
static.err file.

viewerror -i static.err -o all_error

The all_error file should list 25 errors. This file lists the type
of error followed by a brief description of why the error
occurred. It also lists the transistors that are present in the
static leakage path.

6 Study each type of error and go back to the netlist and figure
out why they are occurring. Also try to match the topologies

set_sim_case l
print_node_v *
;report_ckt_leak el=* to_vdd to_gnd
;report_ckt_leak el=* static_leak
;report_ckt_leak el=* stuck_at_1 stuck_at_0
;report_ckt_leak el=* partial_off_n partial_off_p
;report_ckt_leak el=* n_path p_path
;report_ckt_leak el=* nc_vdd nc_gnd
;report_ckt_leak el=* forward_bias_n forward_bias_p
report_ckt_leak el=*
set_node_thresh 0.5 2.5 v=1 gnd* vdd*

Figure 27 Contents of the cfg_static file
PowerMill User Guide



82 Chapter 3 PowerMill Tutorials
present in the netlist with those detailed in the reference
guide.

NOTE: The set_node_thresh command is important and
should be used while doing static leakage analysis.
This is because the static analysis uses the node
voltages and logic thresholds for the constant
voltage source nodes to identify which nodes are
ground and which nodes are supply (VDD).

Although, the voltage in the technology file is 5.0 V, and the
VDD is 3.0 V, the simulator sets the thresholds to more
reasonable values by checking the neighboring connection.
However, it is good practice to always use the
set_node_thresh command to set appropriate thresholds.

7 Comment out all the last report_ckt_leak command
(report_ckt_leak * ).

8 Uncomment each of the other report_ckt_leak commands
one by one and rerun the simulation each time.

This process allows you to see the error messages that are
particular to different types of topologies.

NOTE: The report_ckt_leak command is set up so that if
one possible error presumes others, only the most
serious error is reported. For example, if a node is
stuck_at_1, it is equivalent to saying that it has a
static path to VDD and no path to gnd. If the
stuck_at_1 error is reported, the nc_gnd and to_vdd
errors are not reported since they are redundant.



Chapter 4

Power Analysis



84 Chapter 4 Power Analysis



Overview 85
Overview

This chapter addresses the various features provided by
PowerMill for the analysis and diagnosis of power use for your
circuits and includes information on the following subjects:

■ Analyzing Power Consumption

■ Using the GAP Feature to Estimate Maximum Power

■ Performing a Dynamic Power Consumption Analysis

■ Performing a Static Power Consumption Diagnosis

■ Analyzing Power Using the RC and UD Simulation Modes

In discussing PowerMill simulation results, the term power is
synonymous with current.

Analyzing Power Consumption
This section provides an overview of the features and methods
available in PowerMill for the analysis of power use in your
circuits at the full-chip, block, and individual node or element
levels.

This section includes information on the following subjects:

■ Analyzing Power at Full-Chip Level

■ Analyzing Power Block-by-Block

■ Measuring Wasted Power

■ Measuring True Power in Watts

■ Measuring Power Hierarchically

■ Assigning Power Budgets

■ Retrieving Power Information Interactively

■ Controlling Power Reporting Resolution and Accuracy

■ Printing and Reporting Branch Currents
PowerMill User Guide



86 Chapter 4 Power Analysis
■ Printing and Reporting Internal Node Currents

■ Working with Probes

■ Current Histograms and Tracking Windows

Analyzing Power at Full-Chip Level
Full-chip power analysis is the simplest type of power analysis.
At this level the power usage of the chip can be characterized by
the current statistics and waveforms of the main power nodes,
such as VDD and GND. These can be obtained by using the node
current printing and reporting configuration commands.

When used for any voltage source node the current reported is
the current being supplied by the source (see “Printing and
Reporting Internal Node Currents” on page 99).

The print_node_i* commands are used to print the
instantaneous, average, RMS, and didt waveforms of the
requested nodes to the .out file. The report_node_i command
can be used to request the reporting of the average, RMS, or peak
currents to the .log file at the conclusion of the simulation. You
can also use it to request a current histogram to be generated for
the specified nodes (see “Current Histograms and Tracking
Windows” on page 101). The report_node_powr command is a
macro and can be used to request all of the above information
(except the didt waveform and current histogram) with one
command.

The simplest approach is to use the report_node_powr
command without specifying any arguments. This automatically
selects all the supply and ground nodes, as well as all current
probes, for current reporting.

Figure 1 shows a sample report generated by the
report_node_powr command. This report is first printed to the

print_node_i
print_node_iavg
print_node_irms

print_node_didt
report_node_i
report_node_powr



Analyzing Power Consumption 87
screen and then printed in the .log file, at the end of the
simulation. The instantaneous, average, and RMS current
waveforms for these nodes are also recorded in the .out file.

If you prefer to monitor power consumption during the
simulation, you can use either the turboWave and SimWave
waveform viewer to watch the power consumption during the
simulation.

For more specific information on each command, see Chapter 2,
“Configuration and Interactive Commands” in the PowerMill
Reference Guide.

Analyzing Power Block-by-Block
Block-level power analysis allows the you to find out where most
of the power is being consumed within a circuit. With this
information, you can optimize power within blocks that consume
too much power. Using a hierarchical netlist (a flat netlist will
not work) you can isolate power to portions of blocks, if

Current information calculated over the intervals:

0.00000e+00 -  6.00000e+03 ns

Node: gnd
    Average current     :  7.11217e+02 uA
    RMS current         :  1.26582e+03 uA

Current peak #1     :  1.49260e+04 uA  at   4.40180e+03 ns
    Current peak #2     :  1.40570e+04 uA  at   4.20180e+03 ns
    Current peak #3     :  1.32660e+04 uA  at   4.00180e+03 ns
    Current peak #4     :  1.32540e+04 uA  at   3.80180e+03 ns
    Current peak #5     :  1.31900e+04 uA  at   2.86860e+03 ns

Node: vdd
    Average current     : -7.09839e+02 uA
    RMS current         :  1.26431e+03 uA

    Current peak #1     : -1.54890e+04 uA  at   4.40181e+03 ns
    Current peak #2     : -1.46190e+04 uA  at   4.20181e+03 ns
    Current peak #3     : -1.38260e+04 uA  at   4.00181e+03 ns
    Current peak #4     : -1.38160e+04 uA  at   3.80181e+03 ns
    Current peak #5     : -1.32800e+04 uA  at   2.86860e+03 ns

Figure 1 Sample power report (generated by report_node_powr)
PowerMill User Guide



88 Chapter 4 Power Analysis
necessary. This type of analysis should be done in the design
phase, prior to finishing the layout.

A block-level power analysis is most easily done using the
report_block_powr configuration command.

EXAMPLE:
report_block_powr my_block x1.x1.*

This example generates a block power report to the .log file for
the subcircuit x1.x1  under the label my_block .

The block power report provides a statistical analysis of the
block including the number of elements, internal nodes, source
nodes, and biput nodes. By default, it also lists the average and
RMS source, ground, input, output, and biput currents for the
block.

See “Sample Power Reports” on page 223 in Appendix A for a
sample block power report. This report is first printed to the
screen and then reported in the .log file, at the end of the
simulation. Using optional arguments, the report_block_powr
command can report the average and RMS ground current, and
produce a list of the current supplied by each individual supply,
ground, input, output, and biput node.

You can also produce a block-level waveform and current
histogram. For more details, see the PowerMill Reference Guide,
and “Working with Probes” on page 100.

Measuring Wasted Power
PowerMill defines wasted power, also called short-circuit
current, for a circuit block, as any DC current consumed by the
circuit block that is not used to charge block capacitances or
capacitances driven by the block. Specifically, PowerMill defines
the total current consumed by the block as the sum of the total
supply current and the current from the biputs that are acting as
supplies. (The current from biputs acting as ground is not
included.)



Analyzing Power Consumption 89
consumed current = total supply + Σ biput currents (i < 0)

The consumed current is comprised of two types of current:
capacitive current and wasted current:

■ Capacitive Current: any current for which its conductive
path terminates (or originates) at a circuit capacitance. This
current is essential in carrying out the switching functions of
the circuit.

■ Wasted Current: any current for which both ends of the
conducting path are voltage sources. This current does not
contribute to the changing of circuit voltages and, therefore,
is considered “wasted.”

Usually, wasted power consists of the DC current flowing
from power to ground. This wasted power can come from
crowbar or short-circuit current caused by both P-channel
and N-channel devices being on the during a transition. It
can originate from floating inputs or from DC paths that are
unintended. It can also come from floating inputs or from DC
path that are unintended such as device leakage currents. It
can also come from analog bias circuits and current mirrors
in operational amplifiers that cannot be avoided, but will be
reported as wasted power.

Using the report_block_powr Command

You can measure wasted power using the track_wasted= option
of the report_block_powr command.

EXAMPLE:
report_block_powr my_block track_wasted=1 x1.x1.*

This command generates a power analysis report for the
subcircuit x1.x1.* that includes both the standard block power
report (see “Analyzing Power Block-by-Block”) and a wasted
power report.
PowerMill User Guide



90 Chapter 4 Power Analysis
Figure 2 shows a sample of the additional information provided
by the track_wasted= option. This report provides the following
information about the block:

■ Average and RMS capacitive current

The total current expended in charging block capacitances.

■ Average and RMS wasted current

The total DC current consumed by the block and not used to
charge the block capacitances.

■ Leakage Percentage

The fraction of current consumed by the block, from all
sources, that is not used to charge block capacitances.

You can also produce a block-level waveforms and current
histograms for the capacitive and wasted currents. For more
details, see the PowerMill Reference Guide, and “Working with
Probes” on page 100.

Measuring True Power in Watts
Using PowerMill, you can obtain the true power consumption
(in watts) for a given circuit block. To do this, you need to specify
the track_power= option when using the report_block_powr
command.

EXAMPLE:
report_block_powr my_block track_power=1 x1.x1.*

Figure 2 Sample information provided by the track_wasted=
option of the report_block_powr command

Average capacitive current: -39057.934468 uA
RMS capacitive current :  56567.265346 uA

Average wasted current : -6115.921641 uA
RMS wasted current :  9764.697468 uA

Wasted current percentage :  13.538631%



Analyzing Power Consumption 91
In addition to the basic current reports, this command generates,
a report of the total power consumption of the block. The power
reported includes contributions from all sources and biputs for
the block.

You can also produce block-level waveforms and current
histograms. For more details, see the PowerMill Reference Guide,
and “Working with Probes” on page 100.

Measuring Power Hierarchically
The level= and at_level options of the report_block_powr
command allow you to do an analysis of block-level power in a
hierarchical netlist. You can use these options to request power
reports for all hierarchical sub-blocks of the specified circuit
block with a single command.

The level= option automatically generates power reports for all
sub-blocks of the specified subcircuit down to the specified level.

EXAMPLE 1:
report_block_powr top level=2 *

This command generates a power report for the entire circuit,
and automatically generates reports for all sub-blocks down to
level 2, such as x1.*, x2.*, x1.x1.* and, x1.x2.*.

The at_level= option generates power reports only for the sub-
blocks at the specified level.

EXAMPLE 2:
report_block_powr top at_level=2 *

Figure 3 Sample information provided by the track_power=
option of the report_block_powr command

Average block power :  179937.712787 uW
RMS block power :  259344.959596 uW
PowerMill User Guide



92 Chapter 4 Power Analysis
This command generates power reports for the entire circuit and
the second-level sub-blocks x1.x1.* and x1.x2.* but not the first
level sub-blocks.

NOTE: In each case, the specified level refers to the absolute level in the
circuit hierarchy, and is not relative to the level of the specified
pattern.

EXAMPLE 3:
report_block_powr my_block at_level=4 x1.x2.*

This command generates a power report for the x1.x2.*  sub-
block and its fourth-level hierarchal sub-blocks, such as
x1.x2.x3.x4.*.

For each sub-block generated using the level= or at_level=
options, PowerMill writes a standard block power report to the
.log file. In each case, the reporting options will be the same as
the top-level block. In addition, when either option is used, the
simulator writes a hierarchical power report for the specified
block hierarchy to the .power file. The file sample in Figure 4
shows a report for the total supply current as printed to the
.power file.

PowerMill generates a similar report for the ground, supply,
biput, wasted currents, and the power if those quantities are
being tracked.



Analyzing Power Consumption 93
In addition, you can generate a block-level waveform and current
histogram for each of the sub-block reports. For details, see the
PowerMill Reference Guide, and “Working with Probes” on
page 100.

Assigning Power Budgets

You can use PowerMill to assign power/current budgets to blocks
created with the report_block_powr command and monitor
those blocks for violations.

You will need to use the set_block_budget command to do this.

EXAMPLE 1:
report_block_powr top *
set_block_budget max_avg_src=100uA max_inst_src=1mA

top

BLOCK top: AVERAGE SUPPLY CURRENT.

    LEVEL             CURRENT     PERCENT OF    PERCENT OF    CHILD BLOCK NAME
(uA) PARENT TOP

------------------------------------------------------------------------------

*--------- 0 -1537.8 100.00 100.00 top
-*-------- 1 -1537.8 100.00 100.00 xsr34x22.top
--*------- 2 -359.83 23.40 23.40 xsr34x22.x1161.top
--*------- 2 -322.71 20.98 20.98 xsr34x22.x1164.top
--*------- 2 -214.54 13.95 13.95 xsr34x22.x1166.top
--*------- 2 -207.33 13.48 13.48 xsr34x22.x1158.top
--*------- 2 -192.92 12.55 12.55 xsr34x22.x1162.top
--*------- 2 -81.777 5.32 5.32 xsr34x22.x1163.top
--*------- 2 -57.569 3.74 3.74 xsr34x22.x1157.top
--*------- 2 -52.966 3.44 3.44 xsr34x22.x1160.top
--*------- 2 -42.359 2.75 2.75 xsr34x22.x1169.top
--*------- 2 -5.8502 0.38 0.38 xsr34x22.x1167.top
--*------- 2 0.0086932 -0.00 -0.00 xsr34x22.x1170.top
--*------- 2 0 -0.00 -0.00 xsr34x22.x1165.top
--*------- 2 0 -0.00 -0.00 xsr34x22.x1168.top
--*------- 2 0 -0.00 -0.00 xsr34x22.x1159.top

Figure 4 Sample supply current report (from the .power file)
PowerMill User Guide



94 Chapter 4 Power Analysis
This pair of commands creates a block labeled top which consists
of the entire circuit, and assigns current budgets of 100 uA for
the average supply current, and 1 mA for the instantaneous
supply current.

Violations of the assigned budgets are reported as errors to the
.err file and reported to the .power file. See Appendix A for a
sample .power file.

You can assign budgets to the instantaneous, average, and RMS
values of the block supply current, ground current, biput
current, wasted current, and power, as well as to the block’s
leakage percent.

Ordinarily, PowerMill only checks for budget violations at the
conclusion of the dynamic simulation. However, if you specify the
run_time_check=1 option, PowerMill will monitor the
instantaneous current and power values during the dynamic
simulation. In this case, PowerMill writes a message to the .err
file each time the budget is violated, and a prints a summary of
each violation in the .power file. You can use the
handle_ckt_error command with the run_time_check= option
to drop the simulation into the interactive mode whenever a
budget violation occurs.

Finally, you can specify the check_dcpath=1 option, to trigger a
DC path check each time an instantaneous current/power budget
violation occurs.

Retrieving Power Information Interactively
You can interactively retrieve most power information, during
the dynamic simulation, that is reported to the output files if you
have previously instructed PowerMill to track that information.

You can use the following commands to obtain node current
information:

get_node_i
get_node_iavg
get_node_irms
get_node_ipeak



Analyzing Power Consumption 95
These commands report the current value of the instantaneous,
average, RMS, and peak currents, respectively. In each case, you
must have requested the simulator to track the relevant
information requested for the command to work (See “Analyzing
Power at Full-Chip Level” and “Printing and Reporting Internal
Node Currents” in this chapter).

You can use the following commands to obtain element and
current information:

get_elem_i
get_elem_iavg
get_elem_irms
get_elem_ipeak

These commands report the current value of the instantaneous,
average, RMS, and peak currents, respectively. In each case, the
simulator reports the values for all element branches being
tracked. You can track the current for an element branch using
the commands discussed in “Printing and Reporting Branch
Currents.”

You can use the following commands to get interactive
information on blocks created with report_block_powr
command:

get_block_info
get_block_i
get_block_icont

The get_block_info command supplies a statistical description
of the block, essentially identical to the header in the
report_block_powr report, in the .log file. In addition, if the
block was generated using the level= or at_level= options, it will
show the block’s hierarchical parent block, as well the number
and names of its children.

The get_block_i command reports the instantaneous, average,
and RMS values of all quantities tracked by the block.
PowerMill User Guide



96 Chapter 4 Power Analysis
The get_block_icont command generates hierarchical power
information for blocks created using the report_block_powr
level= or at_level options. This consists of a sorted list of the
block’s hierarchical children and their contributions to the
specified currents.

EXAMPLE:
get_block_icont current=src type=inst xsr34x22.top

This command returns the contribution of each child block of the
parent block 34x22 to the block’s total supply current. See
Figure 5 for a sample of the output of this command.

You can use the following interactive commands to get current
information on individual probe nodes generated by the
report_block_powr command, or the assign_node_i and
assign_branch_i commands:

get_probe_i
get_probe_iavg
get_probe_irms
get_probe_ipeak

Block: xsr34x22.top
Total instantaneous source current          :-16054.265763 uA
Contributions from children -
        xsr34x22.x1158.top      : -7026.176334 uA
        xsr34x22.x1167.top      : -3376.436160 uA
        xsr34x22.x1166.top      : -2848.805135 uA
        xsr34x22.x1161.top      : -2100.318100 uA
        xsr34x22.x1169.top      : -691.675033 uA
        xsr34x22.x1164.top      : -7.744000 uA
        xsr34x22.x1160.top      : -5.689000 uA
        xsr34x22.x1163.top      :  4.136000 uA
        xsr34x22.x1162.top      : -2.858000 uA
        xsr34x22.x1170.top      :  1.320000 uA
        xsr34x22.x1165.top      :  0.000000 uA
        xsr34x22.x1168.top      :  0.000000 uA
        xsr34x22.x1159.top      : -0.000000 uA
        xsr34x22.x1157.top      : -0.000000 uA

Figure 5 Sample output from get_block_icont command



Analyzing Power Consumption 97
Controlling Power Reporting Resolution and Accuracy
The accuracy of the reported current and power values is
dependent on the accuracy of the underlying simulation engine.
Therefore, all commands that affect the accuracy of the timing or
voltage also affect power. In addition, the following commands
control different aspects of the simulation specific to power
reporting:

set_sim_ires
set_print_ires
set_print_tres
set_power_acc

The set_sim_ires and set_print_ires commands control the
current resolution of the current/power reporting. PowerMill
ignores currents that are smaller than the values set by these
commands.

The set_print_ires command affects only the current/power
output and reporting—it does not affect the underlying
simulation engine. In contrast, the set_sim_ires command does
modify certain simulation parameters to ensure that the
underlying simulation is done with sufficient accuracy to
support the specified current resolution. In general, it is
recommended that you use the set_sim_ires command instead
of set_print_ires when you need to achieve a greater current
resolution; otherwise, the reported current values might not be
accurate. The default current resolution is 1 uA. The
set_print_ires command typically does not impact performance,
but does affect the size of the .out file. The set_sim_ires
command can have a significant effect on the speed of the
simulation.

The set_print_tres command controls the time resolution of all
simulation output, printed to the .out file, as well as the time
resolution used in calculating the reported average and RMS
power numbers. The time resolution is set by default to be ten
times the value of the simulation time resolution (see
set_sim_tres). This setting should be adequate for most
PowerMill User Guide



98 Chapter 4 Power Analysis
situations; however, if you want to get the maximum accuracy in
the current calculation, you should set the print time resolution
to be the same as the simulation time resolution. This setting
will create a larger output file and possibly reduce the
simulation performance since the output handles a larger
number of points.

The set_power_acc command allows you to set the level of
detail used in the accounting of circuit capacitances when doing
element and node current calculations. Typically, the simplified
models provide a high level of accuracy, and a significant
improvement in simulation performance, when used to calculate
the average and RMS current values. However, you might want
to use the more accurate models if you need to get the detailed
shape of the instantaneous waveforms. Specifically, you should
apply the most accurate settings when comparing instantaneous
waveforms of small circuits with another simulator, such as a
SPICE simulation. Results for large circuits typically are not
very sensitive to the capacitance model. The default settings
usually provide a reasonable balance of accuracy and
performance.

For more specific information on each command, see Chapter 2,
“Configuration and Interactive Commands” in the PowerMill
Reference Guide.

Printing and Reporting Branch Currents
Using PowerMill, you can print many different types of branch
currents. There are commands that print instantaneous,
average, and RMS currents as waveforms to the .out file.
PowerMill also provides commands to report average, RMS, and
peak current summaries to the .log file

The branch current printing commands follow the HSPICE
conventions for i1, i2, i3, and i4 currents. The following list
shows the branch current mapping for MOS transistors.

i1 = drain current
i2 = gate current



Analyzing Power Consumption 99
i3 = source current
i4 = bulk current

PowerMill also provides commands for printing and reporting
DC current for specified elements. Use the following commands
to print all types of branch currents.

For more specific information on each command, see Chapter 2,
“Configuration and Interactive Commands” in the PowerMill
Reference Guide.

