marar

User Guide

Table of context

1. Welcome to ParaDiOXcocueiiiiiiiiiiiiiiieciececeee et 3
1.1. What’s the purpose of this user guide?cccceeviieriieriiieniie e 3
L2200 ADOUL US ottt sttt 3

2. Installing ParaDiOXc.ccceecuieiieiieeieeie ettt ettt eae et e e eteenaesaeense e 3
2.1, BefOre YOU STATT....cuiiiieiieieeie ettt ettt ettt e st e saeesseesaeesseesneenanens 3

2.1.1. SyStem rEQUITEIMENLSc.eeeieriieriieeiieeiteete e ete et eaeeeeeebeenaeenseeneas 4
2.2, Installation INSTIUCTIONS ...c..eervieriieiieiieie et ettt ettt ettt enbeebeenaeens 5
2.2.1. How to add a new user in Windows NT 4cccceevieiiriininniienienienn 9
2.2.2. How to add a new user in Windows 2000cccceoeevienienienienieneenen. 12

3. Learning how to use ParaDiOX.......ccccovviiiiiiiiiiiiiiiieiieieeeeie e 13
Bl PIEIACE. ..t 13
3.2, Getting StATtEd ... cccveeeiie ettt et e nnee s 13

3.2.1. Programming 1N OX.....ccceeviieiiieiiieeieeeiee et 14
3.2.2. Getting helloworld.0X t0 TUN......ccoiiiiiieiieee e 21
3.3, Graphical User INtErface........cccuevierierieiiieieiie e s 22
3.3.1. The mMain WINAOWcccueiuieiiiiieiieriieseesiteseesiee et seeeteenseesseesseeseenseens 22
3.3.2. Advanced options WINAOW..........ccuevuerrierienieniesrenieseeseesieeseeeseeenseenseens 24
34, RUN CXAMPIC c.eviiiiiiieiiiee ettt et et saae et stb e e s b e e e beeeabeeeaeean 26
3.5. File copy guide by using the mpd console..........ccceevuerieriinienienienienieeeeee. 29

4. Creating an Ox program with MPI Supportcccoecverienieniinienienieeeeeeeee 31

4.1, FUNCHON TEIETEICE ..c..veeuiieiiiiiieeie ettt et st 31
4110 MPLINIE() cetiiieiieieie ettt ettt sttt et b e 31
4.1.2. MPIL_ COMM__SIZE() cnveenveenreeiieieeniieieesieee ettt et et 32
4.1.3. MPI_Comm_RaNK() ...ccveeeiiieiiieiieeiee e e 32
4.1.4. MPI_Get processor name(String *name)..........cccceeeeveeerveeneeenveenveennnnn 32
4.1.5. MPI_Bcast(const *message, Nt TOO)c.eevvveerieeeeiieeieieeiieerie e 33
4.1.6. MPI_Reduce(String *sendbuf, String *receivebuf, String operation, int
root) 34
4.1.7. Y 0 B S 1 F:1 /< () SRS USRS 34
4.1.8. MPL WHIME() .eueeueeiieiiiieienieeitetesteeie ettt 34
4.1.9. MPI_Send(const *sendbuf, int target, int tag)ccceceeveereenieniennenen. 35
4.1.10. MPI_Recv(const *receivebuf, int source, int tag)c.cceeevuvercreerveennen. 35
4.1.11. MPI_Probe(int SOUurce, int tag)..........ccceerueerreerreeneeesieesreesveesseesveeenens 35
4.1.12. MPI _Iprobe(int source, int tag, int *flag)ccccevcvverciieriieniieieeieeee, 36

5. SUPPOTE ANA SEIVICES. ..cuvieeiieeiieeiieeiieete ettt ste et esteeereesbeeeseeeseeeseeessaeenseens 36

1. Welcome to ParaDiOx

ParaDiOx is an application built to help mathematicians in their daily work of solving big
problems using Ox. By collaborating with other mathematicians and use their resources,
e.g. their computer power, this application makes calculations a lot faster by taking

advantage of parallel functions.

1.1. What'’s the purpose of this user guide?

This User Guide is written for you to get a good start with ParaDiOx at an early stage and
also enlighten you of all the possibilities and opportunities that come with ParaDiOx.
When you have read this guide you should be able to install, run and understand how to

make your own OX files that support MPI!

1.2. About Us

ParaDiOx project has been created by five students at Royal Institute of Technology,
Stockholm Sweden (also known as KTH). These students are Andreas Ohrvall, Dennis
Frantzén, Martin Edquist, Michael Bergman and Peter Stolt. We all knew each other from
earlier courses and projects. Hence, we have learned to work together in an efficient way.

We found this to be very useful in this project.

2. Installing ParaDiOx

2.1. Before you start

The installation of ParaDiOx is separated in two different installation types - the slave
installation and the master installation. When setting up a slave computer, you should use
a slave installation and subsequently when setting up a master computer you should
always use the master installation. The slave installation is also separated into two
different types of automation. So the main option when installing ParaDiOx is to choose

between the following files:

211,

. MasterSetupAuto.exe. This file will install all components necessary to run a

computer as a master. The installation program will provide help to create an
account, installing an mpich daemon etcetera. However, the installation program
needs to install VB-runtime dlls, if these dlI files aren’t already installed on the

computer.

MasterSetupClean.exe. The difference between this installation and the previous
master installation is that this installation doesn’t require VB-runtime dlls. On the
other hand, you have to create the account manually in this installation. The main
drawback with the requirement of installing VB-runtime dlls is that you will need
to restart the computer before you can continue with the installation. But if you
already have VB-runtime dlls installed its only benefits with using the previous

slave installation instead of this one.

SlaveSetupAuto.exe. This file will only install components necessary to run a
computer as a slave. Similar to the MasterSetup, it will provide automatic account

creation etcetera and it also requires VB-runtime dlls.

