
Webots User Guide
release 4.0.27

copyright c© 2002 Cyberbotics Ltd. All rights reserved.
www.cyberbotics.com

December 3, 2004

2

copyright c© 2002 Cyberbotics Ltd. All rights reserved.
All rights reserved

Permission to use, copy and distribute this documentation for any purpose and without fee is
hereby granted in perpetuity, provided that no modifications are performed on this documenta-
tion.

The copyright holder makes no warranty or condition, either expressed or implied, including
but not limited to any implied warranties of merchantability and fitness for a particular purpose,
regarding this manual and the associated software. This manual is provided on anas-isbasis.
Neither the copyright holder nor any applicable licensor will be liable for any incidental or con-
sequential damages.

This software was initially developed at the Laboratoire de Micro-Informatique (LAMI) of the
Swiss Federal Institute of Technology, Lausanne, Switzerland (EPFL). The EPFL makes no war-
ranties of any kind on this software. In no event shall the EPFL be liable for incidental or
consequential damages of any kind in connection with use and exploitation of this software.

Trademark information

AiboTM is a registered trademark of SONY Corp.

GeForceTM is a registered trademark of nVidia, Corp.

JavaTM is a registered trademark of Sun MicroSystems, Inc.

KheperaTM and KoalaTM are registered trademarks of K-Team S.A.

LinuxTM is a registered trademark of Linus Torwalds.

Mac OS XTM is a registered trademark of Apple Inc.

MindstormsTM and LEGOTM are registered trademarks of the LEGO group.

PentiumTM is a registered trademark of Intel Corp.

Red HatTM is a registered trademark of Red Hat Software, Inc.

Visual C++TM, WindowsTM, Windows 95TM, Windows 98TM, Windows METM, Windows NTTM,
Windows 2000TM and Windows XPTMare registered trademarks of Microsoft Corp.

UNIXTM is a registered trademark licensed exclusively by X/Open Company, Ltd.

Foreword

Webots is a three-dimensional mobile robot simulator. It was originally developed as a research
tool for investigating various control algorithms in mobile robotics.

This user guide will get you started using Webots. However, the reader is expected to have a
minimal knowledge in mobile robotics, in C, C++ or Java programming and in VRML97 (Virtual
Reality Modeling Language).

Webots 4 includes a physics engine allowing the user to define complex mobile robots with
various locomotion schemes (wheeled robots, legged robots or even flying robots). Predefined
sensors and actuators (like distance sensors, cameras, servos, grippers, etc.) allow the user to
model and simulate any mobile robot.

If you have already developed programs using Webots 3, please read chapter 2 to update your
programs to run with the new version.

We hope that you will enjoy working with Webots 4.

3

4

Thanks

Cyberbotics is grateful to all the people who contributed to the development of Webots, Webots
sample applications, the Webots User Guide, the Webots Reference Manual, and the Webots
web site, including Jordi Porta, Emanuele Ornella, Yuri Lopez de Meneses, Auke-Jan Ijspeert,
Alcherio Martinoli, Gerald Foliot, Allen Johnson, Michael Kertesz, Aude Billiard, and many
others.

Moreover, many thanks are due to Prof. J.-D. Nicoud (LAMI-EPFL) and Dr. F. Mondada for
their valuable support.

Finally, thanks to Skye Legon, who proof-readed this guide.

5

6

Contents

1 Installing Webots 13

1.1 Hardware requirements .13

1.2 Installation procedure .13

1.2.1 RedHat Linux i386 .13

1.2.2 Windows 95, 98, ME, NT, 2000 and XP14

1.2.3 Mac OS X, version 10.2.8 .14

1.3 Registration Procedure .15

1.3.1 Webots license .15

1.3.2 Registering .16

2 Upgrading from Webots 3 19

2.1 Controller .19

2.1.1 Controller includes .19

2.1.2 Controller library .19

2.1.3 Basic data type .19

2.1.4 Khepera .20

2.1.5 GTK+ GUI .20

2.2 World .20

3 Getting Started with Webots 23

3.1 Introduction to Webots .23

3.1.1 What is Webots ? .23

3.1.2 What can I do with Webots ? .23

3.1.3 What do I need to use Webots ? .24

7

8 CONTENTS

3.1.4 What is a world ? .25

3.1.5 What is a controller ? .25

3.2 Launching Webots .25

3.2.1 On Linux .25

3.2.2 On Mac OS X .26

3.2.3 On Windows .26

3.3 Main Window: Menus and buttons .26

3.3.1 File menu and shortcuts .26

3.3.2 Edit menu .28

3.3.3 Simulation menu and the simulation buttons29

3.3.4 Wizard menu .30

3.3.5 Help menu .31

3.3.6 Navigation in the scene .31

3.3.7 Moving a solid object .32

3.3.8 Selecting a solid object .32

3.4 Scene Tree Window .32

3.4.1 Buttons of the Scene Tree Window .33

3.4.2 VRML97 nodes .34

3.4.3 Webots specific nodes .36

3.4.4 Principle of the collision detection .36

3.4.5 Writing a Webots file in a text editor .36

3.5 Citing Webots .37

3.5.1 Citing Cyberbotics’ web site .38

3.5.2 Citing a reference journal paper about Webots38

4 Tutorial: Modeling and simulating your robot 39

4.1 My first world: kiki.wbt .39

4.1.1 Setup .39

4.1.2 Environment .40

4.1.3 Robot .44

4.1.4 A simple controller .54

CONTENTS 9

4.2 Adding a camera to thekiki robot .55

4.3 Adding physics to thekiki simulation .55

4.3.1 Overview .55

4.3.2 Preparing the floor for a physics simulation57

4.3.3 Adding physics to thekiki robot .57

4.3.4 Adding a ball in thekiki world . 57

4.4 Modelling an existing robot: pioneer2.wbt .58

4.4.1 Environment .58

4.4.2 Robot with 16 sonars .58

4.4.3 Controller .65

4.5 Transfer to your own robot .65

4.5.1 Remote control .66

4.5.2 Cross-compilation .68

4.5.3 Interpreted language .68

4.6 Adding custom ODE physics .69

4.6.1 Introduction .69

4.6.2 Files .69

4.6.3 Implementation .69

4.6.4 Compiling the shared library .71

4.6.5 Example .71

5 Robot and Supervisor Controllers 73

5.1 Overview .73

5.2 Setting Up a Development Environment .73

5.2.1 Under Windows .73

5.2.2 Under Linux .75

5.2.3 Under Mac OS X .75

5.3 Setting Up a New Controller .75

5.4 Webots Execution Scheme .76

5.4.1 From the controller’s point of view .76

5.4.2 From the point of view of Webots .76

10 CONTENTS

5.4.3 Synchronous versus Asynchronous controllers77

5.5 Reading Sensor Information .77

5.6 Controlling Actuators .78

5.7 Going further with the Supervisor Controller .78

5.8 Interfacing Webots to third party software .79

5.8.1 Overview .79

5.8.2 Main advantages .79

5.8.3 Limitations .80

5.8.4 MatLabTM TCP/IP utility .80

6 Tutorial: Using the KheperaTM robot 81

6.1 Hardware configuration .81

6.2 Running the simulation .82

6.3 Understanding the model .84

6.3.1 The 3D scene .84

6.3.2 The Khepera model .85

6.4 Programming the Khepera robot .86

6.4.1 The controller program .86

6.4.2 Looking at the source code .86

6.4.3 Compiling the controller .89

6.5 Transferring to the real robot .89

6.5.1 Remote control .89

6.5.2 Cross-compilation and upload .90

6.6 Working extension turrets .91

6.6.1 The K213 linear vision turret .91

6.6.2 The Gripper turret .91

6.6.3 Custom turrets and Khepera protocol92

6.7 Support for other K-Team robots .93

6.7.1 KoalaTM .93

6.7.2 AliceTM .95

CONTENTS 11

7 Tutorial: Using the LEGO Mindstorms TM robots 97

7.1 Building up the Rover robot .97

7.2 Webots model of the Rover robot .119

7.3 Transfering to the real Rover robot .120

7.3.1 leJOS .120

7.3.2 Installation .120

7.3.3 Cross-compilation and upload .121

7.3.4 How does it work ? .121

8 ALife Contest 123

8.1 Previous Editions .123

8.2 Rules .123

8.2.1 Subject .123

8.2.2 Robot Capabilities .124

8.2.3 Programming Language .125

8.2.4 Scoring Rule .125

8.2.5 Participation .126

8.2.6 Schedule .126

8.2.7 Prize .126

8.3 Web Site .126

8.4 How to Enter the Contest .127

8.4.1 Obtaining the software .127

8.4.2 Running the software .128

8.4.3 Creating your own robot controller .128

8.4.4 Submitting your controller to the ALife contest129

8.4.5 Analysing the performance and improving your competing controller . .130

8.5 Developers’ Tips and Tricks .132

8.5.1 Practical issues .132

8.5.2 Java Security Manager .132

8.5.3 Levels of Intelligence .133

12 CONTENTS

9 Practical Work: Robot Soccer 135

9.1 Setup .135

9.2 Rules .136

9.3 Programming .136

9.4 Extensions .136

9.4.1 Modifiying the soccer field .137

9.4.2 Modifying the robots .137

9.4.3 Modifying the match supervisor .137

Chapter 1

Installing Webots

1.1 Hardware requirements

Webots is available for RedHat Linux i386, Mac OS X, Windows 95, Windows 98, Windows
ME, Windows NT, Windows 200 and Windows XP. Other versions of Webots for other UNIX
systems (Debian Linux i386, Solaris, Linux PPC, Irix) may be available upon request.

OpenGL hardware acceleration is supported on Windows, Mac OS X and in some Linux config-
urations. It may also be available on other UNIX systems.

1.2 Installation procedure

To install Webots, you must follow the instructions corresponding to your computer / operating
system listed below:

1.2.1 RedHat Linux i386

Webots will run on RedHat Linux distributions, starting from RedHat 7.2. Webots may run on
other Linux distributions. For example, it can be easily installed on Debian Linux, using the
alien command to translate therpm package into adeb package before installation. If you do
use Red Hat Linux, please refer to your Linux distribution documentation to get the Webotsrpm

package installed.

1. Log on asroot

2. Insert the Webots CD-ROM, mount it (this might be automatic) and install the following
packages

13

14 CHAPTER 1. INSTALLING WEBOTS

mount /mnt/cdrom
cd /mnt/cdrom/linux
rpm -Uvh lib/mjpegtools-1.6.2-1.i386.rpm
mjpegtools is useful to create MPEG movies from simulations
rpm -Uvh webots/webots-4.0.27-1.i386.rpm
rpm -Uvh webots/webots-kros-1.1.0-1.i386.rpm
webots-kros is useful only if you want to cross-compile
controllers for the Khepera robot

You may need to use the--nodeps or the--force if rpm fails to install the packages.

1.2.2 Windows 95, 98, ME, NT, 2000 and XP

1. Uninstall any previous release of Webots or Webots-kros, if any, from theStart menu,
Control Panel , Add / Remove Programs . or from theStart menu,Cyberbotics , Uninstall
Webots or Uninstall Webots-kros .

2. Insert the Webots CD-ROM and open it.

3. Go to thewindows \webots directory on the CD-ROM.

4. Double click on thewebots-4.0.27 setup.exe file.

5. Follow the installation instructions.

6. Optionally, double click on thewebots-kros-1.1.0 setup.exe file to install the cross-
compiler for the Khepera robots.

In order to be able to compile controllers, you will need to install a C/C++ development envi-
ronment. We recommend to use Dev-C++ which is provided on the Webots CD-ROM (in the
windows/utils directory) as well as from the Bloodshed.net1 web site. Dev-C++ is an inte-
grated development environment (IDE) for C/C++ with syntax highlighting running on Windows.
It includes the MinGW distribution with the GNU GCC compiler and utilities. This software is
distributed under the terms of the GNU public license and hence is free of charge.

You may also choose to use Microsoft Visual C++TM if you own a license of this software.

1.2.3 Mac OS X, version 10.2.8

1. Insert the Webots CD-ROM and open it.

2. Go to themac:webots directory on the CD-ROM.

1http://www.bloodshed.net

http://www.bloodshed.net

1.3. REGISTRATION PROCEDURE 15

3. Double click on thewebots-4.0.27.dmg file.

4. This will mount on the desktop a volume namedWebots containing theWebots folder.
Move this folder to your applications directory or wherever you would like to install We-
bots.

In order to be able to compile controllers, you will need to install the Apple Mac OS X De-
veloper tools, included in the Mac OS X installation CD-ROMs. File editing and compilation
using Webots Makefiles can be achieved through these Apple tools. You will probably use the
Project Builder application to edit the source codes of the Webots controllers and the Terminal
application for invoking make from the directory in which your controller gets compiled.

If you would like to be able to create MPEG movies from your Webots simulations, you will
have to install the mjpegtools package. This package is located in thelinux:lib directory of
the CD-ROM. Install it from thejpegtools-1.6.2.tar.gz tar ball. After installation, you
should be able to callmpeg2enc from the command line.

The CodeWarriorTM development environment is not supported for the development of con-
trollers (although it may also work).

1.3 Registration Procedure

1.3.1 Webots license

Starting with Webots 4, a new license system has been introduced to facilitate the use of Webots.

When installing Webots, you will get a license file, calledwebots.key , containing your name,
address, serial number and computer ID. This encrypted file will enable you to use Webots ac-
cording to the license you purchased. This file is strictly personal: you are not allowed to provide
copies of it to any third party in any way, including publishing that file on any Internet server
(web, ftp, or any other server). Any copy of your license file is under your responsibility. If a
copy of your license file is used by an unauthorized third party to run Webots, then Cyberbotics
may engage legal procedures against you. Webots licenses are (1) non-transferable and (2) non-
exclusive. This means that (1) you cannot sell or give your Webots license to any third party, and
(2) Cyberbotics and its official Webots resellers may sell or give Webots licenses to third parties.

If you need further information about license issues, please send an e-mail to:

<license@cyberbotics.com >

Please read your license agreement carefully before registering. This license is provided within
the software package. By using the software and documentation, you agree to abide by all the
provisions of this license.

16 CHAPTER 1. INSTALLING WEBOTS

1.3.2 Registering

After installing Webots, you will need to register your copy of Webots to get a license file called
webots.key allowing you to use all the features of Webots corresponding to the license you
purchased.

Regularwebots.key license files are tied to a specific computer, making it impossible to use
Webots on another computer. However, if for some reason, you would like to move your Webots
license from a computer to another, just send us an e-mail at<license@cyberbotics.com >

to explain the problem. If you plan to use several Webots licenses over a large number of com-
puters, you should probably ask us to use the floating license server (see below for details).
Otherwise, you can jump to the simple registration subsection.

Floating license server: lserv

If you don’t want your Webots license file to be tied to specific computers, you have the option to
install a license server for Webots. This software, calledlserv , allows you to run Webots con-
currently on several machines defined by their IP addresses (or their names). Hence Webots is
not tied to a predefined number of machines but can be run on an unlimited number of computers.
However, the license server takes care that the number of computers running Webots simultane-
ously doesn’t exceed the maximum allowed by the license file.lserv should be installed on a
server machine, i.e., a computer that is on when users are supposed to run Webots.

Currently, lserv only runs on the Linux operating system. However, it allows Webots exe-
cution on Linux, Windows and Mac OS X machines. You need to provide Cyberbotics with
the MAC address of theeth0 network card of the Linux server runninglserv so that a spe-
cial webots.key license file can be created and will be sent to you. To know this MAC ad-
dress, simply issueifconfig eth0 as root and read theHWaddr parameter. It looks like:
00:50:04:1E:0E:38 . Then, you will need to configure the server and clients to setup the
floating license server for your local network.

lserv is freely available from Cyberbotics at no extra cost upon simple request at:

<license@cyberbotics.com >

Please follow the simple registration procedure to provide Cyberbotics with all the information
necessary to create thewebots.key license file forlserv . The computer ID provided should
be the MAC address of your Linux server on whichlserv will be running.

Simple registration

In order to proceed, launch Webots on the computer on which you would like to install the license
file. Go theRegister menu item of theHelp menu of Webots and follow the instructions. If this
computer is connected to the Internet, everything will run smoothly, fill in the requested form
and you will shortly receive thewebots.key license file via e-mail. Otherwise, you will have

1.3. REGISTRATION PROCEDURE 17

to fill in a form2 on the website of Cyberbotics (see figure 1.1). You will then receive an e-mail
containing thewebots.key file corresponding to your license.

Figure 1.1: Webots registration page

Please take care to properly fill in each field of this form. TheSerial Numberis the serial number
of your Webots package which is printed the CD-ROM under the headingS/N:. The computer
ID is given by Webots in theRegister menu item of theHelp menu.

After completing this form, click on theSubmit button. You will receive shortly thereafter an
e-mail containing your personal license filewebots.key which is needed to install a registered
copy of Webots as described below.

2http://www.cyberbotics.com/registration/webots4.html

http://www.cyberbotics.com/registration/webots4.html

18 CHAPTER 1. INSTALLING WEBOTS

Registering several computers

If you need to register several computers, it may be convenient to register all the computers in
the samewebots.key license file. Hence this unique license file could be copied across all the
computers needing a Webots license.

In order to proceed, just enter several computer IDs on the web form, corresponding to all the
computers you want to register. The computer IDs have to be seperated by a simple space char-
acter.

Copying the license file

Once you received it by e-mail, just copy thewebots.key license file into theresources

directory of your Webots installation.

Under Linux, copy your personalwebots.key file into the/usr/local/webots/resources

directory where Webots was just installed.

Under Mac OS X, copy your personalwebots.key file into theWebots:resources directory
where Webots was just installed.

Under Windows, copy your personalwebots.key file into the directory where Webots was just
installed, which is usuallyC: \Program Files \Webots \resources .

Chapter 2

Upgrading from Webots 3

If you have already worked with Webots 3, your existing programs may need to be modified for
use with Webots 4.

2.1 Controller

2.1.1 Controller includes

The include path of the device files is the same as in Webots 3.2, i.e.:

#include <device/robot.h>
#include <device/differential_wheels.h>
#include <device/distance_sensor.h>

2.1.2 Controller library

The name of the controller library to which you will link your executable files changed to ”Con-
troller.dll” on Windows and ”libController.so” on Linux. It is not any more ”GtkController.dll”
or ”libGtkController.so”. Please update your project files or make files appropriately.

2.1.3 Basic data type

Since GTK+ and glib are not used any more, the data type coming from the glib are not recog-
nized any more. Webots 4 uses the more standard C data types. Moreover, a couple of other
Webots specific data type have slightly changed to become more consistant with the rest of the
API. Please replace the following data types in your programs:

19

20 CHAPTER 2. UPGRADING FROM WEBOTS 3

Webots 3 Webots 4
gchar char
guchar unsigned char
guint8 unsigned char
gint8 char
gint int
guint unsigned int
gint32 int
guint32 unsigned int
gint16 short
guint16 unsigned short
gfloat float
gdouble double
gpointer void *
devicetag DeviceTag
noderef NodeRef

Table 2.1: Data types changes between Webots 3 and Webots 4

2.1.4 Khepera

If you developed controllers specifically for the Khepera robot, thekhepera live function
should be replaced byrobot live . Moreover, the#include <transfer/khepera.h >

should be removed. Please check also that themodel field of theDifferentialWheels node
corresponding to the Khepera robot is ”Khepera” or ”Khepera II”, so that it will be automatically
recognized by Webots as a Khepera controller for remote control and code upload.