Printing and Reporting Internal Node Currents
It is sometimes useful to be able to measure the amount of
current flowing through an internal (non-voltage source) node.
Since, according to Kirchhoff ’s Current Law, the algebraic sum of
all currents at a node is zero, internal nodes must be treated
differently from voltage source nodes. For this reason, PowerMill
defines the internal node current to be the sum of the positive
currents flowing into the node.

print_branch_didt1
print_branch_didt2
print_branch_didt3
print_branch_didt4
print_branch_didtdc
print_branch_i1
print_branch_i1avg
print_branch_i1rms
print_branch_i2
print_branch_i2avg
print_branch_i2rms

print_branch_i3
print_branch_i3avg
print_branch_i3rms
print_branch_i4
print_branch_i4avg
print_branch_i4rms
print_branch_idc
print_branch_idcavg
print_branch_idcrms
report_branch_i
report_branch_powr
PowerMill User Guide



100 Chapter 4 Power Analysis
Use the following commands to print and report internal node
currents (see “Analyzing Power at Full-Chip Level” on page 86).

For more specific information on each command, see the
PowerMill Reference Guide.

Working with Probes
Under some circumstances, the standard block-level power
reporting commands (see “Analyzing Power Block-by-Block” on
page 87 and “Measuring Wasted Power” on page 88) might not
provide sufficient flexibility. For these cases, PowerMill provides
the commands assign_node_i and assign_branch_i. Together
these commands allow you to construct a completely arbitrary
sum of element branch currents.

EXAMPLE 1:
assign_branch_i drain d_sum mos1 mos2 mos3 mos4

This example constructs a sum of drain current for several MOS
transistors and assigns it to the d_sum probe.

EXAMPLE 2:
assign_node_i any_node n_sum mos1 mos2 mos3 mos4

This example obtains the sum of all currents from these
transistors into the node any_node .

The same probe name can be used in multiple “assign”
statements to build up the desired sum.

Once the probe is constructed, the commands print_probe_i and
report_probe_i can be used to obtain .out file waveforms and
.log file current summaries for the probe identical to those
created for the node currents. In addition, the
report_node_powr command requests current information for

print_node_i
print_node_iavg
print_node_irms

print_node_didt
report_node_i
report_node_powr



Analyzing Power Consumption 101
all probe nodes if used without specifying any nodes. These
commands can also be used with the report_block_powr
command to obtain waveform information from those commands.

Current Histograms and Tracking Windows
PowerMill can generate a current histogram for each node,
branch, and probe. The current histogram report consists of a
report of the average, RMS, and peak currents over a set of user-
defined intervals printed to the .hist file. A sample current
histogram report for nodes VDD and GND is shown in Figure 6.

You can print a histogram using the report_node_i,
report_elem_exi, and report_probe_i configuration
commands. Alternatively, you can use the report_ckt_phist
command, which automatically generates current histograms for
each constant voltage source node, as well as all user-defined
probe nodes. This automatically generates histograms for all
power nodes including probes created by report_block_powr.
PowerMill User Guide



102 Chapter 4 Power Analysis
You can specify the histogram intervals using the
set_print_iwindow command.

EXAMPLE 1:
set_print_iwindow period=100ns start=25n end=238ns

on_time=30ns

This example specifies the following current windows: 1) from
25 ns to 55 ns; 2) from 125 ns to 155 ns; 3) from 225 ns to 238 ns.

When a set of current tracking intervals is created by the
set_print_iwindow command, the simulation only tracks
current during the specified intervals. Therefore, waveforms

Figure 6 Sample current histogram report

Node: XGND

Start (ns) Stop (ns) Avg (uA) RMS (uA) Peak (uA) Time (ns)
5.0000e+01 9.0000e+01 2.8779e+01 5.3431e+01 1.0100e+02 6.0400e+01
9.0000e+01 1.3000e+02 7.0781e+01 8.4014e+01 1.1700e+02 1.0245e+02
1.3000e+02 1.7000e+02 5.3766e+01 7.3174e+01 1.0100e+02 1.5040e+02
1.7000e+02 2.1000e+02 2.1036e+01 4.5936e+01 1.3500e+02 2.0232e+02
2.1000e+02 2.5000e+02 1.0000e+02 1.0000e+02 1.0000e+02 2.1000e+02
2.5000e+02 2.9000e+02 9.0790e+01 9.0970e+01 1.0100e+02 2.5040e+02
2.9000e+02 3.3000e+02 7.3625e+01 7.3732e+01 8.2000e+01 2.9000e+02
3.3000e+02 3.7000e+02 6.1875e+01 6.1934e+01 6.8000e+01 3.3000e+02
3.7000e+02 4.1000e+02 5.4000e+01 5.4032e+01 5.8000e+01 3.7000e+02
4.1000e+02 4.5000e+02 4.9000e+01 4.9015e+01 5.1000e+01 4.1000e+02

Element: IOBUFF0.P1   Branch: 1

Start (ns) Stop (ns) Avg (uA) RMS (uA) Peak (uA) Time (ns)
5.0000e+01 9.0000e+01 1.0304e+03 4.9851e+03 3.3619e+04 6.2000e+01
9.0000e+01 1.3000e+02 1.4845e+03 7.0174e+03 5.1510e+04 1.0190e+02
1.3000e+02 1.7000e+02 1.0614e+03 4.9601e+03 3.3150e+04 1.5200e+02
1.7000e+02 2.1000e+02 8.5798e+02 5.1421e+03 4.3718e+04 2.0181e+02
2.1000e+02 2.5000e+02 1.2009e+02 1.2009e+02 1.2100e+02 2.1000e+02
2.5000e+02 2.9000e+02 2.9633e+01 5.0674e+01 3.2600e+02 2.5214e+02
2.9000e+02 3.3000e+02 1.1750e+01 1.1874e+01 1.5000e+01 2.9000e+02
3.3000e+02 3.7000e+02 7.2500e+00 7.3144e+00 9.0000e+00 3.3000e+02
3.7000e+02 4.1000e+02 4.6250e+00 4.6771e+00 6.0000e+00 3.7000e+02
4.1000e+02 4.5000e+02 2.7500e+00 2.7839e+00 4.0000e+00 4.1000e+02



Using the GAP Feature to Estimate Maximum Power 103
printed to the .out file are limited in time to the specified
intervals. Also, the average, RMS, and peak currents and
waveforms are only computed based on the periods when
tracking is enabled. This can be useful when you want to ignore
part of the simulation run when calculating the current
statistics.

Using the GAP Feature to Estimate Maximum Power
PowerMill’s GAP (Genetic Algorithm for maximum Power
estimation) feature searches input vector pairs or triplets to
maximize the power dissipation of a given circuit. The GAP
feature combines a genetic algorithm with advanced circuit
simulation technology to efficiently generate a tight lower bound
on the maximum power estimation of a given circuit. The power
computed is the summation of the power dissipated and the
power stored in the circuit.

A genetic algorithm is a general-purpose optimization algorithm.
Through a mechanism analogous to natural selection, it can
search the solution space to minimize/maximize a specified
objective function, called a “fitness” function. Part of this work is
based on the Synopsys-sponsored university research project led
by Professor Kwang-Ting Cheng and Ph.D. Candidate Yi-Min
Jiang from the Department of Electrical and Computer
Engineering at the University of California, Santa Barbara.

The GAP feature is able to maximize four objective functions:

■ Average power per clock cycle of the circuit

■ Instantaneous power of the circuit

■ Average value per clock cycle of the customized fitness
function

■ Instantaneous value of the customized fitness function

The GAP feature generates a tight lower bound on the maximum
power of a given circuit. At the beginning of the estimation, GAP
selects a specific group of vector sets to be kept. These vector sets
PowerMill User Guide



104 Chapter 4 Power Analysis
are comprised of either vector pairs or triplets, depending on the
circuit type (see tutorials 5, 6, and 7 in Chapter 3 for details).
The GAP feature measures the quality of each vector pair based
on the power consumption it produces when applied to the
circuit. At each generation, GAP performs operations on the
vector files (in the kept group) to improve their quality. The
concept of the quality of vector pairs improving with every
generation is analogous to the biological concept of natural
selection.

You can control the size of the specific group, called the
population size, using the p_size= option of the
guide_gap_search configuration command. In general, a larger
population size generates higher-quality vector sets, while
increasing the CPU time needed for the estimation.

You can use the GAP result when analyzing various reliability
issues. For example, if the lower bound of maximum power,
generated by GAP, exceeds your power budget, you will probably
need to redesign the block.

The following PowerMill configuration and interactive
commands are part of the GAP feature for estimating maximum
power consumption:

Running a Basic GAP Estimation

This section provides a general procedure for using the GAP
commands. It is strongly recommended that you run the
following tutorials in Chapter 3, “PowerMill Tutorials” before
running the GAP feature:

■ “Tutorial 5: Estimating Maximum Power for Combinational
Circuits” on page 41

guide_gap_search
report_gap_prediction
report_gap_progress

set_gap_opt
report_gap_parameters
use_vec_gap



Using the GAP Feature to Estimate Maximum Power 105
■ “Tutorial 6: Estimating Maximum Power for Sequential
Circuits” on page 50

■ “Tutorial 7: Customizing a GAP Objective Function using an
ADFMI Code File” on page 69

NOTE: Searching for the optimum pairs or triplets to maximize power
consumption is a time-consuming optimization process—even for
small circuits. For example, it might take about 10 minutes of
CPU time to estimate a small sequential circuit with
approximately 200 CMOS transistors. In general, the GAP
estimation is more efficient, in results and CPU time, than a
random simulation.

Procedure
1 Use the configuration command use_vec_gap to specify the

vector file (with type “vec”) to be used for the maximum
power estimation. For sequential circuits, you can only
provide the primary input vector file. You can automatically
generate a vector file containing all the pseudo-primary
inputs (PPIs) by applying the mark_node_latch command.
See “Tutorial 6: Estimating Maximum Power for Sequential
Circuits” on page 50 a detailed description of PPI detection.

In the vector file, inputs, biputs, and pseudo-primary inputs
(output of memory elements) should be distinguished by
character “i”, “b”, and “p”. If no io command is specified, all
the signals are considered to be inputs. You can specify one or
more vector files. The following sample configuration file
shows how multiple vector files are specified:

The vector files can contain vectors to be used by the genetic
algorithm as part of the first generation.

use_vec_gap vec=sep1.vec vec=sep2.vec
set_gap_opt period=10ns vec_history=3
guide_gap_search time=30 pattern=20000 fit=2
PowerMill User Guide



106 Chapter 4 Power Analysis
2 Use the set_gap_opt command to set various GAP options
for controlling the estimation flow. This command has two
parameters that you can set:

◆ Use the period= option to set the clock period to be used
by the GAP estimation. For sequential circuits, the period
should be the same as the clock signal defined in the
netlist file (or .cmd file). If you do not specify a period, the
GAP estimation will use the default period of 20 ns.

◆ Use the delay= option to synchronize GAP with the signal
clock (if it is not started from time 0).

◆ Use the vec_history= option specify which vectors will be
kept in the history files. At the end of the simulation,
GAP produces a history file corresponding to each vector
file used during the estimation. If you do not specify a
history option, GAP keeps only the vector pairs or
triplets from the generation producing the maximum
power.

◆ Use the save_history= option to save the circuit state
during a GAP simulation. You can use the save_history
option in conjunction with the vec_history option to
specify how the state files of the circuit will be saved. You
can use the saved state files to either resume the GAP
estimation from a saved time, or do advanced power
analysis for specific generations under GAP.

The range of the saved state information is dependent on
the setting for the vec_history= option:

vec_history = 1 saves only the state at the beginning of
the generation that produces the maximum power.

vec_history = 2 saves the state at the beginning of all
the generations that improve the maximum power
estimation.



Using the GAP Feature to Estimate Maximum Power 107
vec_history = 3 saves the state at the beginning of all
generations.

The save_history= option is disabled by default.

3 Use the guide_gap_search command to specify additional
parameters for the GAP estimation. You can use this
command to set the following parameters:

◆ Use the level= option to select the search level to be
applied to the GAP estimation. The search level is an
integer between 1 and 10 that defines a set of parameters
to be applied to the genetic algorithm. A higher search
level generally produces a better result, but requires
more CPU time. The default value is 5.

◆ Use the fit= option to specify the objective to be
maximized (that is, the fitness function). Currently, the
GAP feature supports two objective functions:
instantaneous power (fit=2) and average power per clock
cycle (fit=1, default).

◆ Use the max_vec= option to limit the number of applied
input vector pairs or triplets during the estimation. The
estimation stops when it reaches this limit. The default
value is positive infinity.

◆ Use the max_value= option to limit the value of the
fitness function. The estimation stops if the value of the
fitness function exceeds this threshold. This value uses
MKS units and has a default value of positive infinity.

◆ Use the max_gen= option to limit the number of
generations applied. The default value for this option is
positive infinity.

◆ Use the time= option to limit the CPU time used by the
simulation. The simulation stops when it reaches this
limit.
PowerMill User Guide



108 Chapter 4 Power Analysis
◆ Use the p_size= option to specify the population size used
by the genetic algorithm. Acceptable values for
population size are any integers between 20 and 50. A
larger population size tends to generate a better (larger)
estimate with a longer CPU time. The default value is 20.

4 During the estimation, you can use the
report_gap_progress interactive command to retrieve
information on the progress of the simulation and display it
in either a table or a graph. At the end of the GAP
estimation, PowerMill automatically generates a .gap
summary file and one or more history files (.gav). The input
vectors used during the simulation are kept in the history
files, which can then be used as normal vector files in another
simulation (using the -nvec PowerMill command-line option).

5 You can use the report_gap_parameters interactive
command to show the current settings for all of the GAP
commands.

Creating a Customized Fitness Function
For a GAP estimation, you can specify one of four types of fitness
functions using the fit= option of the guide_gap_search
command. Types 1 and 2 are based on the peak average power
per clock cycle and peak instantaneous power, respectively, of the
whole circuit. These functions are built into the software. In
addition, you can use types 3 and 4 to apply a customized
objective function defined in an ADFMI C file.

To create a customized objective function:

1 Enable GAP customization by specifying the fit=3 or fit=4
option with the guide_gap_search configuration command.
Fit=3 applies a function based on the peak average value per
clock cycle while fit=4 applies a function based on peak
instantaneous value.

2 In an ADFMI C file, create a regular C function with type
double and void argument.



Using the GAP Feature to Estimate Maximum Power 109
The GAP estimation will use the value returned by this C
function as the objective to be maximized. The following
table lists the types of arguments you can use to define the
fitness measure in your C function:

EXAMPLE:
fmRegisterGap("l(cin1) ipin(x11.ain) v(cin1)

p(x11)m(dot)", fitness);

This example specifies that a total of five arguments
(l(cin1) , ipin(x11.ain) , v(cin1) , p(x11) , and m(dot) )
to be used in the customized objective function for
PowerMill’s GAP feature. It also specifies “fitness” as the
function pointer to the customized objective function (defined
in the ADFMI C file).

You can access the value of an argument either by name
using the fmGapGetValueByName() API function, or by ID
using the fmGapGetValueByID() function (see the ADFMI
Manual for more information). If you are using arguments of
type 6 or 7, you first need to create the corresponding blocks
or probes using the appropriate configuration commands (for
example, report_block_powr, assign_node_i, etc.).
Likewise, to use arguments of type 8, you need to define the
math signals using HSPICE .print, .probe, or .plot control
lines.

Number Type Argument Name

1 Node Voltage v(node_name)

2 Node Logic l(node_name)

3 Node Current inode(node_name)

4 Pin Current ipin(pin_name)

5 Branch Current ibranch_num(elem_name)

6 Block Power  p(block_label)

7 Probe Current  iprobe(probe_name)

8 Math Signal m(signal_label)
PowerMill User Guide



110 Chapter 4 Power Analysis
3 Register the objective (fitness) function.

In the ADFMI registration function (RegisterUserModel()),
invoke the GAP registration function fmRegisterUserGap()
(see Figure 7).To it you need to provide a) the function
pointer of the objective C function, and b) a string containing
the names of all the arguments used in defining the fitness
measure. In the string, the space character serves as the
delimiter to separate argument names.

 * Customized objective function to be maximized
 */
double fitness()
{
  static int id_4_block1_powr, id_4_block2_powr;
  double sum = 0;

  if (fmSimPhase() == FMDCINITPHASE) {
/* get id for signals, which can be used later to

       access their value */
id_4_block1_powr = fmGapGetSignalId ("p(block1)");

id_4_block2_powr = fmGapGetSignalId ("p(block2)");
    return 0;
  }
  else {
    /* calculate fitness measure */
    sum =
fmGapGetValueById(id_4_block1_powr)+fmGapGetValueById
(id_4_block2_powr);
    return sum;
  }
}

void
RegisterUserModel()
{
  /* Specify block power for block1 and block2 */

fmConfigCmd ("report_block_powr block1 track_power=1
x1*");

fmConfigCmd ("report_block_powr block2 track_power=1
x2*");

  /* Register arguments and function pointer of
customized objective function */
  fmRegisterGap("p(block1) p(block2)", fitness);
}
/*

Figure 7 Sample custoomized objective function



Performing a Dynamic Power Consumption Analysis 111
This example uses report_block_powr configuration
command to create two block power signals, which it then
uses to define the customized fitness function.

See the following tutorials in Chapter 3, “PowerMill Tutorials”
for more information on using the GAP feature:

◆ “Tutorial 5: Estimating Maximum Power for
Combinational Circuits” on page 41

◆ “Tutorial 6: Estimating Maximum Power for Sequential
Circuits” on page 50

◆ “Tutorial 7: Customizing a GAP Objective Function using
an ADFMI Code File” on page 69

Performing a Dynamic Power Consumption Analysis
This section provides an overview of the PowerMill features that
can be used to identify and diagnose, during the dynamic
simulation, conditions in your circuits that could lead to
excessive power consumption.

Information is included on the following subjects:

■ Dynamic Rise/Fall Time Checking

■ Detecting Dynamic Floating Nodes (Z-State Nodes)

■ Detecting Excessive Branch Currents

■ Analyzing Hot-Spot Node Currents

■ Detecting Dynamic DC Paths

Checking Dynamic Rise and Fall Times (U-State Nodes)
There are a couple of reasons why a circuit could end up
consuming an unexpectedly large amount of power. If a node
spends an excessive amount of time in a U-state, it could create
a large short-circuit current.
PowerMill User Guide



112 Chapter 4 Power Analysis
The report_node_u and report_node_quick configuration
commands provide a mechanism to check for excessively long
and excessively short rise/fall times, respectively, during the
dynamic simulation. Each command checks the time taken by
the node to transition between its logic high and low threshold
and reports violations to the .err file. By default, the logic high
and low thresholds are set to 70% and 30% of the nodes high
voltage, respectively. You can use the set_node_thresh
command to adjust the default voltage.

Detecting Dynamic Floating Nodes (Z-State Nodes)
If a node is left floating (Z-state) for an excessive time, the node
voltage could drift into an intermediate voltage level due to sub-
threshold short-circuit currents in the associated elements. This
can lead to unexpected DC paths in logic blocks that are in the
node fanout.

The report_node_z configuration command provides a
mechanism to report any node that stays in the Z-state longer
than a user specified time during the dynamic simulation.
Violations are reported to the .err file.

Detecting Excessive Branch Currents
When attempting to diagnose excessive power in a circuit, it is
often helpful to determine which circuit elements might be
carrying unexpectedly large currents. You can use the
report_elem_exi command monitor the currents of specified
elements and report those elements that have currents
exceeding a specified threshold for a specified time during the
dynamic simulation. PowerMill reports violations to the .err file.

Analyzing Hot-Spot Node Currents
When you are redesigning for lower-power consumption, it’s
helpful to know how each circuit node contributes to the total
power consumption. The report_node_hotspot command lists



Performing a Dynamic Power Consumption Analysis 113
the average current statistics for the specified nodes in the .sum
file. A sample hot spot report is shown in Figure 5.

The hot spot report provides the following information for each
node:

■ Average Node Capacitance—lumped from netlist, wiring,
and transistor gate and diffusion capacitances.

■ Toggle Count—total number of logic toggles for the node.

■ Average Charging Current—average current flowing into
the capacitances connected to the node.

■ Average Discharge Current—average current flowing out
of the capacitances connected to the node.

If a node toggle count is as expected, the charge and discharge
currents represent the mandatory current consumption to
support the necessary circuit operation.

Figure 8 Sample hot spot report

***************************
                          *** Hot Spot Statistics ***
                          ***************************

Node Name              Cap(fF)       Toggle     Icin(uA)     Icout(uA)
____________________________________________________________________________
X1.4                     4150.91          6        503.21        510.44
X1.5                     6150.91          6        455.08        496.35
X1.9                     4150.91          6        354.64        450.23
X1.3                     2150.91          6        279.99        270.87
X1.8                      650.91          6         81.96         81.85
X1.1                      650.91          6         81.80         81.77
X1.2                      150.91          6         18.96         19.00
X1.7                      150.91          6         18.88         18.90
X1.6                      150.91          6         18.16         18.09
1                          69.23          6          8.66          7.96

Total non-input nodes           :      10
Total node toggles              :      60
Total charging current          :    1821.34 uA
Total discharging current       :    1955.45 uA
PowerMill User Guide



114 Chapter 4 Power Analysis
Ideally, the product of the node capacitance, toggle count, and
supply voltage will equal the sum of the charging and
discharging current multiplied by the simulation period. Thus, if

(toggle count)*(node capacitance)*(Vdd) - (charge +
discharge)*(simulation time)

is greater than 0, some toggles cross the logic threshold, but
never reach the full-swing value (either VDD or 0). Conversely, if
the difference is less than 0, the node voltage waveform could
show some glitches, either above or below the logic threshold
voltage for which no toggle is counted.