SlaveSetupClean.exe. The difference between this installation and the previous
slave installation is that this installation doesn’t require VB-runtime dlls. On the
other hand, you have to create the account manually in this installation. The main
drawback with the requirement of installing VB-runtime dlls is that you will need
to restart the computer before you can continue with the installation. But if you
already have VB-runtime dlls installed its only benefits with using the previous

slave installation instead of this one.

System requirements

e [BM-compatible computer running Windows NT 4.0, Windows 2000 or
Windows XP

e The programming environment OX.

2.2.

Installation instructions

Once you have chosen desired installation file, it is time to start installing ParaDiOx.

Since the installation instructions for the different installation files are quite similar, they

will be presented as one instruction and where the installation files differ it will be shown

as MasterAuto, MasterClean, SlaveAuto or SlaveClean.

l.

Unzip the files into a temporary directory. Choose Run from the Start menu. The

Run dialog box will appear.

Type <Path to the temporary directory> \MasterInstAuto\setup.exe in the text box
provided and then click OK. Here, MasterInstAuto is the path to the MasterAuto
installation. If it’s the SlaveAuto installation you are installing this path is
replaced with SlavelnstAuto. Similar for the MasterClean or the SlaveClean
installation the path is replaced with MasterInstClean respectively SlavelnstClean.
For example if you have chosen the temporary directory to
C:\ParaDiOx\Installation and is installing SlaveClean installation the path would
be C:\ParaDiOx\Installation\SlavelnstClean\setup.exe.

. (MasterAuto, SlaveAuto) The installation program will start with a pre-installation

of VB-runtime dlls. It will check if all necessary files are installed; if not it will
install these files. If any VB-runtime files are installed, the installation requires a
restart of your computer and you will need to run the setup program again after

the restart. Otherwise the installation program will continue to the next step.

(MasterClean, SlaveClean) This installation doesn’t require this step, so you can

move forward to the next step.

Software License Agreement 5[

Fleaze read the following Licensze Aareement for Paralily, Press the PAGE DOWM key, or
uze the zerollbars to read the rest of the agreement.

| MPICH License Agreement -

COFYRIGHT

The fallowing iz a notice of limited availability of the code, and disclaimer which must be
included in the prologue of the code and in all zource listings of the code.

Copyright Motice
+ 1993 University of Chicago
+ 1993 Missizsippi State University

Permizzion iz hersby granted to use, reproduce, prepare derivative warks, and to
rediztribute to others. This software was authored bu: ﬂ

Do you accept all the termg of the preceding License Agreement? If you chooge Mo, the
installation will terminate. Taoinstall ParaDide:, you must accept this agreement.

Back Tes Mo

Figure 2-1. The license agreement

(All setups) You will now get some information about the installation and on the
next screen you will find license agreement on the product MPICH since
ParaDiOx is a further development of MPICH. To continue the installation you
will need to select “yes” to accept on this agreement. By selecting “No” you will

exit the installation.

Choose Dest on Directory |

Setup will inztall ParaDidx ta the following location.
Ta inztall to thiz location, click Nest.

To ingtall to a different location, click Browse and select anather
loe:ation.

You can choose nat to install ParaDi0x by clicking Cancel to exit
thiz inztallation

Inztall bo
’7 C:AParaDi0x Browse |

Back

Cancel

Figure 2-2. Choosing destination directory

5. (All setups) Now you need to choose an installation directory. Recommended is
that you choose the same directory on all computers you are going to use. It’s
possible to select different installation directories but you may come across

difficulties in setting up your configuration on the master computer.

Install Type x|

Select the type of ingtallation pou prefer, the click Mext,

Program will be installed with the most
common options. Recommended far most
LISETS.

" Compact Frogram will be inztalled with the mininium

required options.

" Custom You can chooze the options ta install.
Recommended for advanced users.

Inztall to
’7 C:AParaDi0x Browse |
Back I Hest I Cancel |

Figure 2-3. The installation type panel

6. (All setups) There are three different types of installations. The typical installation
will install all the files that are needed as well as example files. The compact
installation will only install the necessary files. If you choose the custom
installation you will get to a new screen that lets you customize your installation

with the package you want to install.

Select Components ___ x|

Select the components vou want to install, clear the components
you dao not want ta install

Application Files 2180FK
Examples TE

— Dezcription

Files required to run the application Change... |

 Install to
C:\Paralils Browse

Space required ; 2 187 K Space available : 46 B5E K

Back I MHest I Cancel |

Figure 2-4. Customizing your installation

7. (All setups) Next you will need to choose where the program links will be placed

in the start menu and then you can start installing the files.

8. (All setups) After the files have been installed on your computer, a command

prompt will appear that installs the MPICH daemon as a service.

" createnemaccount x

Setup will create an account which will be used by the
maszter to run MPl-commands, Select a proper pazsword
for thiz uzer. If pou would like to uze an already existing
account or if you would ke to set up this account later
on, select |gnore.

On computer: |ML|NTEF|
Uzer: |mpi

Type password: ||

Retype pazsword: |

Create a-:c:u:-untl Ignare |

Figure 2-5. Creating new user account

9. (MasterAuto, SlaveAuto) If you are running Windows 2000 or Windows XP you

now need to setup an account for the master computer by choosing a proper

password. The account will be a member to the group “Guests”. If you are
running Windows NT 4 you will need to setup this account manually in the end of

this installation instruction.

(MasterClean, SlaveClean) Move to the next step.
10. (All setups) Restart your computer to get the service running.

11. (MasterAto, SlaveAuto) Now the installation is finished. You can now use

ParaDiOx.

(MasterClean, SlaveClean, Windows NT 4) Add a new user by using the User
manager on the start menu and add the user to the group “Guests”. Then the

installation is finished. You can now use ParaDiOx.

