
 - 1 - 

Version 1.5 (April, 2006) 

 
User Guide for Program CARE-2  

Anne Chao and Hisn-Chou Yang 
Institute of Statistics, National Tsing Hua University, Hsin-Chu, Taiwan 

 

Table of Contents: 
1. Introduction 

2. Download and Setup 

3. Data Input Format 

4. Analysis without Covariates 

      Example 1: Deer mice data (individual capture history data) 

      Example 2: Mouse data (individual capture history) 

      Example 3: Mouse data (aggregated categorical data) 

      Example 4: Cottontail rabbit data (individual capture history) 

5. Analysis with Covariates 

      Example 5: Deer mice data (with three individual covariates) 

Example 6: Rodents data (two individual covariates and one occasional covariate) 

Appendix 

 
 
1. Introduction 

Program CARE-2 calculates population size estimates for various closed 

capture-recapture models.  The program consists of two parts: one part, written in C 

Language, deals with models without covariates and the other part, written in GAUSS 

language, deals with models with covariates.  

 

In this manual, we outline the downloading and setup procedures (Section 2), data 

input formats (Section 3).  Operation procedures, models and estimators featured in 

CARE-2 are described in Section 4 (for models without covariates) and Section 5 (for 

models with covariates).  Examples are provided and sample outputs are shown.  

Results for each example are also discussed to help the user interpret the numerical 

output. 
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Before using CARE-2, the user is suggested to read two introductory chapters in a 

Handbook of Capture-Recapture (Chao and Huggins, 2003) where some backgrounds 

and historical development are provided.   

You are welcome to use CARE-2 for your own research and applications as long as 

you will not distribute CARE-2 in any commercial form.  If you publish your work based 

on the results from CARE-2, please use the following reference for citing CARE-2. 

 Chao, A. and Yang, H.-C. (2003) Program CARE-2 (for Capture-Recapture Part. 

2).  Program and User's Guide published at http://chao.stat.nthu.edu.tw.   

 

The maximum input size in CARE-2 is 2000 individuals and 80 occasions.  If your 

data exceed these sizes, please send a mail to us indicating your size; we will send you 

a modified program that fits your data input. 

 

2. Download and Setup 
    Program CARE-2 can be downloaded from Anne Chao’s website at 

http://chao.stat.nthu.edu.tw/softwareCE.html.  First doubly click the downloaded file 

“care-2.exe” to unzip all files to a specified folder.  Then doubly click the executable file 

“setup.exe” to install the program.  The source files along with six illustrative data sets 

will be stored automatically in the specified folder in your computer.  

   

Analysis without covariates 

    After the setup, doubly click the executable file “CARE-2.exe” to start the program 

with the interface shown in Figure 1.  
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   Figure 1.  The interface of CARE-2 for analysis without covariates. 
 

 
 

Analysis with covariates 

 

The covariate analysis is not embedded in the interface of Figure 1.  A working 
environment of Gauss is provided by the following procedure: first doubly click the 
“GRTM.exe” to unzip all files of the Gauss Run-Time Module (GRTM) in the previously 
specified folder.  Then doubly click the executable file “setup.exe” to install the Gauss 
Run-Time Module, which is GUASS free-ware for non-commercial redistribution.  (The 
GRTM allows licensee to redistribute licensee’s compiled GAUSS programs free of 
charge to other users who do not have GAUSS so long as licensee’s GAUSS program is 
distributed free of charge.)  Then doubly click the icon “GSRUN50” on the desktop of 
your computer to initialize the Gauss Run-Time Module and then the interface is shown 
below.   
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Figure 2.  The interface of CARE-2 for analysis with covariates. 
 

 
 
 

 

3. Data Input Format 
Data must be read from an ascii file.  There are two types of data input formats: 

(1) Individual Capture History: 

Data are arranged in a matrix, called “individual capture history” matrix, with the rows 

representing the capture histories of each captured individual and the columns 

representing the captures on each occasion.  The capture history of each captured 

individual is expressed as a series of 0’s (non-captures) and 1’s (captures) possibly 

followed by some individual covariates.  The maximum size for capture history 

matrix input in CARE-2 is 2000 individuals and 80 occasions. 

(2) Aggregated Categorical Data:  

In some studies with many captured individuals, the individual capture history matrix 

becomes very large.  It is more convenient to represent the raw data in a categorical 

data by a tally of the frequencies of each capture history.  

The two types of data input will be illustrated by examples in the following sections. 
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4.  Analysis Without Covariates 
Models/Estimators Featured  

The models considered in CARE-2 are originally proposed in Otis et al. (1978) and 

White et al. (1982) and are tabulated in Table 1.  Assume that there are N animals in the 

study area and capture-recapture experiments are conducted over t occasions.  The 

purpose is to estimate the unknown parameter N.  Under each model, there are many 

available estimators in the literature.  The estimators featured in CARE-2 and their 

abbreviations in output (see later sample output for four examples) are shown in Table 2. 

All the estimators are shown in the Appendix. 

 

Table 1.  Models without covariates in CARE-2. 

Pij denotes the capture probability of the ith animal on the jth occasion 

pi: heterogeneity effect of the ith individual, i =1, 2, …, N; 

ej: time or occasional effect of the jth occasion, j = 1, 2, …, t; 

φ: behavioral response effect. 
Model Assumption Restriction in model Mtbh  
Mtbh 

⎩
⎨
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Mbh 
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(Generalized removal model) 

 set ej = 1  

Mtb 

⎩
⎨
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recaptureanyfor
capturefirstuntil
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 set pi = 1 

Mth jiij epP =   set φ = 1 
Mh iij pP =   set ej = 1, φ = 1  
Mb 

⎩
⎨
⎧

=
recaptureanyfor
capturefirstuntil

p
p

Pij φ
 

(Removal model) 

 set pi = p, ej = 1   

Mt jij eP =   set pi = 1, φ = 1  
M0 Pij = p  set pi = p, ej = 1, φ = 1 
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Table 2.  Estimators and their abbreviations in program CARE-2. 

Model Estimators/Approaches Estimators in Software CARE-2 

M0 Unconditional MLE (UMLE) 
Conditional MLE (CMLE) 
Estimating equations (EE) 

Otis et al. (1978) 
Darroch (1958) 
Yip (1991) 

Mt  Unconditional MLE (UMLE) 
Conditional MLE (CMLE) 
Estimating equations (EE) 

Otis et al. (1978) 
Darroch (1958) 
Yip (1991) 

Mb Unconditional MLE (UMLE) 
Conditional MLE (CMLE) 
Estimating equations (EE) 

Otis et al. (1978) 
Zippin (1956) 
Lloyd (1994) 

Mtb Unconditional MLE (UMLE) 
Conditional MLE (CMLE) 
Estimating equations (EE) 

Chao et al. (2000) 
Chao et al. (2000) 
Lloyd (1994); Chao et al. (2000) 

Mh Jackknife (JK1, JK2, IntJK) 
Sample coverage (SC1 & SC2)
Estimating equations (EE) 

Burnham and Overton (1978) 
Lee and Chao (1994) 
Chao et al. (2001) 

Mth Sample coverage (SC1 & SC2)
Estimating equations (EE) 

Lee and Chao (1994) 
Chao et al. (2001) 

Mbh Jackknife (JK) 
Sample coverage (SC) 
Estimating equations (EE) 

Pollock and Otto (1983) 
Lee and Chao (1994) 
Chao et al. (2001) 

Mtbh Estimating equations (EE) Chao et al. (2001) 

 

Program CARE-2 calculates two standard error estimates. One is the asymptotic s.e. 

