
C:\Program Files\Adobe\FrameMaker7.0\UniVerse 10.2\sqluser\Front
September 25, 2006 3:33 pm

Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta
Beta Beta Beta Beta
UniVerse
SQL User Guide
Version 10.2
September, 2006

ii UniVerse SQL Use

C:\Program Files\Adobe\FrameMaker7.0\UniVerse 10.2\sqluser\Front
September 25, 2006 3:33 pm

Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta
IBM Corporation
555 Bailey Avenue
San Jose, CA 95141

Licensed Materials – Property of IBM

© Copyright International Business Machines Corporation 2006. All rights reserved.

AIX, DB2, DB2 Universal Database, Distributed Relational Database Architecture, NUMA-Q, OS/2, OS/390, and
OS/400, IBM Informix®, C-ISAM®, Foundation.2000 ™, IBM Informix® 4GL, IBM Informix® DataBlade® module,
Client SDK™, Cloudscape™, Cloudsync™, IBM Informix® Connect, IBM Informix® Driver for JDBC, Dynamic
Connect™, IBM Informix® Dynamic Scalable Architecture™ (DSA), IBM Informix® Dynamic Server™, IBM
Informix® Enterprise Gateway Manager (Enterprise Gateway Manager), IBM Informix® Extended Parallel Server™,
i.Financial Services™, J/Foundation™, MaxConnect™, Object Translator™, Red Brick® Decision Server™, IBM
Informix® SE, IBM Informix® SQL, InformiXML™, RedBack®, SystemBuilder™, U2™, UniData®, UniVerse®,
wIntegrate® are trademarks or registered trademarks of International Business Machines Corporation.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries.

Windows, Windows NT, and Excel are either registered trademarks or trademarks of Microsoft Corporation in the United
States and/or other countries.

UNIX is a registered trademark in the United States and other countries licensed exclusively through X/Open Company
Limited.

Other company, product, and service names used in this publication may be trademarks or service marks of others.

This product includes cryptographic software written by Eric Young (eay@cryptosoft.com).

This product includes software written by Tim Hudson (tjh@cryptosoft.com).

Documentation Team: Claire Gustafson, Shelley Thompson

US GOVERNMENT USERS RESTRICTED RIGHTS

Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
r Guide

Table of Contents

C:\Prog
Septem

Table of
Contents

 Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta
Preface
Organization of This Manual viii
Documentation Conventions. ix
UniVerse Documentation. xi
Related Documentation xiv
API Documentation xv

Chapter 1 Understanding SQL Concepts
Introduction to SQL 1-3
Overview of Databases, Files, and Tables 1-4

UniVerse and SQL Databases 1-4
UniVerse Files and SQL Tables 1-5

The Sample Database 1-11
Installing the Sample Database 1-11
Deinstalling the Sample Database 1-13

Chapter 2 Using SELECT Statements
The SQL Language 2-3
Introduction to UniVerse SQL SELECT 2-5

Using the Command Processor 2-5
SELECT Statement Elements 2-7
Comparing UniVerse SQL SELECT to RetrieVe 2-8
Results as Tables 2-8

Retrieving Data from a Single Table 2-10
Retrieving an Entire Table 2-10
Selecting Specific Columns 2-12
Obtaining Derived Data 2-14
Selecting Rows 2-15
Summarizing Table Contents (Set Functions) 2-37

Manipulating the Output 2-41
ram Files\Adobe\FrameMaker7.0\UniVerse 10.2\sqluser\SqluserTOC.doc (bookTOC.template)
ber 25, 2006 3:33 pm

iv UniV
Sorting Output 2-41
Formatting Columns 2-43
Using Field Modifiers 2-43
Using Text 2-45
Using the Current Date and Time 2-45
Using Field Qualifiers 2-46
Formatting Reports with Report Qualifiers 2-51

Chapter 3 Using Advanced SELECT Statements
Grouping Rows (GROUP BY). 3-3

Restrictions on Grouping Rows 3-5
Null Values in Grouping Columns 3-6

Selecting Groups (HAVING) 3-7
Processing SQL Queries 3-9

Showing How a Query Will Be Processed (EXPLAIN) 3-9
Disabling the Query Optimizer (NO.OPTIMIZE) 3-10
Avoiding Lock Delays (NOWAIT) 3-11

Joining Tables . 3-12
Joining Two Tables. 3-14
Outer Joins 3-18
Selecting on Joined Tables 3-20
Using UNION to Combine SELECT Statements 3-20

Subqueries . 3-22
Correlated and Uncorrelated Subqueries 3-23
Subquery Test Types 3-24
Using Subqueries with HAVING 3-31

Chapter 4 Selecting on Multivalued Columns
Uses for Multivalued Columns 4-3
Associations . 4-4
Multivalued Columns in the Sample Database 4-5
Selection Criteria and Multivalued Columns 4-6

Using WHERE 4-9
Using WHEN 4-11
Using UNNEST 4-14

Using Set Functions 4-19
Subqueries on Nested Tables 4-22
Using Dynamic Normalization 4-24
erse SQL User Guide

Chapter 5 Modifying Data
Database Security and UniVerse SQL 5-4

Operating System Security 5-4
UniVerse Security 5-5
UniVerse SQL Security 5-5

Data Integrity . 5-7
Transaction Processing 5-8
Avoiding Lock Delays (NOWAIT) 5-9
Inserting Data (INSERT) 5-10

Naming the Table and Specifying the Columns 5-11
Supplying the Values 5-12
Using Expressions in Value Lists 5-13
Inserting Multivalues into a New Row 5-13
Inserting Multivalues into an Existing Row 5-15
Inserting Multiple Rows 5-16

Updating Data (UPDATE) 5-18
Updating Values in a Single Row. 5-18
Updating Values in Multivalued Columns 5-19
Using WHEN with UPDATE 5-20
Updating Globally 5-21
Using an Expression as the SET Value 5-22
Using Subqueries in the WHERE Clause 5-22
Selecting Records for Updating 5-23

Deleting Data (DELETE) 5-25
Deleting Multivalues from a Row 5-25
Deleting All Rows in a Table 5-26
Deleting Individual Rows 5-27

Using Triggers . 5-28
Using Alternate Dictionaries 5-29

Chapter 6 Establishing and Using Views
Examples of Views 6-3
Creating Views . 6-6

Column-Based (Vertical) Views 6-6
Row-Based (Horizontal) Views 6-8
Combined Vertical and Horizontal Views 6-9
Column Names and Derived Columns 6-10
Summarized Views 6-11

Updating Views . 6-13
Dropping Views. 6-14
Table of Contents v

vi UniV
Listing Information About a View 6-15
Privileges and Views 6-17

Appendix A The Sample Database
ACTS.T Table . A-3
CONCESSIONS.T Table A-4
ENGAGEMENTS.T Table A-5
EQUIPMENT.T Table A-6
INVENTORY.T Table A-7
LIVESTOCK.T Table A-8
LOCATIONS.T Table A-9
PERSONNEL.T Table A-10
RIDES.T Table A-11
VENDORS.T Table A-12
erse SQL User Guide

C:\Program
Files\Adobe\FrameMaker7.0\UniVerse
Preface
This manual is for application developers and system administrators who are familiar
with UniVerse and want to use the additional functionality of SQL in their UniVerse
applications.

This document uses a multilayered approach. It starts by discussing how to query an
existing, up-to-date database. Then it discusses how to modify the database by
adding, deleting, and changing rows of data. Interspersed among these topics are
discussions of primary keys, data constraints, referential integrity, and transaction
processing.

This manual does not cover the syntax of SQL statements, nor the rules for forming
table and column names. You can find this and related information in the UniVerse
SQL Reference.
 vii

C:\Program Files\Adobe\FrameMaker7.0\UniVerse 10.2\sqluser\Preface
9/25/06
Organization of This Manual
This manual contains the following:

Chapter 1, “Understanding SQL Concepts,” introduces SQL, compares UniVerse and
SQL databases, and describes the sample database used throughout this document.

Chapter 2, “Using SELECT Statements,” introduces the UniVerse SQL SELECT
statement and shows how to select information from a single table or file, use
expressions and set functions, and format output.

Chapter 3, “Using Advanced SELECT Statements,” describes more advanced forms
of the SELECT statement, including GROUP BY and HAVING clauses, table joins,
and subqueries.

Chapter 4, “Selecting on Multivalued Columns,” describes how to use UniVerse SQL
to access and manipulate data stored in UniVerse’s multivalued columns and use
dynamic normalization.

Chapter 5, “Modifying Data,” covers how to use UniVerse SQL statements to add,
update, and delete data stored in tables and files.

Chapter 6, “Establishing and Using Views,” discusses the application and
manipulation of table views.

Appendix A, “The Sample Database,” contains the CREATE TABLE statements
used to create the tables in the sample database.

The Glossary defines common UniVerse SQL terms.
viii UniVerse SQL User Guide

C:\Program
Files\Adobe\FrameMaker7.0\UniVerse
Documentation Conventions
This manual uses the following conventions:

Convention Usage

Bold In syntax, bold indicates commands, function names, and
options. In text, bold indicates keys to press, function names,
menu selections, and MS-DOS commands.

UPPERCASE In syntax, uppercase indicates UniVerse commands, keywords,
and options; UniVerse BASIC statements and functions; and
SQL statements and keywords. In text, uppercase also indicates
UniVerse identifiers such as file names, account names, schema
names, and Windows file names and paths.

Italic In syntax, italic indicates information that you supply. In text,
italic also indicates UNIX commands and options, file names,
and paths.

Courier Courier indicates examples of source code and system output.

Courier Bold In examples, courier bold indicates characters that the user types
or keys the user presses (for example, <Return>).

[] Brackets enclose optional items. Do not type the brackets unless
indicated.

{ } Braces enclose nonoptional items from which you must select at
least one. Do not type the braces.

itemA | itemB A vertical bar separating items indicates that you can choose
only one item. Do not type the vertical bar.

... Three periods indicate that more of the same type of item can
optionally follow.

ä A right arrow between menu options indicates you should
choose each option in sequence. For example, “Choose
File ä Exit” means you should choose File from the menu bar,
then choose Exit from the File pull-down menu.

 I Item mark. For example, the item mark (I) in the following
string delimits elements 1 and 2, and elements 3 and 4:
1I2F3I4V5

Documentation Conventions
 ix

C:\Program Files\Adobe\FrameMaker7.0\UniVerse 10.2\sqluser\Preface
9/25/06
The following conventions are also used:

Syntax definitions and examples are indented for ease in reading.
All punctuation marks included in the syntax—for example, commas,
parentheses, or quotation marks—are required unless otherwise indicated.
Syntax lines that do not fit on one line in this manual are continued on subse-
quent lines. When entering syntax, type the entire syntax entry, including
the continuation lines, on the same input line.

 F Field mark. For example, the field mark (F) in the following
string delimits elements FLD1 and VAL1:
FLD1FVAL1VSUBV1SSUBV2

 V Value mark. For example, the value mark (V) in the following
string delimits elements VAL1 and SUBV1:
FLD1FVAL1VSUBV1SSUBV2

 S Subvalue mark. For example, the subvalue mark (S) in the
following string delimits elements SUBV1 and SUBV2:
FLD1FVAL1VSUBV1SSUBV2

 T Text mark. For example, the text mark (T) in the following string
delimits elements 4 and 5: 1F2S3V4T5

Convention Usage

Documentation Conventions (Continued)
x UniVerse SQL User Guide

C:\Program
Files\Adobe\FrameMaker7.0\UniVerse
UniVerse Documentation
UniVerse documentation includes the following:

UniVerse Installation Guide: Contains instructions for installing UniVerse 10.2.

UniVerse New Features Version 10.2: Describes enhancements and changes made
in the UniVerse 10.2 release for all UniVerse products.