2.2.1. How to add a new user in Windows NT 4

1. Start the User Manager as shown in figure 2-6 below.

b Administrative Wizards

g Backup

g Digk Administrator

lEI Event Viewer

3:“‘ Licenze Manager

& Migration Toal for Hetiware

;..}_ Metwark Clignt Administrator
’ B Perfamance Manitor

§ Cocuments Zt:oripun“ne g &5 Remote Access Admin
i 5 Server Manager

P I% SretifEp Command Prompt @ System Policy E ditor
T @ . (3] ‘windaws NT Explorer G | p——
ally] .

Y Programs =) Accessaries

3, Adminiztrative Tools [Common) & Windows NT Diagnostics
@ Lepp Ox

Startup

Figure 2-6. Starting the User Manager

2. Select new user from the user menu as depicted in figure 2-7.

i Uszer Manager - \\PETER !EE

Wiew Policies

Options Help

New User... |Fu|| Name |Description
[t =0 e = Built-in account for administering the cg
New Local Group... Built-in account for quest access o the

[Eopp.. =5
[Elete [iref
Eename..

Eioperties.. Erter
Select Usgers..

Select Domair...

Exit Alt+F4

Groups Description

B Administrators tembers can fully administer the computer/domain
i Backup Operatars tembers can bypass file security to back up files

& Giuests Users granted guest access to the computer/domain
g Pawer Users Members can share directories and printers

& Feplicator Suppons file replication in a damain

§ L sers Ordinary users

Figure 2-7. Selecting New User from the User menu

3. Choose desired selections as illustrated in figure 2-8.

Newser |

Uzernanme: Impi Add
Full M arme: Impi Cancel |

Help

d

Description: |m|:|i

Password: Ixxxxxxxxxxxx

Confirm
Pazzword:

Ixxx:mxxxxxxx

[Uszer Must Change Password at Next Logaon
¥ User Cannot Change Pazsword

W Pazsword Mever Expires
[Account Disabled

e [& [=

Groups Frofilz Dialiry

Figure 2-8. Creating new user account

10

4. Click on the Groups button in previous figure and make the user a member of

Guests as described in figure 2-9.

Group Memberzhips Ed |

dzer: mpi [mpi] Ok

Cancel

Help

Bl

b ember of: Mot member of;

Administrators
Backup Operators
Power Uzers
Replicator

Guests

<- Add

Hemmves

"

Figure 2-9. Mpi is member of the Guests group

5. Then you get back to figure 2-9. Here you click on the Add button. The result
should be similar to figure 2-10!

11

i User Manager - \APETER Mi=]

Uzer Wiew Policies Options Help

Username |Fu|| Name |Descriptiun
£5 Administrator Built-in account for administering the o
§: Guest Buil-in account for quest access to the
€ mpi mpi mpi
|

Groups Description

d Addministrators bdembers can fully administer the computer/domain

3¢ Backup Operators tembers can bypass file security to back up files

dr Guests lIsers granted guest access to the computer/domain

dr Power Lsers bdembers can share directories and printers
g Feplicator Suppons file replication ina domain
b | sers Ordinary users

Figure 2-10. The result when the mpi user is added.

2.2.2. How to add a new user in Windows 2000

1. Open the Control Panel item by clicking on the Start menu, point to Settings and

click on Control Panel.
2. Open Users and Passwords in Control Panel.
3. Click on the button Add.

4. Select a proper username, for example mpi (selecting a real name and a

description is optional) and then click next.

5. Select a password (to make it easier to remember the password it is recommended

to have the same password on all the slaves) and then click next.

12

6. Make the user a member of the group Guests by selecting the last of the optional
buttons and then scroll in the list of groups until you find Guests. Now you only

need to confirm and then you can start using the account.

Note: If you having trouble with adding a new user, please read the Windows

2000 manual.

3. Learning how to use ParaDiOx

3.1. Preface

It is strongly suggested to get the example program working before starting to develop
your own Ox program. When this part is working, the next step is to develop your own
Ox code. You can execute several processes on one workstation and test so everything
works properly before executing on several computers. When your program is developed,
you need to spread the file to all installed computers or execute it over the network over a
Windows share. It is possible to use the mpd (mpich) to spread the file. For more info

about that, please read the mpd manual.

The graphical user interface is an improved version of the mpich graphical user interface.
Since ParaDiOx is fully compatible with everything made for mpich it is possible to use
the original graphical user interface or MPIrun. You can find everything about those
programs in the MPICH manual. You can also find information about how to write your
own configuration file here. This could be useful if you want to put the files on different

locations on different computers for example.

Our graphical user interface is also compatible with most mpich applications.

3.2. Getting started

This chapter is a guide for those who neither have used ParaDiOx, nor is a regular user of
Ox to. The purpose is to explain what it really is, in order to help the user to get the

system up and running. It will provide information of the link between ParaDiOx and Ox,

13

so if you are looking for a description how to make general Ox programs, we refer to the

Ox manual.

The first thing you will have to do is to get your hands on a couple of computers. It is
possible to run ParaDiOx on only the local computer, but since this program is about
enhancing performance via distributed calculation, the point with a local run seems less
clear. However, the computers you are going to use all need to get an installation of
ParaDiOx and also the Ox environment. The Ox environment is freely available on the
homepage of Ox (http://www.nuff.ox.ac.uk/Users/Doornik/index.html) for academic
research; others may need to pay a fee. Please do regular installations of the Ox Console
on all the computers. If you are unsure of the procedure on installing the Ox environment,
you better look in the Ox manual. A comment to the Ox installation is that there will be a
lot easier if you choose the same path on all installations, but it is possible to have
different paths. When the Ox environment is installed on all computers it is time to move
forward to the ParaDiOx installation. There are two main differences between the
installation files for ParaDiOx: the Master installation and the Slave installation. The
computer you will use as you working environment, i.e. the computer where you will
distribute your calculations from, will need to have a Master installation. On the other
hand, all the rest of the computers which only will perform calculations and return the
corresponding results, will need to have a Slave installation. Please read the /nstalling

ParaDiOx chapter for further instructions on that area.