(Asy_s.e. in output) which is obtained by inverting a Fisher information matrix (for models 

without heterogeneity) or by a delta method (for heterogeneous models).   For the 

estimating equation (EE) approach, the asymptotic s.e. is not obtainable for models Mh, 

Mth, Mbh and Mtbh because of complexity.  The other method is bootstrap s.e. (Boot_s.e. 

in output), which is always obtainable for all estimators.  

  

For interval estimation, CARE-2 provides two 95% confidence intervals based on a 

log-transformation method (Chao, 1987) and percentile method (Efron and Tibshirani, 

1993) respectively.  Both intervals are constructed from the bootstrap s.e.  We remark 

that the bootstrap standard error (Boot_s.e.) and confidence intervals may vary from trial 

to trial because the bootstrap replication data vary with trials. 
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Running Procedures 

(1) Doubly click the executable file CARE-2.exe, it prompts you the interface window as 

shown in Figure 1. 

(2) Click “Without Covariate” from the top menu of CARE-2.  There are four items to be 

specified before executing CARE-2 as shown in Figure1. They are Model, Bootstrap, 

Confidence Interval and Data Structure as explained in the following four steps.  

(3) Model Selection: select suitable model(s) for your data.  You can check all model 

boxes to include eight models for comparisons.  The model description is listed in 

Table 1. 

(4) Bootstrap Selection: select whether you like to do the bootstrap for obtaining 

standard error estimates and confidence intervals or not.  If yes, then select the 

number of replications (1000 is suggested). 

(5) Confidence Interval Selection: select whether you like to have a 95% confidence 

interval or not.  If your selection is “yes”, you must also check “yes” in step (4) for the 

bootstrap selection and specify the number of replications. 

(6) Data Structure Selection: select the format of your data set.  Two types of data 

formats are described in Section 3. 

(7) Click “Load Data” to input the filename of your data file (e.g. c:\program 

files\CARE-2\data\example1.dat). 

(8) Click “Compute” to get the results.  (Wait a while for executing the program. The 

execution time depends on the size of data and the number of bootstrap replications.) 

(9) Click “Output” from the top menu to view the results.  You can click “Save Output” to 

save all the output results to a designated file; click “Print” to print the output from 

your printer; or click “Clear” to remove all results and to proceed another run.  

 

Examples 

Four examples are used to demonstrate the use of CARE-2 for analyzing animal 

capture-recapture data without covariates.  All data sets used in this guide are 

distributed with CARE-2 and stored by default in the directory c:\program 

files\CARE-2\data.  The output will be shown and briefly described.  The four 

examples used in this section are: 
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Example 1: Deer mice data in a format of individual capture history (data in file: 

example1.dat). Refer to Chao and Huggins (2003) for detailed analysis. 

Example 2: Mouse data in a format of individual capture history (data in file: 

example2.dat).  Refer to Chao et al. (2001) for detailed analysis. 

Example 3: Same data set as in Example 2, but in a format of aggregated categorical 

form (data in file: example3.dat). 

Example 4: Cottontail rabbit data in a format of individual capture history form (data in 

file: example4.dat). Refer to Chao et al. (1992) for detailed analysis. 

 

Example 1: Deer mice data (individual capture history data) 

These data were collected by V. Reid and are distributed with program CAPTURE 

(Otis et al., 1978; White et al., 1982; Rexstad and Burnham, 1991).  The data arose 

from a live-trapping experiment that was conducted for six consecutive nights with a total 

of 38 mice captured over these six capture occasions.  In data file example1.dat, a 

matrix of 38 x 6 is recorded.  Analyses of these data include Otis et al. (1978, p. 32), 

Huggins (1991) and Chao and Huggins (2003). 

 

Using the procedure as described in the above and selecting all models in step (3), 

the following output is shown in the Output window after execution.  The output 

contains three parts: (1) basic data information; (2) summary statistics; and (3) results of 

estimation. 

 

Table 3.  The output of deer mice data analysis. 

 
(1) Basic Data Information: 

           ----------------------------------------------- 

                            Data filename : c:\program files\CARE-2\data\example1.dat 
              Total # of distinct animals : 38 

              Number of capture occasions : 6 

                   Bootstrap replications : 1000 

           ----------------------------------------------- 

 

(2) Summary Statistics: 

 

         i   |   u[i]   m[i]   n[i]   M[i]   ft[i]   f1[i] 

     --------+------------------------------------------------ 

         1   |    15      0     15      0       9      15 

         2   |     8     12     20     15       6      11 

         3   |     6     10     16     23       7      14 

         4   |     3     16     19     29       6      11 

         5   |     3     22     25     32       6       8 

         6   |     3     22     25     35       4       9 

         7   |                         38 
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     ft[i]: # of individuals that were captured exactly i times on occasions 1, 2, ..., t. 

     f1[i]: # of individuals that were captured exactly once on occasions 1, 2, ..., i. 

 

(3) Estimation Results: 

 

      Model     |   Estimate  Boot_s.e.   Asy_s.e.     Phi       CV    95% CI (log-transf.)  95% CI (percentile)  

----------------+----------------------------------------------------------------------------------------------- 

      M0(CMLE)  |     38.5      0.36        0.72                         (  38.12, 39.81 )     (  38.13, 39.55 )   

      M0(UMLE)  |     38.0      0.24        0.67                         (  38.00, 38.00 )     (  38.00, 38.83 )   

      M0(EE)    |     38.0      0.36        0.68                         (  38.00, 38.00 )     (  38.00, 39.22 )   

      Mt(CMLE)  |     38.4      0.31        0.66                         (  38.11, 39.51 )     (  38.08, 39.27 )   

      Mt(UMLE)  |     38.0      0.14        0.62                         (  38.00, 38.00 )     (  38.00, 38.53 )   

      Mt(EE)    |     38.0      0.21        0.62                         (  38.00, 38.00 )     (  38.00, 38.73 )   

      Mb(CMLE)  |     42.3      7.30        3.75      1.92               (  38.43, 80.28 )     (  38.77, 57.41 )   

      Mb(UMLE)  |     40.8      6.91        3.05      1.79               (  38.18, 81.43 )     (  38.00, 51.98 )   

      Mb(EE)    |     41.9      5.29        3.58      1.89               (  38.53, 66.84 )     (  38.00, 53.28 )   

      Mh(SC1)   |     43.5      3.81        3.72                0.50     (  39.64, 56.78 )     (  39.65, 50.94 )   

