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Abstract
This thesis presents a study of how the theory of decision theoretic
troubleshooting can be applied to the troubleshooting of a truck and
the issues attached to this problem. The main objective of the project,
which involves two other theses, is to find a cost-efficient approach to
troubleshooting trucks with newly developed complex systems.

This study is concentrated on development and evaluation of a trou-
bleshooter prototype. The prototype was evaluated by simulating a
repair process of a new diesel injection system, here modelled by a
Bayesian network. Due to objectives of adapting the existing theory of
troubleshooting to the specific troubleshooting of a truck, some relax-
ations from the original assumptions were made. These relaxations were
then used in the evaluation of the performance of the troubleshooter
prototype which was evaluated by a simulated repair process where the
prototype was used to find the faulty component. The costs of the sim-
ulated repairs were computed and compared to the costs of two other
predefined ways of choosing an order in which to repair components.
Considering the average costs for the repair procedures, the prototype
presented the lowest average cost in three out of five simulation cycles.



Referat
Kostnadseffektiv felsökning med Bayesianska nätverk

Guidad felsökning av ett dieselinsprutningssystem

Detta examensarbete är en studie av hur beslutsteori och sannolikhet-
steori kan användas för att felsöka en lastbil. Examensarbetet är, till-
sammans med två andra examensarbeten, en del i ett större projekt
med målet att hitta ett kostnadseffektivt sätt att felsöka lastbilar där
de inbyggda systemen blir mer och mer komplexa.

Detta arbete koncentrerades på utveckling och utvärdering av en pro-
gramprototyp för felsökning. Prototypen utvecklades för felsökning av
ett dieselinsprutningssystem som modellerats med hjälp av ett Bayesian-
skt nätverk. Som ett led i anpassningen till felsökning i lastbilar, har
vissa antaganden i den existerande teorin relaxerats och prototypen är
utvärderad efter dessa relaxeringar. Prototypens funktion utvärderades
genom att simulera en reparationsprocess där programmet kunde använ-
das för att söka efter ett simulerat fel. Simuleringar gjordes för tre olika
sätt att sortera komponenterna i en reparationsordning för vilken en
fiktiv reparationskostnad beräknades. I jämförelsen mellan de olika sor-
teringarna visade sig programprototypen ge den lägsta medelkostnaden
i tre av fem simuleringscykler.
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Chapter 1

Introduction

To introduce the reader to this master’s thesis and to the report this chapter gives
a brief view of the background and a description of the thesis outline.

1.1 Background

Modern truck development contains as much advanced computer programming as
it contains construction and design of mechanical parts. All systems in a truck, e.g.
the brake system and the hydraulic system, are controlled by control units, designed
to discover malfunctioning behaviour. These control systems make the operating
diagnosis effective. As a consequence of computerised diagnosis, the repair process
at the workshop becomes more aggravated since the cause of a failure may be diffi-
cult to find without help from specially developed software to retrieve information
from the control systems.

An extension of such software, which does not only retrieve information from the
truck but also acts as a help in the repair process, is of great interest to the truck in-
dustry as a means to obtain a more efficient repair procedure. Guided troubleshoot-
ing, which means searching for a cause of failure following a pre-defined strategy,
can be a competitive edge since it contributes to efficient repair and thereby good
customer service. Guided troubleshooting may even become a necessity in the fu-
ture since many new systems tend to be more and more complex.

Troubleshooting software forms the interface between parts of the mechanical de-
vices in the truck, the electrical diagnosis system and the mechanic at the workshop.
The software must be designed to handle both disturbances in diagnosis data and
the risk of human errors occurring in the mechanic’s interpretation of the software
output. To create such a program, deep knowledge of the mechanical system in
question must be used.

1



CHAPTER 1. INTRODUCTION

1.2 Objectives

This thesis is part of a project aiming to construct a prototype for guided trou-
bleshooting of a diesel injection system. The goal of the troubleshooting pro-
gram is to minimise the expected cost of repairing a faulty truck. The study is
concentrated on evaluations of algorithms adapted to theory of troubleshooting
[Heckerman et al. 1995] using a different approach to costs of repair. In parallel to
this thesis two complementary studies were made; an evaluation of Bayesian mod-
eling of a diesel injection system [Mossberg 2007] and a study of how tests can be
implemented into the troubleshooting process [Lotz 2007].

The main objectives of this thesis are to

- Adapt existing troubleshooting theory to the troubleshooting of trucks.

- Present and discuss an application on including costs into troubleshooting
theory.

- Study the performance of a troubleshooting algorithm with respect to cost-
efficiency, using a different cost approach.

1.3 Report Outline

This thesis can be divided into three parts. The first part contains the basic theory
of Bayesian networks, decision theory and the troubleshooting problem. The middle
part describes the cost approach used in this thesis followed by an introduction and
thereafter the modelling of the Extreme High Pressure Injection system. The last
part presents the results from the simulations of a truck repair procedure.

First we present the theory of this thesis. Chapters 2 and 3 are to make the reader
aquainted to the basics of Bayesian networks and decision theory. The theory of
Bayesian networks is based on probability theory and some readers might consider it
useful to read the basics of probability theory in Appendix B. Chapter 4 introduces
the concept of troubleshooting and its mathematical formulation. In this thesis the
cost of the troubleshooting steps are important and one theory for this approach,
the expected cost of repair, is presented in Chapter 5. An introduction to some
algorithms based on the expected cost theory is found in Chapter 6.

Part two begins with Chapter 7, which describes how the costs of repairing a truck
are handled in this thesis and how this differs from existing theory. Chapter 8
presents the diesel injection system in a Scania truck and the Bayesian model of
this injection system, used in the computations in this thesis, is presented in Chap-
ter 9.

2



1.3. REPORT OUTLINE

The third part contains the results of the evaluations of the troubleshooter pro-
totype. Chapter 10 presents and discusses the results of the simulations aimed
to study whether the expected cost theory is cost-efficient or not. Discussion and
suggestions for future work are found in Chapter 11.

3





Chapter 2

Introduction to Bayesian Networks

Bayesian networks are graphical models used for probabilistic reasoning.
In [Murphy 2001] Michael Jordan is cited describing Bayesian networks as “a mar-
riage between probability theory and graph theory, providing a natural tool for
dealing with two problems that occur throughout applied mathematics and engi-
neering - uncertainty and complexity”.

The injection system of a diesel engine is a complex and complicated system. It
consists of many different parts with dependencies difficult to grasp. When a symp-
tom of a fault occurs, we cannot be sure of which component is broken. Instead, we
can estimate how probable different components are to be faulty. In order to create
a troubleshooter prototype for the injection system, we need a model that handles
both the high complexity and the uncertainty. Fortunately, Bayesian networks have
the ability to handle probabilistic reasoning in an efficient way, even when systems
get more complicated.

2.1 The Bayesian Approach to Probabilities
In order to understand Bayesian networks we have to understand the Bayesian way
of approaching probabilities. Following Heckerman, the Bayesian probability of an
event E, P (E), can be considered as a person’s degree of belief in that event. In-
stead of making (infinitely) many experiments to estimate the probability of an
event, the Bayesian probability is assigned with respect to the knowledge at hand
[Heckerman 1995].

Heckerman points out that the Bayesian definition of probabilities as degrees of
belief has been criticised because it seems arbitrary [Heckerman 1995]. This is dis-
cussed somewhat further by Pernestål [Pernestål 2007]. Pernestål refers to Jaynes
[Jaynes 2001], who has thoroughly discussed this way of viewing probability.

5



CHAPTER 2. INTRODUCTION TO BAYESIAN NETWORKS

Jaynes treats probability from the point of three basic requirements, called the Basic
Desiderata. These are:

1. Probability should be represented by real numbers.

2. Probability should qualitatively correspond to common sense.

3. Probability must satisfy the following criteria of consistency

a) If a probability can be derived in more than one way, then every possible
way must lead to the same result.

b) All evidence relevant to a question must always be taken into account
and no information can be arbitrarily ignored.

c) Equivalent states of knowledge must be represented by equivalent prob-
abilities.

Jaynes shows that the laws of probability (c.f. Appendix B) can be derived directly
from these desiderata. This supports the Bayesian view of probabilities as degrees
of belief and, conversely, this indicates that probability can be used to measure
beliefs [Pernestål 2007, Jaynes 2001].

2.2 Bayes’ Theorem
One of the most frequently used probability formulas is Bayes’ theorem. It can
be used to compute P (X = x|Y = y) from P (Y = y|X = x) and is useful when
computing probabilities in Bayesian networks.

P (X = x|Y = y) = P (Y = y|X = x)P (X = x)
P (Y = y) (2.1)

Bayes’ theorem is, as Pernestål states, fundamental in probabilistic reasoning
[Pernestål 2007]. The case of troubleshooting a malfunctioning truck is no excep-
tion. With only one or a few observations at hand, we want to determine which
component is faulty. To do this we want to compute the probabilities of the different
faults being present, given the observations.

Typically it is easier to determine the probability that a fault causes a certain
observation, rather than the probability that a certain fault is present given an
observation. Bayes’ theorem enables us to use the information easier obtained to
determine the probability we are actually interested in [Pernestål 2007].

2.3 The Structure of Bayesian Networks
A Bayesian network is a directed acyclic graph (DAG) which can be used to model
probabilistic relationships between variables. The network consists of nodes, each

6



2.3. THE STRUCTURE OF BAYESIAN NETWORKS

representing a variable, and directed edges which connect the nodes. Each variable
is assigned to be discrete and have a finite set of mutually exclusive states. The
edges are most often directed from cause to effect [Jensen 2001].

In a directed acyclic graph there is at least one node which does not receive input
from any other node. This node is often called the root. There must also be at least
one node which does not give input to any other node, and nodes of this type are
often called leaves. The direction of the edges implies a dependence between the
nodes such that the state of a node N depends on the state of its parents, Pa(N)
[Jensen 2001]. Acyclic graphs have, as the name suggests, no cycles. This means
that there exists no directed path that ends in its own starting point [Jensen 2001].

The small Bayesian network in Figure 2.1 is a simplified example of a Bayesian net-
work used in this thesis. In this network there is a problem-defining node, labelled
Alarm. This node tells us whether the system is working or not. The problem
defining node in this case can be in one of two possible states; yes, if the system is
working properly, and no if it exhibits some faulty behaviour.

The two nodes Comp 1 and Comp 2 are called cause nodes because they have a
causal (physical) impact on the state of Alarm. Comp 1 also affects the node Test
1. These dependencies are illustrated by the directed edges.