A large circuit with a large number of nodes could produce a
huge volume of data in the .sum file, which would be too
complicated to analyze. You can use the set_hotspot_factor
command to suppress those nodes for which the sum of the
charging and discharging current is less than a specified factor
multiplied by the sum for the node with the largest currents.

The report in Figure 8 can be used to illustrate the effect of
applying a hot spot factor of 0.5. As you can see, the node with
the largest currents is X1.4 , which has a charging current of
503.21 µA and a discharging current of 510.44 µA. Applying
the 0.5 hotspot factor, the sum of the charging and discharging
currents multiplied by the hotspot factor equals 506.83 µA. The
sum of any other node’s charging and discharging current would
have to be greater than this number to be included in the
individual node report. In this case, all nodes below X1.3  are
excluded from the report.

The summation of charge currents for all nodes within a block
represents the average charge current for the block. Conversely,
the summation of discharge currents for all node within a block
represents the average discharge current for the block. The
difference between the total average block current and the
charge current should be the average short-circuit current from
DC short-circuit, or the short-circuit short-circuit current,
during the transition period when both NMOS and PMOS



Performing a Dynamic Power Consumption Analysis 115
transistors were conducting. This is one way of estimating the
circuit short-circuit current.

Detecting Dynamic DC Paths
In CMOS circuits, any DC current flowing in the circuit between
power and ground is considered to be wasted power. Therefore,
wasted power can come from “crowbar” or “short-circuit” current
caused by both P-channel and N-channel devices being on during
a transition. Wasted power can come from mismatched supply
voltages, a failure to reach full swing, timing errors, or other
unintended sources. It can also come from unavoidable analog
bias circuits and current mirrors in operational amplifiers.

The report_ckt_dcpath command provides a method of
detecting DC paths that occur during the dynamic simulation.
You can use the set_dcpath_thresh command to prevent the
reporting of DC paths with small currents. A DC path is reported
only if the DC current through each element in the path exceeds
the threshold. You can use this to exclude paths for bias circuits
from the report, if they are sufficiently small. Alternatively, you
can use the limit_dcpath_search command to exclude certain
blocks from the search or to limit the search to specific blocks.

The detected DC paths are reported to the screen and to the
.dcpath file. A sample DC path report is shown in Figure 9.
PowerMill User Guide



116 Chapter 4 Power Analysis
Performing a Static Power Consumption Diagnosis
This section provides an overview of the static power diagnosis
features available in PowerMill. You can use these features to
analyze your circuit based on its topology and look for conditions
that might lead to excessive power use. They are intended to
provide an alternative to the dynamic power diagnosis when
dynamic simulation requires too much simulation time and you
want to scale down power consumption. These analyses are

Figure 9 Sample DC path report

Nonzero dc path(s) found at time 200 ns

Path # 1
-----------------------------------------------------------------------------
      resistor IOBUFF0.R1                               current =  -0.02 uA
          from XGND                                     voltage =   0.00 V
            to DATAOUT0                                 voltage =   0.00 V
      resistor IOBUFF0.R2                               current =  79.98 uA
          from IOBUFF0.VR                               voltage =   4.00 V
            to DATAOUT0                                 voltage =   0.00 V
-----------------------------------------------------------------------------

Path # 2
-----------------------------------------------------------------------------
      resistor IOBUFF0.R1                               current =  -99.97 uA
          from XGND                                     voltage =   0.00 V
            to DATAOUT0                                 voltage =   5.00 V
      inductor IOBUFF0.OUTBOND                          current =  -119.93 uA
          from DATAOUT0                                 voltage =   5.00 V
            to IOBUFF0.OUT1                             voltage =   5.00 V
    transistor IOBUFF0.P1                   (type PMOS) current =  -119.91 uA
          gate IOBUFF0.INGATE                           voltage =   0.00 V
         drain IOBUFF0.OUT1                             voltage =   5.00 V
        source IOBUFF0.DP1                              voltage =   5.00 V
    transistor IOBUFF0.P2                   (type PMOS) current =  -119.93 uA
          gate IOBUFF0.PGATE                            voltage =   0.00 V
         drain IOBUFF0.DP1                              voltage =   5.00 V
        source EVDD                                     voltage =   5.00 V
      inductor IOBUFF0.L1 current =  -119.93 uA
          from EVDD                                     voltage =   5.00 V
            to VDD                                      voltage =   5.00 V
-----------------------------------------------------------------------------



Performing a Static Power Consumption Diagnosis 117
performed before the dynamic simulation begins and generally
require significantly less simulation time than a full-dynamic
simulation.

This section includes information on the following subjects:

■ Detecting Static DC Paths

■ Static Excessive Rise/Fall Time Detection

Detecting Static DC Paths
A static DC short-circuit path exists if a node has a static
conducting path to VDD and a static conducting path to GND.
Each node in both paths are in a fighting condition at all times.
Use the report_ckt_leak command to flag such nodes.

However, a static DC short-circuit path, which is independent of
the external stimulus, rarely exists in CMOS circuits. A dynamic
short-circuit path is more likely, however, it requires a specific
input condition that might not occur. The report_ckt_leak
command can find a static DC path, as well as detect several
unusual topological conditions in regular CMOS designs. These
conditions, although insufficient to confirm a definite DC short-
circuit path, might uncover potential short-circuit paths.

The report_ckt_leak command searches for the following
conditions:

■ Partial Swing Detection—A node is driven by NMOS
(PMOS) transistors only and it drives at least one PMOS
(NMOS) transistor’s gate.

■ No Path to VDD/GND—There is no possible conducting path
to the node from a supply (ground) node.

■ Static Path to VDD/GND—There exists a static conducting
path from a supply (ground) node to the node.

■ Node is Stuck at High/low Voltage—A static conducting
path exists between the node and a supply (ground) node. In
PowerMill User Guide



118 Chapter 4 Power Analysis
addition, there is no possible conducting path between the
node and any ground (supply) node.

■ Static DC Path—There exists a static conducting path
between two voltage source nodes.

For the conditions mentioned above, the report_ckt_leak
command does not take into account difficulties due to multiple
supplies or grounds with different voltages. All supplies
(constant voltage sources with voltages above the logic high
threshold) and grounds (constant voltage sources below the logic
high threshold) are assumed equivalent.

For circuits that have multiple supplies or grounds,
report_ckt_leak also searches for the following conditions,
which can lead to unintended DC paths:

■ Partial off PMOS

A PMOS transistor with a source or drain that has a possible
channel-connected path to a supply or input node with high
voltage VDDH. In addition, its gate has a possible channel-
connected path to a supply or input node with high voltage
VDDL, where the voltage of VDDH is greater than VDDL.

■ Partial off NMOS

An NMOS transistor with a source or drain that has a
possible channel-connect path to a ground or input node with
low voltage GNDL. In addition, its gate has a possible
channel-connect path to ground or input node with low
voltage GNDH, where the voltage of GNDH is greater than
GNDL.

■ Forward bias PMOS

A PMOS transistor with a source or drain terminal that has
a possible channel-connected path to a supply or input node
with high voltage VDDH. In addition, its substrate is
connected to a voltage source of voltage VDDL, where VDDH
is greater than VDD.

■ Forward bias NMOS



Analyzing Power Using the RC and UD Simulation Modes 119
An NMOS transistor with a source or drain terminal that has
a possible channel-connected path to a ground or input node
with high voltage GNDL. In addition, its substrate is
connected to a voltage source of voltage GNDH, where GNDH
is greater than GNDL.

PowerMill reports any problems it detects to the .err file. For
details of the syntax of these reports see Chapter 7, “Utilities for
Dynamic EPIC Tools” in the EPIC Tools Reference Guide.

Static Excessive Rise/Fall Time Detection
A large transient short-circuit current might occur if the voltage
rise/fall transition time for a node is excessive. You can use the
report_node_maxrf command to report nodes with worst-case
transition times that exceed a specified threshold time.

The node rise/fall time is the time taken for the node to make the
transition between its high and low logic thresholds. This time is
estimated based on the lumped capacitance for the node and the
maximum impedance driving it. By default, the logic high and
low thresholds are set to 70% and 30%, respectively, of the node’s
high voltage. You can adjust these default levels using the
set_node_thresh command.

PowerMill reports any problems it detects to the .err file. For
details on the syntax of these reports, see Chapter 7, “Utilities
for Dynamic EPIC Tools” in the EPIC Tools Reference Guide.

Analyzing Power Using the RC and UD Simulation
Modes

The RC and UD modes provide a fast power estimation for digital
CMOS circuits. In most digital circuits, major power
contributions come from switching activities. Therefore, the RC
and UD modes—which use switch-level simulation techniques—
produce a faster average power estimation with reasonable
accuracy, as compared to the default PWL mode. RC mode
PowerMill User Guide



120 Chapter 4 Power Analysis
provides full-delay information for CMOS circuits, while UD
mode only provides fixed unit-delay information.

Technical Background
The power dissipation in digital CMOS circuits consists of two
major parts: capacitive power and short-circuit power
(see Figure 10).

Switching current usually plays a major role in most digital
circuits. When running in RC or UD mode, the simulator
calculates the average power based on the charging and
discharging of node capacitances. That is, the charging or
discharging current due to a voltage change (dV) at a node is
C *(dV/dt) , where C is the capacitance and dt is the transition
time of the node. This can accurately estimate the average
switching power in circuits.

For CMOS circuits, short-circuit current estimation in the RC or
UD mode is based on the input and output slopes and is less
accurate than PWL mode. In RC or UD mode, the simulator
estimates the short-circuit current (Isc) using the switching

I total

Isc

Icap

I sc

I total
x 100

Icap Isc

percent short-circuit =

+=I total

Figure 10 Short-circuit (sc) current calculation



Analyzing Power Using the RC and UD Simulation Modes 121
capacitive current (Icap) and the ratio of the input slope and
output slope. There will always be some discrepancy between the
estimated short-circuit current calculated in the RC and UD
modes and the actual short-circuit current calculated in PWL
mode. If the short-circuit current is small, this discrepancy is
negligible. However, if a circuit contains a large short-circuit
current (if the input slope is much slower than the output slope)
the discrepancy between RC and UD mode results and PWL
mode results could increase significantly. In this case, a power
analysis using RC or UD mode would be inaccurate.

Another source of discrepancy of average power—between PWL
and RC modes—is derived from the application of different
timing models, which could cause new glitches or existing
glitches to change width and height or even disappear.

Running a Simulation in RC or UD Mode
You can instruct the simulator to run in RC mode in two places.
You can either use the -d rc command-line option when starting
the simulator or you can use the use set_sim_mode rc
command in the configuration file. Likewise, you can use the -d
ud  command-line option or the set_sim_mode ud  command to
run in the UD power analysis mode.

Power analysis in RC and UD mode is based on switching
capacitive power in each stage, which generally corresponds to a
gate. Therefore, only the average power of a stage is meaningful
and, as a result, the instantaneous power is displayed based on
the average power. You can combine RC and UD stages with
PWL stages to achieve a balance between speed and accuracy.
PowerMill’s RC and UD modes apply a few basic circuit detection
rules to the circuits and mark portions of the circuit to use the
PWL mode.
PowerMill User Guide



122 Chapter 4 Power Analysis
You can apply the following power diagnosis commands to
RC and UD stages:

report_block_powr
Use this command to analyze power use for specified stages.
If the specified elements cover only a partial stage, this
command forces the whole stage into PWL mode.

EXAMPLE 1:
report_block_powr blk2 xadder.* blk1

This command reports the average power dissipation for a circuit
block, in this case, an adder circuit.

report_probe_i and print_probe_i
Use these commands to report or print current information
for probes created by the report_block_powr command.

EXAMPLE 2:
print_probe_i avg blk1_vdd
print_probe_i avg total_src[blk2]

This example prints the average VDD current waveform of the
adder block specified in Example 1.

report_node_i and print_node_i
Use these commands to get the total power dissipation of RC
and UD stages by applying them to power nodes (VDD/GND)
connected to these stages. Applying them to non-power nodes
forces the stages into PWL mode.

EXAMPLE 3:
report_node_i avg VDD
report_block_powr blk1 track_wasted=1 *
report_block_powr blk2 *

These commands report the power dissipation for the whole
circuit, assuming VDD is the only power source.

CAUTION: Applying report_branch_i, print_branch_i*, print_node_v,
report_elem_exi, assign_branch_i, or assign_node_i causes
the given elements to be PWL, which defeats the fast power
estimation feature for elements intended to be RC or UD
elements.



Chapter 5

Using the ACE Feature



124 Chapter 5 Using the ACE Feature



Overview 125
Overview
The Analog Circuit Engine (ACE) is a built-in feature that
extends PowerMill’s capability to simulate analog and mixed-
signal circuit designs.

The default autodetection algorithms can simulate most analog
CMOS circuits (such as bandgap references and PLLs) in mixed-
signal designs with no additional configuration commands. If
you are simulating sophisticated or complex designs, you might
want to apply some additional configuration commands to
improve the accuracy of a simulation.

Since output printing and other controls are usually included in
the SPICE netlist, you will most likely not need a configuration
file when running ACE.

Included in this Chapter

This chapter highlights some of the capabilities of the ACE
option. The following sections are included:

■ Selecting Autodetection Rules
■ Controlling Node Sensitivity
■ Controlling the Simulation Time Resolution
■ Applying Multiple Time Steps (Multi-Rate Simulations)
■ Controlling Waveform Print Resolution
■ Applying Multiple Simulation Modes
■ Simulating BJTs

Selecting Autodetection Rules
The ACE option provides a group of autodetection commands you
can use to create a simulation that is balanced in terms of
accuracy and performance. It includes a default set of rules as
well as several sets of rules that can be applied as needed to
improve either the accuracy or speed of a simulation.
PowerMill User Guide



126 Chapter 5 Using the ACE Feature
The default autodetection rules, controlled by the
search_ckt_msx command, provide acceptable accuracy and
speed for most mixed-signal circuits such as PLLs, ADCs, DACs,
switched-capacitors, etc. However, some circuits might require a
more accurate simulation, in which case, you could apply the
search_ckt_analog command. This command applies a more
extensive set of rules and is more accurate. However, a
simulation using search_ckt_analog command will run
somewhat slower as compared to a simulation using the default
search_ck_msx rules. The actual effect on speed will depend on
the type of circuit, the amount searched, and how much the
search_ckt_analog rule changes settings from the
search_ckt_msx rule.

You can use the following configuration commands to apply
different sets of autodetection rules, as needed:

■ search_ckt_msx (default)

Use this set of rules for mixed-signal circuits. This is the
default rule setting, except when running in RC or UD
simulation modes. It includes most of rules used by
search_ckt_analog, but is less conservative and runs faster.

■ search_ckt_analog

Use this set of rules for analog circuits. This command
applies a more conservative autodetection algorithm.

■ search_ckt_mem

Use this set of rules for embedded DRAMs, PLDs, and ROMs.
You can also use the default search_ckt_msx for these
circuits, but the simulation will likely take longer to run.

■ search_ckt_cpump

Use this set of rules for charge-pump circuits, flash memory
circuits, etc. Flash memory circuits can usually be simulated
with the default search_ckt_msx set of detection rules;
however, some circuits might require the more conservative
search_ckt_cpump rules.

■ search_ckt_logic



Selecting Autodetection Rules 127
Use this set of rules for digital circuits. This set of rules is
more aggressive and can greatly improve the simulation
speed for digital circuits.

■ search_ckt_rc

Use this set of rules for digital-only blocks. If you use the
set_sim_mode rc command, this set of rules is applied to the
entire circuit by default.

■ search_ckt_ud

Use this set of rules for digital-only blocks. If you use the
set_sim_mode ud  command, this set of rules is applied to
the entire circuit by default.

Applying Multiple Autodetection Rules
The ACE option allows you to apply different autodetection rules
to individual portions of a circuit. If you do not specify an
autodetection command, by default, the search_ckt_msx rules
are applied to the entire circuit. However, if you apply an
autodetection command to a portion (a block) of the circuit, that
portion is searched with rules set by that autodetection
command (that is, the default search_ckt_msx is not applied to
that portion of the circuit). If you apply more than one
autodetection command to the same block in a circuit, the
simulator combines the rules for both commands and applies
them to the specified block.

EXAMPLE 1:
search_ckt_mem el=xdram.*

This command applies search_ckt_mem  rules to the xdram
block. The default search_ckt_msx is applied to the remainder
of the circuit.

EXAMPLE 2:
search_ckt_mem el=xmemory.*
search_ckt_msx el=xmemory.xsubcircuit.*
search_ckt_analog el=xanalog.*
PowerMill User Guide



128 Chapter 5 Using the ACE Feature
Using this example, the simulator combines the rules for
search_ckt_mem and search_ckt_msx and applies them to the
xmemory.xsubcircuit block, while applying search_ckt_mem
to the remainder of the circuit in xmemory. In addition, the
simulator applies the search_ckt_analog rule to the xanalog
block and search_ckt_msx to the remaining portions of the
circuit.

See Chapter 3, “ACE Configuration Commands” in the PowerMill
Reference Guide for more information on the search_ckt_mem
and search_ckt_analog configuration commands. For
information on search_ckt_logic, see Chapter 2, “Configuration
and Interactive Commands” in the PowerMill Reference Guide.

Controlling Node Sensitivity
Both the speed control and event sensitivity can be applied on a
global basis (to the entire circuit, either all digital or all analog
nodes) using the set_sim_esv, set_sim_aesv, set_sim_spd, and
set_sim_aspd commands.

EXAMPLE 1:
set_sim_esv 0.01

This example sets the event resolution voltage of all digital
nodes to be 0.01 V.

EXAMPLE 2:
set_sim_aesv 0.01

This example sets the event resolution voltage of all analog
nodes to 0.01 V. Any voltage change, from its last event voltage,
higher than 0.01 V will schedule an event, provided there is no
local esv setting.

In some cases, different parts of the circuit could have different
sensitivity requirements. In this case, you can apply the
set_node_spd and set_node_esv commands to individual
nodes.



Controlling the Simulation Time Resolution 129
EXAMPLE 3:
set_node_esv vco_in 0.01

This example sets the event resolution voltage at node vco_in to
0.01 V. Any voltage change, from its last event voltage, higher
than 0.01 V schedules an event at node vco_in .

EXAMPLE 4:
set_node_spd VCO_IN 0.05

This command sets the spd value at node VCO_IN to 0.05 V.

Controlling the Simulation Time Resolution
Normally you will not need to modify the default simulation time
resolution (10 ps). However, when simulating low frequency
audio applications you might need to increase the time
resolution (the minimum time step) to perhaps to 1 ns. If all
nodes move slowly, a simulation time resolution of 10 ns or even
100 ns could provide sufficient accuracy with a high simulation
speed. You can use the set_sim_tres command to modify the
simulation time resolution.

EXAMPLE:
set_sim_tres 0.01ps

This example sets the minimum time resolution to 0.01  ps.

Once you choose the appropriate time resolution, you can apply
additional time step control commands to control the time step.

Changing the Time Step Selection Parameter
You can use the set_node_spd and set_node_aspd (for analog)
commands to change the size of the time step for a particular
node.

EXAMPLE 1:
set_node_spd VCO_IN 0.05
PowerMill User Guide



130 Chapter 5 Using the ACE Feature
This command sets the time step size parameter (spd) at node
VCO_IN to 0.05 V. With this setting, the maximum voltage
change each time step at node VCO_IN cannot exceed 0.05  V

Additionally, you can use the set_sim_spd and set_sim_aspd
(for analog) to change the size of the time step selection
parameter (spd) for the entire simulation.

EXAMPLE 2:
set_sim_spd 0.3

This example sets the simulation step size parameter (spd) to
0.3  V. With this setting, the maximum voltage change at each
time step cannot exceed 0.3  V.

Applying Multiple Time Steps (Multi-Rate Simulations)
In mixed-speed systems, such as DSPs, or other discrete-
sampled circuits with a high clock speed sampling low frequency
signals, it might be necessary to use the multi-rate simulation
capability. The ability to do multi-rate simulations means that
you can apply different time steps to different parts of the
circuit. Using multiple time steps helps you to obtain the
maximum simulation speed from each circuit block. The
simulation will speed up 2–3 times for some circuits, depending
on the actual configuration of the circuit, when doing a multi-
rate simulation. Use the set_sim_subgroup ACE configuration
command to enable a multi-rate simulation. You can use this
command only when running in SMS or synchronous mode.

Controlling Waveform Print Resolution
The PowerMill simulator allows you to change the time, voltage,
or current resolution to the output file. For ACE, it is important
to be able to alter the print resolution settings to get sufficient
precision for post-processing functions such as .measure
command processing or FFT processing.



Applying Multiple Simulation Modes 131
You can use the following commands to change the output print
resolution:

■ set_print_tres
■ set_print_vres
■ set_print_ires

For complete reference information on these print resolution
commands, see Chapter 2, “Configuration and Interactive
Commands” in the PowerMill Reference Guide.