      Mh(SC2)   |     42.4      3.52        3.40                0.48     (  39.09, 55.48 )     (  38.73, 49.29 )   

      Mh(JK1)   |     45.5      3.58        3.71                         (  41.09, 56.22 )     (  41.33, 49.67 )   

      Mh(JK2)   |     48.3      5.78        5.68                         (  41.69, 66.72 )     (  39.73, 57.83 )   

      Mh(IntJK) |     45.5      8.35        3.71                         (  39.29, 81.58 )     (  41.33, 70.24 )   

      Mh(EE)    |     40.2      2.14        ----                0.50     (  38.44, 48.89 )     (  38.00, 43.76 )   

      Mtb(CMLE) |     48.0     12.78       11.98      2.95               (  39.46,106.76 )     (  38.78, 85.55 )   

      Mtb(UMLE) |     43.6     11.12        6.90      2.34               (  38.47,104.74 )     (  38.07, 80.31 )   

      Mtb(EE)   |     47.1      8.51       10.78      2.82               (  39.91, 81.09 )     (  38.00, 68.25 )   

      Mth(SC1)  |     43.6      3.97        3.77                0.51     (  39.62, 57.57 )     (  39.70, 51.76 )   

      Mth(SC2)  |     42.5      3.41        3.45                0.49     (  39.18, 54.85 )     (  38.90, 48.89 )   

      Mth(EE)   |     40.3      2.20        ----                0.51     (  38.48, 49.14 )     (  38.00, 44.26 )   

      Mbh(SC)   |     50.5     23.43        ----                0.60     (  39.13,176.57 )     (  38.89,125.72 )   

      Mbh(JK)   |     53.0      9.43        ----                         (  42.84, 84.47 )     (  38.00, 73.00 )   

      Mbh(EE)   |     43.5      4.44        ----      1.68      0.40     (  39.36, 60.04 )     (  38.00, 51.33 )   

      Mtbh(EE)  |     44.2      4.58        ----      1.89      0.36     (  39.72, 60.60 )     (  38.10, 53.58 )   

----------------+----------------------------------------------------------------------------------------------- 

 

The first part of the output shows basic information including the data filename,  

(c:\program files\CARE-2\data\example1.dat for this example), the number of distinct 

animals caught in the experiment (38 in this case), the number of trapping occasions (6 

in this case) and the number of bootstrap replications (1000 in this case).  

 

The summary statistics are listed in the second part of the output.  We use these 

data to introduce some notation.  The numbers of captures for the six occasions are (n1, 

n2, ..., n6) = (15, 20, 16, 19, 25, 25).  Out of the nj animals, there are uj first-captures and 

mj recaptures, so that uj + mj = nj, with (u1, u2, ..., u6) = (15, 8, 6, 3, 3, 3) and (m1, m2, ..., 

m6) = (0, 12, 10, 16, 22, 22).  The statistic Mj denotes the number of marked animals 

just before the jth occasion.  Thus Mj  = u1 + u2 + …+ uj-1 and (M1, M2, ..., M7) = (0, 15, 

23, 29, 32, 35, 38) for these data.  That is, the number of marked individuals in the 

population progressively increased from M1 = 0 to M7 = 38.  Here Mt+1 denotes the total 

number of distinct animals caught in the experiment.  The frequency counts for the six 

occasions are (f16, f26, ..., f66) = (9, 6, 7, 6, 6, 4), where fjk denotes the number of animals 
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captured exactly j times on occasions 1, 2, …, k.  Since singleton information is usually 

important, we also list (f11, f12, …, f16) = (15, 11, 14, 11, 8, 9).   

 
The third part shows estimation results.  For these data, Otis et al. (1978, p. 32) 

indicated that the most suitable model for these data was model Mb.  Based on the 

usual unconditional MLE approach, Mb(UMLE) in Table 3, the estimated population size 

in model Mb is 41 with bootstrap s.e. of 6.9 and asymptotic s.e. of 3.1. The 95% 

confidence intervals are (38.2, 81.4) and (38.0, 52.0) for log-transformation and 

percentile methods respectively based on the bootstrap procedure.  The proportion 

constant between the re-capture probability and first-recapture probability (φ in Table 1 or 

Phi in Table 3) is estimated to be 1.79, suggesting animals became trap-happy after their 

first capture. 

 

Chao and Huggins (2003) suggested considering further general models Mbh and 

Mtbh by use of estimating equation (EE) approach.  The two models produce close 

estimates, Mbh(EE) and Mtbh(EE) in Table 3.  So it is reasonable to adopt the most 

general model Mtbh and conclude that the population size is about 44 (standard error 4.6).  

The data based on model Mtbh show strong trap-happy behavior (Phi = 1.89 in Table 3), a 

low degree of heterogeneity (the CV estimate is 0.36, where CV denotes the coefficient 

of variation of {p1, p2, …, pN), and slight time-varying effects as the relative time effects 

are estimated to be )( 621 ep...,,ep,ep = (0.34, 0.32, 0.26, 0.26, 0.33, 0.33), where p  

denotes the average of pi’s.  (Time effects are not shown in the output.  Refer to Chao 

et al. 2001 for calculation formula.)   

 

The 95% confidence interval using a log-transformation under model Mtbh is 40 to 

61.  This interval is unavoidably wider than that for model Mb because more parameters 

are involved.  Usually, a simpler model has smaller variance but larger bias whereas a 

general model has lower bias but larger variance.  For interval estimation, a simpler 

model produces narrow confidence interval with possibly poor coverage probability 

whereas a more general model produces wide interval with more satisfactory coverage 

probability.  A trade-off clearly occurs with this example.  

 

Example 2: Mouse data (individual capture history) 
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The mouse data were originally collected by S. Hoffman and described and analyzed 

in Otis et al. (1978, p. 93).  Trapping was conducted on five days and 110 distinct mice 

were caught.  We specifically select this example because a detailed analysis is given 

in Chao et al. (2001).   

 

For this data set, since Otis et al. (1978) concluded that for these data behavior is 

the strongest factor affecting capture probabilities, we select three models with 

behavioral response (models Mb, Mtb and Mtbh) in step (3) of the procedures presented 

earlier.  The results are the following: 

 

   Table 4.  The output of mouse data analysis. 
(1) Basic Data Information: 

           ------------------------------------------------------------ 
                            Data filename   : c:\program files\CARE-2\data\example2.dat 
                   Total distinct animals   : 110 
                Number of capture occasions : 5 
                   Bootstrap replications   : 1000 
           ------------------------------------------------------------ 
 
(2) Summary Statistics: 
 
         i   |   u[i]   m[i]   n[i]   M[i]   ft[i]   f1[i] 
     --------+------------------------------------------------ 
         1   |    37      0     37      0      34      37 
         2   |    31     23     54     37      20      45 
         3   |     9     49     58     68      28      27 
         4   |    21     44     65     77      15      38 
         5   |    12     57     69     98      13      34 
         6   |                        110 
 
     ft[i]: # of individuals that were captured exactly i times on occasions 1, 2, ..., t. 
     f1[i]: # of individuals that were captured exactly once on occasions 1, 2, ..., i. 
 
