
Document Number: 327836-001

Intel® Boot Loader Development Kit
(Intel® BLDK)
Version 2.0 — UEFI Standard Based
User Guide for Cedar Trail Platform

August 2012

Intel® Boot Loader Development Kit
User Guide for Cedar Trail Platform August 2012
2 Document Number: 327836-001

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR
OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS
OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING
TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
A “Mission Critical Application” is any application in which failure of the Intel Product could result, directly or indirectly, in personal injury or death.
SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND
ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS AGAINST ALL
CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT
LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS
SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.
Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics
of any features or instructions marked "reserved" or "undefined". Intel reserves these for future definition and shall have no responsibility whatsoever
for conflicts or incompatibilities arising from future changes to them. The information here is subject to change without notice. Do not finalize a design
with this information.
The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published
specifications. Current characterized errata are available on request.
Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.
Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-800-548-
4725, or go to: http://www.intel.com/design/literature.htm
Any software source code reprinted in this document is furnished for informational purposes only and may only be used or copied and no license, express
or implied, by estoppel or otherwise, to any of the reprinted source code is granted by this document.
Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor family, not across different
processor families. Go to: http://www.intel.com/products/processor%5Fnumber/
Code Names are only for use by Intel to identify products, platforms, programs, services, etc. (“products”) in development by Intel that have not been
made commercially available to the public, i.e., announced, launched or shipped. They are never to be used as “commercial” names for products. Also,
they are not intended to function as trademarks.
Enhanced Intel SpeedStep® Technology: See the Processor Spec Finder at http://ark.intel.com or contact your Intel representative for more
information.
Intel® Hyper-Threading Technology (Intel® HT Technology): Available on select Intel® Core™ processors. Requires an Intel® HT Technology-enabled
system. Consult your PC manufacturer. Performance will vary depending on the specific hardware and software used. For more information including
details on which processors support HT Technology, visit http://www.intel.com/info/hyperthreading.
Intel, the Intel logo, and Intel Atom are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
Copyright © 2012, Intel Corporation. All rights reserved.

http://www.intel.com/design/literature.htm
http://www.intel.com/products/processor%5Fnumber/
http://www.intel.com/info/hyperthreading
http://ark.intel.com

Intel® Boot Loader Development Kit
August 2012 User Guide for Cedar Trail Platform
Document Number: 327836-001 3

Contents—Intel® BLDK

Contents

1.0 About This Manual ... 5
1.1 Audience..5
1.2 Related Documents and Tools ...5
1.3 Notational Conventions and Terminology ..7

2.0 Product Overview .. 9
2.1 Introduction to the Intel® BLDK ..9
2.2 Different Components of the Intel® BLDK ...9

3.0 Intel® BLDK and Intel® UDK2010 .. 11
3.1 Open Source Availability... 11
3.2 Intel® BLDK Features .. 11

4.0 Architecture ... 13
4.1 Platform Initialization Sequences ... 13

4.1.1 Security (SEC) Phase .. 13
4.1.2 Pre-EFI Initialization (PEI) Phase .. 14
4.1.3 Driver Execution Environment (DXE) Phase.. 14
4.1.4 Boot Device Select (BDS) Phase ... 14

4.2 Boot Process... 14
4.3 Types of Intel® BLDK Files.. 15
4.4 Protocol and Drivers .. 16
4.5 UEFI Services ... 17

5.0 Intel® BLDK BSF - Introduction.. 20

6.0 Debugging ... 21
6.1 Software Debugging with the Intel® UEFI Development Kit Debugger Tool 21

6.1.1 Software Debugging on Windows*.. 21
6.1.1.1 Host Machine Setup ... 22
6.1.1.2 Target Machine Setup ... 23
6.1.1.3 Starting a Debug Session .. 23
6.1.1.4 Using the Software Debugger .. 24

6.1.2 Software Debugging on Linux*... 27
6.1.2.1 Host Machine Setup .. 28
6.1.2.2 Target Machine Setup.. 29
6.1.2.3 Starting a Debug Session... 30
6.1.2.4 Using the Software Debugger ... 31

6.2 Platform Level Debugging using JTAG/ITP... 35

7.0 OS Bring-up ... 36
7.1 OS Hand-Off Requirements... 36

A Additional Information... 37
A.1 Image Build Process Flow (EDK-II centric) and Firmware Image Creation.................. 37

A.1.1 AutoGen Stage... 38
A.1.2 $(MAKE) Stage .. 39
A.1.3 ImageGen Stage .. 40

A.2 How to Build a UEFI Driver ... 42
A.3 EDKII Platform Configuration Database (PCD) ... 44

B How to modify the binary image using the Intel® BLDK Development
Application... 45

Intel® BLDK—Revision History

Intel® Boot Loader Development Kit
User Guide for Cedar Trail Platform August 2012
4 Document Number: 327836-001

Figures
1 Intel® BLDK Overview ... 9
2 Boot Process Phases ...13
3 Optimized and Non-Optimized Boot Process Flow ..15
4 Correlation Example Between BSF Directives and UI Control...20
5 Source Level Debugging Setup for Windows* ...22
6 SourceLevelDebugPkg Directory ..24
7 CpuBreakpoint Example ..25
8 WinDbg Launch Window ..26
9 WinDbg Main Window..26
10 WinDbg Window showing CpuBreakpoint ...27
11 Source Level Debugging Setup for Linux* ..28
12 Platform Level Debugging Setup ..35
13 EDK II Build Process Flow ..37
14 EDK II AutoGen Process ..38
15 EDK II Build Process - Platform Point of View ...39
16 EDK II Build Process - Module Point of View ...40
17 FD Image Generation Process ..41

Tables
1 Related Documents and Tools List.. 6
2 Conventions ... 7
3 Terminology ... 7
4 Intel® UDK2010 Packages Included in the Intel® BLDK..11
5 Sample Protocol Interface Functions..17
6 Global Variables for UEFI Service Access..18
7 Sample UEFI Services ...18

Revision History

§ §

Date Revision Description

August 2012 001 Initial release of document.

Intel® Boot Loader Development Kit
August 2012 User Guide for Cedar Trail Platform
Document Number: 327836-001 5

About This Manual—Intel® BLDK

1.0 About This Manual

This manual, the Intel® Boot Loader Development Kit User Guide Version 2.0 — UEFI
Standard Based, provides information and instructions for using the Intel® Boot Loader
Development Kit (Intel® BLDK). The following chapters are included in this document:

• Chapter 1.0, this chapter
• Chapter 2.0, “Product Overview”
• Chapter 3.0, “Intel® BLDK and Intel® UDK2010”
• Chapter 4.0, “Architecture”
• Chapter 5.0, “Intel® BLDK BSF - Introduction”
• Chapter 6.0, “Debugging”
• Chapter 7.0, “OS Bring-up”
• Appendix A, “Additional Information”
• Appendix B, “How to modify the binary image using the Intel® BLDK Development

Application”

Note: This manual uses the names listed below:
• Cedar Trail (CT) platform refers to the Intel® Atom™ Processor N2x00 with Intel®

Platform Controller Hub NM10.
• Cedar Rock (CR) refers to the Customer Reference Board (CRB).
• Cedar View is the code name for the Intel® Atom™ Processor N2x00.

When used in the code base, Cedar Rock and Cedar Trail refer to the same board/
platform.

1.1 Audience
This manual is intended for firmware and software engineers who are using the Intel®
BLDK to develop firmware for embedded devices.

1.2 Related Documents and Tools
The documents and tools listed in the following table contain additional information
useful in designing system boot loaders that incorporate the Intel® BLDK. To get copies
of these documents, or other Intel literature, call 1-800-548-4725 or visit the Intel web
site at http://developer.intel.com.

http://developer.intel.com

Intel® BLDK—About This Manual

Intel® Boot Loader Development Kit
User Guide for Cedar Trail Platform August 2012
6 Document Number: 327836-001

Table 1. Related Documents and Tools List

Title Reference Number / Location

Intel® Boot Loader Development Kit Version 2.0 — UEFI
Standard Based Getting Started Guide for Cedar Trail Platform 503888

Minimal Intel® Architecture Boot Loader White Paper http://download.intel.com/design/intarch/
papers/323246.pdf

Intel® Embedded Graphics Drivers documentation
Website contains links to download the latest software and
documentation, including Intel® Embedded Graphics Drivers, EFI
Video Driver, and Video BIOS User’s Guide

http://www.intel.com/go/iegd

Intel® 64 and IA-32 Architectures Software Developer's Manuals

• Volume 1: Basic Architecture
• Volume 2A: Instruction Set Reference, A-M
• Volume 2B: Instruction Set Reference, N-Z
• Volume 3A: System Programming Guide Part 1
• Volume 3B: System Programming Guide Part 2

http://www.intel.com/products/processor/
manuals/index.htm

253665
253666
253667
253668
253669

Intel® MultiProcessor Specification 242016

Current hardware documents available at http://developer.intel.com and may be accessed by clicking the
associated reference number listed below.

