
User Guide for Heterogeneous Subset Sampling
Library

October 9, 2011

Contents

1 Outline 2

2 Subset Drawing Algorithms 2
2.1 constructor . 2
2.2 drawing member function. 3

3 Building Blocks 4
3.1 The cuckoo hashing. 4
3.2 The radix sorting . 6
3.3 The fittest covering. 7

4 Testing Platforms and Programs 8

A GSL Installation Guide 9

1

1 Outline

Given a domain setS = {0,1, . . . ,n− 1} and an associated inclusion probability
functionI : S → [0,1], a subset drawing algorithm is used to draw a subsetR, pos-
sibly many subsets, ofS where Pr[e ∈ R] = I(e). We use C++ to implement the al-
gorithms in the form ofclass. There are two main member functions in the classes,
which are theconstructor anddrawing function. The algorithms are preprocessed
in theconstructor and a drawn subset can be obtained by invoking theirdrawing
function. Note that the HSS library requires a open third-party library GSLand we
show how to install it in the appendix.

In this article,bold text is used for explaining the terms in the programs and
code segments are written intypewriter text. The remaining is organized as
follows. In Section2, we details the steps how the algorithms are used. For in-
specting the internal codes, we state the module purpose and the parameters’ de-
scription of the building blocks in Section3. Then, in Section4, a list of testing
platforms is shown and the testing programs are briefly explained.

2 Subset Drawing Algorithms

The subset drawing algorithms introduced in this section are

• naive<size>,

• sieve<size>,

• partition <size>,

wheresizeis an integral type to denoten = |S|. There are two main member func-
tions in each subset drawing algorithm, which are theconstructor anddrawing
function.

2.1 constructor

naive naive(sizen)
sieve sieve(double const *prob, sizen)
partition partition(double const *prob, sizen, size const *cut_points, sizek)
partition partition(double * prob, sizen, int algorithm_type)

Table 1: Class constructors of subset drawing algorithms.

prob[0 .. n-1] refers ton inclusion probabilities andcut_points[0 .. k] denote
how to partition the original singleprob[0 .. n-1] into k ones. For example,

partition(prob, 5, cut_points={0, 2, 5}, 2)

2

divides{prob[0 .. 4]} into {prob[0 .. 1]} and{prob[2 .. 4]} . In the partition algo-
rithm, an user can givecut_points to divideprob as shown above or merely speci-
fies the preferred dividing algorithm amongHSS_OPTIMUM, HSS_FIX_APPROX,
and HSS_DYN_APPROX (Table2).

HSS_FIX_APPROX A fixed partition method of approximation factor 2.
HSS_OPTIMUM The optimum algorithm of the fittest cover problem.
HSS_DYN_APPROX The approximation algorithm of the fittest cover problem.

Table 2: Preprocessing algorithms for the partition algorithm.

Note

The 4-th constructor in Table1 modifies the content inprob.

Example

#include <hss.h>

int main(){

double prob[5] = {0.1, 0.2, 0.3, 0.7, 0.9};
int cut_points[3] = {0, 3, 5};

naive<int> drawer1(5);
sieve<int> drawer2(prob, 5);
partition<int> drawer3(prob, 5, cut_points, 2);
partition<int> drawer4(prob, 5, HSS_DYN_APPROX);

return 0;
}

See Also

include/naive.h, include/sieve.h, include/partition.h, test/test[5-8].cpp

2.2 drawing member function

Three classes have the same member function used to draw a subset, which is

size drawing(double *prob, size *subset).

To reduce the amount of used space, the class objects do not have a duplicate of
prob. Hence,prob should be given for eachdrawing. During execution, the value
of elements inprob can only be decreased down, otherwise the drawn sample

3

R does not satisfies the condition that Pr[e ∈ R] = I(e). The return valueret of
drawing(prob, subset)is the size of drawn sample placed insubset[0 ..ret-1].

Example

#include <cstdio>
#include <hss.h>

int main(){

double prob[5] = {0.1, 0.2, 0.3, 0.7, 0.9};
int subset[5];

partition<int> drawer(prob, 5, HSS_DYN_APPROX);

for(int i=0; i<10; ++i){
int ret = drawer.drawing(prob, subset);
for(int j=0; j<ret; ++j){

printf("%lf ", prob[subset[j]]);
}
printf("\n");

}

return 0;
}

See Also

include/naive.h, include/sieve.h, include/partition.h, test/test[5-8].cpp

3 Building Blocks

In this section, the building blocks used in the constructors of the partition algo-
rithm are introduced.