The direction of each edge indicates how the physical influence can spread between
the nodes connected by the edge. The physical influence can only spread in the
direction given by the edges, and not in the opposite way; performing Test 1 does
not change the actual state of the node Comp 1.

For changes in probability the situation is different from that of physical influence.
Probabilities can spread in both directions of an edge. This is easy to understand by
considering the case where the outcome of Test 1 indicates that it is very unlikely
that the node Comp 1 is causing the failure. Our state of knowledge is changed
and the marginalised probabilities for Comp 1 and Comp 2 change, which implies
that changes in probability can travel in both directions of the edges.

Figure 2.1. A basic Bayesian network consisting of two cause nodes, one problem
defining node and one test node.

7
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2.4 Probabilities in the Network
When using a Bayesian network the objective is to draw conclusions about the
probabilities that variables take on certain values, given the current state of knowl-
edge, ε. The state of knowledge will be discussed further in Section 2.5. Assuming
that there are K discrete random variables Xi, i = 1, . . . ,K this probability can be
written as:

P (X1, X2, . . . , XK |ε) =
K∏
i=1

P (Xi|Pa(Xi)) (2.2)

To be able to compute (2.2) all dependencies and underlying probabilities need to
be specified. As stated above, the parents of a node i, denoted Pa(Xi), are the
nodes that Xi is dependent on. For each node the probability that the variable
takes on different values, given the values of its parents and the current state of
knowledge, must be given.

Let us introduce some notation that will be used in the diagnosis problem. With
the assumption that there are K components in the system, we define K as the set
containing all components. We can then define F as a subset of K, consisting of the
F components that might be faulty. The remaining N = K − F components are
assumed to be normally functioning, and are said to belong to the set N . They will
not be examined during the troubleshooting, because they are known to function
correctly. We represent this by setting the probability of these components being
faulty to zero:

P (Xi faulty) = 0 ∀Xi ∈ N

2.5 The State of Knowledge
In the context of probabilistic inference in Bayesian networks, our state of knowl-
edge, denoted ε, is important. The variable ε contains all the information gathered
so far during the inference process. The state of knowledge can contain any kind
of background information available to us about the system, but also information
collected by performing different kinds of information gathering actions. In this
thesis, these information gathering actions are observing components, performing
tests and repairing components.

When the troubleshooting process starts, we have retrieved information about the
state of the truck from the diagnosis system. From the Bayesian network we get
information about the components that may have caused the faulty behaviour,
namely the components belonging to the set F . This means that we also know
which components belong to N . Into the variable ε we insert the knowledge about
the N non-faulty components. As we proceed with the troubleshooting, during
which tests are performed and components are found to be functioning properly,
the value of ε changes as more information is obtained.

8
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2.6 Conditional Probability Tables

When dealing with discrete stochastic variables, the conditional probabilities of dif-
ferent variables are presented in a Conditional Probability Table (CPT).

To understand how CPTs are used we will present an example where probabilistic
reasoning is used in an everyday situation. This example is found in [Pernestål 2007].
The Bayesian network used in the example is shown in Figure 2.2.

The network consists of three nodes, Sun (S), Holiday(H) and Biking (B). They are
defined as:

S = ’The sun is shining’
H = ’Jane is on holidays’
B = ’Jane goes biking’

Figure 2.2. A simple Bayesian network, describing the dependencies between the
weather and the facts that Jane is on holidays and that she goes biking.

The CPTs for S and H are shown in Tables 2.1, 2.2:

S P (S)
True 0.5
False 0.5

Table 2.1. The CPT for the node S.

H P (H)
True 0.2
False 0.8

Table 2.2. The CPT for the node H.

Tables 2.1, 2.2, 2.3 and the Bayesian network in Figure 2.2 represent our knowledge
of the situation.

9
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S H B P (B|S,H)
True True True 0.8
False True True 0.4
True False True 0.7
False False True 0.1
True True False 0.2
False True False 0.6
True False False 0.3
False False False 0.9

Table 2.3. The CPT for the node B. The states of B are dependent on the states
of its parents S and H. The probabilities in the rightmost column are the conditional
probabilities of the states of B given the states of S and H.

We see that it is less likely that Jane is on holidays (P=0.2) than the opposite
(P=0.8), and that it is as likely that the sun is shining as that it is not (P=0.5).

If we use the convention that X indicates true and X̄ indicates false for an event
X, we can then use marginalisation (c.f. Appendix B) to compute the probability
that the sun is shining, after learning that Jane did go biking today:

P (S|B) = P (B|S)P (S)
P (B) = P (B|S,H)P (H)P (S)

P (B) + P (B|S, H̄)P (H̄)P (S)
P (B) =

= (0.8 · 0.2 + 0.7 · 0.8)0.5
P (B) = 0.36

P (B) (2.3)

In this we use Bayes’ Theorem (Equation (2.1)) and marginalisation (B.8) over the
values of H. In the same way we compute the probabilitity that the sun is not
shining today:

P (S|B) = P (B|S̄)P (S̄)
P (B) = P (B|S̄,H)P (H)P (S̄)

P (B) + P (B|S̄, H̄)P (H̄)P (S̄)
P (B) =

= (0.4 · 0.2 + 0.1 · 0.8)0.5
P (B) = 0.08

P (B) (2.4)

From the two expressions (2.3) and (2.4) we can now compute the denominator
P (B), because these two expressions must sum to one:

1 = P (S|B) + P (S̄|B) =

= 0.36
P (B) + 0.08

P (B) = 0.44
P (B) (2.5)

This gives that P (B) = 0.44. Thus, learning that Jane did go biking today has
changed the probability that the sun is shining from P (S) = 0.5 to

P (S|B) = 0.36
0.44 ≈ 0.82. (2.6)
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2.6. CONDITIONAL PROBABILITY TABLES

When the Bayesian network is known there are efficient methods for computing
any conditional probabilities in the network [Pernestål 2007].
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Chapter 3

Decision Theory

A repair procedure can be a complex task since the cause of a failure can be hard
to find. When repairing a device a number of choices have to be made, e.g. where
to start and if to perform some kind of test that can indicate what is causing the
problem. The way these choices are made can hasten or delay the repair procedure
and in the search for an efficient repair procedure it might be interesting to consider
these choices theoretically.

Decision theory divides decision making into two parts; decision making with and
without experimentation. The former includes the possibility of performing tests to
reduce the level of uncertainty in a choice. Hillier and Lieberman
[Hillier & Lieberman 2005] discuss, among others, two different decision criteria,
the Maximum Payoff criterion and Bayes’ decision rule. Bayes’ decision rule is the
most commonly used, its advantage being its ability to incorporate all the available
information [Hillier & Lieberman 2005].

3.1 The Decision Maker and the State of Nature

In a decision making situation there is always a decision maker, who must choose an
alternative from a set of possible decision alternatives. Because of uncertainty, the
decision maker cannot fully predict or control the outcome of the decision chosen.
The outcome is instead affected by random factors, and these random factors deter-
mine the situation resulting when the decision is executed. Each of these possible
situations is referred to as a possible state of nature [Hillier & Lieberman 2005]. If
we consider the state of nature a random variable, we can translate the information
into a probability distribution, assigning each state of nature a probability. When
making decisions, the decision maker takes into account the information about the
relative possibility of the possible states of nature.
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3.2 Maximising Payoff

The decision maker knows the resulting payoff for each combination of a decision
alternative and state of nature. The payoff is used to quantitatively measure the
value of the consequences of the outcome. The payoff is often represented by net
monetary gain thereby creating a goal of maximising the profit.

3.3 Bayes’ Decision Rule

Bayes’ decision rule is one way to make a decision based on the expected costs of
the different outcomes.

The probabilities for the different states of nature are computed and the expected
values for all possible decision alternatives are calculated. The alternative that
renders the maximum expected payoff is the one to choose.
[Hillier & Lieberman 2005].

3.4 The Introduction of Experimentation

In many cases decision making without experimentation is not good enough, since
the estimates of the probabilities are too rough and unspecific. To achieve more
information in order to improve and refine the the probabilities we introduce exper-
imentation to the decision making process.

Experimentation gives the decision maker more alternatives to choose from since
he, she or it can choose to either perform an experiment or not. In general, the
outcome of an experimentation is not certain but instead based on probabilities, and
can thus be considered a random variable. Given the outcome of the experiment we
can determine new estimates of the probabilities of the different states of nature,
using Bayes’ theorem (Section 2.2). Thus experimentation is used to provide more
information to the decision maker.

3.5 Decision Making Applied to this Thesis

In the context of this thesis, the decision maker is the prototype designed, and each
state of nature is a state where exactly one component is out of order. For instance,
for a certain broken truck two states of nature could be Fuel tank faulty and High
pressure pump faulty, and two decision alternatives could be Repair fuel tank and
Repair high pressure pump. Now assume that the repair costs for the fuel tank and
the high pressure pump are equal and the probability that the fuel tank is broken
is twice the probability of the high pressure pump. Then the decision maker would
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prefer to repair the fuel tank first, because that alternative would be the most prof-
itable.

In the example above, we might want to perform a test before we repair any of the
components. Given the state of nature, this test has the ability to point out the
high pressure pump as the faulty component with some probability. By the nature
of probabilistic reasoning there is always a risk that the test will not provide us
with the information that we want since most tests are non-perfect. The issues of
non-perfect tests and the uncertainty of deciding which component to repair can be
handled by an application of decision theory.
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Chapter 4

The Troubleshooting Problem

Finding a faulty component in a non-working device can be both difficult and time-
consuming. Such time-consuming tasks are expensive and it is desirable to find a
sequence of actions that will repair the device in an efficient way. Finding this plan
of action, which includes replacing faulty components as well as making observations
and tests, is the process that is called troubleshooting (TS) [Heckerman et al. 1995].

4.1 Decision Theoretic Troubleshooting
In some cases, the cost of the troubleshooting process might be significant. For this
reason, it is preferable to consider the costs of repair when looking for the preferred
order for the troubleshooting steps. This type of troubleshooting, balancing costs
and probabilities to find the best next repairing step, is called decision theoretic
troubleshooting [Heckerman et al. 1995]. As the name decision theoretic implies,
the troubleshooting theory is based on decision theory and the basics of probability.