Applying Multiple Simulation Modes

You can apply different simulation modes on a local or block level
using the following commands:

■ set_elem_acc
Use this command to apply a more accurate model and
algorithm to specified MOSFETs.

■ set_node_pwl
Use this command to force the channel-connected stage
containing a specified node to be simulated using the PWL
algorithm.

■ set_elem_sms
Use this command to apply the Synchronous Matrix Solver
(SMS) model to specified elements.

■ set_elem_sync
Use this command to apply the synchronous simulation
algorithm to specified elements.

NOTE: Both the set_elem_sync command and the set_elem_sms
command apply the synchronous mode. However, they use
different models—the set_elem_sync command uses a
simplified region-dependent gate capacitance model for MOS
transistors at linear, saturation, and cut-off regions, while the
set_elem_sync command uses a voltage-dependent gate
capacitance model. In addition, the set_elem_sms command
PowerMill User Guide



132 Chapter 5 Using the ACE Feature
models the crosstalk Miller effect between gate and drain or
source terminals.

Usually, the autodetection algorithm applies these commands as
needed. However, there are situations when you might want to
apply them manually (for example, when you need precise
accuracy in digital circuits). You could use this technique, for
example, when simulating an inverter ring oscillator.

Activating Double-Precision Mode
You can start the double-precision version of PowerMill for
voltage and current using the -A command-line option. Under
normal conditions, you won’t need to use double precision.
However, in some cases, double precision could be necessary. For
example, highly damped PLLs with slow lock times, low static
phase error, and low jitter requirements usually need to be
simulated in the double-precision mode. Very high gain
amplifiers or analog-to-digital circuits and digital-to-analog
circuits beyond 12 bits might also require double precision.

Simulation Speed and Double-Precision
Using double-precision mode will slow down the simulation by
approximately 10%, while increasing memory consumption by
approximately 30%. Therefore, it is recommended that you do
not use double-precision mode unless absolutely necessary.

Controlling Voltage and Current Resolution
There are no limits on the voltage and current resolution
settings except those imposed by the floating-point (float) data
type. The float data type is the default in single precision, which
is an 8-bit mantissa and a 3-digit exponent. This means that the
absolute lowest resolution available depends on the absolute
value of a stored number.



Simulating BJTs 133
For small voltages and currents there are more significant digits
available at lower values. For example, if you have 1.00000000 V
and you need to maintain accuracy to 1 nV, the nanovolt-level
will be lost, that is,

1.000000000 V + 0.000000001 V = 1.000000000 V

However, if you have 1 mV instead, the 1 nV can be retained,
that is,

0.001000000 V + 0.000000001 V = 0.001000001 V

Therefore, if you have large signals that require nanovolt
accuracy and precision, you will need to use the double-precision
data storage.

CAUTION: The higher precision printing has a direct impact on the size of
the output file. If you try to print every node voltage in the
circuit at the microvolt or nanovolt resolution level, you could
easily fill up your disk.

Simulating BJTs
The ACE option extends PowerMill’s capability to simulate
BiCMOS circuits with bipolar junction transistors (BJTs). The
BJT model is an implementation of the Gummel-Poon model
used in SPICE. Both NPN and PNP transistors are supported, as
well as diodes and diode-connected bipolar transistors.

Both vertical and lateral BJTs are supported. ACE is best suited
for circuits containing sparse BJTs as drivers, or interface
circuits. Simulation of circuits containing large blocks of BJTs
will be slow, since those BJTs are simulated as a whole
subcircuit. The simulation speed of small to medium-sized pure
BJT circuits is in the same order as SPICE. If the circuit does not
have large blocks of BJTs, the overall speed is faster than
SPICE.
PowerMill User Guide



134 Chapter 5 Using the ACE Feature
Procedure for Simulating BJTs
This section describes the process by which ACE simulates BJTs.
This procedure includes several steps, some in preprocessing and
some during run time.

■ First, ACE reads the model from the netlist.

It calculates some variables used during simulation and
calculates the temperature effect, if the operating
temperature is given.

■ Next, ACE expands internal nodes and internal resistors if
base, collector, and emitter resistors are specified.

The base, collector, and emitter resistors are important in
achieving convergence both at DC initialization and
transient simulation since they limit the current through
BJTs when the pn junction is forward biased. However,
expanding those resistors and internal nodes significantly
slows down the simulation.

■ Next, ACE performs circuit partitioning on the BJTs as with
an accurate MOS transistor, which includes its gate, drain,
and source in the same stage (channel-connected subcircuit).

The base of a BJT is included in the same stage with its
collector and emitter. This partitioning scheme is necessary
since base-emitter and base-collector junctions are strongly
coupled. This effectively connects two channel-connected
regions that would usually be separated when a normal MOS
device is used. If a circuit contains only BJTs, all channel
connected and base terminal-connected BJTs will form a
large stage, which makes the simulation very inefficient.

The BJTs are simulated in the accurate element mode, which
uses a different time step control and error control to assure
simulation accuracy and stability.



Chapter 6

ACE Tutorials



136 Chapter 6 ACE Tutorials



Overview 137
Overview
The tutorials in this chapter are intended to exercise features
and algorithms in the ACE simulation engine. The following
tutorials are included in this chapter:

■ Tutorial 1: CV Curve Generation
■ Tutorial 2: Operational Amplifier Simulations

◆ Voltage Follower Simulation

◆ Step Input Simulation

◆ Integrator Simulation

◆ Differentiator Simulation

■ Tutorial 3: PLL SPICE Macro Modeling
■ Tutorial 4: Crystal Oscillator Simulation

These tutorials are written with the assumption that you know
how to run vi (or another editor) and turboWave (or another
waveform viewer). Therefore, the specific steps for opening and
reopening files (loading signals) are not explicitly stated.

NOTE: The turboWave screens in this chapter were captured with
altered colors and signal height. This was done to make the
screens more readable in print format. The waveforms you will
see in turboWave will look significantly different from the
screens in this chapter.

Getting the Input Files
Before you can run any of the tutorials in this chapter, you need
to locate and copy the required input files to your current
working directory. The following procedure shows you how to do
this.

1 Set the correct path to which the EPIC_HOME environment
variable is set. If you need assistance, see your Systems
Administrator.
PowerMill User Guide



138 Chapter 6 ACE Tutorials
2 Copy (recursively) the complete contents of $EPIC_HOME/
tutorials/ACE to your local working directory.

cp -R $EPIC_HOME/tutorials/ACE .

This command copies the ACE directory into the current
working directory (the period tells the cp command to copy to
the current directory).

CAUTION: If there is an existing file or directory called ACE already in your
current working directory, this command could overwrite that
file or directory.

3 Verify that your newly copied ACE directory contains the
following subdirectories: crystal_osc, cv_curve, op_amps, and
pll. Each of these directories corresponds to and contains the
files needed for a tutorial in this chapter.

SPICE Netlists

All tutorials in this chapter use SPICE format netlists.
Conversion to EPIC format is not necessary.



Getting the Input Files 139
Tutorial 1: CV Curve Generation
This tutorial demonstrates the procedure for checking the
voltage dependent gate capacitance CV curve. Figure 1 provides
a schematic of the CV curve test circuit.

Checking the voltage-dependent gate capacitance CV curve is
done using the relation i=C*dv/dt. In the example circuit used in
this tutorial, the current “i” is made proportional to the
capacitance C by the input of a linear voltage ramp so that dv/dt
is a constant. The voltage is swept from -2 V to +2 V to cover the
depletion, accumulation, and inversion regions. Normally, the
exact flat-band voltage point is in the negative voltage region
below zero Vgs and is not critical to most simulations. A large
area square transistor of 50 µm by 50 µm is used to avoid short
channel effects and give a large enough capacitance to give a
measurable current. A 1 ohm series resistor is used as the
monitoring element. The current through this resistor is plotted
to produce the CV curve.

Figure 1 Schematic of CV curve test circuit

The current through RIN is monitored and is proportional to C of
MN1 because dv/dt is constant as supplied by VIN. This results
in a current waveform that is the CV curve of the voltage-
dependent gate capacitance of MN1. The time sweep of VIN is
set so that 1µs corresponds to 1 volt of change.

VIN
MN1

38.4/38.4

RIN = 1 ohm

I = Cdv/dt

PWL voltage source
-2v to +2v over 4ms
to set dv/dt constant

I proportional to C of MN1
PowerMill User Guide



140 Chapter 6 ACE Tutorials
Files Needed for this Tutorial
The following table lists the files needed for this tutorial. They
are located in the ACE/cv_curve directory.

Procedure
Use the following procedure to run the CV curve tutorial.

1 Using vi (or another text editor) open and study the
CV_curve.spi netlist file.

Notice that this is a very simple, short netlist. Notice that
the PWL voltage source sweep is over 4 µs. This is done so
that the time scale corresponds to the voltage scale. The full
voltage sweep is 4 V from -2 V to +2 V. The 2 µs point will be
the zero volt point of the sweep since the time starts at zero.
You can subtract 2 from the time to get the voltage at any
given point.

2 Run the simulation using the runcv script.

Filename Description

cfg_cv Batch run configuration file

CV_curve.spi SPICE netlist for this tutorial

runcv Run script for this tutorial

cmos35.mod  BSIM3 v3 model file



Getting the Input Files 141
3 Using turboWave, load the file CV_curve.out file and then the
i1(rin) current waveform and the v(in) voltage signal. You
should see the curves shown in Figure 2.

4 Calculate the capacitance at the minimum and maximum
points using the i = C*dv/dt relation. Since you know the
current (I) and dv/dt, you only need to calculate C.

Notice that the cursor position in Figure 2 shows 1.96 pF
(minimum point).

Figure 2 Waveforms of signals in CV_curve.out file
PowerMill User Guide



142 Chapter 6 ACE Tutorials
Tutorial 2: Operational Amplifier Simulations

This tutorial utilizes a transistor-level op amp of very high gain
in different configurations. The following configurations are
used:

■ Voltage follower
■ Step input
■ Integrator
■ Differentiator

Figure 3 provides the op amp schematic used for this tutorial.
This op amp has an open-loop gain of approximately 116 db.

In+

In-

NBias

PBias

Out

MN1 MN2

MN4 MN5

MN3 MN6

MN7

MN7a

MN8

MN8a

MP5 MP6

MP2

MP3 MP4

MP7

MP8

MN9

RC

CC

MP9

+5V

-5V

MP1

Figure 3 Schematic of op amp circuit



Getting the Input Files 143
Voltage Follower Simulation
The following table lists the files needed for this simulation.
They are located in the ACE/op_amps directory.

Procedure

Use the following procedure to run the follower simulation.

1 Using vi, open the follower.spi netlist file.

Go to the bottom of the netlist and you will see the
instantiation of the bias circuit block and the voltage
follower connection of the op amp.

Filename Description

cfg Batch run configuration file

follower.spi SPICE netlist for the voltage follower
simulation

runfoll Run script for the voltage follower
simulation

cmos35.mod BSIM3 v.3 SPICE model
PowerMill User Guide



144 Chapter 6 ACE Tutorials
See Figure 4 for the voltage follower schematic.

2 Run the simulation using the runfoll script.

3 Using turboWave, load the follower.out file.

4 Load the “sine_in” and “sine_out” signals (see Figure 5).

Figure 4 Schematic of voltage follower circuit

+X2
SIN_OUT

OPAMPSIN_IN

-

NBIAS

PBIASBIAS
X1

VIN



Getting the Input Files 145
Step Input Simulation
The following table lists the files needed for this simulation.
They are located in the ACE/op_amps directory.

Filename Description

cfg Batch run configuration file

step.spi SPICE netlist for the step input
simulation

runstep Run script for the step input simulation

typ_tech_nchan
typ_tech_pchan

Technology files

Figure 5 Waveforms of signals in follower.out file
PowerMill User Guide



146 Chapter 6 ACE Tutorials
Procedure

Use the following procedure to run the step input simulation.

1 Using vi, open the step.spi netlist file.

You will see that the connection is the same as the voltage
follower. The difference is in the input waveform. In this
case, the step response will be observed. The important
parameters are the slew-rate going up and down, the settling
time, any ringing effects, and the accuracy of the final value
or gain error.

The schematic is shown in Figure 6.

2 Run the simulation using the runstep script.

3 Using turboWave, load the step.out file.

4 Load the “in” and “step_out” signals (see Figure 7).

Figure 6 Schematic of step input circuit

+ X2
STEP_OUT

OPAMP

IN

-

NBIAS

PBIASBIAS

X1

VIN



Getting the Input Files 147
There are three steps to the waveform [-1.5 to +1.5 to zero to
-1.5 V].

Integrator Simulation
The following table lists the files needed for this simulation.
They are located in the ACE/op_amps directory.

Filename Description

cfg Batch run configuration file

integr.spi SPICE netlist for the integrator simulation

runint Run script for the integrator simulation

typ_tech_nchan
typ_tech_pchan

Technology files

Figure 7 Waveforms of signals in the step input simulation
PowerMill User Guide



148 Chapter 6 ACE Tutorials
Procedure

Use the following procedure to run the integrator simulation.

1 Using vi, load the integr.spi netlist file.

Figure 8 provides the schematic of this circuit.

This circuit is a simple integrator using a 50K resistor and a
20 pF capacitor. The input waveform is a 250Khz square
wave between -2 V and +2 V.

2 Run the simulation using the runint script.

3 Using turboWave, load the integr.out file.

Figure 8 Schematic of Integrator circuit

+

X2

OUT

OPAMP
IN -

NBIAS

PBIAS
BIAS
X1

RIN 50K

CINT 20p

T

VIN



Getting the Input Files 149
4 Load the “in” and “out” signals (see Figure 9).

As expected, the “out” signal is a triangle wave. There is
some initialization error at the beginning of the simulation
where the waveform is not tracking as it should. As you can
see, this clears out after short time.

Differentiator Simulation
The following table lists the files needed for this simulation.
They are located in the ACE/op_amps directory.

Filename Description

cfg Batch run configuration file

diff.spi SPICE netlist for the differentiator
simulation

Figure 9 Waveforms of signals in integr.out file
PowerMill User Guide



150 Chapter 6 ACE Tutorials
Procedure

Use the following procedure to run the differentiator simulation.

1 Using vi, open the diff.spi netlist file.

Figure 10 provides the schematic for this circuit.

This circuit is the opposite of the integrator. As in the
integrator, this circuit uses a 50K ohm resistor and 20 pF
capacitor. The compensation for the op amp was changed to
allow this circuit to function; a differentiator configuration
can oscillate more easily if the op amp is not properly

rundiff Run script for the differentiator
simulation

typ_tech_nchan
typ_tech_pchan

Technology files

Filename Description

Figure 10 Schematic of differentiator circuit

+

X2
OUTOP AMP

IN -

NBIAS

PBIASBIAS
X1

RIN 50K

CDIFF 20p

T

VIN



Getting the Input Files 151
compensated for the task. Check the compensation capacitor
in the subcircuit definition.

2 Run the simulation using the rundiff script.

3 Using turboWave, load the diff.out file.

4 Load the “in” and “out” signals (see Figure 11).

You will notice slew-rate limiting effects and settling time
limit effects. The slope of the input triangle waveform is
0.5 V per microsecond and should give plus and minus 0.5 V
on the output after it settles.

Tutorial 3: PLL SPICE Macro Modeling
This tutorial uses a PLL SPICE macro model. It models
frequency as voltage. That is, voltage is an analog of frequency.

Figure 11 Waveforms of signals in diff.out file
PowerMill User Guide



152 Chapter 6 ACE Tutorials
In this tutorial, you will learn how to model the system behavior
of a PLL by using controlled sources to model the different
sections of the system. The phase detector and charge pump are
modeled with a voltage controlled current source. The 1/s
integrator term is modeled with a voltage controlled current
source with a gain of 1 driving a 1-farad cap. The output of this
cap drives a voltage-controlled voltage source. This voltage
source has all the gain terms of the loop lumped together, except
for the charge-pump current and the loop filter. The loop filter
components are used as they are in the RC network.

Files Needed for this Tutorial
The following table lists the files needed for this tutorial. They
are located in the ACE/pll directory.

Procedure
Use the following procedure to run the PLL SPICE macro
modeling tutorial.

1 Study the schematic in Figure 12.

This schematic shows the controlled sources as triangle
symbols, similar to op amp symbols. There are two voltage-
controlled current sources and two voltage-controlled voltage
sources. The loop filter components are entered as they
would normally appear in the transistor-level netlist.

Filename Description

cfg Batch run configuration file.

pll2gm.spi SPICE netlist for the PLL macro model
simulation.

runpllm Run script for the PLL macro model
simulation.



Getting the Input Files 153
This schematic includes the loop gain equation and a
representation of each piece of the loop gain parameters.
Since the total loop gain is the product of each contributing
segment, you can separate terms and place them anywhere
in the loop.

To make the circuit easy to modify, the charge pump current
is placed by itself as the gain for the phase detector model in
the first VCCS element.

The feedback divide ratio is placed in the second VCVS
element as 1/n. In this case, it is 1/8 or 0.125. The balance of
the loop gain is put into the first VCVS that models the VCO.

2 Using vi, look at pll2gm.spi netlist file. Notice that the r1
resistor has a value of 1k.

Figure 12 Schematic of PLL SPICE macro model

vref
+ + +

- - -

C1
4p

C2
0.4p

R1
8k

g1 lfin gnd vref vco_out 23u e1 vco_out gnd s1 gnd 15783e6g2 s1 gnd lfin gnd 1

cint
1

vco_outs1lfin
VCCS VCCS VCVS

VCVS

Ip

1/n

e2 db8n gnd vco_out gnd 0.125

db8n +

-

Loop Gain = K=Kp*Kvco/n = Ip*(4π ∆f/∆V)*(1/n)

Kp=2πIp Kvco=(2π∆f/∆V)/nWhere:

2

4π ∆f/∆V2
PowerMill User Guide



154 Chapter 6 ACE Tutorials
This is the incorrect value used for the first run in this
tutorial. The result is an underdamped system response to a
step input.

3 Run the simulation using the runpllm script.

4 Using turboWave, load the pll2gm.out file.

5 Display the “vref ” and “db8n”signals. The “vref ” signal is the
input voltage and the “db8n” signal is the feedback. You will
see that “db8n” shows underdamped or ringing behavior.

See Figure 13 for the expected waveforms.

6 Using vi to edit the pll2gm.spi file, comment out the r1  line
with the 1k  resistor.

7 Uncomment the other r1  line containing the 8k  resistor.

Figure 13 Waveforms of signals in pll2gm.out file (underdamped)



Getting the Input Files 155
With this change, the damping factor is now near critical
damping.

8 Run the simulation again using the same runpllm script.

9 In turboWave, select File→Reload.

Figure 14 shows the new waveforms.

This will reload the previously selected signals. The “db8n”
signal now shows a well-behaved smoothly settling waveform
and the ringing behavior is gone.

10 Continue entering different values for r1 and C1 and rerun
the simulation.

You will see how quickly a macro model of a PLL can give
indications of system response. This provides a fast easy way
to do a sanity check on PLL parameters such as loop filter

Figure 14 Waveforms of signals in pll2gm.out file (critically damped)
PowerMill User Guide



156 Chapter 6 ACE Tutorials
values, charge-pump current, and the effects of different
feedback divider ratios.

Tutorial 4: Crystal Oscillator Simulation
This tutorial demonstrates the effect of the set_sim_trap
configuration command to apply the trapezoidal integration.
This command is intended for use with LC circuits and inductors
where free oscillations should not be suppressed or damped. This
is critical for crystal oscillator models that use an RLC model.
The set_sim_trap command allows these to start up normally. If
the default Euler integration method is used, the crystal
oscillator will not start because the free oscillations are damped
out. The set_sim_trap command will not work for very high Q
crystals such as a 32 KHz crystal model. This is due to the very
high equivalent inductance, very small equivalent capacitance,
and high equivalent series resistance.

Files Needed for this Tutorial
The following table lists the files needed for this tutorial. They
are located in the crystal_osc directory. (You were instructed, at
the beginning of this chapter, to copy this directory from
$EPIC_HOME/tutorials/ACE.)

Procedure
Use the following procedure to run the crystal oscillator tutorial.

1 Run the simulation using the run1 script.

Filename Description

cfg1, cfg2, cfg3 Batch run configuration files

crystal_osc.spi SPICE netlist for the crystal oscillation
simulation

run1, run2, run3 Run scripts for the crystal oscillator
simulation

cmos35.mod BSIM3 v.3 model file



Getting the Input Files 157
This case uses the default mode and will run very fast
because the oscillator will not start. You will see the normal
biasing curve as the inverter biases to the operating point.

2 View the contents of the cfg2 file and notice the addition of
the set_sim_trap  command.

3 Run the next simulation using the run2 script.

You will see the oscillator start up at about the 200 µs point.
The oscillations grow exponentially until they are about full
amplitude around the simulation end time of 400 µs. This
simulation does not run particularly fast due to the use of the
default time resolution (tres) of 10 ps.

4 View the contents of the cfg3 file and notice the addition of
the set_sim_tres 1n command. This relaxes the minimum
event time resolution to 1ns from 10 ps.

5 Run the simulation using the run3 script.

Notice that this simulation runs much faster than that run
with the run2 script.