3.1 The cuckoo hashing

The cuckoo hashing is a hash table used to store a series of keys and theirasso-
ciated data, which supports amortizedO(1) time insertion,O(1) time lookup, and
O(1) time deletion [1]. We follow the convention of the well known STL map1 to
implement

cuckoo_hash<key, data, size>

1http://www.sgi.com/tech/stl/Map.html

4

and its the member functions, including

• cuckoo_hash(size),∼cuckoo_hash()

• iterator begin(), iterator end(), size size()

• iterator find(key), data &operator[](key)

• iterator, const_iterator

Note

1. key is a native C++ data type of size no more than 8 bytes.

2. data is the type of associated data.

3. sizeis a signed integral data type, which counts the number of keys in a hash
table. The maximum number of stored keys should not exceed the maximum
of sizeminus 1.

4. Users can define the initial table size by assigning the parameterptabsize
in the constructorcuckoo_hash(ptabsize). Once the space run out, the
cuckoo_hash automatically double the table size.

Example

#include <iostream>
#include <hss.h>

int main(){

double input[5] = {0.1, 0.1, 0.2, 0.2, 0.2};

cuckoo_hash<double, int, int> s(100);
cuckoo_hash<double, int, int>::const_iterator ite;

for(int i=0; i<5; ++i){
double key = input[i];
if(s.find(key) == s.end()){ // if key is not found

s[key] = 1;
}else{

++ s[key];
}

}

for(ite=s.begin(); ite!=s.end(); ++ite){
std::cout << ite->first << " " << ite->second << std::endl;

5

}
}

See Also

include/cuckoo.h, test/test1.cpp

3.2 The radix sorting

radixsort(data * f irst, data *last, std::vector<int> lsb) is a sorting procedure
used to sort the elements of fixed precision betweenfirst andlast by the least sig-
nificant bits, the second least significant bits, . . . , the most significant bitsdefined
in lsb. The required computation time isO(nb) = O(n) [2] wheren is the number
of elements andb is a constant, due to fixed precision, denoting the number of bits
in an element.

data feasiblelsb
int {8, 8, 8, 8} or {16, 8, 4, 4}
double {13, 13, 13, 13, 12} or {26, 26, 12}
long long {16, 16, 16, 16} or {15, 15, 15, 15, 4}

Table 3:data and the correspondinglsb.

Note

1. data a data type that support right-shiftment» and bitwise-and&.

2. The elements betweenfirst andlast should be non-negative.

3. In the case ofdouble, uselong longas an adapter and invokeradixsort(first,
last, lsb, adapter).

Example

#include <iostream>
#include <vector>
#include <hss.h>

int main(){

long long s[3] = {3, 1, 2};
int lsb1[4] = {16, 16, 16, 16};

radixsort(s, s+3, *new std::vector<int>(lsb1, lsb1+4));

6

double r[4] = {5.0, 1.0, 3.0, 2.0};
int lsb2[5] = {13, 13, 13, 13, 12};

radixsort(r, r+4, *new std::vector<int>(lsb2, lsb2+5), *new long long);
}

See Also

include/radix.h, test/test2.cpp test/test3.cpp

3.3 The fittest covering

Given a non-decreasing histogramH of n sorted valuesvalue[0] ≤ ·· ·≤ value[n-1]
and their frequenciesfreq[0], ..., freq[n-1],

fittest_cover(data *value, data * f req, sizen, size *cut_points, sizek)

can be applied to find ak-stepwise function which coversH with least under area in
O(nk) time and usesO(n+ k) space [3], as Figure1 shown. The thicker line in the
middle and the right histogram denote, respectively, a one-stepwise function and a
two-stepwise function which coverH with least under area. The red dotted line in
the right histgram is a two-stepwise functions that coversH but whose under area
is not the least.

The calculatedk-stepwise function is placed incut_points. For example, in
the right histogram of Figure1, the returnedcut_points is [0,1,3]. The return
value of function is the least under area.

H H H

0 1 2 3
Figure 1: Sketch of k-stepwise functions which coverH.

Note

1. The values invalueare distinct, non-negative and sorted. The sum∑x∈valuex
should not exceed the maximum ofdata divided by 2.

2. The types ofvalueandfreq should be identical.

3. sizeis a signed integral type.

