ORPSoC User Guide

Julius Baxter
OpenCores
Issue 4 for ORPSoC

This file documents the OpenRISC Reference Platform SoC, ORPSoC.

Copyright (©) 2010,2011 OpenCores
Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.2 or any later
version published by the Free Software Foundation; with no Invariant Sections,
with no Front-Cover Texts, and with no Back-Cover Texts. A copy of the license
is included in the section entitled “GNU Free Documentation License”.

Published by OpenCores

Table of Contents

1

2

Introduction.............., 1
Project Organisation 2
2.1 Organisation OVervVIEWouiutitiiii i 2
2.2 SOIEWATe . oo 2
2.2.1 Software Test Naming.......... ... 3
2.3 R . 3
2.3.1 Verilog HDL ... o 3
2.4 Testbench....... ... 3
2.5 Reference And Board Designs ..., 3
2.5.1 Module Selectionc.cooiiiiiiii 3
Getting Started 5
3.1 Supported Host Platforms............o .. 5
3.2 Obtaining Project Source........... ... 5
3.3 Required Tools. 5
Reference Design 6
4.1 OVEIVICW . ittt 6
4.2 SEIUCLUTE . oottt e e e 6
4.2.1 R . 6
4.2.2 SOfEWATE ..ot 7
4.2.3 Simulationoo 7
4.3 T00IS ..o 7
4.3.1 Host ToOolS ... 7
4.3.2 Target System Tools. ..., 7
4.3.3 EDA To0lS. ... oo 7
4.3.4 Debug Tools ..o 7
4.4 SImMulation 7
4.4.1 R .o 7
4.4.2 Cycle ACCUrateot 9
4.4.3 Results. 10
4.5 Synthesiso 11
ORDB1A3PE1500.............. 12
5.1 OVEIVIEW oot 12
5.2 StIUCHUTE . ..ot 12
5.3 T00IS .o 12
5.3.1 Host Toolso 12
5.3.2 Target System Tools i, 12
5.3.3 EDA ToOIS. ... 12

5.3.4 Debug Tools ... 13

5.4 Simulatingoo i 13
5.5 Synthesis 13
5.5. 1 OptionsS . . .voi et 13
5.5.2 Checks. ..o 14
5.6 Place and Route........ .o 14
5.6.1 OptionS . . .vvt et e 15
5.6.2 Constraints ..o 15
5.7 Programming File Generation............... 16
5.8 CUStOmISING . ..ot 16
5.8.1 Enabling Existing RTL Modules....................... ... 16
5.8.2 Adding RTL Modulesccviiiiiiiiiiiain... 16
ML50T 19
6.1 OVEIVIEW .ottt e e 19
6.2 SEIUCTUTE . ..ottt 19
6.2.1 ML501 Xilinx Environment Setup 20
6.3 T0O0lS . oo 20
6.3.1 Host Toolso 20
6.3.2 Target System Tools ..., 20
6.3.3 EDA To0lS. ..o 20
6.3.4 Debug Tools 20
6.4 Simulatingooeiiiii 20
6.4.1 Simulating Boot From Flash............... 21
6.4.1.1 Configure the design.......... 21
6.4.1.2 Prepare the image. 21
6.4.1.3 Run the simulation.............. 21

6.5 Synthesiso 21
6.5.1 OpPtionsttt e 22
6.5.2 Checks. ..o 22
6.5.3 Netlist generation i, 22
6.6 Place and Route o i 22
6.7 Post-PAR STA Reportcooviniiii i, 22
6.8 Back-annotated Netlist........... ... o i, 22
6.8.1 OpPtionSttt e 23
6.8.2 Constraintscouiiiiii 23
6.9 Programming File Generation............. o 23
6.9.1 SPI programming file generation.......................... 23
6.9.2 SPI programming file generation with software............ 23
6.9.3 SPI flash programming, 24
6.9.3.1 Direct SPI flash programming 24
6.9.3.2 Indirect SPI flash programming...................... 25

6.9.4 platform flash programming file generation 25
6.10 Customisingot 25
6.10.1 Enabling Flash Boot Configuration...................... 26
6.10.2 Enabling Existing RTL Modules......................... 26
6.10.3 Adding RTL Modules ..., 26
6.11 Running And Debugging Software............................ 27

6.11.1 Debug Interface. ... 27

ii

6.11.2 UART ... 28

7 S3ADSPI1800....... ... 29
T 1 OVEIVIEW oottt e e e e e 29
T2 SETUCHUTE .« oo e 29
7.2.1 S3ADSP1800 Xilinx Environment Setup.................. 29
7.3 T00IS .« 29
7.3.1 Host Tools 29
7.3.2 Target System Tools i, 29
7.3.3 EDA ToOlS. ...t 30
7.3.4 Debug Toolso 30
T4 Simulating. ... 30
7.5 Synthesis 30
T.5. 1 OptionS . ..ottt 30
7.5.2 Checks. ..o 31
7.5.3 Netlist generationo i 31
7.6 Place and Route i i 31
7.7 Post-PAR STA Report ..o 31
7.8 Back-annotated Netlist........ ... i 31
T.8.1 OpPtioNS . . .vot it e 31
7.8.2 Constraints ... 31
7.9 Programming File Generation....................ccoiiiiiin... 32
7.9.1 SPI flash programming........... 32
710 Customisingouvitt i 32
7.10.1 Enabling Existing RTL Modules......................... 32
7.10.2 Adding RTL Modules ...t 33
7.11 Running And Debugging Software............................ 34
7.11.1 Debug Interface. ... 34
7112 UART . 34
Atlys ... 35
8.1 OVEIVIEW .ottt 35
8.2 SEIUCTUIE . . ettt e e e 35
8.2.1 Atlys Xilinx Environment Setup.......................... 35
8.3 T00lS ..ot 35
8.3.1 Host Tools ... 35
8.3.2 Target System Tools 35
8.3.3 EDA To0lS. ..o 35
8.3.4 Debug Toolso 35
8.4 Simulating. ... 36
8.5 Synthesis 36
8.5. 1 OptionSttt 36
8.5.2 Checks. ... o 36
8.5.3 Netlist generationo i il 37
8.6 Placeand Route......... ... i 37
8.7 Post-PAR STA Reportcooeii e 37
8.8 Back-annotated Netlist.............. . 37

8.8.1 OPtIONS .. vvtt 37

iii

8.8.2 ConsStralntsttt 37

8.9 Programming File Generation................, 37
9 Generic Designs 38
0.1 OVEIVIEW .« oottt e 38
10 Software 39
10.1 OVeIVIEW . ottt e e e 39
10.2 COmMPONENES . ..ttt t ettt e e e e 39
10.2.1 Applicationsc.uuiit i 39
10.2.2 DIiversS ..ot 39
10.2.3 CPU DIIvers . ..ot 39
10.2.4 TestS oo 40
10.2.5 Libraryoooooiii 40
10.2.6 Board. 40
10.2.7 UtIltIes. ..ot 40

10.3 Software For Board Ports 40
11 EDA toolnotes................ 42
11.1 Xilinx Environment Setup............cooiiiiiiiiii.. 42
12 GNU Free Documentation License 43

iv

Chapter 1: Introduction 1

1 Introduction

ORPSoC is intended to be a reference implementation of processors in the OpenRISC family.
It provides a smallest-possible reference system, primarily for testing of the processors. It
also provides systems intended to be synthesized and programmed on physical hardware.

The reference system is the least complex implementation and consists of just enough to test
the processor’s functionality. The board-targeted builds typically include many additional
peripherals.

The next section in this document outlines the organisation and structure of the project.
The section “Getting Started” goes through getting the project source and setting up
any necessary tools. Each following section outlines a particular implementation of an
OpenRISC-based system, beginning with the reference system. Each implementation sec-
tion has an overview of the structure of the project (which probably won’t vary much
between the implementations), a section on setting up the required tools, running simula-
tion, and if applicable, backend and debugging steps. There may be additional sections on
modifying or customising each implementation system.

Chapter 2: Project Organisation 2

2 Project Organisation

2.1 Organisation Overview

The ORPSoC project is intended to serve dual purposes. One is to act as a development
platform for OpenRISC processors, and as a development platform of OpenRISC-based
SoCs targeted at specific hardware.

Organising a single project to satisfy these requirements can lead to some overlap and
redundancy. This section is intended to make the organisation of the project clear.

The reference implementation based in the root (base directory) of the project contains
enough components to create a simple OpenRISC-based SoC. Each board build is intended
to implement as fully-featured a system as possible, depending on the targeted hardware.

The project is organised in such a way that each board build can use both the reference im-
plementation’s RTL modules and software, as well as its own set of RTL and software. The
reference implementation is limited to what is available in the RTL and software directories
in the root of the project, and is not technology dependent.

The following sections outline the organisation of the software, RTL, and board designs.

