

TML_LIB_LabVIEW
v2.0

Motion Control Library for
Technosoft Intelligent

Drives

User Manual

© Technosoft 2007

TECHNOSOFT

TML_LIB_LabVIEW
v2.0

User Manual

P091.040.LABVIEW.v20.UM.0507

Technosoft S.A.
 Rue de Buchaux 38

CH-2022 BEVAIX
Switzerland

Tel.: +41 (0) 32 732 5500
Fax: +41 (0) 32 732 5504

 contact@technosoftmotion.com
www.technosoftmotion.com/

http://www.technosoftmotion.com/�

© Technosoft 2007 TML_LIB_LabVIEW – User Manual III

Read This First

Whilst Technosoft believes that the information and guidance given in this manual is correct, all
parties must rely upon their own skill and judgment when making use of it. Technosoft does not
assume any liability to anyone for any loss or damage caused by any error or omission in the
work, whether such error or omission is the result of negligence or any other cause. Any and all
such liability is disclaimed.

All rights reserved. No part or parts of this document may be reproduced or transmitted in any
form or by any means, electrical or mechanical including photocopying, recording or by any
information-retrieval system without permission in writing from Technosoft S.A.

About This Manual

This book describes the motion library TML_LIB_LabVIEW v2.0. TML_LIB_LabVIEW is a
collection of functions, which can be integrated in a PC application developed in LabVIEW
environment. With TML_LIB_LabVIEW motion library, you can quickly program the desired
motion and control the Technosoft intelligent drives and motors (with the drive integrated in the
motor case) from a PC. The TML_LIB_LabVIEW allows you to communicate with Technosoft
drive/motors via serial RS-232, RS-485, CAN-bus or Ethernet protocols.

Scope of This Manual

This manual applies to the following Technosoft intelligent drives and motors:

• IDM240 / IDM640 (models IDM240-5EI, IDM240-5LI, IDM640-8EI and IDM640-8LI), with
firmware F000H or later (revision letter must be equal or after H i.e. I, J, etc.)

• IDM240 CANopen/ IDM640 CANopen (models IDM240-5EI CANopen, IDM240-5LI
CANopen, IDM640-8EI CANopen and IDM640-8LI CANopen) with firmware version
F500A.

• IDS240 / IDS640 (all models), with firmware F000H or later

• IDS640 CANopen with firmware F500A or later

• ISCM4805 / ISCM8005 (all models), with firmware F000H or later

• IBL2403 (all models), with firmware F020H or later

• IPS110 (all models), with firmware F005H or later

• IM23x (models IS and MA), with firmware F900H or later

IMPORTANT! For correct operation, these drives/motors must be programmed with firmware
revision H. EasySetUp1 - Technosoft IDE for drives/motors setup, includes a firmware

1 EasySetUp is included in TML_LIB_LabVIEW installation package as a component of
EasyMotion Studio Demo version. It can also be downloaded free of charge from Technosoft
web page

© Technosoft 2007 TML_LIB_LabVIEW – User Manual IV

programmer with which you can check your drive/motor firmware version and revision and if
needed, update your drive/motor firmware to revision H.

Notational Conventions

This document uses the following conventions:

 Drive/motor - an intelligent drive or an intelligent motor having the drive part integrated
in the motor case

 TML – Technosoft Motion Language
 IU – drive/motor internal units
 ACR.5 – bit 5 of ACR data
 FAxx – firmware versions F000H, F020H, F005H, F900H or later
 FBxx – firmware versions F500A or later

Related Documentation

Help of the EasyMotion Studio software platform – describes how to use the
EasyMotion Studio, which support all new features added to revision H of
firmware. It includes: motion system setup & tuning wizard, motion sequence
programming wizard, testing and debugging tools like: data logging, watch,
control panels, on-line viewers of TML registers, parameters and variables, etc.

TML_LIB v2.0 User Manual (part no. P091.040.UM.xxxx) describes in detail the

TML_LIB Technosoft Motion Language Library and how to use it to program
motion applications in Visual C++, Visual Basic or Delphi environments.

MotionChip™ II TML Programming (part no. P091.055.MCII.TML.UM.xxxx)

describes in detail TML basic concepts, motion programming, functional
description of TML instructions for high level or low level motion programming,
communication channels and protocols. Also give a detailed description of each
TML instruction including syntax, binary code and examples.

MotionChip II Configuration Setup (part no. P091.055.MCII.STP.UM.xxxx)

describes the MotionChip II operation and how to setup its registers and
parameters starting from the user application data. This is a technical reference
manual for all the MotionChip II registers, parameters and variables.

© Technosoft 2007 TML_LIB_LabVIEW – User Manual V

If you Need Assistance …

If you want to …

Contact Technosoft at …

Visit Technosoft online

World Wide Web: http://www.technosoftmotion.com/

Receive general information
or assistance

Ask questions about
product operation or report
suspected problems

Make suggestions about or
report errors in
documentation

World Wide Web: http://www.technosoftmotion.com/
Email: contact@technosoftmotion.com

Fax: (41) 32 732 55 04
Email: hotline@technosoftmotion.com

http://www.technosoftmotion.com/�
http://www.technosoftmotion.com/�
mailto:hotline@technosoftmotion.com�

© Technosoft 2007 TML_LIB_LabVIEW – User Manual VII

Contents

1 Introduction ... 1

2 Getting started... 3

2.1 Hardware installation ... 3
2.2 Software installation... 3

2.2.1 Installing EasySetUp... 3
2.2.2 Installing TML_LIB_LabVIEW library.. 3

2.3 Drive/motor setup... 4
2.4 Build an application with TML_LIB_LabVIEW ... 5

3 TML_LIB_LabVIEW description... 7

3.1 Basic concept... 7
3.2 Internal units and scaling factors ... 8
3.3 Axis Identification ... 8
3.4 Functions descriptions ... 9

3.4.1 Motion programming... 10
3.4.1.1 TS_MoveAbsolute.vi ... 10
3.4.1.2 TS_MoveRelative.vi... 12
3.4.1.3 TS_MoveSCurveAbsolute.vi ... 14
3.4.1.4 TS_MoveSCurveRelative.vi .. 16
3.4.1.5 TS_MoveVelocity. vi .. 18
3.4.1.6 TS_SetAnalogueMoveExternal.vi.. 20
3.4.1.7 TS_SetDigitalMoveExternal .. 22
3.4.1.8 TS_SetOnlineMoveExternal.vi .. 23
3.4.1.9 TS_VoltageTestMode.vi .. 25
3.4.1.10 TS_TorqueTestMode.vi... 26
3.4.1.11 TS_PVTSetup.vi .. 27
3.4.1.12 TS_SendPVTFirstPoint.vi.. 29
3.4.1.13 TS_SendPVTPoint.vi... 31
3.4.1.14 TS_PTSetup.vi .. 32
3.4.1.15 TS_SendPTFirstPoint.vi .. 34
3.4.1.16 TS_SendPTPoint.vi ... 35
3.4.1.17 TS_SetGearingMaster.vi ... 36
3.4.1.18 TS_SetGearingSlave.vi ... 37
3.4.1.19 TS_SetCammingMaster.vi .. 39
3.4.1.20 TS_SetCammingSlaveRelative.vi ... 40

© Technosoft 2007 TML_LIB_LabVIEW – User Manual VIII

3.4.1.21 TS_SetCammingSlaveAbsolute.vi .. 42
3.4.1.22 TS_CamDownload.vi... 44
3.4.1.23 TS_CamInitialization.vi .. 46
3.4.1.24 TS_SetMasterResolution .. 47
3.4.1.25 TS_SendSynchronization.. 48

3.4.2 Motor commands .. 49
3.4.2.1 TS_Power.vi .. 49
3.4.2.2 TS_UpdateImmediate.vi .. 50
3.4.2.3 TS_UpdateOnEvent.vi... 51
3.4.2.4 TS_Stop.vi ... 52
3.4.2.5 TS_SetPosition.vi .. 53
3.4.2.6 TS_SetTargetPositionToActual.vi ... 54
3.4.2.7 TS_SetCurrent.vi ... 55
3.4.2.8 TS_QuickStopDecelerationRate.vi.. 56

3.4.3 Events ... 57
3.4.3.1 TS_CheckEvent.vi ... 57
3.4.3.2 TS_SetEventOnMotionComplete.vi... 58
3.4.3.3 TS_SetEventOnMotorPosition.vi... 60
3.4.3.4 TS_SetEventOnLoadPosition.vi .. 61
3.4.3.5 TS_SetEventOnMotorSpeed.vi ... 62
3.4.3.6 TS_SetEventOnLoadSpeed.vi .. 63
3.4.3.7 TS_SetEventOnTime.vi ... 64
3.4.3.8 TS_SetEventOnPositionRef.vi .. 65
3.4.3.9 TS_SetEventOnSpeedRef.vi... 66
3.4.3.10 TS_SetEventOnTorqueRef.vi.. 67
3.4.3.11 TS_SetEventOnEncoderIndex.vi... 68
3.4.3.12 TS_SetEventOnLimitSwitch.vi... 69
3.4.3.13 TS_SetEventOnDigitalInput.vi... 70
3.4.3.14 TS_SetEventOnHomeInput.vi ... 71

3.4.4 TML jumps and function calls ... 72
3.4.4.1 TS_GOTO.vi.. 72
3.4.4.2 TS_GOTO_Label.vi ... 73
3.4.4.3 TS_CALL.vi ... 74
3.4.4.4 TS_CALL_Label.vi... 75
3.4.4.5 TS_CancelableCALL.vi ... 76
3.4.4.6 TS_CancelableCALL_Label.vi .. 77
3.4.4.7 TS_ABORT.vi .. 78

3.4.5 IO handling ... 79
3.4.5.1 TS_SetupInput.vi ... 79
3.4.5.2 TS_GetInput.vi... 80
3.4.5.3 TS_SetupOutput.vi .. 81
3.4.5.4 TS_SetOutput.vi .. 82
3.4.5.5 TS_GetHomeInput.vi ... 83
3.4.5.6 TS_GetMultipleInputs.vi .. 84
3.4.5.7 TS_SetMultipleOutputs.vi .. 85
3.4.5.8 TS_SetMultipleOutputs2.vi.. 86

3.4.6 Data transfer ... 87

© Technosoft 2007 TML_LIB_LabVIEW – User Manual IX

3.4.6.1 TS_SetIntVariable.vi.. 87
3.4.6.2 TS_GetIntVariable.vi ... 88
3.4.6.3 TS_SetLongVariable.vi.. 89
3.4.6.4 TS_GetLongVariable.vi ... 90
3.4.6.5 TS_SetFixedVariable.vi ... 91
3.4.6.6 TS_GetFixedVariable.vi .. 92
3.4.6.7 TS_SetBuffer.vi ... 93
3.4.6.8 TS_GetBuffer.vi ... 94

3.4.7 Drive/motor monitoring ... 95
3.4.7.1 TS_ReadStatus.vi.. 95
3.4.7.2 TS_OnlineChecksum.vi... 96

3.4.8 Miscellaneous ... 97
3.4.8.1 TS_DownloadProgram.. 97
3.4.8.2 TS_Execute.vi ... 98
3.4.8.3 TS_ExecuteScript.vi .. 99
3.4.8.4 TS_GetOutputOfExecute.vi... 100
3.4.8.5 TS_Save.vi .. 101
3.4.8.6 TS_ResetFault.vi ... 102
3.4.8.7 TS_Reset.vi ... 103
3.4.8.8 TS_GetLastErrorText.vi... 104

3.4.9 Data logger ... 105
3.4.9.1 TS_SetupLogger.vi.. 105
3.4.9.2 TS_StartLogger.vi.. 106
3.4.9.3 TS_CheckLoggerStatus.vi... 107
3.4.9.4 TS_UploadLoggerResults.vi.. 108

3.4.10 Drive setup.. 110
3.4.10.1 TS_LoadSetup.vi ... 110
3.4.10.2 TS_SetupAxis.vi .. 111
3.4.10.3 TS_SetupGroup.vi ... 112
3.4.10.4 TS_SetupBroadcast .. 113
3.4.10.5 TS_DriveInitialization.vi ... 114

3.4.11 Drive administration.. 115
3.4.11.1 TS_SelectAxis.vi.. 115
3.4.11.2 TS_SelectGroup.vi .. 116
3.4.11.3 TS_SelectBroadcast.vi .. 117

3.4.12 Communication setup... 118
3.4.12.1 TS_OpenChannel.vi .. 118
3.4.12.2 TS_SelectChannel.vi ... 120
3.4.12.3 TS_CloseChannel.vi.. 121

4 Examples ... 122

4.1 Example 1. Profiled positioning movement followed by a speed profile jogging........... 125
4.2 Example 2. Positioning movement; wait a while; speed jogging; stop after a time period
 127
4.3 Example 3. Speed profile with two acceleration values .. 129

© Technosoft 2007 TML_LIB_LabVIEW – User Manual X

4.4 Example 4. Speed jogging; wait a time period; positioning movement 131
4.5 Example 5. Speed jogging; wait for an input port to be triggered; positioning movement
 133
4.6 Example 6. Absolute position motion profile with different acceleration / deceleration rate
 135
4.7 Example 7. Positioning movement; speed jogging; wait a time period, then stop 137
4.8 Example 8. Repeat a motion at input port set, with current reduction between motions
 139
4.9 Example 9. Move to the positive limit switch, reverse to the negative limit switch........ 141
4.10 Example 10. Move between limit switches until an input port changes its status...... 143
4.11 Example 11. Move forward and backward at 2 different speeds, for a given distance
 145
4.12 Example 12. Speed profile, followed by profiled positioning at a given speed 147
4.13 Example 13. Speed control with external reference .. 149
4.14 Example 14. Profiled positioning, with output port status changing at a given position
 151
4.15 Example 15. Execute a jogging speed motion, until the home input is captured 153
4.16 Example 16. Different motions based on the status of two digital inputs of the drive 155
4.17 Example 17. Move between limit switches. Power-off if blocked on a limit switch 157
4.18 Example 18. Jog at a speed computed from an A/D signal, until a digital input is reset
 159
4.19 Example 19. Speed control, with drive interrogation / setup of TML speed parameters
 161
4.20 Example 20. Setup positioning motion, using tables stored into drive memory 163
4.21 Example 21. Setting the Digital External motion mode.. 165
4.22 Example 22. Test the voltage mode, with event on voltage reference 167
4.23 Example 23. Test torque mode, with event on torque reference 169
4.24 Example 24. Profiled positioning and speed movement, with event test from PC side
 171
4.25 Example 25. Movement as defined in an external file containing TML source code. 173
4.26 Example 26. Positioning command to a group of axes.. 175
4.27 Example 27. Jogging motion until the index capture is detected, then position on index
 177
4.28 Example 28. Speed jogging until home found, position to home, and set position to
zero 179
4.29 Example 29. Download a COFF format file & send a positioning command on-line. 181

© Technosoft 2007 TML_LIB_LabVIEW – User Manual XI

4.30 Example 30. Download a COFF format file, then call TML functions 183
4.31 Example 31. Set up the Master and Slave Gearing Mode; use the drives in gearing
mode 185
4.32 Example 32. Set up Master and Slave in electronic cam Mode; use the drives in cam
mode 187
4.33 Example 33. Usage of data logger to upload real-time stored data from the drive ... 189
4.34 Example 34. Homing procedures based on pre-stored TML sequences on the drive
 191
4.35 Example 35. Positioning with S-Curve profile for speed; speed jogging 194
4.36 Example 36. Reset FAULT state.. 196
4.37 Example 37. Read multiple inputs/set multiple outputs ... 198
4.38 Example 38. Positioning when an event on home input occurs 200
4.39 Example 39. Write/read in the drive memory... 202
4.40 Example 40. View binary code of a TML command... 204
4.41 Example 41. Speed jog and positioning with direction change.................................. 205

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 1

1 Introduction
The programming of Technosoft intelligent drives/motors involves 2 steps:

1) Drive/motor setup
2) Motion programming

For Step 1 – drive/motor setup, Technosoft provides EasySetUp. EasySetUp is an integrated
development environment for the setup of Technosoft drives/motors. The output of EasySetUp is
a set of setup data, which can be downloaded to the drive/motor EEPROM or saved on your PC
for later use. The setup data is copied at power-on into the RAM memory of the drive/motor and is
used during runtime. The reciprocal is also possible i.e. to retrieve the complete setup data from a
drive/motor EEPROM previously programmed. EasySetUp can be downloaded free of charge
from Technosoft web page. It is also provided on the TML_LIB_LabVIEW installation CD.

For Step 2 – motion programming, Technosoft offers multiple options, like:

1) Use the drives/motors embedded motion controller and do the motion programming in
Technosoft Motion Language (TML). For this operation Technosoft provides EasyMotion
Studio, an IDE for both drives setup and motion programming. The output of EasyMotion
Studio is a set of setup data and a TML program to download and execute on the drive/motor.

2) Use a .DLL with high-level motion functions which can be integrated in a host application
written in C/C++, Delphi Pascal, Visual Basic or LabVIEW

3) Use a PLCopen compatible library with motion function blocks which can be integrated in a
PLC application based on one of the IEC 61136 standard languages

4) Combine option 1) with options 2) or 3) to really distribute the intelligence between the
master/host and the drives/motors in complex multi-axis applications. Thus, instead of trying
to command each step of an axis movement, you can program the drives/motors using TML
to execute complex tasks and inform the master when these are done.

TML_LIB_LabVIEW is part of option 2) – a collection of functions allowing you to implement
motion control applications on a PC computer. The link between the Technosoft drives/motors
and the PC can be done via serial link, via CAN-bus using a CAN interface or via Ethernet using
an adapter/bridge between Ethernet and RS-232. Realized as a collection of high-level functions,
the library allows you to focus on the main aspects related to your application specific
implementation, and to simply use the drive and execute motion commands by calling appropriate
functions from the library.

This manual presents how to install and use the components of the TML_LIB_LabVIEW library
version 2.0.

Remarks:

• Option 4) requires using EasyMotion Studio instead of EasySetUp. With EasyMotion
Studio you can create high-level motion functions in TML, to be called from your PC

• EasyMotion Studio is also recommended if your application includes a homing as it
comes with 32 predefined homing procedures to select from, with possibility to adapt
them

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 2

Figure 1.1. Using TML_LIB_LabVIEW to control a Technosoft intelligent drive from the PC computer

MyExample.vi

…
TS_MoveVelocity (…)
…

CSPD=12.5;
MODE SP;
UPD;

TML_LIB

Communication
channel

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 3

2 Getting started

2.1 Hardware installation
For the hardware installation of the Technosoft drives/motors see their user manual.

For drives/motors setup, you can connect your PC to any drive/motor using an RS232 serial link.
Through this serial link you can access all the drives/motors from the network. Alternately, you
can connect your PC directly on the CAN bus network if it is equipped with one of the CAN
interfaces supported by EasySetUp.

2.2 Software installation
In order to perform successfully the following software installations, make sure that you have the
“Administrator” rights.

2.2.1 Installing EasySetUp
On the TML_LIB_LabVIEW installation CD you’ll find the setup for EasyMotion Studio Demo
version. This application includes a fully functional version of EasySetUp and a demo version of
EasyMotion Studio. Start the setup and follow the installation instructions.

2.2.2 Installing TML_LIB_LabVIEW library
Start the TML_LIB_LabVIEW setup and follow the installation instructions. After library installation
open the LabVIEW environment and add in the list VI Search Path, the installation path of the
library, by default C:\Program Files\Technosoft\TML_LIB_LabVIEW..Table 2.1 details the
package contents.

Table 2.1 TML_LIB_LabVIEW package contents

Directory Files Description
TML_lib.dll TML_LIB DLL library file
TMLcomm.dll TML communication DLL file Root directory
P091.040.UM.xxxx.PDF The PDF file of the TML_LIB user manual (this

document)
Ex25TML.txt TML source file for Example 25
Ex29RAM.out COFF file for Example 29
Ex30.out COFF file for Example 30

Ex32_MyCam.cam A cam file for example 32, in Technosoft cam file
format

Examples Files

Ex32_MyCam.txt A cam file for example 32, in text file format

Examples Example diagrams A complete Visual C project implementing the
examples from Chapter 4.

Functions VI functions Contains the sub VIs of the library which implement
the functions from TML_LIB.dll

GlobalVIs sub VIs with global
variables

Sub VIs containing the declaration of global
variables used in examples

Setups Setup data directories
Sample setup data of the drives used in examples.
For your configurations generate the setup data
(see paragraph 2.3)

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 4

2.3 Drive/motor setup
Before starting to send motion commands from the PC, you need to do the drive/motor setup
according with your application needs. For this operation you’ll use EasySetUp.

EasySetUp is an integrated development environment for the setup of Technosoft drives and
motors (with the drive integrated in the motor case). The output of EasySetUp is a set of setup
data, which can be downloaded to the drive/motor EEPROM or saved on your PC for later use.

A setup contains all the information needed to configure and parameterize a Technosoft
drive/motor. This information is preserved in the drive/motor EEPROM in the setup table. The
setup table is copied at power-on into the RAM memory of the drive/motor and is used during
runtime. The reciprocal is also possible i.e. to retrieve the complete setup data from a drive/motor
EEPROM previously programmed

Steps to follow for commissioning a Technosoft drive/motor

Step 1. Start EasySetUp

From Windows Start menu execute: “Start | Programs | EasySetUp | EasySetUp” or “Start |
Programs | EasyMotion Studio | EasySetUp” depending on which installation package you have
used.

Step 2. Establish communication

EasySetUp starts with an empty window from where you can create a New setup, Open a
previously created setup which was saved on your PC, or Upload the setup from the drive/motor.

Before selection one of the above options, you need to establish the communication with the
drive/motor you want to commission. Use menu command Communication | Setup to
check/change your PC communication settings. Press the Help button of the dialogue opened.
Here you can find detailed information about how to setup your drive/motor and do the
connections. Power on the drive/motor and then close the Communication | Setup dialogue with
OK. If the communication is established, EasySetUp displays in the status bar (the bottom line)
the text “Online” plus the axis ID of your drive/motor and its firmware version. Otherwise the text
displayed is “Offline” and a communication error message tells you the error type. In this case,
return to the Communication | Setup dialogue, press the Help button and check troubleshoots.

Remark: When first started, EasySetUp tries to communicate with your drive/motor via RS-232
and COM1 (default communication settings). If your drive/motor is powered and connected to
your PC port COM1 via an RS-232 cable, the communication can be automatically established.

Step 3. Setup drive/motor

Press New button and select your drive/motor type. Depending on the product chosen, the
selection may continue with the motor technology (for example: brushless motor, brushed motor)
or the control mode (for example stepper – open-loop or stepper – closed-loop) and type of
feedback device (for example: incremental encoder, SSI encoder)

This opens 2 setup dialogues: for Motor Setup and for Drive setup through which you can
configure and parameterize a Technosoft drive/motor, plus several predefined control panels
customized for the product selected.

In the Motor setup dialogue you can introduce the data of your motor and the associated
sensors. Data introduction is accompanied by a series of tests having as goal to check the

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 5

connections to the drive and/or to determine or validate a part of the motor and sensors
parameters. In the Drive setup dialogue you can configure and parameterize the drive for your
application. In each dialogue you will find a Guideline Assistant, which will guide you through the
whole process of introducing and/or checking your data. Close the Drive setup dialogue with OK
to keep all the changes regarding the motor and the drive setup.

Step 4. Download setup data to drive/motor

Press the Download to Drive/Motor button to download your setup data in the drive/motor
EEPROM memory in the setup table. From now on, at each power-on, the setup data is copied
into the drive/motor RAM memory that is used during runtime. It is also possible to Save the
setup data on your PC and use it in other applications.

Step 5. Reset the drive/motor to activate the setup data

Step 6. Create the setup data for TML_LIB_LabVIEW. The TML_LIB_LabVIEW requires
drive/motor setup information for proper execution of the application. The setup data is generated
with the Setup | Export to TML_LIB… command if you are in EasySetUp, or the Application |
Export to TML_LIB… command if you are using EasyMotion Studio. The information is
generated in the form of an archive file with the .t.zip extension and is saved in the Archives
folder from EasySetUp/EasyMotion Studio installation folder (by default C:\Program
Files\Technosoft\ESM\).

2.4 Build an application with TML_LIB_LabVIEW
The library TML_LIB_LabVIEW is a collection of high level functions, grouped in several
categories and provided as the TML_LIB.dll file. To simplify the functions usage, each function
has a subVi associated.

Most of these subVIs are of Boolean type, and return a ‘True’ value if the execution of the
function is performed without any error (at PC level). If the function returns a ‘False’ value, you
can interrogate the error type by calling the function TS_GetLastErrorText.vi.

Steps to build an application with TML_LIB_LabView:

1. Create a new VI. Launch LabVIEW and press the button New VI. For details read the
LabView online help.

2. Setup the communication. The application developed is based on the communication
between PC and Technosoft drives/motors thus it should begin with the communication
channel setup. The communication channel is opened with the TS_OpenChannel.vi
subVI. At the end of the application you must close the communication channel with
subVI TS_CloseChannel.vi.

3. Load setup configurations. The setup information is required by the library functions in
order to check if there are incompatibilities between the drive and the operation to be
executed (as an example, avoiding issuing an “Output port” command to a port which is
an input port on that drive). EasySetUp/EasyMotion Studio generates the setup
information in the form of an archive file with the .t.zip extension. The archives are saved
in the Archives folder from EasyMotion Studio/ EasySetUp installation folder. The
drive’s/motor’s setup data are declared in the PC application with function
TS_LoadSetup.vi. The subVI must be called for each configuration setup used.