(3) Estimation Results: 
 

      Model           |     Est.    Boot_s.e.   Asy_s.e.     Phi       CV     95%CI(log-transf.)  95%CI(percentile)  
-------------------+----------------------------------------------------------------------------------- 
      Mb(CMLE)        |    145.5     25.40       18.02      2.51               ( 120.09,235.16 )     ( 124.23,214.34 )   
      Mb(UMLE)        |    142.2     22.68       16.42      2.42               ( 119.28,221.72 )     ( 122.92,206.70 )   
      Mb(EE)          |    139.9     21.84       15.37      2.36               ( 118.32,217.71 )     ( 120.80,195.35 )   
      Mtb(CMLE)       |    173.7     46.20       55.69      3.63               ( 127.83,337.77 )     ( 123.85,293.48 )   
      Mtb(UMLE)       |    161.1     42.71       41.72      3.19               ( 122.25,322.82 )     ( 121.45,285.52 )   
      Mtb(EE)         |    152.0     28.68       32.87      2.87               ( 122.46,251.21 )     ( 118.99,224.05 )   
      Mtbh(EE)        |    123.2     11.75        ----      1.03      0.52    ( 112.95,169.00 )     ( 113.51,156.30 )   
--------------------+-------------------------------------------------------------------------------- 

 

 

As in Example 1, estimation results for the selected models follow the basic data 

information and summary statistics.  The model selection procedure in Otis et al. (1978, 

pp. 92-96) shows that the most likely model is model Mtbh and model Mb is the next most 

likely model.  In the following discussion, we interpret the results for these two models 

based on the above output.   
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The unconditional MLE for model Mb , Mb(UMLE) in Table 4, yields an estimate of 

142.2 with an asymptotic s.e. of 16.42 and a bootstrap s.e. of 22.68.  A 95% confidence 

interval constructed by a log-transformation is in the range of (119, 222); the bootstrap 

percentile method gives an interval range of (123, 207).  The ratio of recapture and 

first-capture probabilities, φ, is estimated to be 2.42 (Phi = 2.42 in the output), which 

shows a trap-happy situation.  The conditional MLE estimate is 145.5 and the estimate 

based on an optimal estimating equation is 139.9.  Their associated variance and 

confidence intervals are shown in the above output.   

 

If model Mtbh is assumed, an estimating equation approach (Chao et al., 2001) 

yields an estimate of 123 with an estimated bootstrap s.e. of 11.75.  A 95% confidence 

interval associated with this estimate under model Mtbh is (113, 169) or (114, 156) based 

on two methods. 

 

Example 3: Mouse data (aggregated categorical data) 

In Example 2, we used the mouse data with individual capture history.  

Example3.dat files the data in a format of aggregated categorical data.  The user can 

view Example3.dat for the required format for CARE-2.  All running procedures are 

similar to those in Examples 1 and 2 except that aggregated categorical data is selected 

in step (6).  The output is exactly the same as that in Example 2 except for the bootstrap 

s.e. and confidence intervals. 

   

Example 4: Cottontail rabbit data (individual capture history) 

Edwards and Eberhardt (1967) conducted an 18 trapping-occasion 

capture-recapture experiment on a confined population of known size.  In their study, 

135 wild cottontail rabbits were penned in a 4-acre rabbit-proof enclosure.  Out of 142 

captures, there were 76 distinct rabbits.  An advantage of this data set is the true 

population size is known.  The basic data information and the summary statistics are 

shown in Table 5.   

 

Otis et al. (1978, pp. 84-87) found that for these data there was significant time 

variation and heterogeneity but little behavioral response.  Hence we select all models 

with time and/or heterogeneity (models Mt, Mh and Mth) along with the most general 
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model Mtbh. This data was analyzed in the literature (e.g. Burnham and Overton, 1978; 

Chao et al., 1992). This data set with individual capture history is filed in “example4.dat”. 

The output for models Mt, Mh and Mth is given in Table 5. 

 

     Table 5.  The output of cottontail rabbit data analysis. 
(1) Basic Data Information: 
           ------------------------------------------------------------ 
                            Data filename   : c:\program files\CARE-2\data\example4.dat 
                   Total distinct animals   : 76 
                Number of capture occasions : 18 
                   Bootstrap replications : 1000 
           ------------------------------------------------------------ 
 
(2) Summary Statistics: 
 
         i   |   u[i]   m[i]   n[i]   M[i]   ft[i]   f1[i] 
     --------+------------------------------------------------ 
         1   |     9      0      9      0      43       9 
         2   |     6      2      8      9      16      13 
         3   |     3      6      9     15       8      12 
         4   |    11      3     14     18       6      22 
         5   |     4      4      8     29       0      24 
         6   |     1      4      5     33       2      23 
         7   |    10      8     18     34       1      29 
         8   |     7      4     11     44       0      35 
         9   |     1      3      4     51       0      35 
        10   |     1      2      3     52       0      35 
        11   |     9      7     16     53       0      43 
        12   |     0      5      5     62       0      41 
        13   |     1      1      2     62       0      41 
        14   |     5      2      7     63       0      46 
        15   |     6      3      9     68       0      50 
        16   |     0      0      0     74       0      50 
        17   |     0      4      4     74       0      47 
        18   |     2      8     10     74       0      43 
        19   |                         76 
 
     ft[i]: # of individuals that were captured exactly i times on occasions 1, 2, ..., t. 
     f1[i]: # of individuals that were captured exactly once on occasions 1, 2, ..., i. 
 
(3) Estimation Results  
 

      Model           |     Est.    Boot_s.e.   Asy_s.e.     Phi       CV      95%CI(log-transf.) 95%CI(percentile)  
----------------------+----------------------------------------------------------------------------------- 
      Mt(CMLE)        |     96.0      8.13        6.70                         (  85.27,119.04 )     (  86.63,112.19 )   
      Mt(UMLE)        |     95.1      8.36        6.58                         (  84.39,119.37 )     (  85.98,110.34 )   
      Mt(EE)          |     95.0      8.81        6.57                         (  83.97,121.10 )     (  85.46,112.73 )   
      Mh(SC1)         |    137.0     21.50       21.44                0.67     ( 107.20,195.31 )     ( 106.43,182.11 )   
      Mh(SC2)         |    132.8     22.05       20.62                0.65     ( 103.26,194.39 )     ( 103.47,181.51 )   
      Mh(JK1)         |    116.6      8.54        8.89                         ( 103.01,137.07 )     ( 107.17,125.11 )   
      Mh(JK2)         |    141.4     14.25       14.87                         ( 118.92,175.79 )     ( 120.76,162.13 )   
      Mh(IntJK)       |    142.3     38.07       15.18                         (  99.27,264.74 )     ( 107.17,252.17 )   
      Mh(EE)          |    125.3     16.41        ----                0.67     ( 102.15,169.10 )     ( 100.39,154.64 )   
      Mth(SC1)        |    138.9     24.35       22.05                0.70     ( 106.23,206.84 )     ( 108.82,194.47 )   
      Mth(SC2)        |    134.6     22.56       21.22                0.68     ( 104.29,197.46 )     ( 105.93,183.40 ) 
      Mth(EE)         |    -***-     ------       ----              ------   
      Mtbh(EE)        |    -***-     ------       ----    ------    ------   
----------------------+----------------------------------------------------------------------------------- 