Langseth and Jensen [Langseth & Jensen 2003] present the following definition of
a troubleshooting system:

A device consists of K components X = X1, . . . , XK that can be either non-faulty
(NF ) or faulty (F ). The status of the components is unknown as the troubleshoot-
ing is initialised, hence X is considered a set of random variables. As the search for
the faulty component begins, the goal is to determine the states of these random
variables, following a predefined order of actions, discussed further below. This
order is called the troubleshooting strategy, S.

4.2 Actions
When determining the troubleshooting strategy one can choose from NA different
actions, each being either an observation, a repair or a test. An observation is
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an action through which we can determine with certainty whether a component is
faulty or not.

A repair is either a replacement or a repair of a possibly broken component. A
repair will guarantee that the component is non-faulty when the repair is made. If
the component is the faulty one, the repair action will repair the device.

A test will give us additional information about the system when it is performed.
Tests in general do not indicate correctly in all cases. Only perfect tests will always
have correct outcomes. The difference between an observation and a test is therefore
that an observation will with certainty point out the component as being faulty or
non-faulty, while a test will do this with some probability.

Since we do not know the state of an action before it is performed, the actions
are considered random variables. These actions are modelled by the set A =
A1, . . . , ANA . For example, let us consider the action Ai: observe Xi. Before the
observation is made we do not know the state of Xi. Thus Ai can take on two
different values; either Xi is faulty or Xi is non-faulty. As the action is performed,
the state of the random variable is determined. Then we know the value of Ai,
namely Ai = ai. This adds information to the current state of knowledge.
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Chapter 5

Theory Of Expected Cost Of Repair

Chapter 4 presents the troubleshooting process and the idea of ordering compo-
nents that might be faulty into a strategy. There are many different ways to order
the components, and in this section we present the sorting criterion used in the
troubleshooter prototype. We will present the theory behind a way of minimising
troubleshooting costs, namely the theory of Expected Cost of Repair. We begin by
presenting some assumptions under which the theory is applied.

5.1 General Assumptions
In this thesis the formulation of the troubleshooting problem follows the general
assumptions presented below. These assumptions, apart from number 4, are stated
by Heckerman [Heckerman et al. 1995].

1. At the start of troubleshooting, the device is faulty.

2. There exists one single fault, meaning that exactly one component is abnormal
and responsible for the failure of the device. All the other components are
functioning properly.

3. Each component is either observable or unobservable. An observable compo-
nent can be unambiguously tested or inspected to determine if it is functioning
properly. If it is found to be faulty, it is repaired immediately. Unobservable
components can not be directly observed, but are instantly repaired.

4. There are no false alarms for the trouble codes, alarms, from the diagnosis
system.

5. Immediately following any component repair, the function of the system is
controlled with cost Cs.

6. The costs of observation and repair of any component do not depend on pre-
vious repair or observation actions.
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It is worthwhile to comment on these assumptions. Assumption 1 is quite natural;
if the device is functioning properly and there is no sign of a fault, we do not start a
troubleshooting process. Troubleshooting the device becomes important only when
a fault is present.

Assumption 2 states that there is exactly one single fault. This assumption is very
important throughout this thesis, because it simplifies much of the computations.
If we find a faulty component and repair it, we can by assumption 2 be sure that
the device is working properly again.

The single fault assumption also implies that all cases with more than one faulty
component can be interpreted as impossible. Assuming that there is only one fault
clearly is a simplification, but Heckerman argues that it is a reasonable assumption.
Heckerman comments that it is possible but not very likely that two components
break at fairly the same time [Heckerman et al. 1995].

Assumption 3 handles the property of observability. Depending on the parame-
ters in the model, an observable component may be viewed as unobservable. For
example, if a component is observable, but at a very high cost, it might be more
cost-efficient to regard it as being unobservable. This can be done without any
difficulties.

Assumption 4 concerns the trouble codes generated by the diagnosis system. By this
assumption we state that when an alarm is generated, there is an underlying fault
in a component. An alarm cannot be generated if the device is functioning properly.

Assumptions 5 and 6 concern the cost of troubleshooting. To use the Expected Cost
of Repair as it is described in Section 5.2, these assumptions are essential. Used in
an application to a diesel engine, these assumptions are somewhat hard to fulfil and
hence we will also discuss a way to relax the two assumptions in Chapter 7.

5.2 Expected Cost of Repair

Let, as before, the system consist of K different components, c1, c2, . . . , cK . Define
the probability of component ci being faulty given our current state of knowledge
as pi = P (ci = faulty|ε). At this stage we only allow observations and repairs, and
tests are not included in the model. Let Coci and C

r
ci denote the costs of observing

and repairing component ci and let Cs denote the cost of observing whether the
system is functioning normally or not.

Let the sequence S = (x1, x2, . . . , xK) denote a specific ordering of the components
c1, c2, . . . , cK in which we want to make observations and possibly repairs. Then we
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can define the Expected Cost of Repair for the sequence S, as

ECR(S) = ECR(x1, x2, . . . , xK) =

=
(
Cox1 + px1

(
Crx1 + Cs

))
+ (1− px1)

(
Cox2 + px2

1− px1

(
Crx2 + Cs

))
+

+ (1− px1 − px2)
(
Cox3 + px3

1− px1 − px2

(
Crx3 + Cs

))
+ . . . =

=
k∑
i=1

1−
i−1∑
j=1

pxj

Coxi + pxi

(
Crxi + Cs

) (5.1)

The expression above describes the expected cost incurred during a troubleshoot-
ing and repair process, and is easiest understood through the following example.
Suppose we have a malfunctioning system with three components c1, c2, c3, and we
order them in S = (c2, c3, c1). This means that x1 = c2, x2 = c3 and x3 = c1. We
first observe c2 at the cost Coc2 , and with probability p2, c2 is found to be faulty. If
c2 is faulty, we repair it and thereby the whole system, resulting in an additional
cost of Crc2 + Cs. With probability 1 − p2, c2 is functioning properly, and we then
move on to observe the next component in S, c3. With probability p3

1−p2
we find

that c3 is faulty and we repair it, and in this way we continue the repair process
until the component causing the faulty behaviour is found and repaired.

5.3 The Optimal Sequence

If the objective is to minimise the expected cost of repair in a long term perspective,
there exists an optimal way to order (and repair) the components in the system.
This is shown by Heckerman [Heckerman et al. 1995] and the proof is presented
here. Heckerman uses the expression for ECR(S) and considers a case where the
order of components xk and xk+1 is transposed, creating a new sequence called SN .
Except for terms i = k and i = k + 1, all terms in ECR(S) and ECR(SN ) are
the same. When subtracting ECR(SN ) from ECR(S), these terms will cancel out,
which results in:

ECR(S)− ECR(SN ) =
= ECR(x1, x2, . . . , xK)− ECR(x1, . . . , xk+1, xk, . . . xK) =

= pxk+1C
o
xk
− pxkC

o
xk+1 (5.2)
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From this expression it is clear that ECR(S) is lower than ECR(SN ) if and only if

pxkC
o
xk+1 > pxk+1C

o
xk

(5.3)

⇐⇒

pxk
Coxk

>
pxk+1
Coxk+1

(5.4)

Heckerman calls the ratio pxk/Coxk the efficiency of the kth component in a sequence
[Heckerman et al. 1995]. In this thesis, the efficiency of the kth component is de-
noted ηk. If we construct the sequence S by ordering the components with respect
to descending efficiency, we are guaranteed to have the optimal sequence, as long
as the sequence only consists of observations and repairs. If tests are included, this
is no longer guaranteed to be true [Heckerman et al. 1995].

5.4 Expected Cost of Repair Including Tests
To the model consisting of K components, we add NT tests, T1, T2, · · · , TNT . The
addition of tests changes the properties of the troubleshooting process radically.
Most importantly, by the addition of tests as possible troubleshooting actions we
can no longer be sure that an optimal repair strategy will be obtained even though
the efficiency sorting criterion is used.

To all tests we assign probabilities and test costs. For each test Ti we denote the
specific cost corresponding to performing the test CTi . We need the probability that
the test does indicate (I) a fault given the current state of information, P (Ti = I|ε).
We also need the probability that the test does not indicate (NI) given the same
state of information, P (Ti = NI|ε).

Consider the small system consisting of three components c1, c2, c3. In Section 5.2
a sorted repair strategy S = (c2, c3, c1) was chosen. Assume that we now have the
possibility of performing the test T before deciding on the strategy. This might
change the preferred order since the test outcome gives us additional information
about the system.

Suppose that we perform the test and the outcome is an indication of a fault in
component c3 or c1. The probability distribution has changed and from this change
we conclude that the best repair strategy is STI = (c3, c1, c2). If we instead suppose
that the test does not indicate, the probabilities will change in another way. The
best strategy might then become STNI = (c2, c1, c3). As different strategies, STI
and STNI also correspond to different values of ECR.
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Using this information and the test probabilities we calculate the Expected Cost of
Repair Including Test (ECRT(T)) as:

ECRT (T, ε) = CT + P (T = I|ε) · ECR(STI ) + P (T = NI|ε) · ECR(STNI ) (5.5)

5.5 The Value of Information
Optimal troubleshooting is the task of combining tests, repairs and observations in
a way that minimises ECR. To be able to compare tests to other actions, we need
a method for evaluating the information the test adds.

Let us assume that we are troubleshooting a system and are to decide whether to
perform a test or to repair a component. It is reasonable that we choose the action
that, at this moment, will give the minimal expected cost. If we exclude the test
from the possible actions, the remaining actions could be ordered into a strategy
S. From this we obtain the ECR(S). If the test is considered we can compute the
ECRT (T ) as the expected cost after performing the test, following Section 5.4.

To determine the most cost-efficient action, we introduce the Value of Information
(VOI) [Hillier & Lieberman 2005] of test T as:

V OI(T ) = ECR(S)− ECRT (T ) (5.6)

If the difference between ECR and ECRT is positive, it can be considered to be the
gain we make by performing the test. If the value of VOI(T) is negative, there is
no gain of performing the test. Instead, performing the test will only give rise to a
higher repair cost.
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Chapter 6

Algorithms for Troubleshooting

In [Gustavsson 2006] four different algorithms for cost-efficient troubleshooting are
studied. Considering the algorithm characteristics, like complexity and perfor-
mance, discussed by Gustavsson, two algorithms are chosen for the continued study
of the ECR performance. As a development of this previous study, the computa-
tions of the ECR are different (c.f. Chapter 7) due to an adjustment to the specific
process of troubleshooting a truck. The algorithms are presented in the following
sections.