6 Using turboWave, load the following files: xtal1.out,
xtal2.out, and xtal3.out.

7 Load the signals you want to see (see Figure 15).
PowerMill User Guide



158 Chapter 6 ACE Tutorials
Discussion

Normally, it is not necessary to simulate crystal oscillators
because their behavior is well known. The small signal
transconductance of the inverter required for start-up can be
easily calculated and the MOS devices sized accordingly. You can
effectively simulate crystal models in the megahertz range using
the set_sim_trap configuration command. It is recommended
that you not simulate crystal oscillators in the full-chip
configuration. It is better to drive the input side of the inverter
with a SPICE-style sinewave source. This produces realistic
behavior of the oscillator input clock buffers to the interior of the
circuit and accurate power consumption numbers. Leave the
external load capacitors in place and remove the crystal model to
prevent the simulator from trying to handle the RLC model and
slow the simulation down unnecessarily.

Figure 15 Waveforms of signals from .out files



Chapter 7

Using the PowerMill
Graphical Analyst



160 Chapter 7 Using the PowerMill Graphical Analyst



Overview 161
Overview
The PowerMill simulator’s Graphical Analyst (GA) provides an
integrated approach to simulating circuits and analyzing results
using the PowerMill simulator.

We value your comments and encourage you to give us feedback.
You can give us direct feedback by selecting Feedback from the
File menu of the PowerMill GA main window. See “File Menu”
on page 165 for details.

This chapter explains how you can use the PowerMill Graphical
Analyst to do the following tasks:

■ Running a Basic PowerMill Simulation
■ Starting the Graphical Analyst
■ Setting Up a Run
■ Running a Simulation
■ Analyzing a Circuit

The following tools are available for circuit analysis:

■ Power Consumption
■ Power Histogram
■ DC Path Browser
■ Power Diagnostics Browser
■ Hierarchy Browser

Running a Basic PowerMill Simulation
This section describes the procedure for running a basic
PowerMill simulation using the Graphical Analyst.

1 Set up your environment so that you can access the directory
containing the current PowerMill release (see Chapter 2,
“Getting Started” for details).

2 Have the following input files in your current directory:
PowerMill User Guide



162 Chapter 7 Using the PowerMill Graphical Analyst
◆ A netlist file in SPICE, HSPICE (xxx.spi) or EPIC format
(xxx.ntl).

◆ One or more technology files (xxx.tech).

◆ A vector file (optional).

◆ Any additional configuration files (optional).

3 Start the Graphical Analyst by typing one of the following
commands at the UNIX prompt:

pwga
powrmill -ga

4 Select Simulation Setup→Design Data Setup.

5 Select the applicable netlist, technology, and configuration
files.

6 Click OK.

This will create a .wrk file by default. After it is created, you
can specify it when invoking the Graphical Analyst and the
Setup Information will be automatically entered by
PowerMill.

7 Click the Start Simulation button. This invokes the
simulation in the powrmill_pwga directory. This directory
contains the configuration files automatically created by the
GUI as well as the following output files:
powrmill.log, powrmill.err, and powrmill.out

8 Click the Result Analysis button to access the analysis
tools.

9 When you are finished viewing the results, close the window.

Starting the Graphical Analyst
As stated previously, you can start the PowerMill Graphical
Analyst (GA) by typing one of the following commands at the
UNIX prompt:



Starting the Graphical Analyst 163
pwga
powrmill -ga

If you have previously simulated a circuit using the GA, the next
time you start pwga, it will, by default, load the last-run work
file and display the results of the most recent simulation.

EXAMPLE:
pwga run_script.wrk

PowerMill uses the work file to determine the location of the
PowerMill results.

Main Window
After you invoke the PowerMill Graphical Analyst, the
PowerMill GA main window appears. This window is used to
set up, start, and stop a simulation, and access analysis tools. It
also displays log, warning, and power consumption information
(see Figure 1).
PowerMill User Guide



164 Chapter 7 Using the PowerMill Graphical Analyst
Figure 1 PowerMill GA main window

Log information

Start and stop
simulation
toggle button

Open Design
Data Setup
 form

Exit PowerMill,
or access
design data

Access display
of netlist hierarchy

Access to
analysis tools

Error & Warning messages

Continued on Next Page



Starting the Graphical Analyst 165
File Menu

You can use the File menu to start setting up a simulation run,
send feedback via e-mail to Synopsys, save the window settings,
or to exit PowerMill.

■ To start setting up a run, select File→Design Data Setup.
See the “Setting Up a Run” on page 167 for more information
on this process.

■ To send feedback to Synopsys, select File→Send Feedback.
This pops open an e-mail window that allows you to enter
your comments.

■ To save the size and placement of the PowerMill GA
windows, you can select File→Save Window.

■ To exit the PowerMill Graphical Analyst, select File→Exit.

Options Menu
The Options menu lets you either choose the measurement unit
you want to use for your analysis, or select your preferred
waveform viewer.

Select Options→ u (micro) to view data in micro units, or
select m (milli) to view data in milli units in the Results
Display area of the PowerMill GA main window as well as the
Power Histogram Display.

Select turboWave to use the turboWave viewer, or SimWave to
use the SimWave viewer.

Help Menu
The Help menu gives you access to help information on the
PowerMill Graphical Analyst.

Simulation Setup Button
The Simulation Setup button, located on the middle left side
of the PowerMill GA main window, is one of two ways you can
PowerMill User Guide



166 Chapter 7 Using the PowerMill Graphical Analyst
begin setting up for a simulation run. You can also select Design
Data Setup from the File menu. Both of these actions cause the
Design Data Setup form to appear. See “Setting Up a Run” on
page 167 for more information on this process.

Start Simulation Button
The Start Simulation button is used to invoke a simulation
run. See “Running a Simulation” on page 179 for more
information.

Result Analysis Button
The Result Analysis button is used to access the PowerMill GA
analysis tools after you have completed a simulation run. See
“Result Analysis Button” on page 166 for more information.

Hierarchy Browser Button
The Hierarchy Browser button gives you access to a visual
display of the netlist hierarchy. See “Hierarchy Browser” on
page 193 for more information.

Simulation Log Display
The Simulation Log text field, located near the top of the main
window, displays log information as the simulation progresses. It
will notify you when a simulation is finished.

Error/Warning Display
The Error/Warning display shows you error and warning
messages as a simulation progresses.

Result Display
The Result Display, located near the bottom of the main
window, gives you visual power consumption information. See
“Analyzing a Circuit” on page 180 for more information.



Setting Up a Run 167
Sort By Menu
The Sort By menu, located above the Result Display, allows
you to sort the kind of power consumption you want to display.

Setting Up a Run
Before running a simulation, you must specify the netlist and
technology files PowerMill will use. You’ll also need to specify
power supply information for the run, block set up variables, and
the power diagnosis checks you want to perform.

1 To start the set up process, click the Simulation Setup
button located at the middle left side of the PowerMill GA
main window.

The Simulation Setup form will appear.

Figure 2 is an example of the Simulation Setup form.

2 Click either Design Data Setup in the Simulation Setup
form, or select Design Data Setup from the File menu.

Figure 2 Simulation setup form
PowerMill User Guide



168 Chapter 7 Using the PowerMill Graphical Analyst
The Design Data Setup form, as shown in Figure 3, will
appear.

You can get to this form from either the File menu or the
Simulation Setup form.

Specifying a Work File
A work file is used to store information associated with a
particular simulation run. After a run is completed, the data can
be read directly from the work file without having to enter
information again.

Work file names always end with a .wrk extension. After each
simulation, a results directory with the same name as the work
file (with a _pwga extension) is created. All simulation output
files, as well as files generated by the Graphical Analyst are
placed in the results directory.

Specify

Simulation time in
nanoseconds

 options

Design library path

Specify
netlist files

Figure 3 Design data setup form

Click to
save values

Specify
technology files

Click to
clear values

Click to
exit form

command-line

Specify
work file

Hide Help



Setting Up a Run 169
By default, the PowerMill GA assumes a work file called
powrmill.wrk . The results of the simulation are placed in the
powrmill_pwga  directory.

To store the results of multiple runs, you can change the .wrk file
name. This will create a directory with a corresponding name.
The directory contains the results of a particular simulation.

All paths specified in the Design Data Setup form are assumed
to be relative to the directory containing the work file.

You can create a work file, or select an existing work file in the
Design Data Setup form using one of the following methods:

■ Type a new work file name in the Work File text field.

■ Use an existing work file name if it already appears in the
Work File text field.

■ Click the Browser... button located to the right of the Work
File text field.
PowerMill User Guide



170 Chapter 7 Using the PowerMill Graphical Analyst
This pops up the File Finder form. You can use this form to
select an existing work file. Figure 4 is a snapshot of the File
Finder form.

Using the File Finder Form
The File Finder form gives you easy access to the files you need
to run your simulation.

The Filter text field, located at the top of the form, lets you
designate files with specific extensions.

1 Type *.wrk  at the end of the path.

2 Click the Filter button, located at the bottom of the form, to
see all files in the directory that have a .wrk extension.

Select a
directory name

Specify files
with particular
extensions in

directories

Select a

Selected

Activates Filter
text field

file name

 file name

Figure 4 File finder form



Setting Up a Run 171
The Directories column is used to select a directory
containing the file you want to use. You can change the
directory being viewed by double-clicking on a directory
name.

A list of files in the directory you selected appears in the
Files column.

The Selection field at the bottom of the File Finder form
shows you the full path and name of the file you selected.

3 Click the OK button to save your selection, and close the
File Finder form.

Importing Existing Run Scripts
The Graphical Analyst accepts existing PowerMill run scripts.

1 Click the Import RunScript button.

The File Finder dialog box will appear.

2 Type in the name of an existing run script in the Selection
dialog box. The options specified in the run script are
automatically entered into the appropriate fields, and a work
file is created.

3 Click OK button to save your settings and close the form.

Specifying Netlist and Technology Files
You can either select the netlist and technology files manually or
use the File Finder form.

1 To reopen the File Finder form, click the appropriate
Browse... button located next to the Netlist Files or Tech
File text fields in the Design Data Setup form.

2 Click the OK button to save your settings and close the form.
PowerMill User Guide



172 Chapter 7 Using the PowerMill Graphical Analyst
NOTE: To automatically generate technology files, you can
specify the -z or -r options in the Others field of the
Design Data Setup form.

Setting the Simulation Time
Enter the number of nanoseconds you want the simulation to run
for in the Simulation Time text field of the Design Data
Setup form. The default is 1000 ns.

Design Library
Specify the path to your design library in the Design Library
text field, this is optional.

Command-Line Options
The Others text field of the Design Data Setup form is used
to specify powrmill command line options.

Saving, Clearing or Cancelling Your Changes
1 After you’ve filled in the appropriate fields of the Design

Data Setup form, click the OK button.

This saves your settings, compiles the design, and closes the
form. It also created a batch run script with a .batch
extension.

The batch run script can be run from the UNIX command
line. It automatically places the results in the appropriate
directory so that you can view the results of a batch
simulation at any time.

2 Click the Clear button if you want to clear all information on
the form.

3 Click the Cancel button if you want to close the form
without saving your changes.



Power Supply Setup 173
Power Supply Setup
Use the Power Supply & Block Setup form to assign
alternate voltages to the supply nets.

1 In the Simulation Setup form, click the Power Supply &
Block Setup button.

Figure 5 shows the Power Supply & Block Setup form.

The top section of the Power Supply & Block Setup form
identifies the supply nets and voltages for each block of the
circuit you want to simulate. The settings that appear in the

Figure 5 Power supply & block setup form
PowerMill User Guide



174 Chapter 7 Using the PowerMill Graphical Analyst
Voltage column are specified in the technology file, or from
a previously-saved modification. You can modify the voltage
for any net. The GND is automatically set to 0V.

The Power/Ground column allows you to specify whether
the supply net is a power net, or a ground net. By default,
supply nets greater than 0 V are assumed to be power nets.
Nets that are less than or equal to 0 V are assumed to be
ground nodes.

1 To specify whether a net is a ground or power node, click the
right mouse button in the power/ground field.

A popup dialog box appears.

2 Select either power or ground.

3 Click the Add Supply button to add supply nets.

The Clear button clears all the voltage values and any new
power supply nets you added. The supply nets derived from
the netlist remain in the form, but are no longer assigned
voltage values.

Block Setup
You can also use the Power Supply & Block Setup to specify
the blocks you want to monitor, and set up power budgeting
checks.

The text fields in the bottom section of the form list the top-level
blocks in the circuit and related information. If there are more
than 100 blocks at the top level, no blocks will be displayed. In
this case, you must manually select the blocks you want to
include in the power calculation.

Transistors are not displayed in the form. If the design is flat,
(that is, no hierarchy), then no blocks are selected. A popup
warning will inform you that there are no top-level blocks.



Block Setup 175
Selecting Blocks
1 To select blocks, click the toggle button located to the left of

the Block Name text fields.

A block is active when the button is red.

2 Click the Set All button at the bottom of the form to activate
all blocks.

By default, all blocks at the top level of the design are
selected.

3 Specify the budget violation threshold for each block in the
Budget text fields.

The Add Block button at the bottom of the form adds a set
of text fields for a new block. You can type in lower-level
block names or drag and drop names from the Hierarchy
Browser.

Saving, Clearing or Cancelling Your Changes
■ Saving: After you’ve made your changes, click the OK

button to save your settings and close the Block Setup
form.

■ Clearing: Click the Clear button to clear all information on
the form.

■ Cancelling: Click the Cancel button to close the form
without saving your changes.

If you do not invoke the Power Supply & Block Power Setup
form, default values are automatically assumed. The supply
node voltages default to the values specified in the technology
file. The power for the top-level blocks is automatically
calculated if there are less than 100 blocks in the design.

NOTE: The configuration commands needed to calculate the power for
the selected blocks are placed in a file called supplyblock.cfg in
the Powermill GA run directory (by default, powermill_pwga)
and are automatically applied to the run.
PowerMill User Guide



176 Chapter 7 Using the PowerMill Graphical Analyst
Power Diagnosis Setup
You can use the Power Diagnosis Setup form to set static
power, excessive current, tristate, hazard, and power
distribution checks for the simulation. PowerMill will check only
those conditions you set (see Figure 6).

The following steps provide the basic procedure for using the
Power Diagnostics Setup form.

1 Click on the Power Diagnosis button in the Simulation
Setup form.

The Power Diagnostics Setup form will appear.

Enter
threshold
values in

text fields

Enter default
setting in

form

Figure 6 Power diagnosis setup form



Power Diagnosis Setup 177
2 Select the checks you want by clicking the appropriate toggle
buttons located on the left side of the form.

The check is active when the button is red and contains a
black check mark. Many checks require you to enter
threshold values in text fields.

3 Click the Default button at the bottom of the form to select
the default power diagnosis checks. The Clear button de-
selects all checks.

Static Power Checks
There are two buttons you can click in the Static Power
Checks section of the Power Diagnosis Setup form. These
buttons have the following functions:

■ Report static DC paths: checks for circuit topologies that
are likely to cause unwanted power consumption. For
example, the settings in Figure 9 will catch circuits with no
paths to VDD or GND.

■ Report node whose rise/fall time exceeds...: checks for
nodes with rise/fall times that exceed a specified time.

Excessive Current
The Excessive Current section lets you specify frequency and
current consumption thresholds for reporting wasted power
paths from supply to ground. If you do not specify a simulation
time, then paths are reported for all time points in the
simulation.

You can also specify thresholds for reporting elements. This
allows you to find violations that are likely to affect device and
wire current consumption limits.
PowerMill User Guide



178 Chapter 7 Using the PowerMill Graphical Analyst
Tristate Check
The Tristate Check button checks for nodes that are undriven
for a specified time. This allows you to keep track of nodes that
leak above a specified voltage value.

Report Hazards
The Report Hazards button checks for nodes that have
multiple transitions within a specified time period. This check is
helpful for finding signal transitions that consume excessive
power.

Power Distribution
The Power Distribution button creates a histogram of average
and peak current for a particular time period. For example, if
you specify a time window from 0 to 100 ns in four segments,
then a set of histograms will be created for the following time
periods: 0-25, 26-50, 51-75, and 76-100 ns.

Showing or Hiding Help Messages
You can view or hide help messages using the Show/Hide toggle
button to the right of the Help Messages heading.

Saving or Clearing Checks
When you finish specifying the checks, click the OK button. This
saves your settings and closes the Power Diagnosis Setup
form.

If you do not want to save your changes, click the Cancel button
to close the form without saving.

If you do not use the Power Diagnosis Setup form, default
values are automatically assumed. These values are visible
when you bring up the form.



Running a Simulation 179
NOTE: The configuration commands needed to perform the checks are
placed in a file called diag.cfg in the Powermill GA run directory
(by default, powermill_pwga) and are automatically applied to
the run.

Running a Simulation
To start the simulator, click the Start Simulation button
located on the upper left side of the PowerMill GA main
window. See Chapter 2 for information on what you need to run
a basic simulation.

As the simulation progresses, log and warning messages appear
in the Simulation Log and Error/Warning fields of the main
window (see Figure 7).

To stop the simulation at any time, click the Stop Simulation
button; the Start Simulation button becomes the Stop

Figure 7 Example log information in main window
PowerMill User Guide



180 Chapter 7 Using the PowerMill Graphical Analyst
Simulation button once simulation has begun and reverts to
Start Simulation when it is completed.

Analyzing a Circuit

Power Consumption
When a simulation is complete, average current information for
the first level of the circuit hierarchy appears in the Result
Display area of the PowerMill GA main window
(see Figure 8).

In the example, the left column of the Result Display area
shows the block names. The right column shows the average
current consumption.

Block

Average
 current data

names

Figure 8 Average current information



Analyzing a Circuit 181
Sort By Menu
You can view other power consumption information using the
Sort By menu located on the top right side of the Result
Display area (see Figure 9).

Select the following menu items to get different types of power
information:

■ Average Power Information—select to view average
power information.

■ Wasted Current %—select to view information on short
circuit current.

■ Capacitive Current Information—select to view
capacitive current information.

■ Budget—select to view power budget information.

If you specified a budget in the Power Supply &Block
Setup form, the blocks are sorted according to how much
they exceed the budget. Blocks displayed in red exceed the
budget. Blocks displayed in yellow are under budget.

■ Density—select to view density information.

■ Power Supply—select to view the power consumption for
each power supply node.

Figure 9 Sort by menu
PowerMill User Guide



182 Chapter 7 Using the PowerMill Graphical Analyst
Hierarchical View of Power Consumption
You can view power consumption information for lower level
blocks if they are specified in the Power Supply and Block
Setup form.

To push down into a hierarchical block, double click with the left
mouse button on the desired block. To pop back up a level, double
click on a lower-level block, with the right mouse button.

Results Analysis
To continue analyzing the circuit, click the Results Analysis
button located on the left side of the PowerMill GA main
window. The Results Analysis form will appear
(see Figure 10).

To open a particular results analysis tool in the Result
Analysis form, click the appropriate button.

Power Histogram
The Power Histogram allows you to hierarchically view power
consumption information for selected blocks. To open the Power

Figure 10 Result analysis form



Analyzing a Circuit 183
Histogram, click the Power Histogram button in the Result
Analysis form (see Figure 11).

File Menu
After you’ve completed your hierarchical power analysis, you can
close the Power Histogram Browser by selecting Close
Power Histogram Browser from the File menu.

View Menu
You can analyze power consumption data in the Power
Histogram Browser from a variety of views, including zoomed-
out and zoomed-in views, and block and supply net views.

Displays
instances

Displays peak
or average

current value
Displays

histogram

Simulation
time marker

Figure 11 Power histogram browser
PowerMill User Guide



184 Chapter 7 Using the PowerMill Graphical Analyst
To see a zoomed-out view of the display, select Zoom Out from
the View menu (see Figure 12).

Select Zoom In from the View menu to return to the original
view.

To fit the entire power consumption display into the window,
select Fit Into Window from the View menu.

Figure 12 Zoom out view of power histogram browser



Analyzing a Circuit 185
Options Menu
The Options menu lets you view either the supply net or block
net histogram.To see the supply net histogram, select
Options→Show Supply Net Histogram (see Figure 13).

To return to the block histogram, select Options→Show Block
Histogram.

Using the Histogram

You can view the average or peak current for each time segment
displayed in the histogram.To view the average current for a
particular time segment, click your left mouse button on a time
segment block in the histogram. A time marker, along with the
average current for the selected segment, will appear.

To view the peak current for a segment, use your middle mouse
button to click on a segment, or move the marker to another
segment.

Figure 13 Supply net histogram
PowerMill User Guide



186 Chapter 7 Using the PowerMill Graphical Analyst
You can access the histogram for lower level blocks if they have
been specified in the Supply and Block Setup form). To do this,
double click on a block with your left mouse button. To come up
a level, double click on a block with the right mouse.

DC Path Browser
The DC Path Browser graphically displays transistors from
DC paths at predefined intervals. To open the DC Path
Browser, click the DC Path Browser button in the Result
Analysis form (see Figure 14).

Figure 14 DC path browser



Analyzing a Circuit 187
File Menu
After you’ve completed your DC path analysis, you can close the
DC Path Browser by selecting Close DC Path Browser from
the File menu.

Option Menu
Select Option→Search to bring up the Search DC Paths
form. This form allows you to specify a particular time period of
the simulation for viewing DC paths. This is useful if you are
interested in seeing DC path for a particular time of the
simulation, or if you cannot display all the DC paths in a single
window (see Figure 15).