2.2 Software

The sw path contains primarily target software (code intended for cross-compilation and
execution on an OpenRISC processor.) There is also a path, sw/utils containing custom
tools, intended to be run on the host, for manipulation of binary software images.

Driver software, implementing access functions for hardware modules, are found under
sw/drivers.

There is a minimal support library under the sw/1ib path. Both drivers and support library
are compiled together to create a library called liborpsoc which is placed in sw/1ib.

All CPU-related functions are made available through the file cpu-utils.h which is located
in sw/lib/include and depending on the CPU being used, can be used to switch between
different CPU driver functions. All CPU drivers are under the sw/drivers path.

Note: Tt is expected in the future that the OpenRISC toolchain based on newlib will provide
all of the necessary support software provided in this CPU-specific driver path. When the
first release of the newlib-based toolchain occurs it is expected the software in ORPSoC will
be changed to use this toolchain instead.

Test software is found under sw/tests. Typically, each is for a specific module, or for a
particular capability (eg. tests for the UART capability are under sw/tests/uart, rather
than sw/tests/uart16550 which.) There are no specific rules here.

Under each test directory are two directories, board and sim, containing appropriate test
software. Code for simulation will produce less printfs and aim to execute within realistic
timeframes for RTL simulation. Board targeted test software is obviously written with the
opposite considerations in mind and be more verbose and perhaps run orders of magnitudes
more tests.

Chapter 2: Project Organisation 3

2.2.1 Software Test Naming

The rules for naming software tests are important to adhere to, so the automation scripts can
locate them. The test directory name must be a single word (potentially with underscores),
and then the tests must be in files of the format testdirname-testname.extension, eg. uart-
simple.c or or1200-£fp.S.

See Chapter 10 [Software], page 39, for further details.

2.3 RTL

The HDL code layout conforms to those outlined in the OpenCores.org coding guidelines.
http://cdn.opencores.org/downloads/opencores_coding_guidelines.pdf

There are, however, some naming restrictions for this project.

The directory name (presumably the name of the module, something like uart16550) should
also be the name of the top level file, eg. uart16550.v, and the top level module should
also be simply this name, eg. module uart16550 (...);.

This will avoid confusion and help the scripts locate modules.

2.3.1 Verilog HDL

All RTL included in the project at this point is Verilog HDL, although it would be fine to
add VHDL to a board build.

2.4 Testbench

For each design in ORPSoC there will be a testbench instantiating the top level, and any
required peripherals.

Despite this being far from a thorough verification platform, it is considered useful to be able
to perform enough simulation to ensure that the fundamental system is correctly assembled
and can communicate with the peripherals.

It is expected that by running the command make rtl-test in each board’s simulation run
path, a basic simulation of the system initialising should be run.

2.5 Reference And Board Designs

The goal of the reference design is to provide an environment to develop and test OpenRISC
processors (also, potentially, basic components.) The goal of the various board-targeted
designs is to provide ready-to-go implementations for hardware.

2.5.1 Module Selection

Typically, a board-targeted design will wish to reuse common components (processor, debug
interface, Wishbone arbiters, UART etc.)

The project has been configured so a board build will use modules in the “common”
RTL path (rtl/verilog/) wunless there is a copy in the board’s “local” RTL path (
boards/vendor/boardname/rtl/verilog) or the board includes an external module in
boards/vendor/boardname/modules.

For example, in the event that modification to a module in the common RTL set is required
for it to function correctly in a board build, it’s advisable to copy that module to the board’s

http://cdn.opencores.org/downloads/opencores_coding_guidelines.pdf

Chapter 2: Project Organisation 4

local RTL path and modify it there. Simulation and backend scripts should then use this
board-specific version instead of the one in the common RTL path.

Chapter 3: Getting Started 5

3 Getting Started

3.1 Supported Host Platforms

At present the majority of ORPSoC’s development occurs with tools that run under the
GNU/Linux operating system. All of the tools required to run the basic implementation
are free, open source, and easily installable in any modern GNU/Linux distribution.

Unless indicated otherwise, support for the project under Cygwin on Microsoft Windows
platforms cannot be assumed.

3.2 Obtaining Project Source
The source for ORPSoC can be obtained from the OpenCores subversion (SVN) server.

svn export http://opencores.org/ocsvn/openrisc/openrisc/trunk/orpsocv2

3.3 Required Tools

Performing the installation of tools required to design, simulate, verify, compile and debug
a SoC is not for the faint hearted. The various sets of tools must be first installed, and the
user’s environment configured to allow them to run correctly.

First the host system must be capable of building and running development tools, next
the various compilers, simulators and utilities must be installed, and finally, if required,
additional tools to interact with the built design are installed. Once complete, the set up
rarely needs to be touched, and results in greatly improved productivity.

The required tools can be divided into four groups.

e Host system tools - things like gcc, make, texinfo.

e Target system toolchain and software - the OpenRISC GNU toolchain, with gcc cross-
compiler, support libraries, the GNU debugger (gdb), OpenRISC port of various OSes
and RTOS, etc.

e Electronic design automation (EDA) tools - preprocessors, simulators, FPGA tool
suites, etc.

e Debug tools - tools providing control over the system on target

The first two items are likely to be the same for most of the designs included in ORP-
SoC, however the final two can vary greatly depending on the FPGA vendor, part and
configuration, and the application of the SoC design.

There will be a section on the tools for each design in ORPSoC. This section is intended
to provide a list of tools required for each particular build. Any lengthy instructions on
installing a particular tool will be attached as an appendix, which can be references by
several build prerequisite lists in order to save repetition of information.

Anyone implementing their own board port is encouraged to document, as best they can,
any problematic tool installations and contribute them to this document.

Chapter 4: Reference Design 6

4 Reference Design

4.1 Overview

The reference design included in ORPSoC is intended to be the minimal implementation
(or thereabouts) of a SoC required to exercise an OpenRISC processor. Very little apart
from the processor, memory, debug interface and interconnect modules are instantiated.

The primary role for this design is to implement a system that an OpenRISC processor
can be instantiated in for for development purposes. The automated testing mechanism,
capable of compiling, executing and checking software on the design, is used as a method of
regression testing for the processor as it is developed. After features are added or modified
in the processor, new software tests can be added to the existing suite, checking for the
expected functionality and ensuring legacy behavior is also unchanged.

The design can be simulated two ways. The first uses the standard event-driven simulators
such as Icarus Verilog and Mentor Graphics’ Modelsim. The second method involves cre-
ating a cycle accurate (C or SystemC) model from the Verilog HDL description using the
Verilator tool.

The simulations begin with the desired software image preloaded in memory. For debugging
the design, the models provide an interface to the system allowing the GNU debugger to
control the target processor in a manner similar to that of physical hardware.

The design is not intended for implementation on an FPGA or ASIC, rather purely for
development and testing in simulation environments. The board targeted builds in the
ORPSoC project, however, are intended for implementation on hardware.

4.2 Structure

The reference design’s paths are all based in the root directory of ORPSoC. This is different
from the board-targeted builds, which are based in their specific board paths.

As synthesis and physical implementation is not intended for the reference design there are
no syn or backend paths in the root directory of ORPSoC.

4.2.1 RTL

At present only Verilog HDL is included in the reference implementation of ORPSoC, as
the open source tools intended to simulate the design do not support VHDL.

The directory structure consists of an rtl directory in the root, and a verilog path under
that. Within the rtl/verilog path, each module has its own directory.

External modules using the OpenCores structure can be put under each boards
modules directory. The scripts will the look for verilog files under modules/<module_
name>/rtl/verilog.

A common Verilog include path, rt1l/verilog/include directory is used. The Verilog HDL
include files for each module should be moved here. This allows each ORPSoC implemen-
tation (board design) to maintain their own include path, and thus configure the modules
for their specific implementation.

Chapter 4: Reference Design 7

4.2.2 Software

The software run on the reference design is found in the ORPSoC root directory, under the
sw path.

The test software for the or1200 processor is found under sw/tests/or1200/sim.

A minimal set of drivers is built into liborpsoc, and they are found under
sw/tests/drivers.

In addition to these drivers, a set of support C functions is build into liborpsoc, which are
found in the sw/1ib path.
4.2.3 Simulation

The simulation of the reference design is run from the sim/run path.
The script controlling simulation is the file sim/bin/Makefile.

The generated output is kept in the sim/out path, and is cleared away when make clean
is run.

When the Verilator-processed cycle accurate model is built, it is done in the sim/v1t path,
which is also cleaned away when make clean is run.

4.3 Tools

4.3.1 Host Tools

Standard development suite of tools: gce, make, etc.

4.3.2 Target System Tools

OpenRISC GNU toolchain. For installation, see OpenRISC GNU toolchain page on Open-
Cores.org.

