User Guide for Heterogeneous Subset Sampling
Library

October 9, 2011

Contents

1 Outline 2

2 Subset Drawing Algorithms 2
2.1 constructor e e e 2
2.2 drawing memberfunction. 3

3 Building Blocks 4
3.1 Thecuckoohashing. 4
3.2 Theradixsorting. 6
3.3 Thefittestcovering., 7

4 Testing Platforms and Programs 8

A GSL Installation Guide 9

1 Outline

Given a domain se8= {0,1,...,n— 1} and an associated inclusion probability
functionl : S— [0, 1], a subset drawing algorithm is used to draw a suBspbs-
sibly many subsets, @where Pfe € R] = I(e). We use G+ to implement the al-
gorithms in the form o€lass There are two main member functions in the classes,
which are theonstructor anddrawing function. The algorithms are preprocessed
in the constructor and a drawn subset can be obtained by invoking ttheiwing
function. Note that the HSS library requires a open third-party library &8l we
show how to install it in the appendix.

In this article,bold text is used for explaining the terms in the programs and
code segments are writtentiypewriter text. The remaining is organized as
follows. In Section2, we details the steps how the algorithms are used. For in-
specting the internal codes, we state the module purpose and the paradesters
scription of the building blocks in Sectioh Then, in Sectiont, a list of testing
platforms is shown and the testing programs are briefly explained.

2 Subset Drawing Algorithms

The subset drawing algorithms introduced in this section are
e naive<size>,
e sSieve<size>,
e partition <size>,

wheresizeis an integral type to denote= |S|. There are two main member func-
tions in each subset drawing algorithm, which are ¢bastructor anddrawing
function.

2.1 constructor

naive naive(sizen)

sieve sieve(double const prob, sizen)

partition | partition(double const * prob, sizen, size const tut_points, sizek)
partition | partition(double * prob, sizen, int algorithm type)

Table 1: Class constructors of subset drawing algorithms.

prob[0 .. n-1] refers ton inclusion probabilities andut_points[0 .. k] denote
how to partition the original singlprob[0 .. n-1] into k ones. For example,

partition(prob, 5, cut_points={0, 2, 5}, 2)

divides{probl[O .. 4]} into {prob[O .. 1]} and{prob[2 .. 4]}. In the partition algo-
rithm, an user can giveut_pointsto divideprob as shown above or merely speci-
fies the preferred dividing algorithm amoki$S_OPTIMUM, HSS_FIX_APPROX,
and HSS_DYN_APPROX (Table2).

HSS_ FIX_APPROX | A fixed partition method of approximation factor 2.
HSS_OPTIMUM The optimum algorithm of the fittest cover problem.
HSS_ DYN_APPROX | The approximation algorithm of the fittest cover problem.

Table 2: Preprocessing algorithms for the partition algorithm.

Note

The 4-th constructor in Tablemodifies the content iprob.

Example

#i ncl ude <hss. h>
int main(){

doubl e prob[5] ={0.1, 0.2, 0.3, 0.7, 0.9};
int cut_points[3] = {0, 3, 5};

nai ve<i nt > drawer 1(5);

si eve<int> drawer2(prob, 5);

partition<int> drawer3(prob, 5, cut_points, 2);
partition<int> drawer4(prob, 5 HSS DYN APPROX);

return O;
}
See Also

include/naive.h, include/sieve.h, include/partition.h, test/test[5-8].cpp

2.2 drawing member function
Three classes have the same member function used to draw a subset, which is
size drawing(double *prob, size *subset).

To reduce the amount of used space, the class objects do not haveatduyd
prob. Hence prob should be given for eaaffrawing. During execution, the value
of elements inprob can only be decreased down, otherwise the drawn sample

R does not satisfies the condition thafeP R|] = I (e). The return valuget of
drawing(prob, subset)is the size of drawn sample placedsinbset[0 ..ret-1].
Example

#incl ude <cstdio>

#i ncl ude <hss. h>

int main(){

double prob[5] ={0.1, 0.2, 0.3, 0.7, 0.9};
int subset[5];

partition<int> drawer(prob, 5, HSS DYN APPROX);

for(int i=0; i<10; ++i){
int ret = drawer.draw ng(prob, subset);
for(int j=0; j<ret; ++){
printf("%f ", prob[subset[j]]);

}
printf("\n");
}
return O;
}
See Also

include/naive.h, include/sieve.h, include/partition.h, test/test[5-8].cpp

3 Building Blocks

In this section, the building blocks used in the constructors of the partition algo
rithm are introduced.