2.1.5 GTK+ GUI

The GTK+ graphical user interface is not any more integrated within the controller library.
Hence, you are free to use any graphical user interface library, like wxWindows, GTK+, Mo-
tif, MFC, etc. To use for example GTK+, you have two options: (1) you can perform all the
graphical user interface operations inside a separate thread, or (2) you can setup the GUI in the
same thread and call repeatly thegtk main iteration do function inside the main loop. An
example of using wxWindows as the GUI of a controller in provided in thewxgui controller
sample.

2.2 World

Very few changes were introduced in the Webots worlds that breaks the compatibility. How-
ever, since Webots 4 uses a different collision detection engine,boundingObject made up of

2.2. WORLD 21

Extrusion or IndexedFaceSet have to be changed to composite objects made up ofBox,
Sphere and / orCylinder . A composite object is aGroup node containingTransform nodes
as children. TheseTransform nodes should contain the primitive shapes previously enumerated
and positioned appropriately.

22 CHAPTER 2. UPGRADING FROM WEBOTS 3

Chapter 3

Getting Started with Webots

To run a simulation in Webots, you need three things:

This chapter gives an overview of the basics of Webots, including the display of the world in the
main window and the structure of the.wbt file appearing in the scene tree window.

Robot and Supervisor controllers will be explained in detail in chapter 5.

3.1 Introduction to Webots

3.1.1 What is Webots ?

Webots is a professional mobile robot simulation software. It contains a rapid prototyping tool
allowing the user to create 3D virtual worlds with physics properties, such as mass repartition,
joints, friction coefficients, etc. The user can add simple inert objects or active objects called
mobile robots. These robots can have different locomotion schemes (wheeled robots, legged
robots or flying robots). Moreover, they be equipped with a number of sensor and actuator
devices, like distance sensors, motor wheels, cameras, servos, touch sensors, grippers, emitters,
receivers, etc. Finally the user can program each robot individually to exhibit a desired behavior.

Webots contains a large number of robot models and controller program examples that help the
users get started.

Webots also contains a number of interfaces to real mobiles robots, so that once your simulated
robot behaves as expected, you can transfer its control program to a real robot like Khepera,
Hemisson, LEGO Mindstorms, Aibo, etc.

3.1.2 What can I do with Webots ?

Webots is well suited for research and education projects related to mobile robotics. Many mobile
robotics projects have been relying on Webots for years in the following areas:

23

24 CHAPTER 3. GETTING STARTED WITH WEBOTS

• Mobile robot prototyping (academic research, automotive industry, aeronautics, vaccum
cleaner industry, toy industry, hobbyism, etc.)

• Multi-agent research (swarm intelligence, collaborative mobile robots groups, etc.)

• Adaptive behavior research (Genetic evolution, neural networks, adaptive learning, AI,
etc.).

• Mobile robotics teaching (robotics lectures, C/C++/Java programming lectures, robotics
contest, etc.)

3.1.3 What do I need to use Webots ?

To use Webots, you will need the following hardware:

• A fairly recent PC or Macintosh computer. We recommand at least a Pentium or PowerPC
CPU cadenced at 500Mhz. Webots works fine on desktop as well as laptop computers.

• A 3D capable graphics card, with at least 16MB RAM video memory. We recommand
nVidia graphics card for PC/Linux users. ATI graphics card are also well suited for Mi-
crosoft Windows and Apple Mac OS operating systems.

The following operating system are supported:

• Linux. Although only RedHat Linux is officially supported, Webots is known to run on
most major Linux distribution, including Mandrake, Debian, SuSE, Slackware, etc. We
recommand however to use a fairly recent recent version of Linux. Webots is provided as
anRPMpackage, as well as aDEBpackage.

• Windows. Although Webots runs on Windows 98, ME and NT4, we recommand to use a
recent version of Windows (like Windows 2003, Windows XP or Windows 2000) to avoid
minor issues.

• Mac OS X. Version 10.2 of Mac OS X or ealier is highly recommanded, as Webots hasn’t
been tested on older versions of Mac OS X and may not work as expected on such old
versions.

Usually, you will need to be administrator to be able to install Webots. Once installed, Webots
can be used as a regular unpriviliged user.

Although no special knowledge is needed to simply view the demos of robot simulations in
Webots, you will need a minimal amount of scientifical and technical knowledge to be able to
develop your own simulations:

3.2. LAUNCHING WEBOTS 25

• A basic knowledge of C, C++ or Java programming languages is necessary to program
your own robot controllers efficiently. However, even if you don’t know these languages,
you can still program the Hemisson robot using a simple graphical programming language
called BotStudio.

• If you don’t want to use existing robot models provided within Webots and would like
to create your own robot models, or add special objects in the simulated environments,
you will need some very basic knowledge of 3D computer graphics and VRML97 3D
description language. That will allow you to create 3D models in Webots or import them
from a 3D modelling software.

3.1.4 What is a world ?

A world in Webots is a 3D virtual environment in which you can create objects and robots. A
world is saved in theworlds directory, in a.wbt file which contains a description for any object:
Its position, orientation, geometry, appearance (like color, brightness), physical properties, type
of object, etc. A world is a hierarchical structure where objects can contain other objects (like
in VRML97). For example a robot can contain two wheels, a distance sensor and a servo which
itself contains a camera, thus making the camera moveable relatively to the robot thanks to the
servo. However, a world file does not contain all the information necessary to run a simulation.
The controller of each robot is specified in the world file by a reference to an executable binary
file, but the world file doesn’t contain this executable binary file.

3.1.5 What is a controller ?

A controller is an executable binary file which is used to control a robot described in a world file.
Controllers are stored in subdirectories of the Webotscontrollers directory. Controllers may
be native executables files (.exe under Windows) or Java binary files (.class).

3.2 Launching Webots

3.2.1 On Linux

From an X terminal, typewebots to launch the simulator. You should see the world window
appear on the screen (see figure 3.1).

Webots can also run in batch mode, that is without displaying any window. This is useful to
launch simulations from scripts to perform extensive simulations with differents sets of param-
eters and save results automatically from a supervisor or robot controller process. To launch
Webots in batch mode, simply typewebots --batch filename.wbt where filename.wbt is

26 CHAPTER 3. GETTING STARTED WITH WEBOTS

the name of the world file you want to use. Webots will then be launched in batch mode: The
speed of execution should correspond to the fast mode.

3.2.2 On Mac OS X

Open the directory in which you uncompressed the Webots package and double-click on the
Webots icon. You should see the world window appear on the screen (see figure 3.1).

3.2.3 On Windows

From theStart menu, go to theProgram Files — Cyberbotics menu and click on theWebots 4.0.27
menu item. You should see the world window appear on the screen (see figure 3.1).

3.3 Main Window: Menus and buttons

The main window allows you to display your virtual worlds and robots described in the.wbt

file. Four menus and a number of buttons are available.

3.3.1 File menu and shortcuts

TheNew menu item opens a new default world representing a chessboard of 10 x 10 plates on a
surface of 1 m x 1 m. The following button can be used as a shortcut:

New

TheFile menu will also allow you to perform the standard file operations:Open... , Save andSave
As... , respectively, to load, save and save with a new name the current world.

The following buttons can be used as shortcuts:

Open...

Save

TheRevert item allows you to reload the most recently saved version of your.wbt file.

The following button can be used as a shortcut:

Revert

3.3. MAIN WINDOW: MENUS AND BUTTONS 27

Figure 3.1: Webots main window

The Export VRML item allows you to save the.wbt file as a .wrl file, conforming to the
VRML97 standard. Such a file can, in turn, be opened with any VRML97 viewer. This is
especially useful for publishing a world created with Webots on the Web.

TheMake Animation... item allows you to create a 3D animation as a WVA file. This file format
is useful to playback Webots animations in real 3D, including navigation facilities. The WVA
viewer is called Webview. It is a freely available software downloadable from Cyberbotics’
Webview web site1. It can run as a plugin for Internet Explorer, Netscape or Mozilla, but also as
a stand alone application. Webview works on Windows, Linux and Mac OS X. It is well suited
to demonstrate Webots results, possibly on the Internet World Wide Web.

TheMake Movie... item allows you to create a MPEG-2 movie under Linux and Mac OS X or an
AVI movie under Windows. As movies are created on a 25 frame per second basis, you should

1http://www.cyberbotics.com/webview

http://www.cyberbotics.com/webview

28 CHAPTER 3. GETTING STARTED WITH WEBOTS

adapt the basic simulation step and the refresh display parameters in the general preferences to
obtain a movie running at real time. Leaving the basic simulation step to 32 ms and setting the
refresh display each 1 basic simulation step should produce movies runnig faster than real time.
If you need exact real time, set the basic simulation step to 25 ms (it might then be optimal to
adapt your controllers’robot step functions using a multiple value of 25, like 50, 75 or 100).
It is also possible to make accelerated movies by setting the refresh display each 2 (or more)
basic simulation step while leaving the basic time step to its original value (32 or 25).

TheScreenshot... item allows you to take a screenshot of the current view in Webots. It opens a
file dialog to save the current view as a PNG image.

3.3.2 Edit menu

TheScene Tree Window menu item opens the window in which you can edit the world and the
robot(s). A shortcut is available by double-clicking on a solid in the world. A solid is a physical
object in the world.

TheImport VRML... menu item inserts VRML97 objects at the end of the scene tree. These objects
come from a VRML97 file you will have to specify. This feature is useful to import complex
shapes that were modeled in a 3D modelling software, then exported to VRML97 (or VRML
2.0), and then imported into Webots with this menu item. Most 3D modelling software, like 3D
Studio Max, Maya, AutoCAD or Art Of Illusion, include the VRML97 (or VRML 2.0) export
feature. Beware, Webots cannot import VRML 1.0 file format. Once imported, these objects
appear asGroup , Transform or Shape nodes at the bottom of the scene tree. You can then
either turn these objects into Webots nodes (likeSolid , DifferentialWheels , etc.) or cut
and paste them into thechildren list of existing Webots nodes.

TheRestore Viewpoint menu item resets the camera position and orientation as it was originally
when the file was open. This feature is handy when you get lost while navigating in the scene
and want to return to the original camera position and orientation.

ThePreferences item pops up a window with the following panels:

• General : TheStartup mode allows you to choose the state of the simulation when We-
bots is launched (stop, run, fast; see theSimulation menu).

TheBasic simulation step parameter defines the duration of the simulation step ex-
ecuted by Webots. It is expressed in milliseconds. Setting this value to a high value will
accelerate the simulation, but will decrease the accuracy of the simulation, especially for
physics simulation and collision detection This value is also used when theStep button is
pressed.

TheRefresh display parameter is multiplicated to the basic step value to define how
frequently the 3D display of the main window is refreshed in normalRun mode.

• Rendering : This tab controls the 3D rendering in the simulation window.

3.3. MAIN WINDOW: MENUS AND BUTTONS 29

Checking theDisplay axes check box displays a red, green and blue axes representing
respectively the x, y and z axes of the world coordinate system.

Checking theDisplay sensor rays check box displays the distance sensor rays of the
robot(s) as red lines.

Checking theDisplay lights check box displays the lights (PointLight in the world
so that they can be moved more accurately).

• Files and paths : The user directory and the default.wbt world which is open when
launching Webots are defined here. The user directory should contain at least aworlds ,
controllers , physics , andobjects subdirectories where Webots will be looking for
files. A complete user directory can be created easily from theSetup user directory menu
item in theWizard menu

3.3.3 Simulation menu and the simulation buttons

In order to run a simulation a number of buttons are available corresponding to menu items found
under theSimulation menu:

Stop : InterruptRun or Fast modes.

Step : Execute one simulation basic step. The duration of such a step is defined in the
preferences of Webots and can be adjusted to suit your needs.

Run : Execute simulation steps until theStop mode is entered. In run mode, the 3D display
of the scene is refreshed every n basic step, where n is defined in the Webots preferences.

Fast : Same asRun , except that no display is performed (Webots PRO only). only.

The Fast mode performs a very fast simulation mode suited for heavy computation (genetic
algorithms, vision, learning, etc.). However, as the world display is disabled during aFast simu-
lation, the scene in the world window remains blank until theFast mode is stopped. This feature
is available only with Webots PRO.

TheWorld View / Robot View item allows you to switch between two different points of view:

• World View : This view corresponds to a fixed camera standing in the world.

• Robot View : This view corresponds to a mobile camera following a robot.

The default view is the world view. If you want to switch to theRobot View , first select the robot
you want to follow (click on the pointer button then on the robot), and then chooseRobot View
in theSimulation menu. To return to theWorld View mode, reselect this item.

30 CHAPTER 3. GETTING STARTED WITH WEBOTS

A speedometer (see figure 3.2) allows you to observe the speed of the simulation on your com-
puter. It is displayed in the bottom right hand side of the main window and indicates how fast the
simulation runs compared to real time. In other words, it represents the speed of the virtual time.
If the value of the speedometer is 2, it means that your computer simulation is running twice as
fast as the corresponding real robots would. This information is relevant both inRun mode and
Fast mode.

Figure 3.2: Speedometer

To the left of the speedometer, the virtual time is displayed using the following format:H:MM:SS:MMM

whereH is the number of hours (may lie on several digits),MMis the number of minutes,SS is
the number of seconds andMMMis the number of milliseconds. (see figure 3.2). If the speedome-
ter value is higher than one, the virtual time will be progressing faster than the real time. This
information is relevant both inRun mode andFast mode.

The basic simulation time step can be chosen from the preferences window. It is expressed
in virtual time milliseconds. The value of this time step defines the duration of the time step
executed during theStep mode. This step is multiplicated by the refresh parameter to define how
frequently the display is refreshed. The refresh parameter can be changed from the preferences
window.

In Run mode, with a time step of 64 ms and a fairly simple world displayed with the default
window size, the speedometer will typically indicate approximately 0.5 on a Pentium II / 266
Mhz without hardware acceleration and 12 on a Pentium III / 500 Mhz with an nVidia Geforce
II MX graphics card.

3.3.4 Wizard menu

TheWizard menu is useful to facilitate the creation of a new user directory (from theSetup user
directory menu item) or the creation of a new robot controller (from theNew robot controller
menu item).

The Setup user directory menu item will ask you to choose a name for your user directory. A
user directory is a directory that will contain all the files you will create while using Webots,
including world file, controller files, object files, physics shared libraries, etc. Once you chose
a name for this user directory, you will be asked to choose a location on your hard disk where
to store it. Then, Webots will create this directory at the specified location and it will create all

3.3. MAIN WINDOW: MENUS AND BUTTONS 31

the subdirectories and files needed. Finally, it will set this directory as the current user directory
in the Webots preferences. From there, you will be able to save all your Webots files in the
subdirectories of this user directory (world files, controllers, etc.).

TheNew robot controller menu item allows you to create a new controller program for your robot.
You will be prompted to choose between a C, C++ or a Java controller. Then, Webots will ask
you the name of your controller and it will create all the necessary files (including a template
source code file) in your user directory.

3.3.5 Help menu

In the Help menu, theAbout... item opens theAbout... window, displaying the license infor-
mation.

The Introduction item is a short introduction to Webots (HTML file). You can access the User
Guide and the Reference Manual with theUser Guide andReference Manual items (PDF files).
TheWeb site of Cyberbotics item lets you visit our Web site.

3.3.6 Navigation in the scene

The view of the scene is generated by a virtual camera set in a given position and orientation.
You can change this position and orientation to navigate in the scene using the mouse buttons.
Thex, y, zaxes mentioned below correspond to the coordinate system of the camera;z is the axis
corresponding to the direction of the camera.

• Rotate viewpoint: To rotate the camera around thex andy axis, you have to set the mouse
pointer in the 3D scene, press the left mouse button and drag the mouse:

if you clicked on a solid object, the rotation will be centered around the origin of the local
coordinate system of this object.

if you clicked outside of any solid object, the rotation will be centered around the origin of
the world coordinate system.

• Translate viewpoint: To translate the camera in thex andy directions, you have to set the
mouse pointer in the 3D scene, press the right mouse button and drag the mouse.

• Zoom / Tilt viewpoint: Set the mouse pointer in the 3D scene, then:

if you press both left and right mouse buttons (or the middle button) and drag the mouse
vertically, the camera will zoom in or out.

if you press both left and right mouse buttons (or the middle button) and drag the mouse
horizontally, the camera will rotate around itsz axis (tilt movement).

if you use the wheel of the mouse, the camera will zoom in or out.

32 CHAPTER 3. GETTING STARTED WITH WEBOTS

3.3.7 Moving a solid object

In order to move an object, hold the shift key down while using the mouse.

• Translation: Pressing the left mouse button while the shift key is pressed allows you to
drag solid objects on the ground (xzplan).

• Rotation: Pressing the right mouse button while the shift key is pressed rotates solid ob-
jects: A first click is necessary to select a solid object, then a second shift-press-and-drag
rotates the selected object around itsy axis.

• Lift: Pressing both left and right mouse buttons, the middle mouse button, or rolling the
mouse wheel while the shift key is pressed allows you to lift up or down the selected solid
object.

3.3.8 Selecting a solid object

Simply clicking on a solid object allows you to select this object. Selecting a robot enables the
choice ofRobot View in thesimulation menu. Double-clicking on a solid object opens the scene
tree window where the world and robots can be edited. The selected solid object appears selected
in the scene tree window as well.

3.4 Scene Tree Window

As seen in the previous section, to access to the Scene Tree Window you can either chooseScene
Tree Window in theEdit menu, or click on the pointer button and double-click on a solid object.

The scene tree contains all information necessary to describe the graphic representation and sim-
ulation of the 3D world. A world in Webots includes one or more robots and their environment.

The scene tree of Webots is structured like a VRML97 file. It is composed of a list of nodes,
each containing fields. Fields can contain values (text string, numerical values) or nodes.

Some nodes in Webots are VRML97 nodes, partially or totally implemented, while others are
specific to Webots. For instance theSolid node inherits from theTransform node of VRML97
and can be selected and moved with the buttons in the World Window.

This section describes the buttons of the Scene Tree Window, the VRML97 nodes, the Webots
specific nodes and how to write a.wbt file in a text editor.

3.4. SCENE TREE WINDOW 33

Figure 3.3: Scene Tree Window

3.4.1 Buttons of the Scene Tree Window

The scene tree with the list of nodes appears on the left side of the window. Clicking on the+ in
front of a node or double-clicking on the node displays the fields inside the node, and similarly
expands the fields. The field values can be defined on the top right side of the window. Five
editing buttons are available on the bottom right side of the window:

Cut

Copy

Paste after

These three buttons let you cut, copy and paste nodes and fields. However, you can’t perform
these operations on the first three nodes of the tree (WorldInfo, Viewpoint andBackground).
These nodes are mandatory and cannot be duplicated. Similarly, you can’t copy theSupervisor

node because only one supervisor is allowed. Please note that when you cut or copy a robot node,
like aDifferentialWheels or Supervisor node, thecontroller field of this node is reset
to "void" .

34 CHAPTER 3. GETTING STARTED WITH WEBOTS

Delete : This button allows you to delete a node. It appears only if a node is selected. If a
field is selected, theDefault Value button appears instead.