*** iterative steps do not converge 

 

Edwards and Eberhardt (1967) reported that the usual estimators based on 

equal-catchability considerably underestimated the true number 135.  It is readily seen 

from the output that all estimates based on model Mt, Mt(CMLE), Mt(UMLE) and Mt(EE) 

in the output, are about 95 or 96.  Burnham and Overton (1978) suggested modeling 
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these data by model Mh and adopted an interpolated jackknife estimator.  In the output, 

the first-order, Mh(JK1), and the second-order jackknife, Mh(JK2), are also shown; the 

interpolated jackknife, Mh(IntJK) yields an estimate of 142 with an asymptotic s.e. of 

15.18.   The confidence interval proposed by Burnham and Overton (1978) was (112, 

172) based on the asymptotic s.e.  This interval is different from ours in Table 5 

because we use a bootstrap s.e.  The asymptotic s.e. is also tabulated so that user can 

compute relevant intervals. 

 

If model Mth is assumed, the coefficient of variation (CV) of the capture probabilities 

for all estimation methods is estimated to be about 0.70 as shown in the output.  This 

relatively large value of the CV gives strong evidence of heterogeneity because the CV = 

0 corresponds to no heterogeneity.  The two estimators using the sample coverage 

methods, Mth(SC1) and Mth(SC2), proposed by Chao et al. (1992) and Lee and Chao 

(1994) are respectively 138.9 (s.e. 24.35) and 134.6 (s.e. 22.56).  The latter gives a 

95% confidence interval (104, 197) using a log-transformation and (106, 183) using a 

percentile method.  The estimating equation approach does not yield an estimate due to 

insufficient capture and recapture information, which causes failure of convergence in 

the numerical iterations.  If we adopt the most general model Mtbh, similar difficulty 

arises.  Therefore, capture and recapture information is not sufficient for fitting a 

complicated model with three sources of variations.  We caution that in some cases, 

estimates can still be obtained in the case of insufficient information, but the standard 

error generally becomes so large that the model is useless.  

 

 

5.  Analysis With Covariates  

Models/Estimators Featured  

In program CARE-2, we distinguish covariates as two types: individual covariates 

and occasional covariates as in Huggins (1989, 1991).  Individual covariates include 

individual’s characteristics (age, sex, body weight or wing length) and occasional 

covariates could be environmental variables (temperature on each occasion) or known 

catch-effort expended in trapping method (e.g., number of traps on each capture 

occasion).   Occasional covariates should be stored in another file as will be shown in 

Example 6 below. 
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Suppose for each animal, there are s individual covariates.  Let the individual 

covariates for the ith animal be denoted as ),...,,( 21 isiii WWW=′W  and ),...,,( 21 sβββ=′β  

denotes the effects of these covariates.  It is necessary to assume that the individual 

covariates are constant across the t capture occasions in the experiment, as they cannot 

be measured on an occasion if the individual is not captured.  If heterogeneity is fully 

explained by individuals’ covariates, then the heterogeneity effect can be expressed 

conveniently as issiii WβWβWβ +++=′ ...2211Wβ . 

  

Assume that there are b occasional covariates: {R11, R12, …, R1t}, {R21, R22, …, 

R2t}, …, {Rb1, Rb2, …, Rbt}.  For example, {R11, R12, …, R1t}  may represent the 

temperature on each occasion, and {Rb1, Rb2, …, Rbt} may represent the capture effort on 

each occasion.   Let ),...,,( 21 brrr=′r  denote the effects of the occasional covariates.  

Define jR′= {R1j, R2j, …, Rbj}, then the occasional effect for the jth occasion can be 

expressed as jRr ′ = r1R1j + r2 R2j +…+ rbRbj.  

 

Define Yij = 1 if the ith animal has been captured at least once before the jth 

occasion, and Yij = 0 otherwise.  The general logistic model incorporating covariates 

considered in CARE-2 is 

  jiijjij YvcaP RrWβ ′+′+++=)(logit ,  

where a denotes the baseline intercept, {c1,c2, …,ct-1} represents the unknown 

occasional or time effect and ct ≡ 0 is used for the reference group.  These time effects 

may or may not be included in the model.  You can specify whether these effects are 

needed for each data analysis.  Table 6 summarizes all sub-models. 

     

The interpretation of the coefficient of any β is based on the fact that when β > 0, the 

larger the covariate is, the larger the capture probability is, while if β < 0 then the larger 

the covariate is, the smaller the capture probability is.  Similar interpretation pertains to 

the coefficient of any r for occasional covariate.  The parameter v represents the effect 

of a recapture, which implies that v > 0 corresponds to a case of trap-happy and v < 0 

corresponds to a case of trap-shy. 
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The parameters in the logistic models are estimated by a conditional ML method 

based on the captured individuals (Huggins, 1989, 1991).  The default of maximum 

number of iterations in CARE-2 is 500.  Model selection can be performed using Akaike 

information criterion (AIC) which is defined as -2logL+2m, where L denotes the likelihood 

computed at the conditional MLE and m denotes the number of parameters in the model.  

A model is selected if AIC is the smallest among all models considered.  The population 

size is estimated by the Horvitz-Thompson estimator, which is 
1

1 1
1 )}ˆ1(1{ˆ −

= =∑ ∏+ −−= tM
i

t
j ijHT PN , where ijP̂  is the estimated capture probability evaluated 

at the conditional MLE.  The variance of the resulting estimator can be estimated by an 

asymptotic variance formula derived in Huggins (1989, 1991).  Below two examples are 

used for CARE-2 to illustrate the estimation and model selection. 

 

 Table 6.  Models with covariates in CARE-2. (The effect cj is optional.) 

 

Model Assumption Restriction in model M*
tbh 

M*
tbh jiijjij YvcaP RrWβ ′+′+++=)(logit  

 

M*
bh iijij YvaP Wβ′++=)(logit  set cj = 0, r = 0 

M*
tb jijjij YvcaP Rr ′+++=)(logit  set β = 0 

M*
th jijij caP RrWβ ′+′++=)(logit  set v = 0 

M*
h iij aP Wβ′+=)(logit  set cj = 0, r = 0, v = 0 

M*
b ijij YvaP +=)(logit  set β = 0, cj = 0, r = 0 

M*
t jjij caP Rr ′++=)(logit  set β = 0, v = 0 

M*
0 aPij =)(logit  set β = 0, cj = 0, r = 0, v = 0 

 

 

Running Procedures by Examples 

In the following, we provide two examples to demonstrate the procedure of CARE-2 
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for covariate analysis.  They are: 

 

Example 5: Same capture data as in Example 1, but three individual covariates are 

included (data in file: example5.dat). Refer to Huggins (1991) and Chao 

and Huggins (2003) for detailed analysis. 