Analyzing DC Paths
The DC Path Browser automatically loads the .dcpath file for
the current run. A series of time blocks are displayed at the top
of the window. You can view detailed DC path information for a

Figure 15 Search DC paths form
PowerMill User Guide



188 Chapter 7 Using the PowerMill Graphical Analyst
particular time period by clicking on any time segment
(see Figure 16).

When you’ve clicked a particular time segment, all the DC paths
that occurred at that time are displayed in the DC Paths text
field located at the bottom left corner of the window. By default,
the first path is displayed in the Path Schematic area at the
bottom right corner of the browser.

To view a particular path, click a path name in the DC Paths
text field. The schematic for the path you selected is displayed in
the Path Schematic area.

Figure 16 Detail view of DC path browser



Analyzing a Circuit 189
Standalone Version of DC Path Browser
The DC Path Browser can be run as a standalone tool. To
invoke this version, use the dcpviewer command.

EXAMPLE:
dcpviewer .dcpth_filename

The DC Path Browser will appear and display the DC paths
contained in the particular .dcpath file you specified. In
standalone mode, you can open any Powermill .dcpath file by
selecting File→Open Log File.

Power Diagnostics Browser
You can use the Power Diagnostics Browser to graphically
view and sort diagnostic information, including static
configuration checks, multiple toggles, and dynamic rise/fall
times.

To load the Power Diagnostics Browser, click the Power
Diagnostics Browser button in the Result Analysis form
(see Figure 17).
PowerMill User Guide



190 Chapter 7 Using the PowerMill Graphical Analyst
Click these
buttons to

set error
report below

Click here
to show error
report below

Include or
exclude nodes

Figure 17 Power diagnostics browser



Analyzing a Circuit 191
Selecting Checks
The numbers that appear in the upper part of the browser
indicate the number of messages in each error category. Select
the type of errors you want to view by clicking the appropriate
buttons at the top of the form. The button will turn red when a
check is active (see Figure 18).

Use the following buttons related to selecting checks:

■ Static Checks: causes additional selections to appear.

■ Show Errors: shows a list of errors corresponding to the
error types you selected.

Select a particular error to get a detailed information on that
error at the bottom of the browser.

■ Reset: clears your selections.

You can use your middle mouse button to drag and drop node
names from the Error List to other parts of the window. You can
also drag and drop node names from other sources in the

Click here
for a list of

choices

Figure 18 Selecting static paths
PowerMill User Guide



192 Chapter 7 Using the PowerMill Graphical Analyst
PowerMill GA, such as the Hierarchy Browser
(see Figure 19).

The Power Diagnostics Browser provides wild card support.
For example, if you want to see the errors on nodes in block A,
you can select the following:

only on nodes:

A

or  A.

or   A*.

By default, selected errors on all nodes are displayed. However,
to help in filtering the errors, you can use wild cards to filter
nodes for particular blocks. For example, you can select only on
nodes A or A.  if you only want to see the errors on the nodes in
block A. Another option is to drag the block A from the
Hierarchy Browser.

Figure 19 Dragging and dropping a node name



Analyzing a Circuit 193
To view detailed information, select an Error in the display
area. A detailed description is printed in the Detailed Error
Description window.

File Menu
After you have completed your diagnostic information analysis,
you can close the Power Diagnostic Browser by selecting
File→Close Power Diagnostics Browser.

Waveform Tool
The Powermill Graphical Analyst supports two waveform tools:
Simwave and turboWave. The default tool is turboWave.

Use the Options menu of the PowerMill GA main window to
select a particular waveform tool. Based on your selection, the
Results Analysis window will display and invoke either
turboWave or Simwave.

Hierarchy Browser
The Hierarchy Browser provides you with a visual display of
the netlist hierarchy. To open the Hierarchy Browser, click
PowerMill User Guide



194 Chapter 7 Using the PowerMill Graphical Analyst
the Hierarchy Browser button located at the middle left side
of the PowerMill GA main window (see Figure 20).

File Menu
After you are done using the Hierarchy Browser, you can close
it by selecting File→Close Hierarchy Browser located at the
top left corner of the window.

Hierarchy Display
The Hierarchy Browser contains the following display areas:

Panning

Tree

List of pins
in selected

instance

Help
instructions

 display

display

Figure 20 Hierarchy browser



Analyzing a Circuit 195
■ Panning display: located on the left side of the window, this
shows you what portion of the tree is currently being
displayed in the tree display.

■ Tree display: located on the upper right side of the window,
this shows a portion of the netlist’s instance hierarchy.

Panning Display
The panning display shows the layout of the tree. The rectangle
in the tree layout indicates the portion of the tree that is
currently visible in the tree display. You can update the portion
of the tree displayed by clicking on the rectangle and dragging it.

Tree Display
Initially, the hierarchy in the tree display consists only of top-
level design components. You can expand portions of the instance
tree by pressing the shift key and clicking your left mouse button
on instances. You can collapse the hierarchy by holding down the
shift key and clicking a previously expanded instance.

When you click on the instance name, it becomes red. Pin
information for the selected instance is displayed in the text
fields at the bottom of the Hierarchy Browser. The instance
name is also displayed in the Selected Instance text field.

You can choose to view the tree display by instance name or type,
or both by clicking the Instance Name, Instance Type, or
Name and Type buttons located at the top left corner of the
Hierarchy Browser.

You can view the attributes of a net in the tree display by
clicking the Selected Net button located at the bottom right
corner of the window, then selecting a net name from the list
below.
PowerMill User Guide



196 Chapter 7 Using the PowerMill Graphical Analyst
Show Info
The data displayed in the instance information fields depends on
the button you click in the Show Info About box. If you click
the Selected Instance button, a list of pins on the selected
instance is displayed, including direction information, and the
name of the net the pins connect to. If you click the Selected
Net button, the displayed information includes instances
connected to the selected net, the instance pin connecting to the
net, and the pin directions.

Options
The Options menu, located at the top of the Hierarchy
Browser, lets you change how information is displayed.

If you select the dashed line at the top of the Options menu, the
menu becomes a dialog box.

Show Internal Nets
Normally, when you click on an instance name in the tree
display, a list of nets connected to the instance’s external pins
appears at the bottom of the display. If you select
Options→Show internal Nets from the menu, the instance’s
internal nets will also appear in the list.

Show Instructions
Select Show Instructions from the Options menu to display
instructions for using the Hierarchy Browser. This is a toggle
option; clicking it will either display or remove the instructions.
The instructions appear at the top of the window

Ordering Instance Information
You can sort the data displayed in the text fields at the bottom of
the Hierarchy Browser three different ways. Select one of the
following buttons from the Options menu:



Analyzing a Circuit 197
■ Pin Name: lists information sorted by pin name.
■ Pin Direction: lists information by the pin direction.
■ Net Name: lists information sorted by net name.

Set Expansion Threshold
You can set the maximum number of child cells that the browser
will display when you are expanding an instance in the tree
display into its child components (see Figure 21).

Procedure

1 Select Options→Set Expansion Threshold.

The Set Expansion Threshold form will appear.

2 Click on the sliding bar and move it until the appropriate
setting appears above the bar.

3 Click OK when you are done adjusting the bar.

Figure 21 Set expansion threshold form
PowerMill User Guide



198 Chapter 7 Using the PowerMill Graphical Analyst
Select Instances to Display
If an instance contains more child cells than the expansion
threshold, the Select Instances to Display form will appear
(see Figure 22).

This form allows you to choose the child cells you want to display
in the instance tree.

Choosing Child Cells to Display in the Instance Tree

1 Select the child cells you want to display.

2 Press the >> button to move them to the Displayed column.

3 If you do not want child cells to display, select them from the
Displayed column and press the << button.

The child cells will move to the Undisplayed column.

Figure 22 Select instances to display window



Analyzing a Circuit 199
Choosing Multiple Instances at one Time

1 Select an instance.

2 Hold down the Shift key and click on the last selection you
want in the list.

All the names from the first selection to the last are selected.

To de-select an instance, press the control key and click on an
instance.

When the Select Instances to Display form is complete, the
selected child cells will appear in the tree display. A file cabinet
icon represents those child cells not displayed. To expand the file
cabinet, press the Shift key and click your left mouse button.
This re-opens the selection form so you can add or remove child
cells from the display.

If you select an instance inside a file cabinet, it will appear in the
tree display. If the display of the instance’s children exceeds the
expansion threshold, the Select Instances to Display window
will appear.

Save Options

You can save the current option states by selecting Save
Options from the Options menu. This causes the Hierarchy
Browser to use the current option states the next time the
current design is opened.

Displaying Connectivity
To start tracing a path, click on an instance name in the tree
display hierarchy. Then, select a pin from the list at the bottom
of the browser.

To trace a path, you must select both an instance and a pin. You
can select only one instance and one pin at a time.
PowerMill User Guide



200 Chapter 7 Using the PowerMill Graphical Analyst
When you select a pin, the parent, children, and sibling
instances connected in the net to the selected instance are
highlighted in blue in the tree display (see Figure 23).

If you click another connected instance, for example a sibling
instance, the hierarchy browser display will change to reflect the
new hierarchy context. Again, only the parent, children, and
sibling instances of the selected instance will be highlighted in
blue (see Figure 24.

Drag and Drop
You can drag and drop text from the panning display area or the
instance information fields located at the bottom of the
Hierarchy Browser.

Selected

Parent of
selected
instance

Sibling of
selected
instance

Children of

instance

selected instance

Figure 23 Example of a selected instance and related instances

New selected

Former selected
instance becomes
a sibling instance

Children of new
selected instance

 instance

Figure 24 Context shift after selecting a related instance



Analyzing a Circuit 201
1 Click the middle mouse button on the text you want to drag,
then move the mouse (cursor).

2 Release the middle mouse button when the cursor is in the
appropriate position.

The text will appear in the new location.
PowerMill User Guide



202 Chapter 7 Using the PowerMill Graphical Analyst



Chapter 8

PowerMill Graphical
Analyst Tutorial



204 Chapter 8 PowerMill Graphical Analyst Tutorial



Overview 205
Overview
This chapter gives you step-by-step instructions for running the
PowerMill Graphical Analyst tutorial. The following tasks are
covered:

■ Getting the Input Files

■ Starting the Graphical Analyst

■ Setting Up for a Simulation

■ Running the Simulation

■ Analyzing Results

Getting the Input Files
Before you can run the graphical analyst tutorial in this chapter,
you need to copy the required input files to your current working
directory. The following procedure shows you how to do this.

1 Set the correct path to which the EPIC_HOME environment
variable is set. If you’re not sure of the path, you can ask
your system administrator.

2 Copy (recursively) the files from $EPIC_HOME/tutorials/
pwga to your local working directory. The files in this
directory are needed for this tutorial.

cp -R $EPIC_HOME/tutorials/pwga .

This command copies pwga directory into the current
directory (the period tells the cp command to copy to the
current directory).

Starting the Graphical Analyst

Start the Graphical Analyst by typing one of the following
commands at the UNIX prompt in your pwga directory:
PowerMill User Guide



206 Chapter 8 PowerMill Graphical Analyst Tutorial
pwga
powrmill -ga

The Powermill GA main window appears (see Figure 1).

Figure 1 PowerMill GA main window

Log information

Start and stop
simulation
toggle button

Open Design
Data Setup
 form

Exit PowerMill,
or access
design data

Access display

hierarchy
of netlist

Access to
analysis tools Error & Warning messages

Continued on Next Page



Setting Up for a Simulation 207
Setting Up for a Simulation
Your next set of steps involves specifying the design data, setting
up multiple supply nodes, and specifying the blocks you want to
simulate.

First, click the Simulation Setup button to bring up a dialog
box that lists a set of simulation setup forms (see Figure 2).

Specifying Design Data
To start specifying design data, click the Design Data Setup
button in the Simulation Setup form.

The Design Data Setup form appears. Enter the following
information either manually or using the Browse... button when
applicable:

Work File: powrmill.wrk

Netlist Files: adder4.ntl adder4.cmd

Tech File: tech.typ.25c_5v

Simulation Time: 300

Figure 3 shows the completed form.

Figure 2 Simulation setup form
PowerMill User Guide



208 Chapter 8 PowerMill Graphical Analyst Tutorial
To save your changes and close the Design Data Setup form,
click OK.

Setting Up the Power Supply and Blocks
The next step is to set up the power supplies and specify the
blocks you want to use in the simulation. To do this, click the
Supply/Block Power Setup button in the Simulation Setup

Figure 3 Design data setup form



Setting Up for a Simulation 209
dialog box. The Power Supply & Block Setup form will
appear (see Figure 4).

Normally at this point you would set up multiple power supplies.
However, because the circuit used for this tutorial contains only
one supply node, power supply set up is not necessary.

Your next step is to specify the blocks for which you want power
consumption information. By default, all the blocks at the top
level of the design are selected.

Figure 4 Power Supply & Block Setup form
PowerMill User Guide



210 Chapter 8 PowerMill Graphical Analyst Tutorial
To get the power information for lower level blocks, you can add
additional blocks by dragging and dropping them from the
Hierarchy Browser.

First, bring up the Hierarchy Browser by clicking the
Hierarchy Browser button in the Powermill GA main
window.



Setting Up for a Simulation 211
The Hierarchy Browser appears (see Figure 5).

You can use the procedure outlined below to view the power
consumption for lower-level blocks within the design hierarchy.
This process shows you how to drag and drop blocks from the
Hierarchy Browser to the Power Supply & Block Setup
form.

Figure 5  Hierarchy Browser
PowerMill User Guide



212 Chapter 8 PowerMill Graphical Analyst Tutorial
1 In the top display area of the Hierarchy Browser, Hold
down the Shift key and use the left mouse button to expand
the hierarchy for the block identified as ADDER3. See
Figure 6 for a sample.

2 In the Hierarchy Browser, select the 3NOR instance with
the left mouse button. This highlights the instance.

3 Use the middle mouse button to drag it into the empty Block
Setup field in the Power Supply & Block Setup form.

To add additional blocks, click the Add Block button in the
form to create another empty field and use the drag and drop
feature to include them.

Figure 6  Expanding the ADDER3 block



Setting Up for a Simulation 213
4 Select File → Close Hierarchy Browser to exit the
Hierarchy Browser.

5 Click OK in the Power Supply & Block Setup form to
save your changes and exit the form.

Specifying Diagnosis Checks
PowerMill will check only those conditions you specify. To set the
diagnosis checks, click the Power Diagnosis Setup button in
the Simulation Setup form.

The Power Diagnosis Setup form appears (see Figure 7).

Figure 7 Power Diagnosis Setup form
PowerMill User Guide



214 Chapter 8 PowerMill Graphical Analyst Tutorial
By default, all the checks on the form are selected. However, in
order to check for DC paths, you must specify the appropriate
time segments.

Enter the following value in the Static Power Checks area:

Report nodes whose rise/fall time exceeds .8ns

Next, activate the Excessive Current checks area by clicking
the toggle button located to the right of the Find DC paths at
times line. Then, enter the values as shown below:

Find DC paths starting at 253ns  and every 20ns  report
paths >= .04mA

Enter the following values in the Report Hazards area:

Report nodes with multiple transitions within any 1ns
period.

Click OK to save your changes and exit the Power Diagnosis
Setup form. Then, click Dismiss in the Simulation Setup
form. You are now finished with the set up process.

Running the Simulation
To run the simulation, click the Start Simulation button in the
Powermill GA main window. Notice that the simulation
messages are displayed in the Simulation Log text field. Note
also that error and warning messages appear in the Error/
Warning text field.

When the simulation is finished, the Result Display area of the
window displays power consumption of the first level of the
design hierarchy.



Analyzing Results 215
Figure 8 shows the Results Display area of the PowerMill GA
main window.

Note that you can use the Sort By menu to select various
display options. Select Wasted Current % from the menu and
notice how the display changes.

Use your left mouse button to view the lower levels of the
hierarchy.

Double click with the left mouse button on the ADDER3 block.
Notice the power consumption for the NOR3 instance is
displayed.

To go back up a level in the hierarchy, double-click with the right
mouse button on the NOR3 instance. Notice that the top-level
blocks are displayed.

Analyzing Results
The PowerMill Graphical Analyst provides you with several tools
for viewing the results of a simulation. You can access these tools
by clicking the Result Analysis button in the Powermill GA
main window.

Figure 8 Results Display area of the PowerMill GA main window
PowerMill User Guide



216 Chapter 8 PowerMill Graphical Analyst Tutorial
The Result Analysis form appears (see Figure 9).

Viewing Histogram Information
First, you’ll view a hierarchical display of power consumption
information for selected blocks. To do this, click the Power
Histogram Browse button in the Result Analysis form.

The Power Histogram Browser will appear (see Figure 10).

This tool displays the per cycle current consumption for the
blocks you previously selected in the Power Diagnostics
Setup form. In this case, 30  ns was specified.

To view the average current consumption per block and period,
use your left mouse button to click any block in the display. Use
your middle mouse button to click on a block and view the peak
current consumption, per block and period.

Figure 9  Result Analysis form



Analyzing Results 217
Select File → Close Power Histogram Browser to exit the
Power Histogram Browser.

Figure 10 Power histogram browser
PowerMill User Guide



218 Chapter 8 PowerMill Graphical Analyst Tutorial
Viewing the DC Paths

Next, you’ll view the DC paths in the circuit. Click the DC Path
Browser button in the Results Analysis form. The DC Path
Browser appears (see Figure 11).

The top portion of the DC Path Browser graphs the number of
DC paths that occur at particular time blocks. To view the paths
that occur at a time block, click on a time block using your left
mouse button.

Figure 11 DC Path Browser



Analyzing Results 219
Notice that a list of DC paths is displayed in the DC Paths text
field located at the bottom left corner of the window. A schematic
of the selected path appears in the display area located at the
bottom right corner of the window.

To close the DC Path Browser, select File → Close DC Path
Browser.

Viewing the Power Diagnostics
1 Click the Power Diagnostics button in the Results

Analysis form.

The Power Diagnostics Browser appears (see Figure 12).

2 To display a particular set of errors, you’ll first need to select
an error type in the form.

For this design, select the following error categories:

◆ Excessive Rise/Fall Time

◆ Undriven Nodes

◆ Excessive Transistor Current

◆ Multiple Transitions

3 Click the Show Errors button to display the errors you
selected.

4 To view specific nodes, you can copy and paste node names
from the list at the bottom of the window. Use the left mouse
button to select the ADDER0.XOR2A.N_4 node.

5 Next, use the middle mouse button to drag the node name to
the text field above the Show Errors button. Click the
Show Errors button to list only the errors that occurred on
that node.

6 To exit the Power Diagnostics Browser, select:
File → Close Power Diagnostics Browser.
PowerMill User Guide



220 Chapter 8 PowerMill Graphical Analyst Tutorial
Figure 12  Power Diagnostics Browser



Analyzing Results 221
Displaying Waveforms for Power and Ground Nodes

Use the following procedure to display waveforms for power and
ground nodes.

1 Select the waveform display tool: Simwave or turbowave
from the Options menu in the main window.

2 Select the name of the waveform display tool from the Result
Analysis menu.

The waveform tool is started and the appropriate output file
is loaded.