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 6

4. Setup axes. Each axis defined at PC level requires the setup information. The
configuration setup is associated to an axis with subVI TS_SetupAxis.vi.

5. Select the active axis/group. The messages sent from the PC address to one axis. Use
subVI TS_SelectAxis.vi to choose the messages destination. All further function calls,
which send TML messages on the communication channel, will address the messages to
this active axis.

6. Program the motion for current axis. Use the TML_LIB_LabVIEW functions to program
the motions required.

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 7

3 TML_LIB_LabVIEW description

3.1 Basic concept
The Technosoft intelligent drives are programmable using the Technosoft Motion Language
(TML). TML consists of a high-level set of codes allowing the user to parameterize and execute
specific motion operations.

TML allows to:

• Configure the motion mode (profiles, contouring, gearing in multiple axes structures, etc.)
• Detect / specifically treat external signals as limit switches, captures
• Execute homing sequences
• Setup / start specific action on pre-defined motion events
• Synchronize multiple axes structures, by sending group commands
• etc.

The TML_LIB_LabVIEW library is the tool that helps you to handle the process of motion control
application implementation on a PC computer, at a high level, without the need to write / compile
TML code.

A central element of the library is the communication kernel, which is responsible of correct
opening of the communication channel (serial RS-232 or RS-485, CAN-bus or Ethernet), as well
as of TML messages handling. This includes handling of the specific communication protocol, for
each of these channels.

Consequently, each application you’ll develop starts with the opening of the communication, i.e.
calling the TS_OpenChannel.vi subVI. The application must end with the TS_CloseChannel.vi
subVI execution.

You’ll be able to handle multiple-axis applications from the PC. Besides the drive/motor setup with
EasySetUp or EasyMotion Studio, you’ll also need to indicate some basic drive information for
correct usage of the library functions. Thus, for each drive that is installed in the system, you’ll
need to execute the TS_SetupAxis.vi subVI, indicating the axis ID and configuration setup. Such
information will be used for some functions of the library, in order to check if there are
incompatibilities between the drive and the operation to be executed (as an example, avoiding
issuing an “Output port” command to a port which is an input port on that drive).

Note that besides setting-up individual axes, it is also possible to setup groups of axes (with the
TS_SetupGroup.vi subVI). This will allow you to issue commands, which will be received and
executed simultaneously on all the axes initialized as belonging to that group.

Once all the axes are defined, the library allows you to select the so-called ‘active axis or group’,
using the TS_SelectAxis, or TS_SelectGroup subVI respectively. Consequently, all future
commands that you’ll execute after the selection of one axis or group will be addressed to that
axis or group. You can change at any time in your program the active axis/group.

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 8

3.2 Internal units and scaling factors
Technosoft drives/motors work with parameters and variables represented in internal units (IU).
The parameters and variables may represent various signals: position, speed, current, voltage,
etc. Each type of signal has its own internal representation in IU and a specific scaling factor. In
order to easily identify each type of IU, these have been named after the associated signals. For
example the position units are the internal units for position, the speed units are the internal
units for speed, etc.

The scaling factor of each internal unit shows the correspondence with the international standard
units (SI). The scaling factors are dependent on the product, motor and sensor type. Put in other
words, the scaling factors depend on the setup configuration.

In order to find the internal units and the scaling factors for a specific configuration, use:

• Help | Help Topics | Setup Data Management | Internal Units and Scaling Factors
menu command in EasySetUp

• Help | Help Topics | Application Programming Internal Units and Scaling Factors
menu command in EasyMotion Studio

Important: The Internal Units and Scaling Factors topic provides customized information,
function of the application setup. If you change the drive, the motor technology or the feedback
device, check again the scaling factors with this command. It may show you other relations!

3.3 Axis Identification
The data exchanged on the communication channel is done using messages. Each message
contains one TML instruction to be executed by the receiver of the message. Apart from the
binary code of the TML instruction attached, any message includes information about its
destination: an axis (drive/motor) or group of axes. This information is grouped in the Axis/Group
ID Code. Each drive/motor has its own 8-bit Axis ID and Group ID.

Remarks:

1. The Axis ID of a drive/motor must be unique and is set during the drive/motor setup
phase with EasySetUp.

2. The Axis ID and Group ID of a drive/motor are stored in TML variable AAR. Use
TS_GetIntVariable.vi to read the value of the Axis ID and Group ID.

The Group ID represents a way to identify a group of axes, for a multicast transmission. This
feature allows to send a command simultaneously to several axes, for example to start or stop the
axes motion in the same time. When a function block sends a command to a group, all the axes
members of this group will receive the command. For example, if the axis is member of group 1
and group 3, it will receive all the messages that in the group ID include group 1 and group 3.

Remark: A drive/motor belongs, by default, to the group ID = 1.

Each axis can be programmed to be member of one or several of the 8 possible groups.

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 9

Table 3.1Definition of the groups

Group No. Group ID value
1 1 (0000 0001b)
2 2 (0000 0010b)
3 4 (0000 0100b)
4 8 (0000 1000b)
5 16 (0001 0000b)
6 32 (0010 0000b)
7 64 (0100 0000b)
8 128 (1000 0000b)

3.4 Functions descriptions
The section presents the functions implemented in the TML_LIB_LabVIEW library. The functions
are classified as follows:

• Motion programming – functions for motion programming on the selected axis.
• Motor commands – functions to enable/disable the motor power stage, start/stop the

motion, change the value of the motor position and current
• Events – functions for events programming and test
• TML jumps and function calls – functions which allows you to execute code

downloaded in the drive/motor memory
• I/O handling – functions for read/write operations with drive/motor I/O ports
• Data transfer – functions for read/write operations from/to the drive/motor memory
• Drive/motor monitoring – functions for monitoring the drive/motor status
• Miscellaneous – functions for FAULT state reset and drive reset
• Data logger – functions for logger setup and data upload
• Drive setup – functions for axis setup in the PC application
• Drive administration – functions that control the destination axis of the message sent via

communication channels
• Communication setup – functions that manage the PC communication channel

For each function you will find the following information:

• The subVi symbol
• The function C prototype
• SubVI parameters description
• A functional description
• Name of the related subVIs
• Examples reference. The examples that illustrate the correct use of the functions (subVIs)

are listed in chapter 4.

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 10

3.4.1 Motion programming

3.4.1.1 TS_MoveAbsolute.vi

Symbol:

Prototype:

LONG _TS_MoveAbsolute@28(LONG Position, DOUBLE Speed, DOUBLE Acceleration,
SHORT INT Move Moment, SHORT INT Reference Base);

Parameters:

 Name Description
Position Position to reached expressed in drive/motor position units

Speed Slew speed expressed in TML speed units. If the value is zero the
drive/motor will use the previously value set for speed

Acceleration
Acceleration/deceleration rate expressed in TML acceleration units. If its
value is zero the drive/motor will use the previously value set for
acceleration

Move Moment Defines the moment when the motion is started

Input

Reference Base
Specifies how the motion reference is computed: from actual values of
position and speed reference or from actual values of load/motor
position and speed

Output return TRUE if no error, FALSE if error

Description: The function programs an absolute positioning with trapezoidal speed profile. The
motion is described through Position parameter for position to reach, Speed for slew speed and
Acceleration for acceleration/deceleration rate. The position to reach can be positive or negative.
The Speed and Acceleration can be only positive.

Once set, the motion parameters are memorized on the drive/motor. If you intend to use values
previously defined for the acceleration rate and/or the velocity you don’t need to send their values
again in the following trapezoidal profiles. Set to zero the value of speed and/or acceleration and
the drive/motor will use the values previously defined (this option reduces the TML code
generated by this function).

The motion is executed:

• Immediately when Move Moment = UPDATE_IMMEDIATE
• When a programmed event occurs if Move Moment = UPDATE_ON_EVENT
• If you select Move Moment = UPDATE_NONE, the movement is parameterized, but

does not execute. You’ll need to issue an update command to determine the execution of
the movement. Use the TS_UpdateImmediate.vi or the TS_UpdateOnEvent.vi functions
in order to activate the movement.

Set Reference Base = FROM_REFERENCE if you want the reference generator to compute the
motion profile starting from the actual values of the position and speed reference. Set Reference

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 11

Base = FROM_MEASURE if you want the reference generator to compute the motion profile
starting from the actual values of the load/motor position and speed. When this option is used, at
the beginning of each new motion profile, the position and speed reference are updated with the
actual values of the load/motor position and speed.

Remark: In open loop control of steppers, this option is ignored because there is no position
and/or speed feedback.

Related functions: TS_MoveRelative.vi, TS_MoveSCurveAbsolute.vi,
TS_MoveSCurveRelative.vi, TS_MoveVelocity.vi

Associated examples: Example 6, Example 11, Example 12, Example 14, Example 27,
Example 28, Example 29, Example 37, Example 39

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 12

3.4.1.2 TS_MoveRelative.vi

Symbol:

Prototype:

LONG _TS_MoveRelative@32(LONG Position, DOUBLE Speed, DOUBLE Acceleration,
UNSIGNED CHAR Additive, SHORT INT Move Moment, SHORT INT Reference Base);

Parameters:

 Name Description
Position Position increment expressed in TML position units

Speed Slew speed expressed in TML speed units. If its value is zero the
drive/motor will use the previously value set for speed

Acceleration
Acceleration/deceleration rate expressed in the TML acceleration units.
If its value is zero the drive/motor will use the previously value set for
acceleration

Additive Specifies how is computed the position to reach
Move Moment Defines the moment when the motion is started

Input

Reference Base
Specifies how the motion reference is computed: from actual values of
position and speed reference or from actual values of load/motor
position and speed

Output return TRUE if no error, FALSE if error

Description: The function programs a relative positioning with trapezoidal speed profile. The
motion is described through Position for position increment, Acceleration for
acceleration/deceleration rate and Speed for slew speed. The position increment can be positive
or negative; the sign gives the motion direction. The speed and acceleration can be only positive.

Once set, the motion parameters are memorized on the drive/motor. If you intend to use values
previously defined for the acceleration rate and/or the velocity you don’t need to send their values
again in the following trapezoidal profiles. Set to zero the value of speed and/or acceleration if you
want the drive/motor to use the values previously defined with other commands (this option
reduces the TML code generated by this function).

The position to reach can be computed in 2 ways: standard (default) or additive. In standard
mode, the position to reach is computed by adding the position increment to the instantaneous
position in the moment when the command is executed. In the additive mode, the position to
reach is computed by adding the position increment to the previous position to reach,
independently of the moment when the command was issued. The additive mode is activated with
Additive = IsAdditive.

The motion is executed:

• Immediately when Move Moment = UPDATE_IMMEDIATE
• When a programmed event occurs if Move Moment = UPDATE_ON_EVENT

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 13

• If you select Move Moment = UPDATE_NONE, the movement is parameterized, but
does not execute. You’ll need to issue an update command to determine the execution of
the movement. Use the TS_UpdateImmediate.vi or the TS_UpdateOnEvent.vi functions
in order to activate the movement.

Set Reference Base = FROM_REFERENCE if you want the reference generator to compute the
motion profile starting from the actual values of the position and speed reference. Use this option
for example if successive standard relative moves must be executed and the final target position
should represent exactly the sum of the individual commands. Set Reference Base =
FROM_MEASURE if you want the reference generator to compute the motion profile starting from
the actual values of the load/motor position and speed. When this option is used, at the beginning
of each new motion profile, the position and speed reference are updated with the actual values
of the load/motor position and speed.

Remark: In open loop control of steppers, this option is ignored because there is no position
and/or speed feedback.

Related functions: TS_ MoveAbsolute.vi, TS_MoveSCurveAbsolute.vi,
TS_MoveSCurveRelative.vi, TS_MoveVelocity.vi

Associated examples: Example 1, Example 2, Example 4, Example 5, Example 7,
Example 8, Example 16, Example 20, Example 24, Example 26,
Example 29, Example 31, Example 32, Example 33, Example 36,
Example 38, Example 40, Example 42

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 14

3.4.1.3 TS_MoveSCurveAbsolute.vi

Symbol:

Prototype:

LONG _TS_MoveSCurveAbsolute@32(LONG Position, DOUBLE Speed, DOUBLE
Acceleration, LONG Jerk Time, SHORT INT Move Moment, SHORT INT Deceleration Type);

Parameters:

 Name Description
Position Position to reach expressed in TML position units
Speed The slew speed expressed in TML speed units.
Acceleration Acceleration/deceleration rate expressed in TML acceleration units.

Jerk Time Represents the time interval for acceleration to reach the programmed
value. It is expressed in TML time units.

Move Moment Defines the moment when the motion is started

Input

Deceleration Type Specifies the speed profile used when the motion is stopped with
TS_Stop

Output Return TRUE if no error, FALSE if error

Description: The function block programs an absolute positioning with an S-curve shape of the
speed. This shape is due to the jerk limitation, leading to a trapezoidal or triangular profile for the
acceleration and an S-curve profile for the speed. The motion is described through Position
parameter for position to reach, Speed for slew speed, Acceleration for
acceleration/deceleration rate and Jerk Time. The position to reach can be positive or negative.
The Speed, Acceleration and Jerk Time can be only positive.

An S-curve profile must begin when load/motor is not moving. During motion the parameters
should not be changed. Therefore when executing successive S-curve commands, you should
wait for the previous motion to end before setting the new motion parameters and starting next
motion.

When the motion is stopped with function TS_Stop.vi, the deceleration phase can be done in 2
ways:

• Smooth, using an S-curve speed profile, when Deceleration Type =
S_CURVE_SPEED_PROFILE

• Fast, using a trapezoidal speed profile, when Deceleration Type =
TRAPEZOIDAL_SPEED_PROFILE

The motion can be executed:

• Immediately when Move Moment = UPDATE_IMMEDIATE
• When a programmed event occurs if MoveMoment = UPDATE_ON_EVENT
• If you select Move Moment = UPDATE_NONE, the movement is parameterized, but

does not execute. You’ll need to issue an update command to determine the execution of

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 15

the movement. Use the TS_UpdateImmediate.vi or the TS_UpdateOnEvent.vi functions
in order to activate the movement.

Related functions: TS_MoveAbsolute.vi, TS_MoveRelative.vi, TS_MoveSCurveRelative.vi
TS_MoveVelocity.vi, TS_QuikStopDecelerationRate.vi

Associated examples: Example 35

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 16

3.4.1.4 TS_MoveSCurveRelative.vi

Symbol:

Prototype:

LONG _TS_MoveSCurveRelative@32(LONG Position, DOUBLE Speed, DOUBLE
Acceleration, LONG Jerk Time, SHORT INT Move Moment, SHORT INT Deceleration Type);

Parameters:

 Name Description
Position Position increment expressed in drive/motor position units
Speed Slew speed expressed in drive/motor speed units.

Acceleration Acceleration/deceleration rate expressed in drive/motor acceleration
units.

Jerk Time Represents the time interval for acceleration to reach the programmed
value. It is expressed in drive/motor time units.

Move Moment Defines the moment when the motion is started

Input

Deceleration Type Specifies the speed profile used when the motion is stopped with
TS_Stop.vi

Output Return TRUE if no error, FALSE if error

Description: The function block programs a relative positioning with an S-curve shape of the
speed. This shape is due to the jerk limitation, leading to a trapezoidal or triangular profile for the
acceleration and an S-curve profile for the speed. The motion is described through Position
parameter for position increment, Speed for slew speed, Acceleration for
acceleration/deceleration rate and Jerk Time. The position to reach can be positive or negative.
The Speed, Acceleration and Jerk Time can be only positive.

An S-curve profile must begin when load/motor is not moving. During motion the parameters
should not be changed. Therefore when executing successive S-curve commands, you should
wait for the previous motion to end before setting the new motion parameters and starting next
motion.

When the motion is stopped with function TS_Stop.vi, the deceleration phase can be done in 2
ways:

• Smooth, using an S-curve speed profile, when Deceleration Type =
S_CURVE_SPEED_PROFILE

• Fast, using a trapezoidal speed profile, when Deceleration Type =
TRAPEZOIDAL_SPEED_PROFILE

The motion can be executed:
• Immediately when Move Moment = UPDATE_IMMEDIATE
• When a programmed event occurs if Move Moment = UPDATE_ON_EVENT
• If you select Move Moment = UPDATE_NONE, the movement is parameterized, but

does not execute. You’ll need to issue an update command to determine the execution of

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 17

the movement. Use the TS_UpdateImmediate.vi or the TS_UpdateOnEvent.vi functions
in order to activate the movement.

Related functions: TS_MoveAbsolute.vi, TS_MoveRelative.vi, TS_MoveSCurveAbsolute.vi
TS_MoveVelocity.vi

Associated examples: Example 35

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 18

3.4.1.5 TS_MoveVelocity. vi

Symbol:

Prototype:

LONG _TS_MoveVelocity@24(DOUBLE Speed, DOUBLE Acceleration, SHORT INT Move
Moment, SHORT INT Reference Base);

Parameters:

 Name Description
Speed Jog speed expressed in TML speed units

Acceleration Acceleration rate expressed in TML acceleration units. If the value is
zero the drive/motor will use the previously value set for acceleration.

Move Moment Defines the moment when the motion is started Input

Reference Base
Specifies how the motion reference is computed: from actual values of
position and speed reference or from actual values of load/motor
position and speed

Output return TRUE if no error, FALSE if error

Description: The function programs a trapezoidal speed profile. You specify the jog Speed. The
load/motor accelerates until the jog speed is reached. The jog speed can be positive or negative;
the sign gives the direction. The Acceleration can be only positive.

Once set, the motion parameters are memorized on the drive/motor. If you intend to use values
previously defined for the acceleration rate you don’t need to send its value again in the following
speed profiles. Set to zero the value of acceleration if you want the drive/motor to use the value
previously defined with other commands (this option reduces the TML code generated by this
function).

The motion is executed:

• Immediately when Move Moment = UPDATE_IMMEDIATE
• When a programmed event occurs if Move Moment = UPDATE_ON_EVENT
• If you select Move Moment = UPDATE_NONE, the movement is parameterized, but

does not execute. You’ll need to issue an update command to determine the execution of
the movement. Use the TS_UpdateImmediate.vi or the TS_UpdateOnEvent.vi functions
in order to activate the movement.

Set Reference Base = FROM_REFERENCE if you want the reference generator to compute the
motion profile starting from the actual values of the position and speed reference. Use this option
for example if successive standard relative moves must be executed and the final target position
should represent exactly the sum of the individual commands. Set Reference Base =
FROM_MEASURE if you want the reference generator to compute the motion profile starting from
the actual values of the load/motor position and speed. When this option is used, at the beginning
of each new motion profile, the position and speed reference are updated with the actual values
of the load/motor position and speed.

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 19

Remark: In open loop control of steppers, this option is ignored because there is no position
and/or speed feedback.

Related functions: TS_MoveRelative.vi, TS_MoveAbsolute.vi, TS_MoveSCurveAbsolute.vi,
TS_MoveSCurveRelative.vi

Associated examples: Example 1, Example 2, Example 3, Example 4, Example 5,
Example 7, Example 9, Example 10, Example 12, Example 15,
Example 16, Example 17, Example 18, Example 19, Example 24,
Example 27, Example 28, Example 29, Example 30, Example 31,
Example 39, Example 40

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 20

3.4.1.6 TS_SetAnalogueMoveExternal.vi

Symbol:

Prototype:

LONG _TS_SetAnalogueMoveExternal@20(SHORT INT Reference Type, UNSIGNED CHAR
Update Reference, DOUBLE Limit Variation, SHORT INT Move Moment);

Parameters:

 Name Description
Reference Type Specifies how the analogue signal is interpreted

Update Reference Specifies how often the analogue reference is read when torque control
is performed

Limit Variation Speed/acceleration limit value for position/speed control expressed in
TML internal units

Input

Move Moment Defines the moment when the motion is started
Output Return TRUE if no error, FALSE if error

Description: The function block programs the drive/motor to work with an external analogue
reference read via a dedicated analogue input (10-bit resolution). The analogue signal can be
interpreted as a position, speed or torque analogue reference. Through parameter
ReferenceType you specify how the analogue signal is interpreted:

• Position reference when Reference Type = REFERENCE_POSITION. The drive/motor
performs position control.

• Speed reference when Reference Type = REFERENCE_SPEED. The drive/motor
performs speed control.

• Torque reference when Reference Type = REFERENCE_TORQUE. The drive/motor
performs torque control.

Remark: During the drive/motor setup, in the Drive setup dialogue, you have to:

1. Select the appropriate control type for your application at Control Mode.
2. Perform the tuning of controllers associated with the selected control mode.
3. Setup the analogue reference. Specify the reference values corresponding to the upper

and lower limits of the analogue input. In addition, a dead-band symmetrical interval and
its center point inside the analogue input range may be defined.

In position control you can limit the maximum speed at sudden changes of the position reference
and thus to reduce the mechanical shocks. In speed control you can limit the maximum
acceleration at sudden changes of the speed reference and thus to get a smoother transition.
These features are activated by setting the Limit Variation parameter to a positive value and
disabled when the Limit Variation is zero.

In torque control you can choose how often to read the analogue input: at each slow loop
sampling period (Update Reference = UPDATE_FAST) or at each fast loop sampling period
(Update Reference = UPDATE_SLOW).

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 21

The motion is executed:

• Immediately when Move Moment = UPDATE_IMMEDIATE
• When a programmed event occurs if Move Moment = UPDATE_ON_EVENT
• If you select Move Moment = UPDATE_NONE, the motion parameters are set, but does

not execute. You’ll need to issue an update command to determine the execution of the
movement. Use the TS_UpdateImmediate.vi or the TS_UpdateOnEvent.vi functions in
order to activate the movement.

Related functions: TS_SetDigitalMoveExternal.vi, TS_SetOnlineMoveExternal.vi

Associated examples: Example 13

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 22

3.4.1.7 TS_SetDigitalMoveExternal

Symbol:

Prototype:

LONG _TS_SetDigitalMoveExternal@24(UNSIGNED CHAR Set Gear Ratio, SHORT INT
Denominator, SHORT INT Numerator, DOUBLE Limit Variation, SHORT INT Move Moment);

Parameters:

 Name Description
Set Gear Ratio Specifies if the digital reference is followed by the drive with a gear ratio
Denominator Gear ratio denominator
Numerator Gear ratio numerator
Limit Variation Acceleration limit value

Input

Move Moment Defines the moment when the motion is started
Output Return TRUE if no error, FALSE if error

Description: The function block programs the drive/motor to work with an external digital
reference provided as pulse & direction or quadrature encoder signals. In either case, the
drive/motor performs a position control with the reference computed from the external signals.

Remarks: The option for the input signals: pulse & direction or quadrature encoder is established
during the drive/motor setup.

The drive/motor follows the external reference with a gear ratio different than 1:1 when Set Gear
Ratio = YES. The gear ratio is specified as a ratio of 2 integer values: Numerator /
Denominator. The Numerator value is signed, while the Denominator is unsigned. The sign
indicates the direction of movement: positive – same as the external reference, negative –
reversed to the external reference.

You can limit the maximum acceleration at sudden changes of the external reference and thus to
get a smoother transition. This feature is activated when the parameter Limit Value has a positive
value and disabled when its value is zero.

The motion is executed:

• Immediately when Move Moment = UPDATE_IMMEDIATE
• When a programmed event occurs if Move Moment = UPDATE_ON_EVENT
• If you select Move Moment = UPDATE_NONE, the motion parameters are set, but the

motion is not activated. You’ll need to issue an update command to determine the
execution of the movement. Use the TS_UpdateImmediate.vi or the
TS_UpdateOnEvent.vi functions in order to activate the movement.

Related functions: TS_SetAnalogueMoveExternal, TS_SetOnlineMoveExternal

Associated examples: Example 21

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 23

3.4.1.8 TS_SetOnlineMoveExternal.vi

Symbol:

Prototype:

LONG _TS_SetOnlineMoveExternal@24(SHORT INT Reference Type, DOUBLE Limit
Variation, DOUBLE Initial Value, SHORT INT Move Moment);

Parameters:

 Name Description
Reference Type Specifies how the analogue signal is interpreted

Limit Variation Speed/acceleration limit value for position/speed control expressed in
drive/motor internal units

Initial Value The initial value of the reference received on-line
Input

Move Moment Defines the moment when the motion is started
Output Return TRUE if no error, FALSE if error

Description: The function programs the drive/motor to work with a reference received via a
communication channel from an external device. Depending on the control mode chosen, the
external reference is saved in one of the TML variables:

• EREFP, which becomes the position reference if the Reference Type =
REFERENCE_POSITION

• EREFS, which becomes the speed reference if the Reference Type =
REFERENCE_SPEED

• EREFT, which becomes the torque reference if the Reference Type =
REFERENCE_TORQUE

• EREFV, which becomes voltage reference if the Reference Type =
REFERENCE_VOLTAGE

Remark: During the drive/motor setup, in the Drive setup dialogue, you have to:

1. Select the appropriate control type for your application in Drive Setup dialogue.
2. Perform the tuning of controllers associated with the selected control mode.

In position control you can limit the maximum speed at sudden changes of the position reference
and thus to reduce the mechanical shocks. In speed control you can limit the maximum
acceleration at sudden changes of the speed reference and thus to get a smoother transition.
These features are activated by setting the Limit Variation parameter to a positive value and
disabled when the Limit Variation is zero.