Intel® Atom™ Processor E6xx Series Datasheet 324208

White Paper: The Power Management IC for the Intel® Atom™
Processor E6xx Series and Intel® Platform Controller Hub EG20T 324989

Nettop Platform for 2008 System Design White Paper 319980

ENERGY STAR* Version 5.0 System Implementation 321556

White Paper: EDKII Platform Configuration Database Entries: An
Introduction to PCD Entries 325619

Advanced Configuration and Power Interface (ACPI)
Specification,
Revision 3.0a

http://www.acpi.info/DOWNLOADS/
ACPIspec30a.pdf

ACPI Component Architecture Windows Binary Tools
(includes iASL compiler and Windows ACPI tools)

http://www.acpica.org/downloads/
binary_tools.php

7-Zip File Archiver http://www.7-zip.org/

Microsoft* Windows Driver Development Kit version 3790.1830
http://download.microsoft.com/download/
9/0/f/90f019ac-8243-48d3-91cf-
81fc4093ecfd/1830_usa_ddk.iso

UEFI Documents

Beyond BIOS: Developing with the Unified Extensible Firmware
Interface (Intel Press)

http://www.intel.com/intelpress/
sum_efi.htm

EDK II Documentation, including EDK II Module Writer's Guide http://sourceforge.net/apps/mediawiki/
tianocore/index.php?title=Documents

Intel EFI Framework Specification http://www.intel.com/technology/efi/
main_specification.htm

Intel® UDK Debugger Tool User Manual http://www.intel.com/technology/efi/sw-
debug.htm

UEFI Driver Execution Environment Core Interface Specification http://www.uefi.org/specs/
download_platform/

UEFI Driver Writer’s Guide http://www.intel.com/technology/efi/
dg.htm

UEFI Platform Initialization Specification, Version 1.2 www.uefi.org

UEFI Specification, Version 2.3 www.uefi.org

http://www.intel.com/technology/efi/main_specification.htm
http://www.intel.com/technology/efi/main_specification.htm
http://www.intel.com/technology/efi/sw-debug.htm
http://www.intel.com/technology/efi/sw-debug.htm
http://www.uefi.org/specs/download_platform/
http://www.uefi.org/specs/download_platform/
http://sourceforge.net/apps/mediawiki/tianocore/index.php?title=Documents
http://sourceforge.net/apps/mediawiki/tianocore/index.php?title=Documents
http://download.microsoft.com/download/9/0/f/90f019ac-8243-48d3-91cf-81fc4093ecfd/1830_usa_ddk.iso
http://download.microsoft.com/download/9/0/f/90f019ac-8243-48d3-91cf-81fc4093ecfd/1830_usa_ddk.iso
http://download.intel.com/design/intarch/papers/323246.pdf
http://download.intel.com/design/intarch/papers/323246.pdf
http://download.intel.com/embedded/processor/datasheet/324208.pdf
http://edc.intel.com/Link.aspx?id=4725&wapkw=324989
http://download.intel.com/design/processor/applnots/319980.pdf
http://download.intel.com/design/processor/applnots/321556.pdf
http://www.intel.com/intelpress/sum_efi.htm
http://www.intel.com/intelpress/sum_efi.htm
http://www.intel.com/technology/efi/dg.htm
http://www.intel.com/technology/efi/dg.htm
http://www.intel.com/go/iegd
www.uefi.org
www.uefi.org
http://developer.intel.com
http://www.acpi.info/DOWNLOADS/ACPIspec30a.pdf
http://www.acpi.info/DOWNLOADS/ACPIspec30a.pdf
http://www.acpica.org/downloads/binary_tools.php
http://www.acpica.org/downloads/binary_tools.php
http://www.7-zip.org/
http://www.intel.com/products/processor/manuals/index.htm
http://www.intel.com/products/processor/manuals/index.htm
http://download.intel.com/design/intarch/papers/325619.pdf

Intel® Boot Loader Development Kit
August 2012 User Guide for Cedar Trail Platform
Document Number: 327836-001 7

About This Manual—Intel® BLDK

1.3 Notational Conventions and Terminology

Table 2. Conventions

Type Description

Numeric Constants

Represented as follows:
• Hexadecimal numbers are represented by a string of hexadecimal digits either

beginning with “0x” or ending with the letter “h.”
• Decimal and binary numbers are represented by their customary notation, that

is, 255 is a decimal number and 11111111b is a binary number. Binary numbers
are identified by a prefix of “0b” or ending with the letter “b.”

Units of Measure

The following abbreviations are used to represent units of measure
• KB - kilobytes (1024 bytes)
• MB - megabytes (1048576 bytes)
• MHz - megahertz
• ms - milliseconds
• ns - nanoseconds

Typographic
Conventions

The following conventions are used in this manual:
• Courier font - code examples and command line entries
• Italic text - filenames, API names, and parameters
• Bold text - graphical user interface entries and buttons

Table 3. Terminology (Sheet 1 of 2)

Term Description

ACPI Advanced Configuration and Power Interface

ATA Advanced Technology Attachment

BSF Boot Setting File

BSP Board Support Package

CRB Customer Reference Board

DEC Package Declaration File

DMA Direct Memory Access

DSC Platform Description File

EFI Extensible Firmware Interface

FDF Flash Description File

FWH Firmware Hub

gdb GNU* Debugger

GUI Graphical User Interface

ICH Input/output Controller Hub

IDE Integrated Development Environment

INF Module Definition File

Intel® BLDK Intel® Boot Loader Development Kit

PCI Peripheral Component Interface

POST Power On Self Test

RPM RPM Package Manager

RTOS Real-Time Operating System

Intel® BLDK—About This Manual

Intel® Boot Loader Development Kit
User Guide for Cedar Trail Platform August 2012
8 Document Number: 327836-001

SATA Serial Advanced Technology Attachment

UDK Unified Extensible Firmware Interface Development Kit

UEFI Unified Extensible Firmware Interface

Table 3. Terminology (Sheet 2 of 2)

Term Description

Intel® Boot Loader Development Kit
August 2012 User Guide for Cedar Trail Platform
Document Number: 327836-001 9

Product Overview—Intel® BLDK

2.0 Product Overview

2.1 Introduction to the Intel® BLDK
The Intel® BLDK is a software toolkit that allows creation of customized and optimized
initialization firmware solutions for embedded Intel processor-based platforms. The
Intel® BLDK enables rapid development of firmware for fixed function embedded
designs that require basic initialization and functionality rather than the full capabilities
provided by traditional BIOS. The Intel® BLDK code base provides a reference firmware
implementation of the boot loader for the specific Customer Reference Boards (CRBs),
based on Intel® UEFI Development Kit 2010 (Intel® UDK2010).

2.2 Different Components of the Intel® BLDK
The Intel® BLDK consists of several components including source/binary code,
development tool and documentation, shown in Figure 1. Together these components
enable you to build a customized boot loader solution for your specific target platform.

Code base - The Intel® BLDK consists of a collection of packages providing a reference
firmware implementation of the boot loader for specific Customer Reference Boards
(CRBs), which can then be used as a starting point to create customized
implementations for your specific target system.

Figure 1. Intel® BLDK Overview

Intel® BLDK—Product Overview

Intel® Boot Loader Development Kit
User Guide for Cedar Trail Platform August 2012
10 Document Number: 327836-001

Development tool - The Intel® BLDK development application provides a single
integrated environment, with tools and control environments for developing customized
firmware boot loaders. It includes a Graphical User Interface (GUI) to build the boot
loader firmware and to customize binary images. Using the development application
you can perform the following tasks:

• Create projects to customize and organize your firmware images for your specific
target boards.

• Enable, disable, and configure firmware features in a binary image without
removing code from the image.

• Utilize Boot Setting Files (BSF), see Section 5.0, to establish a known configuration
as a derivative of the base image on new binary images.

• Use the built-in source code editor with syntax highlighting for source-level
changes of boot image when source code is available.

• Initiate source-level builds of an image when source code is available by spawning
a build process.

In addition, the Intel® BLDK also includes a software only debugger solution, see
Section 6.1, with the familiar WinDbg* front-end enabling faster implementation and
debug.