3 From the waveform tool, select the signals you want to view.
PowerMill User Guide



222 Chapter 8 PowerMill Graphical Analyst Tutorial



Appendix A

Sample Power Reports

Sample Block Power Report
Block: total
    Number of nodes in block : 3953
    Number of elements in block : 9752
    Number of block supply nodes : 11
    Number of block ground nodes : 5
    Number of block biput nodes : 17
    Number of block input nodes : 3
    Number of block output nodes : 0
    Number of block stages : 1597
    Number of block partial stages : 0

    Average supply current : -45144.660642 uA
    RMS supply current : 64875.016572 uA

    Average ground current : 45127.965926 uA
    RMS ground current :  64878.957946 uA

    Average input current : 0.004319 uA
    RMS input current : 46.694417 uA

    Average output current : 0.000000 uA
    RMS output current : 0.000000 uA

    Average biput current : 16.694782 uA
    RMS biput current : 293.473489 uA

    Average capacitive current : -39057.934468 uA
    RMS capacitive current : 56567.265346 uA

    Average wasted current : -6115.921641 uA



224  Sample Power Reports
    RMS wasted current : 9764.697468 uA

    Wasted current percentage : 13.538631%

    Average block power : 179937.712787 uW
    RMS block power : 259344.959596 uW

    Supply node currents:
          Node: vdq
              Average current : -1292.744780 uA
              RMS current : 2689.379684 uA
          Node: vext
              Average current : -13.113817 uA
              RMS current : 60.555783 uA
          Node: vr2k
              Average current : -1.306000 uA
              RMS current : 1.306000 uA
          Node: vbprst
              Average current : 0.000000 uA
              RMS current : 0.000000 uA
          Node: vrad
              Average current : -0.096472 uA
              RMS current : 125.248341 uA
          Node: vref
              Average current : 0.000000 uA
              RMS current : 0.000000 uA
          Node: vccex
              Average current : -3254.654260 uA
              RMS current :  6735.633010 uA
          Node: vbbex
              Average current : -46.280923 uA
              RMS current :  65.944698 uA
          Node: vplex
              Average current : -48.694494 uA
              RMS current :  65.990722 uA
          Node: vblex
              Average current : -22.313620 uA
              RMS current :  35.782504 uA
          Node: vdd
              Average current : -40465.456275 uA
              RMS current :  62012.343945 uA

    Ground node currents:
          Node: vwpb
              Average current :  0.000000 uA
              RMS current :  0.000000 uA
          Node: vbfe
              Average current :  0.000000 uA
              RMS current :  0.000000 uA
          Node: vnbl
              Average current :  0.000000 uA
              RMS current :  0.000000 uA
          Node: vsc
              Average current :  0.000000 uA
              RMS current :  0.000000 uA
          Node: gnd
              Average current :  45127.965926 uA
              RMS current :  64878.957946 uA

    Input node currents:
          Node: vbwe
              Average current :  0.001269 uA
              RMS current :  0.014343 uA



Sample Block Power Report 225
          Node: vbcas
              Average current :  0.001368 uA
              RMS current :  23.447023 uA
          Node: vbras
              Average current :  0.001682 uA
              RMS current :  30.281411 uA

    Biput node currents:
        Node: vdin
              Average current :  0.000000 uA
              RMS current :  0.000000 uA
        Node: vdq0
              Average current :  0.000000 uA
              RMS current :  0.000000 uA
        Node: vdq1
              Average current :  0.000000 uA
              RMS current :  0.000000 uA
        Node: vdq2
              Average current :  0.000000 uA
              RMS current :  0.000000 uA
        Node: vdq3
              Average current :  0.000000 uA
              RMS current :  0.000000 uA
        Node: vain1
              Average current :  0.095737 uA
              RMS current :  44.265948 uA
        Node: vain0
              Average current :  3.260720 uA
              RMS current :  38.813769 uA
        Node: vain2
              Average current :  3.260651 uA
              RMS current :  38.813809 uA
        Node: vain3
              Average current :  0.095980 uA
              RMS current :  44.266041 uA
        Node: vain4
              Average current :  3.260651 uA
              RMS current :  38.813809 uA
        Node: vain5
              Average current :  3.260651 uA
              RMS current :  38.813809 uA
        Node: vain6
              Average current :  0.095980 uA
              RMS current :  44.266041 uA
        Node: vain7
              Average current :  0.095979 uA
              RMS current :  44.266041 uA
        Node: vain8
              Average current :  0.001632 uA
              RMS current :  1.129229 uA
        Node: vain9
              Average current :  3.263539 uA
              RMS current :  39.380620 uA
        Node: vain10
              Average current :  0.001632 uA
              RMS current :  1.129229 uA
        Node: vain11
              Average current :  0.001632 uA
              RMS current :  1.129229 uA
PowerMill User Guide



226  Sample Power Reports
Sample .power File
;! power_file_format 5.4
; --------------------------------------------------------
;|                                                        |
;| PowerMill Version 5.4 |
;|                  SN: P081899-SunOS_5                   |
;| Copyright (c) 1999 Synopsys Inc., All Rights Reserved. |
;|                                                        |
; --------------------------------------------------------
;
;

**********************************************************************************
                          RUN TIME POWER BUDGET VIOLATIONS
**********************************************************************************

BLOCK top: DRAWS EXCESSIVE POWER FROM 10.8 TO 10.9 ns.
BLOCK top: DRAWS EXCESSIVE SUPPLY CURRENT FROM 20.9 TO 21 ns.
BLOCK top: DRAWS EXCESSIVE POWER FROM 20.8 TO 21.1 ns.
BLOCK top: DRAWS EXCESSIVE SUPPLY CURRENT FROM 21.4 TO 21.5 ns.
BLOCK top: DRAWS EXCESSIVE POWER FROM 21.4 TO 21.5 ns.
BLOCK top: DRAWS EXCESSIVE SUPPLY CURRENT FROM 21.6 TO 21.8 ns.
BLOCK top: DRAWS EXCESSIVE POWER FROM 21.6 TO 21.9 ns.
BLOCK top: DRAWS EXCESSIVE SUPPLY CURRENT FROM 22.2 TO 22.5 ns.
BLOCK top: DRAWS EXCESSIVE POWER FROM 22.2 TO 22.5 ns.
BLOCK top: DRAWS EXCESSIVE SUPPLY CURRENT FROM 50.4 TO 50.5 ns.
BLOCK top: DRAWS EXCESSIVE POWER FROM 50.4 TO 50.5 ns.
BLOCK top: DRAWS EXCESSIVE SUPPLY CURRENT FROM 61.4 TO 61.5 ns.
BLOCK top: DRAWS EXCESSIVE POWER FROM 61.4 TO 61.5 ns.
BLOCK top: DRAWS EXCESSIVE SUPPLY CURRENT FROM 61.6 TO 62.4 ns.
BLOCK top: DRAWS EXCESSIVE POWER FROM 61.6 TO 62.4 ns.
BLOCK top: DRAWS EXCESSIVE SUPPLY CURRENT FROM 101.6 TO 101.8 ns.
BLOCK top: DRAWS EXCESSIVE POWER FROM 101.6 TO 101.8 ns.
BLOCK top: DRAWS EXCESSIVE SUPPLY CURRENT FROM 102.2 TO 102.3 ns.
BLOCK top: DRAWS EXCESSIVE POWER FROM 102.2 TO 102.3 ns.
BLOCK top: DRAWS EXCESSIVE SUPPLY CURRENT FROM 141.6 TO 141.8 ns.
BLOCK top: DRAWS EXCESSIVE POWER FROM 141.6 TO 141.8 ns.
BLOCK top: DRAWS EXCESSIVE SUPPLY CURRENT FROM 142.2 TO 142.4 ns.
BLOCK top: DRAWS EXCESSIVE POWER FROM 142.2 TO 142.4 ns.
BLOCK top: DRAWS EXCESSIVE POWER FROM 170.8 TO 170.9 ns.
BLOCK top: DRAWS EXCESSIVE SUPPLY CURRENT FROM 181.4 TO 181.5 ns.
BLOCK top: DRAWS EXCESSIVE POWER FROM 181.4 TO 181.5 ns.
BLOCK top: DRAWS EXCESSIVE SUPPLY CURRENT FROM 181.6 TO 181.8 ns.
BLOCK top: DRAWS EXCESSIVE POWER FROM 181.6 TO 181.8 ns.
BLOCK top: DRAWS EXCESSIVE SUPPLY CURRENT FROM 182.2 TO 182.4 ns.
BLOCK top: DRAWS EXCESSIVE POWER FROM 182.2 TO 182.4 ns.
BLOCK top: DRAWS EXCESSIVE SUPPLY CURRENT FROM 221.6 TO 221.8 ns.
BLOCK top: DRAWS EXCESSIVE POWER FROM 221.6 TO 221.8 ns.
BLOCK top: DRAWS EXCESSIVE SUPPLY CURRENT FROM 222.2 TO 222.3 ns.
BLOCK top: DRAWS EXCESSIVE POWER FROM 222.2 TO 222.3 ns.
BLOCK top: DRAWS EXCESSIVE SUPPLY CURRENT FROM 261.6 TO 261.7 ns.
BLOCK top: DRAWS EXCESSIVE POWER FROM 261.6 TO 261.8 ns.
BLOCK top: DRAWS EXCESSIVE SUPPLY CURRENT FROM 262.2 TO 262.4 ns.
BLOCK top: DRAWS EXCESSIVE POWER FROM 262.2 TO 262.4 ns.
BLOCK top: DRAWS EXCESSIVE SUPPLY CURRENT FROM 301.6 TO 301.8 ns.
BLOCK top: DRAWS EXCESSIVE POWER FROM 301.6 TO 301.8 ns.
BLOCK top: DRAWS EXCESSIVE SUPPLY CURRENT FROM 302.2 TO 302.3 ns.
BLOCK top: DRAWS EXCESSIVE POWER FROM 302.2 TO 302.3 ns.
BLOCK top: DRAWS EXCESSIVE SUPPLY CURRENT FROM 341.6 TO 341.8 ns.
BLOCK top: DRAWS EXCESSIVE POWER FROM 341.6 TO 341.8 ns.



Sample .power File 227

A.
BLOCK top: DRAWS EXCESSIVE SUPPLY CURRENT FROM 342.2 TO 342.4 ns.
BLOCK top: DRAWS EXCESSIVE POWER FROM 342.2 TO 342.4 ns.
BLOCK top: DRAWS EXCESSIVE SUPPLY CURRENT FROM 381.6 TO 381.7 ns.
BLOCK top: DRAWS EXCESSIVE POWER FROM 381.6 TO 381.7 ns.

**********************************************************************************
                          POWER BUDGET VIOLATION SUMMARY
**********************************************************************************

BLOCK top: MAXIMUM INSTANTANEOUS SUPPLY CURRENT OF -157249 uA EXCEEDS BUDGET OF 30000 u
BLOCK top: AVERAGE SUPPLY CURRENT OF -1537.84 uA EXCEEDS BUDGET OF 1000 uA.
BLOCK top: MAXIMUM INSTANTANEOUS POWER OF 566098 uW EXCEEDS BUDGET OF 100000 uW.
BLOCK top: AVERAGE POWER OF 5536.21 uW EXCEEDS BUDGET OF 3000 uW.

**********************************************************************************
                          BLOCK HIERARCHICAL POWER ANALYSIS
**********************************************************************************

BLOCK top: AVERAGE SUPPLY CURRENT.

    LEVEL             CURRENT     PERCENT OF    PERCENT OF    CHILD BLOCK NAME
                       (uA)         PARENT         TOP
-----------------------------------------------------------------------------------
-------------
*---------   0        -1537.8       100.00       100.00       top
-*--------   1        -1537.8       100.00       100.00       top_xsr34x22
--*-------   2        -359.83        23.40        23.40       top_xsr34x22.x1161
--*-------   2        -322.71        20.98        20.98       top_xsr34x22.x1164
--*-------   2        -214.54        13.95        13.95       top_xsr34x22.x1166
--*-------   2        -207.33        13.48        13.48       top_xsr34x22.x1158
--*-------   2        -192.92        12.55        12.55       top_xsr34x22.x1162
--*-------   2        -81.777         5.32         5.32       top_xsr34x22.x1163
--*-------   2        -57.569         3.74         3.74       top_xsr34x22.x1157
--*-------   2        -52.966         3.44         3.44       top_xsr34x22.x1160
--*-------   2        -42.359         2.75         2.75       top_xsr34x22.x1169
--*-------   2        -5.8502         0.38         0.38       top_xsr34x22.x1167
--*-------   2      0.0086932        -0.00        -0.00       top_xsr34x22.x1170
--*-------   2              0        -0.00        -0.00       top_xsr34x22.x1165
--*-------   2              0        -0.00        -0.00       top_xsr34x22.x1168
--*-------   2              0        -0.00        -0.00       top_xsr34x22.x1159

BLOCK top: RMS SUPPLY CURRENT.

    LEVEL             CURRENT     PERCENT OF    PERCENT OF    CHILD BLOCK NAME
                       (uA)         PARENT         TOP
-----------------------------------------------------------------------------------
-------------
*---------   0         6959.2       100.00       100.00       top
-*--------   1         6959.2       100.00       100.00       top_xsr34x22
--*-------   2         3717.1        53.41        53.41       top_xsr34x22.x1161
--*-------   2         2966.7        42.63        42.63       top_xsr34x22.x1164
--*-------   2         1785.1        25.65        25.65       top_xsr34x22.x1166
--*-------   2         1584.1        22.76        22.76       top_xsr34x22.x1162
--*-------   2         1332.5        19.15        19.15       top_xsr34x22.x1158
--*-------   2         1202.1        17.27        17.27       top_xsr34x22.x1163
--*-------   2         647.76         9.31         9.31       top_xsr34x22.x1157
--*-------   2         408.87         5.88         5.88       top_xsr34x22.x1160
--*-------   2         316.96         4.55         4.55       top_xsr34x22.x1169
PowerMill User Guide



228  Sample Power Reports
--*-------   2         115.03         1.65         1.65       top_xsr34x22.x1167
--*-------   2          2.588         0.04         0.04       top_xsr34x22.x1170
--*-------   2              0         0.00         0.00       top_xsr34x22.x1165
--*-------   2              0         0.00         0.00       top_xsr34x22.x1168
--*-------   2              0         0.00         0.00       top_xsr34x22.x1159

BLOCK top: AVERAGE POWER.

    LEVEL              POWER      PERCENT OF    PERCENT OF    CHILD BLOCK NAME
                       (uW)         PARENT         TOP
-----------------------------------------------------------------------------------
-------------
*---------   0         5536.2       100.00       100.00       top
-*--------   1         5536.2       100.00       100.00       top_xsr34x22
--*-------   2         1467.9        26.51        26.51       top_xsr34x22.x1161
--*-------   2         746.39        13.48        13.48       top_xsr34x22.x1158
--*-------   2         722.92        13.06        13.06       top_xsr34x22.x1166
--*-------   2         694.52        12.55        12.55       top_xsr34x22.x1162
--*-------   2         639.25        11.55        11.55       top_xsr34x22.x1164
--*-------   2         430.29         7.77         7.77       top_xsr34x22.x1163
--*-------   2         258.27         4.67         4.67       top_xsr34x22.x1167
--*-------   2         207.25         3.74         3.74       top_xsr34x22.x1157
--*-------   2         190.68         3.44         3.44       top_xsr34x22.x1160
--*-------   2         152.49         2.75         2.75       top_xsr34x22.x1169
--*-------   2         49.414         0.89         0.89       top_xsr34x22.x1165
--*-------   2      -0.031295        -0.00        -0.00       top_xsr34x22.x1170
--*-------   2              0         0.00         0.00       top_xsr34x22.x1168
--*-------   2              0         0.00         0.00       top_xsr34x22.x1159

BLOCK top: RMS POWER.

    LEVEL              POWER      PERCENT OF    PERCENT OF    CHILD BLOCK NAME
                       (uW)         PARENT         TOP
-----------------------------------------------------------------------------------
-------------
*---------   0          25053       100.00       100.00       top
-*--------   1          25053       100.00       100.00       top_xsr34x22
--*-------   2          14856        59.30        59.30       top_xsr34x22.x1161
--*-------   2         8329.2        33.25        33.25       top_xsr34x22.x1164
--*-------   2           6077        24.26        24.26       top_xsr34x22.x1166
--*-------   2         5702.9        22.76        22.76       top_xsr34x22.x1162
--*-------   2         4995.3        19.94        19.94       top_xsr34x22.x1163
--*-------   2         4796.9        19.15        19.15       top_xsr34x22.x1158
--*-------   2         2787.9        11.13        11.13       top_xsr34x22.x1167
--*-------   2         2331.9         9.31         9.31       top_xsr34x22.x1157
--*-------   2         1471.9         5.88         5.88       top_xsr34x22.x1160
--*-------   2         1141.1         4.55         4.55       top_xsr34x22.x1169
--*-------   2         602.31         2.40         2.40       top_xsr34x22.x1165
--*-------   2         9.3168         0.04         0.04       top_xsr34x22.x1170
--*-------   2              0         0.00         0.00       top_xsr34x22.x1168
--*-------   2              0         0.00         0.00       top_xsr34x22.x1159



Appendix B

Using Shared Memory

Many 32-bit machines limit the virtual memory space to 2GB. If
you need to simulate a very large circuit that requires more than
2GB of memory, you need to set the EPIC_USE_SHM
environment variable before running PowerMill.

EXAMPLE:
setenv EPIC_USE_SHM

This setting causes the simulator to allocate memory from a
region that is shared by all the processes running on your
machine. This feature is only available on HP-UX and Solaris
platforms.



230  Using Shared Memory



PowerMill User Guide

Combined Index
Symbols
$EPIC_HOME U-13, U-21, U-137, U-205
.dcpath file (sample) U-39
.epicrc file

description U-10
keywords U-14
sample U-15

A
-A command-line option U-132
ACE configuration commands

See Command Index on page R-457
ACE tutorials

CV curve generation U-139
differentiator simulation U-149
integrator simulation U-147
PLL SPICE macro modeling U-151,

U-156
step input simulation U-145
voltage follower simulation U-143

ADFMI model
debugging (-DFM) R-5

model swapping R-324
see also ADFMI Manual
specifying R-333
using the -FM (-fm) command-line op-

tions R-6
aesv

default value R-380, R-390
setting simulation R-390

aliases R-100
creating R-19, R-100
deleting R-49
for pattern matching R-102

analog circuit simulation U-125–U-134,
U-137–U-158

aspd U-129
aspd, setting

for simulation R-391
autodetection rules, applying

analog circuit detection R-356
charge-pump circuit detection R-357
memory circuit detection R-358
mixed-signal circuit detection R-359

autodetection selection U-125
automatic techfile generation U-12



232 Combined Index
automatic vector generation U-103
See also, GAP feature

B
batch mode U-10
BJT modeling R-355, R-365, R-367
block power analysis U-31, U-87, U-88, U-90,

U-91
block-level power, See power analysis
branch currents

excessive R-161
printing R-109
reporting R-145, R-146

branch, See element
breakpoints (interactive) R-36

deleting R-50
listing R-95
setting element breakpoints R-225
setting node breakpoints R-248
setting time breakpoints R-314

BSIM1 models U-13
BSIM2 models U-13
BSIM3 v3 models U-13
bus notation R-210

C
Cadence SPF netlist format R-8
capacitance

adding R-41
adding wirecap R-42
modeling R-375
nodes with high cap value R-384
setting R-250

case sensitivity, controlling R-335
charge conservation model R-239
charge pump R-357, R-396
chip-level power analysis U-85
circuit connectivity, modifying R-105
circuit errors, handling R-82

command
alias R-100
environment variables R-215
interpreter R-217
reading files R-136
translation (from 3.x) R-317

command arguments
argument tag R-23
argument unit R-20
changing units R-23
specifying arguments R-20

command-line options R-3–R-11
-A U-132

comment character, defining R-215
comment line, in .epicrc file U-15
configuration commands

assign_branch_i U-100, U-122
assign_node_i U-100, U-122
limit_dcpath_search U-115
print_branch_i U-122
print_node_i U-86, U-122
print_node_logic U-23, U-30
print_node_v U-23, U-30
print_probe_i U-30, U-100, U-122
report_block_leakage U-89
report_block_powr U-30, U-88, U-122
report_ckt_dcpath U-38, U-39, U-115
report_ckt_leak U-117, U-118
report_ckt_phist U-101
report_elem_exi U-112, U-122
report_elem_i U-101
report_node_hotspot U-112
report_node_i U-86, U-101, U-122
report_node_maxrf U-119
report_node_powr U-23, U-86, U-100
report_node_quick U-112
report_node_u U-112
report_node_z U-112
report_probe_i U-100, U-101, U-122
search_ckt_analog U-126, U-128
search_ckt_cpump U-126
search_ckt_logic U-126, U-128



233
search_ckt_mem U-126, U-128
search_ckt_msx U-126, U-127
search_ckt_rc U-127
search_ckt_ud U-127
See Command Index on page R-457
set_dcpath_thresh U-38, U-115
set_elem_acc U-131
set_elem_pwl U-131
set_elem_sms U-131
set_elem_sync U-131
set_hotspot_factor U-114
set_node_aspd U-129
set_node_spd U-129
set_node_thresh U-112, U-119
set_print_ires U-131
set_print_iwindow U-102
set_print_tres U-131
set_print_vres U-131
set_sim_aspd U-130
set_sim_spd U-130
set_sim_subgroup U-130
set_sim_trap U-156
set_sim_tres U-129
use_sim_case U-10

configuration files U-12
configuration files, specifying R-4
connectivity

changing R-105
to nodes R-66
tracing R-327, R-328

current
reporting R-145, R-174, R-189
resolution, setting R-299
waveforms, printing R-111–R-119,

R-126, R-134
current printing and reporting

block U-87
element U-98
histogram U-101
node U-99
probes U-100

current resolution, controlling U-132

D
dangling nodes, reporting R-171
DC current R-119
DC initialization R-30
DC paths

dynamic R-147
finding (tutorial) U-37
static R-152, U-117
threshold setting R-224

delimiter, hierarchical R-298
diagnosing power problems

dynamic U-111
static U-116

diagnostics
functionality R-337, R-338, R-340
power R-147, R-152, R-161, R-172, R-176,

R-181, R-185, R-187
diode, modeling R-368
double-precision mode R-4, U-132
dynamic power analysis U-111

E
EDIF netlist format R-8
edisplay utility R-417
element

current printing U-98
excessive current check R-161
getting status R-61, R-65
name R-97
printing branch currents U-98
printing current R-109–R-119
reporting current R-145
See BJT
See diode
See MOSFET
simulating R-369, R-371, R-374

element names, listing by index R-97
environment parameters R-3
environment variables, command R-215
EPIC netlist format R-8
PowerMill User Guide



234 Combined Index
EPIC_HOME environment variable U-21, U-
205

epicrc file
See .epicrc file U-15

errors (ckt), handling R-82
errors (simulation), suppressing R-92, R-93,

R-237
estimating max power, See maximum power

estimation
esv

for analog simulations, See aesv
setting node R-251
setting simulation R-297

event generation, changing R-451
event resolution voltage

analog, See aesv
digital, See esv

event resolution voltage (esv), setting U-128
Eview utility R-418
evp (event points), setting R-308