6.1 The Greedy Algorithm
The greedy approach is a naive way to troubleshoot. The components can only
be sorted by a certain criterion, decided upon in advance, and no tests can be
integrated into the strategy. As the name indicates, the Greedy algorithm aims
to choose each step to maximise the utility. Which, from the ECR point of view,
means an ordering of components by descending efficiency. The Greedy algorithm
can be described by three steps which also are illustrated in the flowchart in figure
6.1.

1. Calculate the probabilities P (ci = F |ε) for the components being faulty.

2. Calculate the efficiency, ηi, for each component.

3. Sort all components by descending efficiency to obtain the Greedy strategy.
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Figure 6.1. Flowchart of the Greedy algorithm

6.2 The One Step Look Ahead Algorithm

The One Step Look Ahead algorithm (One Step) uses the theory of ECR and ECRT
to include the possibility of adding information gathering steps to the troubleshoot-
ing process. To handle the possibility of tests as future actions One Step uses the
myopic approach, described in the following section.

6.2.1 A Myopic Approach

Troubleshooting a system where it is possible to perform one or several tests is
a difficult problem. When tests are introduced a predefined strategy cannot be
uniquely determined because the outcome of the test is not certain until the test
is performed. The test outcome affects the probability distribution for the compo-
nents to be faulty, and thus it might change the preferred order of the components
in the strategy.

One way of handling this problem is to use a myopic approach when troubleshoot-
ing. The name myopic refers to the algorithm’s ability to look one step ahead and
evaluate the benefit from performing different actions, before an action is chosen.
When this evaluation is made, only observations and repair actions are allowed,
which is a simplyfying assumption.
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Closely following Jensen in [Jensen 2001], the myopic approach is described as fol-
lows. Assume that we are at any stage of troubleshooting. At this stage we allow
tests to be performed, but in the future we allow only repair and observation ac-
tions. In this case, the task reduces to calculating expected costs given the various
outcomes of the possible tests. This conveniently enables us to use the theory of
Expected Cost of Repair, even in the case where tests are allowed [Jensen 2001].

6.2.2 General Description of the One Step Algorithm
In each step of One Step, two different calculations are performed. Firstly, the
greedy approach is used to calculate an order of component repair that minimises
ECR. Secondly, ECRT is calculated for all related tests. One Step always chooses
one of the actions; perform a test, make an observation or make a repair that, in
this step, generates the lowest expected cost. A graphic representation of One Step
is shown in Figure 6.2 and can be described by the following steps:

1. Decide the strategy for the components and calculate its ECR.
The repair strategy is found by using the Greedy algorithm.

2. Calculate the ECRT for all tests related to possibly faulty components.

3. Compare the ECR to all ECRTs.
Choose the strategy that generates the lowest expected cost.

4. - If ECR is the best choice: Repair the component that comes first in the
strategy.

- If the best choice is one of the ECRTs: Perform the corresponding test.

5. Return to 1 if the device does not work properly.
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Figure 6.2. Flowchart of the One Step Look Ahead algorithm
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Chapter 7

Costs

Heckerman assumes that the cost of repairing a component is independent of pre-
vious actions [Heckerman et al. 1995]. Since the costs, by that assumption, do not
depend on the previous actions we will refer to them as independent costs.

This section presents one possible way of relaxing the assumption of independent
costs developed during this thesis work. The relaxation is made to adapt the theory
to the process of troubleshooting trucks. A process where the cost of repair depends
as much on how much we have to dismantle the truck to reach a specific component
as on the spare part cost for that component.

7.1 Independent and Dependent Costs

The assumption that the cost of an action is independent of the previous actions
leads to a case with constant costs. When assigning the cost of an action, we do not
consider the current state of the device; for example if any parts are disassembled
or not. When using independent costs we assume that when an action is to be
performed, no changes have been done to the device beforehand.

Assuming independent costs clearly is a way to simplify the problem and in order to
adjust the troubleshooter to a realistic case, this simplification is abandoned. The
cost of repair will no longer be considered as constant but will be a function of the
current state of the device. In this thesis we introduce the level of disassembly to
describe these states.

7.2 Level of Disassembly

For a device, we identify different levels of disassembly, corresponding to different
amounts of dismantlement. We denote the ith level of disassembly λi. All levels of
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disassembly belong to the set Λ such that

Λ = {λ1, λ2, λ3, . . .} (7.1)

Figure 7.1 shows how a general device can be divided into different levels of disas-
sembly. The graph consists of levels of disassembly and groups of components. A
group can contain one or many components. Every level must contain at least one
group. Groups on the same level are named a, b, c, . . ..

Figure 7.1. Levels of disassembly in a general case.

Typical levels of disassembly are “complete device”, which corresponds to the case
when no components have been removed from the device, and “free component level:
component X” which corresponds to the situation when the device is dismantled
until component X is free. We can define as many levels of disassembly as we want.
With many levels, the costs can be more specifically defined, but this will also in-
crease the complexity of the model.

It is reasonable to assume that different components can be observed and repaired at
different levels of disassembly. To each component we assign the level of disassembly
at which the component can be repaired. If the component is observable we must
also specify the level of disassembly at which we can observe the component. For
these levels the repair and observation costs are specified. For each test we must
specify the level of disassembly at which the test can be performed, and the cost of
performing the test.
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7.3 Costs of Transition
The dismounting and mounting of parts on the device corresponds to transitions
between different levels of disassembly. To these transitions there are corresponding
costs, called costs of transition. The cost of transition between level λi and λj is
denoted Cλi→λj . These costs of transition are added to each cost of action to obtain
a cost of repair dependent on the different levels of disassembly.

There are some rules regarding the calculations of the transition costs, which we
will explain below.

- A simple transition is a transition from one level to an adjacent level.

- Transitions between different groups on the same level must go via an adjacent
level, connected to both groups.

- A transition between level λi and λj is made via a transition path. A transition
path from λi to λj is the shortest possible sequence of simple transitions from
λi to λj .

- The cost of a transition path is the sum of the cost of all simple transitions
in the transition path.

- All paths are reversible, meaning that the cost of transition from λi to λj
equals the cost of transition from λj to λi.

7.4 Functional Control
As it is necessary to define a level of disassembly where all repairs, observations and
tests can be performed, it is also necessary to define the level where it is possible
to perform the functional control. For a complex system it is possible that these
functional controls can be performed at different levels depending on the previous
action performed.

The cost for the functional control, Cs, will not only be the cost for performing the
actual control, it will also depend on which level of disassembly the previous repair
was made i.e. the transition cost from the level of last repair to the level where the
functional control can be performed.

7.5 Determining a Strategy using Dependent Costs
The changes in costs due to transitions between different levels of disassembly cause
changes in the determination of the troubleshooting strategy. The efficiency for
each component is no longer constant but needs to be determined by considering
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the previous action performed. This means that after each chosen action, the effi-
cency needs to be calculated to determine the next component si in the strategy.
An attempt to formulate this problem in mathematical terms is presented below.

The troubleshooting case consists of a specific set of possibly faulty components, F ,
(c.f. Section 2.4) which we want to order into a strategy S = (s1, ..., sn). We want
to use the efficiency criterion to order the components and therefore it is of great
importance to obtain the correct observation cost at each level of disassembly. We
introduce the variable li as the level of disassembly at step i, which can be either
of the levels of disassembly, λj . This variable li is linked to the ith component in
the repair strategy and we consider all costs as a function of this variable.

The troubleshooting starts on level l0. The first component in the strategy, s1, is
determined by considering the component with the highest efficiency based on this
level, usually the complete device level.

max
(

pi
Coi (l0)

)
for i such that ci ∈ F (7.2)

When the first component, s1, has been determined, the level of assembly is changed
from l0 → l1. The level l1 is where we can observe the component corresponding to
s1. The efficiency of the remaining components is then calculated using the cost of
observation for the current level, l1.

max
(

pj
Coj (l1)

)
for j such that cj ∈ F\ci (7.3)

Each time a component is ordered into the strategy it is removed from the set F . In
each step, the efficiency is consequently calculated for components not yet ordered
into the strategy. This follows Equation 7.3 where more and more components are
excluded from the set F .

7.6 The Expected Cost of Repair using Dependent Costs

As the independent cost approach is abandoned we obtain a more flexible repre-
sentation of the repair procedure. This approach means that all costs are varying
with the different levels of disassembly. Thus, the calculation of the ECR has to be
changed.

The variable l is significant in the computation of the ECR since all costs are said
to be a function of this variable. The probabilities for the components to be faulty
are unaffected by l and are left unchanged:
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For a strategy S = (s1, s2, ..., ) the ECR for dependent costs is:

ECR(S, l) =
(
Cos1(l0) + ps1

(
Crs1(lo1) + Cs(lr1)

))
+

+ (1− ps1)
(
Cos2(l1) + ps2

1− ps1

(
Crs2(lo2) + Cs(lr2)

))
+ · · ·

(7.4)

When we study the expression above it is important to consider the dependencies
on l. This is done in the example below.

A small device consists of two different components, c1 and c2. The components
are faulty with the probabilities p1 and p2. For this device there are three different
levels of disassembly, λa, λb, λc. The levels for performing repairs and observations
are presented in Table 7.1. The functional control can only be performed at λa.

Action Level of Disassembly
Observe c1 λa
Observe c2 λb
Repair c1 λb
Repair c2 λc

Table 7.1. Level of disassembly for the components in Example 2

The strategy for this troubleshooting procedure is S′ = (c2, c1) and from this we
can calculate the ECR(S′, l).

ECR(S′, l) =
(
Coc2(λa) + p1

(
Crc2(λb) + Cs(λc)

))
+

+ (1− p1)
(
Coc1(λb) + p2

1− p1

(
Crc1(λa) + Cs(λa)

))
(7.5)

We start the troubleshooting at λa, the level corresponding to the complete device.
The cost of observing c2 is obtained from the expression Coc2(λa).

- Coc2(λa)
In this cost we include the cost of observation of c2 and the transition cost
from level λa to the level where c2 can be observed, λb . For this we use the
following notation: Coc2(λa) = Coc2 + Cλa→λb .

With probability p2 we find the component c2 to be faulty and want to repair it.
We denote the cost of repair as Crc2(λb).

- Crc2(λb)
We include the repair cost for c2 as well as the transition cost from the current
level λb to the level where c2 can be repaired, λc. Crc2(λb) = Crc2 + Cλb→λc .