Default Value : You can click on this button to reset a field to its default value(s). A field
with values must be selected in order to perform this button. If a node is selected, theDelete
button replaces it.

Transform : This button allows you to transform a node into another one.

Insert after : With this button, you can insert a node after the one currently selected. This
new node contains fields with default values, which you can of course modify to suit your needs.
This button also allows you to add a node to achildren field. In all cases, the software only
permits you to insert a coherent node.

Insert Node : Use this to insert a node into a field whose value is a node. You can insert
only a coherent node.

Export Node : Use this button to export a node into a file. Usually, nodes are saved in your
objects directory. Such saved nodes can then be reused in other worlds.

Import Node : Use this button to import a previously saved node into the scene tree. Usually,
saved nodes are located in the Webotsobjects directory or in your ownobjects directory.
The Webotsobjects directory already contains a few nodes that can be easily imported.

3.4.2 VRML97 nodes

A number of VRML97 nodes are partially or completely supported in Webots.

The exact features of VRML97 are the subject of a standard managed by the International Stan-
dards Organization (ISO/IEC 14772-1:1997).

You can find the complete specifications of VRML97 on the official VRML97 Web site2.

The following VRML97 nodes are supported in Webots:

• Appearance

• Background

2http://www.web3d.org

http://www.web3d.org

3.4. SCENE TREE WINDOW 35

• Box

• Color

• Cone

• Coordinate

• Cylinder

• DirectionalLight

• ElevationGrid

• Fog

• Group

• ImageTexture

• IndexedFaceSet

• IndexedLineSet

• Material

• PointLight

• Shape

• Sphere

• Switch

• TextureCoordinate

• TextureTransform

• Transform

• Viewpoint

• WorldInfo

The Webots Reference Manual gives a list of nodes supported in Webots and specify which fields
are actually used. For a comprehensive description of the VRML97 nodes, please refer to the
VRML97 documentation.

36 CHAPTER 3. GETTING STARTED WITH WEBOTS

3.4.3 Webots specific nodes

In order to implement powerful simulations including mobile robots with different propulsion
schemes (wheeled robots, legged robots or flying robots), a number of nodes specific to Webots
have been added to the VRML97 set of nodes.

VRML97 uses a hierarchical structure for nodes. For example, theTransform node inherits
from theGroup node, such that, like theGroup node, theTransform node has achildren

field, but it also adds three additional fields:translation , rotation andscale .

In the same way, Webots introduces new nodes which inherit from the VRML97Transform

node, principally theSolid node. Other Webots nodes (DifferentialWheels , Camera,
TouchSensor , etc.) inherit from thisSolid node.

The Reference Manual gives a complete description of all Webots nodes and their respective
fields.

3.4.4 Principle of the collision detection

The collision detection engine is able to detect a collision between twoSolid nodes. It calculates
the intersection between the bounding objects of the solids. A bounding object (described in the
boundingObject field of theSolid node) is a geometric shape or a group of geometric shapes
which bounds the solid. If theboundingObject field is NULL, then no collision detection is
performed for thisSolid node. ASolid node may contain otherSolid nodes aschildren ,
each of them having its own bounding object.

The collision detection is mainly used to detect if a robot (for example aDifferentialWheels

node) collides with an obstacle (Solid node), or with another robot. TwoSolid nodes can never
inter-penetrate each other; their movement is stopped just before the collision.

Example: A solid with a bounding box different from its list of children.

Let us consider the Khepera robot model. It is not exactly aSolid node, but the principle for the
boundingObject is the same. Open thekhepera.wbt file and look at theboundingObject

field of theDifferentialWheels node. The bounding object is a cylinder which has been
transformed. See figure 3.4.

3.4.5 Writing a Webots file in a text editor

It is possible to write a Webots world file (.wbt) using a text editor. A world file contains a
header, nodes containing fields and values. Note that only a few VRML97 nodes are imple-
mented, and that there are nodes specific to Webots. Moreover, comments can only be written in
the DEF, and not like in a VRML97 file.

The Webots header is:

3.5. CITING WEBOTS 37

Figure 3.4: The bounding box of the Khepera robot

#VRML_SIM V4.0 utf8

After this header, you can directly write your nodes. The three nodesWorldInfo , Viewpoint

andBackground are mandatory.

Note: We recommend that you write your file using the tree editor. However it may be easier to
make some particular modifications using a text editor (like using the search and replace feature
of a text editor).

3.5 Citing Webots

When writing a scientific paper, or describing your project involving Webots on a web site, it is
always appreciated to make a correct reference to Webots, mentionning Cyberbotics’ web site
explicitely and a reference journal paper describing Webots. In order to help you in such a task,
we provide here some citation examples, including BibTex entries that you can freely reuse in
your own documents:

38 CHAPTER 3. GETTING STARTED WITH WEBOTS

3.5.1 Citing Cyberbotics’ web site

This project usesWebots3, a commercial mobile robot simulation software developed by Cyber-
botics Ltd.

This project uses Webots (http://www.cyberbotics.com), a commercial mobile robot simulation
software developed by Cyberbotics Ltd.

The BibTex reference entry may look odd, as it is very different from a standard paper citation
and we want the specified fields to appear in the normal plain citation mode of LaTeX.

@MISC{Webots,
AUTHOR = {Webots},
TITLE = {http://www.cyberbotics.com},
NOTE = {Commercial Mobile Robot Simulation Software},
EDITOR = {Cyberbotics Ltd.},
URL = {http://www.cyberbotics.com}

}

Once compiled with LaTeX, it should display as follow:

References

[1] Webots. http://www.cyberbotics.com. Commercial Mobile Robot Simulation Software.

3.5.2 Citing a reference journal paper about Webots

A reference paper was published in the International Journal of Advanced Robotics Systems.
Here is the BibTex entry:

@ARTICLE{Webots04,
AUTHOR = {Michel, O.},
TITLE = {Webots: Professional Mobile Robot Simulation},
JOURNAL = {Journal of Advanced Robotics Systems},
YEAR = {2004},
VOLUME = {1},
NUMBER = {1},
PAGES = {39--42},
URL = {http://www.ars-journal.com/ars/SubscriberArea/Volume1/39-42.pdf}

}

3http://www.cyberbotics.com

http://www.cyberbotics.com

Chapter 4

Tutorial: Modeling and simulating your
robot

The aim of this chapter is to give you several examples of robots, worlds and controllers. The first
world is very simple, nevertheless it introduces the construction of any basic robot, and explains
how to program a controller. The second example shows you how to model and use a camera on
this simple robot. The third example will add physics to the robot and world, so that the robot can
play with a ball. Finally, the last example will show you how to build a virtual Pioneer 2TMrobot
from ActivMedia Robotics.

4.1 My first world: kiki.wbt

As a first introduction, we are going to simulate a very simple robot made up of a box, two wheels
and two infra-red sensors (see figure 4.1). The robot is controlled by a program performing
obstacle avoidance inspired from Braitenberg’s algorithm. It evolves in a simple environment
surrounded by a wall.

4.1.1 Setup

Before starting, please check that Webots was installed properly on your computer (refer to the
installation chapter of this manuel). Then, you will have to setup a working directory that will
contain the files your will create in this tutorial. To do so, create a directory calledmy webots in
your local directory. Then, create a couple of subdirectories calledworlds andcontrollers .
The first one will contain the simlation worlds you will create, while the second one will contain
your programs controlling the simulated robots. If you are usinggcc as a compiler, you may
also need to copy theMakefile.include file from the Webotscontrollers directory in
your localcontrollers directory. To start up with this tutorial, simply copy thekiki.wbt

worlds from the Webotsworlds directory to your localworlds directory. You will also have

39

40 CHAPTER 4. TUTORIAL: MODELING AND SIMULATING YOUR ROBOT

wheels

IR sensors

Figure 4.1: Thekiki robot

to copy thekiki subdirectory which contains thekiki.png image. Finally, copy thesimple

directory from the Webotscontrollers directory to your localcontrollers directory. Now
you should inform Webots that your working directory is there. To do it, launch Webots and
open thePreferences... from theEdit menu. Select theFiles and paths tab and select your local
my webots directory as theUser directory . You can also set thekiki.wbt world as the default
world. Then quit Webots, so that the preferences are saved. When you will restart it, it will run
the kiki world.

4.1.2 Environment

This very first simulated world is as simple as possible. It includes a floor and a surrounding
wall to avoid that the robot escapes. This wall is modelled using anExtrusion node. The
coordinates of the wall are shown in figure 4.2.

First, launch Webots and stop the current running simulation by pressing theStop button. Go
to theFile menu,New item to create a new world. This can also by achieved through theNew
button, or the keyboard shortcut indicated in theFile menu. Then open the scene tree window
from theScene Tree... item in theEdit menu. This can also be achieved by double-clicking in the
3D world. Let us start by changing the lighting of the scene:

1. Select thePointLight node, and click on the + just in front of it. You can now see the
different fields of thePointLight node. SelectambientIntensity and enter 0.6 as a
value, then selectintensity and enter 0.8, then selectlocation and enter 0.5 0.5 0.5
as values. Pressreturn .

2. Select thePointLight node, copy and paste it. Open this newPointLight node and
type -0.5 0.5 0.5 in thelocation field.

4.1. MY FIRST WORLD: KIKI.WBT 41

0

x

1 2

34

8

9
5

0 (−0.489, −0.5)

5 (−0.49, −0.5)

1 (−0.489, −0.49)
2 (0.49, −0.49)
3 (0.49, 0.49)
4 (−0.49, 0.49)

6 (−0.5, −0.5)
7 (−0.5, 0.5)
8 (0.5, 0.5)
9 (0.5, −0.5)

6

7

z

(x,z) coordinates:

Figure 4.2: Thekiki world

3. Repeat this paste operation twice again with -0.5 0.5 -0.5 in thelocation field of the
third PointLight node, and 0.5 0.5 -0.5 in thelocation field of the fourth and last
PointLight node.

4. The scene is now better lit. Open thePreferences... from theEdit menu, select theRender-
ing tab and check theDisplay lights option. Click on theOK button to leave the preferences
and check that the light sources are now visible in the scene. Try the different mouse
buttons, including the mouse wheel if any, and drag the mouse in the scene to navigate
and observe the location of the light sources. If you need more explanations with the 3D
navigation in the world, go to theHelp menu and select theHow do I navigate in 3D ? item.

Secondly, let us create the wall:

1. Select the lastTransform node in the scene tree window (which is the floor) and click on
the insert after button.

2. Choose aSolid node.

3. Open this newly created Solid node from the + sign and type ”wall” in its name field.

4. Select thechildren field andInsert after a Shape node.

42 CHAPTER 4. TUTORIAL: MODELING AND SIMULATING YOUR ROBOT

5. Open thisShape , select itsapperance field and create anAppearance node from the
New node button. Use the same technique to create aMaterial node in thematerial

field of theAppearance node. Select thediffuseColor field of theMaterial node
and choose a color to define the color of the wall. Let us make it dark green.

6. Now create anExtrusion node in thegeometry field of theShape .

7. Set theconvex field toFALSE. Then, set the wall corner coordinates in thecrossSection

field as shown in figure 4.2. You will have to re-enter the first point (0) at the last position
(10) to complete the last face of the extrusion.

8. In thespine field, write that the wall ranges between 0 and 0.1 along the Y axis (instead
of the 0 and 1 default values).

9. As we want to prevent our robot to pass through the walls like a ghost, we have to define
theboundingObject field of the wall. Bounding objects cannot use complex geometry
objects. They are limited to box, cylinder and spheres primitives. Hence, we will have
to create four boxes (representing the four walls) to define the bounding object of the
surrouding wall. Select theboundingObject field of the wall and create aGroup node
that will contain the four walls. In thisGroup , insert aTransform node as achildren .
Create aShape as the uniquechildren of the Transform . Instead of creating a new
Appearance for this Shape , reuse the firstAppearance you created (for the wall). To
do so, go back to thechildren list of the wall Solid , open theShape , click on the
Appearance node and you will see on the right hand side of the window that you can enter
a DEF name. Write WALLAPPEARANCE as a DEF name and return to theShape of
the bounding object. Select itsappearance field and create aNew node for it. However,
in theCreate a new node dialog, you will now be able to use the WALLAPPEARANCE
you just defined. Select this item and clickOK. Now create aBox as ageometry for this
Shape node. Set thesize of the Box to [1 0.1 0.01], so that it matches the size of a
wall. Set thetranslation field of theTransform node to [0 0.05 0.495], so that it
matches the position of a wall. Now, close thisTransform , copy and paste it as the second
children of the list. Set thetranslation field of the new node to [0 0.05 -0.495],
so that it matches the opposite wall. Repeat this operation with the two remaining walls
and set theirrotation fields to [0 1 0 1.57] so that they match the orientation of the
corresponding walls. You also have to edit theirtranslation field as well, so that they
match the position of the corresponding walls.

10. Close the tree editor, save your file as ”mykiki.wbt” and look at the result.

The wall in the tree editor is represented in figure 4.3, while the same wall in the world editor is
visible in figure 4.4

4.1. MY FIRST WORLD: KIKI.WBT 43

Figure 4.3: The wall in the tree editor

Figure 4.4: The wall in the world window

44 CHAPTER 4. TUTORIAL: MODELING AND SIMULATING YOUR ROBOT

4.1.3 Robot

This subsection describes how to model thekiki robot as aDifferentialWheels node con-
taining several children: aTransform node for the body, twoSolid nodes for the wheels, two
DistanceSensor nodes for the infra-red sensors and aShape node with a texture.

The origin and the axis of the coordinate system of the robot and its dimensions are shown in
figure 4.5.

0.08

y

LEFT SIDE VIEW

z

y

0.05

0.08

0.01

0.08

Ø 0.050.02

x

FRONT VIEW

Figure 4.5: Coordinate system and dimensions of thekiki robot

To model the body of the robot:

1. Open the scene tree window.

2. Select the lastSolid node.

3. Insert after a DifferentialWheels node, set its name to ”kiki”.

4.1. MY FIRST WORLD: KIKI.WBT 45

4. In thechildren field, first introduce aTransform node that will contain a shape with a
box. In the newchildren field, Insert after a Shape node. Choose a color, as described
previously. In thegeometry field, insert a Box node. Set the size of the box to [0.08 0.08
0.08]. Now set thetranslation values to [0 0.06 0] in theTransform node (see figure
4.6)

Figure 4.6: Body of thekiki robot: a box

To model the left wheel of the robot:

1. Select theTransform node corresponding to the body of the robot andInsert after a
Solid node in order to model the left wheel. Type ”left wheel” in thename field, so that
this Solid node is recognized as the left wheel of the robot and will rotate according to
the motor command.

2. The axis of rotation of the wheel isx. The wheel will be made of aCylinder rotated
of pi/2 radians around thez axis. To obtain proper movement of the wheel, you must pay
attention not to confuse these two rotations. Consequently, you must add aTransform

node to thechildren of theSolid node.

3. After adding thisTransform node, introduce inside it aShape with a Cylinder in its
geometry field. Don’t forget to set an appearance as explained previously. The dimen-
sions of the cylinder should be 0.01 for theheight and 0.025 for theradius . Set the
rotation to [0 0 1 1.57]. Pay attention to the sign of the rotation; if it is wrong, the
wheel will turn in the wrong direction.

4. In theSolid node, set the translation to [-0.045 0.025 0] to position the left wheel, and set
the rotation of the wheel around thex axis: [1 0 0 0].

46 CHAPTER 4. TUTORIAL: MODELING AND SIMULATING YOUR ROBOT

5. Give aDEFname to yourTransform : WHEEL; notice that you positioned the wheel in
translation at the level of theSolid node, so that you can reuse theWHEEL Transform

for the right wheel.

6. Close the tree window, look at the world and save it. Use the navigation buttons to change
the point of view.

To model the right wheel of the robot:

1. Select the left wheelSolid node andinsert after anotherSolid node. Type ”right wheel”
in the name field. Set the translation to [0.045 0.025 0] and the rotation to [1 0 0 0].

2. In thechildren , Insert after USE WHEEL. PressReturn , close the tree window and save
the file. You can examine your robot in the world editor, move it and zoom in on it.

The robot and its two wheels are shown in figure 4.7 and figure 4.8.

Figure 4.7: Wheels of thekiki robot

The two infra-red sensors are defined as two cylinders on the front of the robot body. Their
diameter is 0.016 m and their height is 0.004 m. You must position these sensors properly so that
the sensor rays point in the right direction, toward the front of the robot.

4.1. MY FIRST WORLD: KIKI.WBT 47

Figure 4.8: Body and wheels of thekiki robot

1. In the children of the DifferentialWheels node,insert after a DistanceSensor

node.

2. Type the name ”ir0”. It will be used by the controller program.

3. Let’s attach a cylinder shape to this sensor: In thechildren list of theDistanceSensor

node,Insert after aTransform node. Give aDEFname to it: INFRARED, which you will
use for the second IR sensor.

4. In thechildren of theTransform node,insert after aShape node. Define an appearance
andinsert aCylinder in thegeometry field. Type 0.004 for the height and 0.008 for the
radius.

5. Set the rotation for theTransform node to [0 0 1 1.57] to adjust the orientation of the
cylinder.

6. In theDistanceSensor node, set the translation to position the sensor and its ray: [0.02
0.08 -0.042]. In theFile menu,Preferences , Rendering , check theDisplay sensor rays box.
In order to have the ray directed toward the front of the robot, you must set the rotation to
[0 1 0 1.57].

48 CHAPTER 4. TUTORIAL: MODELING AND SIMULATING YOUR ROBOT

7. In theDistanceSensor node, you must introduce some values of distance measurements
of the sensors to thelookupTable field, according to figure 4.9. These values are:

lookupTable [0 1024 0,
0.05 1024 0,
0.15 0 0]

Measured
value

Distance to
the wall

1024

0
0.05 0.15

Figure 4.9: Distance measurements of thekiki sensors.

8. To model the second IR sensor, select theDistanceSensor node andInsert after a new
DistanceSensor node. Type ”ir1” as a name. Set its translation to [-0.02 0.08 -0.042]
and its rotation to [0 1 0 1.57]. In thechildren , insert after USE INFRARED. In the
lookupTable field, type the same values as shown above.

The robot and its two sensors are shown in figure 4.10 and figure 4.11.

Note: A texture can only be mapped on anIndexedFaceSet shape. ThetexCoord and
texCoordIndex entries must be filled. The image used as a texture must be a.png or a .jpg

file, and its size must be(2n) * (2n) pixels (for example 8x8, 16x16, 32x32, 64x64, 128x128 or
256x256 pixels). Transparent images are not allowed in Webots. Moreover, PNG images should
use either the 24 or 32 bit per pixel mode (lowerbpp or gray levels are not supported). Beware
of the maximum size of texture images depending on the 3D graphics board you have: some old
3D graphics boards are limited to 256x256 texture images while more powerful ones will accept
2048x2048 texture images.

To paste a texture on the face of the robot:

1. Select the lastDistanceSensor node andInsert after a Shape node.

4.1. MY FIRST WORLD: KIKI.WBT 49

Figure 4.10: The DistanceSensor nodes of thekiki robot

2. Create anAppearance node in theappearance field. Create anImageTexture node in
thetexture field of this node, with the following URL:"kiki/kiki.png" . This refers
to an image file lying in theworlds directory.