The motion is executed:

• Immediately when Move Moment = UPDATE_IMMEDIATE
• When a programmed event occurs if Move Moment = UPDATE_ON_EVENT
• If you select Move Moment = UPDATE_NONE, the movement is parameterized, but

does not execute. You’ll need to issue an update command to determine the execution of

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 24

the movement. Use the TS_UpdateImmediate.vi or the TS_UpdateOnEvent.vi functions
in order to activate the movement.

If the external device starts sending the reference AFTER the motion mode is activated, it may be
necessary to initialize EREFP, EREFS, EREFT or EREFV. The desired starting value is set
through Initial Value parameter.

Related functions: TS_SetAnalogueMoveExternal.vi, TS_SetDigitalMoveExternal.vi

Associated examples: Example 13

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 25

3.4.1.9 TS_VoltageTestMode.vi

Symbol:

Prototype:

LONG _TS_VoltageTestMode@20(SHORT INT MaxVoltage, SHORT INT IncrVoltage, SHORT
INT Theta0, SHORT INT Dtheta, SHORT INT MoveMoment);

Parameters:

 Name Description
MaxVoltage Maximum test voltage expressed in drive/motor voltage command units
IncrVoltage Voltage increment expressed in drive/motor internal units

Theta0 Initial value of electrical angle expressed in drive/motor electrical angle
units

Dtheta Electric angle increment expressed in drive/motor electrical angle
increment units

Input

Move Moment Defines the moment when the motion is started
Output return TRUE if no error, FALSE if error

Description: The function allows you to set the drives/motors in voltage test mode. In the test
mode a saturated ramp voltage is applied to the motor, i.e. the voltage will increase with the
IncrVoltage increment at each slow sampling period up to the MaxVoltage value.

Remark: This is a test mode to be used only in some special cases for drives setup. The test
mode is not supposed to be used during normal operation

For AC motors (like for example the brushless motors), you have the possibility to rotate a voltage
reference vector with a programmable speed. As a result, these motors can be moved in an
“open-loop” mode without using the position sensor. The main advantage of this test mode is the
possibility to conduct in a safe way a series of tests, which can offer important information about
the motor parameters, drive status and the integrity of the its connections.

The voltage reference vector initial position is set through parameter Theta0 and its speed
through Dtheta. For DC motors set these parameters to zero.

The motion is executed:

• Immediately when Move Moment = UPDATE_IMMEDIATE
• When a programmed event occurs if Move Moment = UPDATE_ON_EVENT
• If you select Move Moment = UPDATE_NONE, the movement is parameterized, but

does not execute. You’ll need to issue an update command to determine the execution of
the movement. Use the TS_UpdateImmediate.vi or the TS_UpdateOnEvent.vi functions
in order to activate the movement.

Related functions: TS_TorqueTestMode.vi

Associated examples: Example 22

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 26

3.4.1.10 TS_TorqueTestMode.vi

Symbol:

Prototype:

LONG _TS_TorqueTestMode@20(SHORT INT MaxTorque, SHORT INT IncrTorque, SHORT
INT Theta0, SHORT INT Dtheta, SHORT Move Moment);

Parameters:

 Name Description
MaxTorque Maximum test torque expressed in TML current units Input
IncrTorque Torque increment expressed in TML internal units

 Theta0 Initial value of electrical angle expressed in TML electrical angle units
 Dtheta Electric angle increment expressed in TML electrical angle increment units
 Move Moment Defines the moment when the motion is started

Output return TRUE if no error, FALSE if error

Description: The function allows you to set the drives/motors in torque test mode. In the test
mode a saturated ramp current is applied to the motor, i.e. the current will increase with the
IncrTorque increment at each slow sampling period up to the MaxTorque value.

Remark: This is a test mode to be used only in some special cases for drives setup. The test
mode is not supposed to be used during normal operation

For AC motors (like for example the brushless motors), you have the possibility to rotate a current
reference vector with a programmable speed. As a result, these motors can be moved in an
“open-loop” mode without using the position sensor. The main advantage of this test mode is the
possibility to conduct in a safe way a series of tests, which can offer important information about
the motor parameters, drive status and the integrity of the its connections.

The current reference vector initial position is set through parameter Theta0 and its speed
through Dtheta. For DC motors set these parameters to zero.

The motion is executed:

• Immediately when Move Moment = UPDATE_IMMEDIATE
• When a programmed event occurs if Move Moment = UPDATE_ON_EVENT
• If you select Move Moment = UPDATE_NONE, the movement is parameterized, but

does not execute. You’ll need to issue an update command to determine the execution of
the movement. Use the TS_UpdateImmediate.vi or the TS_UpdateOnEvent.vi functions
in order to activate the movement.

Related functions: TS_VoltageTestMode.vi

Associated examples: Example 23

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 27

3.4.1.11 TS_PVTSetup.vi

Symbol:

Prototype:

LONG _TS_PVTSetup@28(SHORT INT Clear Buffer, SHORT INT Integrity Checking, SHORT
INT Change PVT Counter, SHORT INT Absolute Position Source, SHORT INT Change Low
Level, SHORT INT PVT Counter Value, SHORT INT Low Level Value);

Parameters:

 Name Description
Clear Buffer Specifies if the PVT buffer is cleared
Integrity Checking Enable/disable PVT counter integrity checking

Change PVT Counter Specifies if the integrity counter is updated with the value of
PVTCounterValue parameter

Absolute Position Source Selects the source for initial position for absolute PVT mode

Change Low Level Specifies if the level for BufferLow signaling is updated with the
value of LowLevelValue parameter

PVT Counter Value The new value for the drive/motor PVT integrity counter

Input

Low Level Value The new value for the level of the BufferLow signal
Output return TRUE if no error, FALSE if error

Description: The function programs a drive/motor to work in PVT motion mode. In PVT motion
mode the drive/motor performs a positioning path described through a series of points. Each point
specifies the desired Position, Velocity and Time, i.e. contains a PVT data. Between the points
the built-in reference generator performs a 3rd order interpolation.

Remark: The function block just programs the drive/motor for PVT mode. The motion mode is
activated with function TS_SendPVTFirstPoint.vi and the PVT points are sent to the drive with
function TS_SendPVTPoint.vi.

A key factor for getting a correct positioning path in PVT mode is to set correctly the distance in
time between the points. Typically this is 10-20ms, the shorter the better. If the distance in time
between the PVT points is too big, the 3rd order interpolation may lead to important variations
compared with the desired path.

The PVT motion mode can be started only when the previous motion is complete. However, you
can switch at any moment to another motion mode.

The PVT mode can be relative or absolute. In the absolute mode, each PVT point specifies the
position to reach. The initial position may be either the current position reference TML variable
TPOS (Absolute Position Source = 1) or a preset value read from the TML parameter
PVTPOS0 (Absolute Position Source = 0). In the relative mode, each PVT point specifies the
position increment relative to the previous point. In both cases, the time is relative to the previous

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 28

point i.e. represents the duration of a PVT segment. For the first PVT point, the time is measured
from the starting of the PVT mode.

Remark: The PVT mode, absolute or relative, is set with function TS_SendPVTFirstPoint.vi.

Each time when the drive receives a new PVT point, it is saved into the PVT buffer. The reference
generator empties the buffer as the PVT points are executed. The PVT buffer is of type FIFO (first
in, first out). The default length of the PVT buffer is 7 PVT points. Each entry in the buffer is made
up of 9 words, so the default length of the PVT buffer in terms of how much memory space is
reserved is 63 (3Fh) words. The drive/motor automatically sends messages to the host when the
buffer is full, low or empty. The messages contain the PVT status (TML variable PVTSTS). The
buffer full condition occurs when the number of PVT points in the buffer is equal with the buffer
size. The buffer low condition occurs when the number of PVT points in the buffer is less or equal
with a programmable value. The level for BufferLow signaling is updated when Change Low
Level = YES with the value of parameter Low Level Value. The buffer empty condition occurs
when the buffer is empty and the execution of the last PVT point is over.

When the PVT buffer becomes empty the drive/motor:

• Remains in PVT mode if the velocity of last PVT point executed is zero and waits for new
points to receive

• Enters in quick stop mode if the velocity of last PVT point executed is not zero

Therefore, a correct PVT sequence must always end with a last PVT point having velocity zero.

Remarks:

1. The PVT and PT modes share the same buffer. Therefore the TML parameters and
variables associated with the buffer management are the same.

2. Both the PVT buffer size and its start address are programmable via TML parameters
(int@0x0864) and PVTBUFLEN (int@0x0865). Therefore if needed, the PVT buffer size
can be substantially increased. Use TS_SetIntegerVariable.vi to change the PVT buffer
parameters.

Each PVT point also includes a 7-bit integrity counter. The integrity counter value must be
incremented by the host by one, each time a new PVT point is sent to the drive/motor. If the
integrity counter error checking is activated (Integrity Checking = YES), the drive compares its
integrity counter value with the one sent with the PVT point. This comparison is done every time a
PVT point is received. If the values of the two integrity counters do not match, the integrity check
error is triggered, the drive/motor sends messages with PVTSTS to the host and the received
PVT point is discarded. Each time a PVT point is accepted (the integrity counters match or the
integrity counter error checking is disabled), the drive automatically increments its internal
integrity counter.

The default value of the internal integrity counter after power up is 0. Set Change PVT Counter =
YES to change its value with PVT Counter Value parameter. The integrity counter checking is
disabled when parameter Integrity Checking = NO.

Related functions: TS_SendPVTFirstPoint.vi, TS_SendPVTPoint.vi

Associated examples: –

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 29

3.4.1.12 TS_SendPVTFirstPoint.vi

Symbol:

Prototype:

LONG _TS_SendPVTFirstPoint@36(LONG Position, DOUBLE Velocity, WORD Time,
SHORT INT PVT Counter, SHORT INT PositionType, LONG InitialPosition, SHORT INT Move
Moment, SHORT INT Reference Base);

Parameters:

 Name Description

Position Position value for first PVT point expressed in drive/motor internal
position units

Velocity Speed at the end of the first PVT segment expressed in drive/motor
internal speed units

Time Represents the time interval of the PVT segment expressed in
drive/motor internal time units. The maximum time interval is 511 IU.

PVT Counter Integrity counter for first PVT point.
Position Type Specifies the type of PVT mode
Initial Position The initial position at the start of an absolute PVT movement
Move Moment Defines the moment when the motion is started

Input

Reference Base
Specifies how the motion reference is computed: from actual values of
position and speed reference or from actual values of load/motor
position and speed

Output return TRUE if no error, FALSE if error

Description: The function sends the first PVT point and activates the PVT motion mode.

Parameter Position Type sets the PVT mode: absolute or relative. In the absolute mode
(Position Type = ABSOLUTE_POSITION), each PVT point specifies the position to reach. The
initial position may be either the current position reference TML variable TPOS or a preset value
read from the TML parameter PVTPOS0. In the relative mode (Position Type =
RELATIVE_POSITION), each PVT point specifies the position increment relative to the previous
point.

Remark: The source for initial position, TPOS or PVTPOS0, is set with function TS_PVTSetup.vi.

The motion is executed:

• Immediately when Move Moment = UPDATE_IMMEDIATE
• When a programmed event occurs if Move Moment = UPDATE_ON_EVENT
• If you select Move Moment = UPDATE_NONE, the movement is parameterized, but

does not execute. You’ll need to issue an update command to determine the execution of

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 30

the movement. Use the TS_UpdateImmediate.vi or the TS_UpdateOnEvent.vi functions
in order to activate the movement.

Set Reference Base = FROM_REFERENCE if you want the reference generator to compute the
motion profile starting from the actual values of the position and speed reference. Set Reference
Base = FROM_MEASURE if you want the reference generator to compute the motion profile
starting from the actual values of the load/motor position and speed. When this option is used, at
the beginning of each new motion profile, the position and speed reference are updated with the
actual values of the load/motor position and speed.

Related functions: TS_PVTSetup.vi, TS_SendPVTPoint.vi

Associated examples: –

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 31

3.4.1.13 TS_SendPVTPoint.vi

Symbol:

Prototype:

LONG _TS_SendPVTPoint(LONG Position, DOUBLE Velocity, WORD Time, SHORT INT PVT
Counter);

Parameters:

 Name Description
Position Position at the end of the PVT segment expressed in TML position units Input
Velocity Velocity at the end of the PVT segment expressed in TML speed units

 Time Time interval for the current PVT segment expressed in TML time units
 PVT Counter The integrity counter for the current PVT point

Output return TRUE if no error, FALSE if error

Description: The function sends a PVT point to the drive/motor. Each point specifies the desired
Position, Velocity and Time, i.e. contains a PVT data. Between the PVT points the reference
generator performs a 3rd order interpolation. The PVT point also includes a 7-bit integrity counter
read from PVT Counter. The integrity counter value must be incremented by the host by one,
each time a new PVT point is sent to the drive/motor.

Related functions: TS_PVTSetup.vi, TS_SendPVTFirstPoint.vi

Associated examples: –

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 32

3.4.1.14 TS_PTSetup.vi

Symbol:

Prototype:

LONG _TS_PTSetup@28(SHORT INT Clear Buffer, SHORT INT Integrity Checking, SHORT
INT Change PT Counter, SHORT INT Absolute Position Source, SHORT INT Change Low
Level, SHORT INT PT Counter Value, SHORT INT Low Level Value);

Parameters:

 Name Description
Clear Buffer When TRUE the PT buffer is cleared
Integrity Checking Enable/disable PT counter integrity checking

Change PT Counter Specifies if the integrity counter is updated with the value of PT
Counter Value parameter

Absolute Position Source Selects the source for initial position for absolute PVT mode

Change Low Level Specifies if the level for BufferLow signaling is updated with the
value of LowLevelValue parameter

PT Counter Value The new value for the drive/motor PVT integrity counter

Input

Low Level Value The new value for the level of the BufferLow signal
Output Return TRUE if no error, FALSE if error

Description: The function programs a drive/motor to work in PT motion mode. In PT motion
mode the drive/motor performs a positioning path described through a series of points. Each point
specifies the desired Position and Time, i.e. contains a PT data. Between the points the built-in
reference generator performs a linear interpolation.

Remark: The function block just programs the drive/motor for PT mode. The motion mode is
activated with function TS_SendPTFirstPoint.vi and the PT points are sent to the drive with
function TS_SendPTPoint.vi.

The PT motion mode can be started only when the previous motion is complete. However, you
can switch at any moment to another motion mode.

The PT mode can be relative or absolute. In the absolute mode, each PT point specifies the
position to reach. The initial position may be either the current position reference TML variable
TPOS (Absolute Position Source = 1) or a preset value read from the TML parameter
PVTPOS0 (Absolute Position Source = 0). In the relative mode, each PT point specifies the
position increment relative to the previous point. In both cases, the time is relative to the previous
point i.e. represents the duration of a PT segment. For the first PT point, the time is measured
from the starting of the PT mode.

Remark: The PT mode, absolute or relative, is set with function TS_SendPTFirstPoint.vi.

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 33

Each time when the drive receives a new PT point, it is saved into the PT buffer. The reference
generator empties the buffer as the PT points are executed. The PT buffer is of type FIFO (first in,
first out). The default length of the PT buffer is 7 PT points. Each entry in the buffer is made up of
9 words, so the default length of the PVT buffer in terms of how much memory space is reserved
is 63 (3Fh) words. The drive/motor automatically sends messages to the host when the buffer is
full, low or empty. The messages contain the PVT status (TML variable PVTSTS). The buffer full
condition occurs when the number of PVT points in the buffer is equal with the buffer size. The
buffer low condition occurs when the number of PVT points in the buffer is less or equal with a
programmable value. Set Change Low Level = YES to change the level for BufferLow signaling
with the value of parameter Low Level Value. The buffer empty condition occurs when the buffer
is empty and the execution of the last PT point is over. When the PT buffer becomes empty the
drive/motor keeps the position reference unchanged.

Remarks:

3. The PT and PVT modes share the same buffer. Therefore the TML parameters and
variables associated with the buffer management are the same.

4. Both the PT buffer size and its start address are programmable via TML parameters
(int@0x0864) and PVTBUFLEN (int@0x0865). Therefore if needed, the PT buffer size
can be substantially increased. Use TS_SetIntegerVariable.vi to change the PT buffer
parameters.

Each PT point also includes a 7-bit integrity counter. The integrity counter value must be
incremented by the host by one, each time a new PT point is sent to the drive/motor. If the
integrity counter error checking is activated (Integrity Checking = YES), the drive compares its
integrity counter value with the one sent with the PT point. This comparison is done every time a
PT point is received. If the values of the two integrity counters do not match, the integrity check
error is triggered, the drive/motor sends messages with PVTSTS to the host and the received PT
point is discarded. Each time a PT point is accepted (the integrity counters match or the integrity
counter error checking is disabled), the drive automatically increments its internal integrity
counter.

The default value of the internal integrity counter after power up is 0. Set Change PT Counter =
YES to change the value of integrity counter with PT Counter Value parameter. The integrity
counter checking is disabled when parameter Integrity Checking = NO.

Related functions: TS_SendPTFirstPoint.vi, TS_SendPTPoint.vi

Associated examples: –

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 34

3.4.1.15 TS_SendPTFirstPoint.vi

Symbol:

Prototype:

LONG _TS_SendPTFirstPoint@28(LONG Position, WORD Time, SHORT PT Counter,
SHORT Position Type, LONG Initial Position, SHORT Move Moment SHORT Reference
Base);

Arguments:
 Name Description

Position Position value for first PT point expressed in TML position units
Time Time interval of the PT segment expressed in TML time units.
PT Counter Integrity counter for first PT point.
Position Type Specifies the type of PT mode
Initial Position The initial position at the start of an absolute PT movement
Move Moment Defines the moment when the motion is started

Input

Reference Base
Specifies how the motion reference is computed: from actual values of
position and speed reference or from actual values of load/motor
position and speed

Output Return TRUE if no error, FALSE if error

Description: The function sends the first PT point and activates the PT motion mode.

Parameter Position Type sets the PT mode: absolute or relative. In the absolute mode (Position
Type = ABSOLUTE_POSITION), each PT point specifies the position to reach. The initial
position may be either the current position reference TML variable TPOS or a preset value read
from the TML parameter PVTPOS0. In the relative mode (Position Type =
RELATIVE_POSITION), each PT point specifies the position increment relative to the previous
point.

Remark: The initial position source, TPOS or PVTPOS0, is set with function TS_PTSetup.vi.

The motion is executed:

• Immediately when Move Moment = UPDATE_IMMEDIATE
• When a programmed event occurs if Move Moment = UPDATE_ON_EVENT
• If you select Move Moment = UPDATE_NONE, the movement is parameterized, but

does not execute. You’ll need to issue an update command to determine the execution of
the movement. Use the TS_UpdateImmediate or the TS_UpdateOnEvent functions in
order to activate the movement.

Related functions: TS_PTSetup.vi, TS_SendPTPoint.vi

Associated examples: –

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 35

3.4.1.16 TS_SendPTPoint.vi

Symbol:

Prototype:

LONG _TS_SendPTPoint@12(LONG Position, UNSIGNED SHORT INT Time, SHORT INT PT
Counter);

Parameters:

 Name Description
Input Position Position at the end of the PT segment expressed in TML position units

 Time Time interval for the current PT segment expressed in TML time units
 PT Counter The integrity counter for the current PT point

Output return TRUE if no error, FALSE if error

Description: The function sends a PT point to the drive/motor. Each point specifies the desired
Position, and Time. Between the PT points the reference generator performs a linear
interpolation. The PT point also includes a 7-bit integrity counter read from parameter PT
Counter. The integrity counter value must be incremented by the host by one, each time a new
PT point is sent to the drive/motor.

Related functions: TS_PTSetup.vi, TS_SendPTFirstPoint.vi

Associated examples: –

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 36

3.4.1.17 TS_SetGearingMaster.vi

Symbol:

Prototype:

LONG _TS_SetGearingMaster@24(SHORT INT Group, UNSIGNED CHAR Slave ID, SHORT
INT Reference Base, SHORT INT Enable, UNSIGNED CHAR Set Slave Pos, SHORT INT
Move Moment);

Parameters:

 Name Description

Group Specifies if the master sends its position to one slave or a group of
slaves

Slave ID The axis ID of the slave or group ID of group of slaves
Reference Base Specifies if the master sends its load position or its position reference
Enable Enable/disables the master in electronic gearing
Set Slave Pos Specify if the master is initializing the slave(s)

Input

Move Moment Defines the moment when the settings are activated
Output Return TRUE if no error, FALSE if error

Description: The function programs the active axis as master in electronic gearing. Once at each
slow loop sampling time interval, the master sends either its load position APOS (Reference
Base = FROM_MEASURE) or its position reference TPOS (Reference Base =
FROM_REFERENCE) to the axis or the group of axes specified in the parameter Slave ID.

Remark: The Reference Base = FROM_MEASURE option is not valid if the master operates in
open loop. It is meaningless if the master drive has no position sensor.

The Slave ID is interpreted either as the Axis ID of one slave (Group = NO) or the value of a
Group ID i.e. the group of slaves to which the master should send its data (Group = YES).

The master operation is enabled with Enable = ENABLE and is disabled when Enable =
DISABLE. In both cases, these operations have no effect on the motion executed by the master.

If the master activation is done AFTER the slaves are set in electronic gearing mode, set Set
Slave Pos = INITIALIZE to determine the master to send an initialization message to the slaves.

The commands are executed:
• Immediately when Move Moment = UPDATE_IMMEDIATE
• When a programmed event occurs if Move Moment = UPDATE_ON_EVENT
• If you select Move Moment = UPDATE_NONE, the movement is parameterized, but

does not execute. You’ll need to issue an update command to determine the execution of
the movement. Use the TS_UpdateImmediate.vi or the TS_UpdateOnEvent.vi functions
in order to activate the movement.

Related functions: TS_SetGearingSlave, TS_SendSynchronization
Associated examples: Example 31

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 37

3.4.1.18 TS_SetGearingSlave.vi

Symbol:

Prototype:

LONG _TS_SetGearingSlave@28(SHORT INT Denominator, SHORT INT Numerator, SHORT
INT Reference Base, SHORT INT Enable, DOUBLE Limit Variation, SHORT INT Move
Moment);

Parameters:

 Name Description
Denominator Gear ratio denominator (always positive)
Numerator Gear ratio numerator (positive or negative)

Reference Base
Specifies how the motion reference is computed: from actual
values of position and speed reference or from actual values of
load/motor position and speed

Enable Slave Enables the electronic gearing slave mode
Enable Superposition Enables/disables motion superposition
Limit Variation Acceleration limit when the slave is coupling

Input

Move Moment Defines the moment when the settings are activated
Output return TRUE if no error, FALSE if error

Description: The function programs the active axis to operate as slave in electronic gearing. In
electronic gearing slave mode the drive/motor performs a position control. At each slow loop
sampling period, the slave computes the master’s position increment and multiplies it with its
programmed gear ratio. The result is the slave’s position reference increment, which added to the
previous slave position reference gives the new slave position reference.

The gear ratio is the result of the division Numerator / Denominator. Numerator is a signed
integer, while the Denominator is unsigned integer. The Numerator sign indicates the direction
of movement: positive – same as the master, negative – reversed to the master. Numerator and
Denominator are used by an automatic compensation procedure that eliminates the round off
errors, which occur when the gear ratio is an irrational number like: 1/3 (Slave = 1, Master = 3).

The slave can get the master position in two ways:

1. Via a communication channel (Enable Slave = SLAVE_COMMUNICATION_CHANNEL),
from a drive/motor set as master with function block TS_SetGearingMaster

2. Via an external digital reference of type pulse & direction or quadrature encoder (Enable
Slave = SLAVE_2ND_ENCODER)

Remark: Set Enable Slave = SLAVE_NONE if you want to program the motion mode
parameters without enabling it.

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 38

When master position is provided via the external digital interface, the slave computes the master
position by counting the pulse & direction or quadrature encoder signals. The initial value of the
master position is set by default to 0. Use function TS_SetLongVariable to change its value by
writing the desired value in the TML variable APOS2.

You can smooth the slave coupling with the master, by limiting the maximum acceleration on the
slave. This is particularly useful when the slave must couple with a master running at high speed.
This feature is activated when the parameter Limit Value has a positive value and disabled when
its value is zero.

Set Reference Base = FROM_REFERENCE if you want the reference generator to compute the
slave position starting from the actual values of the position and speed reference. Set Reference
Base = FROM_MEASURE if you want the reference generator to compute the slave position
starting from the actual values of the load/motor position and speed. When this option is used, at
the beginning of each new motion profile, the position and speed reference are updated with the
actual values of the load/motor position and speed.

Remarks:

1. The function requires drive/motor position loop to be closed. During the drive/motor setup
select Position at Control Mode and perform the position controller tuning.