Now when the installation is finished it is time to get on with the Ox programming. In
this manual we will only cover a small example of Ox code because a full description of
the Ox environment would require an entire manual. So if want further information about

programming in Ox we recommend you to read the Ox manual.

3.21. Programming in Ox

The problem we are going to exemplify is the following (figure 3-1): A master computer
is going to calculate an equation, using a parallel algorithm. It sends a part of the
calculation (the red message) to the first slave and when the slave has finished his

calculation, the master will receive the answer from it. Similar messages are sent to the

14

other slave computers, which in turn will process their calculations at the same time. The
answers are then post processed by the master. This will enhance the calculation time
(but in this trivial case, the network communication will eat up all time we have won in

enhanced calculation performance).

4
Zk"’*=4+2?+25s=23?
2

=

Workstatign - Master

MT

2y 4 3y 27 4 L el
Workstation - Slave Workstation - Slave Workstation - Slave
282 =4 a3 =27 484 = 256

Figure 3-1 A trivial calculation example

We now need to create an .ox file. The simplest way if doing this is to open Notepad,
select “Save as...” in the menu and then select a directory where the file should be
placed, e.g. “c:\temp\”. Then in the file type scrollbar, select all files. Then choose a
name for the file you want to create followed by “.0x”; in this case we will call it

“helloworld.ox”. Finally select Save.

Now we can start programming our example. You can also do this in Notepad, but of

course you may use any text editor.

In the beginning of the ox-file you specify files that should be included in the Ox
program, pretty much like C or C++ (or even Java) if you have experience from those

programming language. This specification is typed as following:

#i ncl ude <oxstd. h>

15

In this case the included file is a standard Ox library with methods that may be used in
the programming code. Next we will declare some methods that are used for the

communication with ParaDiOx (MPICH).

extern "ox2mpich,Init" MPI _Init();

extern "ox2mnpi ch, Conm si ze" MPI _Comm si ze();

extern "ox2mpi ch, Comm rank" MPI _Comm rank();

extern "ox2npi ch, Get _processor_nanme" Ml _Get_processor_nane(tnp);
extern "ox2npich, Bcast" MPI _Bcast(const nessage, const root);

extern "ox2npi ch, Reduce" MPlI _Reduce(const SENDBUF, const RECVBUF, const
OP, const ROOT) ;

extern "ox2npich, Finalize" MPI _Finalize();

extern "ox2npich, Winme" MPI_Winme();

extern "ox2npi ch, Send" MPI _Send(const SENDBUF, const target, const tag);
extern "ox2mpi ch, Recv" MPI _Recv(const SENDBUF, const source, const tag);
extern "ox2mpich, Probe"” MPI _Probe(const source, const tag);

extern "ox2npich, | probe"” Ml _| probe(const source, const tag, const

flag);

All these methods that we have declared here may now be used in the code. These
methods are specified in detail later on, in chapter 5. Continuing with the programming,
we need to start thinking of the logic of the program. As all runable Ox program, they all

need a main procedure, which will be executed.

mai n() {
/'l program | ogic here

These simple lines of code will do it and we can start coding between the brackets. The
first order of business is to initialize and finalize the MPI connection. All Ox programs
which are going to communicate via ParaDiOx will need this kind of “start and end

declaration”.

mai n() {
MPI _Init();
/'l program | ogic here including npi messaging
MPl _Finalize();

16

In Ox you declare variables you are going to use by using the code “decl ” followed by
the variable name. There is no difference between different types of variables, so both
strings and integers etcetera are declared in the very same way. We will at least need to
have two variables declared. Those are myld and numProcs. The variable myld will
contain a unique integer which identifies the process while the variable numProcs contain
the number of available processes (both are defined during the magical initialization
procedure). We recommend to set these values at the same time as the declaration by
calling the MPI methods at the very same line of code, as shown in the next code

example.

mai n() {
MPI _Init();
decl nunProcs = MPI _Conm si ze();
decl nyld = MPI_Comnm rank();
/'l program | ogic here including npi messaging
MPI _Finalize();

A number of processes are started on a number of computers, and the only thing which is
interesting when you programming the Ox programs are how many processes you are
able to distribute to. Therefore we will need numProcs. Each of those processes has a
unique number, and for the current process it is myld. We will now need to decide which
process will be the master process. Don’t be confused with the definitions of master
computer and master process, because there is a difference between them. The master
computer is where you will run the graphical user interface and where you will decide
when to start the ox program etcetera. Meanwhile the master process is the process which
will act as a message manager to send tasks to slave processes and to do the post
calculations. Although in most cases, the master process and the master computer is the

same. It is somewhat of a standard to choose the master process to be process zero.

mai n() {
MPI _Init();
decl nunProcs = MPI _Conm si ze();
decl nyld = MPI _Comm rank();
if (nmyld == 0) {
/1l master program/| ogic

17

} else {
/1l slave program | ogic

}
MPI _Finalize();

We have now separated the program logic in slave logic and master logic. Now we can
start concentrating on the algorithm design. So let’s start with the slave algorithm. The
slave processes should be designed so that they receive an integer x from the master
process, calculate the integer x with the formula x* and then return the answer to the

master process. This can be done with the following code:

decl i, message = 0, resultCalc = 1;

MPI _Recv(&nressage, 0, 1);

for (i = 1; i <= nessage; i++) {
resultCalc = resultCalc * nessage;

}

print("\nSlave result: ", nessage, """, nessage, "=", resultCalc);
MPI _Send(& esultCalc, 0, 1);

We use MPI_Recv to receive the integer from the master, and use MPI_Send to return the
answer to the master. The algorithm uses a for-loop, which notation is very similar to
other programming language, to perform an exponential calculation. We also use a print
line so we know the result of the process. An interesting note is that all print-statements
only will be exposed on the master computer. So now we need to create the logic for the

master process.