3. In the geometry field, create anIndexedFaceSet node, with aCoordinate node in
thecoord field. Type the coordinates of the points in thepoint field:

[0.015 0.05 -0.041,
0.015 0.03 -0.041,

-0.015 0.03 -0.041,
-0.015 0.05 -0.041]

andInsert after in thecoordIndex field the following values: 0, 1, 2, 3, -1. The optional
-1 value is there to mark the end of the face. It is useful when defining several faces for the
sameIndexedFaceSet node.

4. In the texCoord field, create aTexureCoordinate node. In thepoint field, enter the
coordinates of the texture:

50 CHAPTER 4. TUTORIAL: MODELING AND SIMULATING YOUR ROBOT

Figure 4.11: Thekiki robot and its sensors

[0 0
1 0
1 1
0 1]

and in thetexCoordIndex field, type 3, 0, 1, 2. This is the standard VRML97 way to
explain how the texture should be mapped to the object.

5. The texture values are shown in figure 4.12.

To finish with theDifferentialWheels node, you must fill in a few more fields:

1. In thecontroller field, type the name ”simple”. It is used to determine which controller
program controls the robot.

2. The boundingObject field can contain aTransform node with aBox, as a box as
a bounding object for collision detection is sufficient to bound thekiki robot. Create a
Transform node in theboundingObject field, with thetranslation set to [0 0.05
-0.002] and aBox node in itschildren . Set the dimension of theBox to [0.1 0.1 0.084].

4.1. MY FIRST WORLD: KIKI.WBT 51

Figure 4.12: Defining the texture of thekiki robot

3. In theaxleLength field, enter the length of the axle between the two wheels: 0.09 (ac-
cording to figure 4.5).

4. In thewheelRadius field, enter the radius of the wheels: 0.025.

5. Values for other fields are shown in figure 4.13 and the finished robot in its world is shown
in figure 4.14.

52 CHAPTER 4. TUTORIAL: MODELING AND SIMULATING YOUR ROBOT

Figure 4.13: The other fields of the DifferentialWheels node

4.1. MY FIRST WORLD: KIKI.WBT 53

Figure 4.14: Thekiki robot in its world

54 CHAPTER 4. TUTORIAL: MODELING AND SIMULATING YOUR ROBOT

Thekiki.wbt is included in the Webots distribution, in theworlds directory.

4.1.4 A simple controller

This first controller is very simple and thus namedsimple . The controller program simply reads
the sensor values and sets the two motors speeds, in such a way thatkiki avoids the obstacles.

Below is the source code for thesimple.c controller:

#include <device/robot.h>
#include <device/differential_wheels.h>
#include <device/distance_sensor.h>

#define SPEED 100

static DeviceTag ir0,ir1;

static void reset(void) {
ir0 = robot_get_device("ir0");
ir1 = robot_get_device("ir1");
// printf("ir0=134530819 ir1=1108551892\n",ir0,ir1);
distance_sensor_enable(ir0,64);
distance_sensor_enable(ir1,64);

}

static void run(int ms) {
short left_speed,right_speed;
unsigned short ir0_value,ir1_value;

ir0_value = distance_sensor_get_value(ir0);
ir1_value = distance_sensor_get_value(ir1);
if (ir1_value>200) {

left_speed = -20;
right_speed = 20;

} else if (ir0_value>200) {
left_speed = 20;
right_speed = -20;

} else {
left_speed =SPEED;
right_speed=SPEED;

}
/* Set the motor speeds */
differential_wheels_set_speed(left_speed,right_speed);
return 64; /* next call after 64 milliseconds */

}

4.2. ADDING A CAMERA TO THE KIKI ROBOT 55

int main() {
robot_live(reset);
robot_run(run); /* this function never returns */
return 0;

}

This controller lies in thesimple directory of the Webotscontrollers directory.

4.2 Adding a camera to thekiki robot

This section can be considered as an exercice to check if you understood the principles for adding
devices to a robot. If you want to skip this section because you feel comfortable with Webots
and you are not interested in cameras, you may jump directly to the next section which addresses
physics and does not require that thekiki be equipped with a camera.

The camera to be modeled is a color 2D camera, with an image 80 pixels wide and 60 pixels
high, and a field of view of 60 degrees (1.047 radians).

We can model the camera shape as a cylinder, on the top of thekiki robot at the front. The
dimensions of the cylinder are 0.01 for the radius and 0.03 for the height. See figure 4.15.

Try modeling this camera. Thekiki camera.wbt file is included in the Webots distribution, in
theworlds directory, in case you need any help.

A controller program for this robot, namedcamera is also included in the Webots distribution,
in thecontrollers directory. This camera program actually do not perform image processing
since it is just a demonstration program, but you could easily extend it to perform actual image
processing. It would be useful then to add extra objects in the world, so that the robot could for
example learn to recognize them and move towards or away from them depending if the object
is categorized as good or bad.

4.3 Adding physics to thekiki simulation

4.3.1 Overview

The current model we defined for thekiki robot doesn’t include any physics modelling, as we
didn’t specified any mass for example. Instead it is a simple kinematic model which can be
used nonetheless for many mobile robotics simulation experiments where inertia and friction can
be neglected. For example, it is well suited to simulate light desktop robots like Khepera or
Hemisson. Finally, simulations run faster without physics.

56 CHAPTER 4. TUTORIAL: MODELING AND SIMULATING YOUR ROBOT

Figure 4.15: Thekiki robot with a camera

However, as soon as things get more complex, you will need to introduce some physics in your
model. For example, if your robot is heavy, you cannot afford to neglect inertia effects on its
trajectory. If you want to add moveable objects, like boxes or a ball, physics simulation turn
out to be necessary. Finally, if you want to model a robot architecture different from the plain
differential wheels model, like a omni-directional robot, a legged robot, a swimming robot or a
flying robot, then you need to setup many physics parameter.

This section introduces a simple physics simulation to thekiki world allowing the robot to play
with a ball. More complex physics simulations can be implemented with Webots, involving
different locomotion schemes based on theCustomRobot andServo nodes, allowing to build
complex wheeled and legged robots. Other possibilities include flying and swimming robots
where hydrodynamics models are needed. These features won’t be addressed in this tutorial.
Instead, it is recommanded that you study the existing examples of legged and flying robots
included within the Webots distribution, and refer to the documentation of theCustomRobot

andServo nodes. Do not hesitate to contact us if you need some support implementing complex
physics in your simulation.

4.3. ADDING PHYSICS TO THE KIKI SIMULATION 57

4.3.2 Preparing the floor for a physics simulation

Select the floor node which should be the firstTransform node in the scene tree just after
the PointLight nodes. Turn thatTransform into a Solid node using theTransform button
(representing a lightning).

Now, it is possible to define aboundingObject for the floor. Create anIndexedFaceSet

node as bounding object. In this node, create aCoordinate node for thecoord field. This
node should define the followingpoint list: [1 0 1] [1 0 0] [0 0 0] [0 0 1]. The
coordIndex should contain the 0, 1, 2 and 3 values. This defines a square corresponding to
the ElevationGrid of the floor. The bounding object we just defined will prevent the robot
from falling down through the floor as a result of the gravity.

4.3.3 Adding physics to thekiki robot

Thekiki robot already has a bounding object defined. However, since it will be moving, it also
needs physics parameters that will be defined in itsphysics field as aPhysics node. Create
such a node and set itsdensity to 100. The density is expressed is kilogram per cubic meter.
Leave the mass to -1, as it is ignored when the density is specified. If ever you wanted to use the
mass instead of the density, set the density to -1 and set the mass to a positive value. The mass
is expressed in kilograms. However, for the rest of this tutorial, it is recommanded to follow the
guide and set the density as requested, leaving the mass to -1.

Now the wheels of the robot also need some physics properties to define the friction with the floor.
But first they need a bounding object. Set the defined WHEEL node as theboundingObject

for each wheelSolid . Then, add aPhysics the first wheel, write WHEELPHYSICS as a
DEF name. Set thedensity to -1, themass to 0.01, thecoulombFriction to 0.9 and the
forceDependantSlip to 0.1. Use this WHEELPHYSICS definition to define the physics of
the second wheel. Finally, add aJoint node to thejoint field of each wheel. This means that
each wheel is connected to the robot body through a joint.

We are now done! Save the world asmy kiki physics.wbt , reload it using the revert button
and run the simulation. You will observe that the robot is moving not very steadily (especially
if you look at what the robot’s camera sees). That’s physics! Of course you can improve the
stability of the movement by adjusting the bounding object of the robot, the speed of the wheels,
the friction parameters, etc.

4.3.4 Adding a ball in thekiki world

Now let’s offer a toy to our robot. Instead of creating a ball object from scratch, let’s borrow it
from another world where such an object already exists. Open thesoccer.wbt world. Double-
click on the soccer. This should open the scene tree window and select the BALL solid. Simply
copy it from theCopy button and re-open yourkiki physics.wbt world. Open the scene tree

58 CHAPTER 4. TUTORIAL: MODELING AND SIMULATING YOUR ROBOT

window, select the last object of the scene tree and click on thePaste after . Can you see the
soccer ball ? ReadHow do I move an object ? from theHelp menu and place the ball in front of
the robot. Save the world and run the simulation. Thekiki robot should be able to kick the ball,
making it roll and bounce on the walls.

4.4 Modelling an existing robot: pioneer2.wbt

We are now going to model and simulate a commercial robot from ActivMedia Robotics: Pioneer
2-DXTM, as shown on the ActivMedia Web site: http://www.activrobots.com. First, you must
model the robots environment. Then, you can model a Pioneer 2TM robot with 16 sonars and
simulate it with a controller.

Please refer to theworlds/pioneer2.wbt andcontrollers/pioneer2 files for the world
and controller details.

4.4.1 Environment

The environment consists of:

• a chessboard: aSolid node with anElevationGrid node.

• a wall around the chessboard:Solid node with anExtrusion node.

• a wall inside the world: aSolid node with anExtrusion node.

This environment is shown in figure 4.16.

4.4.2 Robot with 16 sonars

The robot (aDifferentialWheels node) is made up of six main parts:

1. the body: anExtrusion node.

2. a top plate: anExtrusion node.

3. two wheels: twoCylinder nodes.

4. a rear wheel: aCylinder node.

5. front an rear sensor supports: twoExtrusion nodes.

6. sixteen sonars: sixteenDistanceSensor nodes.

4.4. MODELLING AN EXISTING ROBOT: PIONEER2.WBT 59

Figure 4.16: The walls of the Pioneer 2TM robot world

The Pioneer 2 DXTM robot is depicted in figure 4.17.

Open the tree editor and add aDifferentialWheels node.Insert in thechildren field:

1. for the body: aShape node with ageometry Extrusion . See figure 4.18 for the coor-
dinates of theExtrusion .

2. for the top plate: aShape node with ageometry Extrusion . See figure 4.19 for the
coordinates of theExtrusion .

3. for the two wheels: twoSolid nodes. EachSolid node children contains aTransform

node, which itself contains aShape node with ageometry Cylinder . EachSolid

node has a name: ”left wheel” and ”right wheel”. See figure 4.20 for the wheels dimen-
sions.

4. for the rear wheel: aTransform node containing aShape node with ageometry field
set toCylinder , as shown in figure 4.21

5. for the sonar supports: twoShape nodes with ageometry Extrusion . See figure 4.22
for theExtrusion coordinates.

60 CHAPTER 4. TUTORIAL: MODELING AND SIMULATING YOUR ROBOT

Figure 4.17: The Pioneer 2 DXTM robot

6. for the 16 sonars: 16DistanceSensor nodes. EachDistanceSensor node contains
a Transform node. TheTransform node has aShape node containing ageometry

Cylinder . See figure 4.23 and the text below for more explanation.

Modeling the sonars:

The principle is the same as for thekiki robot. The sonars are cylinders with a radius of 0.0175
and a height of 0.002. There are 16 sonars, 8 on the front of the robot and 8 on the rear of the
robot (see figure 4.23). The angles between the sonars and the initial position of theDEF SONAR

Transform are shown in figure 4.24. ADEF SONAR Transform contains aCylinder node in
a Shape node with a rotation around thez axis. ThisDEF SONAR Transform must be rotated
and translated to become the sensors FL1, RR4, etc.

4.4. MODELLING AN EXISTING ROBOT: PIONEER2.WBT 61

z

x

01

2

3

4 5

6

7

Coordinates of the crossSection field of
the extrusion node:
0: x=−0.1, z=0.215
1: x=0.1, z=0.215
2: x=0.135, z=0.185
3: x=0.135, z=−0.095
4: x=0.08, z=−0.11
5: x=−0.08, z=−0.11
6: x=−0.135, z=−0.095
7: x=−0.135, z=0.185

FRONT

BACK

0.059 < y <0.234

Figure 4.18: Body of the Pioneer 2TM robot

z

x

FRONT

BACK

0
1

2

3

4

5
6

7
8

9
10 11 12

13
14

15

16
17

18

19

20
21

Coordinates of the crossSection field
of the Extrusion node:
0: x=0 z=−0.174
1: x=−0.056 z=−0.166
2: x=−0.107 z=−0.145
3: x=−0.155 z=−0.112
4: x=−0.190 z=−0.064
5: x=−0.190 z=0.074
6: x=−0.160 z=0.096
7: x=−0.160 z=0.151
8: x=−0.155 z=0.2
9: x=−0.107 z=0.236
10: x=−0.056 z=0.256
11: x=0 z=0.264
12: x=0.056 z=0.256
13: x=0.107 z=0.236
14: x=0.155 z=0.2
15: x=0.160 z=0.151
16: x=0.160 z=0.096
17: x=0.190 z=0.074
18: x=0.190 z=−0.064
19: x=0.155 z=−0.112
20: x=0.107 z=−0.145
21: x=0.056 z=−0.166

0.234 < y < 0.24

Figure 4.19: Top plate of the Pioneer 2TM robot

62 CHAPTER 4. TUTORIAL: MODELING AND SIMULATING YOUR ROBOT

x

y

RIGHT
WHEEL

LEFT
WHEEL

0.3206

Z

Radius of the wheels: 0.0825
Depth of the wheels: 0.037

Figure 4.20: Wheels of the Pioneer 2TM robot

y

x

z

REAR
WHEEL

0.2147

Radius of the wheel: 0.0325
Width of the wheel: 0.024

Figure 4.21: Rear wheel of the Pioneer 2TM robot

4.4. MODELLING AN EXISTING ROBOT: PIONEER2.WBT 63

z

x

0

1

2

3
4

5

6

7

8

0

1

2

3
4

5

6

7

8

Coordinates of the crossSection field of the

4: x=0 z=−0.168

Coordinates of the crossSection field of the

 4: x=0 z=0.258

0.184 < y < 0.234

0: x=−0.136 z=0.135
1: x=−0.136 z=0.185
2: x=−0.101 z=0.223

5: x=0.054 z=0.248

3: x=−0.054 z=0.248

6: x=0.101 z=0.223
7: x=0.136 z=0.185
8: x=0.136 z=0.135

0: x=0.136 z=−0.046
1: x=0.136 z=−0.096
2: x=0.101 z=−0.134
3: x=0.054 z=−0.159

5: x=−0.054 z=−0.159
6: x=−0.101 z=−0.134
7: x=−0.136 z=−0.096
8: x=−0.136 z=−0.046

 REAR SONAR
SUPPORT

FRONT SONAR
SUPPORT

Extrusion node "Rear sonar support":

Extrusion node "Front sonar support":

Figure 4.22: Sonar supports of the Pioneer 2TM robot

z

x

RL4

RL3

RL2

RL1RR1

RR2

RR3

RR4

FL3

FL4

FL2

FL1FR1

FR2

FR3

FR4

RR: Rear Right Sonar
RL: Rear Left Sonar
FR: Front Right Sonar
FL: Front Left SonarREAR SONAR

SUPPORT

FRONT SONAR
SUPPORT

Figure 4.23: Sonars location on the Pioneer 2TM robot

64 CHAPTER 4. TUTORIAL: MODELING AND SIMULATING YOUR ROBOT

FR1

FR2

FR3

FR4

z

x

80 degrees

40

60

DEF SONAR Transform
Sonar ray

Figure 4.24: Angles between the Pioneer 2TM sonar sensors

4.5. TRANSFER TO YOUR OWN ROBOT 65

Each sonar is modeled as aDistanceSensor node, in which can be found a rotation around
they axis, a translation, and aUSE SONAR Transform, with a name (FL1, RR4, ...) to be used
by the controller.

Sonar name translation rotation
FL1 -0.027 0.209 -0.164 0 1 0 1.745
FL2 -0.077 0.209 -0.147 0 1 0 2.094
FL3 -0.118 0.209 -0.11 0 1 0 2.443
FL4 -0.136 0.209 -0.071 0 1 0 3.14
FR1 0.027 0.209 -0.164 0 1 0 1.396
FR2 0.077 0.209 -0.147 0 1 0 1.047
FR3 0.118 0.209 -0.116 0 1 0 0.698
FR4 0.136 0.209 -0.071 0 1 0 0
RL1 -0.027 0.209 0.253 0 1 0 -1.745
RL2 -0.077 0.209 0.236 0 1 0 -2.094
RL3 -0.118 0.209 0.205 0 1 0 -2.443
RL4 -0.136 0.209 0.160 0 1 0 -3.14
RR1 0.027 0.209 0.253 0 1 0 -1.396
RR2 0.077 0.209 0.236 0 1 0 -1.047
RR3 0.118 0.209 0.205 0 1 0 -0.698
RR4 0.136 0.209 0.160 0 1 0 0

Table 4.1: Translation and rotation of the Pioneer 2TM DEF SONAR Transforms

To finish modeling the Pioneer 2TM robot, you will have to fill in the remaining fields of the
DifferentialWheels node as shown in figure 4.25.

4.4.3 Controller

The controller of the Pioneer 2TM robot is fairly complex. It implements a Braitenberg controller
to avoid obstacles using its sensors. An activation matrix was determined by trial and error to
compute the motor commands from the sensor measurements. However, since the structure of
the Pioneer 2TM is not circular some tricks are used, such as making the robot go backward in
order to rotate safely when avoiding obstacles. The source code of this controller is a good
programming example. The name of this controller ispioneer2 .

4.5 Transfer to your own robot

Mobile robot simulation is relevant because it is possible to transfer the results onto real mobile
robots. Webots was designed with this transfer capability in mind. The simulation is as realistic

66 CHAPTER 4. TUTORIAL: MODELING AND SIMULATING YOUR ROBOT

Figure 4.25: Some fields of the Pioneer 2TMDifferentialWheels node

as possible and the programming interface can be ported or interfaced to existing real robots. We-
bots already include transfer systems for a number of existing real robots including KheperaTM,
HemissonTM, LEGO MindstormsTM, AiboTM, etc. This section explains how to develop your
own transfer system to your very own mobile robot.

Since the simulation is always a more or less accurate approximation of the physics of the real
robot, some tuning is always necessary when developing a transfer mechanism for an existing
real robot. This tuning will affect the simulated model so that it better matches the behavior of
the real robot.