3.1 The cuckoo hashing

The cuckoo hashing is a hash table used to store a series of keys anaksswir
ciated data, which supports amortiz®dL) time insertionO(1) time lookup, and
O(1) time deletion []. We follow the convention of the well known STL mafo
implement

cuckoo_hashckey, data, size>

Lhttp://www.sgi.com/tech/stl/Map.html

and i
[]

ts the member functions, including
cuckoo_hash(size);-cuckoo_hash()
iterator begin(), iterator end(), size size()
iterator find(key), data &operator[J(key)

iterator, const_iterator

. key is a native G+ data type of size no more than 8 bytes.
. data s the type of associated data.

. Sizeis a signed integral data type, which counts the number of keys in a hash

table. The maximum number of stored keys should not exceed the maximum
of sizeminus 1.

. Users can define the initial table size by assigning the parampitesize

in the constructorcuckoo hash(ptabsize) Once the space run out, the
cuckoo_hash automatically double the table size.

Example

#inc
#inc

i nt

| ude <iostreanp
| ude <hss. h>

mai n() {
double input[5] ={0.1, 0.1, 0.2, 0.2, 0.2};

cuckoo_hash<doubl e, int, int> s(100);
cuckoo_hash<doubl e, int, int>::const_iterator ite;

for(int i=0; i<5; ++){
doubl e key = input[i];
if(s.find(key) == s.end()){ // if key is not found
s[key] = 1;
}el se{
++ s[key];
}
}

for(ite=s.begin(); itel=s.end(); ++ite){
std::cout << ite->first << " " << jte->second << std::endl;

}

See Also

include/cuckoo.h, test/testl.cpp

3.2 The radix sorting

radixsort(data * first, data *last, std::vector<int>> Isb) is a sorting procedure
used to sort the elements of fixed precision betwigsh andlast by the least sig-
nificant bits, the second least significant bits, ..., the most significandéfiised

in Isb. The required computation time @(nb) = O(n) [2] wheren is the number

of elements and is a constant, due to fixed precision, denoting the number of bits
in an element.

data feasiblelsb

int {8, 8, 8, 8}or {16, 8, 4, 4}

double {13, 13, 13, 13, 12} or {26, 26, 12}
long long | {16, 16, 16, 16} or {15, 15, 15, 15, 4}

Table 3:data and the correspondirigb.

Note
1. data a data type that support right-shiftmenand bitwise-and.
2. The elements betwedinst andlast should be non-negative.

3. Inthe case alouble, uselong longas an adapter and invokadixsort(first,
last, Isb, adapter)

Example

#i ncl ude <iostreanp
#i ncl ude <vector>
#i ncl ude <hss. h>
int main(){

long long s[3] = {3, 1, 2};
int Ishl[4] = {16, 16, 16, 16};

radi xsort(s, s+3, *new std::vector<int>(lsbl, [shl+4));

double r[4] = {5.0, 1.0, 3.0, 2.0};
int Isb2[5] = {13, 13, 13, 13, 12};

radi xsort(r, r+4, *new std::vector<int>(lsb2, [sb2+5), *new | ong | ong);

}

See Also

include/radix.h, test/test2.cpp test/test3.cpp

3.3 The fittest covering

Given a non-decreasing histograirof n sorted valuesal ue[0] <---< val ue[n-1]
and their frequencigsreq[0], ..., freq[n-1],

fittest_cover(data *value, data * freq, sizen, size *cut_points, sizek)

can be applied to findlastepwise function which covek$ with least under area in
O(nk) time and use®(n+ k) space {], as Figurel shown. The thicker line in the
middle and the right histogram denote, respectively, a one-stepwisicinand a
two-stepwise function which covét with least under area. The red dotted line in
the right histgram is a two-stepwise functions that covtsut whose under area
is not the least.

The calculatedk-stepwise function is placed put _poi nts. For example, in
the right histogram of Figuré, the returnectut _poi nts is [0,1,3]. The return
value of function is the least under area.

0 1 2 3
Figure 1: Sketch of k-stepwise functions which coler

Note

1. The values ivalue are distinct, non-negative and sorted. The Sum4eX
should not exceed the maximumddta divided by 2.

2. The types ofralue andfreq should be identical.

3. sizeis a signed integral type.