2. Use function block TS_SetGearingMaster.vi to program a drive/motor as master in
electronic gearing

3. When the reference is read from second encoder or pulse & direction inputs you don’t
need to program a drive/motor as master in electronic gearing

Related functions: TS_SetGearingMaster.vi, TS_SetMasterResolution.vi

Associated examples: Example 31

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 39

3.4.1.19 TS_SetCammingMaster.vi

Symbol:

Prototype:

LONG _TS_SetCammingMaster@20(SHOT INT Group, UNSIGNED CHAR Slave ID, SHORT
INT Reference Base, SHORT INT Enable, SHORT INT Move Moment);

Parameters:

 Name Description

Group Specifies if the master sends its position to one slave or a group of
slaves

Slave ID The axis ID of the slave or group ID of group of slaves
Reference Base Specifies if the master sends its load position or its position reference
Enable Enable/disables the master in electronic camming

Input

Move Moment Defines the moment when the settings are activated
Output Return TRUE if no error, FALSE if error

Description: The function programs the active axis as master in electronic camming. Once at
each slow loop sampling time interval, the master sends either its load position APOS (Reference
Base = FROM_MEASURE) or its position reference TPOS (Reference Base =
FROM_REFERENCE) to the axis or the group of axes specified in the parameter Slave ID.

Remark: The Reference Base = FROM_MEASURE option is not valid if the master operates in
open loop. It is meaningless if the master drive has no position sensor.

The SlaveID is interpreted either as the Axis ID of one slave (Group = SET_SLAVE) or the value
of a Group ID i.e. the group of slaves to which the master should send its data (Group =
SET_GROUP).

The master operation is enabled with Enable = ENABLE and is disabled when Enable =
DISABLE. In both cases, these operations have no effect on the motion executed by the master.

The commands are executed:

• Immediately when Move Moment = UPDATE_IMMEDIATE
• When a programmed event occurs if Move Moment = UPDATE_ON_EVENT
• If you select Move Moment = UPDATE_NONE, the movement is parameterized, but

does not execute. You’ll need to issue an update command to determine the execution of
the movement. Use the TS_UpdateImmediate.vi or the TS_UpdateOnEvent.vi functions
in order to activate the movement.

Related functions: TS_CamDownload.vi, TS_CamInitialization.vi
TS_SetCammingSlaveRelative.vi, TS_SetCammingSlaveAbsolute.vi,
TS_SendSynchronization.vi

Associated examples: Example 32

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 40

3.4.1.20 TS_SetCammingSlaveRelative.vi

Symbol:

Prototype:

LONG _TS_SetCammingSlaveRelative@36(UNSIGNED SHORT INT RunAddress, SHORT
INT Reference Base, SHORT INT Enable Slave, SHORT INT Move Moment, LONG Offset
From Master, DOUBLE Mult Input Factor, DOUBLE Mult Output Factor);

Parameters:

 Name Description

Run Address Drive/motor RAM address where the cam table is copied with
function TS_CamInitialization

Reference Base
Specifies how the motion reference is computed: from actual
values of position and speed reference or from actual values of
load/motor position and speed

Enable Slave Enable the electronic camming slave mode
Move Moment Defines the moment when the settings are activated
Offset From Master Cam table offset expressed in TML position units
Mult Input Factor CAM table input scaling factor

Input

Mult Output Factor CAM table output scaling factor
Output Return TRUE if no error, FALSE if error

Description: The function block programs the active axis to operate as slave in electronic
camming relative mode. The slave drive/motor executes a cam profile function of the master
drive/motor position. The cam profile is defined by a cam table – a set of (X, Y) points, where X is
cam table input i.e. the master position and Y is the cam table output i.e. the corresponding slave
position. Between the points the drive/motor performs a linear interpolation. In electronic camming
relative mode the output of the cam table is added to the slave actual position.

The cam tables are previously stored in drive/motor EEPROM memory with function
TS_CamDownload.vi. After download, previously starting the camming slave, you have to
initialize the cam table, i.e. to copy it from EEPROM memory to RAM memory. Use function
TS_CamInitialization.vi to initialize a cam table. The active cam table is selected through
parameter Run Address. The Run Address must contain the drive/motor RAM address where
the cam table was copied.

The slave can get the master position in two ways:

1. Via a communication channel (Enable Slave = SLAVE_COMM_CH), from a drive/motor
set as master with function block TS_SetGearingMaster

2. Via an external digital reference of type pulse & direction or quadrature encoder (Enable
Slave = SLAVE_2ND_ENCODER)

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 41

Remark:

1. Set Enable Slave = SLAVE_NONE if you want to program the motion mode parameters
without enabling it.

2. Use function block TS_SetCammingMaster.vi to program a drive/motor as master in
electronic camming. When the reference is read from second encoder or pulse &
direction inputs you don’t need to program a drive/motor as master in electronic camming

When master position is provided via the external digital interface, the slave computes the master
position by counting the pulse & direction or quadrature encoder signals. The initial value of the
master position is set by default to 0. Use function block TS_SetLongVariable to change its value
by writing the desired value in the TML variable APOS2.

With parameter Offset From Master you can shift the cam profile versus the master position, by
setting an offset for the slave. The cam table input is computed as the master position minus the
cam offset. For example, if a cam table is defined between angles 100 to 250 degrees, a cam
offset of 50 degrees will make the cam table to execute between master angles 150 and 300
degrees.

You can compress/extend the cam table input. Set the parameter Mult Input Factor with the
correction factor by which the cam table input is multiplied. For example, an input correction factor
of 2, combined with a cam offset of 180 degrees, will make possible to execute a cam table
defined for 360 degrees of the master in the last 180 degrees.

You can also compress/extend the cam table output. Specify through input Mult Output Factor
the correction factor by which the cam table output is multiplied. This feature addresses the
applications where the slaves must execute different position commands at each master cycle, all
having the same profile defined through a cam table. In this case, the drive/motor is programmed
with a unique normalized cam profile and the cam table output is multiplied with the relative
position command updated at each master cycle.

If you intend to use the default or previously defined values for the Mult Input Factor, Mult
Output Factor and/or Offset From Master, you don’t need to send their values. Set to zero their
values if you want the drive/motor to use the values previously defined with other commands (this
option reduces the TML code generated by this function).

Related functions: TS_CamDownload.vi, TS_CamInitialization.vi,
TS_SetCammingSlaveAbsolute.vi, TS_SetCammingMaster.vi,
TS_SetMasterResolution.vi

Associated examples: Example 32

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 42

3.4.1.21 TS_SetCammingSlaveAbsolute.vi

Symbol:

Prototype:

LONG _TS_SetCammingSlaveAbsolute@44(UNSIGNED SHORT INT Run Address, DOUBLE
Limit Variation, SHORT INT Reference Base, SHORT INT Enable Slave, SHORT INT Move
Moment, LONG Offset From Master, DOUBLE Mult Input Factor, DOUBLE Mult Output
Factor);

Parameters:

 Name Description

Run Address Drive/motor RAM address where the cam table is copied with
function TS_CamInitialization

Limit Variation Slave speed limit value expressed in TML speed units

Reference Base
Specifies how the motion reference is computed: from actual
values of position and speed reference or from actual values of
load/motor position and speed

Enable Slave Enable the electronic camming slave mode
Move Moment Defines the moment when the settings are activated
Offset From Master Cam table offset expressed in TML position units

Input

Mult Input Factor CAM table input scaling factor
 Mult Output Factor CAM table output scaling factor

Output Return TRUE if no error, FALSE if error

Description: The function block programs the active axis to operate as slave in electronic
camming absolute mode. The slave drive/motor executes a cam profile function of the master
drive/motor position. The cam profile is defined by a cam table – a set of (X, Y) points, where X is
cam table input i.e. the master position and Y is the cam table output i.e. the corresponding slave
position. Between the points the drive/motor performs a linear interpolation. In electronic camming
absolute mode the output of the cam table represents the position to reach.

The electronic camming absolute mode may generate abrupt variations on the slave position
reference, mainly at entry in the camming mode. Set parameter Limit Variation to limit the speed
of the slave during travel towards the position to reach. The limitation is disabled if the Limit
Variation is set to zero.

The cam tables are previously stored in drive/motor EEPROM memory with function
TS_CamDownload.vi. After download, previously starting the camming slave, you have to
initialize the cam table, i.e. to copy it from EEPROM memory to RAM memory. Use function
TS_CamInitialization.vi to initialize a cam table. The active cam table is selected through

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 43

parameter Run Address. The Run Address must contain the drive/motor RAM address where
the cam table was copied.

The slave can get the master position in two ways:

1. Via a communication channel (Enable Slave = SLAVE_COMM_CH), from a drive/motor
set as master with function block TS_SetGearingMaster

2. Via an external digital reference of type pulse & direction or quadrature encoder (Enable
Slave = SLAVE_2ND_ENCODER)

Remark:

1. Set Enable Slave = SLAVE_NONE if you want to program the motion mode parameters
without enabling it.

2. Use function block TS_SetCammingMaster.vi to program a drive/motor as master in
electronic camming. When the reference is read from second encoder or pulse &
direction inputs you don’t need to program a drive/motor as master in electronic camming

When master position is provided via the external digital interface, the slave computes the master
position by counting the pulse & direction or quadrature encoder signals. The initial value of the
master position is set by default to 0. Use function block TS_SetLongVariable to change its value
by writing the desired value in the TML variable APOS2.

Set the parameter Offset From Master to shift the cam profile versus the master position, by
setting an offset for the slave. The cam table input is computed as the master position minus the
cam offset. For example, if a cam table is defined between angles 100 to 250 degrees, a cam
offset of 50 degrees will make the cam table to execute between master angles 150 and 300
degrees.

You can compress/extend the cam table input. Set the parameter Mult Input Factor with the
correction factor by which the cam table input is multiplied. For example, an input correction factor
of 2, combined with a cam offset of 180 degrees, will make possible to execute a cam table
defined for 360 degrees of the master in the last 180 degrees.

You can also compress/extend the cam table output. Specify through input Mult Output Factor
the correction factor by which the cam table output is multiplied. This feature addresses the
applications where the slaves must execute different position commands at each master cycle, all
having the same profile defined through a cam table. In this case, the drive/motor is programmed
with a unique normalized cam profile and the cam table output is multiplied with the relative
position command updated at each master cycle.

Remark: If the Offset From Master, Mult Input Factor and/or Mult Output Factor are set to zero
the drive/motor will use the value previously set for the parameter or the default value. With this
option the TML code generated by this function is reduced.

Related functions: TS_CamDownload.vi, TS_CamInitialization.vi,
TS_SetCammingSlaveRelative.vi, TS_SetCammingMaster.vi,
TS_SetMasterResolution.vi

Associated examples: –

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 44

3.4.1.22 TS_CamDownload.vi

Symbol:

Prototype:

LONG _TS_CamDownload@20(CSTR Cam File, UNSIGNED SHORT INT Load Address,
UNSIGNED SHORT INT Run Address, UNSIGNED SHORT INT *Next Load Address,
UNSIGNED SHORT INT *Next Load Address);

Parameters:

 Name Description
Cam File The name of the file containing the cam table description

Load Address The EEPROM memory address where the cam table is
downloaded Input

Run Address The RAM address where the cam table is copied at initialization

Next Load Address Next available EEPROM address from where a cam table can be
downloaded

Next Run Address Next available RAM address where a cam table can be copied Output

Return TRUE if no error, FALSE if error

Description: The function downloads a cam table in the drive/motor EEPROM memory starting
with address Load Address. The Run Address parameter is required to compute the Next Run
Address. The function returns the next valid memory addresses for cam tables trough output
parameters Next Load Address respectively Next Run Address. If the values returned by the
function are 0 then there is no memory available.

The Load Address and Run Address for the first cam table downloaded are computed by
EasyMotion Studio and displayed in the dialogue Memory Settings. To open the dialogue
Memory Settings select the appropriate application and in Application General Information
press the button Memory Settings. For the next cam tables, if available, the Load Address and
Run Address are the values returned by the previous call function TS_CamDownload
(parameters Next Load Address and Next Run Address).

The cam table description is read from the file Cam File. The file is generated from EasyMotion
Studio and has the extension *.cam.

Steps to follow when using cam tables:

1. Create or import a cam table in EasyMotion Studio. The cam table is saved by
EasyMotion Studio in the application’s directory.

2. Download the cam table in the drive/motor EEPROM memory with TS_CamDownload.vi
3. Initialize the cam table with function TS_CamInitialization.vi
4. Program the drive/motor to operate as slave in electronic camming mode with

TS_SetCammingSlaveAbsolute.vi or TS_SetCammingSlaveRelative.vi. Select the
cam table used with the parameter RunAddress.

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 45

Related functions: TS_SetCammingSlaveRelative.vi, TS_SetCammingSlaveAbsolute.vi,
TS_CamInitialization.vi

Associated examples: Example 32

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 46

3.4.1.23 TS_CamInitialization.vi

Symbol:

Prototype:

LONG _TS_CamInitialization(UNSIGNED SHORT INT Load Address, UNSIGNED SHORT INT
Run Address);

Parameters:

 Name Description
Load Address EEPROM memory address where the cam table is downloaded Input
Run Address RAM address where the cam table is copied at run time

Output Return TRUE if no error, FALSE if error

Description: The function copies a cam table from drive/motor EEPROM memory in the RAM
memory at address Run Address. The cam table was previously downloaded with function
TS_CamDownload.vi at EEPROM address Load Address.

The function must be called for each cam table used by the application.

Related functions: TS_SetCammingSlaveRelative.vi, TS_SetCammingSlaveAbsolute.vi,
TS_CamDownload.vi

Associated examples: Example 32

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 47

3.4.1.24 TS_SetMasterResolution

Symbol:

Prototype:

LONG _TS_SetMasterResolution@4(LONG Master Resolution);

Parameters:

 Name Description

Input Master Resolution Number of encoder counts per one revolution of the master
position sensor.

Output Return TRUE if no error, FALSE if error

Description: The function sets the TML parameter MASTERRES with the value Master
Resolution.

The master resolution is needed by the electronic gearing or camming slaves to compute
correctly the master position and speed (i.e. the position increment). If master position is not
cyclic (i.e. the resolution is equal with the whole 32-bit range of position), set master resolution to
FULL_RANGE.

Remark: Call function TS_SetMasterResolution.vi before activating the electronic gearing or
camming slave mode with function TS_SetGearingSlave.vi respectively
TS_SetCammingSlaveAbsolute/Relative.vi.

Related functions: TS_SetGearingSlave.vi, TS_SetCammingSlaveAbsolute.vi,
TS_SetCammingSlaveRelative.vi

Associated examples: Example 32

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 48

3.4.1.25 TS_SendSynchronization

Symbol:

Prototype:

LONG _TS_SendSynchronization@4(LONG Period);

Parameters:

 Name Description

Input Period Time period between two synchronization messages. It is
expressed in drive/motor internal time units

Output return TRUE if no error, FALSE if error

Description: The function enables/disables the synchronization procedure between axes. The
synchronization process is activated when the parameter Period has a non-zero value. The
active axis is set as the synchronization master and the other axes become synchronization
slaves. To disable the synchronization procedure set the Period to zero.

The synchronization process is performed in two steps. First, the master sends a synchronization
message to all axes, including to itself. When this message is received, all the axes read their
own internal time. Next, the master sends its internal time to all the slaves, which compare it with
their own internal time. If there are differences, the slaves correct slightly their sampling periods in
order to keep them synchronized with those of the master. As effect, when synchronization
procedure is active, the execution of the control loops on the slaves is synchronized with those of
the master within a 10µs time interval. Due to this powerful feature, drifts between master and
slave axes are eliminated. The Period represents the time interval in internal units between the
synchronization messages sent by the master. Recommended value is 20ms.

Related functions: TS_SetGearingMaster.vi, TS_SetGearingSlave.vi,
TS_SetCammingMaster.vi, TS_SetCammingSlave.vi

Associated examples: –

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 49

3.4.2 Motor commands

3.4.2.1 TS_Power.vi

Symbol:

Prototype:

LONG _TS_Power@4(SHORT INT Enable);

Parameters:

 Name Description
Input Enable Enables/disables the power stage of the active axis

Output return TRUE if no error; FALSE if error

Description: The function enables/disables the power stage of the active axis. If Enable =
POWER_ON the power stage is enabled (executes the TML command AxisON). The power
stage is disabled (executes the TML command AxisOFF) when Enable = POWER_OFF.

Related functions: TS_ResetFault.vi, TS_Reset.vi

Associated examples: all examples

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 50

3.4.2.2 TS_UpdateImmediate.vi

Symbol:

Prototype:

LONG _TS_UpdateImmediate@0(void);

Parameters:

 Name Description
Input – –

Output return TRUE if no error, FALSE if error

Description: The function updates the motion mode immediately. It allows you to start a motion
previously programmed. This can be useful for example if you already defined a motion and you
want to start it in a specific context (after testing a condition, event, input port, etc.). The
command can also be useful to repeat the last motion that was already defined and eventually
executed (as for example a relative move).

Related functions: TS_UpdateOnEvent.vi

Associated examples: Example 5, Example 19

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 51

3.4.2.3 TS_UpdateOnEvent.vi

Symbol:

Prototype:

LONG _TS_UpdateOnEvent@0(void);

Parameters:

 Name Description
Input – –

Output return TRUE if no error, FALSE if error

Description: The function updates the motion mode on next event occurrence. It allows you to
start a motion that was previously programmed at the occurrence of the active event. This can be
useful for example if you already defined a motion and you want to start it when an event occurs.
The command can also be used to repeat the last motion that was already defined and eventually
executed (as for example a relative move), when the event will occur.

Related functions: TS_UpdateImmediate.vi

Associated examples: Example 6, Example 38

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 52

3.4.2.4 TS_Stop.vi

Symbol:

Prototype:

LONG _TS_Stop@0(void);

Parameters:

 Name Description
Input – –

Output return TRUE if no error, FALSE if error

Description: The functions stops the motor with the deceleration rate set in TML parameter
CACC. The drive/motor decelerates following a trapezoidal speed profile. If the function is called
during the execution of an S-curve profile, the deceleration profile may be chosen between a
trapezoidal or an S-curve profile. You can detect when the motor has stopped by setting a motion
complete event with function TS_SetEventOnMotionComplete.vi and waiting until the event
occurs (Wait Event = WAIT_EVENT). When the drive performs torque control the drive is set in
torque external mode with current reference = 0.

Remarks:

• In order to restart after a TS_Stop.vi call you need to set again the motion mode. This
operation disables the stop mode and allows the motor to move

• When TS_Stop.vi is executed it will automatically stop any TML program execution, to
avoid overwriting the command from the TML program

• During abrupt stops an important energy may be generated. If the power supply can’t
absorb the energy generated by the motor, it is necessary to foresee an adequate surge
capacitor in parallel with the drive supply to limit the over voltage.

Related functions: TS_QuickStopDecelerationRate.vi

Associated examples: Example 10, Example 13, Example 16, Example 18, Example 21,
Example 22, Example 24, Example 25, Example 26, Example 27
Example 29, Example 30, Example 31, Example 32, Example 34,
Example 40

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 53

3.4.2.5 TS_SetPosition.vi

Symbol:

Prototype:

LONG _TS_SetPosition@4(LONG Position);

Parameters:

 Name Description
Input Position The value used to set the position, expressed in TML position units

Output return TRUE if no error, FALSE if error

Description: The function sets/changes the referential for position measurement by changing
simultaneously the load position (TML variable APOS) and the target position values (TML
variable APOS), while keeping the same position error. Future motion commands will then be
related to the absolute value, as updated at this point to Position.

Related functions: –

Associated examples: Example 6, Example 12, Example 14, Example 28, Example 32,
Example 35, Example 39

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 54

3.4.2.6 TS_SetTargetPositionToActual.vi

Symbol:

Prototype:

LONG _TS_SetTargetPositionToActual@0(void);

Parameters:

 Name Description
Input – –

Output return TRUE if no error, FALSE if error

Description: The function sets the value of the target position (the position reference) to the
value of the actual load position i.e. TPOS = APOS_LD. The command may be used in closed
loop systems when the load/motor is still following a hard stop, to reposition the target position to
the actual load position.

Remark: The command is automatically done if the next motion mode is set with Reference
Base = FROM_MEASURE. In this case the target position and speed are both updated with the
actual values of the load position and respectively load speed: TPOS = APOS_LD and TSPD =
ASPD_LD.

Related functions: –

Associated examples: Example 28

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 55

3.4.2.7 TS_SetCurrent.vi

Symbol:

Prototype:

LONG _TS_SetCurrent@4(SHORT INT Current Value);

Parameters:

 Name Description

Input Current Value Value at which the motor current reference is set expressed in drive/motor
internal current units

Output Return TRUE if no error, FALSE if error

Description: The function sets the motor run current with Current Value. The run current is used
by the drive to control the step motor in open loop.

Remark: The command is valid only for configurations with step motor operating in open loop.

Related functions: –

Associated examples: Example 8

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 56

3.4.2.8 TS_QuickStopDecelerationRate.vi

Symbol:

Prototype:

LONG _TS_QuickStopDecelerationRate@8(DOUBLE Deceleration);

Parameters:

 Name Description
Input Deceleration The value written in TML parameter CDEC

Output return TRUE if no error, FALSE if error

Description: The function sets on the active axis the TML parameter CDEC with the value
Deceleration. The drive/motor uses the deceleration rate when:

• The function TS_Stop is executed during a positioning set with
TS_MoveSCurveRelative/Absolute and option Deceleration Type =
TRAPEZOIDAL_SPEED_PROFILE

• Enters in quick stop mode. The drive enters in quick stop mode if an error requiring the
immediate stop of the motion occurs (like triggering a limit switch or following a command
error), the drive/motor enters automatically

Related functions: TS_Stop.vi, TS_MoveSCurveRelative.vi, TS_MoveSCurveAbsolute.vi

Associated examples: Example 34

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 57

3.4.3 Events

3.4.3.1 TS_CheckEvent.vi

Symbol:

Prototype:

LONG _TS_CheckEvent@4(SHORT INT *event);

Parameters:

 Name Description
Input – –

Event Signal if event occurred Output
return TRUE if no error, FALSE if error

Description: The function checks if the actually active event occurred. If an event was defined
using one of the SetEvent… functions with WaitEvent = NO_WAIT_EVENT then you can check
if the event occurred using the TS_CheckEvent.vi function.

This is an interesting alternative to the case when WaitEvent parameter was set to
WAIT_EVENT in one of the SetEvent… functions. In that case, if the event will not occur, due to
some unexpected problems, the program will hang-up in an internal loop of the SetEvent…
function waiting for the event to occur.

Thus, in order to avoid such a problem, set the WaitEvent parameter to NO_WAIT_EVENT, in
the SetEvent… function, and then call the TS_CheckEvent.vi function from your application. In
this way, you can detect if the event does not occur and eventually exit from the test loop after a
given time period.

Related functions: all SetEvent… functions

Associated examples: Example 24, Example 27

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 58

3.4.3.2 TS_SetEventOnMotionComplete.vi

Symbol:

Prototype:

LONG _TS_SetEventOnMotionComplete@8(SHORT INT Wait Event, SHORT INT Enable
Stop);

Parameters:

 Name Description
Wait Event Specifies if the function waits the event occurrence Input
Enable Stop On motion complete stop the motion

Output return TRUE if no error, FALSE if error

Description: The function sets an event when the motion is completed. You can use, for
example, this event to start your next move only after the actual move is finalized.

The motion complete condition is set in the following conditions:

• During position control:

o If UPGRADE.11=1, when the position reference arrives at the position to reach
(commanded position) and the position error remains inside a settle band for a
preset stabilize time interval. The settle band is set with TML parameter
POSOKLIM and the stabilize time with TML parameter TONPOSOK. This is the
default condition.

o If UPGRADE.11=0, when the position reference arrives at the position to reach
(commanded position)

• During speed control, when the speed reference arrives at the commanded speed

The motion complete condition is reset when a new motion is started i.e. when the update
command – UPD is executed.

Remark:

1. Use function TS_SetIntVariable.vi to change the settle band and/or the stabilize time.
2. In case of steppers controlled open-loop, the motion complete condition for positioning is

always set when the position reference arrives at the position to reach independently of
the UPGRADE.11 status.

If the Wait Event = WAIT_EVENT, the function will continuously test the status of the drive event,
and will wait until the event occurs. There is a drawback of this situation, if the event will not
occur, due to some unexpected problems. In such a case, the program hangs-up in an internal
loop of the TS_SetEventOnMotionComplete.vi waiting for the event to occur.

If the parameter Wait Event = NO_WAIT_EVENT you can check if the event occurred using the
TS_CheckEvent.vi function. In this way, you can detect if the event does not occur and
eventually exit from the test loop after a given time period.

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 59

At event occurrence the motion is stopped if the parameter Enable Stop = STOP. Set Enable
Stop = NO_STOP if you do not want to stop the motion at event occurrence.

Related functions: TS_CheckEvent.vi, and all other SetEvent… functions

Associated examples: Example 1, Example 2, Example 4, Example 7, Example 14,
Example 20, Example 24, Example 28, Example 29, Example 31,
Example 32, Example 33, Example 35, Example 37, Example 39,
Example 40

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 60

3.4.3.3 TS_SetEventOnMotorPosition.vi

Symbol:

Prototype:

LONG _TS_SetEventOnMotorPosition@20(SHORT INT Position Type, LONG Position,
SHORT INT Over, SHORT INT WaitEvent, SHORT INT Enable Stop);

Parameters:

 Name Description
Position Type Specifies the motor position type: absolute or relative

Position The position value that triggers the event expressed in TML
position units.

Over Specifies the condition tested
Wait Event Specifies if the function waits the event occurrence

Input

Enable Stop Stop the motion when at event occurrence
Output return TRUE if no error, FALSE if error

Description: It allows you to program an event function of motor position. The events can be:
when the absolute (Position Type = ABSOLUTE_POSITION) or relative (Position Type =
ABSOLUTE_RELATIVE) motor position is equal or over/under Position.