4.5.1 Remote control

Overview

The easiest way to transfer your control program to a real robot is often to develop a remote con-
trol system. In this case, your control program runs on the computer, but instead of sending com-
mands to and reading sensor data from the simulated robot, it sends commands to and read sensor
data from the real robot. Developing such a remote control system can be achieved in a very sim-
ple way by writing your own implementation of the Webots API functions as a small library. For
example, you will probably have to implement thedifferential wheels set speed func-
tion as a function that sends a specific command to the real robot with the wheel speeds as an

4.5. TRANSFER TO YOUR OWN ROBOT 67

argument. This command can be sent to the real robot via the serial port of the PC or whatever
PC robot interface you have. You will probably need to make some unit conversion since your
robot may not use the same speed unit as the one used in Webots. The same applies for reading
sensor values from the real robot.

Developing a custom library

Once you have created a number of C functions implementing the Webots functions you need to
redirect outputs and inputs to the real robot. You will then be able to reuse your Webots controller
used for the simulation without changing a line of code, and even without recompiling it to an
object file: Instead of linking this object file with the WebotsController dynamic library, you
will link it with your own C functions. For your convenience, you may want to create a static or
dynamic library containing your own robot interface.

Special functions

Therobot live function can be used to perform some initialization, like setting up the connec-
tion with the real robot.

The robot get device function should return arbitrary integer values specific to each device
of your real robot. These values should be used by device specific functions. For example, the
distance sensor get value function is able to recognize the specified device and return the
correct value.

The robot run function should call repeatedly the function passed as an argument. The first
call should be performed with 0 as an argument. It should then take care of the return value of the
run function and respect the requested delay before calling again this function. The parameter
passed to the run function should describe the actual delay (see reference description about the
robot run function for more details about it).

Running your real robot

Once linked with your own library, your controller can be lauched as a stand alone application to
control your real robot. It might be useful to include in your library or in your Webots controller
some graphical representation to display sensor values, motor commands or a stop button. Such
a remote control system can be implemented in C as explained here, however, it can also be
implemented in Java using the same principle by replacing theController.jar Webots file
by your own robot specificController.jar file and using this one to drive the real robot.

68 CHAPTER 4. TUTORIAL: MODELING AND SIMULATING YOUR ROBOT

4.5.2 Cross-compilation

Overview

Developing a cross-compilation system will allow you to recompile your Webots controller for
the embedded processor of your own real robot. Hence the source code you wrote for the Webots
simulation will be executed on the real robot itself and there is no need to have a permanent PC
connection with the robot as with the remote control system. This is only possible if the processor
on your robot can be programmed in C, C++ or Java. It is not possible for a processor that can be
programmed only in assembler or another specific language. Webots includes the source code of
such a cross-compilation system for the Hemisson robot. This sample is located in theHemiOS

directory of thehemisson controller .

Developing a custom library

Unlike the remote control system, the cross-compilation system requires that the source code
of your Webots controller be recompiled using the cross-compilation tools specific to your very
own robot. You will also need to rewrite the Webots include files to be specific to your very
own robot. In simple cases, you can simply rewrite the Webots include files you need, as in the
hemisson example. In more complex cases, you will also need to write some C source files
to be used as a replacement of the WebotsController library, but running on the real robot.
You should then recompile your Webots controller with your robot cross-compilation system and
link it with your robot library. The resulting file should be uploaded onto the real robot for local
execution.

Examples

Webots support cross-compilation for the several existing commercial robots. For the HemissonTM

robot, this system is as simple a few include files replacing the Webots API include files. For the
KheperaTMrobot, a specific C library is used additionally to specific include files. For the LEGO
MindstormsTMrobot, a Java library is used and the resulting binary controller is executed on the
real robot using theLeJOS Java virtual machine.

4.5.3 Interpreted language

In some cases, it may be better to implement an interpreted language system. This is useful if
your real robot already uses an interpreted language, like Basic or a graph based control lan-
guage. In such a case, the transfer is very easy since you will just transfer the code of your
program that will be interpreted on the real robot. The most difficult part may be to develop a
language interpreter in C or Java to be used by your Webots controller for controlling the simu-
lated robot. Such an interpreted language system was developed for the HemissonTM robot with
the BotStudioTM system.

4.6. ADDING CUSTOM ODE PHYSICS 69

4.6 Adding custom ODE physics

4.6.1 Introduction

This section describes the capability to add custom physics simulation to your Webots simu-
lations. This is especially useful if you want to model complex forces and torques, such as
hydrodynamical forces or a random wind. It is also possible to gather various information (like
the position, orientation, linear or angular velocity, etc. of every solid in the world or the global
parameters of the physical simulation), to decide which force or torque should be applied. This
way, it is possible to apply hydrodynamic forces only when a robot enters a special part of
the world which is supposed to contain water. You may also access internal parameters of the
physics engine for a better tuning of your physics simulation. Moreover, you can also imple-
ment your own collision detection system to better control contact joints and define for example
non-uniform friction parameters on some surfaces.

Adding a custom physics is achieved by creating a custom shared library which is loaded by
Webots at run-time and which contains function calls to the ODE physics library. This system
currently runs on Linux, Windows and Mac OS X operating systems.

4.6.2 Files

TheWorldInfo node of the simulated world has a field calledphysics which defines the name
of the shared library to be used for the custom physics simulation in this world. This name has
no extension such as.so (under Linux),.DLL (under Windows) or.dylib (under Mac OS X),
but refers to a shared library stored in a subdirectory of the Webots userphysics directory (at
the same level as thecontrollers and theworlds directories). For example:

WorldInfo {
physics "sample"

}

refers to thesample.so shared library under Linux, to thesample.dll shared library under
Windows or to thesample.dylib shared library under Mac OS X. This shared library should
be stored in thesample subdirectory of the Webots userphysics directory.

Since the shared library for physics is refered to by theWorldInfo node of a world, you can
develop different physics shared libraries for different worlds.

4.6.3 Implementation

Your shared library may contain four functions that will be called directly by Webots during the
simulation of the world. You may implement all of these functions, or only a few of them. If the
functions are not implemented, they won’t be called.

70 CHAPTER 4. TUTORIAL: MODELING AND SIMULATING YOUR ROBOT

• void webots physics init(dWorldID,dSpaceID,dJointGroupID); This func-
tion is called upon initialization of the world. It provides your shared library with ODE
variables used by the simulation, such as a pointer to the world (dWorldID), a pointer
to the geometry space (dSpaceID) and a pointer to the contact joint group used by the
simulation (dJointGroupID). All these parameters should be stored in global variables of
your shared library for further use. Moreovoer, this function is a good place to call the
dWebotsGetGeomFromDEF function (see below for details) to get pointers to the objects
on which you want to control the physics.

• void webots physics step(); This function is called before every physics simula-
tion step (call to the ODEdWorldStep() function). It has no parameter. It can be used to
add force and / or torques to solids. It can also be used to test the position and orientation
of solids (and possibly apply different forces according the position and orientation).

• int webots physics collide(dGeomID,dGeomID); This function is called when-
ever a collision occurs between two objects. It may be called several times for a single
simulation step with different parameters corresponding to different objects. You should
test whether the two colliding objects passed as arguments correspond to the objects you
want to control. Then, you should create the contact joints, using the ODEdCollide

anddJointCreateContact functions. Finally, you should add this contact joint to the
joint group passed as an argument of thewebots physics init function using the ODE
dJointAttach function. Finally, you should return 1 if the collision has been handled by
your function or 0 if you wish that Webots handle this collision using its default collision
system.

• void webots physics cleanup(); This function is the counterpart function of the
webots physics init function. It is called when the world is destroyed and can be
used to perform some cleanup, like releasing resources and so on.

• void webots physics draw(); This function is a utility function intended to dis-
play additional 3D objects in the main 3D window. This is useful to display for exam-
ple some forces as lines with arrows or to add some objets in the world. It is called
immediately after the world is displayed. This function should contain OpenGL calls
glEnable , glDisable , glColor4f , glBegin , glVertex3f , glEnd , etc. The OpenGL
state should be restored to the default value at the end of this function to avoid subsequent
rendering problems in Webots.

As mentioned in the description of thewebots physics init function, a special function
calleddWebotsGetGeomFromDEF allows you to get a pointer (actually an ODEdGeomID) to a
Solid node of the world defined by itsDEFname. The prototype for this function is:

dGeomID dWebotsGetGeomFromDEF(const char *DEF);

whereDEF is the DEF name of the requestedSolid node. From thisdGeomID pointer, ODE
allows you to obtain the correspondingdBodyID pointer using the ODEdGeomGetBody func-
tion.

4.6. ADDING CUSTOM ODE PHYSICS 71

4.6.4 Compiling the shared library

Your shared library can be compiled under Windows and Linux with GNU make and gcc using
the providedMakefile . You can also use Visual C++ under Windows to compile it. Under
Windows, the shared library should be dynamically linked to the ODE library. The Webots
lib directory contains the gcc (libode.a) and Visual C++ (ode.lib) import libraries. Under
Linux, you don’t need to link the shared library with anything.

4.6.5 Example

An example of custom physics shared library is provided within theflying robot.wbt world
which uses thesample physics shared library. You can read the source code of this library in
thesample subdirectory of the Webotsphysics directory. In this example, the custom physics
library is used to add some wind and to define a non-uniform friction between a cube robot and
the floor.

72 CHAPTER 4. TUTORIAL: MODELING AND SIMULATING YOUR ROBOT

Chapter 5

Robot and Supervisor Controllers

5.1 Overview

A robot controller is a program usually written in C, C++ or Java used to control one robot. A
supervisor controller is a program usually written in C or C++ used to control a world and its
robots.

5.2 Setting Up a Development Environment

5.2.1 Under Windows

Using MinGW

MinGW is a free development environment based on thegcc open source C and C++ compiler.
MinGW includes themake utility used to compile the Webots controllers from the provided
Makefile files. MinGW comes with a companion utility called MSYS which is a UNIX-like
ternimal that can be used to invoke the MinGW commands. Both MinGW and MSYS are in-
cluded in thedevel subdirectory of thewindows directory on the Webots CD-ROM. Install
MinGW first and MSYS second. In addition to MinGW and MSYS, you will probably need
a text editor to write your controller programs. We recommand using SciTe, which is a simple,
lightweight source code editor. SciTe is also provided in thedevel subdirectory of thewindows

directory on the Webots CD-ROM. Alternatively to SciTe, you may want to use Dev-C++, which
is a Visual C++ like development environment relying ongcc . Dev-C++ is also provided in
thedevel subdirectory of thewindows directory on the Webots CD-ROM. A sample Dev-C++
project calledbraiten.dev is provided in thebraiten controller directory of Webots.

73

74 CHAPTER 5. ROBOT AND SUPERVISOR CONTROLLERS

Using Visual C++

Visual C++ is an integrated development environment for C and C++ provided by Microsoft
Corp. It includes a C and C++ compiler and a source code editor. A number of Visual C++
project examples are provided in thecontrollers/braiten , controllers/khepera and
controllers/tcpip controller directories. Typically, a new Visual C++ project for Webots
should define a correct include path to the Webotsinclude directory and should link the exe-
cutable file with theController.lib file included in the Webotslib directory. Take care to
produce an executable file in the specific controller directory and not in aDebug or Release

subdirectory as produced by default by Visual C++. For example, thekhepera.exe program
should be created in thekhepera directory of yourcontrollers directory. Please note that
the resulting executable files cannot be executed from Visual C++ as they should be launched by
Webots and referenced in the world file used by Webots.

Here is the complete procedure to set up a new Webots controller project under Visual C++ 6.0:

1. Create amy controller directory in your localwebots directory. Launch Visual C++
and go to theFile New... menu item.

2. Create a ”Win32 Console Application” project (or ”Win32 Application” if you don’t need
a console for debugging). Set theProject name: to my controller and set theLocation:
to your localwebots \controllers \my controller directory. Choose to create an
empty project.

3. Go to theFiles New... menu item to create a newC++ Source File namedmy controller.c

in your my controller directory.

4. Go to theBuild Configurations... menu item andRemove theWin32 Debug configuration.
Close theConfigurations window.

5. Go to theProjects Settings menu item and select theC/C++ tab. Select thePreproces-
sor category and typeC: \Program Files \Webots \include in the Additional include
directories entry. Then, go to theLink tab, General category and replace theOutput
file name: Release/my controller.exe by my controller.exe . Then, prepend
Controller.lib in the list of Object/library modules: . Finally, in the Input category,
typeC: \Program Files \Webots \lib as anAdditional library path:

6. Now, type your Webots controller source code in themy controller.c file (you can take
inspiration from thesimple.c controller provided in the controllers directory of Webots,
usually located inC: \Program Files \Webots \controllers \simple .

7. Now build your application from theBuild Build my controller.exe menu item (or F7 key).
It should create amy controller.exe file in yourmy controller directory. However,
this binary file cannot be launched individually or from Visual C++. It has to be launched
by a Webots world refering to that file.

5.3. SETTING UP A NEW CONTROLLER 75

Using the Java Development Kit

The Java Development Kit (JDK) is provided for free by Sun Microsystems. A copy of this
development environment is included in thedevel subdirectory of thewindows directory on the
Webots CD-ROM. It will allow you to program your Webots robots using the Java programming
language. The Java Development Kit doesn’t include any text editor or integrated development
environment. You may use a simple text editor and invoke thejavac Java compilation command
from a DOS window, or use an integrated development environment like Borland JBuilder or
Sun’s NetBeans. If you installed MinGW, you will be able to invoke themake from a terminal
which will in turn invoke thejavac command appropriately.

5.2.2 Under Linux

This is the most simple case. Usually, you don’t have to do anything since most Linux distribu-
tions come with thegcc C/C++ compiler and themake utility. If these tools are not installed, you
will have to install them. Please refer to your Linux distribution to install them. Of course, you
will also need a text editor or possibly an integrated development environment. We recommand
usingemacs as a text editor as it is very common under Linux.

If you want to program your robots using the Java language, you will have to install the Java
Development Kit (JDK) from Sun Microsystems. This software is available for free from Sun
Microsystems. It is also included in thedevel subdirectory of thelinux directory on the
Webots CD-ROM.

5.2.3 Under Mac OS X

Simply installing the Developer Tools provided with Mac OS X allows you to program your
Webots robots in C, C++ and Java. The Apple Developer Tools for Mac OS X include thegcc

C and C++ compiler, themake build command and thejavac Java compiler. You will probably
use the Project Buidler application to write your source code and the Terminal application to run
themake command which will in turn invoke either thegcc or javac compiler.

5.3 Setting Up a New Controller

In order to develop a new controller, you must first create acontrollers directory in your user
directory to contain all your robot and supervisor controller directories. Each robot or supervisor
controller directory contains all the files necessary to develop and run a controller. In order
to tell Webots where your controllers are, you must set up your user directory in the Webots
preferences. Webots will first search for acontrollers directory in your user directory, and if
it doesn’t find, it will then look in its owncontrollers directory. Now, in your newly created

76 CHAPTER 5. ROBOT AND SUPERVISOR CONTROLLERS

controllers directory, you must create a controller subdirectory, let’s call itsimple . Inside
simple , several files must be created:

• a number of C source files, likesimple.c which will contain your code.

• aMakefile which can be copied (or inspired) from the Webotscontrollers directories.
Note that Windows users also have several other alternatives to the Makefile: They can use
a Dev-C++ project or a Microsoft Visual C++ project.

You can compile your program by typingmake in the directory of your controller.

As an introduction, it is recommended that you copy thesimple controller directory from the
Webotscontrollers to your owncontrollers directory and then try to compile it.

Under Windows, if you usemake and would like that your controller program opens up a DOS
console to displayprintf messages, add the following line in yourMakefile :

DOS_CONSOLE=1

5.4 Webots Execution Scheme

5.4.1 From the controller’s point of view

Each robot controller program is built in the same manner. An initialization with the func-
tion robot live is necessary before starting the robot. A callback function is provided to the
robot live function in order to identify the devices of the robot (see section 5.5). Then an end-
less loop (usually implemented as afor(;;) { } statement) runs the controller continuously
until the simulator decides to terminate it. This endless loop must contain at least one call to
therobot step function which asks the simulator to advance the simulation time a given num-
ber of milliseconds, thus advancing the simulation. Before callingrobot step , the controller
can enable sensor reading and set actuator commands. Sensor data can be read immediately af-
ter callingrobot step . Then you can perform your calculations to determine the appropriate
actuator commands for the next step.

5.4.2 From the point of view of Webots

Startup

For each robot, Webots looks in the usercontrollers directory for a controller file matching
the name specified as the controller of the robot. If the specified controller issimple , Webots
will first try to execute the file calledsimple (on Linux or Mac OS X) orsimple.exe (on

5.5. READING SENSOR INFORMATION 77

Windows) located in thesimple subdirectory of the usercontrollers directory. If such a
file doesn’t exist, then, it will look for a file calledsimple.class in the same subdirectory and
launch it as a Java controller. If doesn’t exist, then it will try to look for a file calledsimple.jar

in the same directory and launch thesimple class from it. If this one doesn’t exist, then Webots
will fail launching the specified controller and will use thevoid instead.

In case of a Java controller, all thejar files located in the specified controller directory will be
added to the JavaCLASSPATH. The only exception to this rule is that if ajar file has the same
name as aclass file in the same directory, then, thisjar file will be ignored. This means that
if you have both asimple.jar file and asimple.class file in the same directory, then the
simple.jar file will not be added to theCLASSPATH. However, otherjar files (if existing)
will be added to theCLASSPATH.

Simulation loop

Webots receives controller requests from possibly several robots controllers. Each request is
divided into two parts: an actuator command part which takes place immediately, and a sensor
measuring part which is scheduled to take place after a given number of milliseconds (as defined
by the parameter of the step function). Each request is queued in the scheduler and the simulator
advances the simulation time as soon as it receives new requests.

5.4.3 Synchronous versus Asynchronous controllers

Each robot (DifferentialWheels or Supervisor) may be synchronous or asynchronous.
Webots waits for the requests of synchronous robots before it advances the simulation time; it
doesn’t wait for asynchronous ones. Hence an asynchronous robot may be late (if the controller
is computationally expensive, or runs on a remote computer with a slow network connection).
In this case, the actuator command occurs later than expected. If the controller is very late, the
sensor measurement may also occur later than expected. However, this delay can be verified by
the robot controller by reading the return value of therobot step function (see the Reference
Manual for more details). In this way the controller can adapt its behavior and compensate.

Synchronous controllers are recommended for robust control, while asynchronous controllers
are recommended for running robot competitions where computer resources are limited, or for
networked simulations involving several robots dispatched over a computer network with an
unpredictable delay (like the Internet).

5.5 Reading Sensor Information

To obtain sensor information, the sensor must be:

78 CHAPTER 5. ROBOT AND SUPERVISOR CONTROLLERS

1. identified: this is performed by therobot get device function which returns a handler
to the sensor from its name. This needs to be done only once in the reset callback function,
which is provided as an argument to therobot live function. The only exception to this
rule concerns the root device of a robot (DifferentialWheels or CustomRobot node) which
doesn’t need to be identified, because it is the default device (it always exists and there is
only one of such device in each robot).

2. enabled: this is performed by the appropriateenable function specific to each sensor (see
distance sensor enable for example). It can be done once, before the endless loop,
or several times inside the endless loop if you decide to disable and enable the sensors
from time to time to save computation time.

3. run: this is performed by therobot step function inside the endless loop.

4. read: finally, you can read the sensor value using a sensor specific function call, like
distance sensor get value inside the endless loop.