UniVerse BASIC: Contains comprehensive information about the UniVerse BASIC
language. It is for experienced programmers.

UniVerse BASIC Commands Reference: Provides syntax, descriptions, and
examples of all UniVerse BASIC commands and functions.

UniVerse BASIC Extensions: Describes the following extensions to UniVerse
BASIC: UniVerse BASIC Socket API, Using CallHTTP, and Using WebSphere MQ
with UniVerse.

UniVerse BASIC SQL Client Interface Guide: Describes how to use the BASIC
SQL Client Interface (BCI), an interface to UniVerse and non-UniVerse databases
from UniVerse BASIC. The BASIC SQL Client Interface uses ODBC-like function
calls to execute SQL statements on local or remote database servers such as
UniVerse, DB2, SYBASE, or INFORMIX. This book is for experienced SQL
programmers.

Administering UniVerse: Describes tasks performed by UniVerse administrators,
such as starting up and shutting down the system, system configuration and mainte-
nance, system security, maintaining and transferring UniVerse accounts, maintaining
peripherals, backing up and restoring files, and managing file and record locks, and
network services. This book includes descriptions of how to use the UniAdmin
program on a Windows client and how to use shell commands on UNIX systems to
administer UniVerse.

Using UniAdmin: Describes the UniAdmin tool, which enables you to configure
UniVerse, configure and manage servers and databases, and monitor UniVerse
performance and locks.

UniVerse Security Features: Describes security features in UniVerse, including
configuring SSL through UniAdmin, using SSL with the CallHttp and Socket
interfaces, using SSL with UniObjects for Java, and automatic data encryption.
 xi

C:\Program Files\Adobe\FrameMaker7.0\UniVerse 10.2\sqluser\Preface
9/25/06
UniVerse Transaction Logging and Recovery: Describes the UniVerse transaction
logging subsystem, including both transaction and warmstart logging and recovery.
This book is for system administrators.

UniVerse System Description: Provides detailed and advanced information about
UniVerse features and capabilities for experienced users. This book describes how to
use UniVerse commands, work in a UniVerse environment, create a UniVerse
database, and maintain UniVerse files.

UniVerse User Reference: Contains reference pages for all UniVerse commands,
keywords, and user records, allowing experienced users to refer to syntax details
quickly.

Guide to RetrieVe: Describes RetrieVe, the UniVerse query language that lets users
select, sort, process, and display data in UniVerse files. This book is for users who
are familiar with UniVerse.

Guide to ProVerb: Describes ProVerb, a UniVerse processor used by application
developers to execute prestored procedures called procs. This book describes tasks
such as relational data testing, arithmetic processing, and transfers to subroutines. It
also includes reference pages for all ProVerb commands.

Guide to the UniVerse Editor: Describes in detail how to use the Editor, allowing
users to modify UniVerse files or programs. This book also includes reference pages
for all UniVerse Editor commands.

UniVerse NLS Guide: Describes how to use and manage UniVerse’s National
Language Support (NLS). This book is for users, programmers, and administrators.

UniVerse SQL Administration for DBAs: Describes administrative tasks typically
performed by DBAs, such as maintaining database integrity and security, and
creating and modifying databases. This book is for database administrators (DBAs)
who are familiar with UniVerse.

UniVerse SQL User Guide: Describes how to use SQL functionality in UniVerse
applications. This book is for application developers who are familiar with UniVerse.

UniVerse SQL Reference: Contains reference pages for all SQL statements and
keywords, allowing experienced SQL users to refer to syntax details quickly. It
includes the complete UniVerse SQL grammar in Backus Naur Form (BNF).
xii UniVerse SQL User Guide

C:\Program
Files\Adobe\FrameMaker7.0\UniVerse
Related Documentation
The following documentation is also available:

UniVerse GCI Guide: Describes how to use the General Calling Interface (GCI) to
call subroutines written in C, C++, or FORTRAN from UniVerse BASIC programs.
This book is for experienced programmers who are familiar with UniVerse.

UniVerse ODBC Guide: Describes how to install and configure a UniVerse ODBC
server on a UniVerse host system. It also describes how to use UniVerse ODBC
Config and how to install, configure, and use UniVerse ODBC drivers on client
systems. This book is for experienced UniVerse developers who are familiar with
SQL and ODBC.

UV/Net II Guide: Describes UV/Net II, the UniVerse transparent database
networking facility that lets users access UniVerse files on remote systems. This book
is for experienced UniVerse administrators.

UniVerse Guide for Pick Users: Describes UniVerse for new UniVerse users familiar
with Pick-based systems.

Moving to UniVerse from PI/open: Describes how to prepare the PI/open
environment before converting PI/open applications to run under UniVerse. This
book includes step-by-step procedures for converting INFO/BASIC programs,
accounts, and files. This book is for experienced PI/open users and does not assume
detailed knowledge of UniVerse.
 xiii

C:\Program Files\Adobe\FrameMaker7.0\UniVerse 10.2\sqluser\Preface
9/25/06
API Documentation
The following books document application programming interfaces (APIs) used for
developing client applications that connect to UniVerse and UniData servers.

Administrative Supplement for Client APIs: Introduces IBM’s seven common APIs,
and provides important information that developers using any of the common APIs
will need. It includes information about the UniRPC, the UCI Config Editor, the
ud_database file, and device licensing.

UCI Developer’s Guide: Describes how to use UCI (Uni Call Interface), an interface
to UniVerse and UniData databases from C-based client programs. UCI uses ODBC-
like function calls to execute SQL statements on local or remote UniVerse and
UniData servers. This book is for experienced SQL programmers.

IBM JDBC Driver for UniData and UniVerse: Describes UniJDBC, an interface to
UniData and UniVerse databases from JDBC applications. This book is for experi-
enced programmers and application developers who are familiar with UniData and
UniVerse, Java, JDBC, and who want to write JDBC applications that access these
databases.

InterCall Developer’s Guide: Describes how to use the InterCall API to access data
on UniVerse and UniData systems from external programs. This book is for experi-
enced programmers who are familiar with UniVerse or UniData.

UniObjects Developer’s Guide: Describes UniObjects, an interface to UniVerse and
UniData systems from Visual Basic. This book is for experienced programmers and
application developers who are familiar with UniVerse or UniData, and with Visual
Basic, and who want to write Visual Basic programs that access these databases.

UniObjects for Java Developer’s Guide: Describes UniObjects for Java, an interface
to UniVerse and UniData systems from Java. This book is for experienced
programmers and application developers who are familiar with UniVerse or UniData,
and with Java, and who want to write Java programs that access these databases.

UniObjects for .NET Developer’s Guide: Describes UniObjects, an interface to
UniVerse and UniData systems from .NET. This book is for experienced
programmers and application developers who are familiar with UniVerse or UniData,
and with .NET, and who want to write .NET programs that access these databases.
xiv UniVerse SQL User Guide

C:\Program
Files\Adobe\FrameMaker7.0\UniVerse
Using UniOLEDB: Describes how to use UniOLEDB, an interface to UniVerse and
UniData systems for OLE DB consumers. This book is for experienced programmers
and application developers who are familiar with UniVerse or UniData, and with
OLE DB, and who want to write OLE DB programs that access these databases.
 xv

C:\Prog
Septem
1Administering UniData on Windows NT or Windows 2000
0

1
Chapter

ram Fi
ber 25,

Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta
Understanding SQL Concepts
Introduction to SQL 1-3
Overview of Databases, Files, and Tables 1-4
 UniVerse and SQL Databases 1-4
 UniVerse Files and SQL Tables 1-5
The Sample Database 1-11
 Installing the Sample Database 1-11
 Deinstalling the Sample Database 1-13
les\Adobe\FrameMaker7.0\UniVerse 10.2\sqluser\Ch1TOC.fm
 2006 3:33 pm Administering UniData on Windows NT or Windows 2000

C:\Program Files\Adobe\FrameMaker7.0\UniVerse 10.2\sqluser\Ch1
9/25/06
This chapter includes an introduction to SQL, a discussion of the differences between
UniVerse and SQL concepts, some important database terms, and a description of the
sample database (called Circus) used in examples in this manual.
1-2 UniVerse SQL User Guide

C:\Program
Files\Adobe\FrameMaker7.0\UniVerse
Introduction to SQL
SQL is a popular relational database language. It is not a database management
system or a stand-alone product. SQL is a part of many database management
systems, and over the past decade it has become the standard database language.

UniVerse SQL follows the ANSI/ISO 1989 standard with extensions to
accommodate multivalued fields and other features unique to UniVerse.

The implementation of SQL in UniVerse adds a new level of capability to UniVerse’s
many features. SQL-related enhancements include:

Subquerying, which allows you to nest queries
Relational joining, which allows you to work with data from more than one
file or table in a single command or statement
Database security, for added protection of your data
Database integrity, to prevent writing invalid data to your database

All SQL features are integrated seamlessly into the UniVerse system without losing
or compromising UniVerse’s inherent capabilities. Although SQL began as a user-
friendly language for querying databases ad hoc, it in fact has many important uses
in the UniVerse world, as summarized in the following table. SQL uses terms that
differ from those used in UniVerse, both in this text and when dealing with SQL in
general. See the Glossary for common SQL terms.

Function Description

Interactive access Use SQL to directly query and update your UniVerse files and
SQL tables in an ad hoc fashion.

Database programming Include SQL statements within application programs to access
data in UniVerse files and SQL tables.

Database administration Use SQL to define database structures and impose security and
integrity constraints on the data.

Client/server Use SQL to communicate with database servers over a local area
network.

Overview of UniVerse SQL
 1-3

C:\Program Files\Adobe\FrameMaker7.0\UniVerse 10.2\sqluser\Ch1
9/25/06
Overview of Databases, Files, and Tables
To the UniVerse user planning to use SQL, there are more similarities between
UniVerse files and SQL tables than there are differences. However, the distinctions
are important.

UniVerse and SQL Databases
Comparing UniVerse with conventional SQL at the database level involves two
major areas: the concept and structure of the database itself, and the data model on
which it is based. These differences are summarized in the following table and then
discussed in greater detail.

Database Concepts and Structures

In the traditional (non-SQL) UniVerse environment, a database is loosely defined as
being “one or more UniVerse files.” The database evolves as those files are created;
there is no single command or process for creating a UniVerse database. Generally,
such files reside in a single account.

UniVerse SQL associates a database with a schema, which is created using a
CREATE SCHEMA statement, and defines that database in the SQL catalog tables.
In UniVerse SQL, a database comprises one or more SQL tables or UniVerse files, or
both.

Traditional UniVerse
Databases UniVerse SQL Databases

Located in: An account A schema

Created by: — CREATE SCHEMA

Described in: VOC file SQL catalog

Contains: One or more UniVerse files One or more SQL tables, UniVerse
files, or both

Data model: Nonfirst-normal form/
postrelational

First normal form/
relational and nonfirst-normal
form/postrelational

Comparison of Traditional UniVerse Databases to SQL Databases
1-4 UniVerse SQL User Guide

C:\Program
Files\Adobe\FrameMaker7.0\UniVerse
Data Models

UniVerse uses a three-dimensional file structure, commonly referred to as a nonfirst-
normal-form (NF2) data model to store multivalued fields. This enables a single file
(table) to contain the information that would otherwise be scattered among several
interrelated files (tables). Related multivalued columns can be grouped together in an
association, which can be thought of as a “table within a table,” or nested table.

Conventional SQL uses a two-dimensional table structure called a first normal form
(1NF). Instead of using multivalued fields, it tends to use smaller tables that are
related to one another by common key values. However, the UniVerse implemen-
tation of SQL has added enhancements that allow you to store and process
multivalued fields.

The implications of these differences in data modeling and the relational design of
SQL are discussed further under “File and Table Structures” on page 7.