After a repair is made we perform a functional control corresponding to the cost
CSc2(λc).
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- CSc2(λc)
The cost of the functional control adds the cost of the functional control,
CS , and the transition cost from λc → λa where the functional control is
performed. CSc2(λc) = CSc2 + Cλc→λa

With the probability (1 − p2) is c2 non-faulty and we get the remaining terms for
c1. To determine the cost of observation of c1, Coc1(λ), we need to consider whether
c2 is observable or not.

- c2 is observable

If c2 is observable, the level we are to continue from is considered to be the level of
observation for c2. We get the observation cost for c1 as Coc1(λb) = Coc1 + Cλb→λa .

- c2 is unobservable

If c2 is unobservable we know that a functional control has been performed before
continuing to c1 and therefore we get the observation cost for c1 as Coc1(λa) =
Coc1 +Cλa→λa . In this case the cost of transition will not correspond to a cost since
it is the same level and no groups of components exists on this level.
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Chapter 8

The Extreme High Pressure Injection
System

In this section the reader is provided with a short description of the XPI (Extreme
High Pressure Injection) system, the diesel engine and the on-board diagnosis sys-
tem.

8.1 The Diesel Engine
This description of the diesel engine is based on an article in [Wikipedia 2007]. The
diesel engine is an internal combustion engine that uses compression ignition. There
are two classes of diesel engines, one with a two-stroke cycle and one, more com-
monly used, using a four-stroke cycle. The four-stroke engine is the type used in
Scania trucks.

Internal combustion engines require a combustion chamber, where pressure is built
up. This chamber is the cylinder, in which the piston moves. Attached to the cylin-
der head are two valves for the inlet of air and two valves for the outlet of exhaust
gases. An injector valve, which injects the fuel into the cylinder, is also attached to
each cylinder head. The parts are shown in the schematic picture of a cylinder in
Figure 8.1. Most truck engines have five, six or eight cylinders.
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Figure 8.1. A schematic picture of a cylinder and the important parts.

Each cycle consists of four phases, called strokes, which are shown in Figure 8.2.

Figure 8.2. A schematic picture of the four strokes of a diesel engine.

The first stroke is called the intake stroke. During this phase the piston moves
down, reducing the pressure in the cylinder. Thereby air is drawn into the cylinder
through the inlet valves. The intake valves then close and the compression stroke
starts.

In this phase the air is compressed towards the top of the cylinder by the piston,
which moves upwards. The compression leads to a higher pressure and the temper-
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ature rises. Just as the pressure reaches the point at which the fuel spontaneously
combusts, fuel of very high pressure is injected. The mixture of fuel and air then
ignites. The combustion leads to an expansion forcing the piston back down, and
the power stroke begins.

During the power stroke, all valves are still kept closed, and the piston moves
downwards. The kinetic energy caused by this movement is transferred to the
crankshaft. The last phase is called the exhaust stroke. At this stage the outlet
valves are opened and the piston moves upwards again, forcing the exhaust gases
out through the outlet valves. The outlet valves are then closed, the inlet valves
opened and the cycle is repeated.

8.2 Operating Principle of the XPI System
The XPI system is a fuel injection system where all fuel injectors are connected to
a high pressure tube, called the common rail. This rail distributes the fuel at a
steady high pressure to the injectors and can maintain a constant high pressure in
all injectors simultaneously.

High pressure fuel injection improves the combustion in the cylinders. This results
in more efficient fuel consumption and a decreasing amount of particles, i.e. soot,
in the exhaust gases. A drawback of the common rail system is its sensitivity due
to very small tolerances. Bad fuel quality and unwanted particles can cause leakage
[Telborn 2007].

8.2.1 Fuel Transport in the XPI System
The fuel is pressed through the suction side filter, marked by 1 in Figure 8.3, before
passing the Low Pressure Pump, LPP, (4) on its way to the Inlet Metering Valve,
IMV (6). The fuel then passes the pressure side filter (5). The IMV is controlled
by the ECU (Electric Control Unit, described in the following section) and regu-
lates the amount of fuel transported to the High Pressure Pump, HPP (7). The
fuel pressure is heavily increased in the HPP, at maximum reaching 2500 bar. The
fuel is then accumulated in the rail (8). On the rail, the Rail Pressure Sensor, RPS
(9), is mounted. As the name suggests, this sensor measures the pressure in the rail.

From the rail the fuel is transported to the injectors via High Pressure Lines (11)
and High Pressure Connectors, HPC (12). The fuel is injected into the cylinders by
the injectors (13). The fuel injections are electrically controlled by magnet valves
which enable high precision regarding fuel amount and injection time. As a pre-
caution the Metering Dump Valve, MDV (10), is connected to the rail. If the rail
pressure gets above 3000 bar, this valve will open, thereby lowering the pressure to
1000 bar [Scania 2006].
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Figure 8.3. A schematic picture of the XPI system. The picture can be found in
[Scania 2006]

8.2.2 On-Board Diagnosis and Diagnostic Trouble Codes

In modern trucks, most operating systems, such as the engine and the brake system,
are controlled by Electric Control Units (ECU). In these systems, there are sensors
that measure temperature, fuel amount, RPM (Revolutions per Minute) etc. These
signals are registered by the ECU. In the ECU there is also a diagnosis system. The
principle of the diagnosis system is shown in Figure 8.4.

Figure 8.4. A sketch of the on-board diagnosis.
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Continuously during operation, diagnostic tests are performed by the ECU. These
tests compare measured signals to each other or with reference values. If an abnor-
mality is detected a Diagnostic Trouble Code (DTC) is generated and stored in the
ECU.

Some DTCs may attract the driver’s attention by lighting an indicator on the dash-
board, but that is not always the case. Others are used only as information to the
workshop mechanic. It is possible that no DTC is generated, even though there is
some fault present. In this thesis we assume that the opposite is impossible, i.e. a
DTC cannot be generated unless some component is faulty.

At the workshop, a computer is connected to the ECU and the generated DTCs are
retrieved. Thereafter, the troubleshooting process can begin.
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Chapter 9

A Model of the XPI System

Real world systems are often very complex, which makes them hard to survey. To
be able to analyse the behaviour and performance of such systems we use models.
When creating a model, the main goal is to reduce the complexity without losing
too much of the characteristics of the real system. In [Mossberg 2007] a Bayesian
model of the XPI system is designed. In this section we will discuss some of the
issues concerning the creation of the Bayesian model of the XPI system.

One of the difficulties in designing the model is to determine which parts to include
and which to exclude. In general, the number of DTCs and components must be
strictly limited to avoid storage and computational problems. Including too many
nodes in the Bayesian network makes it too complex and does not simplify the real
world system enough. On the other hand, having very few nodes will make the
model too simplified and have it differing too much from the real system.

9.1 Components

One must take different aspects into account when determining which components
to use in the model. Important issues can be formulated as the following questions.

- What is the failure rate of the component?

Since the model is built to be a part of a troubleshooter, we are interested in the
problematic parts of the system, i.e. components with high failure rates. Including
components that break very infrequently will only increase the model complexity
without capturing any significant behaviour.

- How vital is the component in terms of system performance?

We want to capture the characteristic behaviour of the real world system as effi-
ciently as possible. Therefore we concentrate on the components that are the most
important parts of the system.
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- Is the component available as a spare part?

In the XPI system, most of the components are very complex and constructed with
extremely small tolerances. Therefore, it is not possible to repair such parts at the
workshop. If such a component is found to be faulty it must be replaced with a
new one, since the workshops do not have the equipment to repair it. An example
of this is the injectors where the tolerance at the injection needle is only a few
µm. Small particles in the diesel might cause leakage in the injector which will lead
to decreasing system pressure and a “Low pressure DTC” will be generated. The
extremely small tolerance in the injector is not possible to maintain in an ordinary
workshop. With this in mind, only components available as spare parts are included
in the model.

In total, 17 components are identified as important and included in the model. A
more detailed description of how this is done can be found in [Mossberg 2007].

9.2 Observability

For some components it is possible to observe the component to determine whether
it is faulty or not. Such components are called observable. An observable compo-
nent will never be repaired unless it is first observed to be faulty. If it is found to
be faulty, it must be repaired immediately.

Unobservable components, on the other hand, cannot be observed. When we choose
to repair an unobservable component we therefore accept the risk that we might
“repair” a non-faulty component.

To repair a component, observable or not, means to replace it.

When we determine the troubleshooting strategy we use the efficiency, η. We present
the definition again:

ηi = pi
Coci

We see that we use the cost of observation, Coci , when we determine the efficiency.
Observation costs cannot be assigned to the unobservable components. However, it
is straightforward to include the unobservable components.

Let us suppose that an unobservable component ci is repaired with a cost Ri. We
can then view the unobservable component as an observable component that is
observed with cost Ri, always found to be faulty and repaired with cost zero. That
is, we can include unobservable components, provided we set Coi = Ri and Cri = 0
[Heckerman et al. 1995].
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9.3 The Single Fault Constraint Node

One of the most important simplifications is the single fault assumption. This
assumption means that exactly one component is faulty and repairing this compo-
nent leads to a complete repair of the device. As previously stated, the single fault
assumption is often a good approximation, because it is not likely that two com-
ponents will fail at roughly the same time [Heckerman et al. 1995]. Furthermore,
without this assumption, filling in the CPTs would be much more cumbersome. This
assumption simplifies the problem, but it also implies strong dependencies between
the components [Mossberg 2007].

In the Bayesian model this assumption is met by the SFC node, short for Single
Fault Constraint node. This node does not represent a physical component. In-
stead, its only purpose is to guarantee that only one component is faulty at a time.

For a model with K components, the SFC node has K+1 states. The first K states
handle the cases where one of the K components is faulty in a way that the ith
state corresponds to the ith component being faulty. The (K + 1)th state handles
the case where none of the components are faulty. In the CPT for this node we
specify the prior probability for each component to be faulty.

9.4 Diagnostic Trouble Codes

There are different kinds of DTCs (Diagnostic Trouble Codes). Some DTCs are
very specific and can point out a faulty component with very high precision. These
DTCs usually handle electrical faults. There are also DTCs that handle mechanical
faults, and these are often not as precise. They do not point out a specific compo-
nent, but rather a troublesome symptom. In the XPI system, with pressure being
the most important issue, a typical symptomatic DTC is the ’Low pressure’ DTC.

In this thesis, the symptomatic DTCs are of greatest interest. Because of their in-
ability to specifically point out one component as most probable, they are difficult
to use on their own, without any other information, when troubleshooting. This
makes them suitable for this troubleshooter application. The troubleshooter puts
the DTCs in a context where other information is available, and thereby enables
more efficient troubleshooting.