4.3.3 EDA Tools

RTL simulation: Icarus Verilog (also compatible with Mentor Graphics’ Modelsim) Cycle
Accurate Simulation: Verilator, Verilog-Perl, System-Perl, SystemC

4.3.4 Debug Tools

None. The target is purely simulation, no extra utilities are required to debug.
4.4 Simulation

4.4.1 RTL

All simulations of the reference design are run from the sim/run path.

Running RTL Regression Test
The simplest way of starting a run through the regression test, using the default RTL
simulator, Icarus Verilog, can be done with:

make rtl-tests

This will compile the software and RTL, and run a new simulation for each software test.
Defining which tests are run is the variable TESTS, set by default in the sw/bin/Makefile

Chapter 4: Reference Design 8

script. Other default options are that a processor execution log is generated (in
sim/out/testname-executed.log), but VCDs are not.

Running An Individual Test

An individual test can be run, by specifying the test name through the TEST environment
variable (which must correspond to a file in sw/tests/module/sim/ where module is the
name of the module to be tested. In the following example the test or1200-basic is run.

make rtl-test TEST=or1200-basic

Running A Set Of Specific Tests

A specific set of tests can be run in the same fashion as the regression tests but with the
actual tests to run set in the TESTS environment variable.

make rtl-tests TESTS="sdram-rows uart-simple or1200-mmu or1200-fp"

Providing A Precompiled ELF Executable

It’s possible to specify the path to an OR32 ELF executable to be run in simulation instead
of test software. Use the USER_ELF environment variable to specify the path to the ELF to
run.

make rtl-test USER_ELF=/path/to/myapp.elf

The ELF will be converted to binary format, and then converted to a VMEM to be loaded
into the model for execution at runtime.

Providing A Custom VMEM Image

It’s possible to specify the path to a pre-existing VMEM image to be run in simulation
instead of test software. Use the USER_VMEM environment variable to specify the path to
the VMEM image to be run.

make rtl-test USER_VMEM=/path/to/myapp.vmem
This VMEM file will be copied into the working directory, and renamed according to what
the simulated memory expects.

Options For RTL Tests

There are some options, which can be specified through shell environment variables when
running the test.

VCD Set to ’1” to enable walue change dump (VCD) creation in
sim/out/testname.vcd

VCD_DELAY
Delay VCD creation start time by this number of timesteps (used as a Verilog
#delay in the testbench.)

VCD_DELAY_INSNS
Delay VCD creation start time until this number of instructions has been exe-
cuted by the processor. Useful for creating a dump just before a bug exhibited
and correlated to an instruction number (from execution trace file.)

END_TIME Force simulation end ($finish) at this time.

Chapter 4: Reference Design 9

DISABLE_PROCESSOR_LOGS
Turn off processor monitor’s execution trace generation. This helps speed up the
simulation (less time writing to files) and avoids creating very large execution
logs (in the GBs) for very long simulations.

SIMULATOR
Specify simulator to use. Default is Icarus Verilog, can be set to modelsim to
use Mentor Graphics’ Modelsim. No others are supported right now.

MGC_NO_VOPT
When using Modelsim (specifying SIMULATOR=modelsim), if the version does
not include the individual vopt executable, specify MGC_NO_VOPT=1 when com-
piling.

VPI Pass VPI=1 to have the an external JTAG debug module stall the processor
just after bootup, and then provide a GDB stub (interacting with the Verilog
sim via the VPI) to allow control of the system in a similar fashion to that of a
physical target controlled over JTAG via a debug proxy application. The port
for GDB is hard-coded to 50002. See the code in bench/verilog/vpi/c for
more details. If running with Modelsim, ensure the path MGC_PATH is set and
points to a directory containing a path named modeltech, which should be the
Modelsim install.

4.4.2 Cycle Accurate

Running Cycle Accurate Regression Test

The simplest way of starting a run through the regression test using the cycle accurate
model can be done with:
make vlt-tests

This will build the cycle accurate model and run a new simulation for each software test.
Defining which tests are run is the variable TESTS, set by default in the sw/bin/Makefile
script.

Running An Individual Test

An individual test can be run, by specifying the test name through the TEST environment
variable (which must correspond to a file in sw/tests/module/sim/ where module is the
name of the module to be tested. In the following example the test ori200-basic is run.

make vilt-test TEST=or1200-basic

Generating Cycle Accurate Simulator Executable

The cycle accurate model is somewhat similar to the OpenRISC architectural simulator, in
that it can be run as a standalone application, although it is not as configurable at runtime.
The standalone application can be built with the following command from the sim/run
path.

make prepare-vlt

The resulting executable will be Vorpsoc_top in the sim/v1t path. Run it with the -h
option for usage instructions.

Chapter 4: Reference Design 10

Generating Automatically Profiled Cycle Accurate Simulator
Executable

An automatic profiling and compilation set of commands in the script can be used to create
a higher performance cycle accurate model. The following make target will first compile
the cycle accurate design to generate profiling outputs, run some software, and recompile
using the profiling information.

make prepare-vlt-profiled

Cycle Accurate Model Executable Usage

The executable generated by running any of the above commands is in the sim/v1t path.
The usage options can be listed by running it with the --help switch.

Vorpsoc_top --help
A short list of options is given here.
-f file

—-—program file
Load software from OR32 ELF image file

If unspecified, model attempts to load VMEM file sram. vmem

-V

--vcd Dump VCD file

-e value
-—endtime value
End simulation after value simulated ns
-1 file
--log file
Log processor execution trace to file

4.4.3 Results
The following files are generated from the event driven simulation. For output options of
the cycle accurate model, see the section on Cycle Accurate Model Executable Usage.

Processor Execution Trace

A trace of the processor after each executed instruction is generated by both the event and
cycle accurate models.

In the event driven simulations, the log is created by default, and is stored in sim/out and
will be named test-name-executed.log.

Processor SPR Access Log

A list of processor special purpose registers (SPR) accesses is created when processor logging
is enabled.

These values are logged to a file in sim/out named test-name-sprs.log.

Processor Instruction Excecution Time Log

A list of when each instruction was executed is generated when processor execution logging
is enabled.

Chapter 4: Reference Design 11

This is useful when debugging with VCD, and detecting at what time the problematic
instructions were executed.

These values are logged to a file in sim/out named test-name-lookup.log.

Processor Report Mechanism Log

The use of the processor’s report mechanism is commonplace in the test software, as it
allows for the checking of intermediate values after simulation.

These values are logged to a file in sim/out named test-name-general.log. This is not
optional.

Value Change Dump (VCD)

When VCD files are generated they are placed in the sim/out path, and are named test-
name.vcd. They should be viewable with programs like GTK Wawve.

4.5 Synthesis

The reference design is not intended to be synthesised, and thus no backend scripts are
provided. See the sections on the board-specific builds.

Chapter 5: ORDB1A3PE1500 12

5 ORDB1A3PE1500

5.1 Overview
The ORDB1 (ORSoC development board 1) with Actel A3PE1500 FPGA is supported by
this build.

As the ORDBLI is intended to be a daughter board for a variety of 1/O boards its options
for configuration are extensive.

This board port of ORPSoC implements an example of a configurable system, with many
cores that can be enabled or disabled as required by the expansion board’s capabilities.

The port was mainly developed with the ORSoC Ethernet expansion board (OREEBL1), and
was used with the OpenRISC port of the Linux kernel and BusyBox suite running network
applications.

This guide will overview how to simulation, synthesize and customise the system.

5.2 Structure
Note that in this chapter the term board path refers to the path in the project for this board
port; boards/actel/ordbla3pe1500.

The board port’s structure is similar to that of a standalone project which accords with
the OpenCores coding guidelines. However, all software and RTL that is available in the
reference design is also available to the board port, with any local (ie. in the board’s rtl
or sw paths) versions taking precedence over the versions available in the reference design.

The Verilog RTL specific to this board is under rtl/verilog in the board path. The
include path in there is the place where all required definitions files, configuring the RTL,
are found.

Backend files, things such as PLLs and buffers generated by Actel’s smartgen tool, are
found in the board’s backend/rtl/verilog path.

5.3 Tools

5.3.1 Host Tools

Standard development suite of tools: gcc, make, etc.

5.3.2 Target System Tools

OpenRISC GNU toolchain. For installation, see OpenRISC GNU toolchain page on Open-
Cores.org.

5.3.3 EDA Tools

RTL, gatelevel simulation: Mentor Graphics’ Modelsim Synthesis: Synopsys Synplify (in-
cluded in Actel Libero Suite) Backend: Actel Designer (included in Actel Libero Suite)
Programming: Actel FlashPRO (included in Actel Libero Suite)

This has been tested with with Libero versions 8.6, 9.0spl and 9.1 under Ubuntu Linux. It
is recommended the very latest version available be used.