The master process should distribute all calculations to the slave processes and then wait
for answer from them. A possible way of doing this is to loop through all processes and
send integers to them and order them to work with it and then start a loop that waits until

we have received answer from all the slave processes. So let’s do so.

decl j, result=0, message=0, answers=0;
decl answer Frontl ave = zeros(1, nunProcs);
for (j =2; j <nunProcs + 1; j++) {

MPI _Send(&, j - 1, 1);
}

while (answers < nunProcs - 1) {

18

for (j =1; j < nunmProcs; j++) {
MPI I probe(j, 1, &esult);
if (result '=0) {
MPI _Recv(&nressage, j, 1);
answer Frontl ave[j] = nessage;
answer s++;

}

result = O;

What do we have left? Well, we must represent our answers from the hosts in some way
and we also need to post calculate the answers. Hence, we add this code at the end of the

master’s logic.

print("\nMaster result: ",answerFrontl ave[l]);
result = answer FronSl ave[1] ;
for (j =2; j < nunProcs; j++) {
print("+", answerFrontl ave[j]);
result = result + answerFrontl ave[j];
}
print("=", result, "\n");
Now we soon are finished - just a small detail left. Since the code we have produced
requires at least two processes, one master and one slave process, we need to handle the
case when only one process is selected. A simple way to come around this problem is to
put an if-statement to check this condition.
if (nunmProcs == 1) {
print ("\ nNunmber of processes should be nore then 1,");
print("\npl ease increase nunber of processes!");

} else {
/1 Master and slave logic here

Now let’s make it a complete program and se what we have accomplished:

#i ncl ude <oxstd. h>

extern "ox2mpich,Init" MPl_Init();

extern "ox2npi ch, Conm si ze" MPI _Conm si ze();

extern "ox2npi ch, Comm rank" MPI _Comm rank();

extern "ox2npi ch, Get _processor_nanme" Ml _Get_processor_name(tnp);

19

extern "ox2npi
extern "ox2npi
extern "ox2npi
extern "ox2npi
extern "ox2npi
extern "ox2npi
extern "ox2npi
extern "ox2npi

mein() {

ch, Bcast" MPI _Bcast (const nessage, const root);

ch, Reduce" MPI _Reduce(const SENDBUF, const RECVBUF, const OP, const

ch, Finalize" MPI_Finalize();

ch, Wime" MPI_Winme();

ch, Send" MPI _Send(const SENDBUF, const target,
ch, Recv" MPI _Recv(const SENDBUF, const source,
ch, Probe" MPI _Probe(const source, const tag);
ch, I probe" MPI _I probe(const source, const tag,

MPI _Init(); // Initialize M
decl nunProcs = MPI_Comm si ze();

decl nyld

= MPI _Comm r ank();

if (nunProcs == 1) {
print("\nNunber of processes should be nore then 1,");
print(“\npl ease increase nunber of processes!");

} else {

if (myld == 0) {
decl j, result=0, message=0, answers=0;
decl answer FronSl ave = zeros(1l, nunProcs);
for (j =2; j <numProcs + 1; j++) {

}

MPI _Send(&, j - 1, 1);

while (answers < nunProcs - 1) {

for (j =1; j < nunProcs; j++) {
MPI _I probe(j, 1, &esult);
if (result 1'=0) {
MPI _Recv(&nessage, j, 1);
answer Fronftl ave[j] = nmessage;
answer s++;

}
result = 0;
}
}
print("\nMaster result: ", answerFronSl ave[1]);

result = answerFronftl ave[1] ;

for (j

2; j < nunProcs; j++) {
print("+", answerFronSlave[j]);
result = result + answerFronSl ave[j];

}
print("=", result, "\n");
} else {
decl i, nessage = 0, resultCalc = 1;
MPI _Recv(&ressage, 0, 1);
for (i =1; i <= message; i++) {
resultCalc = resultCalc * nessage;
}
print(“\nSlave result: ", nessage, """, nmessage,
MPl _Send(&resultCalc, 0, 1);
}
}
MPI _Finalize(); // Finalize MPI

20

const tag);
const tag);

const flag);

resul tCal c);

ROOT) ;

Now we have a program which will calculate the formula up to the number of processes

we choose in the graphical user interface. Next thing to do is to try it in ParaDiOx.

3.2.2. Getting helloworld.ox to run

This section will concentrate on getting the program we created in the previous section

running on the computer network we installed in the beginning of this chapter.

First you need to copy the helloworld.ox to all computers in your network. It is preferable
that the files get the same path. In this example we will assume that all paths are the
same. Otherwise you need to create a configuration file. When you have distributed the
ox-file to all computers you need to get knowledge of the computer name on the slaves.
Please view the Windows manual if you don’t know how to get it. Next it is time to start

running the helloworld example.

Begin with starting up ParaDiOx Graphical User Interface (GUI) on the master computer
via the start menu or by executing ParaDiOx.exe, and the GUI will appear. Now you
need to write in the path to your oxl.exe file followed by a space and then the path to your

helloworld.ox in the Application input field. In our case this would be:
c:\ Ox\ bi n\oxl . exe c:\tenp\ hel |l oworl d. ox

Next you will need to setup available computers. Mark the radiobutton named Hosts and
the input field below will be enabled. Write in the field that became enabled the computer
name of the first slave computer. Then press on the Add button and the computer name
will be added to the list below. When you have added the computers, you will need to
select which computers you want to run on by marking them with a mouse click right on

the computer name in the list.