For the XPI system, nine symptomatic DTCs are identified. Most of these concern
pressure and leakage problems. The DTCs are listed and presented in Appendix C.
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9.5 The Bayesian Model of the XPI System
The resulting model consists of 40 nodes. The nine DTCs, seventeen components
and thirteen tests sum to 39 nodes. Finally, the 40th node is the Single Fault
Constraint Node, described in detail in Section 9.3. Between these nodes a huge
number of edges are drawn, connecting the nodes in such a way that the physical
dependencies are captured [Mossberg 2007]. The model is shown in Figure 9.1.

Figure 9.1. The XPI-model as a Bayesian network. The SFC (Single Fault Con-
straint) node is connected to all 17 components. Each of the 17 components is then
connected to a specific set of tests and DTCs. The whole model has 13 tests, here
represented as the squares to the left. The 9 circular nodes to the right models the
DTCs (Diagnostic Trouble Codes) connected to the XPI system.

9.6 Determining the Levels of Disassembly
The procedures of repairing and observing components in the XPI system are dif-
ferent depending on the component in question. To model these differences we use
the approach presented in Section 7. To do this we need to define our approach to
the levels of disassembly for a truck.

9.6.1 Level of Disassembly
For a truck in a workshop three different levels of disassembly are taken into ac-
count; the complete truck level, the tilted cab level and the free component level.
The free component level has six groups of components.

The complete truck level corresponds to a complete truck, where the cab is not
tilted and no components are removed. It is assumed that a truck arriving at the
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workshop is on the complete truck level. It is also assumed that when the functional
control of the truck is performed, the truck is on this level. During much of the
troubleshooting in a workshop, the cab is tilted. This is the level on which many of
the tests are performed.

The free component level corresponds to the situation when the truck is dismantled
until a specific component (or group of components) is free. It is not necessary that
the component is removed from its original position in the truck, but in some cases
this is needed. Some tests and observations require that the component is removed
and mounted in some special test equipment.

9.6.2 Transition Costs

Figure 9.2 shows the different levels of disassembly and the costs corresponding to
simple transitions.

Figure 9.2. Transition costs for simple transitions between different levels of di-
assembly of a truck. Costs are given in SEK.

The numbers correspond to the following levels of disassembly.

λ1 Complete truck level.

λ2 Tilted cab level.

λ3 Free component level:

λ3,a The components on the suction side are free.
λ3,b The filter housing is open.
λ3,c The components on the pressure side are free.
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λ3,d The pipe between the HPP and the rail is free.
λ3,e One injector and its HPL and HPC are free.
λ3,f The rail is free.

Using information from time measurements and experts, the costs of transitions
between level λ1 and λ2, and between λ2 and the groups on level λ3 are defined.
These costs are presented in Figure 9.2. From these costs, the cost of any transition
can be calculated, following the rules presented in Section 7.3.

When dealing with dependent costs, we must also specify the levels of disassembly
at which the components can be repaired. This data is presented in Table 9.1.
There we also find the levels of disassembly at which the observable components
can be observed. Unobservable components cannot be observed at any level and
are marked with ’ - ’.

Component Level of repair Level of observation
Fuel tank λ1 λ1

Pipes, suction side λ3,a -
Hand pump λ2 -

Filter, suction side λ3,b -
Low pressure pump, LPP λ3,a λ2

Pipes, pressure side λ3,c λ2
Main filter λ3,b -

Pipes, filter housing λ3,b -
Inlet metering valve, IMV λ3,c λ2
High pressure pump, HPP λ3,c -

Air bleed venturi λ3,c -
Pipes, high pressure side λ3,d λ2

Rail λ3,f λ2
Rail pressure sensor, RPS λ2 -

Mechanical dump valve, MDV λ2 λ3
High pressure connector, HPC λ3,e -

Injector λ3,e -
Table 9.1. Levels of disassembly at which repairs and observations can be made.
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Chapter 10

Simulating the Repair Process

To evaluate the choice of using the efficiency as the sorting parameter, the program
prototype is used to find the faulty component in simulated cases. The simulations
models the behaviour of the troubleshooter prototype in invented workshop cases.

10.1 Simulation Objectives
The main goal for the simulations is to conclude whether the ECR theory handles the
component sorting in a cost-efficient way or not. The objective of these simulations
is to rate the efficiency sorting to other sorting criteria, to see how the ECR approach
to troubleshooting performs.

10.2 Component Sorting Criteria
After the sorting by efficiency is used, we change to a Greedy sorting by probabil-
ity. By using this sorting we keep the probabilistic reasoning but do not add the
information about the observation cost. This will affect the component ordering
and it is interesting to see whether or not this makes a difference in the total repair
cost. Second, we change the sorting criterion to be a completely random order,
this to model a repair procedure where no information is taken into account. It is
reasonable to assume that a random ordering of the components will give a total
repair cost higher than a cost-efficient sorting. The random ordering can therefore
be seen as somewhat of a worst-case repair scenario.
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The different sorting criteria used are stated in Table 10.1.

a) Efficiency, η Components sorted by descending efficiency.

b) Probability P (ci faulty|ε) sorted in descending order.

c) Random order All components randomised.
Table 10.1. The sorting criteria used for the different simulations

10.3 Carrying Out the Simulations
The simulation algorithm is constructed as a virtual mechanic that can provide the
right information to the troubleshooter prototype. For one simulation cycle we ob-
tain 100 fictious workshop cases where the same component is modelled as faulty.
The modelling of component failure is described more in detail in Section 10.3.1.

The simulated repair is initialised by giving a DTC, thereby simulated as generated,
as input to the program. This corresponds to the information the mechanic gets
from the diagnosis system in the truck. The generated DTC becomes the current
state of knowledge. The task for the troubleshooting program is to present the
strategy by which the actions should be performed. The simulated repair process
follows this strategy until the faulty component is encountered. The order of tests
and repairs made during the search for the faulty component is obtained in a repair
sequence.

To each of these repair sequences a specific cost of repair, CR, is assigned. The
cost of repair is calculated using the dependent cost approach presented in Section
7. This fictious repair cost is used as a comparison tool in the evaluations of the
different component sorting criteria.

10.3.1 Simulating Component Failure

For each simulation cycle one component in the XPI-model is modelled to be faulty.
The simulation algorithm handles the modelling of the faulty component by a global
parameter, set to be the component number of the faulty component. It is important
to mention that the XPI-model and the troubleshooting prototype are unaffected
by this parameter. All probability calculations and the presentation of the next
action will be exactly like it would be in a real workshop troubleshooting case. The
global parameter is used to be able to determine whether a certain repair action
has repaired the truck or not.
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Each time a repair action has been performed, the troubleshooter prototype de-
mands a functional control. In a real workshop scenario this means that the me-
chanic controls if the truck is behaving normally after the specific repair. In the
simulations this is handled by comparing the number of the newly repaired com-
ponent to the number assigned to the global parameter. If they are identical, the
troubleshooting is terminated.

In total, five components from the XPI-model are chosen to, in turn, be modelled as
faulty. These components constitute simulation cycles named A to E in Table 10.2
below, which also shows the given combinations of faulty components and generated
DTCs.

Cycle Component Generated DTC
A MDV, c15 DTC3
B HPC, c16 DTC1, DTC3
C Injectors, c17 DTC1
D Filter, suction side, c4 DTC1
E IMV, c9 DTC8

Table 10.2. Components and corresponding DTCs used in the simulations.

10.3.2 Simulating Test Outcome
When a test is performed during program execution, the user is asked to provide
information about the test outcome. In a computerised simulation this feedback
needs to be provided in another way.

To obtain a somewhat realistic test outcome, the marginalised test probability,
pTi = P (Ti = I|ε), from the Bayesian network needs to be considered. The test
outcome is therefore generated as follows: A random number, r, is generated from
the uniform distribution on the unit interval, U(0, 1). The random number, r, is
compared to pTi which constitutes the limit value for the outcome to be indication
or no indication. If r is less than this value, placed on the left side of the dashed
line in figure 10.1, the test outcome is modelled to be indicating (I). Naturally,
non-indication (NI) is modeled by the random number being greater than pTi .

Figure 10.1. The unit interval in relation to the marginalized test probability
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Random number Test outcome
r < pTi I
r > pTi NI

Table 10.3. Generated test outcome by a random variable, r.

10.4 Simulation Results
To be able to understand the results from the simulations it is important to con-
sider the model and the connections between the faulty component and other nodes
in the model. For each simulation cycle the corresponding model, here called the
active model, is presented and discussed in terms of specific DTCs and available
tests.

In these simulations the cost distribution corresponds to the number of different
costs that appear. These simulations are graphicly presented by plotting the fre-
quency of a certain repair sequence vs the corresponding cost of repair.

10.4.1 Simulation Cycle A - Component 15 Faulty
The active model for cycle A

For component 15, DTC3 was predefined to be generated. DTC3 is a rather specific
DTC, meaning that only 5 out of 17 components are connected to this DTC which
can be seen in Figure 10.2. As a consequence, the generation of DTC3 makes a
troubleshooting case easier since the number of possible actions decrease. At the
beginning of troubleshooting there are 9 different actions to chose from, 4 tests
and 5 components. The small number of possibly faulty components decreases the
number of repair strategies.
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Figure 10.2. The active model for simulation A. We see that DTC3 is the generated
DTC out of the 9 possible DTCs modelled by the nine nodes down to the right. From
the 17 nodes representing the components there are 5 that are connected to DTC3,
e.g. component 10, 12, 13, 15 and 16. Component 15 is modelled to be faulty. The
square nodes to the left are the 13 tests in the XPI-model, out of which tests 4, 5, 9
and 10 are available for this combination of DTC and components.

The Three Cost Distributions for Cycle A

Figure 10.3 is a representation of the resulting costs from the three sorting criteria.
We can observe that there are fewer unique costs for the efficiency sorting (topmost
plot) and probability sorting (middle plot) and that these costs have higher fre-
quency than the costs associated with random sorting (last plot). High frequency
means that many repair procedures correspond to the same cost and thereby the
same repair strategy. Both efficiency and probability sortings have been able to use
only a few different repair sequences. The random sorting has used a large number
of repair sequences giving many different cost of repair with low frequency. This is
an observation that is general throughout these simulation results.