UniVerse Files and SQL Tables
UniVerse files and SQL tables share much in common. In fact, SQL tables are imple-
mented as UniVerse files and can be accessed by UniVerse commands.

The SQL statement to create a table, CREATE TABLE, functions like the
UniVerse CREATE.FILE command.
Each UniVerse file or SQL table is actually two files: a data file and a file
dictionary.
The data structures of files and tables are comparable, although UniVerse
files commonly are described as containing fields and records, and SQL
tables as containing columns and rows. Under the UniVerse implementation
of SQL, tables can contain multivalued columns (fields).
Both UniVerse files and SQL tables can be accessed using either UniVerse
commands and processes or SQL statements.
 1-5

C:\Program Files\Adobe\FrameMaker7.0\UniVerse 10.2\sqluser\Ch1
9/25/06
UniVerse files and SQL tables also differ in some respects. A comparison is summa-
rized in the following table.

Traditional UniVerse Files SQL Tables

Created by: CREATE.FILE CREATE TABLE

Removed by: DELETE.FILE DROP TABLE

Components: Data file + file dictionary. Data table + table dictionary. A
security and integrity constraints
area (SICA) in the data table
allows establishment and mainte-
nance of data structure,
permissions, and integrity
constraints.

Structure: Fields and records. Columns and rows.

Accessed by: UniVerse commands (such as
RetrieVe, ReVise), UniVerse BASIC,
UniVerse Editor, and other processes,
and SQL statements.

UniVerse commands (such as
RetrieVe, ReVise), UniVerse
BASIC, UniVerse Editor, and
other processes, and SQL
statements.

Security: Permissions (read/write) granted and
revoked by owners/groups/others.

In addition to operating system
permissions, more extensive
privileges—SELECT, INSERT,
UPDATE, DELETE—on tables,
plus DBA Privilege and
RESOURCE Privilege, may be
granted or revoked.

Data integrity: Checked during certain conversions. Integrity constraints can be
defined, which will be enforced
for all attempted writes.

Primary keys: CREATE.FILE allows for only
single-column record IDs.

CREATE TABLE allows for both
single- and multicolumn primary
keys.

SQL Data Types Not native to UniVerse, but certain
output conversion and formatting
codes can be included in a field
definition.

An essential part of column
definitions, and associated with
precise default characteristics
such as a restricted character set,
alignment, etc.

Comparison of Traditional UniVerse Files to SQL Tables
1-6 UniVerse SQL User Guide

C:\Program
Files\Adobe\FrameMaker7.0\UniVerse
File and Table Structures

UniVerse is a nonfirst-normal-form database that permits multivalued fields (a row-
and-column position that can hold more than one data value). SQL works with first-
normal-form databases, which store only one value for every row and column (singl-
evalued fields), but in the UniVerse implementation, SQL can store and process
multivalued fields also.

SQL is relationally oriented, and allows you to access multiple tables by joining them
on common values (or keys), as if they were one table. For example, using SQL, a
retailer can inquire about an inventory item (in an INVENTORY table) and its
supplier (in a DISTRIBUTOR table), provided that the INVENTORY table has a
“distributor code” column that can be used to join it to the DISTRIBUTOR table.

UniVerse without SQL is designed primarily for accessing one file at a time, although
you can extract information from a second file, using the TRANS function or the
Tfile correlative, to obtain a similar result. But with the SQL enhancement, you can
use a SELECT statement to join multiple tables and UniVerse files in any
combination.

Security and Authorization

In addition to UniVerse’s security provisions (controlling read/write access to files),
SQL allows you to grant or revoke privileges based on user, table, and operation
(retrieving or selecting data, and inserting, modifying, and deleting rows).

SQL also provides three levels of user authority. From the lowest to the highest, they
are as follows:

CONNECT allows you to create your own tables and do whatever you want
with them (including granting your “owner” privileges to other users).
RESOURCE allows you to create a schema and assign ownership to it (plus
do everything allowed under CONNECT).
DBA (a sort of “superuser” level) allows you to do everything, including
reading or writing to anyone else’s tables.
 1-7

C:\Program Files\Adobe\FrameMaker7.0\UniVerse 10.2\sqluser\Ch1
9/25/06

E

Data Integrity

In UniVerse, data integrity is provided by certain conversion operations (such as date
conversions) that flag illegal values by returning an error STATUS code. SQL has
many additional data integrity constraints, including referential integrity and checks
for nulls, empty columns, nonunique values, and value ranges.

Primary Keys

The UniVerse file structure has a single-column primary key (record ID), whereas
SQL allows for either single-column or multicolumn primary keys.

Data Types

Unlike a field in a UniVerse file, a column in an SQL table is defined as being of a
particular data type. A data type defines a column in terms of the valid set of data
characters that can be stored in the column, the alignment of the data, conversion
characteristics, and so on. For more information, see the UniVerse SQL Reference or
UniVerse SQL Administration for DBAs.

Data types are grouped into string types and numeric types as shown in the following
illustration.

string types numeric types

character string exact numeric
approx. numeric
(mantissa, exp)

(precision, scale)

NCHAR

VARCHAR
NUMERIC

DECIMALINTEGER
SMALLINT

FLOAT REAL

 DOUBLE

Grouped Data Types

 PRECISION

TIME
DAT

bit string

BIT VARBIT

CHAR

NVARCHAR

datetime
1-8 UniVerse SQL User Guide

C:\Program
Files\Adobe\FrameMaker7.0\UniVerse
The following table summarizes data types.

Data Type Description

BIT Stores bit strings.

CHAR Stores character strings (any combination of numbers, letters,
and special characters).

DATE Stores dates as whole decimal numbers.

DECIMAL Stores decimal fixed-scale (fixed-point) numbers (same as
NUMERIC).

DOUBLE PRECISION Stores high-precision floating-point numbers.

FLOAT Stores floating-point numbers.

INTEGER Stores whole decimal numbers.

NCHAR Stores national character strings.

NVARCHAR Stores variable-length national character strings.

NUMERIC Same as DECIMAL.

REAL Stores floating-point (real) numbers.

SMALLINT Stores small whole decimal numbers.

TIME Stores times as whole decimal numbers.

VARBIT Stores variable-length bit strings.

VARCHAR Stores variable-length character strings.

Data Types
 1-9

C:\Program Files\Adobe\FrameMaker7.0\UniVerse 10.2\sqluser\Ch1
9/25/06
The Sample Database
UniVerse provides a sample database called Circus that you can use to explore many
of the features of UniVerse SQL. This database consists of 10 SQL tables and is
designed to demonstrate the use of industry-standard SQL access with UniVerse,
SQL extensions implemented for UniVerse’s multivalued field associations and
nested tables, and the benefits of programmable virtual fields (I-descriptors).

The CREATE TABLE statements that generated the SQL tables are in Appendix A,
“The Sample Database.”

Installing the Sample Database
You can install the Circus database as either an account of UniVerse files or as a
schema of SQL tables (or both). The two versions of the database are distinguished
by a suffix in the file name:

.F identifies the UniVerse file version.

.T identifies the SQL table version.

Thus, INVENTORY.F is the UniVerse file version of the inventory data, and
INVENTORY.T is the SQL table version of the same data.

Install the version of the files that you prefer. Examples in this manual use the
UniVerse SQL table version. Keep in mind that you can issue SQL statements against
UniVerse files, and you can issue RetrieVe commands against SQL tables. However,
the results may vary slightly, depending on which you use.
1-10 UniVerse SQL User Guide

C:\Program
Files\Adobe\FrameMaker7.0\UniVerse
Use the following UniVerse commands to generate and remove the Circus database:

To install the SQL table version of the Circus database on your system:

1. Create a directory to contain the Circus database and set it up as a UniVerse
account.

2. If you are a registered SQL user with RESOURCE privilege, log on to the
account and make the account into a schema by entering:
>CREATE SCHEMA schemaname;
You can use any unique schemaname. You are the owner of the new schema.
If you are not a registered user with RESOURCE privilege, have your
database administrator (DBA) log in to your account and enter:
>SETUP.DEMO.SCHEMA username
username is your operating system user name. This command registers you
as an SQL user, makes the directory into a schema called DEMO_username,
and sets you up as the schema’s owner.

Command Action

SETUP.DEMO.SCHEMA
username

Registers username as an SQL user (if not one already)
and makes the current UniVerse account into a schema
called DEMO_username, which is owned by username.
Only an SQL user who is a DBA (database administrator)
can run this command.

MAKE.DEMO.TABLES Creates and loads the Circus database tables into the
current account, making the current user the owner of the
tables. The user must be a registered SQL user, the account
must be an SQL schema, and the tables must not already
exist in this schema. Resultant tables have a .T suffix.

REMOVE.DEMO.TABLES Deletes the Circus database tables from the current
schema. The user must be a registered SQL user who is
either the owner of the tables or a DBA.

MAKE.DEMO.FILES Creates and loads the Circus database files into the current
account. The files must not already exist in this account.
The file names will have an .F suffix, and the contents of
the files match those of the corresponding .T tables.

REMOVE.DEMO.FILES Deletes the Circus database files from the current account.
 1-11

C:\Program Files\Adobe\FrameMaker7.0\UniVerse 10.2\sqluser\Ch1
9/25/06
3. To create the tables and load data into them, enter:
>MAKE.DEMO.TABLES
The table names all have the .T suffix. You are the owner of the tables.

Deinstalling the Sample Database
To deinstall the database, use either REMOVE.DEMO.TABLES (if the database is
the SQL table version) or REMOVE.DEMO.FILES (if the database is the UniVerse
file version). For example, to drop the SQL tables for the Circus database, enter:

>REMOVE.DEMO.TABLES
Dropping table constraint UVCON_2
Dropping table constraint UVCON_3
Dropping table constraint UVCON_2
.
.
.
Dropping Table LIVESTOCK.T
Dropping Table VENDORS.T

All demo tables removed.

Note: To restore the Circus database to its original state, first delete the tables or files
with REMOVE.DEMO.TABLES or REMOVE.DEMO.FILES and then repeat
MAKE.DEMO.TABLES or MAKE.DEMO.FILES.
1-12 UniVerse SQL User Guide

C:\Prog
Septem
1Administering UniData on Windows NT or Windows 2000
0

2
Chapter

ram Fi
ber 25,

Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta
Using SELECT Statements
The SQL Language 2-3
Introduction to UniVerse SQL SELECT 2-5
 Using the Command Processor 2-5
 SELECT Statement Elements 2-7
 Comparing UniVerse SQL SELECT to RetrieVe 2-8
 Results as Tables 2-8
Retrieving Data from a Single Table. 2-10
 Retrieving an Entire Table 2-10
 Selecting Specific Columns 2-12
 Obtaining Derived Data 2-14
 Selecting Rows 2-15
 Summarizing Table Contents (Set Functions) 2-37
Manipulating the Output 2-41
 Sorting Output 2-41
 Formatting Columns 2-43
 Using Field Modifiers 2-43
 Using Text 2-45
 Using the Current Date and Time 2-45
 Using Field Qualifiers 2-46
 Formatting Reports with Report Qualifiers 2-51
les\Adobe\FrameMaker7.0\UniVerse 10.2\sqluser\Ch2TOC.fm
 2006 3:33 pm Administering UniData on Windows NT or Windows 2000

C:\Program
Files\Adobe\FrameMaker7.0\UniVerse
This chapter covers the simplest forms of the SELECT statement and explains how
to query a single table in various ways, including arranging columns, selecting rows,
using virtual columns to hold derived results, and using qualifiers to process and
format your output. More advanced discussions of the SELECT statement follow in
Chapter 3, “Using Advanced SELECT Statements,” and Chapter 4, “Selecting on
Multivalued Columns.”
 2-2

C:\Program Files\Adobe\FrameMaker7.0\UniVerse 10.2\sqluser\Ch2
9/25/06
The SQL Language
The SQL language, as defined in ANSI/ISO standards, is made up of many distinct
statements, each communicating a specific request to the database “engine,” or core
code.