Documentation - The Intel® BLDK contains comprehensive instructional documents
including the Intel® Boot Loader Development Kit Version 2.0 — UEFI Standard Based
Getting Started Guide and the Intel® Boot Loader Development Kit User Guide (this
document).

Intel® Boot Loader Development Kit
August 2012 User Guide for Cedar Trail Platform
Document Number: 327836-001 11

Intel® BLDK and Intel® UDK2010—Intel® BLDK

3.0 Intel® BLDK and Intel® UDK2010

3.1 Open Source Availability
The Intel® BLDK code base is built on the Intel® UEFI Development Kit 2010 (Intel®
UDK2010), which is open source firmware and is available at the website:
www.tianocore.org. Table 4 lists packages from the open source Intel® UDK2010
included in the Intel® BLDK.

For details on the version of Intel® UDK2010 used in the Intel® BLDK release, refer to
the Release Notes provided with the Customer Reference Board (CRB) package.

3.2 Intel® BLDK Features
The Intel® BLDK provides the following main features:

• CPU, Memory, Basic I/O Initialization
• Boot from SATA and USB
• Feature configuration via the Development Application
• Boot to Linux* OSes, Embedded OSes, UEFI Shell 2.0
• Windows* Tool Chain
• UEFI Specification version 2.3 and PI Specification version 1.2
• Fast Boot
• Pre-boot graphics (splash screen)
• TCP/IP File Transfer
• ACPI 3.0
• Supports the Intel® UEFI Development Kit Debugger Tool
• HD Audio

Table 4. Intel® UDK2010 Packages Included in the Intel® BLDK

Package Name Description

BaseTools Provides build related tools

EdkShellBinPkg Contains multiple binary shell applications that follow UEFI specifications

IntelFrameworkModulePkg Definitions and module implementations that follow Intel EFI Framework
Specification

MdeModulePkg Provides the modules that conform to UEFI/PI industry standards

MdePkg All definitions (including functions, MACROs, structures and library classes)
and libraries instances, that are defined in MDE Specification

PcAtChipsetPkg PC-AT standard defined device drivers; e.g., 8254, 8259

SourceLevelDebugPkg Debug agent

UefiCpuPkg Provides UEFI compatible CPU modules and libraries

www.tianocore.org

Intel® BLDK—Intel® BLDK and Intel® UDK2010

Intel® Boot Loader Development Kit
User Guide for Cedar Trail Platform August 2012
12 Document Number: 327836-001

• Enhanced Intel SpeedStep® Technology
• Intel® Hyper-Threading Technology

Intel® Boot Loader Development Kit
August 2012 User Guide for Cedar Trail Platform
Document Number: 327836-001 13

Architecture—Intel® BLDK

4.0 Architecture

4.1 Platform Initialization Sequences
This section provides a basis for understanding the Intel® Boot Loader Development Kit
(Intel® BLDK) code base architectures, including concepts and definitions of terms.

The primary purpose of the code base is to initialize a platform and boot to the UEFI
Shell or operating system. There are multiple phases of operations required to
accomplish this objective, as shown in Figure 2. Refer to the book, Beyond BIOS:
Developing with the Unified Extensible Firmware Interface (see Table 1 on page 6), for
full details of the phases described in this section.

4.1.1 Security (SEC) Phase

The code in the SEC phase is executed during power on. Its main functions are to:
• set up data and stack cached as temporary memory for the PEI phase
• serve as a root of trust in the system
• hand off information to the PEI Foundation
• discover and pass control to the PEI Phase

It is during this phase that the bootstrap processor (BSP) switches to protected mode
and the microcode patch update is performed on all the CPUs.

Figure 2. Boot Process Phases

Intel® BLDK—Architecture

Intel® Boot Loader Development Kit
User Guide for Cedar Trail Platform August 2012
14 Document Number: 327836-001

4.1.2 Pre-EFI Initialization (PEI) Phase

The main functions of the PEI Phase are to:
• initialize memory and platform resources
• discover the boot mode (recovery, S3 resume, or normal boot)
• discover and launch DXE core

The main component in the PEI Phase is the PEI Core which is responsible for
dispatching PEI Modules (PEIM) and providing basic services. The PEI Modules collect
platform features and configuration data in a series of data structures in memory called
the Hand Off Blocks (HOB) list, which gets passed as read-only from PEI phase to the
DXE phase.

4.1.3 Driver Execution Environment (DXE) Phase

The DXE Phase is where most of the platform gets initialized and it provides the
services required to boot an operating system. As described in the UEFI Driver
Execution Environment Core Interface specification (see Table 1 on page 6), this phase
consists of the following DXE components:

• DXE Core - produces a set of Boot, Runtime, and DXE Services.
• DXE Dispatcher - discovers and executes the DXE drivers in the correct order.
• DXE Drivers - initializes the processor, chipset, and platform components and

provides the Architecture Protocols (AP) that abstract the DXE core from the
platform.

• EFI System Table - contains the pointers to all the EFI service tables, configuration
tables, handle database, and console device.

4.1.4 Boot Device Select (BDS) Phase

The BDS Phase is where the platform boot policy is determined for executing the
selected boot option. The BDS phase initializes the console devices, loads the device
drivers, and attempts to load and execute boot selections.

4.2 Boot Process
The Intel® BLDK follows the same boot sequence as described in Section 4.1, and as
depicted in the Non-Optimized Boot sequence of Figure 3. The Intel® BLDK boot
process provides the ability to optimize the boot sequence by initializing only the
hardware required to boot the target. This is shown in the Optimized Boot sequence of
Figure 3.

Intel® Boot Loader Development Kit
August 2012 User Guide for Cedar Trail Platform
Document Number: 327836-001 15

Architecture—Intel® BLDK

4.3 Types of Intel® BLDK Files
The Intel® BLDK package includes several infrastructure files in addition to the source
files. These include the following:

• ACPI - Advanced Configuration and Power Interface File
The ACPI file is compiled from C files which contain static data table only (no code)
and contains binary ACPI tables (typically mapped to FACS, FADT, MCFG, HPET, and
others). See the ACPI specification in Table 1 on page 6 for details.

• AML - ACPI Machine Language File
The AML file is compiled from ACPI Source Language (ASL) files and contains
binary ACPI tables (typically mapped to SSDT and DSDT tables). See the ACPI
specification in Table 1 on page 6 for details.

• BSF - Boot Setting File
The Boot Setting File (BSF) is a text file that contains the configuration options
available for update using the Intel® BLDK Development Application. For details,
see Chapter 5.0, “Intel® BLDK BSF - Introduction.”

• DEC - Package declaration file
The DEC file declares interfaces available from a package, including GUIDs,
protocols, PPIs, and PCDs. A detailed description of the DEC file (EDK II DEC File
Specification) is available on www.tianocore.org.

• DEPEX - Dependency Expression File
The DEPEX file defines the dependencies that must be true prior to loading the
driver.

Figure 3. Optimized and Non-Optimized Boot Process Flow

SEC Phase

Pre-memory early initialization, microcode
patching, and MTRR programming.

PEI Phase

Dispatches various PEI drivers. Pre-memory early
initialization, microcode patching, and MTRR programming.

In S3 Boot
mode?

O/S Resume Vector

Yes

DXE + BDS Phase

Discover all drivers available to the platform.
Dispatch all drivers encountered.

No

SEC Phase

Pre-memory early initialization, microcode
patching, and MTRR programming.

PEI Phase

Dispatches only minimal PEI drivers.
Pre-memory early initialization, microcode

patching, and MTRR programming.

In S3 Boot
mode?

O/S Resume Vector

Yes

DXE + BDS Phase

Discover the drivers available to the platform.
Dispatch only the minimal drivers required to

boot the target

No

Non-Optimized Boot Optimized Boot

www.tianocore.org

Intel® BLDK—Architecture

Intel® Boot Loader Development Kit
User Guide for Cedar Trail Platform August 2012
16 Document Number: 327836-001

• DSC - Platform description file
The DSC file describes the build rules, libraries, and components that are used to
generate the firmware image for the platform target. A detailed description of the
DSC file (EDK II DSC File Specification) is available on www.tianocore.org.

• EFI - Extensible Firmware Interface File
The EFI file is an executable driver or Shell application binary.

• FDF - Flash description file
The FDF file describes how to package the build output generated using the DSC,
along with any additional binary files, for the flash device. A detailed description of
the FDF file [EDK II Flash Description (FDF) File Specification] is available on
www.tianocore.org.

• INF - Module definition file
The INF defines all required information for a single item. A detailed description of
the INF file (EDK II INF File Specification) is available on www.tianocore.org.

• VPD - Virtual Product Data File
The VPD file contains the VPD database in binary form. The BSF file is converted
into a VPD file during the build process.