The absolute motor position is the measured position of the motor. The relative position is the
load displacement from the beginning of the actual movement. For example if a position profile
was started with the absolute load position 50 revolutions, when the absolute load position
reaches 60 revolutions, the relative motor position is 10 revolutions.

The condition monitored for the event is set with parameter Over. For Over = OVER the event is
set when the motor position is equal or over the Position. When Over = BELOW the event is set
if the motor position becomes equal or under Position.

If the Wait Event = WAIT_EVENT, the function tests continuously the event status, and waits
until the event occurs. There is a drawback of this situation, if the event will not occur, due to
some unexpected problems. In such a case, the program hangs-up in an internal loop of the
TS_SetEventOnMotorPosition.vi waiting for the event to occur.

If the parameter Wait Event = NO_WAIT_EVENT you can check if the event occurred using the
TS_CheckEvent.vi function. In this way, you can detect if the event does not occur and
eventually exit from the test loop after a given time period.

At event occurrence the motion is stopped if the parameter Enable Stop = STOP. Set Enable
Stop = NO_STOP if you do not want to stop the motion at event occurrence.

Related functions: TS_CheckEvent, and all other SetEvent… functions

Associated examples: Example 11, Example 12, Example 14

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 61

3.4.3.4 TS_SetEventOnLoadPosition.vi

Symbol:

Prototype:

LONG _TS_SetEventOnLoadPosition@20(LONG Position, SHORT INT Over, SHORT INT
Wait Event, SHORT INT Enable Stop);

Parameters:

 Name Description
Position Type Specifies the load position type: absolute or relative

Position The position value that triggers the event expressed in TML
position units.

Over Specifies the condition tested
Wait Event Specifies if the function waits the event occurrence

Input

Enable Stop Stop the motion when at event occurrence
Output return TRUE if no error, FALSE if error

Description: It allows you to program an event function of load position. The events can be:
when the absolute (Position Type = ABSOLUTE_POSITION) or relative (Position Type =
ABSOLUTE_RELATIVE) load position is equal or over/under Position.

The absolute load position is the measured position of the load. The relative position is the load
displacement from the beginning of the actual movement.

The condition monitored for the event is set with parameter Over. For Over = OVER the event is
set when the load position is equal or over the Position. When Over = BELOW the event is set if
the load position becomes equal or under Position.

If the Wait Event = WAIT_EVENT, the function tests continuously the event status, and waits
until the event occurs. There is a drawback of this situation, if the event will not occur, due to
some unexpected problems. In such a case, the program hangs-up in an internal loop of the
TS_SetEventOnLoadPosition.vi waiting for the event to occur.

If the parameter Wait Event = NO_WAIT_EVENT you can check if the event occurred using the
TS_CheckEvent.vi function. In this way, you can detect if the event does not occur and
eventually exit from the test loop after a given time period.

At event occurrence the motion is stopped if the parameter Enable Stop = STOP. Set Enable
Stop = NO_STOP if you do not want to stop the motion at event occurrence.

Related functions: TS_CheckEvent.vi, and all other SetEvent… functions

Associated examples: Example 42

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 62

3.4.3.5 TS_SetEventOnMotorSpeed.vi

Symbol:

Prototype:

LONG _TS_SetEventOnMotorSpeed@20(DOUBLE Speed, SHORT INT Over, SHORT INT
WaitEvent, SHORT INT Enable Stop);

Parameters:

 Name Description

Speed The speed value that triggers the event expressed in drive/motor
internal speed units.

Over Specifies the condition tested
Wait Event Specifies if the function waits the event occurrence

Input

Enable Stop Stop the motion when at event occurrence
Output Return TRUE if no error, FALSE if error

Description: It allows you to program an event function of motor speed. The events can be: when
the motor speed is over (Over = OVER) or under (Over = BELOW) the Speed parameter.

If the Wait Event = WAIT_EVENT, the function tests continuously the event status, and waits
until the event occurs. There is a drawback of this situation, if the event will not occur, due to
some unexpected problems. In such a case, the program hangs-up in an internal loop of the
TS_SetEventOnMotionComplete.vi waiting for the event to occur.

If the parameter Wait Event = NO_WAIT_EVENT you can check if the event occurred using the
TS_CheckEvent.vi function. In this way, you can detect if the event does not occur and
eventually exit from the test loop after a given time period.

At event occurrence the motion is stopped if the parameter Enable Stop = STOP. Set Enable
Stop = NO_STOP if you do not want to stop the motion at event occurrence.

Related functions: TS_CheckEvent.vi, and all other SetEvent… functions

Associated examples: Example 3, Example 6, Example 12

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 63

3.4.3.6 TS_SetEventOnLoadSpeed.vi

Symbol:

Prototype:

LONG _TS_SetEventOnLoadSpeed@20(DOUBLE Speed, SHORT INT Over, SHORT INT
Wait Event, SHORT INT EnableStop);

Parameters:

 Name Description

Speed The speed value that triggers the event expressed in drive/motor
internal speed units.

Over Specifies the condition tested
Wait Event Specifies if the function waits the event occurrence

Input

Enable Stop Stop the motion when at event occurrence
Output return TRUE if no error, FALSE if error

Description: It allows you to program an event function of load speed. The events can be: when
the load speed is over (Over = OVER) or under (Over = BELOW) the Speed parameter.

If the Wait Event = WAIT_EVENT, the function tests continuously the event status, and waits
until the event occurs. There is a drawback of this situation, if the event will not occur, due to
some unexpected problems. In such a case, the program hangs-up in an internal loop of the
TS_SetEventOnLoadSpeed.vi waiting for the event to occur.

If the parameter Wait Event = NO_WAIT_EVENT you can check if the event occurred using the
TS_CheckEvent.vi function. In this way, you can detect if the event does not occur and
eventually exit from the test loop after a given time period.

At event occurrence the motion is stopped if the parameter Enable Stop = STOP. Set Enable
Stop = NO_STOP if you do not want to stop the motion at event occurrence.

Related functions: TS_CheckEvent.vi, and all other SetEvent… functions

Associated examples: Example 42

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 64

3.4.3.7 TS_SetEventOnTime.vi

Symbol:

Prototype:

LONG _TS_SetEventOnTime@12(UNSIGNED SHORT INT Time, SHORT INT Wait Event,
SHORT INT Enable Stop);

Parameters:

 Name Description
Time Time delay expressed in TML time units
Wait Event Specifies if the function waits the event occurrence Input
Enable Stop On event stop the motion

Output return TRUE if no error, FALSE if error

Description: The function programs an event after a time period equal to the value of the Time
parameter.

If the parameter Wait Event = WAIT_EVENT the function tests continuously the event status, and
waits until the event occurs. There is a drawback of this situation, if the event will not occur, due
to some unexpected problems. In such a case, the program hangs-up in an internal loop of the
TS_SetEventOnTime.vi function, waiting for the event to occur.

If the parameter Wait Event = NO_WAIT_EVENT you can check if the event occurred using the
TS_CheckEvent.vi function. In this way, you can detect if the event does not occur and
eventually exit from the test loop after a given time period.

At the event occurrence the motion is stopped if the parameter Enable Stop = STOP. Set Enable
Stop = NO_STOP if you do not want to stop the motion at event occurrence.

Remark: The timers start ONLY after the execution of the ENDINIT (end of initialization)
command. Therefore you should not set wait events before executing this command.

Related functions: TS_CheckEvent.vi, and all other SetEvent… functions

Associated examples: Example 1, Example 2, Example 4, Example 7, Example 13,
Example 17, Example 19

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 65

3.4.3.8 TS_SetEventOnPositionRef.vi

Symbol:

Prototype:

LONG _TS_SetEventOnPositionRef@16(LONG Position, SHORT INT Over, SHORT INT
Wait Event, SHORT INT Enable Stop);

Parameters:

 Name Description

Position The position reference value that triggers the event expressed in
TML position units.

Over Specifies the condition tested
Wait Event Specifies if the function waits the event occurrence

Input

Enable Stop Stop the motion when at event occurrence
Output return TRUE if no error, FALSE if error

Description: It allows you to program an event function of position reference. Setting this event
you can detect when the position reference is over (Over = OVER) or under (Over = BELOW) the
value of parameter Position.

If the parameter Wait Event = WAIT_EVENT the function tests continuously the event status, and
waits until the event occurs. There is a drawback of this situation, if the event will not occur, due
to some unexpected problems. In such a case, the program hangs-up in an internal loop of the
TS_SetEventOnPositionRef.vi function, waiting for the event to occur.

If the parameter Wait Event = NO_WAIT_EVENT you can check if the event occurred using the
TS_CheckEvent.vi function. In this way, you can detect if the event does not occur and
eventually exit from the test loop after a given time period.

At the event occurrence the motion is stopped if the parameter Enable Stop = STOP. Set Enable
Stop = NO_STOP if you do not want to stop the motion at event occurrence.

Related functions: TS_CheckEvent.vi, and all other SetEvent… functions

Associated examples: Example 12, Example 32

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 66

3.4.3.9 TS_SetEventOnSpeedRef.vi

Symbol:

Prototype:

LONG _TS_SetEventOnSpeedRef@20(DOUBLE Speed, SHORT INT Over, SHORT INT Wait
Event, SHORT INT Enable Stop);

Parameters:

 Name Description

Speed The speed reference value that triggers the event expressed in
TML speed units.

Over Specifies the condition tested
Wait Event Specifies if the function waits the event occurrence

Input

Enable Stop Stop the motion when at event occurrence
Output Return TRUE if no error, FALSE if error

Description: It allows you to program an event function of speed reference. Setting this event
you can detect when the speed reference is over (Over = OVER) or under (Over = BELOW) the
value of parameter Speed.

If the parameter Wait Event = WAIT_EVENT the function tests continuously the event status, and
waits until the event occurs. There is a drawback of this situation, if the event will not occur, due
to some unexpected problems. In such a case, the program hangs-up in an internal loop of the
TS_SetEventOnSpeedRef.vi function, waiting for the event to occur.

If the parameter Wait Event = NO_WAIT_EVENT you can check if the event occurred using the
TS_CheckEvent.vi function. In this way, you can detect if the event does not occur and
eventually exit from the test loop after a given time period.

At the event occurrence the motion is stopped if the parameter Enable Stop = STOP. Set Enable
Stop = NO_STOP if you do not want to stop the motion at event occurrence.

Related functions: TS_CheckEvent.vi, and all other SetEvent… functions

Associated examples: Example 12, Example 42

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 67

3.4.3.10 TS_SetEventOnTorqueRef.vi

Symbol:

Prototype:

LONG _TS_SetEventOnTorqueRef@16(SHORT INT Torque, SHORT INT Over, SHORT INT
Wait Event, SHORT INT Enable Stop);

Parameters:

 Name Description

Torque The torque reference value that triggers the event expressed in
TML current units.

Over Specifies the condition tested
Wait Event Specifies if the function waits the event occurrence

Input

Enable Stop Stop the motion when at event occurrence
Output Return TRUE if no error, FALSE if error

Description: It allows you to program an event function of torque reference. Setting this event
you can detect when the torque reference is over (Over = OVER) or under (Over = BELOW) the
value of parameter Torque.

If the parameter Wait Event = WAIT_EVENT the function tests continuously the event status, and
waits until the event occurs. There is a drawback of this situation, if the event will not occur, due
to some unexpected problems. In such a case, the program hangs-up in an internal loop of the
TS_SetEventOnTorqueRef.vi function, waiting for the event to occur.

If the parameter WaitEvent = NO_WAIT_EVENT you can check if the event occurred using the
TS_CheckEvent.vi function. In this way, you can detect if the event does not occur and
eventually exit from the test loop after a given time period.

At the event occurrence the motion is stopped if the parameter Enable Stop = STOP. Set Enable
Stop = NO_STOP if you do not want to stop the motion at event occurrence.

Related functions: TS_CheckEvent.vi, and all other SetEvent… functions

Associated examples: Example 23

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 68

3.4.3.11 TS_SetEventOnEncoderIndex.vi

Symbol:

Prototype:

LONG _TS_SetEventOnEncoderIndex@16(SHORT INT Index Type, SHORT INT Transition
Type, SHORT INT WaitEvent, SHORT INT Enable Stop);

Parameters:

 Name Description
Index Type Specifies the index monitored for transition
Transition Type Specifies the input transition monitored
Wait Event Specifies if the function waits the event occurrence

Input

Enable Stop Stop the motion when at event occurrence
Output Return TRUE if no error, FALSE if error

Description: It allows you to program an event function of drive/motor encoder index inputs. You
can monitor the first encoder index (Index Type = Index_1) or the second encoder index (Index
Type = Index_2). The event is trigger by encoder index transition low to high when Transition
Type = TRANSITION_LOW_TO_HIGH or by the transition high to low when Transition Type =
TRANSITION_ HIGH_TO_LOW.

If the parameter Wait Event = WAIT_EVENT the function tests continuously the event status, and
waits until the event occurs. There is a drawback of this situation, if the event will not occur, due
to some unexpected problems. In such a case, the program hangs-up in an internal loop of the
TS_SetEventOnEncoderIndex.vi function, waiting for the event to occur.

If the parameter WaitEvent = NO_WAIT_EVENT you can check if the event occurred using the
TS_CheckEvent.vi function. In this way, you can detect if the event does not occur and
eventually exit from the test loop after a given time period.

At the event occurrence the motion is stopped if the parameter Enable Stop = STOP. Set Enable
Stop = NO_STOP if you do not want to stop the motion at event occurrence.

Related functions: TS_CheckEvent.vi, and all other SetEvent… functions

Associated examples: Example 27

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 69

3.4.3.12 TS_SetEventOnLimitSwitch.vi

Symbol:

Prototype:

LONG _TS_SetEventOnLimitSwitch@16(SHORT INT Limit Switch Type, SHORT INT
Transition Type, SHORT INT Wait Event, SHORT INT Enable Stop);

Parameters:

 Name Description
Limit Switch Type Specifies the limit switch monitored for transition
Transition Type Specifies the input transition monitored
Wait Event Specifies if the function waits the event occurrence

Input

Enable Stop Stop the motion when at event occurrence
Output Return TRUE if no error, FALSE if error

Description: It allows you to program an event function of drive/motor limit switch inputs. The
event is set:

• when a transition occurs on limit switch negative if parameter Limit Switch Type =
LSW_NEGATIVE

• when a transition occurs on limit switch negative if parameter Limit Switch Type =
LSW_POSITIVE

You can monitor the limit switch transition low to high when Transition Type =
TRANSITION_LOW_TO_HIGH or the transition high to low when Transition Type =
TRANSITION_ HIGH_TO_LOW.

If the parameter Wait Event = WAIT_EVENT the function tests continuously the event status, and
waits until the event occurs. There is a drawback of this situation, if the event will not occur, due
to some unexpected problems. In such a case, the program hangs-up in an internal loop of the
TS_SetEventOnLimitSwitch.vi function, waiting for the event to occur.

If the parameter Wait Event = NO_WAIT_EVENT you can check if the event occurred using the
TS_CheckEvent.vi function. In this way, you can detect if the event does not occur and
eventually exit from the test loop after a given time period.

At the event occurrence the motion is stopped if the parameter Enable Stop = TRUE. Set Enable
Stop = FALSE if you do not want to stop the motion at event occurrence.

Related functions: TS_CheckEvent.vi and all other SetEvent… functions

Associated examples: Example 9, Example 17

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 70

3.4.3.13 TS_SetEventOnDigitalInput.vi

Symbol:

Prototype:

LONG _TS_SetEventOnDigitalInput@16(UNSIGNED CHAR Input Port, UNSIGNED CHAR
Status, SHORT INT Wait Event, SHORT INT Enable Stop);

Parameters:

 Name Description
Input Port Specifies the digital input monitored
Status The input status that trigger the event
Wait Event Specifies if the function waits the event occurrence

Input

Enable Stop Stop the motion when at event occurrence
Output Return TRUE if no error, FALSE if error

Description: It allows you to program an event function of drive/motor general purpose digital
inputs. The event is set when a transition occurs on digital input Input Port.

You can monitor when the digital input goes high (Status = IO_HIGH) or the digital input goes low
(Status = IO_LOW).

If the parameter Wait Event = WAIT_EVENT the function tests continuously the event status, and
waits until the event occurs. There is a drawback of this situation, if the event will not occur, due
to some unexpected problems. In such a case, the program hangs-up in an internal loop of the
TS_SetEventOnDigitalInput.vi function, waiting for the event to occur.

If the parameter WaitEvent = NO_WAIT_EVENT you can check if the event occurred using the
TS_CheckEvent.vi function. In this way, you can detect if the event does not occur and
eventually exit from the test loop after a given time period.

At the event occurrence the motion is stopped if the parameter Enable Stop = STOP. Set Enable
Stop = NO_STOP if you do not want to stop the motion at event occurrence.

Related functions: TS_CheckEvent.vi and all other SetEvent… functions

Associated examples: Example 5, Example 8, Example 15

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 71

3.4.3.14 TS_SetEventOnHomeInput.vi

Symbol:

Prototype:

LONG _TS_SetEventOnHomeInput@12(UNSIGNED CHAR Status, SHORT INT Wait Event,
SHORT INT Enable Stop);

Parameters:

 Name Description
Status Input port status (High/low)
Wait Event Specifies if the function waits the event occurrence Input
Enable Stop Stop the motion when at event occurrence

Output Return TRUE if no error, FALSE if error

Description: It allows you to program an event function of drive/motor general purpose digital
input assigned as home input. The home input is specific for each product and based on the
setup data. The event is set when a transition occurs on home input.

You can monitor when the home input goes high (Status = IO_HIGH) or the home input goes low
(Status = IO_LOW).

If the parameter Wait Event = WAIT_EVENT the function tests continuously the event status, and
waits until the event occurs. There is a drawback of this situation, if the event will not occur, due
to some unexpected problems. In such a case, the program hangs-up in an internal loop of the
TS_SetEventOnHomeInput.vi function, waiting for the event to occur.

If the parameter Wait Event = NO_WAIT_EVENT you can check if the event occurred using the
TS_CheckEvent.vi function. In this way, you can detect if the event does not occur and
eventually exit from the test loop after a given time period.

At the event occurrence the motion is stopped if the parameter Enable Stop = STOP. Set Enable
Stop = NO_STOP if you do not want to stop the motion at event occurrence.

Related functions: TS_CheckEvent.vi and all other SetEvent… functions

Associated examples: Example 28, Example 38 Example 39

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 72

3.4.4 TML jumps and function calls

3.4.4.1 TS_GOTO.vi

Symbol:

Prototype:

LONG _TS_GOTO@4(UNSIGNED SHORT INT address);

Parameters:

 Name Description
Input address The memory address where the jump is made

Output return TRUE if no error, FALSE if error

Description: The function commands the active axis to execute the TML code beginning from the
address until TML instruction END is encountered. The TML code can be stored in the
drive/motor EEPROM memory or in the TML program memory.

Prior calling the TS_GOTO.vi function you have to:

• Create a TML sequence using EasyMotion Studio
• Download the TML code in the drive/motor memory with EasyMotion Studio or subVI

TS_DownloadProgram.vi
• Make sure that a valid instruction is found at address. Otherwise, unpredictable effects

can occur, which can affect the correct operation of the drive/motor.

Remark:

1. For more details about drive/motor memory structure see the “Memory Map” topic from
EasyMotion Studio help.

2. During the execution of a local TML program on the drive, any TML command sent on-
line from the PC is treated with higher priority, and will be executed before executing the
local TML code.

Related functions: TS_DownloadProgram.vi, TS_GOTO_Label.vi, TS_CALL.vi,
TS_CALL_Label.vi

Associated examples: Example 29, Example 30

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 73

3.4.4.2 TS_GOTO_Label.vi

Symbol:

Prototype:

LONG _TS_GOTO_Label@4(CSTR Label);

Parameters:

 Name Description
Input Label TML program label where the jump is made

Output return TRUE if no error, FALSE if error

Description: The function commands the active axis to execute the TML code beginning from
label Label until TML instruction END is encountered. The TML code can be stored in the
drive/motor EEPROM memory or in the TML program memory. The selection of the memory type
used for the program is done from Memory Settings.

The string Label must be a valid TML label, defined in EasyMotion Studio prior generating the
setup information.

Prior calling the TS_GOTO_Label.vi function you have to:

• Create a TML sequence using EasyMotion Studio. The commands sequence must start
with Label declaration.

• Select, in the Memory Setting dialogue, from where you want to run the TML program:
TML program or EEPROM.

• Create the COFF file (*.out) with the menu command Application | Motion | Build
• Generate the configuration setup with the menu command Application | Export to

TML_lib… to include the new Label in the setup data
• Download the TML code in the drive/motor memory with EasyMotion Studio or with

function TS_DownloadProgram.vi.

Remark:

1. For more details about drive/motor memory structure see the “Memory Map” topic from
EasyMotion Studio help.

2. During the execution of a local TML program on the drive, any TML command sent on-
line from the PC is treated with higher priority, and will be executed before executing the
local TML code.

Related functions: TS_DownloadProgram.vi, TS_GOTO_Label.vi, TS_CALL.vi,
TS_CALL_Label.vi

Associated examples: Example 29

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 74

3.4.4.3 TS_CALL.vi

Symbol:

Prototype:

LONG _TS_CALL@4(UNSIGNED SHORT INT address);

Parameters:

 Name Description
Input address The memory address where the jump is made

Output return TRUE if no error, FALSE if error

Description: The function commands the active axis to execute the TML function stored at
address. The TML functions can be stored in the drive/motor EEPROM memory or in the TML
program memory. The function execution ends when the TML instruction RET is encountered.

Prior using the TS_CALL.vi function you have to:

• Create at least one TML function using EasyMotion Studio
• Download the TML code in the drive/motor memory with EasyMotion Studio or function

TS_DownloadProgram
• In the Command Interpreter type the command ?Function_name to retrieve the function

address. Repeat the procedure above for all the functions
• Make sure that a valid TML code subroutine begins at address. Otherwise, unpredictable

effects can occur, which can affect the correct operation of the drive/motor.

Remark:

1. For more details about drive/motor memory structure see the “Memory Map” topic from
EasyMotion Studio help.

2. During the execution of a local TML program on the drive, any TML command sent on-
line from the PC is treated with higher priority, and will be executed before executing the
local TML code.

Related functions: TS_DownloadProgram.vi, TS_CALL_Label.vi, TS_CancelableCALL.vi,
TS_CancelableCALL_Label.vi

Associated examples: Example 30

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 75

3.4.4.4 TS_CALL_Label.vi

Symbol:

Prototype:

LONG _TS_CALL_Label@4(CSTR Function Name);

Arguments:

 Name Description
Input Function Name Name of the TML function

Output Return TRUE if no error, FALSE if error

Description: The function commands the active axis to execute the TML function Function
Name. The TML functions can be stored in the drive/motor EEPROM memory or in the TML
program memory. The function execution ends when the TML instruction RET is encountered.

The string Function Name must be a valid TML function name, defined in EasyMotion Studio
prior generating the setup information.

Prior using the TS_CALL_Label.vi function you have to:

• Create at least one TML function using EasyMotion Studio
• Generate the configuration setup
• Download the TML code in the drive/motor memory with EasyMotion Studio or function

TS_DownloadProgram

Remark:

1. For more details about drive/motor memory structure see the “Memory Map” topic from
EasyMotion Studio help.

2. During the execution of a local TML program on the drive, any TML command sent on-
line from the PC is treated with higher priority, and will be executed before executing the
local TML code.

Related functions: TS_DownloadProgram.vi, TS_CALL.vi, TS_CancelableCALL.vi,
TS_CancelableCALL_Label.vi

Associated examples: Example 30

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 76

3.4.4.5 TS_CancelableCALL.vi

Symbol:

Prototype:

LONG _TS_CancelableCALL@4(UNSIGNED SHORT INT address);

Parameters:

 Name Description
Input address Name of the TML function

Output return TRUE if no error, FALSE if error

Description: The function commands the active axis to execute the TML function stored at
address. Use this command if the exit from the called TML function depends on conditions that
may not be reached. In this case, using function TS_Abort.vi you can terminate the function
execution and return to the next instruction after the call. The TML functions can be stored in the
drive/motor EEPROM memory or in the TML program memory.

Prior using the TS_CancelableCALL.vi function you have to:

• Create at least one TML function using EasyMotion Studio
• Download the TML code in the drive/motor memory with EasyMotion Studio or function

TS_DownloadProgram
• Make sure that a valid TML code subroutine begins at address. Otherwise, unpredictable

effects can occur, which can affect to correct operation of the drive/motor.

Remark:

1. You can call only one function at a time using the TS_CancelableCALL. Any cancelable
call issued during the execution of a function called with TS_CancelableCALL is ignored.
This situation is signaled with bit SRL.7.

2. For more details about drive/motor memory structure see the “Memory Map” topic from
EasyMotion Studio help.

3. During the execution of a local TML program on the drive, any TML command sent on-
line from the PC is treated with higher priority, and will be executed before executing the
local TML code.

Related functions: TS_DownloadProgram.vi, TS_CALL.vi, TS_CALL_Label.vi,
TS_CancelableCALL_Label.vi

Associated examples: -

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 77

3.4.4.6 TS_CancelableCALL_Label.vi

Symbol:

Prototype:

LONG _TS_CancelableCALL_Label@4(CSTR Function Name);

Parameters:

 Name Description
Input Function Name Name of the TML function

Output return TRUE if no error, FALSE if error

Description: The function commands the active axis to execute the TML function named
Function Name. Use this command if the exit from the called TML function depends on
conditions that may not be reached. In this case, using function TS_Abort.vi you can terminate
the TML function execution and return to the next instruction after the call. The TML functions can
be stored in the drive/motor EEPROM memory or in the TML program memory.