Each SQL statement starts with a verb, followed by one or more clauses. Each clause
starts with a keyword. UniVerse implements 17 of these verbs. The following table
lists the DML (data manipulation language) statements. The next table lists the DDL
(data definition language) statements.

Verb Description

SELECT Retrieves data from tables and UniVerse files.

INSERT Inserts new rows into a table or UniVerse file.

UPDATE Modifies data in a table or UniVerse file.

DELETE Removes rows from a table or UniVerse file.

UniVerse DML Verbs

Verb Description

ALTER TABLE Modifies the definition of an existing base table.

CREATE INDEX Creates a new index on a table.

CREATE SCHEMA Creates a new schema.

CREATE TABLE Creates a new table in a schema.

CREATE TRIGGER Creates a trigger for a table.

CREATE VIEW Creates a view of a table.

DROP INDEX Delete an index from a table.

DROP SCHEMA Deletes a schema.

DROP TABLE Deletes a table.

UniVerse DDL Verbs
2-3 UniVerse SQL User Guide

C:\Program
Files\Adobe\FrameMaker7.0\UniVerse
DROP TRIGGER Deletes a trigger.

DROP VIEW Deletes a view.

GRANT Assigns privileges on tables and views to a user.

REVOKE Revokes previously granted privileges from a user.

Verb Description

UniVerse DDL Verbs (Continued)
 2-4

C:\Program Files\Adobe\FrameMaker7.0\UniVerse 10.2\sqluser\Ch2
9/25/06
Introduction to UniVerse SQL SELECT
SQL primarily is a database query language, and many installations use SQL almost
exclusively as a database query tool. SELECT is the primary statement for querying
both SQL tables and UniVerse files.

Using the Command Processor
Every statement entered at the system prompt—as well as commands entered from a
stored command sequence, a proc, or a BASIC program—is examined and parsed by
a system program called the command processor.

The command processor maintains a list of the most recent command lines entered at
the system prompt. This list is called the sentence stack, and you can use it to recall,
delete, change, or reexecute a previous statement, or to save a sentence or paragraph
in your UniVerse VOC file. By default, the sentence stack preserves up to 99
sentences from your current session. Each sentence is numbered from 01 through 99,
with 01 being the most recent.

The UniVerse command processor has a few conventions that should be familiar to
you.

Enter a statement using the processor’s natural wordwrap and do not press
Enter. However, to control how lines are broken, press Enter to start a new
line. You get a system prompt and then can continue entering your
statement. For example, you could enter the following statement in either of
the ways shown:

>SELECT ENGAGEMENTS.T.LOCATION_CODE, "DATE", TIME, DESCRIPTION,
NAME FROM ENGAGEMENTS.T, LOCATIONS.T WHERE
ENGAGEMENTS.T.LOCATION_CODE = LOCATIONS.T.LOCATION_CODEORDER BY
ENGAGEMENTS.T.LOCATION_CODE, "DATE";<Return>
>SELECT ENGAGEMENTS.T.LOCATION_CODE, "DATE", TIME,<Return>
SQL+DESCRIPTION, NAME FROM ENGAGEMENTS.T, LOCATIONS.T<Return>
SQL+WHERE ENGAGEMENTS.T.LOCATION_CODE =<Return>
SQL+LOCATIONS.T.LOCATION_CODE<Return>
SQL+ORDER BY ENGAGEMENTS.T.LOCATION_CODE, "DATE";<Return>

You can end a line with an underscore before pressing Enter, but it is not
necessary.
2-5 UniVerse SQL User Guide

C:\Program
Files\Adobe\FrameMaker7.0\UniVerse
To terminate and execute a statement, do one of the following:
Type a ; (semicolon) and press Enter:

>SELECT LOCATION_CODE, "DATE" FROM ENGAGEMENTS.T;<Return>

Press Return, then at the continuation prompt, press Enter again:
>SELECT LOCATION_CODE, "DATE" FROM ENGAGEMENTS.T<Return>
SQL+<Return>

To terminate and save a statement without executing it (for example, when
you notice a typo you want to correct), type a ? (question mark) and press
Enter.
You can choose commands to edit, recall, insert, reexecute, or delete an SQL
statement in the sentence stack:

.A to add text to the end of a sentence

.C to modify a sentence

.D to delete a sentence

.I to insert a new sentence

.L to list the contents of the sentence stack

.R to recall a sentence

.S to save a sentence

.U to convert a sentence to uppercase

.X to execute a sentence

.? to obtain help about sentence stack commands

This sequence is an example of using command processor commands. Bold indicates
user input and italic denotes explanatory comments.

>SELECT LOCATION_CODE,<Return>
SQL+"DATEE", "TIME" ?<Return> Notices typo; enters ?
>.C/DATEE/DATE<Return> Corrects typo
01 SELECT LOCATION_CODE, "DATE", "TIME"
>.A FROM ENGAGEMENTS.T;<Return> Continues statement
01 SELECT LOCATION_CODE, "DATE", "TIME" FROM ENGAGEMENTS.T;
>.X<Return> Executes completed statement
01 SELECT LOCATION_CODE, "DATE", "TIME" FROM ENGAGEMENTS.T;
Statement is parsed and executed
>.L<Return> Lists sentence stack
03 SELECT GATE_NUMBER, AVG(GATE_TICKETS)...
02 SELECT LOCATION_CODE, "DATE" FROM ENGAGEMENTS.T;
01 SELECT LOCATION_CODE, "DATE", "TIME" FROM ENGAGEMENTS.T;
>.R3<Return> Recalls sentence 3
03 SELECT GATE_NUMBER, AVG(GATE_TICKETS)...
>.X<Return> Executes recalled statement
 2-6

C:\Program Files\Adobe\FrameMaker7.0\UniVerse 10.2\sqluser\Ch2
9/25/06
01 SELECT GATE_NUMBER, AVG(GATE_TICKETS)...
Statement is parsed and executed
>.L<Return> Lists sentence stack again
04 SELECT GATE_NUMBER, AVG(GATE_TICKETS)...
03 SELECT LOCATION_CODE, "DATE" FROM ENGAGEMENTS.T;
02 SELECT LOCATION_CODE, "DATE", "TIME" FROM ENGAGEMENTS.T;
01 SELECT GATE_NUMBER, AVG(GATE_TICKETS)...
>.D3<Return> Deletes sentence 3 from stack
History #3 DELETEd.
>.X2<Return> Executes sentence 2 in stack
02 SELECT LOCATION_CODE, "DATE", "TIME" FROM ENGAGEMENTS.T;
Statement is parsed and executed
>

SELECT Statement Elements
The full form of the SELECT statement consists of the following elements:

Element Description

SELECT clause Describes columns to be retrieved, either columns from the
table or file or calculated (derived) columns (mandatory).

FROM clause Describes tables or files containing the data (mandatory).

WHERE clause Describes the rows to be retrieved.

WHEN clause Limits output from multivalued columns.

GROUP BY clause Describes how the data is to be grouped or summarized.

HAVING clause Describes which groups are to be retrieved.

ORDER BY clause Describes how the results are to be ordered or sorted.

SELECT Statement Elements
2-7 UniVerse SQL User Guide

C:\Program
Files\Adobe\FrameMaker7.0\UniVerse
Comparing UniVerse SQL SELECT to RetrieVe
If you are familiar with RetrieVe LIST and SORT commands, you will recognize the
similarities. Either command can be used with UniVerse files and SQL tables. The
following table compares the UniVerse SQL SELECT statement to the RetrieVe
syntax.

Results as Tables
One unique feature of relational databases is that the results of a query are also in the
form of a table that can be treated as though it were a physical table in the database.
For example, if you were to select ITEM_TYPE, DESCRIPTION, and QOH from the
INVENTORY.T table in the sample database, and there were 44 rows in that table,
the result would be a table of 3 columns and 44 rows.

Thus you can query the results themselves as though they were just another database
table. The usefulness of this feature is apparent when you use subqueries, which are
discussed in Chapter 3, “Using Advanced SELECT Statements.”

Feature SQL SELECT RetrieVe

Source FROM tablelist file name

Columns/fields to be retrieved List of columns List of output fields

Virtual columns expressions and EVAL
and I-descriptors

EVAL i.type.expr and
I-descriptors

Record specification List of primary key values List of records (record IDs)

Record/row selection criteria WHERE clause WITH clause

Multivalued column output
filter

WHEN clause WHEN clause

Sorting ORDER BY field (BY, BY.DSND,
BY.EXP, or
BY.EXP.DSND)

Control breaks GROUP BY BREAK.ON or DET.SUP

Aggregate functions Set functions Not supported

Comparison of UniVerse SQL SELECT to RetrieVe
 2-8

C:\Program Files\Adobe\FrameMaker7.0\UniVerse 10.2\sqluser\Ch2
9/25/06
Retrieving Data from a Single Table
This section explains the various ways to retrieve data from a single table or file.
Starting with a simple SELECT statement to retrieve all rows and columns of a table,
you then ask for the following:

Specific columns
Virtual columns (derived data)
Data sorted by rows
Specific rows
Summary of a table’s content using set functions

Retrieving an Entire Table
The simplest form of the SELECT statement is:

SELECT selectlist FROM tablename

In most instances, selectlist is a list of the specific columns you want to see. You may
want to look at every column in a table, particularly when dealing with a new
database and want an idea of what it contains. Use an asterisk (*) to indicate all
columns. For example, you never saw the sample database and want to see what is in
the LIVESTOCK.T table. To do this, enter:

>SELECT * FROM LIVESTOCK.T;
ANIMAL_ID... 80
NAME........ Kungu
DESCRIPTION. Puma
USE......... Z
DOB......... 02/13/84
ORIGIN...... Chile
COST........ 3940.00
EST_LIFE.... 19
VAC_TYPE VAC_DATE.. VAC_NEXT.. VAC_CERT
R 03/31/93 03/30/96 892361
P 01/09/92 01/08/95 147953
L 01/05/92 01/04/95 432996

ANIMAL_ID... 24
NAME........ Warri
DESCRIPTION. Civet
USE......... Z
2-9 UniVerse SQL User Guide

C:\Program
Files\Adobe\FrameMaker7.0\UniVerse
DOB......... 07/28/81
ORIGIN...... Pakistan
COST........ 10198.00
EST_LIFE.... 18
VAC_TYPE VAC_DATE.. VAC_NEXT.. VAC_CERT
Press any key to continue...

The four vaccination information columns are multivalued with each value listed
separately.

Using the syntax as follows would achieve the same result:

>SELECT LIVESTOCK.T.* FROM LIVESTOCK.T;

Note: The * form of selectlist retrieves columns as specified in the table’s @SELECT
phrase. If there is no @SELECT phrase, columns are retrieved in the order in which
they were defined in the CREATE TABLE statement. If you are selecting from a
UniVerse file, “all columns” refers to the columns listed in the @SELECT phrase for
the file. If there is no @SELECT phrase, “all columns” refers to the columns listed
in the @ phrase, plus the primary key (unless the @ phrase contains the keyword
ID.SUP). If there is no @ phrase, you get just the primary key column. If the table
has no primary key, you get the @ID column.

UniVerse SQL assumes that you are using the primary file dictionary associated with
the table or file. To use an alternate file dictionary, include the USING DICT filename
clause (as in a RetrieVe command):

>SELECT * FROM LIVESTOCK.T USING DICT LV2;

In this case, the column attributes (such as output formatting) defined in the LV2 file
dictionary are applied to the data in the LIVESTOCK.T data file.