Chapter 5: ORDB1A3PE1500 13

5.3.4 Debug Tools
or_debug_proxy, ORPmon

5.4 Simulating

Run RTL Regression Test

To run the default set of regression tests for the build, run the following command in the
board’s sw/run path.

make rtl-tests

The same set of options for RTL tests available in the reference design should be available
in this build. See [Running A Set Of Specific Reference Design RTL Tests|, page 8.

Options specific to the ORDB1A3PE1500 build.

PRELOAD_RAM
Set to "1’ to enable loading of the software image into RAM at the beginning
of simulation.

If the chosen bootROM program (set via a define in software header file in the
board’s sw/board/include path) will jump straight to RAM to begin execu-
tion, then the software image will need to be in RAM for the simulation to
work. This define must be used in that case for the simulation to do anything.

5.5 Synthesis
Synthesis of the board port for the Actel technology with the Synplify tool can be run in
the board’s syn/synplify/run path with the following command.
make all
This will create a EDIF netlist in syn/synplify/out.

Hopefully it’s all automated enough so that, as long as the design is simulating as desired,
the correct set of RTL will be picked up and synthesized without any need for customising
scripts for the tool.

5.5.1 Options

The following can be passed as environment variables when running make all.

RTL_TOP Default’s to the designs top level module, orpsoc_top, but if wishing to syn-
thesize a particular module, its name (not instantiated name) should be set
here.

FPGA_PART
Defaults to ASPE1500 but if targeting any other set it with this.

FPGA_FAMILY
Defaults to the ASPE1500’s ProASIC3SE but if targeting any other set it with
this.

FPGA_PACKAGE
Defaults to PQFP208 but if targeting any other set it with this.

Chapter 5: ORDB1A3PE1500 14

FPGA_SPEED_GRADE
Defaults to Std but if targeting any other set it with this.

FREQ Target frequency for synthesis.
MAXFAN Maximum net fanout.

MAXFAN_HARD
Hard limit on maximum net fanout.

GLOBALTHRESH
Threshold of fanout before promoting signal to a global routing net.

RETIMING Defaults to "1’ (on) but set to 0’ to disable.

RESOURCE_SHARING
Defaults to '1’ (on) but set to ’0’ to disable.

DISABLE_IO_INSERTION
Defaults to '0’ (off) but set to "1’ to enable. Useful when synthesizing individual
modules not intended as a top level.

5.5.2 Checks
The following is a list of some considerations before synthesis.
e bootrom.v

If the bootROM module is being used to provide the processor with a program at
startup, check that board software include file, in the board’s sw/board/include path,
is selecting the correct bootROM program.

Do a make distclean from the synthesis run directory to be sure that the previous
bootROM file is cleared away and regenerated when synthesis is run.

e Clean away old leftovers

If the unwanted files from an old synthesis run are still there before the next run, it’s
best to clean them away with make clean from the synthesis run directory.

e Check Command Line Options

If using any command line settings, they can be checked by passing them to the fol-
lowing make target: make print-config

5.6 Place and Route

Place and route is run from the board’s backend/par/run path with the following command.
make all

This will create a .adb file in the same path.

All steps, up to and including programming file generation are done here. FPGA device
programming must be done using the programming FlashPro tool under Windows if using
a free license.

Chapter 5: ORDB1A3PE1500 15

5.6.1 Options

Most of the design’s parameters are determined by processing the orpsoc-defines.v file
and extracting, for example, the frequency of the clocks entering the design.

The following can be passed as environment variables when running make all.

FPGA_PART
Defaults to A3PE1500 but if targeting any other set it with this.

FPGA_FAMILY
Defaults to the ASPE1500’s ProASIC3E but if targeting any other set it with
this.

FPGA_PACKAGE
Defaults to “208 PQFP” but if targeting any other set it with this.

FPGA_SPEED_GRADE
Defaults to Std but if targeting any other set it with this.

FPGA_VOLTAGE
Defaults to 1.5 but if targeting any other set it with this.

FPGA_TEMP_RANGE
Defaults to COM but if targeting any other set it with this.

FPGA_VOLT_RANGE
Defaults to COM but if targeting any other set it with this.

PLACE_INCREMENTAL
Defaults to off.

ROUTE_INCREMENTAL
Defaults to off.

PLACER_HIGH_EFFORT
Defaults to off.

BOARD_CONFIG
Defaults to orsoccpuexpio.mkpinassigns

5.6.2 Constraints

A synposys design constraints (SDC) file, and physical design constraints (PDC) file are
generated automatically by the scripts. The main Verilog defines file is parsed to detect
which modules are included in the design, and generates the appropriate constraints which
are embedded in the Makefile.
The PDC relies on the BOARD_CONFIG environment variable to indicate which pin assignment
file to pull into the Makefile (they live in backend/par/bin). The PDC also depends on
the actual contents of the main place and route Makefile, backend/par/bin/Makefile.
By default these should have support for the peripherals included with ORPSoC. Double
check, however, that the correct constraints are set, by running the following command
before starting place and route.

make pdc-file sdc-file

These can be generated and edited and then used when running place and route, they will
not get replaced.

Chapter 5: ORDB1A3PE1500 16

5.7 Programming File Generation
The .adb file resulting from place and route can be opened in the Actel Designer tool and
a programming file generated there.

Once this programming file is created, Actel’s FlashPro can used to program the
ORDB1A3PE1500 board.

5.8 Customising

The versatile nature of the ORDB1A3PE1500 means the design that goes on it must be
equally versatile, if not more so.

The following sections have information on how to configure the design.

5.8.1 Emnabling Existing RTL Modules

The design relies on the Verilog HDL define function to indicate which modules are included.
There are only a few modules included by default.
e Processor - 01200
e Clock and reset generation - clkgen
e Bus arbiters - arbiter_ibus, arbiter_dbus, arbiter_bytebus
The rest are optional, depending on what is defined in the board’s rt1/verilog/include/orpsoc-|j
defines.v file.

Inspect that file to see which modules are able to be included. At present the list includes
USB 1.1 host controller and/or slave interface, I12C master /slave core, and SPI master cores.

These cores should be supported and ready to go by just defining them (uncomment in the
orpsoc-defines.v file.)

5.8.2 Adding RTL Modules

There are a number of steps to take when adding a new module to the design.
e RTL Files

Create a directory under the board’s rtl/verilog directory, and name it the same as
the top level of the module.

Ensure the module’s top level file and actual name of the module when it will be
instantiated are all the same.

Place any include files into the board’s rtl/verilog/include path.
e Instantiate in ORPSoC Top Level File

Instantiate the module in the ORPSoC top level file, rtl/verilog/orpsoc_
top/orpsoc_top.v, and be sure to take care of the following.

e Create appropriate ‘define in orpsoc-defines.v and surround module instantia-
tion with it.

e Add required I/Os (surrounded by appropriate ‘ifdef)

e Attach to appropriate bus arbiter, declaring any signals required. Be sure to tie
them off if modules is not included.

e Update appropriate bus arbiter (in board’s rt1/verilog/arbiters path) adding
(uncommenting) additional ports as needed.

Chapter 5: ORDB1A3PE1500 17

e Update board’s rtl/verilog/include/orpsoc-params.v file with appropriate
set of parameters for new module, as well as arbiter memory mapping assignment.

e Attach appropriate clocks and resets, modify the board’s rt1/verilog/clkgen/clkgen. vl]
file generating appropriate clocks if required.

e Attach any interrupts to the processor’s PIC vector in, assigned as the last thing
in the file.

e Update ORPSoC Testbench
Update the board’s bench/verilog/orpsoc_testbench.v file with appropriate ports
(surrounded by appropriate ‘ifdef.)
Add any desired models to help test the module to the board’s bench/verilog path
and instantiate it correctly in the testbench.

e Add Software Drivers and Tests

In a similar fashion to what is already in the board’s sw/drivers and sw/tests path,
create desired driver and test software to be used during simulation (and potentially
on target.)

e Update Backend Scripts

If any I/O is added, or special timing specified, the board’s backend main Makefile,
backend/par/bin/Makefile and pinout files (in backend/par/bin will need to be
updated.

The section in backend/par/bin/Makefile mapping signals to Makefile variables will
need to have these new signals added to them. The section in the file begins with
$(PDC_FILE): and is actually a set of long bash lines.

Continuing the format already there should be easy enough. Remember that the
orpsoc-defines.v file is parsed and it’s possible to tell if the module is included
by testing if the variable is defined.

For example, to add I/Os for a module called foo, and in orpsoc-defines.v a value
FOO01 is defined, we can add I/Os fool_srx_i and fool_tx_o[3:0] with the following.