F
file samples

.epicrc file U-15
powrmill.act file R-422
powrmill.cnt file R-434
powrmill.dcpath file R-407, R-446
powrmill.gap file R-444
powrmill.gav file R-445
powrmill.hist file R-412, R-447
powrmill.log file R-423
powrmill.log file (block power

report) R-438
powrmill.nact file R-422
powrmill.nodealias file R-436
powrmill.out file R-430
powrmill.power file R-441
powrmill.stat file R-437
powrmill.sum file R-417, R-435

files
output R-405–R-417

See .epicrc files
See input files
See output files

FSDB format R-281
functional model

See also ADFMI Manual
functional model, specifying R-333

G
GAP feature U-103

guiding R-78
predicting convergence R-164
printing a progress report R-165
reporting parameters R-163
selecting a clock period R-232
specifying vector files R-336
tutorials U-41, U-50, U-69

Gentech utility U-12
graphical analyst

child cells U-198
path tracing U-199
power diagnostics browser

error list U-191
show info about box U-196

H
help

command R-55
printing R-121
See also online help R-19

hierarchical
delimiter R-298
separator, setting R-298

hierarchy browser
options menu U-196
panning display U-195
path tracing U-199
select instances to display U-198
set expansion threshold U-197



235
show instructions U-196
tree display U-195

histogram, current R-145, R-160, R-174,
R-189, U-101

HSPICE/SPICE netlists U-11

I
i (index) command prefix R-19
index numbers, listing R-19, R-98
initial conditions R-253
input files

configuration R-4, U-12
netlist R-8, U-11
stimulus U-13
technology R-9, U-12

input netlist R-8
instance parameter R-64
interactive mode

accessing R-19
command-line option (-i) R-7
interactive log file, closing R-47
interactive log file, opening R-108, R-405
tracing signal events R-36, R-327, R-328,

R-330
ISDB format R-281

J
JFET models U-13

K
keepers, removing R-204
Kirchhoff’s Current Law U-99

L
latch nodes R-101
leakage current

detecting DC paths U-115

finding cause R-147, R-152
measuring R-140, U-88

listing R-100
log file

closing R-47
opening R-108

logic diagrams
adder circuit with four-bit output register

U-27
cell of four-bit adder circuit U-20
four-bit adder circuit U-19
xor2 cell U-20

logic states
forcing R-51
printing R-128
releasing R-138

logical display R-418

M
maximum power estimation R-78, R-163,

R-164, R-165, R-232, R-336, U-41,
U-103

See also, GAP feature
memory, freeing R-54
merging parallel transistors R-104
MESFET models U-13
messages

limiting by index R-92
limiting by phase R-93

mixed-signal simulation U-125
model swapping R-324

 See also, ADFMI Manual
models (directly supported)

BSIM1 U-13
BSIM2 U-13
BSIM3 v3 U-13
JFET U-13
MESFET U-13
MOS9 U-13

MOSFET
changing size R-199, R-200, R-240,
PowerMill User Guide



236 Combined Index
R-241, R-243, R-244, R-246,
R-247

getting status R-65
modeling R-364, R-366, R-369, R-370,

R-371, R-373, R-374, R-381,
R-397, R-398, R-399, R-400,
R-401

partitioning R-88, R-89, R-204, R-245,
R-396

simulating R-242
multirate simulations (ACE) U-130

N
netlist file

compressed R-8
formats U-11
specifying R-8
specifying format R-8
types of stimulus U-13

netlist file, setting text case R-335
NMOS U-118
NMOS transistors R-88
node

active node reporting R-168
capacitance R-41, R-42, R-123
changing connectivity R-105
current printing R-126, U-99
current reporting R-174
dangling node reporting R-171
forcing

logic state R-51
voltage R-53

getting connectivity R-66
hot spot reporting R-172
hotspot checking U-112
index number R-98
initial conditions R-253
logic state R-128
marking latches R-101
name R-99
partitioning R-381, R-382, R-385, R-387

releasing R-138, R-139
sensitivity R-251
simulating R-251, R-258, R-380, R-384,

U-129
skipping wirecap estimate R-107
tracing fanin R-329
U-state checking U-111
U-state reporting R-185
voltage R-131
X-state reporting R-187
Z-state checking U-112
Z-state reporting R-187

node names, listing by index R-99
node sensitivity control U-128
notation, bus R-210

O
online help

printing to file R-121
printing to the screen R-55

output files
compressing R-278
contents of R-405–R-417
FSDB format R-281
ISDB format R-281
prefix specification R-8
splitting R-322

output filter, selecting R-215

P
parameter R-64
parasitic, printing node voltage R-131
partition information, saving R-198
partitioning R-369, R-371, R-374, R-380,

R-385
analog R-356
at high connectivity nodes R-382, R-387
charge pump R-357
memories R-358



237
mixed-signal R-359
pattern matching R-102, R-271, R-454
phases, simulation R-74
PMOS U-118
power

assigning power budgets U-93
estimating maximum power U-103
getting power information interactively

U-94
in hierarchical netlists U-91
measuring true power (in watts) U-90

power analysis
accuracy R-275, R-285, R-290
block level R-43, R-45, R-140
block-level U-31
estimating maximum power U-41
full-chip U-29, U-85
max power estimation R-78
node level R-126, R-180
printing branch currents U-98
RC/UD mode U-119
static leakage paths U-79

power diagnosis
dynamic U-111
static U-116

power estimation (max) R-78, R-163, R-164,
R-165, R-232, R-336

PowerMill environment (graphic) U-9
powrmill command U-10, U-23

command-line options R-3–R-11
PPI detection R-101
print resolution, of waveforms U-130
printing

command descriptions R-55
current waveforms R-119, R-126, R-134
digital state printing options R-288
stage information R-76
voltage waveforms R-131

printing command descriptions R-121
printing windows R-286, R-292
probes

creating R-43, R-45, R-140, U-87, U-88,

U-90, U-91, U-100
printing current R-134, U-100
reporting current R-72, R-189

prompt (interactive), setting R-215
PWL simulation mode R-256, R-295, R-300

R
RC (full-delay) simulation mode R-257,

U-119
reporting

U-state R-185
Z-state R-187

resistor, setting value of R-296
resolution, current R-299
return codes R-11

S
saving partition information R-198
scripts, creating U-16
separator, hierarchical (setting) R-298
short-circuit current, See leakage current
simulation control R-34, R-369, R-371, R-374,

R-380
global time step control R-391
global voltage sensitivity R-390
printing the phase R-74
printing the time R-75
time step R-331, R-360

simulation execution
deleting interactive breakpoints R-50
listing interactive breakpoints R-95
setting simulation breakpoints R-225,

R-248
simulation mode U-119

PWL mode R-256, R-295
RC mode R-257, R-300
UD mode R-265, R-266, R-300, R-315

simulation modes U-131
simulation time resolution U-129
PowerMill User Guide



238 Combined Index
SimWave R-418
sinusoidal stimulus, setting the points in a

period R-308
spd, setting

for analog simulations, see aspd
for simulation R-301
on nodes R-258, U-129

spf, printing node voltage R-131
SPICE model

level 37 model R-239
level 41 model R-239
using charge conservation R-239

SPICE netlist format R-8
stage

getting information R-76
printing R-76

state
tracing connectivity R-330

static power analysis U-116
step size control R-331
stimulus descriptions, See netlist file
stimulus files U-13
stimulus options R-318
subthreshold current R-366, R-373
swapping, ADFMI models R-324

T
technology files

automatic generation R-9, U-12
specifying R-9

technology files, controlling grid size R-137
threshold voltage R-261
time resolution

control U-129
output R-290
simulation R-303

time step
control R-331
control (tres) U-129
selection parameter (spd), changing

U-129

time, simulation R-75
tracing connectivity R-327, R-328
tracking intervals, setting R-286, R-292,

U-101
transistors

NMOS R-88
transistors (parallel), merging R-104
transition times, reporting R-181
tres control U-129
true power (in watts), measuring U-90
turboWave R-418
turboWave screens U-21, U-137
tutorials

basic PowerMill simulation U-22
block-level power analysis U-31
finding DC paths U-37
Finding Static Leakage Paths U-79
full-chip power analysis U-29
maximum power estimation

combinational circuits U-41
customizing objective functions

with ADFMI U-69
sequential circuits U-50

U
UD (unit-delay) simulation mode R-265,

R-266, R-300, R-315, U-119
units

argument units R-20
changing units R-23

UNIX commands
cat U-27
cp U-22, U-138, U-205

U-state
printing R-215
reporting R-185, R-338

utilities
edisplay R-417
Eview R-418



239
V
VCVS R-270
vector applying R-318
vector checking

options R-338
setting comparison windows R-340
setting vector drive resistance R-318
setting vector high/low voltages R-260,

R-318
setting vector slope rise/fall times R-318
skipping vector comparison for given

nodes R-337
vector files U-13

automatic vector generation U-41, U-103
 See also, GAP feature

Verilog netlist format R-8
ViewTrace R-418
voltage forcing R-53
voltage resolution

controlling U-132
limits U-132

voltage source R-270
voltage waveforms, printing R-131
VSRC R-270
VTRAN program U-24

W
warning messages

limiting (by index) R-92
limiting (by phase) R-93
printing control R-237
-w command-line option R-237

wasted power R-140, U-88
See also, leakage current

wattage report, creating U-90
waveform display, changing R-451
waveform viewers

SimWave R-418
turboWave R-418
ViewTrace R-418

waveforms
block analysis simulation U-34
DC paths U-40
full-chip power simulation U-31
maximum instantaneous power U-49,

U-62, U-67
waveforms, print resolution U-130
wirecap, adding R-42

X
X-state

printing R-288

Z
Z-state

printing R-288
reporting R-187, R-338
PowerMill User Guide



240 Combined Index



PowerMill User Guide

Index
Symbols
$EPIC_HOME 13, 21, 137, 205
.dcpath file (sample) 39
.epicrc file

description 10
keywords 14
sample 15

A
-A command-line option 132
ACE tutorials

CV curve generation 139
differentiator simulation 149
integrator simulation 147
PLL SPICE macro modeling 151, 156
step input simulation 145
voltage follower simulation 143

ADFMI, See ADFMI Manual
analog circuit simulation 125–134, 137–158
aspd 129
autodetection selection 125
automatic memory 229

automatic techfile generation 12
automatic vector generation 103

See also, GAP feature

B
batch mode 10
block power analysis 31, 87, 88, 90, 91
branch, See element
BSIM1 models 13
BSIM2 models 13
BSIM3 v3 models 13

C
chip-level power analysis 85
command-line options

-A 132
comment line, in .epicrc file 15
configuration commands

assign_branch_i 100, 122
assign_node_i 100, 122
limit_dcpath_search 115



242 Index
print_branch_i 122
print_node_i 86, 122
print_node_logic 23, 30
print_node_v 23, 30
print_probe_i 30, 100, 122
report_block_leakage 89
report_block_powr 30, 88, 122
report_ckt_dcpath 38, 39, 115
report_ckt_leak 117, 118
report_ckt_phist 101
report_elem_exi 112, 122
report_elem_i 101
report_node_hotspot 112
report_node_i 86, 101, 122
report_node_maxrf 119
report_node_powr 23, 86, 100
report_node_quick 112
report_node_u 112
report_node_z 112
report_probe_i 100, 101, 122
search_ckt_analog 126, 128
search_ckt_cpump 126
search_ckt_logic 126, 128
search_ckt_mem 126, 128
search_ckt_msx 126, 127
search_ckt_rc 127
search_ckt_ud 127
set_dcpath_thresh 38, 115
set_elem_acc 131
set_elem_pwl 131
set_elem_sms 131
set_elem_sync 131
set_hotspot_factor 114
set_node_aspd 129
set_node_spd 129
set_node_thresh 112, 119
set_print_ires 131
set_print_iwindow 102
set_print_tres 131
set_print_vres 131
set_sim_aspd 130
set_sim_spd 130

set_sim_subgroup 130
set_sim_trap 156
set_sim_tres 129
use_sim_case 10

configuration files 12
current printing and reporting

block 87
element 98
histogram 101
node 99
probes 100

current resolution, controlling 132

D
DC paths

finding (tutorial) 37
static 117

diagnosing power problems
dynamic 111
static 116

double-precision mode 132
dynamic power analysis 111

E
element

current printing 98
printing branch currents 98

EPIC_HOME environment variable 21, 205
EPIC_USE_SHM environment variable 229
epicrc file

See .epicrc file 15
event resolution voltage (esv), setting 128

F
file samples

.epicrc file 15
block power report 229

files



243
See .epicrc files
See input files

G
GAP feature 103

tutorials 41, 50, 69
Gentech utility 12
graphical analyst

child cells 198
path tracing 199
power diagnostics browser

error list 191
show info about box 196

H
hierarchy browser

options menu 196
panning display 195
path tracing 199
select instances to display 198
set expansion threshold 197
show instructions 196
tree display 195

histogram, current 101
HSPICE/SPICE netlists 11

I
input files

configuration 12
netlist 11
stimulus 13
technology 12

J
JFET models 13

K
Kirchhoff’s Current Law 99

L
leakage current

detecting DC paths 115
measuring 88

logic diagrams
adder circuit with four-bit output

register 27
cell of four-bit adder circuit 20
four-bit adder circuit 19
xor2 cell 20

M
maximum power estimation 41, 103

See also, GAP feature
memory, shared 229
MESFET models 13
mixed-signal simulation 125
models (directly supported)

BSIM1 13
BSIM2 13
BSIM3 v3 13
JFET 13
MESFET 13
MOS9 13

multirate simulations (ACE) 130

N
netlist file

formats 11
types of stimulus 13

NMOS 118
node

current printing 99
hotspot checking 112
PowerMill User Guide



244 Index
simulating 129
U-state checking 111
Z-state checking 112

node sensitivity control 128

P
PMOS 118
power

assigning power budgets 93
estimating maximum power 103
getting power information

interactively 94
in hierarchical netlists 91
measuring true power (in watts) 90

power analysis
block-level 31
estimating maximum power 41
full-chip 29, 85
printing branch currents 98
RC/UD mode 119
static leakage paths 79

power diagnosis
dynamic 111
static 116

PowerMill environment (graphic) 9
powrmill command 10, 23
print resolution, of waveforms 130
probes

creating 87, 88, 90, 91, 100
printing current 100

R
RC (full-delay) simulation mode 119

S
scripts, creating 16
shared memory 229
simulation mode 119

simulation modes 131
simulation time resolution 129
spd, setting

on nodes 129
static power analysis 116
stimulus files 13

T
technology files

automatic generation 12
time resolution

control 129
time step

control (tres) 129
selection parameter (spd), changing 129

tracking intervals, setting 101
tres control 129
true power (in watts), measuring 90
turboWave screens 21, 137
tutorials

basic PowerMill simulation 22
block-level power analysis 31
finding DC paths 37
Finding Static Leakage Paths 79
full-chip power analysis 29
maximum power estimation

combinational circuits 41
customizing objective functions with

ADFMI 69
sequential circuits 50

U
UD (unit-delay) simulation mode 119
UNIX commands

cat 27
cp 22, 138, 205



245
V
vector files 13

automatic vector generation 41, 103
 See also, GAP feature

voltage resolution
controlling 132
limits 132

VTRAN program 24

W
wasted power 88

See also, leakage current
wattage report, creating 90
waveforms

block analysis simulation 34
DC paths 40
full-chip power simulation 31
maximum instantaneous power 49, 62,

67
waveforms, print resolution 130
PowerMill User Guide



246 Index


	PowerMill User Guide
	Table of Contents
	About This Manual
	Introduction to PowerMill
	Overview
	Major Functions and Features
	Inputs, Outputs, and Interfaces


	Getting Started
	Overview
	The PowerMill Environment

	The PowerMill Command
	Batch Versus Interactive Mode
	Environment File

	Netlist Files
	Using HSPICE/SPICE Format
	HSPICE Netlist Compatibility

	Using Other Formats

	Configuration Files
	Technology Files
	Stimulus Files
	Creating the Environment (.epicrc) File
	Running a Basic Simulation

	PowerMill Tutorials
	Overview
	Tutorials Included in this Chapter

	Getting the Input Files
	A Basic PowerMill Simulation
	Tutorial 1: Running a Basic Simulation
	Procedure


	Advanced PowerMill Simulations
	Before You Begin
	Tutorial 2: Performing a Full-Chip Power Analysis
	Files Needed for this Tutorial
	Procedure

	Tutorial 3: Performing a Block-Level Power Analysis
	Files Needed for this Tutorial
	Procedure
	Differences Between the Resulting Block Power Reports

	Tutorial 4: Finding DC Paths
	Procedure

	Tutorial 5: Estimating Maximum Power for Combinational Circuits
	Files Needed for this Tutorial
	Procedure

	Tutorial 6: Estimating Maximum Power for Sequential Circuits
	Identifying the Pseudo-Primary Inputs
	Testing Latch Functionality for Flip-Flops with Non-Buffered Outputs
	Files Needed for this Tutorial
	Procedure
	Using PathMill to Detect PPIs

	Tutorial 7: Customizing a GAP Objective Function using an ADFMI Code File
	Procedure

	Tutorial 8: Finding Static Leakage Paths
	Procedure



	Power Analysis
	Overview
	Analyzing Power Consumption
	Analyzing Power at Full-Chip Level
	Analyzing Power Block-by-Block
	Measuring Wasted Power
	Measuring True Power in Watts
	Measuring Power Hierarchically
	Assigning Power Budgets
	Retrieving Power Information Interactively
	Controlling Power Reporting Resolution and Accuracy
	Printing and Reporting Branch Currents
	Printing and Reporting Internal Node Currents
	Working with Probes
	Current Histograms and Tracking Windows

	Using the GAP Feature to Estimate Maximum Power
	Running a Basic GAP Estimation
	Procedure

	Creating a Customized Fitness Function

	Performing a Dynamic Power Consumption Analysis
	Checking Dynamic Rise and Fall Times (U-State Nodes)
	Detecting Dynamic Floating Nodes (Z-State Nodes)
	Detecting Excessive Branch Currents
	Analyzing Hot-Spot Node Currents
	Detecting Dynamic DC Paths

	Performing a Static Power Consumption Diagnosis
	Detecting Static DC Paths
	Static Excessive Rise/Fall Time Detection

	Analyzing Power Using the RC and UD Simulation Modes
	Technical Background
	Running a Simulation in RC or UD Mode


	Using the ACE Feature
	Overview
	Included in this Chapter

	Selecting Autodetection Rules
	Applying Multiple Autodetection Rules

	Controlling Node Sensitivity
	Controlling the Simulation Time Resolution
	Changing the Time Step Selection Parameter
	Applying Multiple Time Steps (Multi-Rate Simulations)
	Controlling Waveform Print Resolution
	Applying Multiple Simulation Modes
	Activating Double-Precision Mode
	Simulation Speed and Double-Precision

	Controlling Voltage and Current Resolution
	Simulating BJTs
	Procedure for Simulating BJTs


	ACE Tutorials
	Overview
	Getting the Input Files
	Tutorial 1: CV Curve Generation
	Files Needed for this Tutorial
	Procedure

	Tutorial 2: Operational Amplifier Simulations
	Voltage Follower Simulation
	Step Input Simulation
	Integrator Simulation
	Differentiator Simulation

	Tutorial 3: PLL SPICE Macro Modeling
	Files Needed for this Tutorial
	Procedure

	Tutorial 4: Crystal Oscillator Simulation
	Files Needed for this Tutorial
	Procedure



	Using the PowerMill Graphical Analyst
	Overview
	Running a Basic PowerMill Simulation
	Starting the Graphical Analyst
	Main Window
	File Menu
	Options Menu
	Help Menu
	Simulation Setup Button
	Start Simulation Button
	Result Analysis Button
	Hierarchy Browser Button
	Simulation Log Display
	Error/Warning Display
	Result Display
	Sort By Menu

	Setting Up a Run
	Specifying a Work File
	Using the File Finder Form

	Importing Existing Run Scripts
	Specifying Netlist and Technology Files
	Setting the Simulation Time
	Design Library
	Command-Line Options
	Saving, Clearing or Cancelling Your Changes

	Power Supply Setup
	Block Setup
	Selecting Blocks
	Saving, Clearing or Cancelling Your Changes

	Power Diagnosis Setup
	Static Power Checks
	Excessive Current
	Tristate Check
	Report Hazards
	Power Distribution
	Showing or Hiding Help Messages
	Saving or Clearing Checks

	Running a Simulation
	Analyzing a Circuit
	Power Consumption
	Sort By Menu
	Hierarchical View of Power Consumption

	Results Analysis
	Power Histogram
	File Menu
	View Menu
	Options Menu

	DC Path Browser
	File Menu
	Option Menu
	Analyzing DC Paths
	Standalone Version of DC Path Browser

	Power Diagnostics Browser
	Selecting Checks
	File Menu

	Waveform Tool
	Hierarchy Browser
	File Menu
	Hierarchy Display
	Panning Display
	Tree Display
	Show Info
	Options
	Show Internal Nets
	Show Instructions
	Ordering Instance Information
	Set Expansion Threshold
	Select Instances to Display
	Displaying Connectivity
	Drag and Drop



	PowerMill Graphical Analyst Tutorial
	Overview
	Getting the Input Files
	Starting the Graphical Analyst
	Setting Up for a Simulation
	Specifying Design Data
	Setting Up the Power Supply and Blocks
	Specifying Diagnosis Checks

	Running the Simulation
	Analyzing Results
	Viewing Histogram Information
	Viewing the DC Paths
	Viewing the Power Diagnostics


	Sample Power Reports
	Sample Block Power Report
	Sample .power File

	Using Shared Memory
	Combined Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Z

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	P
	R
	S
	T
	U
	V
	W