If you use just tablename in the FROM clause, it refers to the data file for that table.
To refer to the file dictionary instead, include the DICT keyword (similar to
preceding filename with DICT in a RetrieVe command):

>SELECT * FROM DICT LIVESTOCK.T;
 Type &
Field......... Field. Field..... Conversion Column...... Output
Depth &
Name.......... Number Definition Code...... Heading..... Format
Assoc..

ANIMAL_ID D 0 MD0 5R S
@ID D 0 LIVESTOCK.T 5R S
@KEY PH ANIMAL_ID

USE D 3 1L S
NAME D 1 10T S
 2-10

C:\Program Files\Adobe\FrameMaker7.0\UniVerse 10.2\sqluser\Ch2
9/25/06
DESCRIPTION D 2 10T S
DOB D 4 D2/ 10L S
ORIGIN D 5 12T S
EST_LIFE D 7 MD0 3R S
COST D 6 MD22 12R S
VAC_CERT D 11 6L M
VAC_ASSOC
VAC_DATE D 9 D2/ 10L M
VAC_ASSOC
VAC_TYPE D 8 1L M
VAC_ASSOC
VAC_NEXT D 10 D2/ 10L M
VAC_ASSOC
@REVISE PH NAME
 DESCRIPTION
 USE DOB
 ORIGIN COST
 EST_LIFE
 VAC_TYPE
 VAC_DATE
 VAC_NEXT
 VAC_CERT
@ PH ID.SUP

Selecting Specific Columns
You may want to see only certain columns of a table or file. UniVerse SQL allows
you to specify those column names in your SELECT statement. To see only the name
and description for each animal, enter:

>SELECT NAME, DESCRIPTION FROM LIVESTOCK.T;
NAME...... DESCRIPTION

Kungu Puma
Warri Civet
Morie Kinkajou
Marone Ocelot
.
.
.
Wukari Kodkod
Press any key to continue...

Note that the two columnnames are separated by a comma in the command line. Also
note that the listing is unsorted. To sort the output in a particular order, specify that
order. Refer to “Sorting Output” on page 39.
2-11 UniVerse SQL User Guide

C:\Program
Files\Adobe\FrameMaker7.0\UniVerse
To obtain the various seating capacities of the sites the circus visits, enter:

>SELECT SEATS FROM LOCATIONS.T;
SEATS

 3000
 1000
 6000
 6000
 6000
 .
 .
 .
 5000
Press any key to continue...

You get a long list of seatings with many duplicates. To see just the different seating
capacities, use the keyword DISTINCT to eliminate duplicates:

>SELECT DISTINCT SEATS FROM LOCATIONS.T;
SEATS

 1000
 3000
 6000
 4000
 2000
 7000
10000
 5000
 8000

9 records listed.

Now, you can see clearly that you booked the show into nine different sizes of
stadium, ranging from 1,000 to 10,000 seats.

You can use the CAST function to force the data type of a SELECT statement to be
different than defined in the table. This can be very useful if you want to perform
operations not normally allowed on a data type. If you have numerical data stored in
a character column, you can perform numerical operations on the column by using
the CAST function to define the column as INT for the operation.

To find the date representation of an integer, enter:

>SELECT CAST('11689' AS DATE) FROM TABLE;
CAST ("11689" AS DATE)

 01 JAN 2000
 01 JAN 2000
 01 JAN 2000
 2-12

C:\Program Files\Adobe\FrameMaker7.0\UniVerse 10.2\sqluser\Ch2
9/25/06
 01 JAN 2000
 01 JAN 2000
 01 JAN 2000
 01 JAN 2000

7 records listed.

Obtaining Derived Data
A column can be an expression. This often is referred to as a calculated column, or
virtual column, which is a column that does not exist physically in the database but
instead is calculated from data stored in the columns of the table or file. In such cases,
specify an expression using column names, arithmetic operators, and constants.
Group expressions with parentheses to indicate order of precedence. Use calculated
columns in the same way as physical columns.

For example, to examine the effects of an across-the-board cost increase of 10% for
supplies, enter:

>SELECT DESCRIPTION, COST, (COST * 1.10) FROM INVENTORY.T;
DESCRIPTION.............. COST........ (COST * 1.10)

Jerky 48.90 53.79
Cookies 98.32 108.152
Mustard 91.52 100.672
Handbills 42.78 47.058
French Fries, Frozen 34.95 38.445
Horse Feed 28.37 31.207
Lemonade 14.57 16.027
.
.
.
Elephant Chow 11.00 12.1
Beer 76.92 84.612
Press any key to continue...

In the previous example, COST * 1.10 is a calculated, or virtual, column created by
multiplying COST by 1.10.

To calculate the markup on the inventory items, enter:

>SELECT DESCRIPTION, COST, PRICE, (COST / PRICE)
SQL+CONV 'MD2' COL.HDG 'Markup' FROM INVENTORY.T;
DESCRIPTION.............. COST........ PRICE.......
Markup

Jerky 48.90 64.55 0.76
Cookies 98.32 143.55 0.68
Mustard 91.52 135.45 0.68
2-13 UniVerse SQL User Guide

C:\Program
Files\Adobe\FrameMaker7.0\UniVerse
Handbills 42.78 57.33 0.75
French Fries, Frozen 34.95 45.78 0.76
.
.
.
Elephant Chow 11.00 16.61 0.66
Beer 76.92 116.92 0.66
Press any key to continue...

Usually, the column heading is the expression itself (COST/PRICE), but here a
COL.HDG field qualifier changes it to “Markup.” You probably would not want the
markup calculated out to nine decimal places, and there are ways to truncate these
values, which are covered later. CONV ‘MD2’ is a conversion code that simply
rounds off the results to two decimal places.

You also can use the EVAL expression to obtain derived data. EVAL Expressions
specify an I-descriptor and can be thought of as an enhancement to SQL’s calculated
column feature. In addition to the column names, constants, and arithmetic operators
allowed in simple column expressions, EVAL expressions can contain UniVerse
BASIC language elements such as conditional statements and even UniVerse BASIC
subroutines.

Selecting Rows
Now that you know how to retrieve data from certain columns, you can limit retrieval
to certain selected rows (records):

Primary key selection
Sampling
Selection criteria
Negation
Compound search criteria
Select lists
INQUIRING and in-line prompting
 2-14

C:\Program Files\Adobe\FrameMaker7.0\UniVerse 10.2\sqluser\Ch2
9/25/06
Selecting Rows by Primary Key

A primary key, whether made up of a single column or multiple columns, uniquely
identifies each row in a table or file. If a table has no primary key, the values in the
@ID column uniquely identify each row. Therefore, one of the simplest ways to
select rows is to use primary keys (or values in the @ID column) to specify the rows
you want to examine. Always enclose the primary key value in single quotation
marks. For example, to look at all the data for animal 48 in the LIVESTOCK.T table,
enter:

>SELECT * FROM LIVESTOCK.T '48';
ANIMAL_ID... 48
NAME........ Marone
DESCRIPTION. Ocelot
USE......... Z
DOB......... 11/01/91
ORIGIN...... Texas
COST........ 8838.00
EST_LIFE.... 19
VAC_TYPE VAC_DATE.. VAC_NEXT.. VAC_CERT
R 01/23/92 01/22/95 812616
P 05/08/92 05/08/95 659260
L 08/31/92 08/31/95 643116

1 records listed.

To see the data for more than one primary key value, list them (although as described
in “Set Membership” on page 23, it is advisable to use a set membership test). Do not
use commas to separate the items in a series of primary key values.

>SELECT * FROM LIVESTOCK.T '63' '29' '55';
ANIMAL_ID... 63
NAME........ Foula
DESCRIPTION. Shetland
USE......... P
DOB......... 10/05/79
ORIGIN...... England
COST........ 6608.00
EST_LIFE.... 16
VAC_TYPE VAC_DATE.. VAC_NEXT.. VAC_CERT
R 01/04/92 01/03/95 121250
P 01/12/93 01/12/96 332255
L 04/04/93 04/03/96 1647

ANIMAL_ID... 29
NAME........ Okene
DESCRIPTION. Lion
USE......... P
2-15 UniVerse SQL User Guide

C:\Program
Files\Adobe\FrameMaker7.0\UniVerse
DOB......... 11/12/90
ORIGIN...... Kenya
COST........ 8574.00
EST_LIFE.... 14
VAC_TYPE VAC_DATE.. VAC_NEXT.. VAC_CERT
Press any key to continue...

Selecting Rows by Sampling (SAMPLE and SAMPLED)

Another simple, but less common way of selecting rows is by sampling, which limits
the number of rows selected for output. Sampling is often used to test a complex
query against a large table without consuming the system resources that would be
required to run the query against the entire table. Sampling is not a standard SQL
feature, but is one of the many SQL extensions in UniVerse SQL that are related to
UniVerse features.

Two processing qualifiers control sampling: SAMPLE n selects the first n rows, and
SAMPLED n selects every nth row. Even though the SAMPLE or SAMPLED clause
is at the end of the statement, sampling is done first, before any sorting or other
function is performed.

To examine a small sampling of the vendors with which you do business, and ask for
the first 10 vendors in the table, enter:

>SELECT COMPANY FROM VENDORS.T SAMPLE 10;
COMPANY..................

Pure Academy
Central Automation
Illinois Operations
Utopia Professionals
Continental Mart
Red Controls
Republic Manufacturers
Northern Outlets
Hollywood Retail
Ohio Treating

Sample of 10 records listed.
 2-16

C:\Program Files\Adobe\FrameMaker7.0\UniVerse 10.2\sqluser\Ch2
9/25/06
However, you may want to browse the entire table for your samples, looking at every
nth row. Because the VENDORS.T table contains 232 rows, selecting every 25th row
produces 9 records (232 rows divided by 25). To ask for a sorted listing of every 25th
row, enter:

>SELECT COMPANY FROM VENDORS.T ORDER BY COMPANY SAMPLED 25;
COMPANY..................

Affordable Merchandise
Bayou Manufacturers
Country Traders
Eve Mart
Immediate Enterprises
Lucky Environmental
Main Street Traders
New York Advisers
True Manor

Sample of 9 records listed.

Selecting Rows Based on Selection Criteria (WHERE)

The third way to select rows for retrieval is by using the WHERE Clause to specify
selection criteria. Whenever you use a WHERE clause, SQL evaluates each row of
the table, testing it against the criteria you have specified. If a row passes the test, it
is included in the results. If not, it is excluded from the results.

FMT ‘30L’ is a format option that leaves enough space for DESCRIPTION and
NAME so that they will not wordwrap onto a second line.

To see a listing of only those animals suitable for the petting zoo area, enter:

>SELECT DESCRIPTION FROM LIVESTOCK.T WHERE USE = 'Z';
DESCRIPTION

Puma
Civet
Kinkajou
Ocelot
Kodkod
Sable
Jaguar
.
.
.
Linsang
Press any key to continue...
2-17 UniVerse SQL User Guide

C:\Program
Files\Adobe\FrameMaker7.0\UniVerse
To see only those engagements scheduled for the fourth quarter of 1995, enter:

>SELECT LOCATION_CODE, "DATE" FROM ENGAGEMENTS.T
SQL+WHERE "DATE" BETWEEN '10/01/95' AND '12/31/95';
LOCATION_CODE DATE......

CIAH001 10/03/95
CIAH001 10/04/95
WSEA001 12/07/95
WSEA001 12/08/95
CCLE001 12/15/95
CCLE001 12/16/95
CDFW001 10/15/95
CDFW001 10/16/95
ENYC001 11/23/95
EHAR001 10/23/95
ENYC001 11/24/95
WLAX001 12/26/95
EHAR001 10/24/95
WLAX001 12/27/95

14 records listed.