Example

#i ncl ude <iostrean
#i ncl ude <hss. h>

int main(){
doubl e value[6] = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6};
double freq[6] = {1, 5 1, 9, 3, 7};

int n=6;

int kK =3;
int *cut_points = newint [k+1];

double ret = fittest cover(value, freq, n, cut_points, Kk);
std::cout << "under area = " << ret << std::endl;

for(int i=0; i<=k; ++i){
std::cout << cut_points[i] << " ",

}

std::cout << std::endl;
}
See Also

include/smawk.h, test/test4.cpp

4 Testing Platforms and Programs

To use the HSS library, an open third-party library GSlhould be properly in-
stalled in advance. The installation guide for GSL is shown in the appendix. We
test the sanity of this library on different platforms listed in Tabley a series of
testing programs as Tableshown.

CPU Memory | Operating System Compiler
Intel Xeon X5690 48GB FreeBSD 8.2 | GCC4.2.1
Intel Xeon X5365 48GB Ubuntu 10.04 | GCC4.4.3
Intel Core2 Quad Q6600 8GB Sun0S5.11 | GCC34.3

Table 4: Description of testing platforms.

2GNU Scientific Library http://www.gnu.org/software/gsl/

Program | Description

testl.cpp| checks the behavior of cuckoo hashing is correct.

test2.cpp| checks whether the radixsort sort an array of floating-point
numbers correctly.

test3.cpp| checks whether the radixsort sort an array of integral number
correctly.

test4d.cpp| checks the calculated result of the fittest cover is the same as that
of a naive dynamic programming.
test5.cpp| compares the drawn samples generated from the naive and sieve
algorithms.
test6.cpp| compares the drawn samples generated from the sieve and pattition
algorithms.
test7.cpp| compares the drawn samples generated from two variations of the
partition algorihtm.
test8.cpp| compares the drawn samples generated from other two variatigns of
the partition algorithm.

Table 5: Description of testing programs.

References

[1] Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashaugnal of Algo-
rithms, 51(2):122—144, 2004.

[2] Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charlesdisdr-
son. Introduction to Algorithms. McGraw-Hill Higher Education, 2nd edition,
2001.

[3] Meng-Tsung Tsai, Da-Wei Wang, and Tsan-sheng Hsu. Apprating the
fittest cover problem. Manuscript, 2011.

A GSL Installation Guide

Stepl: Fetch the GSL archive from the official site, http://www.gnu.org/ségsl/
place it on /tmp. The file name should look like ‘gsl-*.*.tar.gz’.

Step2: Decompress the archive by

[tnp$ tar xvfz gsl-1.15.tar.gz

Step3: Enter the decompressed directory and configure the installation $ettin
32-bit machine

[tnp/gsl-1.15% ./configure

or for 64-bit machine

[tmp/gsl-1.15% ./configure CC=cc CFLAGS="-64" LDFLAGS="-64"
Configure as the above will make the files installed in the directory /usr/local. To

install it on a different directory, say /tmp/install, you should
[tmp/gsl-1.15% ./configure -prefix=/tnp/install
or

[tmp/gsl-1.15% ./configure -prefix=/tnp/install
CC=cc CFLAGS="-64" LDFLAGS="-64"

Step4: Compile the source files and build the installation binary by
[tnp/gsl-1.15% make

If you encountered any problems in Step3 or Step4 and wish to restarsth#an
tion procedure, issue the following command before you restart

/tnp/gsl-1.15% make clean

Step5: Install the files to the default directory, /usr/local, by
/tnp/gsl-1.15% sudo make install

or simply by

[tnp/gsl-1.15% make install

if it does not require the superuser privilege to access the directorgyecify in
Step3.

The GSL should be properly installed now. If you install GSL in the defaidtcd
tory, ensure the sanity by check the files

{/usr/local/include/gsl/gsl_rng.h

lusr/local/lib/libgsl.a

are existing and you can use our HSS library now.

Or, if you install GSL in /tmp/install, check the files
/tmpl/install/include/gsl/gsl_rng.h

/tmpl/install/lib/libgsl.a

are existing and change the compiler flag in the Makefile with

g+t -ansi -Vall - -I/tnp/install/include -L/trmp/install/lib

-1../include -o test test.cpp -1gsl -Igslchlas

before using the HSS library.

You might notice that there is no space between -l and /tmp/install/include; neither
is -L.

To uninstall GSL, it can be done by
[tmp/ gsl-1.15% sudo make uninstall

or, if the superuser privilege is unnecessatry,
[tmp/ gsl-1.15% nake uninstall

	Outline
	Subset Drawing Algorithms
	constructor
	drawing member function

	Building Blocks
	The cuckoo hashing
	The radix sorting
	The fittest covering

	Testing Platforms and Programs
	GSL Installation Guide