Now it is only thing left to do is to choose how many processes you want to have. This
can be accomplished in the Number of processes input field. And now you may press on
the Run button. A new input box will appear requesting for Account and Password. If you
have followed the installation notes you will input the account “mpi” and the password

you selected during the installation and then press the OK button. The calculation will

21

now start and depending on the number of chosen processes you will get an output

similar to:

ox version 3.10 (windows) (C) J.A. Doornik, 1994-2002
This version may be used for academic research and teaching only

ox version 3.10 (windows) (C) J.A. Doornik, 1994-2002
This version may be used for academic research and teaching only

ox version 3.10 (windows) (C) J.A. Doornik, 1994-2002
This version may be used for academic research and teaching only

ox version 3.10 (Windows) (C) J.A. Doornik, 1994-2002
This version may be used for academic research and teaching only

Slave result: 2A2=4

Slave result: 3A3=27

Slave result: 4A4=256
Master result: 4+27+256=287

You have now completed your first Ox program with ParaDiOx support. This helloworld
example is very trivial, and do not provide false tolerant code etcetera. So now it is time
to move forward to more advanced features. In the following sections of this chapter we

will explain the GUI and give a more advanced example to run, called example.ox.

3.3. Graphical User Interface

In this section we will explain the different features in ParaDiOx Graphical User
Interface. The thought is that you have learned the basic steps to build an Ox program by
reading the earlier chapter, and now is ready to explore the strength of ParaDiOx with

only some help on what the different buttons mean.

3.3.1. The main window

This section will explain the different parts of the Graphical User Interface main window.
It will not provide specific details on how to use the main window, cause with little

common sense you will get the feeling for it.

22

File | Edit | view | Help |
Application: | | = | D
Hurmber of processes |1 ﬁ (Run W [Break ‘] Advanced Options
Output: & iy hosts
@) Hosts (reset!
McE_] Ften'u:wer
Cpen ,| Save_f
Ready l_lm — e
Figure 3-1. The main graphical user interface
Application

Enter the full path to the mpi application with any arguments. This can be a local or

shared location. The path must be valid on all the nodes.

eg "c:\temp\myapp.exe argl arg2" or "\\myserver\myshare\myapp.exe argl arg2".

Number of processes

Select the number of processes you want to launch.

Run

Launch the mpich application.

Break

Kill the running application.

23

Any hosts

Run will choose from any of the hosts in the host list.

Hosts
Run only on the highlighted hosts from the list.

Reset
Reset the list of hosts to the list selected by MPIConfig.

Add button
Add a host to the list.

Remove button

Remove a host from the list.

Open button
Open a host list.

Save button

Save a host list.

Output
The output of the application shows up here. Ctrl+C will copy the output. You can also

enter input here that will be sent to the root process.

3.3.2. Advanced options window

The advanced options window is providing options that will affect the running of a
specific program. For example, if you have the Ox environment located differently on
computers that you are going to use at the same run, you must support the program with a
configuration file that explains where the oxl.exe file is located on each computer,

likewise with the *.ox files.

24

[Mo colar output
] Mo mpi - just execute multiple processes

[] Don't clear output on Bun
[Always prompt for password
["] Bedirect autput ta file

| e

[] Use configuration file

| O

[] Slave process

| 0

[] Erwironmet - warl =vall var2=val2lvard=vald...

[] wiarking directary - drive: \mytworking'directony

| 0

[] Drive mappings - drive;\\hostsshare:drive: ...

[OK “|[Cancel | Help |

No color output

Figure 3-2. Advanced options window

The output will not be color coded according to the rank of the process

Launch multiple processes that are not mpi applications - they never make any MPI calls.

Don't clear output on Run

The output in the output window does not get erased when the Run button is clicked.

Always prompt for password

‘Run’ is selected.

Don't use the saved account in the registry, prompt for user and password every time

25

Redirect output to file
Redirect the output of the mpi application to the specified file. The contents of the file

will be deleted each time Run is selected.

Use configuration file

Select a configuration file to specify more complicated launching preferences.

Slave process
Specify the path to a second executable to be launched for every process except the root
process. This is a quick way to launch a master/slave application without using a

configuration file.

Environment: varl=vall|var2=val2|var3=val3|...varn=valn
This will set the environment variables specified in the string before each process is

launched.

Working directory: drive:\some\path
Set the working directory for the launched processes. If this option is not specified the

current directory is used.

Drive mappings: drive:\\host\share
This option will map a drive on the hosts where the processes are launched. The
mappings are removed after the processes exit. This option can be repeated multiple

times separated by semi-colons. example: y:\\myserver\myapps;z:\\myserver\myhome

3.4. Run example

This section provides a simple step-by-step instruction how to start a distributed Ox
program with Ox our DLL file and the MPICH system. (The thought is that you will use
this section to get the more advanced example.ox running than the basic helloworld

example).

26

File| Edit] View| Heln|
Application; !E:'\F’mgram Filegh 0 whhinhoul exe example. ox - I @
Mumber of proceszes j [Run J [: Ereak 1] Adwanced Optians
Dutput: Any hosts
@) Hosts freset)
[)
armada
Ready A

Figure 3-3. Enter path in the main graphical user interface

The first thing to do is to enter the path to your oxl executable with the complete path and

the .ox program you want to run in the application field of the GUI.

27

=@ ﬁguiMPlRun

olcim! jons. Pe®

ORCA)

Eile] Edit] wieva] Helpl

Application: {C:4Frogram Filesh0x\bi
Mumber of processes |10 ;|
Output:

Ready

[7] Mo color output

[Mo mpi - just execute multiple processes
[7] Don't elear output on Fiun

[T &hways prompt for passward

[] Bedirect output b file

[Use configuration file

[7] Slave process

[7] Ervironment - varl =valllvar2=val2lvard=vald...