To see only those locations that have 50, 100, or 125 acres, enter:

>SELECT DESCRIPTION FMT '30L', NAME FMT '30L', ACRES FROM
LOCATIONS.T
SQL+WHERE ACRES IN (50, 100, 125);
DESCRIPTION................. NAME......................
ACRES

Houston State Fair Ground Houston Properties, Inc.
50
Minneapolis State Fair Ground Minneapolis Properties, Inc.
125
Washington State Fair Ground Washington Properties, Inc.
100
Springfield State Fair Ground Springfield Properties, Inc.
125
Los Angeles State Fair Ground Los Angeles Properties, Inc.
50
Boston State Fair Ground Boston Properties, Inc.
125
Philadelphia State Fair Philadelphia Properties, Inc.
50
Seattle State Fair Ground Seattle Properties, Inc.
125
Jacksonville State Fair Ground Jacksonville Properties, Inc.
100
Indianapolis State Fair Ground Indianapolis Properties, Inc.
125

10 records listed.
 2-18

C:\Program Files\Adobe\FrameMaker7.0\UniVerse 10.2\sqluser\Ch2
9/25/06
To list only those staff members whose last name is pronounced similarly to
Kowslowsky, enter:

>SELECT NAME FROM PERSONNEL.T
SQL+WHERE NAME SAID 'KOWSLOWSKY';
NAME.....................

Kozlowski, Nicholas
Kozlowski, Bill
Kozlowski, Joe

3 records listed.

To list only those rides whose description begins with Carousel, enter:

>SELECT DESCRIPTION FROM RIDES.T
SQL+WHERE DESCRIPTION LIKE 'Carousel%';
DESCRIPTION.........

Carousel - Horses
Carousel - Jet
Planes
Carousel - Rockets

3 records listed.

To see only those engagements for which the advance payment is null, enter:

>SELECT LOCATION_CODE, "DATE", ADVANCE FROM ENGAGEMENTS.T
SQL+WHERE ADVANCE IS NULL;
LOCATION_CODE DATE...... ADVANCE.....

WREN001 01/10/94
CMSP001 08/17/92
WDEN001 04/30/93
WREN001 01/11/94
CMSP001 08/18/92
.
.
.
134 records listed.

Null in SQL refers to an unknown value, not a 0 or blank, or an empty string. Null
values are covered in greater detail in “Testing for Null Values” on page 25.

As the previous examples illustrate, selection can be based on:

Comparisons
Ranges
Set membership
2-19 UniVerse SQL User Guide

C:\Program
Files\Adobe\FrameMaker7.0\UniVerse
Phonetic matching
Pattern matching
Null values

In addition, you can add the keyword NOT to negate a search condition, and create
compound search conditions by using the logical operators AND and OR. For more
information, see “Negation” on page 26.

Comparisons

Just as with RetrieVe operations, you can select rows by comparing the contents of a
column to a value. Comparisons can be simple, testing only one column, or complex,
and employing comparison operators (=, <>, #, <, <=, >, >=) and logical operators
(AND, OR, NOT). The simplest form is a column and a constant, as shown by the
following query, which retrieves all the data concerning employee 93:

>SELECT * FROM PERSONNEL.T
SQL+WHERE BADGE_NO = 93;

BADGE_NO. 93
DOB...... 09/11/65
BENEFITS. O,G,C
NAME..... Lewis, Wayne
ADR1..... 6030 Argonne Street
ADR2..... Security CO 80911
ADR3.....
PHONE.... 719/984-2824
DEP_NAME.. DEP_DOB... DEP_RELATION

EQUIP_CODE EQUIP_PAY.
 17 11.84
 60 14.44
ACT_NO ACT_PAY...
 2 13.53
 1 11.99
 4 15.85
RIDE_ID RIDE_PAY..
 7 12.37
 1 8.60

Press any key to continue...

This type of query is used commonly in forms-based data retrieval, in which the user
types a customer number into a screen form and that number is used to build and
execute a query.
 2-20

C:\Program Files\Adobe\FrameMaker7.0\UniVerse 10.2\sqluser\Ch2
9/25/06
As an example of a more complex comparison, you could ask for all engagements
with an advance over $10,000 that are scheduled before the end of 1995:

>SELECT ADVANCE, LOCATION_CODE, "DATE" FROM ENGAGEMENTS.T
SQL+WHERE ADVANCE > 10000 AND "DATE" <= '12/31/95';
ADVANCE..... LOCATION_CODE DATE......

 10572.00 WSEA001 12/07/95
 11935.00 WPHX001 08/09/95
 10863.00 CCLE001 12/15/95
 11971.00 CDFW001 10/15/95
 .
 .
 .
 10160.00 EPHI001 03/17/95
 10280.00 EJAC001 03/18/95

16 records listed.

Remember that in SQL, null represents an unknown value, not a 0 (zero) or an empty
value. Consequently, a row with a null value can seem to “disappear,” as in a case
where you ask for a list of equipment WHERE COST > $10000 and then you ask
for an equipment list WHERE COST <= $10000. One might assume that the
combined output would equal the number of rows in the table, but if COST is null for
one or more rows, those rows do not appear in either output.

Ranges

Another type of row selection is the range test, which you use to select rows in which
the contents of a column lies between two values, inclusive. Range tests use the
keyword BETWEEN, which provides a shorthand for column >= value AND column
<= value.

A range test is handy for selecting rows belonging to a certain calendar period, items
whose dollar amounts fall within a certain monetary range, and so on. The following
two examples demonstrate this.

To find equipment that costs between $50,000 and $75,000 and get a listing of that
equipment in descending order by cost, enter:

>SELECT COST, DESCRIPTION FROM EQUIPMENT.T
SQL+WHERE COST BETWEEN 50000 AND 75000
SQL+ORDER BY COST DESC;
COST........ DESCRIPTION..............

 75000.00 Calliope
 70591.65 Cooling System
 70081.99 Electrical Generator
2-21 UniVerse SQL User Guide

C:\Program
Files\Adobe\FrameMaker7.0\UniVerse
 69990.43 Mail Machine
 68278.35 Truck 665 B C C
 67521.49 Coffee/cookies Stand
 67448.24 Desk Credenza Sets
 66700.54 Truck 897 M X X
 61558.17 Truck 102 T I U
 58555.15 Hot Dog Stand
 57581.61 Subsidiary Tent Frame
 57355.77 Harness Equipment
 55594.85 V C R
 52005.88 Soft Drinks Stand
 51004.87 Truck 243 Y G N
 50370.08 Copier

16 records listed.

To list the products that have a markup of between 60% and 80%, enter:

>SELECT DESCRIPTION, COST, PRICE, (COST / PRICE) CONV 'MD2'
SQL+FROM INVENTORY.T
SQL+WHERE (COST / PRICE) BETWEEN 0.6 AND 0.8;
DESCRIPTION.............. COST........ PRICE....... (COST
/ PRICE)

Mustard 91.52 135.45
0.68
French Fries, Frozen 34.95 45.78
0.76
Jerky 48.90 64.55
0.76
Cookies 98.32 143.55
0.68
Handbills 42.78 57.33
0.75
Horse Feed 28.37 38.58
0.74
Lemonade 14.57 20.25
0.72
.
.
.
Nachos 28.61 42.06
0.68
Imported Ale 13.51 20.13
0.67
Press any key to continue...
 2-22

C:\Program Files\Adobe\FrameMaker7.0\UniVerse 10.2\sqluser\Ch2
9/25/06
Set Membership

When comparing a column to more than one value, you will type less by using the IN
Keyword rather than writing out the comparison as a series of column = value
clauses. In effect, the target values against which you are testing the column
constitute a mathematical set, and is sometimes called a set membership test. Here
are two examples.

To list acts 1, 3, and 5 and their duration, enter:

>SELECT DESCRIPTION, DURATION FROM ACTS.T
SQL+WHERE ACT_NO IN (1, 3, 5);

DESCRIPTION DURATION

Salute to 12
the Circus
Animals on 6
Parade
Rock Around 5
the Big Top

3 records listed.

To list all engagements where rides 5, 9, or 11 have been booked, enter:

>SELECT LOCATION_CODE, "DATE"
SQL+FROM ENGAGEMENTS.T
SQL+WHERE RIDE_ID IN (5, 9, 11);
LOCATION_CODE DATE......

CKAN001 06/05/96
ENYC001 06/05/96
CKAN001 06/06/96
CDET001 12/16/96
WREN001 01/10/94
.
.
.
CIAH001 10/03/95
Press any key to continue...
2-23 UniVerse SQL User Guide

C:\Program
Files\Adobe\FrameMaker7.0\UniVerse
Phonetic Matching

Phonetic matching uses a phonetic, or sounds like, algorithm (invoked by the
relational operator Phonetic Matching: SAID) to match a text string to a sound. To
list animals with names that sound like “lyon,” “fauks,” or “tyger,” enter:

>SELECT DISTINCT DESCRIPTION FROM LIVESTOCK.T
SQL+WHERE DESCRIPTION SAID 'LYON'
SQL+OR DESCRIPTION SAID 'FAUKS'
SQL+OR DESCRIPTION SAID 'TYGER';
DESCRIPTION

Lion
Tiger
Fox

3 records listed.

Pattern Matching

As with RetrieVe, you can use pattern matching to select rows of data. Using Pattern
Matching: LIKE, select rows whose columns match a certain pattern.

The percent sign (%) is a wildcard that matches zero or more characters. An under-
score (_) is a wildcard that matches exactly one character.

Placing the % wildcard character before and after the text string effectively says
“search for this text string no matter where it appears in the value.” To select vendors
whose company names contain the word Manufacturers, enter:

>SELECT DISTINCT COMPANY FROM VENDORS.T
SQL+WHERE COMPANY LIKE '%Manufacturers%';
COMPANY..................

Republic Manufacturers
Southern Manufacturers
City Manufacturers
New Orleans Manufacturers
Bayou Manufacturers

5 records listed.
 2-24

C:\Program Files\Adobe\FrameMaker7.0\UniVerse 10.2\sqluser\Ch2
9/25/06
To retrieve all vendor companies that begin with San and have D as the fifth letter,
enter:

>SELECT COMPANY FROM VENDORS.T
SQL+WHERE COMPANY LIKE 'San_D%';
COMPANY..................

San Diego Promotions

1 records listed.

To use either wildcard character (% or _) as a pattern match character, remove its
wildcard status with an escape character. This is a two-step process:

1. In the pattern to be matched, precede the wildcard-character-turned-search-
character with an escape character.

2. Define the escape character using the ESCAPE clause, with the escape
character enclosed in single quotation marks. The rarely used backslash (\)
is a recommended escape character.

For example, assume that the INVENTORY.T table contains a MARKUP column,
and that it stores values with an actual “%”. To search for markups between 20% and
29%, enter:

>SELECT INVENTORY.T
SQL+WHERE MARKUP LIKE '2_\%' ESCAPE '\';

Here, the % is preceded by a \, which identifies the % as an actual character rather
than a wildcard. Then \ then is defined as the escape character.

Testing for Null Values

In SQL, the null value represents data whose value is unknown. Null is not an empty
string (a character string of 0 length known to have no value), nor is it a string of zeros
or blanks.

For any given row, the result of a search can be TRUE, FALSE, or (if one of the
columns contains a null value), UNKNOWN. It is a good idea to check explicitly for
null values before proceeding to apply other search conditions.
2-25 UniVerse SQL User Guide

C:\Program
Files\Adobe\FrameMaker7.0\UniVerse
Use Testing for the Null Value: IS NULL (but not = NULL) to select rows based on
the presence of a null value in a column. To list those engagements in the last quarter
of 1994 that have an ADVANCE of NULL, enter:

>SELECT LOCATION_CODE, "DATE" FROM ENGAGEMENTS.T
SQL+WHERE "DATE" BETWEEN '10/01/94' AND '12/31/94'
SQL+AND ADVANCE IS NULL;
LOCATION_CODE DATE......