Let us concentrate on the topmost plot. We see that the efficiency sorting has a
cost distribution of only three different repair sequences. The composition of this
distribution can be understood by studying the repair sequences resulting in the
specific costs.
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Figure 10.3. The cost distributions for simulation cycle A. The topmost plot shows
the resulting cost distribution for the efficiency sorting, the middle plot shows cor-
responding result for the probability sorting and in the last plot the results for the
random sorting is presented. All plots present the frequencies of specific repair se-
quences on the y-axis and the costs of repair for these sequences on the x-axis.

The three repair sequences for the efficiency sorting are presented in Table 10.4. To
each test in the sequence, the test outcome is denoted.

Sequence CR [SEK] Repair sequence
A1 968 T9=I - 12 - 13 - 15
A2 985 T9=NI - T10=I - 12 - 13 - 15
A3 2688 T9=NI - T10=NI - 16 - 12 - 13 - 10 - 15

Table 10.4. The obtained repair sequences for the efficiency sorting in simulation
cycle A.

We can see that all sequences begin with test number 9. This test checks whether
or not there is an unusually strong smell of diesel, which is - for test indication -
a sign of an external diesel leakage. The fault of component 15 is leakage and the
test indication changes the probability distribution. Sequence A1 corresponds to
this case, where component 12 and 13 are proposed to be repaired first since they
have a higher efficiency compared to component 15.
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Sequence A3, which is much more expensive, corresponds to the opposite case to
A1. Test 9 does not indicate diesel smell and test 10 does not indicate a visible
diesel leakage. When this information is added to the model, the probability for
component 15 to be faulty decreases and the repair sequence gets longer and thereby
more expensive.

For the middle sequence, A2, we can conclude that the indication of T10 is a strong
evidence to the model and therefore we get the same behaviour as for sequence A1.
But in this case it is important to reflect upon the fact that these two tests, both
able to indicate external leakage, should most certainly give the same result. For a
visible leakage, it is highly probable that there is a distinct smell of diesel as well.
This means that this case is somewhat unrealistic.

Studying the middle plot we see that the cost distribution for the probability sort-
ing has the same properties as the ones mentioned above. Since the DTC is rather
specific, the troubleshooter only chooses between a few number of sequences where
the test outcomes can mean the difference between higher and lower costs.

The random sorting does not show the same properties as the two above, here we
can see many bars where the frequency is low. This is due to the fact that this
sorting simply chooses one component out of the possible ones. All components are
thereby equally probable to be the first one in the repair sequence and the risk for
choosing a long repair strategy is higher.

10.4.2 Simulation Cycle B - Component 16 Faulty
The active model for cycle B

For cycle B we have both DTC1 and DTC3 generated. In Figure 10.4 we see that
the active model for cycle B looks like the model for cycle A and the reason for this
is that the “no false alarm” assumption means that the faulty component must be
connected to all generated DTCs.
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Figure 10.4. The active model for simulation B

The three cost distributions for cycle B

In the same way that the active models for simulation cycles A and B are similar,
we can see great resemblance between the resulting plots presenting the three dif-
ferent cost distributions. The results for component 16 being faulty are presented
in Figure 10.5.

If we study the sequences for this simulation cycle the results from the previous cycle
are repeated. The two topmost plots, showing efficiency and probability sortings,
have few sequences with high frequencies whereas the random sorting has a wider
range of repair sequences. The sequences for the efficiency sorting in cycle B are
presented in Table 10.5.

Sequence CR [SEK] Repair sequence
B1 436 T9=NI - T10=NI - 16
B2 744 T9=I - 12 - 13 - 15 - 16
B3 761 T9=NI - T10=I - 12 - 13 - 15 - 16

Table 10.5. The obtained repair sequences for the efficiency sorting in simulation
cycle B.

The plots for cycle A and B are similar, but we can detect a difference in the actual
sequences, which is that the tests indicate in the opposite way in cycle B. This is
explained by the fault of component 16 being internal leakage. Internal leakage
will not produce diesel smell and visible leakage and no test indication makes the
troubleshooter find the right component quickly.

We can see the indication of a strong dependence between the two tests, T9 and T10,
like we could do in cycle A, if we study sequence B2 and B3. The only difference
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between these two sequences is that in B2 the test indicating is T9, in B3 it is T10
which indicates. The component order is the same.

Figure 10.5. The cost distributions for simulated repair of component 16
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10.4.3 Simulation Cycle C - Component 17 faulty
The active model for cycle C

Simulation cycle C is more complex since the generated DTC1 is connected to all
components as we can see in Figure 10.6 and as a consequence all tests are also
available. This naturally makes the troubleshooting more complex.

Figure 10.6. The active model for simulation C

The three cost distributions for cycle C

The results from these simulations are not as clear as the two previous ones. The
fact that DTC1 is generated, enabling all components to be possibly faulty, makes it
hard for the algorithm to find a small number of repair sequences. We see in Figure
10.7 that the cost distribution for all sortings is distributed rather equally on the
cost interval. The repair costs are high when compared to costs for other cases.
This is partly because component 17 is an expensive spare part, is hard (expensive)
to exchange and has quite low probability of being faulty. These are characteristics
that render low efficiency and thereby a position at the end of the repair strategy.
Despite these facts we can find the same behaviour as in the two previous cases. The
two highest bars (2641 and 5631 SEK) in the efficiency (topmost) plot corresponds
to sequences which are equal until the 11th action which is the test T1, a test only
connected to component 17. The outcome of this test determines the sequence to
end (test indication) or to continue with 14 additional actions (no indication).

It is important to note that many of the bars with a frequency of 1 can be explained
by being sequences where test outcomes are un-realistic, as they have a strong
physical connection but are simulated to indicate differently due to the randomised
test outcome.
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Figure 10.7. The cost distributions for simulated repair of component 17
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10.4.4 Simulation Cycle D - Component 4 Faulty
The active model for cycle D

The active model for simulation cycle D, presented below in Figure 10.8, also has
a large number of connections because of the generated trouble code being DTC1.
The non-specific DTC returns a great number of possibly faulty components.

Figure 10.8. The active model for simulation D

The three cost distributions for cycle D

The resemblance to the results from component 17 is due to the same generated
DTC. The difference is the cost for the spare part and replacing procedure which is
lower for component 4 and as a consequence the range of the cost distributions are
smaller, almost half the cost compared to cycle C. We also see that the frequencies
are higher and the number of sequences are fewer, which implies a higher probability
for component 4 to be faulty.
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Figure 10.9. The cost distributions for simulated repair of component 4
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10.4.5 Simulation Cycle E - Component 9 Faulty
The active model for cycle E

This simulation cycle is special since the generated DTC8 is very specific. As shown
in Figure 10.10 the generated DTC8 only points out two components as possibly
faulty. With only one test available, the troubleshooter has three different actions
to choose from.

Figure 10.10. The active model for simulation E

The three cost distributions for cycle E

In total there are five different troubleshooting strategies available for a repair pro-
cedure in this simulation cycle. We can see that neither efficiency nor probability
sorting uses all five repair sequences. The random sorting has generated all five se-
quences but as the sequences T12, c11, c9 and c11, T12, c9 give the same cost of repair,
they are represented in the same bar (894 SEK).

If we study the result in the same way as the other simulations we recognise the
same behaviour as before. The efficiency sorting chooses from two different se-
quences where the test outcome is what tells them apart. The probability sorting
always chooses the same sequence, not performing any test but to repair the non-
faulty component before the one modelled as faulty. By this we can conclude that
the test is rather cheap and is performed by the efficiency sorting since it is consid-
ered to add valuable information. The probability sorting on the other hand, not
considering costs, will not perform the test since the probability of the non-faulty
component being faulty is high enough.
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Figure 10.11. The cost distributions for simulated repair of component 9

One thing that becomes important in these simulations is the fact that the random
ordering places the faulty component first in 20 % (five possible troubleshooting
strategies) of the sequences. This happens in all simulations but is not of great
importance since the number of sequences that start with the faulty component is
small. In this case, where the faulty component can be repaired immediately with
a probability of 1/3, the random sorting performs well in comparison to the other
sortings.

10.4.6 The Average Cost of Repair
As a final comparison the average costs for all simulation cycles are presented. The
average value is used as a rough estimation, and rating, of the different sortings.
The values are presented in Table 10.6.
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Simulation A B C D E
Component c15 c16 c17 c4 c9
Efficiency 1625 670 4627 967 693
Probability 2015 596 5187 1117 874
Random 1779 1165 3610 3443 705

Table 10.6. The average cost of repair for all simulation cycles

We can see that the efficiency sorting criterion gives the lowest average cost in three
out of five simulation cycles. In a small example like this it can be considered rather
good, but if one was to use this sorting criterion in a troubleshooter program one
would prefer it to produce the lowest average cost in a larger number of cases.

The average costs and the plots of the cost frequency show that this kind of
probability-based reasoning and troubleshooting approach is highly affected by how
specific the DTC is. For unspecific DTCs we get cycles similar to cycles C and D
where all components are possibly faulty. In such a case, the cost of repair etc. is
very important for how well the efficiency criterion performs. On the other hand,
the advantages gained from using troubleshooting theory are lost when confronted
with very specific DTCs. This is due to costs having too large an influence on the
sorting, as seen in simulation E.

10.5 Conclusions
From the simulation results presented in this chapter we can conclude that the ef-
ficiency sorting criterion performs as well as or better than the other two criteria.
Yet it is important to mention that this comparison only is relative to the sortings
studied and can not give a measurement of how the efficiency criterion relates to an
optimal sorting.

We find two important characteristics that affect the results and they are discussed
further below.

10.5.1 Importance of Test Outcome
The most important effect of the results is the importance of the test outcomes.
For a correct test indication, the repair sequence is shortened and the cost of repair
is significantly decreased. This is interesting, and important to investigate further,
since we know that including tests in the possible actions we can perform no longer
guarantees optimality for the ECR theory. Does the fact that tests can shorten
the repair sequence conflict with an optimal solution for this theory? One could
argue that there exists a limit where a large number of reliable tests simplifies the
troubleshooting process so much that the need for a troubleshooting prototype will
disappear, but considering the complicated systems in a truck today, this is unlikely
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to happen. The truck market is as much a computerised business as any market
today.

The quality of a test is another interesting part of this project. It would be very
profitable to find a way to measure how well a test has to perform to actually
contribute to making a troubleshooting program more cost-efficient. Inefficient tests
could be removed and further developed which could make tests more valuable to the
troubleshooting process. For further discussion of the tests and their characteristics
see [Lotz 2007].