4.4 Protocol and Drivers
The Intel® BLDK code base consists of a collection of source and/or binary modules
from which you can build a boot loader for the target reference platform. Since the
Intel® BLDK is based on the Intel® UDK2010 source release, it follows the packaging
model of EDKII. For more details on EDKII packages and how to develop new EDKII
modules, refer to the EDK II Module Writer's Guide (see Table 1 on page 6). The
remainder of this section provides an introduction to some of the architectural concepts
of UEFI-based boot loaders.

At the basic level, a boot loader developed with the Intel® BLDK is made up of a set of
drivers and libraries that initialize the system and provide services to other drivers via
protocols. The UEFI Driver Writer’s Guide provides the following explanation of the
relationship between drivers and protocols:

“A UEFI driver is an executable UEFI image that installs a variety of protocols of
various handles to accomplish its job. UEFI protocols are a block of function
pointers and data structures or APIs that have been defined by a specification.”

A protocol is identified by a Globally Unique Identifier (GUID) that is defined in the
protocol specification. For example, the following is the definition of the component
name protocol which includes two function definitions and one data field:

GUID
#define EFI_COMPONENT_NAME2_PROTOCOL_GUID \
{0x6a7a5cff, 0xe8d9, 0x4f70, 0xba, 0xda, 0x75, 0xab, 0x30,\
0x25, 0xce, 0x14}

Protocol Interface Structure
typedef struct _EFI_COMPONENT_NAME2_PROTOCOL {

EFI_COMPONENT_NAME_GET_DRIVER_NAME GetDriverName;
EFI_COMPONENT_NAME_GET_CONTROLLER_NAME GetControllerName;
CHAR8 *SupportedLanguages;

} EFI_COMPONENT_NAME2_PROTOCOL;

A driver locates a protocol, such as the EFI component name protocol, using standard
UEFI services such as those defined in Table 5. For more details on locating and using
protocols, refer to Section 6.3 of the UEFI specification (see Table 1 on page 6).

www.tianocore.org
www.tianocore.org
www.tianocore.org

Intel® Boot Loader Development Kit
August 2012 User Guide for Cedar Trail Platform
Document Number: 327836-001 17

Architecture—Intel® BLDK

For further information on developing UEFI drivers for your system, refer to the UEFI
Driver Writer's Guide and the sample drivers provided as part of the Intel® UDK2010
release.

4.5 UEFI Services
The Intel® BLDK includes an implementation of the UEFI specification and the critical
services defined in that specification. These services are divided into two distinct
categories: Boot Services and Runtime Services. These are defined as follows in the
UEFI specification:

• Boot Services: Functions that are available before a successful call to
ExitBootServices(). These functions are described in Section 6 of the UEFI
specification.

• Runtime Services: Functions that are available before and after any call to
ExitBootServices(). These functions are described in Section 7 of the UEFI
specification.

Boot and Runtime services are accessed via a pointer to the EFI System Table which is
passed as a standard argument to driver entry points. The EFI System Table is defined
in the UEFI specification in Section 4 as:

typedef struct {
EFI_TABLE_HEADER Hdr;
CHAR16 *FirmwareVendor;
UINT32 FirmwareRevision;
EFI_HANDLE ConsoleInHandle;
EFI_SIMPLE_TEXT_INPUT_PROTOCOL *ConIn;
EFI_HANDLE ConsoleOutHandle;
EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL *ConOut;

EFI_HANDLE StandardErrorHandle;
EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL *StdErr;
EFI_RUNTIME_SERVICES *RuntimeServices;
EFI_BOOT_SERVICES *BootServices;
UINTN NumberOfTableEntries;
EFI_CONFIGURATION_TABLE *ConfigurationTable;

} EFI_SYSTEM_TABLE;

Table 5. Sample Protocol Interface Functions

Name Type Description

InstallProtocolInterface Boot Installs a protocol interface on a device handle

UninstallProtocolInterface Boot Removes a protocol interface from a device handle

RegisterProtocolNotify Boot Registers an event that is to be signaled whenever an interface is
installed for a specified protocol

LocateHandle Boot Returns an array of handles that support a specified protocol

HandleProtocol Boot Queries a handle to determine if it supports a specified protocol

LocateProtocol Boot Finds the first handle in the handle database that supports the
requested protocol

Intel® BLDK—Architecture

Intel® Boot Loader Development Kit
User Guide for Cedar Trail Platform August 2012
18 Document Number: 327836-001

The following is an example of a driver entry point from the WatchDogTimerDxe
driver (from MdeModulePkg\Universal\WatchdogTimerDxe\WatchdogTimer.c)
with the EFI System Table passed as an argument:

EFI_STATUS
EFIAPI
WatchdogTimerDriverInitialize(

IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable

)

The EDK II implementation then provides access to Boot and Runtime services through
standard libraries and via standard global variables (see EDK II Module Writer's Guide,
Section 5 for more details). Table 6 lists the global variables provided by those libraries.

Examples of Boot and Runtime services are in Table 7. For a complete description of the
services provided by a UEFI-compliant implementation, refer to the UEFI specification.

Using the concepts introduced above, the following example demonstrates how a UEFI
Boot Service can be called from a driver entry point (the example is taken from the
WatchDogTimerDxe driver in the MdeModulePkg):

EFI_STATUS
EFIAPI
WatchdogTimerDriverInitialize(

IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable

)
{
EFI_STATUS Status;
//
// Make sure the Watchdog Timer Architectural Protocol has not been
// installed in the system yet.
//

Table 6. Global Variables for UEFI Service Access

Name Description

gST Pointer to EFI System Table

gBS Pointer to UEFI Boot Services

gRT Pointer to UEFI Runtime Services

Table 7. Sample UEFI Services

Name Type Description

CreateEvent Boot Creates an Event

RaiseTPL Boot Raises a task's priority level and returns its previous value

AllocatePages Boot Allocates memory pages from the system

GetNextMonotonicCount Boot Returns a monotonically increasing count for the platform

LoadImage Boot Loads an EFI image into memory

ExitBootServices Boot Terminates all boot services

GetVariable Runtime Returns the value of a variable

SetVariable Runtime Sets the value of a variable

SetVirtualAddressMap Runtime Changes the runtime addressing mode of EFI firmware from physical
to virtual

ConvertPointer Runtime Determines the new virtual address that is to be used on subsequent
memory accesses

Intel® Boot Loader Development Kit
August 2012 User Guide for Cedar Trail Platform
Document Number: 327836-001 19

Architecture—Intel® BLDK

ASSERT_PROTOCOL_ALREADY_INSTALLED(
NULL,
&gEfiWatchdogTimerArchProtocolGuid

);
//
// Create the timer event to implement a simple watchdog timer
//
Status = gBS->CreateEvent (

EVT_TIMER | EVT_NOTIFY_SIGNAL,
TPL_NOTIFY,
WatchdogTimerDriverExpires,
NULL,
&mWatchdogTimerEvent

);
 ASSERT_EFI_ERROR (Status);

 //
 // Install the Watchdog Timer Arch Protocol onto a new handle
 //
 Status = gBS->InstallMultipleProtocolInterfaces (
 &mWatchdogTimerHandle,
 &gEfiWatchdogTimerArchProtocolGuid,
 &mWatchdogTimer,
 NULL
);
 ASSERT_EFI_ERROR (Status);

 return EFI_SUCCESS;
}

Intel® BLDK—Intel® BLDK BSF - Introduction

Intel® Boot Loader Development Kit
User Guide for Cedar Trail Platform August 2012
20 Document Number: 327836-001

5.0 Intel® BLDK BSF - Introduction

The Boot Setting File (BSF) is a text metadata file with the .bsf filename extension. It
is a part of the code base package. The BSF is used by the Development Application
tool when creating projects (for details, see the Intel® Boot Loader Development Kit
Version 2.0 — UEFI Standard Based Getting Started Guide), and for generating the
firmware images. The BSF, also referred to as the image configuration file, defines the
firmware features and settings that are available to the end user for modification
through the Development Application user interface (UI). In addition, the BSF contains
the text strings displayed in the views generated by the development application.

Figure 4 shows a sample view generated by the development application based on
directives defined in the BSF.

Caution: The end user must not modify the BSF since this can cause the build to fail or the tool
to generate invalid firmware images.

Figure 4. Correlation Example Between BSF Directives and UI Control

Intel® Boot Loader Development Kit
August 2012 User Guide for Cedar Trail Platform
Document Number: 327836-001 21

Debugging—Intel® BLDK

6.0 Debugging

Debugging options fall into three categories: software, JTAG, and debugging without a
debugger.