Prior using the TS_CancelableCALL_Label.vi function you have to:

• Create at least one TML function using EasyMotion Studio
• Select, in the Memory Setting dialogue, from where you want to run the TML program:

TML program or EEPROM.
• Create the COFF file (*.out) with the menu command Application | Motion | Build.
• Generate the configuration setup with the menu command Application | Export to

TML_lib… to include the new function names in the setup data
• Download the TML code in the drive/motor memory with EasyMotion Studio or function

TS_DownloadProgram.vi

Remark:

1. You can call only one function at a time using the TS_CancelableCALL.vi. Any cancelable
call issued during the execution of a function called with TS_CancelableCALL.vi is
ignored. This situation is signaled with bit x from SRL.

2. For more details about drive/motor memory structure see the “Memory Map” topic from
EasyMotion Studio help.

3. During the execution of a local TML program on the drive, any TML command sent on-
line from the PC is treated with higher priority, and will be executed before executing the
local TML code.

Related functions: TS_DownloadProgram.vi, TS_CALL.vi, TS_CALL_Label.vi,
TS_CancelableCALL .vi

Associated examples: Example 34

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 78

3.4.4.7 TS_ABORT.vi

Symbol:

Prototype:

LONG _TS_Abort@0(void);

Parameters:

 Name Description
Input – –

Output return TRUE if no error, FALSE if error

Description: The function aborts the execution of a TML function launched with a cancelable call.

Related functions: TS_CancelableCALL.vi, TS_CancelableCALL_Label.vi

Associated examples: Example 34

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 79

3.4.5 IO handling

3.4.5.1 TS_SetupInput.vi

Symbol:

Prototype:

LONG _TS_SetupInput@4(UNSIGNED CHAR Port Number);

Parameters:

 Name Description
Input Port Number Port number to be set as input

Output return TRUE if no error, FALSE if error

Description: The function sets the I/O Port Number of the drive/motor as an input port.

Use the function only if the input selected may also be used as an output. Check the drive/motor
user manual to find what inputs are available. Do this operation only once, first time when you
use the input. If the drive/motor has the inputs separated from the outputs (i.e. none of the input
line can be used as output) you don’t have to use the function.

Remark: Depending on the firmware version programmed on the drive/motor, FAxx or FBxx, the
digital inputs and outputs are numbered as follows:

• from #0 to #39 for firmware FAxx1. The list is unordered, for example, a product with 4
inputs and 4 outputs can use the inputs: #36, #37, #38 and #39 and the outputs #28, #29,
#30 and #31.

• From 0 to 15 for firmware version FBxx2. The list is ordered, for example, a product with
5 inputs and 3 outputs can use the inputs: 0, 1, 2, 3 and 4 and the outputs 0, 1, and 2.

Each intelligent drive/motor has a specific number of inputs and outputs, therefore only a part of
the maximum number of I/Os is used.

Related functions: TS_GetInput.vi, TS_SetupOutput.vi, TS_SetOutput.vi

Associated examples: Example 5, Example 8, Example 10, Example 15, Example 16,
Example 18, Example 30

1 Represents the firmware versions: F000H, F020H, F005H, F900H or later programmed on Technosoft
drives/motors: IDM240/IDM640, IDS240/IDS640, ISCM4805/ISCM8005, IBL2403, IM23x (models IS and
MA)
2 Represents the firmware versions F500A or later programmed on Technosoft drives: IDM240
CANopen/IDM640 CANopen, IDS640 CANopen

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 80

3.4.5.2 TS_GetInput.vi

Symbol:

Prototype:

LONG _TS_GetInput@4(UNSIGNED CHAR Port Number, UNSIGNED CHAR *In Value);

Parameters:

 Name Description
Port Number Input port number read Input
In Value Pointer to the variable where the port status is stored

Output return TRUE if no error, FALSE if error

Description: The function returns the status of digital input Port Number. When the function is
executed, the variable In Value, where the input line status is saved, becomes:

• Zero if the input line was low
• Non-zero if the input line was high

If the IO port selected can be used as input or an output, prior to call TS_GetInput.vi, you need to
call TS_SetupInput and configure IO port as input. Check the drive/motor user manual to find
what inputs are available.

Remark: Depending on the firmware version programmed on the drive/motor, FAxx or FBxx, the
digital inputs and outputs are numbered as follows:

• From #0 to #39 for firmware FAxx1. The list is unordered, for example, a product with 4
inputs and 4 outputs can use the inputs: #36, #37, #38 and #39 and the outputs #28, #29,
#30 and #31.

• From 0 to 15 for firmware version FBxx2. The list is ordered, for example, a product with
5 inputs and 3 outputs can use the inputs: 0, 1, 2, 3 and 4 and the outputs 0, 1, and 2.

Each intelligent drive/motor has a specific number of inputs and outputs, therefore only a part of
the maximum number of I/Os is used.

Related functions: TS_SetupInput.vi, TS_SetupOutput.vi, TS_SetOutput.vi

Associated examples: Example 10, Example 15, Example 16, Example 18, Example 30

1 Represents the firmware versions: F000H, F020H, F005H, F900H or later on Technosoft drives/motors:
IDM240/IDM640, IDS240/IDS640, ISCM4805/ISCM8005, IBL2403, IM23x (models IS and MA)
2 Represents the firmware versions F500A or later on Technosoft drives: IDM240 CANopen/IDM640
CANopen, IDS640 CANopen

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 81

3.4.5.3 TS_SetupOutput.vi

Symbol:

Prototype:

LONG _TS_SetupOutput@4(UNSIGNED CHAR Port Number);

Parameters:

 Name Description
Input Port Number Port number to be set as output

Output Return TRUE if no error, FALSE if error

Description: The function configures the digital I/O port Port Number of the drive/motor as an
output port.

Use the function only if the selected output may also be used as an input. Check the drive/motor
user manual to find what outputs are available. Do this operation only once, first time when
you use the output. If the drive/motor has the outputs separated from the inputs (i.e. none of the
output line can be used as an input) you don’t have to use the function.

Remark: Depending on the firmware version programmed on the drive/motor, FAxx or FBxx, the
digital inputs and outputs are numbered as follows:

• from #0 to #39 for firmware FAxx1. The list is unordered, for example, a product with 4
inputs and 4 outputs can use the inputs: #36, #37, #38 and #39 and the outputs #28, #29,
#30 and #31

• From 0 to 15 for firmware version FBxx2. The list is ordered, for example, a product with
5 inputs and 3 outputs can use the inputs: 0, 1, 2, 3 and 4 and the outputs 0, 1, and 2.

Each intelligent drive/motor has a specific number of inputs and outputs, therefore only a part of
the maximum number of I/Os is used.

Related functions: TS_GetInput.vi, TS_SetupOutput.vi, TS_SetOutput.vi

Associated examples: Example 14

1 Represents the firmware versions: F000H, F020H, F005H, F900H or later on Technosoft drives/motors:
IDM240/IDM640, IDS240/IDS640, ISCM4805/ISCM8005, IBL2403, IM23x (models IS and MA)
2 Represents the firmware versions F500A or later on Technosoft drives: IDM240 CANopen/IDM640
CANopen, IDS640 CANopen

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 82

3.4.5.4 TS_SetOutput.vi

Symbol:

Prototype:

LONG _TS_SetOutput@8(UNSIGNED CHAR Port Number, UNSIGNED CHAR Out Value);

Parameters:

 Name Description
Port Number Output port number to be written Input
Out Value Output status value to be set

Output return TRUE if no error, FALSE if error

Description: The function set/resets the status of digital output port Port Number of the
drive/motor.

The port status IO_LOW or IO_HIGH is set corresponding to the value of the Out Value
parameter.

If the IO port selected may also be used as input or an output, prior to call TS_SetOutput.vi, you
need to call TS_SetupOutput.vi and configure IO port as output.

Remark: Depending on the firmware version programmed on the drive/motor, FAxx or FBxx, the
digital inputs and outputs are numbered as follows:

• from #0 to #39 for firmware FAxx1. The list is unordered, for example, a product with 4
inputs and 4 outputs can use the inputs: #36, #37, #38 and #39 and the outputs #28, #29,
#30 and #31

• From 0 to 15 for firmware version FBxx2. The list is ordered, for example, a product with
5 inputs and 3 outputs can use the inputs: 0, 1, 2, 3 and 4 and the outputs 0, 1 and 2.

Each intelligent drive/motor has a specific number of inputs and outputs, therefore only a part of
the maximum number of I/Os is used.

Related functions: TS_SetupOutput.vi, TS_SetupInput.vi, TS_GetInput.vi

Associated examples: Example 14

1 Represents the firmware versions: F000H, F020H, F005H, F900H or later on Technosoft drives/motors:
IDM240/IDM640, IDS240/IDS640, ISCM4805/ISCM8005, IBL2403, IM23x (models IS and MA)
2 Represents the firmware versions F500A or later on Technosoft drives: IDM240 CANopen/IDM640
CANopen, IDS640 CANopen

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 83

3.4.5.5 TS_GetHomeInput.vi

Symbol:

Prototype:

LONG _TS_GetHomeInput@4(UNSIGNED CHAR *In Value);

Parameters:

 Name Description
Input In Value Pointer to the variable where the port status is stored

Output Return TRUE if no error, FALSE if error

Description: The function returns the status of the general purpose digital input assigned as
home input. Check the drive/motor user manual to find the IO configuration.

When the function is executed, the variable In Value where the input line status is saved
becomes:

• Zero if the input line was low
• Non-zero if the input line was high

If the input port may also be used as output, prior to call TS_GetInput.vi, you need to call
TS_SetupInput.vi and configure it as input.

Related functions: TS_SetupInput.vi, TS_SetupOutput.vi, TS_SetOutput.vi

Associated examples: Example 32, Example 38

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 84

3.4.5.6 TS_GetMultipleInputs.vi

Symbol:

Prototype:

LONG _TS_GetMultipleInputs(CSTR Variable Name, SHORT INT *Status);

Parameters:

 Name Description
Input Variable Name TML variable where the inputs status is saved on the drive

Status Pointer to variable where the value of Variable Name is stored Output
Return TRUE if no error, FALSE if error

Description: The function reads simultaneously the status of more inputs and save their status in
TML variable Variable Name on the drive/motor. The value of Variable Name is then uploaded
and stored in the Status variable.

For drives/motors programmed with firmware version FAxx1 the digital inputs read are:

• Enable input – saved in bit 15 of pszVarName
• Limit switch input for negative direction (LSN) – saved in bit 14 of pszVarName
• Limit switch input for positive direction (LSP) – saved in bit 13 of pszVarName
• General-purpose inputs #39, #38, #37 and #36 – saved in bits 3, 2, 1 and 0 of

pszVarName

If the drive/motor is programmed with firmware version FBxx2 then the function reads all the input
lines available of the drive/motor. The digital inputs are numbered from 0 to 15. The input’s
number represents also the position of the corresponding bit from the pszVarName, i.e. input
number x has associated bit x from the pszVarName.

The bits corresponding to these inputs are set as follows: 0 if the input is low and 1 if the input is
high. The other bits of the variable are set to 0.

Remark: If one of these inputs is inverted inside the drive/motor, the corresponding bit from the
variable is inverted too. Hence, these bits always show the inputs status at connectors level (0 if
input is low and 1 if input is high) even when the inputs are inverted.

The variable Variable Name is of type integer and must be defined with EasyMotion Studio
before generating the setup files.

Related functions: TS_SetIndexCapture.vi, TS_SetNegativeLimitSwitch.vi,
TS_SetPositiveLimitSwitch.vi

Associated examples: Example 37

1 Represents the firmware versions: F000H, F020H, F005H, F900H or later on Technosoft drives/motors:
IDM240/IDM640, IDS240/IDS640, ISCM4805/ISCM8005, IBL2403, IM23x (models IS and MA)
2 Represents the firmware versions F500A or later on Technosoft drives: IDM240 CANopen/IDM640
CANopen, IDS640 CANopen

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 85

3.4.5.7 TS_SetMultipleOutputs.vi

Symbol:

Prototype:

BOOL TML_EXPORT TS_SetMultipleOutputs(CSTR Variable Name, SHORT INT Status);

Parameters:

 Name Description

Variable Name Intermediary TML variable necessary to store the outputs status to
be set on the drive/motor Input

Status The value with which the outputs are set
Output return TRUE if no error, FALSE if error

Description: The function sets simultaneous more outputs of the drive/motor with the value of
parameter Status. Its value is transferred and stored on the drive in pszVarName TML variable
and from there is used to set the outputs.

Remark: The function is designed for drives/motors programmed with firmware version FAxx1.
For drives/motors programmed with firmware version FBxx2 use the TS_SetMultipleOutputs2
function.

The outputs are:

• Ready output – set by bit 15 of pszVarName
• Error output – set by bit 14 of pszVarName
• General-purpose outputs: #31, #30, #29, #28 – set by bits 3, 2, 1, and 0 of pszVarName

The outputs are set as follows: low if the corresponding bit in the variable is 0 and high if the
corresponding bit in the variable is 1. The other bits of the variable are not used.

Remark: If one of these outputs is inverted inside the drive/motor, its command is inverted.
Hence, the outputs are always set at connectors level according with the bits values (low if bit is 0
and high if bit is 1) even when the outputs are inverted.

CAUTION: Do not use TS_SetMultipleOututs.vi if any of the 6 outputs mentioned is not on the
list of available outputs of your drive/motor. There are products that use some of these outputs
internally for other purposes. Attempting to change these lines status may harm your product.

Related functions: TS_SetIndexCapture.vi, TS_SetNegativeLimitSwitch.vi,
TS_SetPositiveLimitSwitch.vi

Associated examples: Example 37

1 Represents the firmware versions: F000H, F020H, F005H, F900H or later on Technosoft drives/motors:
IDM240/IDM640, IDS240/IDS640, ISCM4805/ISCM8005, IBL2403, IM23x (models IS and MA)
2 Represents the firmware versions F500A or later on Technosoft drives: IDM240 CANopen/IDM640
CANopen, IDS640 CANopen

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 86

3.4.5.8 TS_SetMultipleOutputs2.vi

Symbol:

Prototype:

BOOL TML_EXPORT TS_SetMultipleOutputs2(CSTR Variable Name, SHORT INT Status);

Parameters:

 Name Description

SelectedPorts Mask for selecting the outputs controlled. Each bit of the
parameter represents an output port. Input

Status Parameter containing the outputs status to be set
Output return TRUE if no error, FALSE if error

Description: The function sets simultaneous the digital outputs of the drive/motor selected with
the SelectedPorts mask using the value of the Status parameter.

Remark: The function is designed for drives/motors programmed with firmware version FBxx1.
For drives/motors programmed with firmware version FAxx2 use the TS_SetMultipleOutputs
function.

The digital outputs are numbered from 0 to 15 and they form an ordered list, for example, a
product with 3 outputs will have 0, 1 and 2. The input’s number represents also the position of the
corresponding bit from the SelectedPorts mask, i.e. input number x has associated bit x from the
SelectedPorts.

The outputs are set as follows:

• low if the corresponding bit from the SelectedPorts is 1 and the corresponding bit from
Status variable is 0.

• high if it’s the corresponding bit from SelectedPorts is 1 and the corresponding bit from
SelectedPorts is 1.

Related functions: TS_SetIndexCapture.vi, TS_SetNegativeLimitSwitch.vi,
TS_SetPositiveLimitSwitch.vi

Associated examples: –

1 Represents the firmware versions F500A or later on Technosoft drives: IDM240 CANopen/IDM640
CANopen, IDS640 CANopen
2 Represents the firmware versions: F000H, F020H, F005H, F900H or later on Technosoft drives/motors:
IDM240/IDM640, IDS240/IDS640, ISCM4805/ISCM8005, IBL2403, IM23x (models IS and MA)

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 87

3.4.6 Data transfer

3.4.6.1 TS_SetIntVariable.vi

Symbol:

Prototype:

LONG _TS_SetIntVariable@8(CSTR Variable Name, SHORT INT Value);

Parameters:

 Name Description
Input Variable Name TML parameter name

 Value The value to be written
Output return TRUE if no error; FALSE if error

Description: The function writes the Value in the TML data Variable on the active axis. The TML
data (parameter, variable or user defined variable) is of type long (16-bit).

Remarks:

1. The available TML data is configuration dependent and is listed in the variables.cfg file
2. The user defined variables are set with EasyMotion Studio prior generating the setup

information

Related functions: TS_GetIntVariable.vi, TS_SetLongVariable.vi, TS_GetLongVariable.vi,
TS_SetFixedVariable.vi, TS_GetFixedVariable.vi

Associated examples: Example 18

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 88

3.4.6.2 TS_GetIntVariable.vi

Symbol:

Prototype:

LONG _TS_GetIntVariable@8(CSTR Variable Name, SHORT INT *Read Value);

Parameters:

 Name Description
Input Variable Name Name of the TML parameter, variable or used defined variable

Read Value Pointer to the variable where the value is stored Output
return TRUE if no error, FALSE if error

Description: The function reads the value of TML data Variable Name. The TML data
(parameter, variable or user defined variable) is of type integer (16-bit). The value read is saved
in the variable pointed by Read Value.

Remarks:

1. The available TML data is configuration dependent and is listed in the variables.cfg file.
2. The user defined variables are set with EasyMotion Studio prior generating the setup

information

Related functions: TS_SetIntVariable.vi, TS_SetLongVariable.vi, TS_SetFixedVariable.vi,
TS_GetLongVariable.vi, TS_GetFixedVariable.vi

Associated examples: Example 18, Example 20, Example 36, Example 38

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 89

3.4.6.3 TS_SetLongVariable.vi

Symbol:

Prototype:

LONG _TS_SetLongVariable@8(CSTR Variable Name, LONG value);

Parameters:

 Name Description
Variable Name Name of the parameter Input
Value The value to be written

Output return TRUE if no error, FALSE if error

Description: The function writes the Value in the TML data Variable Name on the active axis.
The TML data (parameter, variable or user defined variable) is of type long (32-bit).

Remarks:

3. The available TML data is configuration dependent and is listed in the variables.cfg file
4. The user defined variables are set with EasyMotion Studio prior generating the setup

information

Related functions: TS_GetIntVariable.vi, TS_SetIntVariable.vi, TS_GetLongVariable.vi,
TS_SetFixedVariable.vi, TS_GetFixedVariable.vi

Associated examples: Example 20, Example 34

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 90

3.4.6.4 TS_GetLongVariable.vi

Symbol:

Prototype:

LONG _TS_GetLongVariable@8(CSTR Variable Name, LONG *Read Value);

Parameters:

 Name Description
Input Variable Name of the parameter

Read Value Pointer to the variable where the parameter value is stored Output
Return TRUE if no error, FALSE if error

Description: The function reads the value of TML data Variable. The TML data (parameter,
variable or user defined variable) is of type long (32-bit). The value read is saved in the variable
pointed by Read Value.

Remarks:

1. The available TML data is configuration dependent and is listed in the variables.cfg file.
2. The user defined variables are set with EasyMotion Studio prior generating the setup

information

Related functions: TS_SetIntVariable.vi, TS_SetLongVariable.vi, TS_SetFixedVariable.vi,
TS_GetIntVariable.vi, TS_GetFixedVariable.vi

Associated examples: Example 20, Example 24, Example 27, Example 28, Example 34,
Example 35, Example 42

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 91

3.4.6.5 TS_SetFixedVariable.vi

Symbol:

Prototype:

LONG _TS_SetFixedVariable@12(CSTR Variable Name, DOUBLE Value);

Parameters:

 Name Description
Variable Name Name of the parameter Input
Value The value to be written

Output return TRUE if no error, FALSE if error

Description: The function converts the Value to type fixed and writes it in the TML data Variable
Name on the active axis. The TML data (parameter, variable or user defined variable) is of type
fixed (16 bits integer part, 16 bits fractional part).

Remarks:

1. The available TML data is configuration dependent and is listed in the variables.cfg file.
2. The user defined variables are set with EasyMotion Studio prior generating the setup

information

Related functions: TS_SetIntVariable.vi, TS_GetIntVariable.vi, TS_SetLongVariable.vi,
TS_GetLongVariable.vi, TS_GetFixedVariable.vi

Associated examples: Example 19, Example 34

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 92

3.4.6.6 TS_GetFixedVariable.vi

Symbol:

Prototype:

LONG _TS_GetFixedVariable@8(CSTR Variable Name, DOUBLE *value);

Parameters:

 Name Description
Input Variable Name Name of the parameter

Read Value Pointer where the parameter value is stored Output
Return TRUE if no error, FALSE if error

Description: The function reads the value of TML data Variable Name from the active axis. The
TML data (parameter, variable or user defined variable) is of type fixed (16 bits integer part, 16
bits fractional part). The value read is converted to double and saved in the variable pointed by
Read Value.

Remarks:

1. The available TML data is configuration dependent and is listed in the variables.cfg file.
2. The user defined variables are set with EasyMotion Studio prior generating the setup

information

Related functions: TS_SetIntVariable.vi, TS_SetLongVariable.vi, TS_SetFixedVariable.vi,
TS_GetIntVariable.vi, TS_GetLongVariable.vi

Associated examples: Example 19

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 93

3.4.6.7 TS_SetBuffer.vi

Symbol:

Prototype:

LONG _TS_SetBuffer@12(UNSIGNED SHORT INT Address, LONG *Array Values, SHORT
INT Size);

Parameters:

 Name Description
Address Start address where to download the data buffer Input
Array Values Pointer to the array with data to be downloaded

 Size The number of words to download
Output return TRUE if no error, FALSE if error

Description: The function downloads a data buffer on the active axis. The parameter Array
Values points to the beginning of the array from where the data will be downloaded. The length of
the buffer is set with parameter Size. The data is stored on the drive/motor starting with Address.
The Address can belong to drive/motor EEPROM memory or TML data memory.

Remark: For details about drive/motor memory structure see the “Memory Map” topic from
EasyMotion Studio on line help.

Related functions: TS_GetBuffer.vi

Associated examples: Example 20, Example 39

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 94

3.4.6.8 TS_GetBuffer.vi

Symbol:

Prototype:

LONG _TS_GetBuffer@12(UNSIGNED SHORT INT Address, LONG *Array Values, SHORT
INT Size);

Parameters:

 Name Description
Address Start address from where the data will be uploaded Input
Array Values Pointer to the array where the uploaded data will be stored

 Size The number of words to upload
Output return TRUE if no error, FALSE if error

Description: The function uploads a data buffer from the active axis. The start address of the
buffer is set with parameter Address and its length is Size. The Address can belong to
drive/motor EEPROM memory or TML data memory. The parameter Array Values points to the
beginning of the array where the uploaded data is stored.

Remark: For details about drive/motor memory structure see the “Memory Map” topic from
EasyMotion Studio on line help.

Related functions: TS_SetBuffer.vi

Associated examples: Example 20, Example 39

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 95

3.4.7 Drive/motor monitoring

3.4.7.1 TS_ReadStatus.vi

Symbol:

Prototype:

LONG _TS_ReadStatus@8(SHORT INT TML Register, SHORT INT *Status);

Parameters:

 Name Description
Input TML Register Registers selection

Status Pointer of the variable where the status is saved Output
return TRUE if no error; FALSE if error

Description: The function returns drive/motor status information. Depending on the value of TML
Register parameter, you can examine the contents of the Motion Control Register (TML Register
= REG_MCR), Motion Status Register (TML Register = REG_MSR), Interrupt Status Register
(TML Register = REG_ISR), Status Register Low (TML Register = REG_SRL), Status Register
High (TML Register = REG_SRH) or Motion Error Register (TML Register = REG_MER) of the
drive/motor.

Related functions: –

Associated examples: –

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 96

3.4.7.2 TS_OnlineChecksum.vi

Symbol:

Prototype:

LONG _TS_OnlineChecksum@12(UNSIGNED SHORT INT Start Address, SHORT INT End
Address, SHORT INT *Checksum);

Parameters:

 Name Description
Input Start Address The memory range start address

 End Address The memory range end address
 Checksum Pointer to the variable where the checksum is stored

Output return TRUE if no error, FALSE if error

Description: The function requests from the active axis the checksum of a memory range. The
memory range is defined with parameters Start Address and End Address. The function stores
the checksum received from the drive in variable Checksum.

With function TS_OnlineChecksum.vi you can check the integrity of the data saved in a
drive/motor EEPROM or RAM memory. The memory type is selected automatically function of the
Start Address and the End Address.

Related functions: TS_SetBuffer.vi

Associated examples: Example 39

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 97

3.4.8 Miscellaneous

3.4.8.1 TS_DownloadProgram

Symbol:

Prototype:

LONG _TS_DownloadProgram@8(CSTR File Name, UNSIGNED SHORT INT *Entry Point);

Parameters:

 Name Description
Input pszOutFile The name of the out file generated with EasyMotion Studio

wEntryPoint Start address of downloaded file Output
return TRUE if no error, FALSE if error

Description: The function downloads a COFF formatted file to the drive/motor, and returns the
entry point of that file. Parameter File Name specifies the name of the object file to be
downloaded. If the operation is successful, the function will return the entry point (start address)
of the downloaded code in the Entry Point parameter. You can use this address to launch the
execution of the downloaded code, by using it as the input argument of the TS_GOTO.vi or
TS_CALL.vi functions.