7

Example

#include <iostream>
#include <hss.h>

int main(){

double value[6] = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6};
double freq[6] = {1, 5, 1, 9, 3, 7};
int n = 6;

int k = 3;
int *cut_points = new int [k+1];

double ret = fittest_cover(value, freq, n, cut_points, k);

std::cout << "under area = " << ret << std::endl;

for(int i=0; i<=k; ++i){
std::cout << cut_points[i] << " ";

}
std::cout << std::endl;

}

See Also

include/smawk.h, test/test4.cpp

4 Testing Platforms and Programs

To use the HSS library, an open third-party library GSL2 should be properly in-
stalled in advance. The installation guide for GSL is shown in the appendix. We
test the sanity of this library on different platforms listed in Table4 by a series of
testing programs as Table5 shown.

CPU Memory Operating System Compiler
Intel Xeon X5690 48GB FreeBSD 8.2 GCC 4.2.1
Intel Xeon X5365 48GB Ubuntu 10.04 GCC 4.4.3

Intel Core2 Quad Q6600 8GB SunOS 5.11 GCC 3.4.3

Table 4: Description of testing platforms.

2GNU Scientific Library http://www.gnu.org/software/gsl/

8

Program Description
test1.cpp checks the behavior of cuckoo hashing is correct.
test2.cpp checks whether the radixsort sort an array of floating-point

numbers correctly.
test3.cpp checks whether the radixsort sort an array of integral number

correctly.
test4.cpp checks the calculated result of the fittest cover is the same as that

of a naive dynamic programming.
test5.cpp compares the drawn samples generated from the naive and sieve

algorithms.
test6.cpp compares the drawn samples generated from the sieve and partition

algorithms.
test7.cpp compares the drawn samples generated from two variations of the

partition algorihtm.
test8.cpp compares the drawn samples generated from other two variations of

the partition algorithm.

Table 5: Description of testing programs.

References

[1] Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashing.Journal of Algo-
rithms, 51(2):122–144, 2004.

[2] Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E. Leiser-
son.Introduction to Algorithms. McGraw-Hill Higher Education, 2nd edition,
2001.

[3] Meng-Tsung Tsai, Da-Wei Wang, and Tsan-sheng Hsu. Approximating the
fittest cover problem. Manuscript, 2011.

A GSL Installation Guide

Step1: Fetch the GSL archive from the official site, http://www.gnu.org/s/gsl/and
place it on /tmp. The file name should look like ‘gsl-*.*.tar.gz’.

Step2: Decompress the archive by
/tmp$ tar xvfz gsl-1.15.tar.gz

Step3: Enter the decompressed directory and configure the installation setting for
32-bit machine
/tmp/gsl-1.15$./configure
or for 64-bit machine
/tmp/gsl-1.15$./configure CC=cc CFLAGS="-64" LDFLAGS="-64"
Configure as the above will make the files installed in the directory /usr/local. To

9

install it on a different directory, say /tmp/install, you should
/tmp/gsl-1.15$./configure -prefix=/tmp/install
or
/tmp/gsl-1.15$./configure -prefix=/tmp/install

CC=cc CFLAGS="-64" LDFLAGS="-64"

Step4: Compile the source files and build the installation binary by
/tmp/gsl-1.15$ make
If you encountered any problems in Step3 or Step4 and wish to restart the installa-
tion procedure, issue the following command before you restart
/tmp/gsl-1.15$ make clean

Step5: Install the files to the default directory, /usr/local, by
/tmp/gsl-1.15$ sudo make install
or simply by
/tmp/gsl-1.15$ make install
if it does not require the superuser privilege to access the directory you specify in
Step3.

The GSL should be properly installed now. If you install GSL in the default direc-
tory, ensure the sanity by check the files
/usr/local/include/gsl/gsl_rng.h
/usr/local/lib/libgsl.a
are existing and you can use our HSS library now.

Or, if you install GSL in /tmp/install, check the files
/tmp/install/include/gsl/gsl_rng.h
/tmp/install/lib/libgsl.a
are existing and change the compiler flag in the Makefile with
g++ -ansi -Wall -O3 -I/tmp/install/include -L/tmp/install/lib

-I../include -o test test.cpp -lgsl -lgslcblas
before using the HSS library.
You might notice that there is no space between -I and /tmp/install/include; neither
is -L.

To uninstall GSL, it can be done by
/tmp/gsl-1.15$ sudo make uninstall
or, if the superuser privilege is unnecessary,
/tmp/gsl-1.15$ make uninstall

10

	Outline
	Subset Drawing Algorithms
	constructor
	drawing member function

	Building Blocks
	The cuckoo hashing
	The radix sorting
	The fittest covering

	Testing Platforms and Programs
	GSL Installation Guide