$(Qif [! -z $$F001]; then \
echo "set_io fool_srx_i " $(FOO_SRX_BUS_SETTINGS) " \
-pinname "$(FOO1_SRX_PIN) >> $@; \

echo "set_io fool_tx_o\\[0\\] " $(FOO_TX_BUS_SETTINGS) " \
-pinname "$(FO01_TXO_PIN) >> $@; \

echo "set_io fool_tx_o\\[1\\] " $(FOO_TX_BUS_SETTINGS) " \
-pinname "$(FOO1_TX1_PIN) >> $e; \

echo "set_io fool_tx_o\\[2\\] " $(FOO_TX_BUS_SETTINGS) " \
-pinname "$(FOO01_TX2_PIN) >> $@; \

echo "set_io fool_tx_o\\[3\\] " $(FOO_TX_BUS_SETTINGS) " \
-pinname "$(FO01_TX3_PIN) >> $@; \

fi

(ensure there is no whitespace after the trailing backslashes.)
It’s a little hard to follow, but it’s essentially one set_io line for each I/O line.

First the line checks if the module’s define was exported (which happens automatically
if it’s defined in orpsoc-defines.v.

Chapter 5: ORDB1A3PE1500 18

Note that what is defined can be checked by running make print-defines in the
board’s backend/par/run path.

The values of the bus settings variables depend on the desired I/O standards and other
examples in the Makefile can be referenced.

The pin numbers need to be set in the .mkpinassigns which is included into the Make-
file (according to the BOARD_CONFIG variable set when running the make command.)

These files are simple assignments of values to variables (and potentially then to other
variables) which correspond to the variables finally used in the main Makefile.

The physical constraints file can be generated manually with the make pdc-file com-
mand.

Chapter 6: ML501 19

6 ML501

6.1 Overview

The Xilinx ML501 board contains a Virtex LX50 part, varied memories and peripherals.
See Xilinx’s site for specific details:

http://www.xilinx.com/products/devkits/HW-V5-ML501-UNI-G.htm

The OR1200 core and Wishbone bus is set to run at 66 MHz. The OR1200 core, as defined
here, is almost fully featured, with every hardware arithmetic option enabled, and the
largest possible cache configuration, of 1024 sets with 8 words per line which is 32 kilobytes
of cache each for instruction and data buses.

Not all peripherals are supported, and adding support for each is a goal.

At present the build contains a memory controller for the DDR2 SDRAM (based around a
Xilinx MIG derived controller), SSRAM (remains to be verified), and CFI flash. None of
the other peripherals (VGA/AC97/PS2/USB/LCD) have controllers in the design yet.

The OpenCores 10/100 Ethernet MAC can be used for Ethernet, but only with the PHY
in 10/100 mode using the MII interface to the Marvel Alaska Ethernet PHY IC. There
still may be bugs in the FIFO buffer configuration in the ML501’s ethmac_defines.v file
should not be changed.

The ML501 build’s scripts are capable of generating either a programming bitstream, .bit,
file for direct programming of the FPGA via JTAG, or a flash image , .mcs, file which can
be programmed into the on-board SPI flash which the FPGA can configure itself from on
power-on. This flash image file may also contain a software image the processor can load
at reset to, for example, present the user with the prompt for a boot monitor at power-on.

This guide is a work in progress, and provides the basics on simulating, building and mod-
ifying the design.

6.2 Structure

Note that in this chapter the term board path refers to the path in the project for this board
port; boards/xilinx/ml1501.

The board port’s structure is similar to that of a standalone project which accords with
the OpenCores coding guidelines. However, all software and RTL that is available in the
reference design is also available to the board port, with any local (ie. in the board’s rtl
or sw paths) versions taking precedence over the versions available in the reference design.

The Verilog RTL specific to this board is under rtl/verilog in the board path. The
include path in there is the place where all required definitions files, configuring the RTL,
are found.

The default configuration will result in a design which executes from the RAM at reset. For
simulation, the PRELOAD_RAM option will need to be used to ensure the processor starts up
correctly. To configure and simulate the build to boot from flash, see below.

Backend files, mainly binary NGC files for mapping, are found in the board’s backend/bin
path.

http://www.xilinx.com/products/devkits/HW-V5-ML501-UNI-G.htm

Chapter 6: ML501 20

6.2.1 ML501 Xilinx Environment Setup

Ensure the Xilinx environment has been setup before running all scripts for this board
build. See Section 11.1 [Xilinx Environment Setup], page 42.

6.3 Tools

6.3.1 Host Tools

Standard development suite of tools: gcc, make, etc.

6.3.2 Target System Tools

OpenRISC GNU toolchain. For installation, see OpenRISC GNU toolchain page on Open-
Cores.org.

6.3.3 EDA Tools

RTL, gatelevel simulation: Mentor Graphics’ Modelsim Synthesis: XST (from Xilinx ISE)
Backend: ngdbuild/map/par/bitgen/promgen, etc. (from Xilinx ISE) Programming: iM-
PACT (from Xilinx ISE)

This has been tested with Xilinx ISE 11.1 under Ubuntu Linux.

6.3.4 Debug Tools
or_debug_proxy, ORPmon

6.4 Simulating

Ensure the Xilinx environment has been setup before running all simulations for this board
build. See Section 11.1 [Xilinx Environment Setup|, page 42.

Run RTL Regression Test

To run the default set of regression tests for the build, run the following command in the
board’s sw/run path.

make rtl-tests

The same set of options for RTL tests available in the reference design should be available
in this build. See [Running A Set Of Specific Reference Design RTL Tests], page 8.

Options specific to the ML501 build.

PRELOAD_RAM
Set to ’1’ to enable loading of the software image into RAM at the beginning
of simulation.

If the chosen bootROM program (set via a define in software header file in the
board’s sw/board/include path) will jump straight to RAM to begin execu-
tion, then the software image will need to be in RAM for the simulation to
work. This define must be used in that case for the simulation to do anything.

Chapter 6: ML501 21

6.4.1 Simulating Boot From Flash

By default, the build will boot from RAM, but it is often useful to compile the design for
FPGA so that it boots from a large software image in the 32MB CFI flash part (u-boot
bootloader or a Linux kernel image, etc.)

It is, then, useful to be able to simulate this.

6.4.1.1 Configure the design

First, ensure the build is configured to boot from the flash memory. See Section 6.10.1
[ML501 boot from flash configuration], page 26.

6.4.1.2 Prepare the image

Next, generate an image to preload into the flash. Note: this is not done automatically at
present and must be done manually.

Create the executable for the program you wish to boot out of flash. Generate a binary of
it using or32-elf-objcopy like so:

or32-elf-objcopy -0 binary yourexe.elf youroutputfile.bin
Note: how to create software to execute out of flash on OpenRISC is not covered here, but
it’s likely an executable intended to execute from RAM will require subtle modifications to

the reset vector code and linker script to ensure it executes from flash correctly. Consulting
the OpenRISC project wiki is recommended.

Next, turn this into a VMEM image that the flash model can load. To do this use the tool
found in the root sw/utils path called bin2vmem. Save this resulting VMEM it into the
board’s sim/run path and name it cfi-flash.vmem.

.../orpsocv2/sw/utils/bin2vmem youroutputfile.bin -bpw=2 > \
.../orpsocv2/boards/xilinx/m1501/sim/run/cfi-flash. vmem

The resulting VMEM file should consist of the program in 2-byte words (the point of the
-bpw=2 switch.)

6.4.1.3 Run the simulation

As the software to be run is potentially not from ORPSoC’s testsuite, and there’s no way
to override the name of the test being run in a way that allows things to compile correctly,
simply run the following, and all results will be stored in the board’s sim/out path prefixed
with the name of the default test, or1200-simple.

make rtl-test

The processor will now boot from 0xf0000100 and begin executing the image from the
flash.

6.5 Synthesis

Synthesis of the board port for the Actel technology with the Synplify tool can be run in
the board’s syn/xst/run path with the following command.

make all

This will create an NGC file in syn/xst/run named orpsoc.ngc.

Chapter 6: ML501 22

Hopefully it’s all automated enough so that, as long as the design is simulating as desired,
the correct set of RTL will be picked up and synthesized without any need for customising
scripts for the tool.

6.5.1 Options

Use the following command int the syn/xst/run path to get a list of the variables used
during synthesis. Any can be set on the command line when running make all.

make print-config

6.5.2 Checks

The following is a list of some considerations before synthesis.
e bootrom.v

If the bootROM module is being used to provide the processor with a program at
startup (reset address in processor’s define file is set to 0xf0000100 or similar), check
that board software include file, in the board’s sw/board/include path, is selecting
the correct bootROM program.

Do a make distclean from the synthesis run directory to be sure that the previous
bootROM file is cleared away and regenerated when synthesis is run.

e C(Clean away old leftovers

If the unwanted files from an old synthesis run are still there before the next run, it’s
best to clean them away with make clean from the synthesis run directory.