The COFF file is generated from EasyMotion Studio with menu command Application | Motion |
Build and is saved in the application directory. You can download several such applications in
different locations of the drive internal memory, and execute them according to your application
status, with the TS_GOTO.vi or TS_CALL.vi functions.

Related functions: TS_GOTO.vi, TS_CALL.vi

Associated examples: Example 29, Example 30

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 98

3.4.8.2 TS_Execute.vi

Symbol:

Prototype:

LONG _TS_Execute@4(CSTR Commands);

Parameters:

 Name Description
Input Commands String containing the TML source code to be executed.

Output return TRUE if no error, FALSE if error

Description: The function executes the TML commands entered in TML source code format (as
is entered in the Command Interpreter), from a string containing that code. Use this function if you
want to send a specific motion sequence, directly written in TML language.

Build a string Commands containing the source TML code and then call the TS_Execute.vi
function in order to compile the code and to send on-line the associated TML object commands.

If a compile error occurs, the function returns a FALSE, otherwise it returns TRUE.

Related functions: TS_ExecuteScript.vi

Associated examples: Example 9, Example 10, Example 11, Example 13, Example 20,
Example 25, Example 39, Example 41

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 99

3.4.8.3 TS_ExecuteScript.vi

Symbol:

Prototype:

LONG _TS_ExecuteScript@4(CSTR File Name);

Parameters:

 Name Description

Input File Name The name of the file containing the TML source code to be
executed.

Output Return TRUE if no error, FALSE if error

Description: The function executes TML commands entered in TML source code format (as is
entered in the Command Interpreter) from a script file. Use this function if you want to send a
specific motion sequence, directly written in TML language.

Define a data file File Name containing the source TML code you want to send to the drive and
then call the TS_ExecuteScript.vi function in order to compile the code and to send on-line the
associated TML object commands.

If a compile error occurs, the function returns a FALSE, otherwise it returns TRUE.

Related functions: TS_Execute.vi

Associated examples: Example 25

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 100

3.4.8.4 TS_GetOutputOfExecute.vi

Symbol:

Prototype:

LONG _TS_GetOutputOfExecute@8(CSTR Output, SHORT INT Max Chars);

Parameters:

 Name Description

Output String containing the TML source code generated at the last
library function call. Input

Max Chars The maximum numbers of characters to return in the string
Output return TRUE if no error, FALSE if error

Description: The function returns the TML output source code of the last previously executed
TML_LIB_LabVIEW library function call. Use this function if you want to examine the TML code
that is generated when you call one of the functions of the TML_LIB_LabVIEW library.

The code is returned in the Output string. Set the maximum number of characters to be returned
as the value of the Max Chars parameter.

Related functions: TS_Execute.vi

Associated examples: Example 41

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 101

3.4.8.5 TS_Save.vi

Symbol:

Prototype:

LONG _TS_Save@0(void);

Parameters:

 Name Description
Input – –

Output return TRUE if no error; FALSE if error

Description: The function saves the actual values of all the TML parameters with setup data from
the active data RAM memory into the EEPROM memory, in the setup table. Through this
command, you can save all the setup modifications done, after the power on initialization.

Related functions: TS_Reset.vi, TS_Save.vi

Associated examples: Example 20

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 102

3.4.8.6 TS_ResetFault.vi

Symbol:

Prototype:

LONG _TS_ResetFault@0(void);

Parameters:

 Name Description
Input – –

Output return TRUE if no error; FALSE if error

Description: The function gets out the active axis from the FAULT status in which it enters when
an error occurs. After a TS_ResetFault.vi execution, most of the errors bits from Motion Error
Register are cleared (set to 0), the Ready output (if present) is set to the ready level, the Error
output (if present) is set to the no error level and the drive/motor returns to normal operation.

Remarks:

• The TS_ResetFault.vi execution does not change the status of MER.15 (enable input on
disabled level), MER.7 (negative limit switch input active), MER.6 (positive limit switch
input active) and MER.2 (invalid setup table)

• The drive/motor will return to FAULT status if there are errors when the function is
executed

Related functions: TS_Power.vi

Associated examples: Example 36

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 103

3.4.8.7 TS_Reset.vi

Symbol:

Prototype:

LONG _TS_Reset@0(void);

Parameters:

 Name Description
Input – –

Output return TRUE if no error; FALSE if error

Description: The function resets the active axis. After reset the drive/motor will load the values of
TML parameters set during setup phase. If the drive/motor is configured to run in the ‘Autorun’
mode, it will automatically execute after reset the TML code stored in the E2ROM memory (if
there is such a program).

Remark: If during drive/motor operation you have changed the setup parameters and want to use
them after the reset, call function TS_Save.vi prior TS_Reset.vi. The function TS_Save.vi stores
in the drive/motor EEPROM memory the actual values of all TML parameters.

Related functions: TS_Power.vi, TS_DownloadProgram.vi, TS_GOTO.vi, TS_Save.vi

Associated examples: Example 20, Example 36

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 104

3.4.8.8 TS_GetLastErrorText.vi

Symbol:

Prototype:

CSTR _TS_GetLastErrorText@0(void);

Parameters:

 Name Description
Input – –

Output return A text related to the last occurred error

Description: The function returns a text related with the last occurred error during a
TML_LIB_LabVIEW function execution. You can visualize this text in order to see what the
problem was.

Related functions: –

Associated examples: all

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 105

3.4.9 Data logger

3.4.9.1 TS_SetupLogger.vi

Symbol:

Prototype:

LONG _TS_SetupLogger@20(UNSIGNED SHORT INT Logger Address, UNSIGNED SHORT
INT Logger Length, UNSIGNED SHORT INT *Array Addresses, UNSIGNED SHORT INT
Count Address, UNSIGNED SHORT INT Logger Period);

Parameters:

 Name Description

Logger Address The address of the logger buffer in drive/motor memory, where
data will be stored during logging

Logger Length The length in words of the logger buffer

Array Addresses Pointer to the array containing the drive/motor memory addresses
to be logged

Count Address The number of memory addresses to be logged

Input

Logger Period Time interval between two consecutive data logging expressed in
drive/motor time units

Output return TRUE if no error, FALSE if error

Description: The function sets the parameters of the data logger on the active axis. Use this
function if you want to perform data logging at the drive/motor level during the motion execution
and analyze it at the PC level.

Set the Logger Address parameter with the starting address of the drive/motor data memory
buffer where a number of Logger Length data points of logged data will be stored.

The addresses of TML data logged are stored in an array of length Count Address. Parameter
Array Addresses points to the beginning of the array where the uploaded data will be stored.

Remark The number of data sets which can be stored will be determined as the integer part of
the ratio Logger Length / Count Address.

The parameter Logger Period sets how often the TML data is logged. The period can have any
value between 1 and 7FFF.

Remark: Be careful when using the data logger functions! Incorrect settings related to data logger
buffer location and size may lead to improper operation of the drive, with unpredictable results.

Related functions: TS_StartLogger.vi, TS_UploadLoggerResults.vi, TS_CheckLoggerStatus.vi

Associated examples: Example 33

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 106

3.4.9.2 TS_StartLogger.vi

Symbol:

Prototype:

LONG _TS_StartLogger@8(UNSIGNED SHORT INT Logger Address, UNSIGNED CHAR
Logger Type);

Parameters:

 Name Description

Logger Address The address of the logger buffer in drive/motor memory, where
data will be stored during logging Input

Logger Type Specifies when the logging occurs
Output Return TRUE if no error, FALSE if error

Description: The function starts the data logger on the active axis. The function may be called
only after the initialization of the data logger with the TS_SetupLogger.vi function.

Use the parameter Logger Type to set if the data logging process must be done in the slow
control loop (Logger Type = LOGGER_SLOW), or in the fast control loop (Logger Type =
LOGGER_FAST).

Related functions: TS_SetupLogger.vi, TS_UploadLoggerResults.vi, TS_CheckLoggerStatus.vi

Associated examples: Example 33

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 107

3.4.9.3 TS_CheckLoggerStatus.vi

Symbol:

Prototype:

LONG _TS_CheckLoggerStatus@8(UNSIGNED SHORT INT Logger Address, UNSIGNED
SHORT INT *Logger Status);

Parameters:

 Name Description

Input Logger Address The address of the logger buffer in drive/motor memory, where
data will be stored during logging

Logger Status Number of points still remaining to capture; if it is 0, the logging is
completed Output

Return TRUE if no error, FALSE if error

Description: The function checks the data logger status on the active axis. Use this function in
order to check if the data logging process is still running, or if the data logging process was
ended. The function returns the Logger Status parameter, whose value indicates how many
points are still to be captured. If Logger Status = 0 the data logging process is finished.

The function may be called only after the start of the logging process with the TS_StartLogger.vi
function.

Related functions: TS_ SetupLogger.vi, TS_StartLogger.vi, TS_UploadLoggerResults.vi

Associated examples: Example 33

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 108

3.4.9.4 TS_UploadLoggerResults.vi

Symbol:

Prototype:
LONG _TS_UploadLoggerResults(WORD wLogBufferAddr, WORD* arrayValues, WORD&
countValues);
Parameters:

 Name Description

Logger Address The address of the logger buffer in drive/motor memory, where
data will be stored during logging

Array Values Pointer to the array where the uploaded data is stored on the PC Input

Count Values The size of Array Values, expressed in WORDs
Count Values The number of uploaded data Output
return TRUE if no error, FALSE if error

Description: The function uploads the data logged from the active axis. Use this function to
upload the data stored during the data logger execution. Before calling the function, you must
declare a data buffer in the PC program, starting at the Array Values address, with a size equal
to the Count Values parameter.

The TS_UploadLoggerResults.vi function will fill the Array Values data buffer with the data
transferred from the drive, and will also return the actual number of transferred data words, in the
Count Values parameter. Once the data is transferred, you can use it for data analysis, graphical
representation.

Remark:
1. Prior uploading the data logged, call function TS_CheckLoggerStatus.vi to test the end of

data logging.
2. The number of data sets which were stored will be determined as the integer part of the

ratio [length / Count Address] where length and Count Address are setup
parameters defined when calling the TS_SetupLogger.vi function

The uploaded data is stored in consecutive data sets, i.e. the first set of Count Address words
will contain the first logged point for the selected variables, the second set of Count Address
words will contain the second logged point for the selected variables, and so on. The following
table illustrates this data structure for an example of 4 logged variables.

Data WORD Meaning
1 Variable 1, point 1
2 Variable 2, point 1
3 Variable 3, point 1
4 Variable 4, point 1
5 Variable 1, point 2
6 Variable 2, point 2
7 Variable 3, point 2

… …

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 109

Related functions: TS_ SetupLogger, TS_StartLogger, TS_ CheckLoggerStatus

Associated examples: Example 33

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 110

3.4.10 Drive setup

3.4.10.1 TS_LoadSetup.vi

Symbol:

Prototype:

SHORT INT _TS_LoadSetup@4(CSTR Setup Directory);

Parameters:

 Name Description
Input Setup Directory Name of the directory where are the setup files

Output Return The index associated to the setup

Description: The function loads a drive/motor configuration setup in the PC application. The
configuration setup is generated from EasyMotion Studio or EasySetUp and stored in two files:
setup.cfg and variables.cfg. With string Setup Directory you specify the absolute or relative path
of the directory with the setup files. The function returns an index associated to the configuration
setup. Use the value returned to associate the configuration setup with the corresponding axis.

Remark: The function must be called for each configuration setup only once in your program, in
its initialization part.

Related functions: TS_SetupAxis.vi, TS_SetupGroup.vi, TS_SetupBroadcast.vi

Associated examples: all examples

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 111

3.4.10.2 TS_SetupAxis.vi

Symbol:

Prototype:

LONG _TS_SetupAxis@8(UNSIGNED CHAR Axis ID, SHORT INT Setup Index);

Parameters:

 Name Description
Axis ID Axis ID of the drive/motor Input
Setup Index Configuration index generated by TS_LoadSetup

Output return TRUE if no error, FALSE if error

Description: The function associates a configuration setup to the drive/motor having Axis ID.
The configuration setup is identified through Setup Index.

The function must be called for each axis of the motion system, only once in your program, in the
initialization part, before any attempt to send messages to that axis.

Remarks:

1. The Axis ID parameter must be identical with the value set during drive/motor setup.
2. Use function TS_LoadSetup.vi to obtain the configuration setup identifier.

Related functions: TS_LoadSetup.vi, TS_SetupGroup.vi, TS_SetupBroadcast.vi

Associated examples: all examples

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 112

3.4.10.3 TS_SetupGroup.vi

Symbol:

Prototype:

LONG _TS_SetupGroup@8(UNSIGNED CHAR Group ID, SHORT INT Setup Index);

Arguments:

 Name Description
Group ID Group ID number. It must be a value between 1 and 8 Input
Setup Index Name of the data file storing the setup axis information

Output return TRUE if no error, FALSE if error

Description: The function associates to the group of drives/motors a configuration setup
identified through Setup Index. The configuration setup is used by TML_LIB when sends
commands towards axes that have the Group ID.

The function must be called for each group defined in the motion system, only once in your
program, in the initialization part, before any attempt to send messages to that group.

Remarks: Use function TS_LoadSetup.vi to obtain the configuration setup identifier.

Related functions: TS_LoadSetup.vi, TS_SetupAxis.vi, TS_SetupBroadcast.vi

Associated examples: all examples

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 113

3.4.10.4 TS_SetupBroadcast

Symbol:

Prototype:

LONG _TS_SetupBroadcast@4(SHORT INT Setup Index);

Parameters:

 Name Description
Input Setup Index Name of the data file storing the setup axis information

Output return TRUE if no error, FALSE if error

Description: The function sets the configuration setup used by TML_LIB when issuing broadcast
commands. The configuration setup is identified through Setup Index.

Remarks: Use function TS_LoadSetup.vi to obtain the configuration setup identifier.

Related functions: TS_LoadSetup.vi, TS_SetupAxis.vi, TS_SetupGroup.vi

Associated examples: –

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 114

3.4.10.5 TS_DriveInitialization.vi

Symbol:

Prototype:

LONG _TS_DriveInitialization@0(void);

Parameters:

 Name Description
Input – –

Output Return TRUE if no error, FALSE if error

Description: The function initializes the active axis. It must be executed when the drive/motor is
powered or after a reset with function TS_Reset.vi. The function call should be placed after the
functions TS_SetupAxis.vi and TS_SelectAxis.vi and before any functions that send messages to
the axis.

Related functions: TS_LoadSetup.vi, TS_SetupAxis.vi, TS_SelectAxis.vi

Associated examples: all examples

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 115

3.4.11 Drive administration

3.4.11.1 TS_SelectAxis.vi

Symbol:

Prototype:

LONG _TS_SelectAxis@4(UNSIGNED CHAR Axis ID);

Parameters:

 Name Description
Input Axis ID The Axis ID where the commands are sent

Output return TRUE if no error, FALSE if error

Description: The function selects the currently active axis. All further function calls, which send
TML messages on the communication channel, will address the messages to this active axis.

Call the function only after the setup of the axis (after calling the TS_SetupAxis.vi function) for
the same axis (with the same Axis ID).

In a single axis motion system, call this function only once in your program. In a multiple axis
configuration, call this function each time you want to redirect the communication to another axis
of the system.

Related functions: TS_SelectGroup.vi

Associated examples: all examples

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 116

3.4.11.2 TS_SelectGroup.vi

Symbol:

Prototype:

LONG _TS_SelectGroup(UNSIGNED CHAR Group ID);

Parameters:

 Name Description
Input Group ID The Group ID where the commands are sent

Output Return TRUE if no error, FALSE if error

Description: The function selects the currently active group. All further function calls, which send
TML messages on the communication channel, will address these messages to this active group.
The active group is set with parameter Group ID. It must be a value between 1 and 8.

Remark: The function must be called after the group setup i.e. after calling the
TS_SetupGroup.vi function.

Related functions: TS_SelectAxis.vi

Associated examples: Example 26

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 117

3.4.11.3 TS_SelectBroadcast.vi

Symbol:

Prototype:

LONG _TS_SelectBroadcast@0(void);

Parameters:

 Name Description
Input – –

Output Return TRUE if no error, FALSE if error

Description: The function enables TML_LIB to issue the broadcast messages, i.e. all further
function calls, which send TML messages on the communication channel, will address these
messages to all the axes.

Remark: The function must be called after the broadcast setup i.e. after calling the
TS_SetupBroadcast.vi function.

Related functions: TS_SelectAxis.vi, TS_SelectGroup.vi

Associated examples: -

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 118

3.4.12 Communication setup

3.4.12.1 TS_OpenChannel.vi

Symbol:

Prototype:

SHORT INT _TS_OpenChannel@16(CSTR Device Name, UNSIGNED CHAR Type,
UNSIGNED CHAR HostID, UNSIGNED LONG Baud rate);

Parameters:

 Name Description
Device Name The communication channel to be opened
Type The type of the communication channel
HostID Axis ID for the PC

Input

Baud Rate Communication baud rate
Output Return The file descriptor of the or -1 if error

Description: The function opens the communication channel specified with parameter Device
Name.

The communication channel type is set with parameter Type. The TML_LIB_LabVIEW supports
the following communication types:

• serial RS-232
o Type = CHANNEL_RS232 for PC serial port
o Type = CHANNEL_VIRTUAL_SERIAL for virtual serial interface1

• serial RS-485
o Type = CHANNEL_RS485 for an RS-485 interface board or an RS-232/RS-485

converter

• CAN-bus
o Type = CHANNEL_IXXAT_CAN for IxxAT PC to CAN interface
o Type = CHANNEL_SYS_TEC_USBCAN for Sys Tec USB to CAN interface
o Type = CHANNEL_PEAK_SYS_PCAN_PCI for ESD PC to CAN interface
o Type = CHANNEL_ESD_CAN for PEAK System PCAN-PCI interface
o Type = CHANNEL_PEAK_SYS_PCAN_ISA for PEAK System PCAN-ISA
o Type = CHANNEL_PEAK_SYS_PCAN_PC104 for PEAK System PC/104
o Type = CHANNEL_PEAK_SYS_PCAN_USB
o Type = CHANNEL_PEAK_SYS_PCAN_DONGLE for PEAK System Dongle

interfaces

1 Contact Technosoft for more details regarding the virtual serial channel.

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 119

• Ethernet
o Type = CHANNEL_XPORT_IP for XPort adapter/bridge between Ethernet and

RS-232 from Lantronix.

Depending on the communication channel type, the parameter Device Name can be:

• For serial communication: ‘COM1’, ‘COM2’, ‘COM3’….
• For virtual serial interface is the name of the dll file that implements the serial interface
• For CAN-bus communication: ‘1’, ‘2’, ‘3’…
• For Ethernet communication: ‘192.168.19.52’, ‘technosoft.masterdrive.ch’…

The HostID parameter represents the Axis ID of the PC in the system. The value of HostID is set
as follows:

• For serial RS-232 the HostID is equal with the axis ID of the drive connected to the PC
serial port

• For serial RS-485 and CAN-bus the HostId must be a unique value. Attention! Make
sure that all the drives/motors from the network have a different address

• For Ethernet communication the HostID is equal with the axis ID of the drive connected
to the serial port of the Ethernet adapter.

Set the communication speed with the Baud Rate parameter. The accepted values are:

• For serial communication and Ethernet: 9600, 19200, 38400, 56000 or 115200 kbps.
• For CAN-bus: 125, 250, 500, 1000 kbps

Remark: You can open several communication channels but only one can be active in an
application at one moment. You can switch between the communication channels with function
TS_SelectChannel.vi.

Related functions: TS_SelectChannel.vi, TS_CloseChannel.vi

Associated examples: all examples

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 120

3.4.12.2 TS_SelectChannel.vi

Symbol:

Prototype:

LONG _TS_SelectChannel@4(SHORT INT fd);

Parameters:

 Name Description
Input fd The communication channel file descriptor

Output return TRUE if no error, FALSE if error

Description: The function selects as active the communication channel described by parameter
fd. All commands send towards the drives/motors will use the selected communication channel.

Remarks:

1. Use function TS_OpenChannel.vi to open the communication channels
2. The function TS_SelectChannel.vi is not required in application with only one

communication channel

Related functions: TS_OpenChannel.vi, TS_CloseChannel.vi

Associated examples: all examples

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 121

3.4.12.3 TS_CloseChannel.vi

Symbol:

Prototype:

void _TS_CloseChannel@4(SHORT INT fd);

Parameters:

 Name Description
Input fd The communication channel file descriptor

Output – –

Description: The function closes the communication channel described by parameters fd. With
fd = -1 the function closes the channel previously selected with function TS_SelectChannel.vi.
This function must be called at the end of the application. It will release the communication
channel resources, as it was allocated to the program when the TS_OpenChannel.vi function
was called.

Related functions: TS_OpenChannel.vi, TS_SelectChannel.vi

Associated examples: all examples

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 122

4 Examples

This chapter presents a collection of applications implemented in LabVIEW, which use the
functions of the TML_LIB_LabVIEW library. The examples are intended to provide you a first,
basic insight about using the TML_LIB_ LabVIEW library to implement your motion control
applications.

The examples are based on the hypothesis that the drive is already initialized, i.e. the setup code
is already downloaded into the drive (see section 2.3 for details), so that you’ll directly start
sending motion commands from the PC to the drive.

Remark: Most TML_LIB_LabVIEW subVIs return a Boolean TRUE if they execute correctly, and
a FALSE if any error occurred (incorrect parameters, failed operation at PC level). You should
check after each function call if there was an error or not. In case of error use the subVI
TS_GetLastTextError.vi to obtain a description of the error occurred. Thus, a VI implemented with
TML_LIB_LabVIEW subVIs should look like this:

The examples automatically launch at run control panels which display the status of some drive
variables (as speed, position, current, etc.).

Remark: The examples and the control panels are built for configurations with Technosoft drive
IBL2403-CAN. For other drives/motors generate the setup data and modify the examples and the
control panels to accommodate the IO configuration of your drive/motor.

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 123

Figure 4.1. Drive status control panel

Figure 4.2 Motion speed control panel

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 124

Figure 4.3 Motion position control panel

Figure 4.4 IO control panel for IBL2403 - CAN

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 125

4.1 Example 1. Profiled positioning movement followed by a speed
profile jogging

This example implements a relative positioning movement, waits until the motion is finished, then
starts moving the motor with a constant speed.

The VI front panel allows you to setup the parameters for the position profile and speed profile. If
an error occurs, you’ll see the error message in the ERROR text box.

Remark:. For a better readability of the other examples, the error message field was introduced
in the VI screen only for this example. You can add it if needed for the other examples, too.

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 126

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 127

4.2 Example 2. Positioning movement; wait a while; speed jogging;
stop after a time period

This example implements a relative positioning movement, waits until the motion is finished, then
stays stopped for a given time interval. After this time interval, the motor starts moving with a
constant speed. After another time interval, the motor is stopped.

The VI front panel allows you to setup the parameters of the first speed profile, second speed
profile, the time interval for which the motor remains stopped and the time interval after which the
motor is stopped.

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 128

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 129

4.3 Example 3. Speed profile with two acceleration values
This example implements a speed movement having two different acceleration values during
motor start: one acceleration value for speeds below a given level, and another acceleration value
for speeds greater than the speed level. The motor is stopped after a time interval.

The VI front panel allows you to setup the parameters of the first speed profile and to set the
acceleration for the second speed profiles.

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 130

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 131

4.4 Example 4. Speed jogging; wait a time period; positioning
movement

This example implements a speed movement for a given time period, followed by a relative
positioning. The VI allows you to setup the parameters of the speed and position profile.

The VI front panel allows you to setup the parameters of the speed and position profiles.

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 132

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 133

4.5 Example 5. Speed jogging; wait for an input port to be triggered;
positioning movement

This example implements a speed movement until a digital input of the drive is set to low. At that
moment, a positioning movement with a different maximum speed is executed. The VI allows you
to setup the parameters of the speed and position profiles. While the application is running, set to
low the IN#37 digital input of the drive, in order to stop the motion.

The VI front panel allows you to setup the parameters of the speed and position profiles.

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 134

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 135

4.6 Example 6. Absolute position motion profile with different
acceleration / deceleration rate

This example implements a position profile movement having different acceleration and
deceleration values. One acceleration value is used at motor start. As the slew speed is reached,
another acceleration value is set, thus the deceleration will be executed with the new value.

Note that in order to get this behavior, two conditions must be observed:

• The reference position must be big enough, so that the reference speed is a trapezoidal
one (reaches the slew speed)

• The motor must reach slew speed during the acceleration part of the motion profile

The VI front panel allows you to setup the parameters of the first and of the second position
profiles.

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 136

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 137

4.7 Example 7. Positioning movement; speed jogging; wait a time
period, then stop

This example implements a position profile movement followed by a speed profile jogging. After a
time interval of movement on the speed profile, the motion is stopped.

The VI front panel allows you to setup the parameters of the first speed profile, the second speed
profile and the second speed profile travel time interval.

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 138

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 139

4.8 Example 8. Repeat a motion at input port set, with current
reduction between motions

This example implements a repetitive position profile movement. The motion is repeated for a
given number of times, each time when a digital input port is set to low level. Between the
motions, while waiting for a new start, the motor current is set to a low, stand-by value. At motion
start (when the digital input port level is set to low), the current is set to a run-time value. Each
time the position is doubled as compared with the previous value.