10.5.2 Specificity of DTCs
The five different simulation cycles correspond to five different active models where
the generated DTCs have varying specificity, i.e. the ability to exclude components
as non-faulty. For the cycles with a relatively specific DTC (A and B), the trou-
bleshooting process was more efficient and the number of different sequences were
low. The opposite case (cycles C and D), where DTC1 was connected to all compo-
nents, meant a more cumbersome troubleshooting process and higher repair costs.
These results describe the general problems of troubleshooting a truck rather well.

The specificity of a DTC is important when troubleshooting a truck since we can
choose to either use a troubleshooter program or do it manually. If every DTC was
able to correctly point out exactly one component as faulty, it would be easier for
the mechanic to find the faulty component and a program of this kind would be
unnecessary. Unfortunately such specific diagnosis is hard to manage, especially for
closed systems where components of the same type may be almost impossible to
tell apart using only electrical diagnosis.

An advantage we can achieve by using a troubleshooting program is that it might
be possible that even small improvements in DTC specificity can be considered as
an improvement in the performance of a troubleshooter program. The simulations
showed that the best results were achieved for a generated DTC that singled out
five components as possibly faulty. If this is generalised it is reasonable to believe
that further DTC development, towards DTCs which are good, but not excellent,
in collaboration with correct test outcomes would make a program like this valuable
when troubleshooting trucks.
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Chapter 11

Discussion and Future Work

This chapter concludes the work and discusses some of the issues related to the
relaxations of the assumptions in existing ECR theory.

11.1 Performance of the ECR Theory
The results from the simulations presented in Section 10 indicate that the ECR
theory using an algorithm based on a sorting by efficiency, η, performs rather well
in comparison to algorithms based on sorting by probability or a random order.
However, the performance was highly affected by the characteristics of the gener-
ated DTCs and the test outcomes.

The importance of the test outcomes is interesting for further studies. It is clear
that the “right” test outcome can shorten a repair sequence and thereby the cost
of repair. From the algorithm point of view, tests make the construction of the
algorithm more complex but may shorten the troubleshooting process significantly.
Since we can see several advantages of including tests it would be very interesting
to perform a study which aims to find an optimality criterion for a test-including
ECR theory.

11.2 Relaxations of General Assumptions
The troubleshooting of a truck is a complex problem and is not easily adapted to
existing troubleshooting theory. Using the theory of Expected Cost of Repair there
are two specific problems that arise during the design of a truck troubleshooter
prototype.

11.2.1 Dependent Costs

Considering the size of a truck and its great number of parts, the assumption that
no cost of action is dependent on any previous actions is an important simplifica-
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tion. As a consequence of this we have discussed an approach to handle dependent
costs by using different levels of disassembly (Section 7.2) and thereby considering
the transition costs (Section 7.3) between these levels.

The different levels of disassembly create a more realistic representation of a truck
but they also create the need for always knowing the current, or previous, state of
the truck. This is important when e.g. determining the troubleshooting strategy.
The efficiency criterion demands observation costs for all components, which for
dependent costs change as we move between different levels of disassembly. This
means that we get an uncertainty in the strategy determination since the previous
level of disassembly might be either the repair level or the control level for the pre-
viously chosen component. This will affect the observation costs.

The dependent costs are a new approximation and make the ECR theory even
more uncertain. After the introduction of tests into the troubleshooting system the
guarantee for optimality no longer holds, and the introduction of dependent costs
is only an approach to model reality. The question of optimality for cases like this
has to be studied throughly.

11.2.2 Performance of a Functional Control
Another assumption not adapted to the troubleshooting of trucks is the perfor-
mance of a functional control after each repair action. When repairing a truck it is
common to replace several parts before performing a functional control because the
functional control often means that the cab has to be tilted back into its correct
position which amounts to relatively much work.

The idea behind the demand for a functional control after each repair is to ensure
whether the faulty component is found or not. Considering a Bayesian network,
this information is the evidence that is used by the network to compute a new
marginalised probability distribution. If we choose not to perform a functional
control we can no longer provide the information obtained from the control and we
are left without the tools we need for computing a new troubleshooting strategy.
The functional control assumption was never abandoned because of this, but it will
be an issue for future truck troubleshooting.
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Appendix A

List of Notation

XPI Extreme High Pressure Injection
LPP Low Pressure Pump
HPP High Pressure Pump
IMV Inlet Metering Valve
MDV Metering Dump Valve
HPC High Pressure Connector
DTC Diagnostic Trouble Code
ECU Electric Control Unit
BNT Bayesian Network Toolbox for Matlab
TS Troubleshooting
S strategy, the order of actions in which the troubleshooting process works
V OI Value Of Information
SFC Single Fault Constraint
CPT Conditional Probability Table
ci system component numbered i
F component is faulty
NF component is not faulty
Coi cost of observation for component ci
Cri cost of reparation for component ci
CTi cost of performing test Ti
Cs cost of observing whether the system is functioning normally
Ai action in troubleshooting process, i.e. repair, observation or test
ECR(S) Expected Cost of Repair for the strategy S
ECRT (T ) Expected Cost of Repair Including Test for the test T
η efficiency, ratio between probability and cost of observation
ε given state of knowledge, evidence
pi probability for component i to be faulty, given the evidence P (ci|ε)
pT probability for test outcome
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I test outcome, indicating failure
NI test outcome, not indicating failure
NT number of possible tests belonging to a system
NA number of possible actions in a troubleshooting case
li level of disassembly at step i
λj jth level of disassembly
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Appendix B

Basics of Probability Theory

In this appendix we go through some fundamental rules of probability theory. Some
basic rules in probability theory are necessary in this thesis, and in this section we
will briefly discuss the joint probability, the marginal probability and the Chain
Rule.

We will assume X, Y and Z to be discrete random variables, the continuous case
being analogous. The range of X, Y and Z are denoted SX , SY and SZ , respectively.
To each of these we assign a probability mass function, which for X is written as

P (X = x) = pX(x) ∀ x ∈ SX (B.1)

B.1 The Basic Rules

Two well-known facts can be stated about probability mass functions.

pX(x) ∈ [0, 1] ∀ x ∈ SX (B.2)

and ∑
x∈SX

pX(x) = 1 (B.3)

As mentioned above, the continuous case is analogous, except that we use the
probability density function instead of the probability mass function, and that the
sums are replaced by integrals. The probability density function is defined as the
function fX(x) that satisfies

P (a < X < b) =
∫ b

a
fX(x)dx (B.4)

A more comprehensive disquisition can be found in for instance [Gut 1995].

71



APPENDIX B. BASICS OF PROBABILITY THEORY

B.2 The Joint Probability
The joint probability mass function captures dependencies between two or more
random variables. For the two random variables X and Y , the joint probability
mass function is

P (X = x, Y = y) = pX,Y (x, y) (B.5)

It is clear that ∑
x∈SX
y∈SY

pX,Y (x, y) = 1 (B.6)

where pX,Y (x, y) fulfils the facts mentioned above.

pX,Y (x, y) ∈ [0, 1] ∀ x ∈ SX , y ∈ SY (B.7)

Furthermore, X and Y are said to be independent if pX,Y (x, y) = pX(x)pY (y).

B.3 The Marginal Probability
The marginal distribution of X is calculated by summing the joint probability dis-
tribution over all possible values of Y .

pX(x) =
∑
y∈SY

pX,Y (x, y) (B.8)

If we are given the value of Y , and pY (y) 6= 0, the distribution of X given Y is

pX|Y (x) = pX,Y (x, y)
pY (y) (B.9)

If X and Y are independent, we know that pX,Y (x, y) = pX(x)pY (y). If we insert
this into the formula above, we see that under these circumstances pX|Y (x) = pX(x).

B.4 The Chain Rule
If we rearrange the definition of conditional probability we obtain the Chain Rule.

pX,Y (x, y) = pX|Y (x)pY (y) = pY |X(y)pX(x) (B.10)

Quite often in this thesis, some variables have known values. At this stage we use
the random variable Z. The variables with known values can be described by letting
the value of Z be z. Then the chain rule is written as:

pX,Y |Z=z(x, y) = pX|Y,Z=z(x)pY |Z=z(y) = pY |X,Z=z(y)pX|Z=z(x) (B.11)
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List of Diagnostic Trouble Codes

DTC1 Fuel rail pressure is excessively below command is generated if the
measured fuel pressure in the rail is excessively below command.

DTC2 Fuel rail pressure is excessively above command is generated if the
measured fuel pressure in the rail is excessively above command.

DTC3 Fuel rail pressure, volume leak is generated if the rail pressure varies
in a way that makes it likely to be a leak somewhere on the high pressure
side.

DTC4 Fuel rail pressure sensor, stuck or electrical faults is generated if the
rail pressure sensor measures exactly the same pressure for a longer time or if
there is an electrical fault caused by the sensor.

DTC5 Fuel rail pressure is excessively high is generated if the measured fuel
pressure in the rail exceeds a limit value over a certain time.

DTC6 IMV electrical faults is generated if there is an electrical fault connected
to the IMV.

DTC7 MDV tripped is generated if the MDV is tripped, which it should be only
when the rail pressure exceeds a limit value.

DTC8 Plausable leakage in the IMV is generated if the rail pressure increases
when the IMV is commanded to be fully closed.

DTC9 Cylinder balancing compensation has reached min or max is gener-
ated when the cylinder balancing compensation value has reached the mini-
mum or maximum value for any of the cylinders.
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List of Tests

T1: Cylinder balancing test ECU test to test the injectors.

T2: Fall down test ECU test to test the injectors.

T3: Cylinder cut off test ECU test to test the injectors.

T4: Raise in rail pressure test ECU test to analyse the behaviour when the rail
pressure is increased by the ECU.

T5: Pressure measurement in rebound strip Measurement of the pressure in
the rebound strip.

T6: LPP pressure measurement Measurement of the pressure at the LPP.

T7: Control of air in fuel Measurement to see if there are bubbles of air in the
fuel.

T8: Injector test Measurement. The injector is mounted in a specific test envi-
ronment.

T9: Smell of diesel Inspection, observing whether there is an abnormal smell of
diesel or not.

T10: Visible diesel leakage Inspection, searching for visible leakage.

T11: Fuel in tank Inspection of fuel amount in fuel tank.

T12: MDV pipe hot Inspection to observe whether the MDV pipe is heated.

T13: Control of connectors pre LPP Inspection of pipes and connectors on the
suction side.
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