• The Intel® UEFI Development Kit Debugger Tool is a full source level software
debugger based on Microsoft* WinDbg* or Linux* GNU* Project Debugger (GDB).

• JTAG debuggers are hardware devices that connect to the target via a JTAG header,
specifically the XDP header in this case. A software component running on the host
system is required to complete the debug environment.

• The UEFI code prints debug messages to the serial port and it sends POST codes to
the port 80 LEDs. The serial output can be received by a terminal program on the
host such as Putty*, HyperTerminal*, or Terra Term*. For debug purposes, new
print statements can be added to the code to provide more information about what
the code is doing.

6.1 Software Debugging with the Intel® UEFI Development Kit
Debugger Tool
The Intel® BLDK code base supports source level debugging using the Intel® UEFI
Development Kit Debugger Tool (Intel® UDK Debugger Tool).

The Intel® UDK Debugger Tool is described at length in the Intel UEFI Development Kit
Debugger Tool User Manual, which can be downloaded from:

http://www.intel.com/technology/efi/sw-debug.htm

Without repeating details in this document, there are some basic concepts that must be
understood. Since this is a software debugger that requires a debug agent on the
target, the debugger cannot start debugging at the reset vector. The agent will have to
become active in a memory space (cache as RAM at the earliest) before the debugger
will work. Also, if the code on the target is unstable to the point that the debug agent
cannot run properly, the debugger will be useless at debugging this kind of problem. In
these cases, a JTAG debugger will probably be required.

6.1.1 Software Debugging on Windows*

The following sections cover the basic steps required to make the source level
debugger functional on the Windows Host environment. For details, please refer to the
Intel® UDK Debugger Tool User Manual mentioned previously.

Figure 5 shows the basic configuration for setting up a debug session on Windows: a
host machine connected to the target via either a null-modem cable or USB host-to-
host cable (USB 2.0 debug device cable).

http://www.intel.com/technology/efi/sw-debug.htm

Intel® BLDK—Debugging

Intel® Boot Loader Development Kit
User Guide for Cedar Trail Platform August 2012
22 Document Number: 327836-001

6.1.1.1 Host Machine Setup

Install the following software on the host machine:
1. Install Windows* XP 32-bit with SP3 operating system.

Note: Windows* 7 64-bit has not been validated.
2. Download and install Debugging Tools for Windows (WinDbg):

a. Go to: http://msdn.microsoft.com/en-us/windows/hardware/gg463009.aspx
b. Scroll to Debugging Tools: More Information and Previous Versions and

click: Debugging Tools for Windows 32-bit Versions
c. Scroll to Previous Release version 6.11.1.404 - March 27, 2009 and click:

Install 32-bit version 6.11.1.404 [16.9 MB]
3. Download the Intel UEFI Development Kit Debugger Tool:

http://www.intel.com/technology/efi/sw-debug.htm

Figure 5. Source Level Debugging Setup for Windows*

http://www.intel.com/technology/efi/sw-debug.htm
http://msdn.microsoft.com/en-us/windows/hardware/gg463009.aspx

Intel® Boot Loader Development Kit
August 2012 User Guide for Cedar Trail Platform
Document Number: 327836-001 23

Debugging—Intel® BLDK

4. Install Intel® BLDK code base. Using the Intel® BLDK Development Application,
build the Intel® BLDK code base with source level debug feature enabled. For
details, refer to the Getting Started Guide, specifically the Selecting the Build Mode
section.

The Debug Agent (SourceLevelDebugPkg) is also installed when the Intel® BLDK
code base is installed. For details, see the Getting Started Guide.
Note: After you finish the build, check the directory

Build\<PlatformName>\DEBUG_VS2008x86\IA32, to make sure the
Debug Agent SourceLevelDebugPkg exists. If not, the software
debugger feature is not built in the image and the debugger will not work.

As an example, using Visual Studio 2008 on Cedar Trail platform, check the
directory: Build\CedarRockPlatform\DEBUG_VS2008x86\IA32

6.1.1.2 Target Machine Setup

Program the flash on the target with the debug firmware image, which was created in
Section 6.1.1.1. See the Getting Started Guide for information on how to update the
BLDK firmware image.

6.1.1.3 Starting a Debug Session

Follow these steps to start a debug session on the host machine:
1. Launch WinDbg from Windows by clicking Start > All Programs > Intel UDK

Debugger Tool > Start WinDbg using UDK Debugger Tool
2. Start up the target within 30 seconds after launching WinDbg.
3. Wait 2-3 seconds until WinDbg connects with the target and is ready to accept

commands.
4. WinDbg should stop the target at late SEC phase and have loaded the symbols for

SecCore. WinDbg then shows the source code and is ready for software debugging
of the Intel® BLDK code base.

Intel® BLDK—Debugging

Intel® Boot Loader Development Kit
User Guide for Cedar Trail Platform August 2012
24 Document Number: 327836-001

6.1.1.4 Using the Software Debugger

The following example shows the necessary steps for using the software debugger.

In this example, the target customer reference board is the Intel® Atom™ Processor
N2x00 with Intel® Platform Controller Hub NM10, which is referred to as Cedar Trail.
1. After the EDK II source code tree has been installed on the host system and the

development tools have also been installed, examine the source code tree. There is
a directory in Figure 6 called SourceLevelDebugPkg, which is the code for the
target debug agent. If this package is not present, the software debugger will not
work.

2. The software debugger requires CpuBreakpoint and CpuDeadLoop function calls
inserted into the source code at a location of interest. The dead loop is an infinite
loop that will require an adjustment to the instruction pointer to get past, but it will
guarantee that the debugger will stop there. For our example, we will use the
CpuBreakpoint as illustrated in Figure 7.

Note: You must rebuild the Intel® BLDK code base whenever you make changes to the source
code, such as when adding breakpoints. You must also reprogram the flash with the
newly created firmware image.

Figure 6. SourceLevelDebugPkg Directory

Intel® Boot Loader Development Kit
August 2012 User Guide for Cedar Trail Platform
Document Number: 327836-001 25

Debugging—Intel® BLDK

3. Connect the null modem cable between the host and the target. The location of the
serial port connector is board-specific and may be different between targets.

4. Click Start > All Programs > Intel UDK Debugger Tool > Change
Configurations to set flow control to zero.

5. With the target board powered off, launch WinDbg by clicking Start > All
Programs > Intel UDK Debugger Tool > Start WinDbg with Intel UDK
Debugger Tool.

6. When WinDbg launches, a command window like Figure 8 will pop up. After three
or four dots, power on the target board and press the power button on the board. If
there seems to be a hang, look for a Save Workspace pop-up behind the window.

Figure 7. CpuBreakpoint Example

Intel® BLDK—Debugging

Intel® Boot Loader Development Kit
User Guide for Cedar Trail Platform August 2012
26 Document Number: 327836-001

7. Once the WinDbg connection is established, the source code will look like the top
left window in Figure 9. This is part of the debugger set up and is explained in the
Intel® UDK Debugger Tool User Manual. Click go so that it will proceed and let it
run for several seconds. Then, click halt. The source window should have halted at
the CpuBreakpoint as illustrated in Figure 10. If not, click go again.

Figure 8. WinDbg Launch Window

Figure 9. WinDbg Main Window

Intel® Boot Loader Development Kit
August 2012 User Guide for Cedar Trail Platform
Document Number: 327836-001 27

Debugging—Intel® BLDK

The CpuBreakpoint is explained in the Intel® UEFI Development Kit Debugger Tool
User Manual. Also, all of the various debug windows can be opened from the icons or
from the menu at the top of the main window. Click on each one to see what it is.
Figure 10 shows five of the most useful windows: source, command, local variables,
call stack, and registers.

The WinDbg commands are extensive. Use the help menu, the Microsoft website, the
WinDbg wiki, and the web in general to find information on the commands.

6.1.2 Software Debugging on Linux*

The following sections cover the basic steps required to make the source level
debugger functional on the Linux Host environment. For details, please refer to the
Intel® UDK Debugger Tool User Manual mentioned previously.

Figure 11 shows the basic configuration for setting up a debug session on Linux: a host
machine connected to the target via a null-modem cable.