CIND001 10/04/94
CIND001 10/05/94
EJAC001 12/08/94
EJAC001 12/09/94
EPHI001 11/13/94
EPHI001 11/14/94

6 records listed.

Using CAST with WHERE

You can use the CAST function to search for patterns in numerical data. For example,
to find all employees whose badge number ends with 44, enter:

>SELECT BADGE_NO, NAME FROM PERSONNEL.T
SQL+WHERE CAST(BADGE_NO AS VARCHAR) LIKE '%44';
BADGE_NO NAME....................

 144 Hanson, Daniel
 44 Vaughan, Mary

2 records listed.

Negation

To negate a search criterion, in most cases all you have to do is precede it with the
keyword NOT, which effectively reverses the original meaning. Thus, taking the
same examples that introduced this section on selecting rows, you could change the
effect of each query by preceding each search criterion with the keyword NOT.

To see those engagements that do not fall within the fourth quarter of 1995, enter:

>SELECT LOCATION_CODE, "DATE" FROM ENGAGEMENTS.T
SQL+WHERE "DATE" NOT BETWEEN '10/01/95' AND '12/31/95';
LOCATION_CODE DATE......

CKAN001 06/05/96
ENYC001 06/05/96
CDET001 12/15/96
 2-26

C:\Program Files\Adobe\FrameMaker7.0\UniVerse 10.2\sqluser\Ch2
9/25/06
CKAN001 06/06/96
.
.
.
WSDO001 04/08/95
Press any key to continue...

To see those locations whose land area is not 50, 100, or 125 acres, enter:

>SELECT DESCRIPTION FMT '30L', NAME FMT '30L', ACRES FROM
LOCATIONS.T
SQL+WHERE ACRES NOT IN (50, 100, 125);
DESCRIPTION................ NAME...................
ACRES

Milwaukee State Fair Ground Milwaukee Properties Inc.
25
Detroit State Fair Ground Detroit Properties, Inc.
150
Dallas State Fair Ground Dallas Properties, Inc.
200
.
.
.
Hartford State Fair Hartford Properties, Inc.
25
Press any key to continue...

To see all personnel whose last names are not pronounced similarly to Kowslowsky,
enter:

>SELECT NAME FROM PERSONNEL.T
SQL+WHERE NAME NOT SAID 'KOWSLOWSKY';
NAME.....................

Torres, Stephen
Hanson, Daniel
Niederberger, Brian
.
.
.
Young, Carol
Press any key to continue...

To list the rides whose names do not begin with Carousel, enter:

>SELECT DESCRIPTION FROM RIDES.T
SQL+WHERE DESCRIPTION NOT LIKE 'Carousel%';
DESCRIPTION.........

Bumper Cars
Moonwalk
Mechanical Bull
2-27 UniVerse SQL User Guide

C:\Program
Files\Adobe\FrameMaker7.0\UniVerse
.

.

.
Tilt

12 records listed.

To see the fourth quarter 1994 engagements where the advance payment is not null,
enter:

>SELECT LOCATION_CODE, "DATE", ADVANCE FROM ENGAGEMENTS.T
SQL+WHERE "DATE" BETWEEN '10/01/94' AND '12/31/94'
SQL+AND ADVANCE IS NOT NULL;
LOCATION_CODE DATE...... ADVANCE.....

CIAH001 12/28/94 7392.00
CIAH001 12/29/94 8286.00
WREN001 12/31/94 8757.00

3 records listed.

For comparisons, use the appropriate comparison operator rather than NOT to form
the negation:

Consequently, the negation of the first example

>SELECT DESCRIPTION, USE FROM LIVESTOCK.T
SQL+WHERE USE = 'Z';

The negation of... Is...

= <> or # (inequality)

<> or # = (equality)

< >=

> <=

>= <

<= >

Comparison Operators
 2-28

C:\Program Files\Adobe\FrameMaker7.0\UniVerse 10.2\sqluser\Ch2
9/25/06
is as follows:

>SELECT DESCRIPTION, USE FROM LIVESTOCK.T
SQL+WHERE USE <> 'Z';
DESCRIPTION USE

Shetland R
Lion P
Dog P
.
.
.
Shetland P
Press any key to continue...

Compound Search Criteria

You can combine simple search criteria to create more complex search conditions
using the logical operators AND, OR, and NOT.

Thinking of each search criterion as returning a value of TRUE, FALSE, or
UNKNOWN, you can visualize how compound search criteria will operate. Looking
at the “truth tables” for AND, OR, and NOT may be helpful.

AND Truth Table

Using the AND operator requires that both or all parts of a statement are true for the
entire statement to be true. If just one part of a statement joined using AND is false,
the entire statement is considered false.

TRUE FALSE UNKNOWN

TRUE TRUE FALSE UNKNOWN

FALSE FALSE FALSE FALSE

UNKNOWN UNKNOWN FALSE UNKNOWN

AND Truth Table
2-29 UniVerse SQL User Guide

C:\Program
Files\Adobe\FrameMaker7.0\UniVerse
OR Truth Table

Using the OR operator requires that only one portion of a statement joined using the
operator OR is true for the entire statement to be considered true. If one portion of a
statement is true, and one portion is false, the entire statement is considered true.

NOT Truth Table

Using the operator NOT negates all portions of a statement.

The preceding tables show that if criterion_1 is true and criterion_2 is false, then
criterion_1 AND criterion_2 is false, but criterion_1 OR criterion_2 is true.

When one of the criteria is unknown, the logic behind the result is not as obvious. For
example, in the OR table, criterion_1 being unknown and criterion_2 being false
produces a result of unknown. This is because the unknown quality could be true or
false, making the possible result true or false or, in other words, unknown. This is
known as three-valued logic.

Use AND to connect two search conditions when you want to select a row only if
both conditions are true.

To list all locations that offer at least 150 or more acres and 6,000 or more seats:

>SELECT DESCRIPTION, ACRES, SEATS FROM LOCATIONS.T
SQL+WHERE ACRES >= 150 AND SEATS >= 6000;
DESCRIPTION.............. ACRES SEATS

Topsfield Fair 500 10000
Golden Gate Exposition 175 8000

TRUE FALSE UNKNOWN

TRUE TRUE TRUE TRUE

FALSE TRUE FALSE UNKNOWN

UNKNOWN TRUE UNKNOWN UNKNOWN

OR Truth Table

TRUE FALSE UNKNOWN

FALSE TRUE UNKNOWN

NOT Truth Table
 2-30

C:\Program Files\Adobe\FrameMaker7.0\UniVerse 10.2\sqluser\Ch2
9/25/06
Center
Las Vegas Convention 175 8000
Center
Chicago State Fair Ground 150 6000

4 records listed.

Use OR to connect two search conditions when you want to select a row if either
search condition is (or both are) true. To list all locations that offer either 150 or more
acres or 6,000 or more seats, enter:

>SELECT DESCRIPTION FMT '30L', ACRES, SEATS FROM LOCATIONS.T
SQL+WHERE ACRES >= 150 OR SEATS >= 6000;
DESCRIPTION................... ACRES SEATS

Detroit State Fair Ground 150 1000
Milwaukee State Fair Ground 25 6000
Springfield State Fair Ground 125 6000
.
.
.
Portland State Fair Ground 175 5000
Reno State Fair Ground 175 4000

21 records listed.

You can string together more than two search conditions, and the search conditions
connected by the ANDs and ORs can themselves be compound search conditions. To
list the Shetlands vaccinated after January 1, 1993, that are suitable for rides, enter:

>SELECT ANIMAL_ID, NAME FROM LIVESTOCK.T
SQL+WHERE DESCRIPTION LIKE 'Shetland%'
SQL+AND USE = 'R'
SQL+AND VAC_DATE > '1/1/93';
ANIMAL_ID NAME......

 33 Eggau
 46 Mora
 58 Tumu
 43 Gombi
 31 Akure
 51 Banyo
 71 Bousso
 15 Kontagora
 5 Sokoto

9 records listed.
2-31 UniVerse SQL User Guide

C:\Program
Files\Adobe\FrameMaker7.0\UniVerse
Use parentheses to clarify the order in which the search conditions should be
evaluated. Conditions enclosed in parentheses are evaluated together and produce a
single result (true, false, or unknown). To list the employees living in Pennsylvania,
Massachusetts, or New York and born before 1950 or after 1969, enter:

>SELECT NAME, ADR2, DOB FROM PERSONNEL.T
SQL+WHERE (ADR2 LIKE '%PA%'
SQL+OR ADR2 LIKE '%MA%'
SQL+OR ADR2 LIKE '%NY%')
SQL+AND (DOB < '1/1/50' OR DOB > '12/31/69');
NAME..................... ADR2..................... DOB.......

Carter, Joseph Boston MA 02116
Galloway, Jane Summer Isle NY 10322 06/09/47
Kozlowski, Bill Sterling MA 01564 09/06/74
Bacon, Roger Leicester MA 01524 03/12/39
Carsley, Rusty Harrisburg, PA 10964 04/10/70

5 records listed.

In the previous example, placing the state and date-of-birth conditions within
parentheses causes them to be evaluated separately, and each set produces one result.
Then, because these two results are connected by AND, both results must be true to
select the row.

Omitting parentheses causes conditions to be evaluated in the following order:

NOTs
ANDs
ORs

If you omit the parentheses, the order of precedence results in the selection of
everyone from Pennsylvania or Massachusetts, anyone from New York who was
born before 1950, and anyone from any state who was born after 1969:

>SELECT NAME, ADR2, DOB FROM PERSONNEL.T
SQL+WHERE ADR2 LIKE '%PA%'
SQL+OR ADR2 LIKE '%MA%'
SQL+OR ADR2 LIKE '%NY%'
SQL+AND DOB < '1/1/50' OR DOB > '12/31/69';
NAME..................... ADR2.....................
DOB.......

Nelson, Lisa Energy WY 82422 02/07/71
Niederberger, Brian Equity OH 43749 05/27/72
Torres, Stephen Cash VA 22942 12/04/74
Carter, Joseph Boston MA 02116
Clark, Lisa What Cheer IA 50268 01/03/71
Grant, Nancy Beautiful PA 15009 07/30/59
 2-32

C:\Program Files\Adobe\FrameMaker7.0\UniVerse 10.2\sqluser\Ch2
9/25/06
.

.

.
Martinez, Suzanne Merit MS 38759 02/03/71
Schultz, Mary Lou Happy TX 79042 12/15/73

27 records listed.

Selecting Rows Through Select Lists

The SELECT and SSELECT commands let you select a subset of rows from a table,
and put their record IDs into a select list. You then can process the select list with
another RetrieVe command.

A UniVerse SQL SELECT statement also can be used to process an active select list
by including the SLIST keyword in the statement.

The following example uses a SELECT sentence to create a select list containing the
record IDs of all INVENTORY.T rows where QOH is greater than 100. A UniVerse
SQL SELECT statement with the SLIST keyword further selects only those items
with a value of over $60:

>SELECT INVENTORY.T WITH QOH > 100
32 record(s) selected to SELECT list #0.
>>SELECT QOH, COST FROM INVENTORY.T SLIST 0 WHERE COST > 60;
QOH.. COST........

 174 98.32
 125 91.52
 181 90.48
 135 87.22
 143 79.78
 127 76.92
 131 96.36
 185 102.83
 .
 .
 .
 193 69.23

15 records listed.