5.6 Controlling Actuators

Actuators are easier to handle than sensors. They don’t need to be enabled. To control an actuator,
it must be:

1. identified: this is performed by therobot get device function which returns a handler
to the actuator from its name. This needs to be done only once in the reset callback func-
tion, which is provided as an argument to therobot live function. As with sensors, the
only exception to this rule concerns the root device of a robot.

2. set: this is performed by the appropriateset function specific to each actuator (an example
of such a function isdifferential wheels set speed). It is usually called in the
endless loop with different computed values at each step.

3. run: this is done outside therobot run function.

5.7 Going further with the Supervisor Controller

The supervisor can be seen as a super robot. It is able to do everything a robot can do, and more.
This feature is especially useful for sending messages to and receiving messages from robots,
using theReceiver andEmitter nodes. Additionally, it can do many more interesting things.
A supervisor can move or rotate any object in the scene, including theViewpoint , change the
color of objects, and switch lights on and off. It can also track the coordinate of any object which
can be very useful for recording the trajectory of a robot. As with any C program, a supervisor

5.8. INTERFACING WEBOTS TO THIRD PARTY SOFTWARE 79

can write this data to a file. Finally, the supervisor can also take a snapshot of the current scene
and save it as ajpeg or PNGimage. This can be used to create a ”webcam” showing the current
simulation in real-time on the Web!

5.8 Interfacing Webots to third party software

5.8.1 Overview

If you don’t want to develop your robot controllers using C, C++ or Java, it is possible to interface
Webots to almost any third party software, such as MatLabTM, LispTM, LabViewTM, etc. Such
an interface is implemented through a TCP/IP protocole that you can define by yourself. Webots
comes with an example of interfacing a simulated Khepera robot through TCP/IP to any third
party program able to read from and write to a TCP/IP connection. This example world is
calledtcpip.wbt and lies in theworlds directory of Webots. The simulated Khepera robot is
controlled by thetcpip controller which lies in thecontrollers directory of Webots. This
small C controller comes with full source code intcpip.c , so that you can improve it to suit
your needs. A client example is provided as a binary and C source code inclient.c . Such
a client should be used as a model to rewrite a similar client using the programming language
of your third party software. This has already been implemented in Lisp and MatLab by some
Webots customers.

5.8.2 Main advantages

There are several advantages of using such an interface. First, you can have several simulated
robots in the same world using the several instances of the sametcpip controller, each one using
a different TCP/IP port, thus allowing your third party software to control several robots through
several TCP/IP connections. To allow thetcpip process to open a different port depending on
the controlled robot, you should give a differentname to each robot and use therobot get name

in the tcpip controller to retrieve this name and decide to open a port specific for each robot.

The second advantage is that you can also remote control a real Khepera robot from your third
party software without writting a line of code. Simply switching to the remote control mode in
the Khepera window will redirect the input/output to the real robot through the serial line.

The third advantage is that you can spread your controller programs over a network of computers.
This is especially useful if the controller programs perform computer expensive algorithms such
as genetic algorithms or other learning techniques.

Finally, it should be mentioned that it might be interesting to set the controlled robot in syn-
chronous or asynchronous mode depending if you want the Webots simulator waits for com-
mands from your controllers or not. In synchronous mode (set thesynchronization field of

80 CHAPTER 5. ROBOT AND SUPERVISOR CONTROLLERS

your robots toTRUE), the simulator will wait for commands from your controllers. The con-
troller step defined by therobot step parameter thetcpip controller will be respected. In
asynchronous mode (set thesynchronization field of your robots toFALSE), the simulator
will run as fast as possible, without waiting for commands from your controllers. In the latter
case, it might be interesting to check the real time option in the preferences of Webots to have
a real time simulation in which robots should behave like a real robots controlled through an
asynchronous connection.

5.8.3 Limitations

The main drawback of this method is that if your robot has a camera device, the protocole should
send the images to the controller over TCP/IP, which might be pretty network intensive. Hence
it is recommended to have a high speed network, or use small resolution camera images, or
compress the image data before sending it to the controller. This overhead is negligible if you
use low resolution cameras such as the Khepera K213.

5.8.4 MatLabTM TCP/IP utility

The standard version of MatLabTM doesn’t provide a plain TCP/IP interface. However, a free
toolbox called TCP/UDP/IP Toolbox 2.0.5 developed by Mr. Peter Rydesäter is available. This
toolbox can be found on the Webots CD-ROM (in thecommon util directory), as well as on the
MatLab web site. It is known to run on Windows, Linux and other UNIX systems. It can be used
so that your MatLab programs can connect to thetcpip Webots controllers to drive robots.

Chapter 6

Tutorial: Using the KheperaTM robot

The goal of this chapter is to explain you how to use Webots with your Khepera robot. Khepera
is a mini mobile robot developed by K-Team SA, Switzerland (www.k-team.com).

Webots can use the serial port of your computer to communicate with the Khepera robot.

6.1 Hardware configuration

1. Configure your Khepera robot in mode 1, for serial communication protocol at 9600 baud
as described in figure 6.1.

2. Plug the serial connection cable between your Khepera robot and the Khepera interface.

3. Plug the Khepera Interface into a serial port of your computer (eitherCOM1or COM2, at
your convenience).

4. Check the the Khepera robot power switch is OFF and plug the power supply to the Khep-
era Interface.

Note: Linux and Mac OS X users may want to redefine theCOM1, COM2, COM3andCOM4ports
by settingWEBOTSCOM1, WEBOTSCOM2 WEBOTSCOM3and/orWEBOTSCOM4environment vari-
ables to point to the appropriate/dev device files.

On Linux, if these environment variables are not set, Webots will use respectively/dev/ttyS0 ,
/dev/ttyS1 , /dev/ttyS2 and /dev/ttyS3 for COM1, COM2 COM3and COM4(note the -1
difference). For example, if your laptop running Linux has no serial port, you may want to
use a USB-RS232 converter, in which case it may be useful to type something like:export

WEBOTSCOM1 /dev/ttyUSB0 to allow Webots to communicate with the Khepera through the
USB port.

81

82 CHAPTER 6. TUTORIAL: USING THE KHEPERATM ROBOT

0
246

8
A C E

mode selector
set to 1

serial port

Top View

LEDs

Figure 6.1: Khepera II mode selection

On Mac OS X, onlyCOM1has a default value which is set to"/dev/tty.USB Serial" , corre-
sponding to the default USB to serial converter (like the one installed by the USB232-P9 convert-
ers). Other USB to serial converters may require that you define theWEBOTSCOM1environment
variable to match their specific value. For example, the KeySpan USB to serial converter will
need that you defineWEBOTSCOM1as "/dev/tty.USA28X1213P1.1" . Please consult the
documentation of your USB serial adapter to know the exact file name to be defined.

That’s it. Your system is operational: you will now be able to simulate, remote control and
transfer controllers to your Khepera robot.

6.2 Running the simulation

Launch Webots: on Windows, double click on the lady bug icon, on Linux, typewebots in a
terminal. Go to theFile Open menu item and open the file namedkhepera.wbt , which contains
a model of a Khepera robot (see figure 6.2) associated with a Khepera controller (see figure 6.3).
If the Khepera controller window do not show up, press theStep button in the main window of
Webots.

You can navigate in the scene using the mouse pointer. To rotate the scene, click on the left
button and drag the mouse. To translate the scene, use the right button. To zoom and tilt, use the
middle button. You may also use the mouse wheel to zoom in or out.

Using these controls, try to find a good view of the Khepera robot. You have probably noticed
that clicking on an object in the scene would select it. Select the Khepera robot and choose the

6.2. RUNNING THE SIMULATION 83

Figure 6.2: Khepera example world

Simulation Robot View menu item. This way, the camera will follow the robot moves. Then,
click on theRun button to start up the simulation. You will see the robot moving, while avoiding
obstacles.

To visualize the range of the infra red distance sensors, go to theFile Preferences... menu item to
pop up the Preferences window. Then, check theDisplay sensor rays check box in theRendering
tab.

In the controller windows, the values of the infra-red distance sensors are displayed in blue,
while the light measurement values are displayed in light green. You can also observe the speed
of each motor, displayed in red and the incremental encoder values displayed in dark green (see
figure 6.3).

84 CHAPTER 6. TUTORIAL: USING THE KHEPERATM ROBOT

Figure 6.3: Khepera Controls

6.3 Understanding the model

6.3.1 The 3D scene

In order to better understand what is going on with this simulation, let’s take a closer look at the
scene structure. Double click on an object in the scene, or select theEdit Scene Tree Window to
open the scene tree window. If you double clicked on an object, you will see that object selected
in the scene tree (see figure 6.4). Clicking on the little cross icon of an object name in the scene
tree, will expand that object, displaying its properties.

We will not describe in details the Webots scene structure in this chapter. It is build as an
extension of the VRML97 standard. For a more complete description, please refer to the Webots
user guide and reference manuals. However, let’s have a first overview.

You can see that the scene contains several objects, which we call nodes. You can play around
with the nodes, expanding them to look into their fields, and possibly change some values. The
WorldInfo node contains some text description about the world. TheViewpoint node defines
the camera from which the scene is viewed. TheBackground node defines the color of the
background of the scene which is blue in this world. ThePointLight node defines a light
which is visible from the light sensors of the robot. The light location can be displayed in the
scene by checkingDisplay Lights in theRendering tab of the preferences window. The remaining
nodes are physical objects and have aDEFname for helping identifying them.

The GROUND Transform is not a Solid which means no collision detection is performed

6.3. UNDERSTANDING THE MODEL 85

Figure 6.4: Scene tree window for the Khepera world

with this node. On the other hand, theWALLandBOXnodes areSolid nodes. They have a
boundingObject field used for collision detection.

Finally, theKHEPERA DifferentialWheels node defines the Khepera robot.

6.3.2 The Khepera model

As you can guess, aDifferentialWheels node defines any differentially wheeled robot. The
parameters provided here correspond to the size and functionalities of a Khepera robot. For
example, if you expand the children list, you will be able to find some shapes defining the body of
the robot and a number of sensors, including distance and light sensors. Although on the Khepera
robot, the light and distance sensors are the same device, they are divided into two logical devices
in the Webots model. This makes the simulator more modular and generic. Moreover, you will
notice that each device (DifferentialWheels , DistanceSensor , LightSensor , etc.) has
a list of children defining either sub devices or 3D shapes.

Webots recognizes thisDifferentialWheels as a Khepera robot because itsmodel field is
set to ”Khepera”. Moreover, each sensor is named in a specific way in order to be recognized by
Webots. For example, the distance sensor with aname set to ”ds0” corresponds to the first infra-
red distance sensor. The Khepera interface recognized distance sensors named ”ds0” to ”ds7”,
light sensors named ”ls0” to ”ls7”, camera sensor named ”k213”, and distance sensors named
”fs0” to ”fs2” (optional floor color sensors). This allows Webots to display the Khepera window
when you double-click on the Khepera robot in the 3D world or when you choose theShow
Robot Window menu item in theSimulation menu while the corresponding robot is selected.

86 CHAPTER 6. TUTORIAL: USING THE KHEPERATM ROBOT

The differential wheels model

The differential wheels model of a robot is defined by a number of parameters, including the
axle length, the wheel radius, the maximum speed, maximum acceleration, the speed unit, slip
noise and encoder noise. Values for these parameters are provided in this example to match
approximately a Khepera robot. You may need to refine them if you need a very precise model.
Please refer to the Webots user guide for a complete description of these parameters.

The sensor model

The distance sensors are simulated by computing the collision between a single sensor ray and
objects in the scene. The response of the sensor is computed according to itslookupTable and
modulated by the color of the object (since these sensors are of ”infra-red”type , red objects are
seen better than green ones). ThelookupTable is actually a table of floating point values which
is extrapolated to compute the response of the sensor. The first value is the distance expressed
in meters (increasing the biggest distance value will make the sensor look further). The second
value is the response read by the controller of the robot and the third value is the percentage of
white noise associated to the distance and response, expressed in the range [0;1]. For a more
complete discussion on the distance sensor model, please refer to the Webots user guide.

Light sensors are pretty similar to distance sensors. They also rely on alookupTable for
computing their return value according the measured value.

6.4 Programming the Khepera robot

6.4.1 The controller program

Among the fields of aDifferentialWheels node, you may have noticed thecontroller

field. This field defines an executable program that will control the robot. By default executable
programs are searched in the Webotscontrollers directory, but you can define another lo-
cation in the PreferencesFiles and paths tab, under theUser path: label. This path define a
directory in webots will look for aworlds and acontrollers directory. Thecontrollers

directory should contain subdirectories named after the names of the controllers (i.e.,khepera

in our case). Thiskhepera directory should contain an executable file namedkhepera.exe

on Windows orkhepera on Linux. Moreover, along with the executable file, you will also find
sources files and possibly makefiles or project files used to build the executable from the sources.

6.4.2 Looking at the source code

The source code of the example controller is located in the following file under the Webots
directory:

6.4. PROGRAMMING THE KHEPERA ROBOT 87

controllers/khepera/khepera.c

It contains the following code:

#include <stdio.h>
#include <device/robot.h>
#include <device/differential_wheels.h>
#include <device/distance_sensor.h>
#include <device/light_sensor.h>

#define FORWARD_SPEED 8
#define TURN_SPEED 5
#define SENSOR_THRESHOLD 40

DeviceTag ds1,ds2,ds3,ds4,ls2,ls3;

void reset(void) {
ds1 = robot_get_device("ds1"); /* distance sensors */
ds2 = robot_get_device("ds2");
ds3 = robot_get_device("ds3");
ds4 = robot_get_device("ds4");
ls2 = robot_get_device("ls2"); /* light sensors */
ls3 = robot_get_device("ls3");

}

int main() {
short left_speed=0,right_speed=0;
unsigned short ds1_value,ds2_value,ds3_value,ds4_value,

ls2_value,ls3_value;
int left_encoder,right_encoder;

robot_live(reset);
distance_sensor_enable(ds1,64);
distance_sensor_enable(ds2,64);
distance_sensor_enable(ds3,64);
distance_sensor_enable(ds4,64);
light_sensor_enable(ls2,64);
light_sensor_enable(ls3,64);
differential_wheels_enable_encoders(64);
for(;;) { /* The robot never dies! */

ds1_value = distance_sensor_get_value(ds1);
ds2_value = distance_sensor_get_value(ds2);
ds3_value = distance_sensor_get_value(ds3);
ds4_value = distance_sensor_get_value(ds4);
ls2_value = light_sensor_get_value(ls2);
ls3_value = light_sensor_get_value(ls3);

88 CHAPTER 6. TUTORIAL: USING THE KHEPERATM ROBOT

if (ds2_value>SENSOR_THRESHOLD &&
ds3_value>SENSOR_THRESHOLD) {

left_speed = -TURN_SPEED; /* go backward */
right_speed = -TURN_SPEED;

}
else if (ds1_value<SENSOR_THRESHOLD &&

ds2_value<SENSOR_THRESHOLD &&
ds3_value<SENSOR_THRESHOLD &&

ds4_value<SENSOR_THRESHOLD) {
left_speed = FORWARD_SPEED; /* go forward */
right_speed = FORWARD_SPEED;

}
else if (ds3_value>SENSOR_THRESHOLD ||

ds4_value>SENSOR_THRESHOLD) {
left_speed =-TURN_SPEED; /* turn left */
right_speed = TURN_SPEED;

}
if (ds1_value>SENSOR_THRESHOLD ||

ds2_value>SENSOR_THRESHOLD) {
right_speed=-TURN_SPEED; /* turn right */
left_speed=TURN_SPEED;

}
left_encoder = differential_wheels_get_left_encoder();
right_encoder = differential_wheels_get_right_encoder();
if (left_encoder>9000)

differential_wheels_set_encoders(0,right_encoder);
if (right_encoder>1000)

differential_wheels_set_encoders(left_encoder,0);
/* Set the motor speeds */
differential_wheels_set_speed(left_speed,right_speed);
robot_step(64); /* run one step */

}
return 0;

}

This program is made up of two functions: a main function, as in any C program and function
namedreset which is a callback function used for getting references to the sensors of the
robot. A number of includes are necessary to use the different devices of the robot, including the
differential wheels basis itself.

The main function starts up by initializing the library by calling thekhepera live function,
passing as an argument a pointer to thereset function declared earlier. Thisreset function
will be called each time it is necessary to read or reread the references to the devices, called
device tags. The device tag names, like ”ds1”, ”ds2”, etc. refer to thename fields you can see in
the scene tree window for each device. The reset function will be called the first time from the

6.5. TRANSFERRING TO THE REAL ROBOT 89

khepera live function. So, from there, you can assume that the device tag values have been
assigned.

Then, it is necessary to enable the sensor measurements we will need. The second parameter of
the enable functions specifies the interval between updates for the sensor in millisecond. That is,
in this example, all sensor measurements will be performed each 64 ms.

Finally, the main function enters an endless loop in which the sensor values are read, the motor
speeds are computed according to the sensor values and assigned to the motors, and the encoders
are read and sometimes reset (although this make no special sense in this example). Please note
the robot step function at the end of the loop which takes a number of milliseconds as an
argument. This function tells the simulator to run the simulation for the specified amount of
time. It is necessary to include this function call, otherwise, the simulation may get frozen.

6.4.3 Compiling the controller

To compile this source code and obtain an executable file, a different procedure is necessary
depending on your development environment. On Linux, simply go to the controller directory
where thekhepera.c resides, and typemake. On Windows, you may do exactly the same if
you are working with Cygwin. If you use Dev-C++ or Microsoft Visual C++, you will need to
create a project file and compile your program from your Integrated Development Environment.
Template project files for both Dev-C++ and Visual C++ are available in thebraiten controller
directory.

Once compiled, reload the world in Webots using theRevert button (or relaunch Webots) and
you will see your freshly compiled run in Webots.

6.5 Transferring to the real robot

6.5.1 Remote control

The remote control mode consists in redirecting the inputs and outputs of your controller to a real
Khepera robot using the Khepera serial protocol. Hence your controller is still running on your
computer, but instead of communicating with the simulated model of the robot, it communicates
with the real device via connected to the serial port.

To switch to the remote control mode, your robot needs to be connected to your computer as de-
scribed in section 6.1. In the robot controller window, select theCOM popup menu corresponding
to the serial port to which your robot is connected. Then, just click on thesimulation popup menu
in the controller window and selectremote control instead. After a few seconds, you should see
your Khepera moving around, executing the commands sent by your controller. The controller
window now displays the sensor and motor values of the real Khepera.

90 CHAPTER 6. TUTORIAL: USING THE KHEPERATM ROBOT

You may press the simulationstop to stop the real robot. Therun will restart it. Thestep button
is helpful to run the real robot step by step. To return to the simulation mode, just use the popup
menu previously used to start the remote control mode. You may remark that it is possible to
change the baud rate for communicating with the robot. The default value is 57600 baud, but
you may choose another value from the popup menu.

Important: If you change the baud rate with the popup menu, don’t change the mode on the
Khepera robot, since the baud rate is changed by software. The mode on the Khepera robot
should always remain set to 1 (i.e., serial protocol at 9600 bauds).

6.5.2 Cross-compilation and upload

We assume in this subsection, that you have installed thewebots-kros package provided with
Webots.