Example 6: Rodent data with two individual covariates and one occasional covariate 

(capture data and individual covariates are in file: exampl61.dat; 

occasional data are in file: exampl62.dat).  Refer to Huggins (1989) for 

detailed analysis. 

 

Example 5: Deer mice data (with three individual covariates) 

For the data set discussed in Example 1, there were actually three covariates: 

gender (male or female), age (young, semi-adult or adult) and weight, collected for each 

individual in the deer mouse data.  Only three semi-adult mice were caught, so they 

were re-classified as adults.  The user can view example5.dat for the complete data.  

Part of the complete data is shown in Table 7.   

 
 
Table 7.  Individual capture history of deer mice with three covariates: Gender (0: 

male, 1: female); Age (y: young, a: adult); and Weight (in grams). 
 
Occasion 1 Occasion 2 Occasion 3 Occasion 4 Occasion 5 Occasion 6 Gender Age Weight 

1 1 1 1 1 1 0 y 12 
1 0 0 1 1 1 1 y 15 
1 1 0 0 1 1 0 y 15 
‧ 
‧ 
‧    

‧ 
‧ 
‧    

‧ 
‧ 
‧ 

0 0 0 0 0 1 0 a 16 
0 0 0 0 0 1 1 a 19 

 

 

There are three individual covariates and there is no occasional covariate.  Since 

every covariate can be treated as either categorical or continuous, the user has to 

specify the numbers of each.   For example, there are two categorical (gender and age) 

and one continuous (weight) for individual covariates of this data.  In the data format, 

the order of data entry should be: capture history, categorical covariates followed by the 

continuous covariates.  Occasional covariates are stored in a separate file with the 



 - 18 - 

same order of categorical variables first and then continuous variables. 

 
We describe the procedures for analyzing deer mice data with covariates.  The 

following procedure must be executed in a GAUSS environment. 

(1) Provoke GAUSS environment either by doubly clicking GSRUN50 on your desktop 

as described in Download and Setup or by clicking the executable file GSRUN.exe 

stored in the directory GSRUN50.   

(2) Click “File” on the top menu of GAUSS and subsequently click “Run Program” and 

select the program CARE-2.gcg which is stored in a pre-specified working directory 

(The default is c:\program files\CARE-2\).  It prompts you subsequently the following 

input steps: 

(3) “Please input the number of distinct individuals:”  In this example, we input 38. 

(4) “Please input the number of sampling occasions:”  Input 6. 

(5) “Please input the number of categorical individual covariates:”  Input 2. 

(6) “Please input the number of continuous individual covariates:”  Input 1. 

(7) “Please input the filename containing the capture history and individual covariates 

(continuous type covariates must follow by the categorical type covariates):”  Input 

c:\program files\CARE-2\data\example5.dat. 
(8) “Please input the number of categorical occasional covariates:”  Input 0. 

(9) “Please input the number of continuous occasional covariates:”   Input 0. 

(10) “Do you want to include the unknown time effects (y or n)?” (This means that      

whether the effects {c1,c2, …,ct-1} are needed in the logistic model).  We input y. 

(11) “Please input the filename to save the output:”  Input for example c:\program 
files\CARE-2\output.out.  Please wait a moment and the results will be shown in 

the GAUSS window. Moreover, the output is also saved in c:\program 

files\CARE-2\output.out.  The standard output for CARE-2 with this example with 

the above input is shown in Table 8. 

 

Remark:  If you have abundant data, it may take a long time to get your output due to 

complicated iterative estimation in GAUSS program operating on a large array or 

high-dimensional matrix.   
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Table 8.  The output of covariate analysis for deer mice data. 
 

#############################################################  

### CARE-2 for capture-recapture analysis with covariates ###  

### Authors: Anne Chao and Hsin-Chou Yang                 ###  

### Version: 1.5 (April 2006)                             ###  

############################################################# 

 

 ==========================   

 === Summary Statistics ===   

 ==========================   

------------------------------------------------------ 

   Total number of distinct animals :       38  

          Number of capture samples :        6  

------------------------------------------------------ 

  

    i   |     u[i]   m[i]   n[i]   M[i]   ft[i]   f1[i]  

--------|---------------------------------------------- 

    1   |      15      0     15      0      9     15 

    2   |       8     12     20     15      6     11 

    3   |       6     10     16     23      7     14 

    4   |       3     16     19     29      6     11 

    5   |       3     22     25     32      6      8 

    6   |       3     22     25     35      4      9 

7   |                           38               

--------|---------------------------------------------- 

  

 ==========================================   

 === The Fit & Estimation of all models ===   

 ==========================================   

  

 Model        Estimate    S.E.    MIN(-LL)    AIC          95% CI       Status 

----------------------------------------------------------------------------------- 

 M*0           38.47      0.72    157.27    316.54    (38.06,  42.04)  Converge 

 M*t           38.40      0.66    152.42    316.84    (38.04,  41.80)  Converge 

 M*b           42.25      3.76    150.43    304.87    (38.96,  56.86)  Converge 

 M*h           39.85      1.72    144.87    297.75    (38.39,  46.67)  Converge 

 M*tb          46.48     12.65    148.18    310.36    (39.02, 108.74)  Converge 

 M*th          39.66      1.61    139.55    297.10    (38.34,  46.20)  Converge 

 M*bh          47.15      7.17    139.54    289.09    (40.35,  73.52)  Converge 

 M*tbh         47.13     10.08    137.33    294.66    (39.59,  90.50)  Converge 

------------------------------------------------------------------------------------ 

  

=========================   

=== Model Description ===   

=========================   

The general logistic model M*tbh is 

  

      logit(P_ij)=a + c_j + v * Y_ij + beta * W_i + r * R_j    

  

where  

  

i        : refers to the ith individual; 

j        : refers to the jth sample or jth capture occasion; 

a        : baseline intercept; 

c_j      : the unknown time or occasional effect of the jth capture occasion 

           (set c_t=0, where t: the number of capture occasions; 

v        : (behavioral response) the effect w.r.t. the past capture history indicator Y_ij; 

beta     : the effect of individual covariates W_i; 

r        : the effect of occasional covariate R_j; 

  

 ===========================================   

 === The MLEs of Regression Coefficients ===   

 ===========================================   

*** Model M*0 *** 

         a     



 - 20 - 

MLE     0.08  

S.E.    0.13  

 

*** Model M*t *** 

          a      c_1      c_2      c_3      c_4      c_5     

MLE     0.62    -1.07    -0.54    -0.96    -0.64     0.00  

S.E.    0.24     0.42     0.42     0.42     0.42     0.17  

 

*** Model M*b *** 

         a        v     

MLE    -0.76     1.22  

S.E.    0.34     0.38  

 

*** Model M*h *** 

          a   beta1(1)  beta2(1)  beta3   

MLE    -1.95     0.81    -1.90     0.16  

S.E.    0.71     0.31     0.57     0.06  

 