®
®
®

[¥] swiarking directany - dive: \mySworkingsdirectary

Ic:'\pmi

[7] Drive mappings - drive;Yshosthshars:drive: s, .

®

G U

)

Ele

Adwvanced Options

@) Any hasts
&) Hosts Tezat)

| U

armada

|] i

Figure 3-4. Enter path in advanced options window

The next step is to enter the advanced options and enter the path to your .ox files in the

working directory field. Here you can also select the output to be redirected to a file

instead of just being printed on the screen.

28

0.6 B ainens,) 066
Eile| Edit| Wiew | Help|

#pplication: !E:\F’mgram FileghOxbinboxl exne example.ox . O
Murmnber of proceszes I'ID ﬁ I: Run] I: Break \I Advanced Dptions |
Dutput: @) Ary hosts

[5]ready, sending.. -
Message reciewved from 4. 2 processes processedlk: o 6ﬂ03t3 reset)

Message reciewed from 5. 3 processes processedik: 4 | v
[#]Ready, sending.. ?
Message reciewed from 1. processes processedik: zef i e F

Message reciewed from 2. processes processedlik:
[e]Ready, sending..
Message reciewed from &. & processes processedlk: ©
[8]rReady, sending..
[7]rReady, sending..
Message reciewved from 5. 7 processes processedik:
Message reciewved from 7. 5 processes processedik:
9

[}

LIS
@ o

armada

7

[

[2]Ready, sending..

Message reciewed from 2. processes processedlk: 3
313§.5 28641 2785.0 3146.6 3141.6 3326.8
3793.4 JEdd .3 3115.5 24365

Mean walue: 4
3135.5

[2]rReady, sending..
[3]rReady, sending..
[8]ready, sending..
[4]Ready, sending..
[FlReady, sending..
[1]Ready, sending..

[5]rReady, sending.. X
[e]rReady, sending.. E |
Ready A

Figure 3-5. Running processes

When all settings are done just select how many processes you want to run and on which

computers you want the computation to run then press the “Run” button.

All output from all slave computers will then be redirected into the output field. By

default they are color coded in order of process rank.

If the computation needs to be aborted just press the “Break™ and all processes will die on

the slave computers.

3.5. File copy guide by using the mpd console

This guide is a step by step instruction on how to distribute files to client computers with

the MPICH system and the mpd console.

The two commands used are:

29

fileinit account=x password=x

Description:

This command is the first command that must be issued before the other
commands can be used. File operations are done under the security context of this
user. If the password option is omitted, you will be prompted to input the

password. Return values: nothing

putfile local=fullfilename remote=fullfilename replace=yes/no

createdir=yes/no

Description:

This command copies the file described by the local option to the location
described by the remote option. Both the local and remote options must specify
complete paths including file names. The replace and createdir options refer to the
remote file. replace=yes overwrites the remote file if it exists. createdir=yes
causes the path described by the remote option to be created if it doesn't exist. If
replace and createdir are not specified, the defaults are replace=yes and

createdir=yes. Return values: “SUCCESS” or “error message”

To start the mpd console launch mpd.exe with the —console switch and the name of the

computer (in this example armada) the file should be copied to:

>npd. exe —consol e ar nmada

Upon successful connect issue the fileinit command with the username and password

used during the installation of the Paradiox system, for example:

fileinit account=npi password=npi chl23

Then issue the putfile command with parameters:

30

putfile I ocal =c:\tenp\exanpl e.ox renpte=d:\tenp\exanpl e.ox replace=yes
creat edi r=yes

Then the file should be copied onto the remote computer and be ready to run thru

guiMPIrun.

4. Creating an Ox program with MPI support

There is an example program included in the ParaDiOx package, which is called
example.ox. This program code is recommended to be used as a reference for
inexperienced MPI programmers on how to use the different MPI functions. This manual
will be based on that example and will explain the different functions in detail. The
example is made as a suggestion only on how you may want to make use of the
distributing power of MPI — it is worth mentioning that there are many more advanced
possibilities available (e.g. letting clients communicate with each other etcetera). The

example is simple and straightforward in order to make it (relatively) easy to understand.

4.1. Function reference

We have chosen to list each function implemented as of this date. As stated in the next
section, there are no limits on increasing the functionality of the dlII file connecting the
Ox environment with the MPI standard. Each function is described in detail how to use it,
what arguments it needs and a brief example code at the end of each summary. As said, if
you want to see the functions in actual use, the example source code is available with this

ParaDiOx release. The examples in this user’s manual are, of course, in Ox code.

4.141. MPI_Init()

This function is used to initialize the MPI connections on all participating computers. It
should often be used quite early in the Ox program, since every process must
communicate with other processes. Note: the MPI standard can have arguments in the
init function. However, the way implemented in the ParaDiOx release, this has been

simplified just to do the basic necessary initializations.

31

MPI _Init(); //as sinple as that

4.1.2. MPI_Comm_Size()

This function returns an integer, which represent the number of processes available in the
domain. It can be used if one wants to loop over all processes, since it is an easy way of
knowing the upper limit of the loop sequence.
decl i, j;
i = MPI_Comm Size(); //assuming MPI Init etc
for(j =0; j <i; j++) {

/1do stuff here

41.3. MPI_Comm_Rank()

This function returns an integer, which is the unique number (rank) of the calling process.
It can be used to find out whether the running process is running as root or as a slave (if

you use that kind of hierarchy).

decl nyld;
myld = MPI _Comm Rank(); //assuming MPI_Init etc...
if(nyld == 0)

//do master stuff
el se
//do non-master stuff

4.1.4. MPI_Get_processor_name(String *name)

This function is used for finding out what name the processor has. Since a String is
involved, one cannot use the same return methodology as with integers, since the c-
language does not support that. Instead you need to have the address to the name as an
argument. This way the function in the dll file will receive that address and then do what
needs to be done and then stores the name on that address. This way, the value of the

”String” used as an argument has been changed into the processor name!