Cross-compiling a controller program creates a executable file for the Khepera micro-controller
from your C source file. In order to produce such an executable, you can use themake command
either with theMakefile.kros file (for the Khepera robot) or theMakefile.kros2 file (for
the Khepera II robot). These files are provided within thekhepera controller directory. From
Linux, just type:

make -f Makefile.kros

for Khepera, or:

make -f Makefile.kros2

for Khepera II.

From Windows, launch the Webots-kros application and follow the instructions. In both cases
you see the following messages telling you that the compilation is progressing successfully:

Compiling khepera.c into khepera.s
Assembling khepera.s into khepera.o
Linking khepera.o into khepera.s37
khepera.s37 is ready for Khepera (II) upload

It may be necessary to remove any previouskhepera.o which may conflict with the one gener-
ated by the cross-compiler. In order to do so, you can type:

make -f Makefile.kros clean

Finally, to upload the resultingkhepera.s37 executable file onto the Khepera robot, click on
theupload button in the controller window. Please note that you don’t need to change the mode
of the Khepera robot since the upload mode is activated by software from the mode 1. The green
LED of your Khepera should switch on while uploading the program. It lasts for a few seconds
or minutes before completing the upload. Once complete, the robot automatically executes the
new program.

6.6. WORKING EXTENSION TURRETS 91

6.6 Working extension turrets

6.6.1 The K213 linear vision turret

The example worldkhepera k213.wbt contains a complete working case for the K213 linear
vision turret. The principles are the same as for the simple Khepera example, except that ad-
ditional functions are used for enabling and reading the pixels from the camera. The function
camera get image returns an array of unsigned characters representing the image. The macro
camera image get grey is used to retrieve the value of each pixel. As seen on figure 6.5, the
camera image is displayed in the controller window as grey levels and as an histogram.

Figure 6.5: Khepera K213 controls

6.6.2 The Gripper turret

figure 6.6 shows thekhepera gripper.wbt example. In this example a model of a Khepera is
equipped with a Gripper device. It can grab red cylinders, carry them away and put them down.
From a modeling point of view, the Gripper turret is made up of two Webots devices:

• A Servo node which represents the servo motor controlling the height of the gripper (ro-
tation).

• A Gripper node which represents the gripping device: the two fingers.

These devices can be configured to match more precisely the real one or to try new designs. For
example, it is possible to configure the maximum speed and acceleration of theServo node,
simply by changing the corresponding fields of that node in the scene tree window.

92 CHAPTER 6. TUTORIAL: USING THE KHEPERATM ROBOT

Figure 6.6: Khepera Gripper

When clicking on a Khepera robot equipped with a gripper turret. The Khepera window poping
up shows the gripper device (see figure 6.7). It shows the rotation of the gripper arm, the aperture
of the grips, the presence of an object within the grips and the resistivity of a gripper object. If
you have a real gripper mounted on a Khepera robot, it can be remote controlled by Webots.

6.6.3 Custom turrets and Khepera protocol

Webots offers the capability to communicate with the real Khepera robot from your controller
program by using the standard Khepera communication protocol (see the Khepera manual for de-
tails about this protocol). The principle is simple: the Khepera robot defined in thekhepera.wbt

file has an emitter and a receiver device. The emitter is named ”rs232out” while the receiver
is named ”rs232in”. You can send messages through the emitter, like ”B\n” and retrive the
answer from the remote controller Khepera through the receiver which should be something like
”b,5.02,5.01”, depending on the software version running on your Khepera robot. This will work
only in remote control mode, not in simulation mode or in cross-compilation mode. It is espe-
cially useful if you have a custom extension turret on the top of your Khepera robot (use the ”T”
command), if you want to read the A/D inputs of the real robot (use the ”I” command), or if you
want to access any other command available in the Khepera protocol. An example of using this
system is provided within thekhepera serial.c file which lies in thekhepera directory of

6.7. SUPPORT FOR OTHER K-TEAM ROBOTS 93

Figure 6.7: Khepera gripper controls

the Webotscontrollers directory.

6.7 Support for other K-Team robots

6.7.1 KoalaTM

The Webots distribution contains an example world with a model of a Koala robot. This robot is
much bigger than the Khepera and has 16 infra-red sensors, as seen on figure 6.8. The example
can be found inworlds/koala.wbt .

94 CHAPTER 6. TUTORIAL: USING THE KHEPERATM ROBOT

Figure 6.8: The Koala robot

6.7. SUPPORT FOR OTHER K-TEAM ROBOTS 95

6.7.2 AliceTM

An example of Alice robot is also provided. Alice is much smaller than Khepera and has two to
four infra-red sensors. In our example, we have only two infra-red sensors (see figure 6.9). The
example can be found inworlds/alice.wbt .

Figure 6.9: The Alice robot

96 CHAPTER 6. TUTORIAL: USING THE KHEPERATM ROBOT

Chapter 7

Tutorial: Using the LEGO Mindstorms TM

robots

In this chapter, you will learn how to use Webots with the LEGOTM MindstormsTM robots. The
LEGOTMMindstormsTM is a series of LEGOTM products allowing to build robots from LEGOTM

bricks. A special brick called RCX is used to control the robot. This brick contains a micro-
controller chip, a LCD display, a buzzer, 3 sensor inputs and 3 actuator outputs. Available sensors
include touch sensors, light sensors, rotation sensors, temperature sensors. Actuators include
motors and lights. The basic box, called ”Robotics Invention System” includes two motors, two
touch sensors and one light sensor. This chapter will be based on this basic box. However,
Webots is not limited to this basic box and you could easily go beyond this chapter by creating
much more complex virtual robots based on advanced LEGOTM MindstormsTM elements.

The first section describes step by step instructions to build up the Rover robot. This robot will
be used thoughout this tutorial.

The second section describes the Webots model corresponding to the Rover robot. It explains
how to program its controller in Java and how to compile it.

Finally, the last section explains how to cross-compile the Java controller you used for simulating
the Rover in Webots. Once cross-compiled, your controller can be uploaded into a real Rover
robot!

7.1 Building up the Rover robot

One of the most interesting model that can be build straight out the ”Robotics Invention System”
box is the Rover robot. This robot is described in this section. It has a two differential wheels
drive system, a light sensor looking down to the ground and two touch sensors.

The following tables describe the construction of the Rover robot, first the bumper, then the rear
wheel, the eyes, the body and the antennas.

97

98 CHAPTER 7. TUTORIAL: USING THE LEGO MINDSTORMSTM ROBOTS

In the following tables, the numbers in parentheses are the length of the axles.

Warning : the yellow elastic of the bumper is not represented ; The connectors’ wires are not
represented ; the real antennas are not exactly the same as the ones on the pictures.

7.1. BUILDING UP THE ROVER ROBOT 99

Figure 7.1: The Rover robot

100 CHAPTER 7. TUTORIAL: USING THE LEGO MINDSTORMSTM ROBOTS

Step Pieces Modeling the bumper

1

2

3

7.1. BUILDING UP THE ROVER ROBOT 101

Step Pieces Modeling the bumper

4

5

6

102 CHAPTER 7. TUTORIAL: USING THE LEGO MINDSTORMSTM ROBOTS

Step Pieces Modeling the bumper

7

8

9

7.1. BUILDING UP THE ROVER ROBOT 103

Step Pieces Modeling the bumper

10

11

12

104 CHAPTER 7. TUTORIAL: USING THE LEGO MINDSTORMSTM ROBOTS

Step Pieces Modeling the rear wheel

1

2

3

7.1. BUILDING UP THE ROVER ROBOT 105

Step Pieces Modeling the rear wheel

4

106 CHAPTER 7. TUTORIAL: USING THE LEGO MINDSTORMSTM ROBOTS

Step Pieces Modeling the eyes

1

2

3

7.1. BUILDING UP THE ROVER ROBOT 107

Step Pieces Modeling the eyes

4

108 CHAPTER 7. TUTORIAL: USING THE LEGO MINDSTORMSTM ROBOTS

Step Pieces Modeling the light sensor

1

2

7.1. BUILDING UP THE ROVER ROBOT 109

Step Pieces Modeling the body

1

2

3

4

110 CHAPTER 7. TUTORIAL: USING THE LEGO MINDSTORMSTM ROBOTS

Step Pieces Modeling the body

5

6

7

7.1. BUILDING UP THE ROVER ROBOT 111

Step Pieces Modeling the body

8

9

10

112 CHAPTER 7. TUTORIAL: USING THE LEGO MINDSTORMSTM ROBOTS

Step Pieces Modeling the body

11

12

13

7.1. BUILDING UP THE ROVER ROBOT 113

Step Pieces Modeling the body

14

15

16

114 CHAPTER 7. TUTORIAL: USING THE LEGO MINDSTORMSTM ROBOTS

Step Pieces Modeling the body

17

18

7.1. BUILDING UP THE ROVER ROBOT 115

Step Pieces Modeling the body

19

20

21

116 CHAPTER 7. TUTORIAL: USING THE LEGO MINDSTORMSTM ROBOTS

Step Pieces Modeling the body

22

23

7.1. BUILDING UP THE ROVER ROBOT 117

Step Pieces Modeling the antennas

1

2

118 CHAPTER 7. TUTORIAL: USING THE LEGO MINDSTORMSTM ROBOTS

Step Pieces Modeling the antennas

3

7.2. WEBOTS MODEL OF THE ROVER ROBOT 119

7.2 Webots model of the Rover robot

Webots already includes a model for the Rover robot you just built. So, you won’t have to
rebuild a virtual copy of this robot. The world file containing this model is namedrover.wbt

and depicted in figure 7.2. This file lies in the Webotsworlds directory.

Figure 7.2: The Rover model in Webots

Before opening this file in Webots, Windows and Linux users should check that have properly
installed java on their computer. Thejava -version command should answer this question.

Once you have launched Webots and opened therover.wbt world, press the stop button to stop
the simulation and study carefully the scene. Open the scene tree window by double-clicking on
the robot. The scene is very simple. It countains a surrounding wall, a textured ground displaying
a track and a Rover robot. Let’s open theDifferentialWheels node corresponding to the
Rover robot. Looking at itschildren list will reveal the robot is equipped with one distance
sensor (looking down) and a couple of touch sensors, i.e., the bumpers. The two wheels are
implemented asSolid nodes with ”left wheel” and ”right wheel” as names to allow the simulator
to make them rotate when necessary. Finally the controller field of thisDifferentialWheels

node is set to ”Rover”. The fact the name of the controller begin with a capital letter means that
the robot is programmed using the Java langage. If you press the run button, the Rover robot will
start moving on, following the track drawn on the floor, as programmed in its controller.

120 CHAPTER 7. TUTORIAL: USING THE LEGO MINDSTORMSTM ROBOTS

Let’s have a look at the Java controller for the Rover robot. This controller lies in theRover

subdirectory of the Webotscontrollers directory. It contains a single Java source file named
Rover.java and aMakefile file which are used for the compilation. To compile your con-
troller, just typemake in the Rover directory and it will produce aRover.class java binary
file that is used by Webots to control the robot.

Now, have a look at the source code. Open theRover.java in your favorit text editor and try
to understand what it contains. Useful comments should help you understand some details. If
you are familiar with Java you will very easily understand everything since it is a very simple
example. Basically, it gets references to the distance sensor and the touch sensors, enable these
sensors for measurements each 64 milliseconds and enter an endless loop in which it perform a
simple line following algorithm using only the distance sensor looking down to read the color
of the floor. You may modify this program, recompile it and see how your modified version
performs.

7.3 Transfering to the real Rover robot

7.3.1 leJOS

Now that you have a simulation model running as you like, it is time to transfer to the real
robot to see if it behaves the same. In order to proceed, you will need to install the leJOS
software. The leJOS software is a replacement firmware for the LEGOTMMindstormsTM RCX
brick. It is a Java Virtual Machine (JVM) that fits into the 32KB memory on the RCX hence
allowing you to program your RCX in Java. The leJOS software is included on the Webots
CD-ROM. Windows users will find a Windows version namedlejos win32 2 1 0.zip in the
devel subdirectory of thewindows directory. Macintosh and Linux users will find a source
version namedlejos 2 1 0.tar.gz in thedevel subdirectory of thecommondirectory. The
documentation, including installation instructions, is located in thecommon doc robots rcx

directory. Please take some time to read this documentation to undestand how leJOS works.
leJOS is also available from the leJOS web site1.

7.3.2 Installation

Once you installed leJOS, as described in the installation instructions, you will have to up-
load the leJOS firmware into the RCX brick, replacing the LEGOTM operating system. Please
follow the leJOS instructions to perform this installation. Note that you can easily revert to
the LEGOTMoperating system using the LEGOTMCD-ROM. Finally, you will have to set the
LEJOS HOMEenvironment variable to point to the location where leJOS was installed. It is also
necessary to add the leJOSbin directory into yourPATHenvironment variable, so that you can
use the leJOS tools from the command line.

1http://www.lejos.org

http://www.lejos.org

7.3. TRANSFERING TO THE REAL ROVER ROBOT 121

7.3.3 Cross-compilation and upload

If everything was installed properly, cross-compilation and upload should be an easy task. Be
sure that your robot is ready to receive a leJOS program. Go to theRover controller directory and
simply typemake -f Makefile.lejos to launch the cross-compilation and upload processes.
Note that it may be necessary to perform amake clean just before to remove anyclass file
used for simulation. The cross-compilation process uses a differentclass file. Upload should
happen just after cross-compilation and you should be able to run your controller on the real
Rover robot.

7.3.4 How does it work ?

TheMakefile.kros links your controller with a special Java wrapper class named Controller.
This class lies in the Webotslib directory, in theRCXController.jar archive. It is a simple
wrapper class between Webots Java API and leJOS API. Thanks to this system, the same Java
source code can be used for both simulated robots and real robots. However, you should read
carefully the limitations of leJOS Java implementation to avoid using Java features or libraries
that are not supported by leJOS.

122 CHAPTER 7. TUTORIAL: USING THE LEGO MINDSTORMSTM ROBOTS

Chapter 8

ALife Contest

A programming contest based on Webots was organized on the Internet. The web site of the
contest1 may provide more up to date information about it than this manual. ALife stands for
”Artificial Life”.

8.1 Previous Editions

This was actually the third edition of the ALife contest. Two editions were organized in 1999
and 2000. Each competition gathered about 10 teams worldwide made up of one to three indi-
viduals. The winners were respectively Keith Wiley from the University of New Mexico, USA
and Richard Szabo from Budapest University, Hungary.

8.2 Rules

8.2.1 Subject

Two robots are roaming a maze-like environment (see figure 8.1), looking for energy. Energy is
provided by chargers (see figure 8.2). However, chargers are scattered all around the environment
and it is not so easy for the robots to find them. Moreover, once used by a robot, a charger will
be unavailable for a while (see figure 8.3). Hence, the robot will have to go away and look for
another charger. A robot will die if it fails finding an available charger before it runs out of
energy. Then, the remaining robot will be declared the winner of the match.

The world configuration is choosen randomly for each match. A number of world configu-
rations is provided within the Webots package, They are namedalife.wbt , alife1.wbt ,
alife2.wbt , etc. Please note that the initial position and orientation of the robots may also be
choosen randomly.

1http://www.cyberbotics.com/contest/

123

http://www.cyberbotics.com/contest/
http://www.cyberbotics.com/contest/

124 CHAPTER 8. ALIFE CONTEST

Figure 8.1: The world used in the contest

8.2.2 Robot Capabilities

All robots have the same capabilities. They are based on a model of Khepera robot equipped
with a K6300 color matrix vision turret. Hence each robot has a differential wheels basis with
incremental encoders, eight infra-red sensors for light and distance measurement, and a color
matrix camera plugged on the top of the robot, looking in front. The resolution of this camera was
scaled down to 80x60 pixels with a color depth of 32 bits. As you may have already understood,
analyzing the camera image is a crucial issue in developing an efficient robot controller and you
probably need to perform vision based navigation, using landmarks and mapping.

Figure 8.2: A charger full of energy

8.2. RULES 125

Figure 8.3: An empty charger

8.2.3 Programming Language

For the contest, the robots can be programmed in Java only. This ensures that the binaries carry
no viruses or cheating systems. Hence, the executables files (.class files) can be easily shared
among competitors without disclosing source code. Beware, that very good Java decompilers
exists and that it may be possible for a cheating competitors to restore your code from your
.class . He will just miss your comments... You may protect your Java code from such piracy
by obfuscating it using a Java code obfuscator. This will make the code resulting from Java
decompilation very difficult to understand, and practically unusable. Free even open source Java
source code obfuscators may be found on the Internet.

They is no limit on the computation time a robot can use. However, since the simulator runs ap-
proximately in real time without any synchronization with the robots, robots performing exten-
sive computations may miss some sensor information or react too late in some critical situations.

8.2.4 Scoring Rule

Once submitted on the web site, your robot will be appended at the bottom of the hall of fame.
Then, it will engage matches each round. Ifn robots are presents in the hall of fame,n-1matches
will be played each round. The first match will confront the last robot (bottom rank in the hall of
fame) to the last but one robot (rank #n-1). If the last robot wins, the two robots will swap their
positions in the hall of fame, making the last robot win one position and the last but one robot fall
down to the bottom position. Otherwise, nothing is changed. Then, the new last but one robot
(which may have just changed) will play against the last but two robot. If the last but one robot
robot wins, they will swap their positions, otherwise nothing occurs. And so on until we reach
the top of the hall of fame. This way a robot can theoretically climp up from the bottom to the
top position within a single round. However, a robot can loose only one rank per round. This is
to encourage new competitors to submit their robots and have a chance to climb up the hall of
fame rapidly. A round will be played every day during the contest.

126 CHAPTER 8. ALIFE CONTEST

It is always possible to introduce a new version of an existing robot controller, by simply upload-
ing the versions of the.class files, erasing any previous ones. When a new version of a robot
controller is introduced in the contest, its position in the hall of fame remains unchanged. The
next matches are run using the new version.

8.2.5 Participation

The contest is open to any people from any country. Competitors may choose run for themself or
to represent their university or company. However, although competitors can update their robot
controller by submitting new versions, only a single robot controller per competitor is allowed.
If someone submits several robot controllers with different names into the contest, this person
and the corresponding robot controllers will be banned out the contest.

8.2.6 Schedule

The contest started on July 1st 2002. From this date, competitors could download all the contest
material and develop their robot controller. Matches between resulting controllers are held con-
tinuously from the middle of the summer until the end of the competition, on May 1st 2003. It is
possible to enter the contest at any time before May 1st, 2003.

8.2.7 Prize

The winner of the contest will be the robot ranked at first position on May 1st, 2003. The authors
of this robot will receive a Khepera II robot and a Webots PRO package (see figure 8.4).

8.3 Web Site

The web site of the contest2 allows you to view matches running in real time, to view the results,
especially the hall of fame that contains the ranking of the best robots with their score. It is
also possible to visit the home page of each robot engaged in the contest, including a small
description of the robot’s algorithm, the flag of the robot and possibly the e-mail of the author.
You can even download the Java binary controller (.class files) of the some robots. This can be
useful to understand why a robot performs so well and to confront on your computer your own
robot against a possibly better one.

2http://www.cyberbotics.com/contest/

http://www.cyberbotics.com/contest/

8.4. HOW TO ENTER THE CONTEST 127

Figure 8.4: First prize: a Khepera II robot and a Webots PRO package.

8.4 How to Enter the Contest

If you are willing to challenge the other competitors of the contest, here is the detailed procedure
on how to enter the ALife contest. You will need either a Windows or a Linux machine to
program your robot controller.