*** Model M*tb *** 

         a        v       c_1      c_2      c_3      c_4      c_5     

MLE    -1.16     1.72     0.42     0.31    -0.45    -0.37     0.12  

S.E.    1.09     0.98     0.80     0.57     0.49     0.45     0.42  

 

*** Model M*th *** 

          a    beta1(1)  beta2(1)  beta3    c_1      c_2      c_3      c_4     c_ 5 

MLE    -1.43     0.84    -1.98     0.16    -1.18    -0.59    -1.06    -0.70    0.00 

S.E.    0.74     0.32     0.58     0.06     0.44     0.43     0.44     0.43    0.19 

 

*** Model M*bh *** 

          a        v   beta1(1)  beta2(1)  beta3   

MLE    -2.91     1.18     0.92    -1.88     0.16  

S.E.    0.87     0.40     0.35     0.63     0.06  

 

*** Model M*tbh *** 

          a        v   beta1(1)  beta2(1)  beta3     c_1      c_2      c_3     c_4      c_5 

MLE    -2.76     1.21     0.94    -1.92     0.16    -0.11     0.02    -0.71   -0.50     0.08 

S.E.    1.30     0.74     0.36     0.64     0.06     0.87     0.80     0.60    0.56     0.57 

 

 

The first part of the output shows all summary statistics.  The second part shows 

the fitting and estimation results for the logistic model and all sub-models, followed by 

model description.  For each model, the corresponding estimated population size 

(number under the heading Estimate in Table 8), its s.e. (under the heading S.E.), 

negative value of the minimum log-likelihood under the heading MIN(-LL), the Akaike 

information criterion (AIC) and 95% confidence interval (Chao, 1987) are calculated.  

From the values of AIC, we select model M*
bh because AIC of this model is the smallest 

among all models.  There are slight differences between our estimates and those in 

Huggins (1991) because different numerical algorithms are used. 

  

The last part of the output shows all fitted parameter estimates.  Under model M*
bh, 

the fitted intercept is -2.91, the behavioral response effect is 1.18 for re-capture (the first 

capture effect is set to be 0, so recaptures have higher probabilities).  Then there are 
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several coefficients corresponding to the three individual’s covariates according to the 

order of data entry.  Generally, one coefficient is associated with a continuous covariate.  

For a categorical covariate, there are k-1 coefficients associated with a covariate with k 

categories.  When groups are in a numerical order or in an alphabetical order according 

to the data entry.  The category with the largest numerical value or the last alphabetical 

order is always set to be 0 as the reference group.  Suppose there are k categories for 

the first covariate, then in the output we have k-1 coefficients: beta1(1), beta1(2), …, 

beta1(k-1), where betan(j) denotes the effect of the jth group relative to the reference 

group for the nth covariate.  

 

From Table 7, male is coded as 0 and female is coded as 1 in data entry, thus group 

“1” (the larger numerical value) is set to be the reference group.  Therefore, in Table 8, 

the coefficient, beta1(1) = 0.92, is the effect for male; the female is set to be 0, so males 

have larger probabilities.  Also, young is coded as “y” and adult is coded as “a” in data 

entry, thus in an alphabetical order the group “y” is used for reference group.  The 

second coefficient, beta2(1) = -1.88, is the effect for adult; the young effect is set to be 0, 

so young have larger capture probabilities.  The last coefficient in the output, beta3 = 

0.16 is the effect for a unit change of body weight.  This implies the heavier the weight, 

the larger the capture probability.  Then from the summary of model fitting the estimated 

population size under the selected model M*
bh is 47.2 (s.e. 7.17) with a 95% confidence 

interval of (40.4, 73.5).  

 

Example 6: Rodents data (two individual covariates and one occasional covariate). 

The data of salt marsh rodents were originally collected by Coulombe and analyzed 

by Otis et al. (1978, pp. 62-67) and Huggins (1989).  The experiment was carried out in 

the morning and night daily for five days.  Two individual covariates are recorded: 

gender (male and female) and age (young, semi-adult and adult).  The summary 

statistics for capture history are shown in Table 9 below.  Otis et al. (1978) concluded 

there is no behavior response effect but time variations and individual heterogeneity are 

strong.  No suitable estimators were available at the time, and thus they suggested the 

use of the number of the distinct animals caught in the experiment. 

 

There are two types of covariates, individual covariates and occasional covariates 

in this example.  The individual capture history and individual covariates (gender and 
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age) are stored in c:\program files\CARE-2\data\exampl61.dat.  The experiment time 

(morning or night) is treated as an occasional covariate.  The data format for filing an 

occasional covariate is shown in c:\program files\CARE-2\data\exampl62.dat, where “1” 

denotes for morning and “2” denotes night. 

 

There are two rodents with missing covariates, hence we exclude these two records 

in the following analysis.  It leads to somewhat different results from those in Huggins 

(1989).  The running steps (1) to (3) are similar to those for Example 5, so we begin with 

step (4).   

 

(4) “Please input the number of distinct individuals:”.  In this example, we input 171. 

(5) “Please input the number of sampling occasions:”.  Input 10. 

(6) “Please input the number of categorical individual covariates:”.  Input 2. 

(7) “Please input the number of continuous individual covariates:”.  Input 0. 

(8) “Please input the filename containing the capture history and individual covariates 

(continuous type covariates must follow by the categorical type covariates):”  Input 

c:\program files\CARE-2\data\exampl61.dat. 
(9) “Please input the number of categorical occasional covariates:”.  Input 1. 

(10) “Please input the number of continuous occasional covariates:”.   Input 0. 

(11) “Please input the filename containing the occasional covariates (continuous type 

covariates must follow by the categorical type covariates):”.  Input c:\program 
files\CARE-2\data\exampl62.dat. 

(11) “Do you want to include the unknown time effects (y or n)?”.  We input n. 

(12) “Please input the filename to save the output:”.  Input for example c:\program 
files\CARE-2\output.out.  Please wait a moment and the results will be shown in 

the GAUSS window. Moreover, the output is also saved in c:\program 

files\CARE-2\output.out.  The standard output is shown in Table 9. 

 

 

Table 9. The output of covariate analysis for rodent data. 
 