Remark: This example can be used only with stepper open loop configuration.

The VI front panel allows you to setup the parameters of the position profile.

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 140

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 141

4.9 Example 9. Move to the positive limit switch, reverse to the
negative limit switch

This example activates the limit switches of the drive, and then implements a jogging movement
in the positive direction, until the positive limit switch is reached. At that moment, the motor is
stopped, and a jogging movement is started in the negative direction (at negative speed) until the
negative limit switch is reached. There the motor is stopped again.

The VI front panel allows you to setup the parameters of the speed profile.

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 142

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 143

4.10 Example 10. Move between limit switches until an input port
changes its status

This example implements a jogging movement between the positive and the negative limit
switches, until a digital input changes its status. At that moment, the movement is stopped.

The VI front panel allows you to setup the parameter of the speed profile.

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 144

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 145

4.11 Example 11. Move forward and backward at 2 different speeds,
for a given distance

This example implements a forward jogging movement, over a given relative distance, followed by
a movement in the opposed direction, over the same relative distance, with a different jogging
speed. The movement is repeated for a given number of times.

The VI front panel allows you to setup the parameters of the first and second speed profiles.

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 146

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 147

4.12 Example 12. Speed profile, followed by profiled positioning at a
given speed

This example implements a jogging movement, until a given speed reference, when an absolute
positioning is started. During this positioning motion, the position profile is changed at a given
value of the reference.

The VI allows you to setup the parameters of the speed profile, the first position profile and the
second position profile.

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 148

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 149

4.13 Example 13. Speed control with external reference

This example implements a speed control or position control function of user selection. When the
user selects Analogue the drive uses the values read from analogue input Reference for
positioning. With selection Online the drive is programmed to use the reference received online
from the PC.

In the VI front panel select the reference type used and then press the GO button.

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 150

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 151

4.14 Example 14. Profiled positioning, with output port status
changing at a given position

This example implements a profiled positioning movement, and commutes the status of a digital
output port of the drive, at a given motor position value.

The VI front panel allows you to setup the parameters of the position profile.

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 152

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 153

4.15 Example 15. Execute a jogging speed motion, until the home
input is captured

This example implements a profiled speed movement, until the home input capture is detected. At
that moment, the motion is stopped.

The VI front panel allows you to setup the parameters of the speed profile. While the application is
running, set the digital input port IN#38 to low, in order to stop the motor.

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 154

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 155

4.16 Example 16. Different motions based on the status of two digital
inputs of the drive

This example implements different movements, based on the status of two digital input ports of
the drive. The code continuously read the status of these ports and based on their values
executes a speed profile (if first input is set to low), a position profile (if second input is set to low),
or stops the motion and exit (if both inputs are set to low at the same time).

The VI front panel allows you to setup the parameters of the position profile and speed profile.
While the application is running, set to low IN#37, in order to execute a position profile, or set to
low the IN#38, in order to execute a speed profile. Then set to low both the IN#37 and IN#38 at
the same time, in order to stop the motion.

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 156

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 157

4.17 Example 17. Move between limit switches. Power-off if blocked
on a limit switch

This example implements a jogging movement, until the positive limit switch is reached. At that
point, the motion is reversed, until the negative limit switch is reached, then the motion is stopped.
The program checks if, after reversing the motion at positive limit switch reach, this limit switch
continues to be ON, after a given time period. In this case, the drive is powered-OFF, as this can
represent an emergency situation.

The VI front panel allows you to setup the parameters of the speed profile. Set to low the LSP
input in order to reverse the motion. During the reverse motion, set to low the LSN input, in order
to stop the motor. If the LSP input is set to low for a longer time, at its reach, the drive is powered-
OFF.

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 158

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 159

4.18 Example 18. Jog at a speed computed from an A/D signal, until a
digital input is reset

This example implements a jogging movement, with the jogging speed computed from the value
read to an A/D channel input of the drive. At start, the program reads the A/D channel value, and
stores it into the drive memory, as the offset on that channel. Then, it continuously read the A/D
input and set the reference jogging speed proportional with the difference between the actual A/D
input and the initial offset value. The motion continues until a digital input of the drive is set to low.

Run the application. Change the value of the AD5 channel in order to modify the speed reference
value. Set the status of the digital input port IN#37 to low, in order to stop the motion.

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 160

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 161

4.19 Example 19. Speed control, with drive interrogation / setup of TML
speed parameters

This example implements a jogging movement with two levels of speed reference. The program
directly reads the TML speed reference and measured values, and decides the moments when to
change the speed reference. The change is done also directly at the level of TML variables into
the drive memory.

The VI front panel allows you to setup the parameters of the speed profile.

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 162

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 163

4.20 Example 20. Setup positioning motion, using tables stored into
drive memory

This example uses information locally stored in the drive internal memory, in order to set up
motion parameters. Initially, the program stores 2 tables containing different values for reference
positions. Then, as an example of using this information, it reads the value of an A/D channel of
the drive and, based on the read value, selects one of the tables. The selected table is read from
memory, and the motion is imposed based on a value read from that table at an internal location
where the reference is stored.

Remarks:
1. The tables’ write operation should be done only once if the tables are stored into the

EEPROM memory of the drive
2. Be careful when selecting the tables’ memory location, as writing at incorrect addresses can

affect the correct operation of the drive.

Change the AD5 channel level, in order to set a value that will choose which element to extract
from the memory buffer. Then run the application. The motor will start a position profile with a
position reference value according to the element extracted from the memory buffer.

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 164

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 165

4.21 Example 21. Setting the Digital External motion mode

This example programs the drive to operate with external digital reference. The external position
reference is computed from pulse & direction signals.

Run the application. While the application is running, apply pulses to the ‘Pulse’ input of the drive
(IN#38). Set the ‘Direction’ input (IN#37) to low or high level, in order to change motion direction.

Remark: For this example you have to setup the drive to read the digital external reference from
pulse & direction inputs.

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 166

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 167

4.22 Example 22. Test the voltage mode, with event on voltage
reference

This example activates the test voltage mode on a drive. A variable voltage vector is generated
on motor phases, with prescribed increment and maximum value. For AC motor configurations,
the voltage vector can also be rotated, with a prescribed initial and increment angle.

Setup the maximum voltage and the voltage increment parameters. If the drive controls an AC
motor, set the Theta0, Dtheta parameters, else set them to 0. Then run the application.

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 168

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 169

4.23 Example 23. Test torque mode, with event on torque reference

This example activates the test torque mode on a drive. A variable current vector is generated on
motor phases, with prescribed increment and maximum value. For AC motor configurations, the
current vector can also be rotated, with a prescribed initial and increment angle.

Setup the maximum torque and the torque increment parameters. If the drive controls an AC
motor, set the Theta0, Dtheta parameters, else set them to 0. Then run the application.

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 170

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 171

4.24 Example 24. Profiled positioning and speed movement, with
event test from PC side

This example starts a profiled positioning, and performs testing of motion complete event by drive
interrogation from the PC. It also checks if the position value does not exceed some critical
reverse value. Once the positioning is completed, the motor begins a speed profile movement. If
an error has occurred during positioning (i.e., a wrong position value is reached, instead of a
motion complete event), the motor is stopped.

Such an approach can be very useful in order to avoid entering an infinite waiting loop. All event-
related TML_LIB functions can be set to wait until the programmed event occurs. If the event
does not occur, due to an error, then the PC program will not return any longer from the event
function, and will be blocked.

If such a case appears, use the approach from this example instead, i.e. program an event
without waiting for it to occur inside the event programming function. Instead, check the event
using the TS_CheckEvent function, as well as perhaps other drive variables, etc. Thus, you can
decide if an error has occurred, and the PC program will not be blocked anymore.

The VI front panel allows you to set the parameters for positioning profile and speed profile.

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 172

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 173

4.25 Example 25. Movement as defined in an external file containing
TML source code

This example opens an external TML source code file, compile each instruction and send it on-
line to the drive. Such an approach can be very useful in order to send a fixed sequence of
several TML instructions, eventually implementing some specific functionality.

The application requires a file containing valid TML source code. For this example you can use
the sample file, Ex25TML.txt, provided with the library. The file is installed in the sub-directory
Example Files of the TML_LIB_LabView installation directory.

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 174

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 175

4.26 Example 26. Positioning command to a group of axes

This example shows how to send commands to a group of drives. The example programs a group
of drives to execute a relative positioning. The group has two drives with Axis ID = 1 respectively
Axis ID = 2 and are connected in a CAN-bus network. The drive with Axis ID = 1 is connected to
PC via RS232 link.

The VI front panel allows you to setup the parameters of the position profile.

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 176

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 177

4.27 Example 27. Jogging motion until the index capture is detected,
then position on index

This example programs an axis to move with a jog speed until index capture is detected. When
the index input transition is detected the motor is stopped and then positioned to the captured
position. If the capture index is not detected and the position limit is reached the motor is stopped.

Power on the drive, modify the speed profile parameter in the VI dialog, rotate manually the motor
shaft, then run the application.

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 178

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 179

4.28 Example 28. Speed jogging until home found, position to home,
and set position to zero

This example can be used to detect the system home position and to set the absolute position to
0 at the home point. It moves the motor at constant speed until the home capture is detected.
Then the motor is positioned at the home position and the absolute and the reference position
values are reset.

First modify the speed profile parameter, and then run the application. While the application is
running, set to low the IN#38 digital input in order to generate the home position capture.

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 180

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 181

4.29 Example 29. Download a COFF format file & send a positioning
command on-line

This example can be used to download a COFF format file containing a TML application
generated from EasyMotion Studio to the drive. This allows you to distribute the intelligence
between the PC and the drives/motors in complex multi-axis applications. Thus, instead of trying
to command each step of an axis movement, you can program the drives/motors using TML to
execute complex tasks and inform the master when these are done.

The application requires a COFF file containing valid TML code. For this example you can use the
sample file, Ex29RAM.out, provided with the library. The file is installed in the sub-directory
Example Files of the TML_LIB_LabView installation directory.

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 182

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 183

4.30 Example 30. Download a COFF format file, then call TML functions

The example downloads a COFF format file (*.out) in the drive memory, then execute the TML
code included in the downloaded code. The COFF file is generated with EasyMotion Studio
based on a TML application. The addresses and the names of the functions are listed in the
variables.cfg .

The example first downloads the *.out file containing this code and then, based on the status of
a digital input port – selects which function to execute, and launches it using the function
TS_CALL.

Note that, when you call a function stored in the drive memory, it executes until a RETurn TML
instruction is found. At that moment, the drive enters the waiting loop executed prior to the launch
of the CALL command. Meanwhile, any command sent on-line from the PC will have a higher
execution priority.

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 184

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 185

4.31 Example 31. Set up the Master and Slave Gearing Mode; use the
drives in gearing mode

This example programs the drive with Axis ID = 2 as master and the drive with Axis ID = 1 as
slave in electronic gearing mode. It initializes the master and the slave with the appropriate
parameters, and then it starts a motion on the master. At the end of the gearing mode operation, it
disables both the master and the slave from this operation mode.

The VI front panel allows you to set for the master drive the parameters of the speed profile and
the gear ratio for the slave drive.

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 186

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 187

4.32 Example 32. Set up Master and Slave in electronic cam Mode; use
the drives in cam mode

This example shows how to set up the electronic cam mode on the master, as well as on the
slave axes, in a multiple-axis structure. It initializes the master and the slave with the appropriate
parameters. It also downloads an electronic cam table file on the slave axis drive. Then it starts a
motion on the master. At the end of the electronic cam mode operation, it disables both the
master and the slave from this operation mode.

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 188

The VI front panel allows to set the for the master axis the parameters of the position profile and
to select the for slave axis the load address and the run address for the cam table.

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 189

4.33 Example 33. Usage of data logger to upload real-time stored data
from the drive

This example shows how to setup the data logger on a drive, to start data logging, check its end
and upload the logged data from the drive to the PC.

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 190

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 191

4.34 Example 34. Homing procedures based on pre-stored TML
sequences on the drive

This example shows you how to execute a homing motion, based on the existence on the drive of
a specific motion sequence containing the TML code needed to implement the homing.

The search for the home position can be done in numerous ways. In order to offer maximum
flexibility, the TML does not impose the homing procedures but lets you define your own,
according with your application needs.

Basically a homing procedure is a TML function and by calling it you start executing the homing
procedure. The call must be done using the function TS_CancelableCALL_Label. This
command offers the possibility to abort at any moment the homing sequence execution (with
function TS_Abort). Therefore, if the homing procedure can’t find the home position, you have the
option to cancel it.

During the execution of a homing procedure bit 8 of Status Register Low part is set. Hence you
can find when a homing sequence ends, either by monitoring the bit 8 from SRL or by
programming the drive/motor to send a message to your host when the bit changes. As long as a
homing sequence is in execution, you should not start another one. If this happens, the last
homing is aborted and a warning is generated by setting bit 7 from SRL

Remark: In motion programming tools like EasyMotion Studio, Technosoft provides for each
intelligent drive/motor a collection of up to 32 homing procedures. These are predefined TML
functions, which you may call after setting the homing parameters. You may use any of these
homing procedures as they are, or use them as a starting point for your own homing routines.

Before using any homing method from the TML_LIB environment you need to perform the
following steps:

• Create in EasyMotion Studio a project for your drive/motor
• Setup the drive/motor and download the setup table. After the download reset the

drive/motor to activate
• Select Homing Modes view. In this view you can see all the homing procedures defined

for your drive/motor, together with a short description of how it works. In order to select a
homing procedure, check its associated button. You may choose more then homing
procedure, if you intend to use execute different homing operations in the same
application.

• Download the homing procedure with menu command Application | Motion | Download
Program

• Generate the configuration setup for TML_LIB with menu command Application | Export
to TML_LIB

You are now prepared to build your PC application, which will call one of the homing methods
from the drive memory. The idea is that you’ll set up, from the PC, some of the parameters
needed during the homing procedure, then you’ll call one of the homing functions stored on the
drive, and eventually you’ll test the status of the homing process until it will be finished.

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 192

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 193

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 194

4.35 Example 35. Positioning with S-Curve profile for speed; speed
jogging

The example shows how to program a relative position followed by an absolute positioning. The
speed has an S-Curve shape for both motions.

The VI front panel allows you to set the parameters for the relative and absolute positioning.

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 195

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 196

4.36 Example 36. Reset FAULT state

The example shows how to restore the drive normal operation from FAULT state. The drive is
programmed to do a relative positioning. The drive enters in FAULT state when you block the
motor shaft during the motion. In the FAULT state:

• The drive/motor is in AXISOFF with the control loops and the power stage deactivated
• Ready and error outputs (if present) are set to the not ready level, respectively to the

error active level. When available, ready greed led is turned off and error red led is turned
on

The FAULT state is reset when you press a key; the drive power stage remains disabled.

The VI front panel allows you to Run the example and block the motor shaft to trigger the Control
error protection and the FAULT status.

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 197

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 198

4.37 Example 37. Read multiple inputs/set multiple outputs

The example shows how to read multiple outputs from the drive. The program remains in a loop
until one of the inputs changes its status moment when the motor begins an absolute positioning.
When the motion is complete the state of several outputs is set.

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 199

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 200

4.38 Example 38. Positioning when an event on home input occurs

The example shows how to program a positioning triggered by an event on home input. The event
is set when the home input goes low.

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 201

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 202

4.39 Example 39. Write/read in the drive memory

The example writes/reads a data block in the drive EEPROM memory. The write operation is
verified with a checksum. After the homing procedure the drive makes a positioning with the
position command read from the EEPROM.

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 203

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 204

4.40 Example 40. View binary code of a TML command

The example returns the binary code of a TML command MODE PP.

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 205

4.41 Example 41. Speed jog and positioning with direction change

The example programs a speed profile followed by a position profile. The drive switches from
speed control to position control when the event function of reference speed is set. When the
event set function of motor position is triggered the motion is stopped and restarted in the
opposite direction with a speed profile. The motion ends when the event set function of load
speed is set.

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 206

© Technosoft 2007 TML_LIB_LabVIEW – User Manual 207

This page is empty

	Read This First

	About This Manual

	Scope of This Manual

	Notational Conventions
	Related Documentation
	If you Need Assistance …

	Contents
	1 Introduction
	2 Getting started
	2.1 Hardware installation
	2.2 Software installation
	2.2.1 Installing EasySetUp
	2.2.2 Installing TML_LIB_LabVIEW library

	2.3 Drive/motor setup
	2.4 Build an application with TML_LIB_LabVIEW

	3 TML_LIB_LabVIEW description
	3.1 Basic concept
	3.2 Internal units and scaling factors
	3.3 Axis Identification
	3.4 Functions descriptions
	3.4.1 Motion programming
	3.4.1.1 TS_MoveAbsolute.vi
	3.4.1.2 TS_MoveRelative.vi
	3.4.1.3 TS_MoveSCurveAbsolute.vi
	3.4.1.4 TS_MoveSCurveRelative.vi
	3.4.1.5 TS_MoveVelocity. vi
	3.4.1.6 TS_SetAnalogueMoveExternal.vi
	3.4.1.7 TS_SetDigitalMoveExternal
	3.4.1.8 TS_SetOnlineMoveExternal.vi
	3.4.1.9 TS_VoltageTestMode.vi
	3.4.1.10 TS_TorqueTestMode.vi
	3.4.1.11 TS_PVTSetup.vi
	3.4.1.12 TS_SendPVTFirstPoint.vi
	3.4.1.13 TS_SendPVTPoint.vi
	3.4.1.14 TS_PTSetup.vi
	3.4.1.15 TS_SendPTFirstPoint.vi
	3.4.1.16 TS_SendPTPoint.vi
	3.4.1.17 TS_SetGearingMaster.vi
	3.4.1.18 TS_SetGearingSlave.vi
	3.4.1.19 TS_SetCammingMaster.vi
	3.4.1.20 TS_SetCammingSlaveRelative.vi
	3.4.1.21 TS_SetCammingSlaveAbsolute.vi
	3.4.1.22 TS_CamDownload.vi
	3.4.1.23 TS_CamInitialization.vi
	3.4.1.24 TS_SetMasterResolution
	3.4.1.25 TS_SendSynchronization

	3.4.2 Motor commands
	3.4.2.1 TS_Power.vi
	3.4.2.2 TS_UpdateImmediate.vi
	3.4.2.3 TS_UpdateOnEvent.vi
	3.4.2.4 TS_Stop.vi
	3.4.2.5 TS_SetPosition.vi
	3.4.2.6 TS_SetTargetPositionToActual.vi
	3.4.2.7 TS_SetCurrent.vi
	3.4.2.8 TS_QuickStopDecelerationRate.vi

	3.4.3 Events
	3.4.3.1 TS_CheckEvent.vi
	3.4.3.2 TS_SetEventOnMotionComplete.vi
	3.4.3.3 TS_SetEventOnMotorPosition.vi
	3.4.3.4 TS_SetEventOnLoadPosition.vi
	3.4.3.5 TS_SetEventOnMotorSpeed.vi
	3.4.3.6 TS_SetEventOnLoadSpeed.vi
	3.4.3.7 TS_SetEventOnTime.vi
	3.4.3.8 TS_SetEventOnPositionRef.vi
	3.4.3.9 TS_SetEventOnSpeedRef.vi
	3.4.3.10 TS_SetEventOnTorqueRef.vi
	3.4.3.11 TS_SetEventOnEncoderIndex.vi
	3.4.3.12 TS_SetEventOnLimitSwitch.vi
	3.4.3.13 TS_SetEventOnDigitalInput.vi
	3.4.3.14 TS_SetEventOnHomeInput.vi

	3.4.4 TML jumps and function calls
	3.4.4.1 TS_GOTO.vi
	3.4.4.2 TS_GOTO_Label.vi
	3.4.4.3 TS_CALL.vi
	3.4.4.4 TS_CALL_Label.vi
	3.4.4.5 TS_CancelableCALL.vi
	3.4.4.6 TS_CancelableCALL_Label.vi
	3.4.4.7 TS_ABORT.vi

	3.4.5 IO handling
	3.4.5.1 TS_SetupInput.vi
	3.4.5.2 TS_GetInput.vi
	3.4.5.3 TS_SetupOutput.vi
	3.4.5.4 TS_SetOutput.vi
	3.4.5.5 TS_GetHomeInput.vi
	3.4.5.6 TS_GetMultipleInputs.vi
	3.4.5.7 TS_SetMultipleOutputs.vi
	3.4.5.8 TS_SetMultipleOutputs2.vi

	3.4.6 Data transfer
	3.4.6.1 TS_SetIntVariable.vi
	3.4.6.2 TS_GetIntVariable.vi
	3.4.6.3 TS_SetLongVariable.vi
	3.4.6.4 TS_GetLongVariable.vi
	3.4.6.5 TS_SetFixedVariable.vi
	3.4.6.6 TS_GetFixedVariable.vi
	3.4.6.7 TS_SetBuffer.vi
	3.4.6.8 TS_GetBuffer.vi

	3.4.7 Drive/motor monitoring
	3.4.7.1 TS_ReadStatus.vi
	3.4.7.2 TS_OnlineChecksum.vi

	3.4.8 Miscellaneous
	3.4.8.1 TS_DownloadProgram
	3.4.8.2 TS_Execute.vi
	3.4.8.3 TS_ExecuteScript.vi
	3.4.8.4 TS_GetOutputOfExecute.vi
	3.4.8.5 TS_Save.vi
	3.4.8.6 TS_ResetFault.vi
	3.4.8.7 TS_Reset.vi
	3.4.8.8 TS_GetLastErrorText.vi

	3.4.9 Data logger
	3.4.9.1 TS_SetupLogger.vi
	3.4.9.2 TS_StartLogger.vi
	3.4.9.3 TS_CheckLoggerStatus.vi
	3.4.9.4 TS_UploadLoggerResults.vi

	3.4.10 Drive setup
	3.4.10.1 TS_LoadSetup.vi
	3.4.10.2 TS_SetupAxis.vi
	3.4.10.3 TS_SetupGroup.vi
	3.4.10.4 TS_SetupBroadcast
	3.4.10.5 TS_DriveInitialization.vi

	3.4.11 Drive administration
	3.4.11.1 TS_SelectAxis.vi
	3.4.11.2 TS_SelectGroup.vi
	3.4.11.3 TS_SelectBroadcast.vi

	3.4.12 Communication setup
	3.4.12.1 TS_OpenChannel.vi
	3.4.12.2 TS_SelectChannel.vi
	3.4.12.3 TS_CloseChannel.vi

	4 Examples
	4.1 Example 1. Profiled positioning movement followed by a speed profile jogging
	4.2 Example 2. Positioning movement; wait a while; speed jogging; stop after a time period
	4.3 Example 3. Speed profile with two acceleration values
	4.4 Example 4. Speed jogging; wait a time period; positioning movement
	4.5 Example 5. Speed jogging; wait for an input port to be triggered; positioning movement
	4.6 Example 6. Absolute position motion profile with different acceleration / deceleration rate
	4.7 Example 7. Positioning movement; speed jogging; wait a time period, then stop
	4.8 Example 8. Repeat a motion at input port set, with current reduction between motions
	4.9 Example 9. Move to the positive limit switch, reverse to the negative limit switch
	4.10 Example 10. Move between limit switches until an input port changes its status
	4.11 Example 11. Move forward and backward at 2 different speeds, for a given distance
	4.12 Example 12. Speed profile, followed by profiled positioning at a given speed
	4.13 Example 13. Speed control with external reference
	4.14 Example 14. Profiled positioning, with output port status changing at a given position
	4.15 Example 15. Execute a jogging speed motion, until the home input is captured
	4.16 Example 16. Different motions based on the status of two digital inputs of the drive
	4.17 Example 17. Move between limit switches. Power-off if blocked on a limit switch
	4.18 Example 18. Jog at a speed computed from an A/D signal, until a digital input is reset
	4.19 Example 19. Speed control, with drive interrogation / setup of TML speed parameters
	4.20 Example 20. Setup positioning motion, using tables stored into drive memory
	4.21 Example 21. Setting the Digital External motion mode
	4.22 Example 22. Test the voltage mode, with event on voltage reference
	4.23 Example 23. Test torque mode, with event on torque reference
	4.24 Example 24. Profiled positioning and speed movement, with event test from PC side
	4.25 Example 25. Movement as defined in an external file containing TML source code
	4.26 Example 26. Positioning command to a group of axes
	4.27 Example 27. Jogging motion until the index capture is detected, then position on index
	4.28 Example 28. Speed jogging until home found, position to home, and set position to zero
	4.29 Example 29. Download a COFF format file & send a positioning command on-line
	4.30 Example 30. Download a COFF format file, then call TML functions
	4.31 Example 31. Set up the Master and Slave Gearing Mode; use the drives in gearing mode
	4.32 Example 32. Set up Master and Slave in electronic cam Mode; use the drives in cam mode
	4.33 Example 33. Usage of data logger to upload real-time stored data from the drive
	4.34 Example 34. Homing procedures based on pre-stored TML sequences on the drive
	4.35 Example 35. Positioning with S-Curve profile for speed; speed jogging
	4.36 Example 36. Reset FAULT state
	4.37 Example 37. Read multiple inputs/set multiple outputs
	4.38 Example 38. Positioning when an event on home input occurs
	4.39 Example 39. Write/read in the drive memory
	4.40 Example 40. View binary code of a TML command
	4.41 Example 41. Speed jog and positioning with direction change