8.4.1 Obtaining the software

All the software for running the contest may be obtained free of charge.

• The Webots software to be used for the contest is available from the Webots download
page3. This is an evaluation version of Webots which contains all the necessary material
to develop a robot controller for the contest, except the Java environment. Follow the
instructions on the Webots download page to install the Webots package.

• The Java 2 Standard Edition (J2SE) Software Development Kit (SDK) may be downloaded
from Sun web site4 for free. Please use the version 1.4 of the SDK. Follow the instructions
from Sun to install the SDK.

3http://www.cyberbotics.com/products/webots/download.html
4http://java.sun.com/j2se/1.4/download.html

http://www.cyberbotics.com/products/webots/download.html
http://www.cyberbotics.com/products/webots/download.html
http://java.sun.com/j2se/1.4/download.html

128 CHAPTER 8. ALIFE CONTEST

8.4.2 Running the software

Launch Webots and open the world namedalife.wbt . Click on therun to start the simulation.
You will see two robots moving around in the world. Each robot is controlled by a Java program
named respectivelyALife0 andALife1 located in the Webotscontrollers directory. You
may enter their directory and have a look a the source code of the programs.

8.4.3 Creating your own robot controller

The simplest way to create your own robot controller is to start from the existingALife0 or
ALife1 controllers.

Installation

It is safer and cleaner to install a local copy of the material you will need to modify while
developing your intelligent controller. Here is how to proceed:

1. Create a working directory which you will store all your developments. Let’s call this
directory my alife . It may be in your Linux home directory or in your WindowsMy

Documents directory or somewhere else.

2. Enter this directory and create two subdirectories calledcontrollers andworlds .

3. Copy the filealife.wbt from the Webotsworlds directory to your ownworlds you just
created. Copy also the thealife directory and all its contents from the Webotsworlds

directory to your ownworlds directory. You may replace the imagesAlife0.png and
Alife1.png in thealife directory by your own custom images. These images are ac-
tually texture flags associated to the robots. Their size must be 64x64 pixels with 24 or
32 bits depth. They should not represent a green rectangle, possibly faking the face of a
charger and hence confusing the opponent. If a flag appears to be a charger fake, it will be
removed.

4. Copy the wholeALife0 directory from the Webotscontrollers directory to your own
controllers directory you just created. Repeat this with theALife1 directory. This
way you could modify the example controllers without loosing the original files.

5. In order to indicate Webots where the files are, launch Webots, go to theFile menu and
select thePreferences... menu item to open the Preferences window. Select theFiles
and paths tab. Setalife.wbt as the Default world and indicate the absolute path to
your my alife directory, which may be/home/myname/my alife on Linux orC: \My

Documents \my alife on Windows.

From there, you can modify the source code of the controllers in yourcontrollers directory,
recompile them and test them with Webots.

8.4. HOW TO ENTER THE CONTEST 129

Modifying and Compiling your controller

If you know a little bit of Java, it won’t be difficult to understand the source code of theALife0

andALife1 controllers, which are stored respectively in theALife0.java andALife1.java .
You may use any standard Java objects provided with the Java SDK. The documentation for
the Controller class is actually the same as for the C programming interface, since all the
methods of theController class are similar to the C functions of the Controller API described
in the Webots Reference Manual, except for one function,robot live which is useless in Java.
Before modifying a controller, it is recommended to try to compile the copy of the original
controllers.

To compile theALife0 controller, just go to theALife0 directory and type the following on the
command line:

javac -classpath "C: \Program Files \Webots \lib \Controller.jar;." ALife0.java

on Windows.

javac -classpath "/usr/local/webots/lib/Controller.jar:." ALife0.java on
Linux.

If everything goes well, it should produce a newALife0.class file that will be used by Webots
next time you launch it (or reload thealife.wbt world).

Now, you can start developing! Edit theALife0.java , add lines of code, methods, objects.
You may also create other files for other objects that will be used by the ALife0 class. Test your
controller in Webots to see if it performs well and improve it as long as you think it is necessary.

8.4.4 Submitting your controller to the ALife contest

Once you think you have a good, working controller for your robot, you can submit it to the on-
line contest. In order to proceed, you will have to find a name for your robot. Let’s say ”MyBot”
(but please, choose another name). Copy yourALife0.java to a file namedMyBot.java . Edit
this new file and replace the line:

public abstract class ALife0 extends Controller {

by:

public abstract class MyBot extends Controller {

Save the modified file and compile it using a similar command line as seen previously. You
should get aMyBot.class file that you could not test, but that will behave the same way as
ALife0.class .

Register to the contest from the main contest web page5, providing ”MyBot” as the name of the
robot. Then, upload all the necessary files in your MyBot directory. This includes the following:

5http.//www.cyberbotics.com/contest

130 CHAPTER 8. ALIFE CONTEST

• MyBot.class file and possibly some other.class files corresponding to other java ob-
jects you created (it is useless to upload theALife0.class file)

• A text file nameddescription.txt of about 10 lines that may include some HTML
tags, like hyperlinks.

• A PNG image namedflag.png that will be used as a texture to decorate your robot, so
that you can recognize it from the webcam. This image should be a 64x64 pixels with a
bit depth of 24 or 32. It should not represent a green rectangle, trying to fake the face of a
charger, otherwise it will be cancelled.

That’s it. Once this material uploaded, your robot will automatically enter the competition with
an initial score of 10. A contest supervisor program will use you controller to run matches and
update your score and position in the hall of fame. You can check regularly the contest web site
to see how your robot performs.

8.4.5 Analysing the performance and improving your competing controller

Match movies

During each round, a number of match movies are generated and stored in theresults directory
of the contest home page. These files can be played back with Webots. Just download them and
save them in thealife playback directory which lies in the Webotscontrollers directory.
Rename the file tomatch.dat (overwriting the existingmatch.dat file) and open the world
namedalife playback.wbt with Webots. You should then see the match playback running.
To know who was the winner in a.dat file, just look at the two bottom lines of the file. If the
last line ends with 0, then the first robot wins (i.e., its name is displayed on the first line of the
file). Otherwise the second robot wins.

Debug and error log

In order to debug your program, or at least to understand what went wrong or right during a
round match, you can save data into a log file. This will help you developing your controller,
especially on Windows where the DOS console closes immediately after a controller crashes and
doesn’t let you read the printed messages in this console. Moreover, it may also be useful to
do it during the contest matches running on the match server to understand exactly how your
controller behaved during a contest match. Your log file can be retrieved from the match server
after the round completed as a zipped file.

To proceed, you first need to create such a log file and then log useful information using the
println statement:

8.4. HOW TO ENTER THE CONTEST 131

import java.io.*;
...

PrintStream log;
FileOutputStream file;
try {

file = new FileOutputStream("log.txt");
log = new PrintStream(file);

} catch (Exception e) { }
...
log.println("My estimated coords: ("+x+","+y+") my state="+state);
...
log.println("My energy level: "+energy);
...

log.close();
file.close();

...

During each round, for each competitor using this log file facility, a log file calledlog.zip is
stored in the controller directory of thecompetitors directory of the contest home page. This
file is the compressed version of yourlog.txt file. It contains all the debug messages produced
by your controller along the different matches of the last round. Please note that this log file will
be visible by all the other competitors, so be cautious and don’t reveal your secret algorithms.
Also useful, in theresults directory, a file callederrors.zip contains the error log of the
last round, which may be useful to detect if your controller crashed, producing a java exception.
Note that these files are erased at the beginning of each new round and replaced by new ones
corresponding to the new round.

Robot memory

It may be useful for your robot to store some data corresponding to knowledge aquired across
the different matches. Such data should be saved regularly during a normal run or, if you prefer,
just when the controller energy reaches a small value (like below 3), that is the match is about
to complete. The data can be in turn re-read by the controller when it starts up a new match, to
refresh its memory. Here is how to implement it:

import java.io.*;

// to create/write into the file
Random r = new Random();
try {

DataOutputStream s;
s=new DataOutputStream(new FileOutputStream("memory.dat"));
s.writeInt(100); // save 100 int

132 CHAPTER 8. ALIFE CONTEST

for (int i=0; i<100;i++) s.writeInt(r.nextInt(100));
// you should rather save some useful info
// here instead of random garbage!

} catch (Exception e) {
e.printStackTrace(System.out);

}

// to read from that file
try {

DataInputStream s =
new DataInputStream(new FileInputStream("memory.dat"));
int t = s.readInt(); // read the size of the data
int[] a = new int[t];
for(int i=0; i<t; i++) a[i] = s.readInt(); // read back my garbage
for (int i=0; i<t; i++) System.out.print(a[i]+"\t");

} catch (Exception e) {
e.printStackTrace(System.out);

}

Thememory.dat file of each competitor is also made available for download to all competitors
on the contest web site. This file is stored at the same place as thelog.zip file, that is, within
the controller directory of thecompetitors directory on the contest web site.

8.5 Developers’ Tips and Tricks

This section contains some hints to develop efficiently an intelligent robot controller.

8.5.1 Practical issues

The ALife0 example program display a Java image for showing the viewpoint of the camera,
after some image processing. This is pretty computer expensive and you may speed up the
simulation by disabling this display, which should be used only for debug. By the way, during
contest matches, the Java security manager is set so that your Java controller cannot open a
window or display anything.

8.5.2 Java Security Manager

To avoid cheating or viruses, a Java security manager is used for contest matches ran by the auto-
matic contest supervisor. This security manager will prevent your Java controller from opening
any file for writing or reading and doing any networking stuff.

8.5. DEVELOPERS’ TIPS AND TRICKS 133

8.5.3 Levels of Intelligence

It is possible to distinguish a number of level in the complexity of the control algorithms. These
level can be ranked as follow:

1. The robot is able to move and avoid obstacles. However, it does not use the camera in-
formation at all and will find chargers only by chance. This correspond to theALife0

controller.

2. In addition to level 1, the robot is able to recognize if a full charger is in front of it, even far
away. In this case, it will be able to adjust its movement to reach the charger if not obstacles
are on the way. Otherwise, the robot will look into another direction for chargers.

3. In addition to level 2, the robot is able to move around obstacles preventing a movement
toward a full charger.

4. In addition to level 3, the robot is able to perform an almost complete exploration of the
world, reaching places difficult to reach for simpler robots (you will rapidly notice that
some places are more difficult to reach than others, the problem is that these places may
contain chargers...).

5. In addition to level 4, the robot is able to build a map of its environment (mapping), so that
once a charger is found, it is placed on the map, thus facilitating the procedure for finding
it back. After completing the map, the robot can efficiently navigate between chargers
without loosing time to search for them.

6. In addition to level 5, the robot tries to chase its opponent, blocking it, preventing it to
reach chargers or emptying chargers just before it arrives.

During the previous editions of the contest, the best competitors reached level 4 (and even one
reached level 5 after the contest ended). We believe that reaching level 5 or 6 may lead to
significant performance improvements and probably to the first place of the hall of fame...

134 CHAPTER 8. ALIFE CONTEST

Chapter 9

Practical Work: Robot Soccer

Robotics soccer has become an increasingly attractive research application for mobile robotics.
Many contests are organized world wide, among them the most famous are probably the FIRA
contest and the RoboCup contest. This chapter will get you started with a robot soccer application
in Webots.

9.1 Setup

Webots contains a setup for robotics soccer as depicted in figure 9.1 . This setup is freely inspired
from the official FIRA Small League MiroSot Games Rules. It can be modified to suit your needs.

Figure 9.1: A soccer simulation in Webots: soccer.wbt

Each team is composed of three robots. Each robot has a controller program which is aware of

135

136 CHAPTER 9. PRACTICAL WORK: ROBOT SOCCER

the the position and orientation of every robot in the soccer field. Each robot can drive its motors
wheels to move in the soccer field. A supervisor process is responsible for counting the time.
By default, a match lasts for 10 simulated minutes which may correspond to 1 minute if your
computer is powerful and if you run the match without the real time option checked in. The
supervisor process also counts the goals and reset the ball and the robots to their initial positions
after a goal has been scored.

9.2 Rules

The rules are very simple: you have to drive your robots so that you score a maximum of goal
within the 10 minutes of the match. There are no fouls, no penalty kick or free kick.

There is no obligation to have a goal keeper, you may decide to have three players all over the
field, or to have one, two or even three goal keepers!

You cannot modify robots, i.e., change their shape, add sensors, etc.

9.3 Programming

In order to program your robot, a single controller program is used for each team. Thesoccer blue

controller program is used for the blue team while thesoccer yellow controller program is
used for the yellow team. Each of these controller programs will be run as three concurrent
processes. In each instance of these programs, a test is done to determine the number of the
robot which can be 1, 2 or 3, according to the name of the DifferentialWheels node. One
can also test the team color the same way. The provided examples shows how to distinguish
the goal keeper (number 3) from the other players (numbers 1 and 2). Hence, it is possible
to have a genericsoccer.c source code and to compile it to either asoccer blue.exe or
a soccer yellow.exe executable file. Please note that on Linux and Mac OS X, the.exe

extension is not used.

In order to get starting programming a robot soccer team, you should have a look in details to
thesoccer blue.c or soccer yellow.c source codes. These examples shows how to obtain
the x, y and orientation for each robot from the supervisor, as well as the coordinates of the ball.
They contain useful macros for that. Moreover, they show how to program each independant
robot according to its number. Finally, they show how to make a fairly intelligent goal keeper
that will get placed according to the ball position. The behavior of players 1 and 2 is random in
this example and it is up to you to make them more intelligent!

9.4 Extensions

This very simple robotics soccer system can be configured or extended according to your needs.

9.4. EXTENSIONS 137

9.4.1 Modifiying the soccer field

It is possible to redesign the soccer field as you need. You can enlarge it, resize the goals, change
the ground texture, etc. Moreover, you can change the ball properties, like its mass, its bounce
parameter, etc. All these changes are possible from the scene tree window. For resizing the field,
you will have to edit the coordinates of the components of the field. It will also be necessary to
update the respective bounding objects accordingly.

For example, if you want to change the bounce parameter of the ball to make it bounce less, just
double click on the ball, open the ball node in the scene tree window, open the physics node of
the ball node and set the bounce parameter to 0.2 instead of 0.7. This will make the ball.

9.4.2 Modifying the robots

Similarly, it is possible to modify the robots. You can change the number of robot per team,
add new sensors to the robots, like distance sensors or cameras, remove the receiver sensor if
you want to prevent the robots to be aware of global coordinates provided by the supervisor. All
these operation can be performed through the scene tree window, using copy and paste functions
and editing the robots properties. This way, it is possible to turn the soccer robots into fully
autonomous robots relying only on local information and not on global coordinates provided by
the supervisor.

9.4.3 Modifying the match supervisor

If you would like to modify the rules, you will probably have to modify the match supervi-
sor. This is a small C supervisor controller program calledsoccer supervisor lying in the
controllers directory. The match supervisor has only three functions: (1) it measures the time
decreasing from 10 minutes to zero, (2) it count the goals, update the score and reset the robots
and the ball after a goal and (3) it provides each robot with global coordinates and orientation for
each robot and global coordinates for the ball. You may change any of these features, and add
additional features, like fouls when a robot hits another robot.

For example, let’s assume you want that the robots should not touch each other, otherwise a
penalty kick is called. Your supervisor program should compute the distance between each
robots of different teams. If this distance drops below the size of a robot, you call the penalty.
Do to so, just set the ball and robots positions so that the robot which benefit of the penalty kick
is ready to kick.

This way, it is possible to add many new rules, like prevent the goal keeper to leave its goal, etc.

138 CHAPTER 9. PRACTICAL WORK: ROBOT SOCCER

9.4. EXTENSIONS 139

140 CHAPTER 9. PRACTICAL WORK: ROBOT SOCCER

	Installing Webots
	Hardware requirements
	Installation procedure
	RedHat Linux i386
	Windows 95, 98, ME, NT, 2000 and XP
	Mac OS X, version 10.2.8

	Registration Procedure
	Webots license
	Registering

	Upgrading from Webots 3
	Controller
	Controller includes
	Controller library
	Basic data type
	Khepera
	GTK+ GUI

	World

	Getting Started with Webots
	Introduction to Webots
	What is Webots ?
	What can I do with Webots ?
	What do I need to use Webots ?
	What is a world ?
	What is a controller ?

	Launching Webots
	On Linux
	On Mac OS X
	On Windows

	Main Window: Menus and buttons
	File menu and shortcuts
	Edit menu
	Simulation menu and the simulation buttons
	Wizard menu
	Help menu
	Navigation in the scene
	Moving a solid object
	Selecting a solid object

	Scene Tree Window
	Buttons of the Scene Tree Window
	VRML97 nodes
	Webots specific nodes
	Principle of the collision detection
	Writing a Webots file in a text editor

	Citing Webots
	Citing Cyberbotics' web site
	Citing a reference journal paper about Webots

	Tutorial: Modeling and simulating your robot
	My first world: kiki.wbt
	Setup
	Environment
	Robot
	A simple controller

	Adding a camera to the kiki robot
	Adding physics to the kiki simulation
	Overview
	Preparing the floor for a physics simulation
	Adding physics to the kiki robot
	Adding a ball in the kiki world

	Modelling an existing robot: pioneer2.wbt
	Environment
	Robot with 16 sonars
	Controller

	Transfer to your own robot
	Remote control
	Cross-compilation
	Interpreted language

	Adding custom ODE physics
	Introduction
	Files
	Implementation
	Compiling the shared library
	Example

	Robot and Supervisor Controllers
	Overview
	Setting Up a Development Environment
	Under Windows
	Under Linux
	Under Mac OS X

	Setting Up a New Controller
	Webots Execution Scheme
	From the controller's point of view
	From the point of view of Webots
	Synchronous versus Asynchronous controllers

	Reading Sensor Information
	Controlling Actuators
	Going further with the Supervisor Controller
	Interfacing Webots to third party software
	Overview
	Main advantages
	Limitations
	MatLab™ TCP/IP utility

	Tutorial: Using the Khepera™ robot
	Hardware configuration
	Running the simulation
	Understanding the model
	The 3D scene
	The Khepera model

	Programming the Khepera robot
	The controller program
	Looking at the source code
	Compiling the controller

	Transferring to the real robot
	Remote control
	Cross-compilation and upload

	Working extension turrets
	The K213 linear vision turret
	The Gripper turret
	Custom turrets and Khepera protocol

	Support for other K-Team robots
	Koala™
	Alice™

	Tutorial: Using the LEGO Mindstorms™ robots
	Building up the Rover robot
	Webots model of the Rover robot
	Transfering to the real Rover robot
	leJOS
	Installation
	Cross-compilation and upload
	How does it work ?

	ALife Contest
	Previous Editions
	Rules
	Subject
	Robot Capabilities
	Programming Language
	Scoring Rule
	Participation
	Schedule
	Prize

	Web Site
	How to Enter the Contest
	Obtaining the software
	Running the software
	Creating your own robot controller
	Submitting your controller to the ALife contest
	Analysing the performance and improving your competing controller

	Developers' Tips and Tricks
	Practical issues
	Java Security Manager
	Levels of Intelligence

	Practical Work: Robot Soccer
	Setup
	Rules
	Programming
	Extensions
	Modifiying the soccer field
	Modifying the robots
	Modifying the match supervisor