Figure 10. WinDbg Window showing CpuBreakpoint

Intel® BLDK—Debugging

Intel® Boot Loader Development Kit
User Guide for Cedar Trail Platform August 2012
28 Document Number: 327836-001

6.1.2.1 Host Machine Setup

Install Windows* XP 32-bit with SP3 operating system or Windows* 7 32-bit.
1. Install Timesys* Fedora* Remix 14.
2. Download Debugging Tools for Linux (GDB version 7.0 or higher):

http://www.gnu.org/software/gdb/
3. Download the Intel UEFI Development Kit Debugger Tool:

http://www.intel.com/technology/efi/sw-debug.htm
Install the Intel UDK Debugger Tool using the command appropriate for your OS.
For example, in Timesys, enter this command to install the tool:

sudo rpm -i <host installer>.rpm
Note: If you are installing in a Windows* 7 64-bit environment, you may need to

perform the two additional steps below.
a. Download MSVCP71.DLL and msvcr71.dll, and copy them into the

C:\WINDOWS\SysWOW64 folder.
b. Change the permission of SoftDebugger.ini to Full control and correct the

path of Executable and Directory in the file.

Figure 11. Source Level Debugging Setup for Linux*

http://www.gnu.org/software/gdb/
http://www.intel.com/technology/efi/sw-debug.htm

Intel® Boot Loader Development Kit
August 2012 User Guide for Cedar Trail Platform
Document Number: 327836-001 29

Debugging—Intel® BLDK

4. Configure the Intel UDK Debugger Tool.
Configuration information for the host system is stored in the file .udkdebugger
in the home directory of the current user. When the Intel UDK Debugger Tool is
launched for the first time, the file .udkdebugger is automatically created by
copying the contents of /etc/udkdebugger.conf into the home directory. (This
file does not exist prior to the first use of the tool.)
Note: You may have more than one .udkdebugger file in the OS. Note well that

.udkdebugger in the home directory of the current user is the
configuration setting file used by the Intel UDK Debugger Tool.

Open the file .udkdebugger and make sure the configuration settings are
appropriate for your platform:
— Make sure the Debug Port/Port setting specifies the correct COM port for the

debug cable.
Note: For details on other configuration items, refer to the Intel UEFI

Development Kit Debugger Tool User Manual.
5. Install Intel® BLDK code base. Using the Intel® BLDK Development Application,

build the Intel® BLDK code base with the source level debug feature enabled. For
details, refer to the Getting Started Guide, specifically the Selecting the Build Mode
section.

The Debug Agent (SourceLevelDebugPkg) is also installed when the Intel® BLDK
code base is installed. For details, see the Getting Started Guide.
Note: After you finish the build, check the directory

Build\<PlatformName>\DEBUG_GCC45\IA32, to make sure the Debug
Agent SourceLevelDebugPkg exists. If not, the software debugger
feature is not built in the image and the debugger will not work.

As an example, using Visual Studio 2008 on Cedar Trail platform, check the
directory: Build\CedarRockPlatform\DEBUG_GCC45\IA32

6.1.2.2 Target Machine Setup

• Program the flash on the target with the debug firmware image, which was created
in Section 6.1.2.1. See the Getting Started Guide for information on how to update
the BLDK firmware image.

• Connect the Host Machine to the Target Machine using a null-modem cable.

Intel® BLDK—Debugging

Intel® Boot Loader Development Kit
User Guide for Cedar Trail Platform August 2012
30 Document Number: 327836-001

6.1.2.3 Starting a Debug Session

Follow these steps to start a GDB debug session:
1. At the terminal shell prompt, start the GDB server by entering the appropriate

command, similar to this:
[root@localhost ~]# [/usr/bin/]udk-gdb-server

The command line is a symbolic link to /opt/intel/udkdebugger/bin/udk-
gdb-server

Note: You must be logged in as root.
The following message is displayed:

2. Power up the target system. The system must include the UDK-based firmware
image built with the source-level debug package, and must have the debug feature
enabled.

3. Wait for 1 or 2 seconds until the GDB server successfully connects to the target
debugger. You should see a message similar to the one shown below. The message
indicates that the GDB server has successfully connected and, in this example, is
listening on TCP port 1234.
GdbServer on <HOST> is waiting for connection on port 1234

Connect with 'target remote <HOST>:1234'

4. Connect GDB to GDB Server using the following steps:
a. Start a new terminal window and run gdb at the shell prompt to start the GDB:
[bldk@localhost ~]$ gdb

GNU gdb (GDB) Fedora (7.2-52.fc14)

Copyright (C) 2010 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>

This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law. Type "show copying" and
"show warranty" for details.

This GDB was configured as "i686-redhat-linux-gnu".

For bug reporting instructions, please see:

<http://www.gnu.org/software/gdb/bugs/>.

(gdb)

Intel® Boot Loader Development Kit
August 2012 User Guide for Cedar Trail Platform
Document Number: 327836-001 31

Debugging—Intel® BLDK

b. Type target remote <HOST>:1234 in GDB as prompted by the GDB server.
Replace <HOST> with the name of your target machine.

c. Type source /opt/intel/udkdebugger/bin/udk-gdb-script to load
the GDB extension for Intel UDK Debugger.

You can now use GDB extension commands to begin debugging the target firmware
at the source level.

6.1.2.4 Using the Software Debugger

The Intel UDK Debugger Tool supports GDB operations for Linux platforms, including
these critical operations:

• Embed a breakpoint in the source code. Adding the CpuBreakpoint() statement
to your source code, allows the GDB to enter interactive mode when the target
executes the line.

• Add a function breakpoint in a debug session. As long as a module’s symbol file is
loaded, you can use the break command to set a breakpoint for a function within
the module. Command syntax for the break command is:
break <function_name>

or
b <function_name>

Intel® BLDK—Debugging

Intel® Boot Loader Development Kit
User Guide for Cedar Trail Platform August 2012
32 Document Number: 327836-001

For example:
1. Add a CpuBreakpoint() statement in the source code as shown:

2. Set up the host machine as described in Section 6.1.2.1.
3. Set up the target machine as described in Section 6.1.2.2.
4. Start the debug session as described in Section 6.1.2.3.

a. Start the GDB server.
b. Power up the target system and make sure the GDB server successfully connects

to the target debugger.
c. Connect GDB to GDB Server.

5. Start debugging:
a. Type c to continue execution and run into the breakpoint.
b. Type l to list the source code.
c. Type n to step over the breakpoint.
d. Type l to list the source code.

Intel® Boot Loader Development Kit
August 2012 User Guide for Cedar Trail Platform
Document Number: 327836-001 33

Debugging—Intel® BLDK

e. Type b PciHostBridgeP2CProcess to set breakpoint for function
PciHostBridgeP2CProcess().

f. Type c to stop the execution at the breakpoint.

Intel® BLDK—Debugging

Intel® Boot Loader Development Kit
User Guide for Cedar Trail Platform August 2012
34 Document Number: 327836-001

g. Type l to list more source code.

Intel® Boot Loader Development Kit
August 2012 User Guide for Cedar Trail Platform
Document Number: 327836-001 35

Debugging—Intel® BLDK

6.2 Platform Level Debugging using JTAG/ITP
JTAG debugging can be done from your host development machine to the target if the
target has an In-Target Probe (ITP) header, as shown in Figure 12.

JTAG debuggers do not require placing a software debug agent on the target to work
and consequently do not have the limitations that the software debugger has. JTAG
debuggers can examine the code from the reset vector forward.

The customer reference boards for the Intel® Atom™ processors have an XDP
connector, which is used by the In-Target Probe (ITP). The customer’s selected JTAG
debugger will need to use this connector.

To do source level debug, a debug build rather than a release build of the code is
required. Be sure that the -b DEBUG option is in the build command.

There are several third-party JTAG vendors that support JTAG debugging on Intel®
processors. The product pricing and feature sets vary significantly. For information,
please contact the vendors directly.

• Arium*: http://www.arium.com/
• Green Hills Software*: http://www.ghs.com/
• Lauterbach*: http://www.lauterbach.com/frames.html?home.html
• Macraigor Systems: http://www.macraigor.com/
• Wind River*: http://www.windriver.com/

Figure 12. Platform Level Debugging Setup

http://www.arium.com/
http://www.windriver.com/
http://www.lauterbach.com/frames.html?home.html
http://www.macraigor.com/
http://www.ghs.com/

Intel® BLDK—OS Bring-up

Intel® Boot Loader Development Kit
User Guide for Cedar Trail Platform August 2012
36 Document Number: 327836-001

7.0 OS Bring-up

7.1 OS Hand-Off Requirements
This section discusses the special considerations that are required when writing a UEFI
OS loader. An OS loader is a special type of UEFI application responsible for
transitioning a system from a firmware environment into an OS runtime environment.
The OS loader must perform the following tasks:
1. The OS loader must determine from where it was loaded, so that it can retrieve

additional files from the same location.
2. The OS loader must determine where in the system the OS exists.