#############################################################  

### CARE-2 for capture-recapture analysis with covariates ###  

### Authors: Anne Chao and Hsin-Chou Yang                 ###  

### Version: 1.5 (April 2006)                             ###  

############################################################# 

 



 - 23 - 

 

 ==========================   

 === Summary Statistics ===   

 ==========================   

 

------------------------------------------------------ 

   Total number of distinct animals :      171  

          Number of capture samples :       10  

------------------------------------------------------ 

  

    i   |     u[i]   m[i]   n[i]   M[i]   ft[i]   f1[i]  

--------|---------------------------------------------- 

    1   |      68      0     68      0      2     68 

    2   |      33     27     60     68     62     74 

    3   |      26     36     62    101     40     74 

    4   |      12     40     52    127     31     65 

    5   |      15     58     73    139     16     54 

    6   |       3     38     41    154     13     45 

    7   |      12     64     76    157      5     41 

    8   |       0     35     35    169      1     26 

    9   |       2     74     76    169      0      9 

   10   |       0     38     38    171      1      2 

   11   |                          171               

--------|---------------------------------------------- 

 

 ==========================================   

 === The Fit & Estimation of all models ===   

 ==========================================   

  

 Model        Estimate    S.E.    MIN(-LL)    AIC          95% CI        Status 

----------------------------------------------------------------------------------- 

 M*0          173.99      1.83   1093.07   2188.14   (171.99, 180.02)   Converge 

 M*t          173.79      1.76   1071.43   2146.86   (171.90, 179.68)   Converge 

 M*b          172.99      1.60   1092.39   2188.78   (171.50, 178.96)   Converge 

 M*h          175.38      2.33   1080.36   2168.72   (172.65, 182.64)   Converge 

 M*tb         173.74      1.74   1071.43   2148.86   (171.87, 179.57)   Converge 

 M*th         175.14      2.26   1058.44   2126.89   (172.52, 182.26)   Converge 

 M*bh         173.86      2.05   1079.44   2168.87   (171.81, 181.09)   Converge 

 M*tbh        174.86      2.21   1058.42   2128.84   (172.36, 181.95)   Converge 

------------------------------------------------------------------------------------ 

  

=========================  

=== Model Description ===   

=========================  

The general logistic model M*tbh is 

  

      logit(P_ij)=a + c_j + v * Y_ij + beta * W_i + r * R_j    

  

where  

  

i        : refers to the ith individual; 

j        : refers to the jth sample or jth capture occasion; 

a        : baseline intercept; 

c_j      : the unknown time or occasional effects of the jth capture occasion 

           (set c_t=0, where t: the number of capture occasions; 

v        : (behavioral response) the effect w.r.t. the past capture history indicator Y_ij; 

beta     : the effect of individual covariates W_i; 

r        : the effect of occasional covariate R_j; 

  

 ===========================================   

 === The MLEs of Regression Coefficients ===   

 ===========================================   

*** Model M*0 *** 

          a     

MLE    -0.69  

S.E.    0.05  
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*** Model M*t *** 

          a      r1(1)    

MLE     0.31    -0.68  

S.E.    0.16     0.10  

 

*** Model M*b *** 

          a        v     

MLE    -0.58    -0.15  

S.E.    0.10     0.11  

 

*** Model M*h *** 

          a   beta1(1)  beta2(1)  beta2(2)    

MLE    -0.38    -0.28    -0.02    -0.46  

S.E.    0.08     0.11     0.13     0.11  

 

*** Model M*tb *** 

          a       v      r1(1)    

MLE     0.31    -0.01    -0.67  

S.E.    0.16     0.00     0.10              

 

*** Model M*th *** 

          a   beta1(1)  beta2(1)  beta2(2)  r1(1)    

MLE     0.63    -0.28    -0.02    -0.47    -0.68  

S.E.    0.17     0.11     0.14     0.12     0.11  

 

*** Model M*bh *** 

         a        v   beta1(1)  beta2(1)  beta2(2)    

MLE    -0.24    -0.18    -0.28    -0.02    -0.46  

S.E.    0.12     0.13     0.11     0.14     0.11  

 

*** Model M*tbh *** 

          a        v   beta1(1)  beta2(1)  beta2(2)  r1(1)    

MLE     0.65    -0.03    -0.28    -0.02    -0.47    -0.68  

S.E.    0.16     0.05     0.11     0.15     0.12     0.11              

 

From the results of AIC listed in Table 9, model Mth is selected.  The conclusion is 

consistent with that in Otis et al. (1978, pp. 62-64).  For gender (data entry is 1 for male 

and 2 for female), the female is served as the reference group.  The negative 

regression coefficient beta1(1) = -0.28 demonstrates that the females have larger 

capture probabilities than the males.  For age (data entry is 1 for young, 2 for semi-adult 

and 3 for adult), thus the adult group with the largest numerical value is regarded as a 

reference group.  The regression coefficient beta2(1) = -0.02 is not significant, hence 

there is no significantly difference of capture probabilities between the young and adult.  

However, the regression coefficient beta2(2) = -0.47 is significantly different from 0, 

which implies that adults have higher capture probabilities than the semi-adult.  For the 

occasional covariate (data entry is 1 for morning and 2 for night), the coefficient r1(1) = 

-0.68 denotes the effect of morning time.  Thus the capture probabilities are higher in 

the night.  The population size estimate under model Mth is 175.1 with an estimated s.e. 

of 2.3 and a 95% confidence interval of (172.5, 182.3).  These results here are slightly 

different from those obtained in Huggins (1989) due to the different ways of treating 

missing covariates.
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Appendix 
 

In this Appendix, we give formulas for the estimators featured in CARE-2 under various 
models. Refer to Tables 1 and 2 for definitions and references. 
 
 
1. Model M0 (Otis et al., 1978; Darroch, 1958; Yip, 1991): 
   

 Unconditional MLE: M0(UMLE)  Back to Table2 
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 Estimating Equation: M0(EE)  Back to Table2 
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2. Model Mt (Otis et al., 1978; Darroch, 1958; Yip, 1991): 
 

 Unconditional MLE: Mt(UMLE)  Back to Table2 
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  Estimating Equation: Mt(EE)  Back to Table2 
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3. Model Mb (Otis et al., 1978; Zippin, 1956; Lloyd, 1994): 
 

  Unconditional MLE: Mb(UMLE)  Back to Table2 
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4. Model Mtb (Chao et al., 2000; Lloyd, 1994): 
 

 Unconditional MLE: Mtb(UMLE)  Back to Table2 
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 Conditional MLE: Mtb(CMLE)  Back to Table2 
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 Estimating Equation: Mtb (EE)  Back to Table2 
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5. Model Mh (Burnham and Overton, 1978; Lee and Chao, 1994; Chao et al., 2001): 
 

 The First-order Jackknife: Mh (JK1)  Back to Table2 
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 Estimating Equation: Mh(EE)  Back to Table2 
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6. Model Mth (Lee and Chao, 1994; Chao et al., 2001): 
 

 Sample COverage1: Mth(SC1)  Back to Table2 
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 Estimating Equation: Mth(EE)  Back to Table2 
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7. Model Mbh (Pollock and Otto, 1983; Lee and Chao, 1994; Chao et al., 2001): 
 

 Jackknife: Mbh (JK)  Back to Table2 
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 Estimating Equation: Mbh (EE)  Back to Table2 
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hN is a simple estimator valid under model Mh, that is 
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8. Model Mtbh (Chao et al., 2001): 
 

 Estimating Equation: Mtbh(EE)  Back to Table2 
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 ˆ
bhN is a simple estimator valid under model Mbh. Here,  / 11, −− = jkjk eeρ  

denotes the unknown relative time effect of sample k. A convenient estimator of 

 / 11, −− = jkjk eeρ is a function of   φ and can be presented as 

)//()/()(ˆˆ 111,1, φφφρρ −−−− ++== jjkkjkjk mumu . 