32

decl processor_nane;
MPI _Get _Processor _nane(&processor_nane); //assumng MPl _Init etc...

print(processor_nane); //Ox will print the processor nane fetched via
/1 NPl
4.1.5. MPI_Bcast(const *message, int root)

This function is used for sending a message to all processes, hence the name broadcast.

The message is sent using the same technique as the MPI_Get Processor name function;
the address to the String is sent as an argument. In addition to this, an integer is sent as an
argument. This number should be used as the sender’s Id number, which was received by

the MPI Comm_Rank function above.

The idea is that each process (sender or receiver) uses the same function. If the specified
integer is the same as the actual process — then the process sends the broadcast message.
If on the other hand the specified integer is not the same as the calling process, it will

instead fetch the broadcasted message and thus receiving it!

The message can be of different types. We have implemented the following: int, double,
matrix, String and Array. In all cases, all you have to do is to send the address to the
declared variable. If other types are needed to be sent, that type needs to be defined in the
sending function in the dll file.

/lassum ng same nyld declaration from exanpl e code above

decl message;

if(nyld == 0)

{
message = 1234; //defines the sending nessage as that integer
MPl _Bcast (&ressage, 0); //assuming MPI _Init etc

}
el se
{
MPl _Bcast (&ressage, 0); //assuming MPI _Init etc
print(nmessage); //receives the nessage from sendi ng process and
/] prints
}

33

4.1.6. MPI_Reduce(String *sendbuf, String *receivebuf, String

operation, int root)

This function is used for "reducing" arguments into one, using the specified operation. If
the desired goal is to add the integers that the slaves have, they can all call the reduce
function with the address to its integer, specifying the same result address. The idea is
that the MPI function will then add all these elements and store the result at that address
and send it to the specified recipitant (most often the root master). For example, the code
could be:

decl i = 4

decl answer = 0;

char* operation = "MPI_SUM';
MPI _Reduce(& , &answer, &operation, 0);

As of this date, the dll can handle the following different types of data:
int, double, ox_matrix, ox_string and ox_array.

Also, there are several different types of operations supported in the current release. They

are: MPl_MAX, MPI_MN, MPI_SUM MPI _PROD, MPI_LAND, MPI _BAND, MPI_BOR
MPl _LOR, MPI _LXOR, MPI_BXOR, MPI _MAXLOC and MPI _M NLOC.

4.1.7. MPI_Finalize()

This function is used for finalizing the MPI connection before ending the program. It is
closely connected to the MPI_Init function, since that one is used in the same way for

setting up the connection.

MPI _Finalize(); //as sinple as that

4.1.8. MPI_Wtime()

This function is used for keeping track of how long time something takes in a process.

decl startwtine = 0.0, endwine = 0.0, wtine; //MI_Wine uses doubles
startwime = MPl _Wine(); //assuming MPI_Init etc

34

//do some time demandi ng stuff

endwinme = MPI_Winme();

time = endwtinme — startwtine; //assuming MPI _Init etc
print(“\'nTine taken to do the stuff: “, tine);

4.1.9. MPI_Send(const *sendbuf, int target, int tag)

This function is used for sending text messages between processes. The idea with sending
the address of the String (as in the broadcast function) is used here. The other two
arguments define the identity of the specific receiver and an extra number, which serves

as an information tag to the receiver.

The different types implemented are: int, double, matrix, string and array. As with the
broadcast function you have to update the dll file if you need to send another type of

message.

decl nessage = 12; //the nunber to be sent
MPI _Send(&ressage, 1, 25); //assunmes MPI _Init etc. sends nmess to process
/I nunber 1, with the tag info 25.

4.1.10. MPI_Recv(const *receivebuf, int source, int tag)

This function is almost the same as the send function. The only difference is that it
receives the message instead and that means that you have to know the source id instead

of target id. The tag is used to select the desired message.

decl message = 0; //the yet unknown nunber to be received
MPI _Recv(&ressage, 0, 25); //assunes MPI_Init etc. receives nmess from
/[process nunber 0, with the tag info 25.

4.1.11. MPI_Probe(int source, int tag)

This function is used to probe the “MPI world” for messages. It is practical to you when
you want to check when there is a message out there for you and if it is you can use the

MPI Recv function to receive the message. The MPI_Probe function checks if there is a

35

message from the specified source with that specific tag information and waits until there
is such a message. If you just want to check whether there is one or not, you use the other

probe function called MPI Iprobe.

decl source = 17, nessage = 0;

MPl _Probe(source, 26) // waits until nessage exists. Assunes MPI _Init
/1l etc.

MPI _Recv(&ressage, source, 26);

4.1.12. MPI_lprobe(int source, int tag, int *flag)

This function is used to probe the “MPI world” for messages. As stated in the MPI Probe
function, this is used to test whether there is a message or not with the specified source
number and tag information. The result is stored in the flag. The flag is an address to an
integer, used in the same way as the message variable in the broadcast function. If the

flag value is zero, then no new message was found.

decl result = 0, source = 17, nessage = O;
MPI _| probe(source, 26, &result); //assunes MPI _Init etc. checks source
11 (17)
if (result '=0) {
MPI _Recv(&nessage, source, 26); //now known that nessage exi st

5. Support and Services

Very limited support is given on ParaDiOx. This project will be finished in May 2002
and no further improvements are planned. MPICH is still being developed and feel free to

recompile ParaDiOx with a newer version of MPICH to access new functionality.

If you have some problems with ParaDiOx you can of course give it a shot and send an

email to the project group and maybe someone of us have time to help you.

36