Typically, the OS resides on a partition of a hard drive, however, this partition may
not use a file system that is recognized by the UEFI environment. In this case, the
OS loader can only access the partition as a block device using block I/O
operations. The OS loader will then be required to implement or load the file
system driver to access files in the OS partition.

3. The OS loader must build a memory map of the physical memory resources so that
the OS kernel can know what memory to manage. The OS loader can use the UEFI
APIs to retrieve the system’s current memory map, because some of the physical
memory in the system must remain untouched by the OS kernel.

4. The OS loader retrieves system configuration information from the System Table
data structure that is passed in. The System Table informs the OS loader about:
— services available from the platform firmware, such as block and console

services for loading the OS kernel binary from media and interacting with the
user prior to the OS drivers are loaded, respectively.

— access to industry standard tables like ACPI, SMBIOS, and others.
5. The OS loader may need to access environment variables such as boot paths and

boot options that are stored in nonvolatile storage. In addition, the OS loader may
be required to pass some of the environment variables to the OS kernel.

6. Next, either the OS loader or the OS kernel calls the ExitBootServices()
function. Special care must be taken to guarantee that the most current memory
map has been retrieved prior to making this call. Once ExitBootServices() has
been called, no more UEFI Boot Services calls can be made. At some point, either
just prior to calling ExitBootServices() or just after, the OS loader will transfer
control to the OS kernel.

7. After ExitBootServices() has completed, EFI Boot Services calls are no longer
available which indicates an OS kernel has taken control of the system. The OS
kernel may only call EFI Runtime Services.

Intel® Boot Loader Development Kit
August 2012 User Guide for Cedar Trail Platform
Document Number: 327836-001 37

Additional Information—Intel® BLDK

Appendix A Additional Information

Note: The examples in this document are for the Intel® Atom™ Processor N2x00 with Intel®
Platform Controller Hub NM10, which is referred to as Cedar Trail.

A.1 Image Build Process Flow (EDK-II centric) and Firmware
Image Creation
The Intel BLDK image build process is handled in three major stages which are
summarized below:

• AutoGen: the build tool parses meta-data files to generate C source code files and
makefiles.

• $(MAKE): the build tool processes the source code files to create PE32/PE32+/
COFF images that are converted to EFI format using either:
— NMAKE for Microsoft* OS development platforms
— MAKE for UNIX* style OS development platforms

• ImageGen: the build tool takes the EFI format files and creates EFI Flash images,
UEFI applications, or EFI PCI Option ROMs.

Figure 13 shows the relationships between these three stages. Details of each stage
are described in the following sections.

Figure 13. EDK II Build Process Flow

Intel® BLDK—Additional Information

Intel® Boot Loader Development Kit
User Guide for Cedar Trail Platform August 2012
38 Document Number: 327836-001

A.1.1 AutoGen Stage

In the first step of building a platform or a module, the build tool parses meta-data files
to generate C source code files and makefiles. Figure 14 shows the steps that are
accomplished by this stage.

1. The first file the build tool looks for is $(WORKSPACE)/Conf/target.txt, where
(WORKSPACE)indicates the location where your project parameter file is stored.
The target.txt file is used to define the following: platform DSC file, build tag
(debug or release), architecture (such as IA-32 or x64), tool chain (such as Visual
Studio version), and build rule file. All the configurations in target.txt can be
overridden by command line options of the build tool. See the Release Notes for
command line options.
If no platform description file is specified in either target.txt or in the command
line, the build tool will try to find one in the current directory.
If the build tool finds a module description file (INF file) in the current directory, it
will try to build only that module rather than building a whole platform.

2. Once the build tool gets what to build and how to build, it starts to parse the
platform description file (DSC). From the DSC file, the build tool will locate the INF
files for all modules and libraries, as well as other settings of the platform
[including declaration file (DEC) specified default values for Platform Configuration
Databases (PCDs) used by modules and libraries that do not have values specified
in the DSC file]. Using the module description files, the build tool will find out what
package description files the module depends on. In this way, the build tool will find
out and parse all modules and packages that make up a platform.

Figure 14. EDK II AutoGen Process

Key:
• DSC = platform description file
• INF = module description file
• FDF = flash description file
• DEC = declaration file

Intel® Boot Loader Development Kit
August 2012 User Guide for Cedar Trail Platform
Document Number: 327836-001 39

Additional Information—Intel® BLDK

3. The next step is to generate the files required to build a module, including:
— AutoGen.h
— AutoGen.c (not generated for library modules)
— .depex (not generated for library modules; generated only if the module’s INF

file contains a [depex] section)
— makefile

Each module found in the DSC file will have a makefile generated for it. A top-level
makefile will be generated for the platform, from which all modules’ makefile will be
called.

Note: When building a module, only a module makefile will be generated (a top-level makefile
will not be generated). Enter the following in the command line:

build -p target_platform_dsc_path -m target_module_inf_path

A.1.2 $(MAKE) Stage

The make stage processes the source files into EFI files, which starts out by building
required libraries, followed by the EDK components and finally, EDK II modules. The
outputs of this stage are linked PE32+/ COFF images that have been processed to
replace the standard header with an appropriate EFI header.

Figure 15 shows what will be done in the $(MAKE) stage from a platform point of view.
These tasks include building library modules, building non-library modules, and finally
generating flash image(s).

Figure 16 shows the $(MAKE) stage tasks from a module point of view, including
preprocessing, compiling or assembling, static/dynamic linking, and module image
generation.

Figure 15. EDK II Build Process - Platform Point of View

Build Library Modules

Build Non-Library Modules

Generate Flash Image

Intel® BLDK—Additional Information

Intel® Boot Loader Development Kit
User Guide for Cedar Trail Platform August 2012
40 Document Number: 327836-001

A.1.3 ImageGen Stage

This stage processes the EFI files generated by the $(MAKE) stage into FLASH binary
images. The GenFds tool is typically called as the last step of a platform build's
$(MAKE) stage. The build.exe command will set up the call to GenFds and the Make
utility will call the program. The GenFds program can also be executed by the
developer from the command line as follows:

GenFds.exe [options] -f input_file -a arch_list -b build_target
-p active_platform -t tool_chain_tag -D “MacroName [=MacValue]”

Figure 17 shows the tools that are involved in the GenFds process.

Figure 16. EDK II Build Process - Module Point of View

Preprocess/Trim

Compile/Assemble

Static/Dynamic Link

Generate Module Images

Intel® Boot Loader Development Kit
August 2012 User Guide for Cedar Trail Platform
Document Number: 327836-001 41

Additional Information—Intel® BLDK

GenFds calls the following tools during the generation of an FD image:
• GenSec

This application is used to generate valid EFI_SECTION type files from PE32/
PE32+/ COFF image files or other binary files. The utility will attach a valid section
or PEIM header to the input file as defined in the UEFI Platform Initialization (PI)
specification.

• GenFfs
This application is used to generate FFS files for inclusion in a firmware volume.
Rules specified in the FDF file stipulate how the FFS file will be organized (what kind
of sections should reside in it and in what format).

• GenFv
This application is used to generate an FV image by using information about the
FFS from the corresponding FV.inf file.

• GenFw
This application is used to generate UEFI firmware image files based on Component
or Module types listed in the INF files from the PE/PE32+/COFF images generated
by the third party tool chains.

• GenVtf
This application generates the Boot Strap File (also called Volume Top File, or VTF)
for IA32 X64, and IPF images.

Figure 17. FD Image Generation Process

Intel® BLDK—Additional Information

Intel® Boot Loader Development Kit
User Guide for Cedar Trail Platform August 2012
42 Document Number: 327836-001

A.2 How to Build a UEFI Driver
This section describes how to build a new driver into the source tree of Intel® BLDK
Core for Cedar Trail platform (UEFI Standard Based) and integrate it into the final boot
loader image. The detailed steps are below:
1. Develop a new UEFI driver using chapter three of the EDK II Module Writer's Guide

(version 0.7 or later). This document can be downloaded from:
http://sourceforge.net/projects/edk2/files/General%20Documentation/
In this example, we assume the name of your UEFI driver is Sampledrv and it is
running in the DXE phase. There are three driver files in the folder Sampledrv:
Sampledrv\Sampledrv.c
Sampledrv\Sampledrv.h
Sampledrv\Sampledrv.inf

2. Put your driver into the source tree by putting the driver folder into the platform
package. In this example, we use: CedarRockPlatformPkg
To build the sample driver, a reference to the driver's .inf file must be inserted
into the component's section of the target platform Description File (.DSC). In this
example, we are building the driver for IA-32 architecture.
Perform the following steps to add a reference to the UEFI driver.
a. Open \<PlatformPkg>\<PlatformPkg>.dsc with a text editor such as