6.5.3 Netlist generation

To create a Verilog HDL netlist of the post-synthesis design, run the following in the board’s
syn/xst/run path.

make orpsoc.v

6.6 Place and Route

Place and route of the design can be run from the board’s backend/par/run path with the
following command.

make orpsoc.ncd

6.7 Post-PAR STA Report

The trce tool can be used to generate a timing report of the post-place and route design.

make timingreport

6.8 Back-annotated Netlist
A post-PAR back-annotated netlist can be generated with the following command.

make netlist

This will make a new directory under the board’s backend/par/run path named netlist
and will contain a Verilog netlist and SDF file with timing information.

Chapter 6: ML501 23

6.8.1 Options

To get a list of options that can be set when running the backend flow, run the following
in the board’s backend/par/run path.

make print-config

6.8.2 Constraints

A Xilinx User Constraints File (UCF) file is in the board’s backend/par/bin path. It is
named m1501.ucf. It should be edited if any extra I/O or constraints are required.

Eventually it would be good to dynamically generated this, based on what is included in
the design, but for now this must be hand modified if modules are added ore removed from
the design.

6.9 Programming File Generation

Programming file generation is run from the board’s backend/par/run path with the fol-
lowing command.

make orpsoc.bit

This file can then be loaded into the Xilinx iMPACT program and programmed onto the
Virtex 5 part on the ML501.

6.9.1 SPI programming file generation

To generate a file, which can be programmed into the SPI flash on the board (and thus
allowing the FPGA to be configured without using iMPACT each time) run the following
command in the board’s backend/par/run path.

make orpsoc.mcs

6.9.2 SPI programming file generation with software

To generate a file, which can be programmed into the SPI flash on the board (and thus
allowing the FPGA to be configured without using iMPACT each time) and also has a
bootloader the processor can run (such as ORPmon) run the following command in the
board’s backend/par/run path.

make orpsoc.mcs BOOTLOADER_BIN=/path/to/bootloader-binary-file.bin
The image is allowed to be up to 256KBytes in size.
As the SPI flash on the ML501 is only 2MBytes in size, and the FPGA configuration image
takes up almost 1.5MBytes, the final 256 KBytes are reserved for a software image to be
loaded at reset by the processor.
This mark (the last 256 KBytes of memory) is at hex address 0x1c0000. This value is passed
to the promgen tool when creating the .mcs file, and is set in the board’s board.h file so
the embedded bootloader in the design knows which address to load from.
If changing the address of the bootloader, to accommodate a larger image for example,
be sure to update the address in the board.h file and set the environment variable SPI_
BOOTLOADER_SW_OFFSET_HEX to the hex address to embed the binary image at (hexadecimal

value without the leading “0x”.) Note that changing the address to load from in board.h
will require the entire design is re synthesized.

Chapter 6: ML501 24

The file pointed to by BOOTLOADER_BIN should be a binary image with the size of the image
embedded in the first word.

The tool bin2binsizeword in ORPSoC’s sw/utils path can add the sizeword to a binary
image. A binary image is something created with the processor toolchains objcopy -0
binary option. A tool like ORPmon is a good candidate for being embedded in the SPI
flash as bootloader software - a binary image is automatically created when it’s compiled,
usually named orpmon.or32.bin. To embed that, it would simply need to be passed to the
bin2binsizeword like the following:

bin2binsizeword /path/to/orpmon/orpmon.or32.bin orpmon-sizeword.bin

This orpmon-sizeword.bin file should then be passed via the BOOTLOADER_BIN option
when creating the .mcs file to embed it.

If once the FPGA configuration image, and a bootloader image is embedded in the SPI flash,
the FPGA can be configured with ORPSoC and then the processor can load the bootloader
(like ORPmon) with a single press of the board’s PROG button. This makes developing on
the board very easy.

6.9.3 SPI flash programming

There are two ways to program the M25P16 2MByte SPI flash from the Xilinx iMPACT
tool - direct and indirect. Direct programming means the Xilinx programmer has a direct
connection from its pins to the SPI bus. It then performs SPI accesses on the bus to erase
and program the part. Indirect programming involves the FPGA and sets up connections
to the SPI via it. Indirect programming may be slower, but it is the only supported method
as of ISE 12 onwards.

There may be a way of programming directly using the open source zc3sprog tool,
http://sourceforge.net/projects/xc3sprog/ , but the author is yet to figure out how,
and would greatly appreciate anyone who can provide a quick rundown on how this could
be achieved.

Once programmed, booting from the SPI flash to ORPmon prompt is about 3 to 4 seconds.

6.9.3.1 Direct SPI flash programming

Note: As of ISE 12, direct SPI flash programming is no longer supported. ISE 11 must
be used if this method is to be used. Indirect SPI flash programming is the recommended
method by Xilinx now. How annoying.

For a guide on how to actually set up the ML501 board to program the SPI flash, see the sec-
tion under “My Own SPI Flash Image Demonstration” on page 26 of the Xilinx UG228 doc-
ument, http://www.xilinx.com/support/documentation/boards_and_kits/ug228.pdf
. Follow steps 1 to 4, and then 9 to 16, and supply the .mcs file generated here.

A more general explanation of direct SPI flash programming can be found in XAPP951-
http://www.xilinx.com/support/documentation/application_notes/xapp951.pdf
Be sure to set the CONFIG switches to 00010101 (left-to-right when Xilinx logo in North-
West of board) before attempting to program the SPI flash. The be sure to switch them
back to 00000101 before attempting to boot the image.

Note: Direct SPI flash programming will require fly-leads from the Xilinx programming
cable to the the board. See page 6 of XAPP1053 for a picture of this for a different board,

http://sourceforge.net/projects/xc3sprog/
http://www.xilinx.com/support/documentation/boards_and_kits/ug228.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp951.pdf

Chapter 6: ML501 25

but to get the idea: http://www.xilinx.com/support/documentation/application_
notes/xappl053.pdf.

Note: If leaving the SPI programming fly leads in place and attempting to boot the image,
be sure to remove the Vref (VCC3V3 on JP2) connection before attempting to boot. Be sure
the configuration DIP SW15 is set back to the 00000101 position!

Note: The other cable from the programmer (going to the JP1 header) must be unplugged
from the board before attempting to program the SPI flash.

6.9.3.2 Indirect SPI flash programming

The indirect method of programming the SPI flash has the memory show up as an extrnal
module off the FPGA when performing an automatic JTAG boundary scan.

The following page has more information about the steps required. http://www.xilinx.com/support/documer
manuals/xilinx11/pim_p_configure_spi_bpi_through_fpga.htm The .mcs file required
is the one generated in previous steps in this guide.

Note: As we generate the .mcs file with bit/byte swapping disabled (with the use of the -
spi option when running the promgen tool) we must disable iMPACT’s automatic bit/byte
swapping when programming the SPI flash. In ISE 12 this option is found by going to the
Edit menu -> Preferences, and in the Configuration Preferences category, set the SPI Byte
Swap option to Ignore Setting.

Note: iMPACT from ISE 12 introduced errors in the software image when being pro-
grammed. It is advisable that versions of iMPACT from ISEs other than 12 are used until
this bug is fixed.

6.9.4 platform flash programming file generation

There are options in the backend makefile to generate programming files for the platform
flash found on the ML501.

The following command will make the orpsoc_platformflash.mcs file which can be pro-
grammed into the flash via the iMPACT tool.

boards/xilinx/m1501/backend/par/run$ make orpsoc_platformflash.mcs

This flash is designed to be loaded in the high-speed select MAP mode, as it is formatted in
such a way as it should be read out over a 16-bit data bus.

To program the platform flash, launch iMPACT, and initialise the scanchain.

Assign the orpsoc_platformflash.mcs file to the xcf32p part. Note: 1 got a warning about
the .mcs file not appearing to be a configuration file and that “This file will not configure
a Xilinx device in Serial or SelectMap modes and may not be intended for configuration.”

The option where the PROM is slave during programming was left enabled.

6.10 Customising

The large amount of peripherals on the ML501 means that things will want to be added or
removed to suit the design.

The following sections have information on how to configure the design.

http://www.xilinx.com/support/documentation/application_notes/xapp1053.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp1053.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/pim_p_configure_spi_bpi_through_fpga.htm
http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/pim_p_configure_spi_bpi_through_fpga.htm

Chapter 6: ML501 26

6.10.1 Enabling Flash Boot Configuration

The following will outline how to make the OR1200 boot from the CFT flash part at reset.

In the board’s rtl/verilog/include/orpsoc-defines.v ensure the following is uncom-
mented:

‘define CFI_FLASH

In the board’s rtl/verilog/include/or1200_defines.v ensure the following is uncom-
mented:

‘define OR1200_BOOT_PCREG_DEFAULT 30’h3c00003f
‘define OR1200_BOOT_ADR 32°hf0000100

All other OR1200_BOOT_* defines nearby should be commented out.