Notepad.
In this example, we use:
\CedarRockPlatformPkg\CedarRockPlatformPkg.dsc

b. Find the [Components.IA32] section (approximately line 849) and add your
driver’s .inf file.

c. Save and close the <PlatformPkg>.dsc file.
3. Execute the build command to build the driver. UDK2010 allows you to build one

driver in one build process with the command described below.
Note: This step is only to introduce the driver build command which may be

useful during driver development. It is not a necessary step to integrate a
driver into an image.

a. Open a command prompt window and point to the source package directory.

http://sourceforge.net/projects/edk2/files/General%20Documentation/

Intel® Boot Loader Development Kit
August 2012 User Guide for Cedar Trail Platform
Document Number: 327836-001 43

Additional Information—Intel® BLDK

b. Type the following commands:
edksetup.bat
build -p <PlatformPkg>\<PlatformPkg>.dsc -m
<PlatformPkg>\SampleDrv\SampleDrv.inf -t VS2005x86
where:
-p specifies the target platform
-m specifies the target driver .inf file
-t specifies the target tool chain. You can change the tool chain according to

your build environment.
In this example, we use:
edksetup.bat
build -p CedarRockPlatformPkg\CedarRockPlatformPkg.dsc -m
CedarRockPlatformPkg\SampleDrv\SampleDrv.inf -t VS2005x86

c. If there is no error, after the build completes, the compiled binary UEFI driver
named SampleDrv.efi will be located in the build directory:
\Build\<PlatformPkg>\DEBUG_MYTOOLS\IA32

In our example, the directory is
\Build\CedarRockPlatformPkg\DEBUG_MYTOOLS\IA32

4. Integrate the driver into the final boot loader image. The platform Flash Description
File (FDF) determines which file is included into the boot loader image.
a. Open the \<PlatformPkg>\<PlatformPkg>.fdf file.

In this example, we use:
\CedarRockPlatformPkg\CedarRockPlatformPkg.fdf

b. Find the [FV.FVMAIN] section (approximately line 264) and add the following
line in the format: INF <PlatformPkg>/Sampledrv/Sampledrv.inf
In this example, we use:
INF CedarRockPlatformPkg/Sampledrv/Sampledrv.inf

Intel® BLDK—Additional Information

Intel® Boot Loader Development Kit
User Guide for Cedar Trail Platform August 2012
44 Document Number: 327836-001

5. Execute the build command to build the final image.
a. Open a command prompt window and type the following command:

build -p <PlatformPkg>\<PlatformPkg>.dsc
In this example, we use:
build -p CedarRockPlatformPkg\CedarRockPlatformPkg.dsc
This will build the final image which includes your driver.

A.3 EDKII Platform Configuration Database (PCD)
For details, refer to the white paper:

EDKII Platform Configuration Database Entries: An Introduction to PCD Entries
http://download.intel.com/design/intarch/papers/325619.pdf

Summary:
A Platform Configuration Database (PCD) entry is a setting which is established
during the time that the platform BIOS/Boot-loader is built. In the case of a UEFI
compliant codebase, there are commonly defined interfaces for abstracting certain
types of PCDs. The white paper covers specifics associated with how one uses the
PCDs and the roles associated with the differing types of PCDs.

http://download.intel.com/design/intarch/papers/325619.pdf

Intel® Boot Loader Development Kit
August 2012 User Guide for Cedar Trail Platform
Document Number: 327836-001 45

How to modify the binary image using the Intel® BLDK Development Application—Intel® BLDK

Appendix B How to modify the binary image using the
Intel® BLDK Development Application

The Intel® BLDK development application provides a graphical user interface (GUI) that
allows you to modify the settings in a binary file without having to rebuild the firmware.
The detailed procedure is included in this section.

The examples in this document are for the Intel® Atom™ Processor N2x00 with Intel®
Platform Controller Hub NM10, which is referred to as Cedar Trail platform.

Note: You must start with a BLDK project, created with the Intel® BLDK Development
Application, before proceeding with these steps. See the Intel® Boot Loader
Development Kit Version 2.0 — UEFI Standard Based Getting Started Guide, “Creating
a New Project” section for details.

Perform the following:
1. Open a BLDK project in the development application by clicking Project >

Open Project.

Intel® BLDK—How to modify the binary image using the Intel® BLDK Development Application

Intel® Boot Loader Development Kit
User Guide for Cedar Trail Platform August 2012
46 Document Number: 327836-001

Select an “As Built” configuration file (absf file) when you open the project as
shown below.

2. Expand Setting Configuration in the tree view of the navigation pane on the left
side. You will see all the items that can be modified from the Intel® BLDK
development application.

Intel® Boot Loader Development Kit
August 2012 User Guide for Cedar Trail Platform
Document Number: 327836-001 47

How to modify the binary image using the Intel® BLDK Development Application—Intel® BLDK

3. After selecting an item from the tree view, you will see the detailed settings that
can be modified from the main window.
For example, if you click ACPI > Processor Power Management, you will see
the possible settings such as Enhanced Intel SpeedStep Technology, Cx, Cxe,
and others in the main window. Help information is displayed in the right window
pane when you move your mouse cursor over a particular setting.

4. Modify the setting(s) according to your target board configuration.
For example, the screen below shows that the value of Cx has been changed from
Enabled to Disabled.

Intel® BLDK—How to modify the binary image using the Intel® BLDK Development Application

Intel® Boot Loader Development Kit
User Guide for Cedar Trail Platform August 2012
48 Document Number: 327836-001

5. Save your changes by clicking Project > Save Configuration.

6. Create the final image with the new setting(s) by clicking Build > Create Final
Firmware Image.

7. Indicate which binary file you want to modify, using the format:
build\<PlatformName>\<RELEASE_nnn>\fv\<platform>.fd
As an example, using Visual Studio 2005 for the Cedar Trail target platform:
build\cedarrockplatform\release_vs2005\fv\cedarrock.fd was
chosen.

Intel® Boot Loader Development Kit
August 2012 User Guide for Cedar Trail Platform
Document Number: 327836-001 49

How to modify the binary image using the Intel® BLDK Development Application—Intel® BLDK

8. The development application automatically generates the name and the location of
the binary to be patched, using the format:
build\<PlatformName>\<RELEASE_nnn>\fv\<platform>.rom
As an example, using Visual Studio 2005 for the Cedar Trail target platform:
build\cedarrockplatform\release_vs2005\fv\cedarrock.rom
Click OK to finish the patching process.
Note: The development application does not make any changes to the original

binary file.

§ §

	Intel® Boot Loader Development Kit (Intel® BLDK)
	Contents
	Figures
	Tables

	1.0 About This Manual
	1.1 Audience
	1.2 Related Documents and Tools
	1.3 Notational Conventions and Terminology

	2.0 Product Overview
	2.1 Introduction to the Intel® BLDK
	2.2 Different Components of the Intel® BLDK

	3.0 Intel® BLDK and Intel® UDK2010
	3.1 Open Source Availability
	3.2 Intel® BLDK Features

	4.0 Architecture
	4.1 Platform Initialization Sequences
	4.1.1 Security (SEC) Phase
	4.1.2 Pre-EFI Initialization (PEI) Phase
	4.1.3 Driver Execution Environment (DXE) Phase
	4.1.4 Boot Device Select (BDS) Phase

	4.2 Boot Process
	4.3 Types of Intel® BLDK Files
	4.4 Protocol and Drivers
	4.5 UEFI Services

	5.0 Intel® BLDK BSF - Introduction
	6.0 Debugging
	6.1 Software Debugging with the Intel® UEFI Development Kit Debugger Tool
	6.1.1 Software Debugging on Windows*
	6.1.1.1 Host Machine Setup
	6.1.1.2 Target Machine Setup
	6.1.1.3 Starting a Debug Session
	6.1.1.4 Using the Software Debugger

	6.1.2 Software Debugging on Linux*
	6.1.2.1 Host Machine Setup
	6.1.2.2 Target Machine Setup
	6.1.2.3 Starting a Debug Session
	6.1.2.4 Using the Software Debugger

	6.2 Platform Level Debugging using JTAG/ITP

	7.0 OS Bring-up
	7.1 OS Hand-Off Requirements

	Appendix A Additional Information
	A.1 Image Build Process Flow (EDK-II centric) and Firmware Image Creation
	A.1.1 AutoGen Stage
	A.1.2 $(MAKE) Stage
	A.1.3 ImageGen Stage

	A.2 How to Build a UEFI Driver
	A.3 EDKII Platform Configuration Database (PCD)

	Appendix B How to modify the binary image using the Intel® BLDK Development Application