This will ensure that (1) the CFI flash controller is enabled, and (2) the OR1200 will go
straight to its reset vector in the flash memory at reset. Note that this will completely
bypass the bootrom (at 0xe0000000) so its configuration now is meaningless. This is on
purpose, as any init code can and should be handled by software in the flash (such as
u-boot.)

6.10.2 Enabling Existing RTL Modules

The design relies on the Verilog HDL define function to indicate which modules are included.
See the board’s rtl/verilog/include/orpsoc-defines.v file to determine which options
are enabled by uncommented ‘define values.

These ‘defines will correspond to defines in the board’s top level RTL file
boardpath/rtl/verilog/orpsoc_top/orpsoc_top.v.
There are only a few modules included by default.

e Processor - or1200

e Clock and reset generation - clkgen

e Bus arbiters - arbiter_ibus, arbiter_dbus, arbiter_bytebus

The rest are optional, depending on what is defined in the board’s rt1/verilog/include/orpsoc-|j
defines.v file.

6.10.3 Adding RTL Modules

There are a number of steps to take when adding a new module to the design.
e RTL Files

e Create a directory under the board’s rt1/verilog directory, and name it the same
as the top level of the module.

or

Create a directory under the board’s modules directory, containing a rt1/verilog
directory, and name it the same as the top level of the module

e Ensure the module’s top level file and actual name of the module when it will be
instantiated are all the same.

e Place any include files into the board’s rt1/verilog/include path.
e Instantiate in ORPSoC Top Level File

Instantiate the module in the ORPSoC top level file, rtl/verilog/orpsoc_
top/orpsoc_top.v, and be sure to take care of the following.

Chapter 6: ML501 27

e Create appropriate ‘define in orpsoc-defines.v and surround module instantia-
tion with it.

e Add required I/Os (surrounded by appropriate ‘ifdef)

e Attach to appropriate bus arbiter, declaring any signals required. Be sure to tie
them off if modules is not included.

e Update appropriate bus arbiter (in board’s rt1/verilog/arbiters path) adding
(uncommenting) additional ports as needed.

e Update board’s rtl/verilog/include/orpsoc-params.v file with appropriate
set of parameters for new module, as well as arbiter memory mapping assignment.

e Attach appropriate clocks and resets, modify the board’s rt1/verilog/clkgen/clkgen. v]]

file generating appropriate clocks if required.

e Attach any interrupts to the processor’s PIC vector in, assigned as the last thing
in the file.

e Update ORPSoC Testbench
Update the board’s bench/verilog/orpsoc_testbench.v file with appropriate ports
(surrounded by appropriate ‘ifdef.)
Add any desired models to help test the module to the board’s bench/verilog path
and instantiate it correctly in the testbench.

e Add Software Drivers and Tests

In a similar fashion to what is already in the board’s sw/drivers and sw/tests path,
create desired driver and test software to be used during simulation (and potentially
on target.)

e Update Backend Scripts

If any I/0 is added, or special timing specified, the board’s UCF file will need updating
- see boardpath/backend/par/bin/ml1501.uct.

6.11 Running And Debugging Software

6.11.1 Debug Interface
The debug interface uses a separate JTAG tap and some fly-leads must be connected from
an ORSoC USB debugger (3) to the ML501.

From the USB debugger, a fly lead must take the following signals to the following pins on
header J4 on the ML501.

e tdo- HDR2.6

e tdi- HDR2.8

e tms - HDR2_10

e tck - HDR2_12
This corresponds to right-most column of pins on the J4 header, starting on the third row
going down.
Supply and ground pins must also be hooked up for the USB debugger.

The left column of pins on J4 are all tied to ground. All pins on J7 (expansion header
located adjacent to J4) are all tied to VCC2V5, 2.5V DC, and this is OK for supplying

http://opencores.com/shop

Chapter 6: ML501 28

the buffers on the USB debug cable, and can be used. So essentially put the supply leads
anywhere on J7 and ground leads anywhere on the left column of J4.

Once the debug interface is connected, the or_debug_proxy application can be used to
provide a stub for GDB to connect to. See debugging_physical for more information.

6.11.2 UART

There are 2 ways of connecting to the UART in the design.
One is via the usual serial port connector, P3, on the ML501. This will obviously require a
PC with a serial input and appropriate terminal application.
There is also a connection available via the USB debugger mentioned in the previous sub-
section.
The following pins are used for RX/TX to/from the design on header J4.

e UART RX - HDR2.2

e UART TX - HDR2_4

Again, supply and ground leads for the UART drivers on the USB debugger can be sourced
from J7/left-column J4 as per the debug interface subsection.

If both UART and debug interface are connected via the ORSoC USB debugger, this ulti-
mately ends up with the first 2 pins on the right column of J4 as RX/TX for the UART
then the JTAG TDO, TDI, TMS and TCK in succession down the right column of J4.

See the ML501 schematic (http://www.xilinx.com/support/documentation/boards_
and_kits/m1501_20061010_bw.pdf) for more details on these headers, and refer to the
pinouts in the ML501 UCF, in the board’s backend/par/bin/ml1501.ucf file.

http://opencores.org/openrisc
http://www.xilinx.com/support/documentation/boards_and_kits/ml501_20061010_bw.pdf
http://www.xilinx.com/support/documentation/boards_and_kits/ml501_20061010_bw.pdf

Chapter 7: S3ADSP1800 29

7 S3ADSP1800

7.1 Overview

The Xilinx XtremeDSP Starter Platform - Spartan-3A DSP 1800A Edition is known as the
s3adsp1800 board in ORPSoC.

All information and resources relating to the board were sourced from Xilinx’s board portal
page:
http://www.xilinx.com/products/boards-and-kits/HW-SD1800A-DSP-SB-UNI-G.htm

The build currently contains the bare essentials to get the board up and running some
software on the OpenRISC processor.

The system, at present contains the OpenRISC SoC system running at 25MHz with OR1200,
Wishbone B3 arbiters, a Xilinx DDR2 memory controller (125MHz) with Wishbone wrapper
and the OpenCores 10/100 Ethernet MAC. Debug capabilities are available via a ORSoC
USB debug cable connected to pins on header J8.

The S3ADSP1800 build’s scripts are capable of generating a programming bitstream, .bit,
file for direct programming of the FPGA via JTAG.

7.2 Structure
Note that in this chapter the term board path refers to the path in the project for this board
port; boards/xilinx/s3adsp1800.

The board port’s structure is similar to that of a standalone project which accords with
the OpenCores coding guidelines. However, all software and RTL that is available in the
reference design is also available to the board port, with any local (ie. in the board’s rtl
or sw paths) versions taking precedence over the versions available in the reference design.

The Verilog RTL specific to this board is under rtl/verilog in the board path. The
include path in there is the place where all required definitions files, configuring the RTL,
are found.

Backend files, mainly binary NGC files for mapping, are found in the board’s backend/bin
path.

7.2.1 S3ADSP1800 Xilinx Environment Setup

Ensure the Xilinx environment has been setup before running all scripts for this board
build. See Section 11.1 [Xilinx Environment Setup], page 42.

7.3 Tools

7.3.1 Host Tools

Standard development suite of tools: gce, make, etc.

7.3.2 Target System Tools

OpenRISC GNU toolchain. For installation, see OpenRISC GNU toolchain page on Open-
Cores.org.

http://www.xilinx.com/products/boards-and-kits/HW-SD1800A-DSP-SB-UNI-G.htm

Chapter 7: S3ADSP1800 30

7.3.3 EDA Tools

RTL, gatelevel simulation: Mentor Graphics’ Modelsim Synthesis: XST (from Xilinx ISE)
Backend: ngdbuild/map/par/bitgen/promgen, etc. (from Xilinx ISE) Programming: iM-
PACT (from Xilinx ISE)

This has been tested with Xilinx ISE 13.1 under Ubuntu 11.04.

7.3.4 Debug Tools
or_debug_proxy

7.4 Simulating

Note that if this path is not set, simulations will not compile.

Run RTL Regression Test

To run the default set of regression tests for the build, run the following command in the
board’s sw/run path.
make rtl-tests

The same set of options for RTL tests available in the reference design should be available
in this build. See [Running A Set Of Specific Reference Design RTL Tests|, page 8.

Note that no OpenCores 10/100 Ethernet MAC (“ethmac”) tests will function correctly for
the time being.

Options specific to the SSADSP1800 build.
PRELOAD_RAM

Set to "1’ to enable loading of the software image into RAM at the beginning
of simulation.

If the chosen bootROM program (set via a define in software header file in the
board’s sw/board/include path) will jump straight to RAM to begin execu-
tion, then the software image will need to be in RAM for the simulation to
work. This define must be used in that case for the simulation to do anything.

7.5 Synthesis
Synthesis of the board port for the Actel technology with the Synplify tool can be run in
the board’s syn/xst/run path with the following command.
make all
This will create an NGC file in syn/xst/run named orpsoc.ngc.

Hopefully it’s all automated enough so that, as long as the design is simulating as desired,
the correct set of RTL will be picked up and synthesized without any need for customising
scripts for the tool.

7.5.1 Options

Use the following command int the syn/xst/run path to get a list of the variables used
during synthesis. Any can be set on the command line when running make all.

make print-config

Chapter 7: S3ADSP1800 31

7.5.2 Checks

The following is a list of some considerations before synthesis.
e bootrom.v

If the bootROM module is being used to provide the processor with a program at
startup (reset address in processor’s define file is set to 0x£0000100 or similar), check
that board software include file, in the board’s sw/board/include path, is selecting
the correct bootROM program.

Do a make distclean from the synthesis run directory to be sure that the previous
bootROM file is cleared away and regenerated when synthesis is run.

e (Clean away old leftovers

If the unwanted files from an old synthesis run are still there before the next run, it’s
best to clean them away with make clean from the synthesis run directory.

7.5.3 Netlist generation

To create a Verilog HDL netlist of the post-synthesis design, run the following in the board’s
syn/xst/run path.

make orpsoc.v

7.6 Place and Route

Place and route of the design can be run from the board’s backend/par/run path with the
following command.

make orpsoc.ncd

7.7 Post-PAR STA Report

The trce tool can be used to generate a timing report of the post-place and route design.

make timingreport

7.8 Back-annotated Netlist
A post-PAR back-annotated netlist can be generated with the following command.

make netlist

This will make a new directory under the board’s backend/par/run path named netlist
and will contain a Verilog netlist and SDF file with timing information.

7.8.1 Options

To get a list of options that can be set when running the backend flow, run the following
in the board’s backend/par/run path.

make print-config

7.8.2 Constraints

A Xilinx User Constraints File (UCF) file is in the board’s backend/par/bin path. It is
named s3adsp1800.ucf. It should be edited if any extra I/O or constraints are required.

Chapter 7: S3ADSP1800 32

Note that if modules are enabled or disabled via their ‘define line in orpsoc-defines.v
and they have I/O declared, then this I/O will need to be manually commented out of the
UCF to avoid errors during mapping.

7.9 Programming File Generation

Programming file generation is run from the board’s backend/par/run path with the fol-
lowing command.

make orpsoc.bit

This file can then be loaded into the Xilinx iMPACT program and programmed onto the
Spartan-3A part on the S3SADSP1800.

7.9.1 SPI flash programming

Unfortunately, it is particularly inconvient to program the flash memory that the FPGA
can configure itself with at power-on.

The iMPACT tool does not contain the appropriate facility to enable this, and a Windows-
only tool provided from Avnet.

See Avnet’s page on this board. http://www.em.avnet.com/spartan3a-dsp and follow
the links to “Support Files & Downloads” and the file named “Programming the Intel
S33 Flash” is the guide. The following link may directly work to download the files:
http://tinyurl.com/63k8r5c

Another way is to load on a Microblaze design and somehow program the flash via the
Xilinx GUI tool. This method will not be covered here. The XAPP number of the user
guide to do this escapes me right now, but I'm pretty sure you don’t want to have to do
that.

Potentially this flash could be programmed via the SPI core in this board build. This would
result in having to flash the FPGA with the s3adsp18000 build image via JTAG first, before
downloading SPI programming software with the FPGA configuration embedded in it, to
be programmed into the SPI flash. This would probably be easy enough to do but the
author did not have enough time to experiment it at the time of writing. Patches to this
file’s texinfo source describing how this could be done would be greatly appreciated.

7.10 Customising

The large amount of peripherals on the S3ADSP1800 means that things will want to be
added or removed to suit the design.

The following sections have information on how to configure the design.

7.10.1 Enabling Existing RTL Modules

The design relies on the Verilog HDL define function to indicate which modules are included.
See the board’s rtl/verilog/include/orpsoc-defines.v file to determine which options
are enabled by uncommented ‘define values.

These ‘defines will correspond to defines in the board’s top level RTL file
boardpath/rtl/verilog/orpsoc_top/orpsoc_top.v.

There are only a few modules included by default.

http://www.em.avnet.com/spartan3a-dsp
http://tinyurl.com/63k8r5c

Chapter 7: S3ADSP1800 33

e Processor - 0r1200
e Clock and reset generation - clkgen
e Bus arbiters - arbiter_ibus, arbiter_dbus, arbiter_bytebus

The rest are optional, depending on what is defined in the board’s rt1/verilog/include/orpsoc-|i
defines.v file.

7.10.2 Adding RTL Modules

There are a number of steps to take when adding a new module to the design.
e RTL Files

e Create a directory under the board’s rt1/verilog directory, and name it the same
as the top level of the module.

or

Create a directory under the board’s modules directory, containing a rt1/verilog
directory, and name it the same as the top level of the module

e Ensure the module’s top level file and actual name of the module when it will be
instantiated are all the same.

e Place any include files into the board’s rt1/verilog/include path.
e Instantiate in ORPSoC Top Level File

Instantiate the module in the ORPSoC top level file, rtl/verilog/orpsoc_
top/orpsoc_top.v, and be sure to take care of the following.

e Create appropriate ‘define in orpsoc-defines.v and surround module instantia-
tion with it.

e Add required I/Os (surrounded by appropriate ‘ifdef)
e Attach to appropriate bus arbiter, declaring any signals required. Be sure to tie
them off if modules is not included.
e Update appropriate bus arbiter (in board’s rt1/verilog/arbiters path) adding
(uncommenting) additional ports as needed.
e Update board’s rtl/verilog/include/orpsoc-params.v file with appropriate
set of parameters for new module, as well as arbiter memory mapping assignment.
e Attach appropriate clocks and resets, modify the board’s rt1/verilog/clkgen/clkgen. vj]
file generating appropriate clocks if required.
e Attach any interrupts to the processor’s PIC vector in, assigned as the last thing
in the file.
e Update ORPSoC Testbench
Update the board’s bench/verilog/orpsoc_testbench.v file with appropriate ports
(surrounded by appropriate ‘ifdef.)
Add any desired models to help test the module to the board’s bench/verilog path
and instantiate it correctly in the testbench.
e Add Software Drivers and Tests
In a similar fashion to what is already in the board’s sw/drivers and sw/tests path,
create desired driver and test software to be used during simulation (and potentially
on target.)

Chapter 7: S3ADSP1800 34

e Update Backend Scripts

If any I/O is added, or special timing specified, the board’s UCF file will need updating
- see backend/par/bin/s3adsp1800.ucf.

7.11 Running And Debugging Software

This section indicates how to connect a USB JTAG debugger to the board to control the

system. At present this setup has only been tested with the ft2232-based ORSoC USB

debugger (3).

See the USB debugger documentation and schematics on orsoc.se: http://orsoc.se/usb-jtag-debugger/}

Find more information about the Spartan 3 board (schematics, user guide, etc.) on the
Xilinx site: http://www.xilinx.com/support/documentation/spartan-3a_dsp_board_
and_kit_documentation.htm

7.11.1 Debug Interface

The debug interface uses a separate JTAG tap and some fly-leads must be connected from
an ORSoC USB debugger to J8 on the S3ADSP1800.

From the USB debugger, a fly lead must take the following signals to the following pins on
header J8 on the S3ADSP1800.

e tdo - DO

e tdi- D1

e tms - D2

e tck-D3
Supply and ground pins must also be hooked up for the USB debugger. They can also be
found on the J8 header (either V2.5 or V3.3 should work for VCC.)

Once the debug interface is connected, the or_debug_proxy application can be used to
provide a stub for GDB to connect to. See debugging_physical for more information.

7.11.2 UART
There are 2 ways of connecting to the UART in the design.

One is via the DB89 connector, P2. This will obviously require a PC with a serial input
and appropriate terminal application.

There is also a connection available via the USB debugger mentioned in the previous sub-
section.

The following pins on the J8 are connected to the same UART core as goes to the P2
connector. The two UART RX lines are logically “AND”ed internally.

e UART RX - D4
e UART TX - D5

Again, supply and ground leads for the UART drivers on the USB debugger can be sourced
from J8.

http://opencores.com/shop
http://orsoc.se/usb-jtag-debugger/
http://www.xilinx.com/support/documentation/spartan-3a_dsp_board_and_kit_documentation.htm
http://www.xilinx.com/support/documentation/spartan-3a_dsp_board_and_kit_documentation.htm
http://opencores.org/openrisc

Chapter 8: Atlys 35

8 Atlys

8.1 Overview

The Atlys board is from Digilent and contains a Spartan 6 device.
More informatino can be found on the manufacturer’s website: http://www.digilentinc.com/atlys/|}

Note that this board port is based on the ML501 and structure and use are very similar.

8.2 Structure

Note that in this chapter the term board path refers to the path in the project for this board
port; boards/xilinx/atlys.

The board port’s structure is similar to that of a