Selecting Rows Through INQUIRING and Inline Prompting

To instruct the system to interactively prompt for the primary key values (or @ID
values if the table has no primary key) of the rows you want to see, use the
INQUIRING Keyword or an inline (<<…>>) prompt.
2-33 UniVerse SQL User Guide

C:\Program
Files\Adobe\FrameMaker7.0\UniVerse
Using the INQUIRING Keyword

As with RetrieVe commands, use the INQUIRING keyword to display a prompt to
specify interactively what rows are to be selected from a table. When you specify
INQUIRING in your SELECT statement, the system asks you for the record ID of
the row you want to see and displays the requested columns of that row.

For example, to create a SELECT statement that you can use to do an ad hoc check
on inventory levels, enter:

>SELECT DESCRIPTION, QOH FROM INVENTORY.T INQUIRING;
DESCRIPTION.............. QOH..

Primary key for table INVENTORY.T = 10
DESCRIPTION.............. QOH..

Franks 151

Primary key for table INVENTORY.T =

The system prompts for a record ID (in this case, an inventory item number). After
you have typed the item number, the system displays the item’s description and
quantity on hand, and then prompts for another record ID. To terminate the inquiry
cycle, respond to Primary key for table tablename = by pressing Enter.

Note that INQUIRING is specified immediately after the table name, just as you
specify SLIST or explicit record IDs in RetrieVe. It is not placed at the end of the
statement and is not a report qualifier.

Also note that if you enter something like the following, the output is different
depending on whether or not you enter the record ID of an item that satisfies the
search criteria (QOH > 150):

>SELECT DESCRIPTION, QOH FROM INVENTORY.T INQUIRING
SQL+WHERE QOH > 150;
DESCRIPTION.............. QOH..

Primary key for table INVENTORY.T =

If you enter the record ID of an item that fits the selection criteria, you get this output:

Primary key for table INVENTORY.T = 28

DESCRIPTION.............. QOH..

Cookies 174

Primary key for table INVENTORY.T =
 2-34

C:\Program Files\Adobe\FrameMaker7.0\UniVerse 10.2\sqluser\Ch2
9/25/06
However, if you ask for an item that does not fulfill the selection criteria, you get no
output except column headers:

Primary key for table = 27

DESCRIPTION.............. QOH..

Primary key for table INVENTORY.T =

Using an Inline Prompt

Alternatively, use an inline prompt to prompt the user for values required to complete
the SQL statement. For example:

>SELECT DESCRIPTION, QOH FROM INVENTORY.T
SQL+WHERE QOH > <<Enter Quantity On Hand>>;
Enter Quantity On Hand = 150
DESCRIPTION.............. QOH..

Cookies 174
Handbills 154
Horse Feed 155
Lemonade 153
Fried Clams 174
.
.
.
Cheese Slices 169
Ice Bags 193

19 records listed.

Summarizing Table Contents (Set Functions)
Rather than retrieve a table as individual rows, you may want one value that summa-
rizes the contents of an entire column. Like RetrieVe and UniVerse BASIC, SQL
provides set functions that produce sums, averages, minimums and maximums, and
counts:

Set Function Purpose

AVG Averages the values in a column or an expression.

COUNT(*) Counts the number of selected rows.

COUNT Counts the number of values in a column.

Set Functions
2-35 UniVerse SQL User Guide

C:\Program
Files\Adobe\FrameMaker7.0\UniVerse
Averaging and Summing

To find the average cost of the equipment, use the AVG function:

>SELECT AVG(COST) CONV 'MD2$' FROM EQUIPMENT.T;
AVG (COST)

 $49104.94

1 records listed.

To compute the total value of the inventory, for each row multiply the price of each
by the quantity on hand. Then use the SUM function to add the results for the entire
table:

>SELECT SUM(QOH * PRICE) CONV 'MD2$' FROM INVENTORY.T;
SUM (QOH * PRICE)

 398309.34

1 records listed.

CONV ‘MD2$’ displays the result of the computation in dollars and cents. CONV is
a field qualifier that enables you to convert a column’s value.

Finding the Lowest and Highest Values in a Column

To find the lowest and highest values of a column, use the MIN and MAX functions:

>SELECT MIN(COST), MAX(COST) FROM INVENTORY.T;
MIN (COST) MAX (COST)

 10.76 103.80

1 records listed.

MAX Finds the largest value in a column or an expression.

MIN Finds the smallest value in a column or an expression.

SUM Adds the values in a column or an expression.

Set Function Purpose

Set Functions (Continued)
 2-36

C:\Program Files\Adobe\FrameMaker7.0\UniVerse 10.2\sqluser\Ch2
9/25/06
Counting

The most common form of COUNT is COUNT(*), sometimes called the “row count”
function, which counts the number of selected rows. For example, to count all the
engagements, use COUNT(*):

>SELECT COUNT(*) FROM ENGAGEMENTS.T;
COUNT (*)

 248

1 records listed.

COUNT counts the number of values in a column. Because COUNT ignores the
actual values in the column, in most cases it does not matter which singlevalued
column you use, because it will return the same answer as COUNT(*).

To do a row-count on LIVESTOCK.T for all petting zoo animals, enter:

>SELECT COUNT(*) FROM LIVESTOCK.T
SQL+WHERE USE = 'Z';
COUNT (*)

 50

1 records listed.

To do a value-count on the DESCRIPTION column in LIVESTOCK.T for all petting
zoo animals, enter:

>SELECT COUNT(DESCRIPTION) FROM LIVESTOCK.T
SQL+WHERE USE = 'Z';
COUNT (DESCRIPTION)

 50

1 records listed.

When COUNT is counting all the selected rows of a table or counting the number of
values in the singlevalued DESCRIPTION column, the results are the same. There
are two exceptions.
2-37 UniVerse SQL User Guide

C:\Program
Files\Adobe\FrameMaker7.0\UniVerse
First, if you specify a multivalued column as the argument for COUNT, it counts the
total number of values, which will be different from doing a COUNT(*) or counting
a singlevalued column on the same table. The following query uses VAC_TYPE,
which is a multivalued column. You can see that the count differs from the counts
obtained previously.

>SELECT COUNT(VAC_TYPE) FROM LIVESTOCK.T
SQL+WHERE USE = 'Z';
COUNT (VAC_TYPE)

 150

1 records listed.

Second, you can add the DISTINCT keyword to the COUNT argument, and use it to
count the number of different values in a column. To count the different kinds of
animal suitable for zoo duty and use COUNT(DISTINCT DESCRIPTION), you will
again get a different result:

>SELECT COUNT(DISTINCT DESCRIPTION) FROM LIVESTOCK.T
SQL+WHERE USE = 'Z';
COUNT (DISTINCT DESCRIPTION)

 33

1 records listed.
 2-38

C:\Program Files\Adobe\FrameMaker7.0\UniVerse 10.2\sqluser\Ch2
9/25/06
Manipulating the Output
Manipulate the output of a UniVerse SQL query by doing any of the following:

Sorting the output rows according to the content of one or more columns
Formatting the individual columns in the report
Formatting the overall report itself

Sorting Output
Rows in SQL tables (and UniVerse data files) are not stored in any fixed order, and
the physical position of a row has no significance. Consequently, when you retrieve
data from a table or file, there is no guarantee that it will be presented in any particular
sequence. For example, asking for a list of engagement dates produces an unsorted
list, in which even instances of the same date might be scattered throughout:

>SELECT "DATE" FROM ENGAGEMENTS.T;
DATE......

06/05/96
06/05/96
12/15/96
06/06/96
.
.
.
04/08/95
Press any key to continue...

The ORDER BY Clause sorts the output rows meaningfully and is similar to
RetrieVe’s BY keywords. Rows are sorted in ascending order by default, but you can
add the ASC (ascending) keyword. Specify DESC (descending) to sort rows in
descending order. The following example specifies neither sequence and therefore
presents the dates in ascending order:

>SELECT "DATE" FROM ENGAGEMENTS.T ORDER BY "DATE";
DATE......

05/31/92
06/01/92
06/01/92
06/02/92
2-39 UniVerse SQL User Guide

C:\Program
Files\Adobe\FrameMaker7.0\UniVerse
08/17/92
.
.
.
12/03/92
Press any key to continue...

You can use expressions and specify more than one sort in a query (and even ask for
each sorted column to be in a different order). Specifying more than one sort is
sometimes called a nested sort or a sort within a sort.

An example of all three options is to list the inventory in descending order of markup
and ascending order of item code:

>SELECT (PRICE / COST * 100) COL.HDG 'Markup'
SQL+FMT 'R2', ITEM_CODE, DESCRIPTION FROM INVENTORY.T
SQL+ORDER BY 1 DESC, 2;
Markup ITEM_CODE DESCRIPTION..............

 37 Dog Chow
 42 Cheese Slices
159.00 31 Programs
157.01 29 Paper Plates
156.01 27 Ice Tea
154.00 22 Egg Rolls
153.00 18 Salsa
152.00 1 Beer
151.00 33 Elephant Chow
150.01 35 Domestic Cat Chow
.
.
.
110.00 21 Sea Snails
110.00 44 Onion Rings
 0.00 17 Nachos

45 records listed.

Column numbers rather than column names are used in the ORDER BY clause. A
column number represents the position of the column specification in the SELECT
clause, and is a shorthand way to refer to columns already named in the query.
(However, if you used SELECT *, a column number would represent the position of
the column specification as it appeared in the CREATE TABLE statement that
created the table, but this is rarely done.)

The second sort (and any subsequent sorts) is performed only within equal values of
the previous sort field.
 2-40

C:\Program Files\Adobe\FrameMaker7.0\UniVerse 10.2\sqluser\Ch2
9/25/06
Column numbers are useful particularly when one or more of the columns is an
expression, as is the case here. If you were not able to use column numbers (or an AS
field qualifier to create a column alias, as explained later), you would have had to
repeat the entire (PRICE / COST * 100) expression.

The field qualifier FMT ‘R2’ reduced the results of the markup computation to two
decimal places, and the field qualifier COL.HDG changed its column heading to read
‘Markup’ rather than (PRICE / COST * 100).

Formatting Columns
The way a column appears in the output of a query depends, by default, on the way
the column is described in the dictionary of the table or file. SQL provides you with
many ways to modify this output, including:

Field modifiers
Text
Field qualifiers

Most of these should be familiar to users of RetrieVe.

Using Field Modifiers
Field Modifiers act on the selected contents of a column, EVAL expression, or
temporary name (alias) and include the following:

Field Modifier Synonym

AVERAGE AVG

BREAK ON “text ‘options’…” BREAK.ON “text ‘options’…”

BREAK SUPPRESS “text ‘options’…” BREAK.SUP “text ‘options’…”

CALCULATE CALC

PERCENT n PERC n, %n, PERCENTAGE n

TOTAL

Field Modifiers
2-41 UniVerse SQL User Guide

C:\Program
Files\Adobe\FrameMaker7.0\UniVerse
The AVERAGE (or AVG) and TOTAL field modifiers are not the same as the AVG
and SUM set functions. AVG and SUM produce a singlerow table containing the sum
or average of the requested column:

>SELECT AVG(COST) FROM LIVESTOCK.T
SQL+WHERE COST > 9000;
AVG (COST)

 10046

1 records listed.

However, the AVERAGE and TOTAL field modifiers produce a multirow (detailed
table), followed by the requested average or total on a separate line at the end. COST
is not enclosed in parentheses after AVERAGE, since AVERAGE is not an SQL set
function:

>SELECT AVERAGE COST FROM LIVESTOCK.T
SQL+WHERE COST > 9000;
COST........

 10198.00
 9924.00
 10063.00
 10576.00
 9235.00
 10229.00
 9362.00
 10697.00
 10626.00
 10078.00
 9518.00
============
 10046.00

11 records listed.
 2-42

C:\Program Files\Adobe\FrameMaker7.0\UniVerse 10.2\sqluser\Ch2
9/25/06
Using Text
To add text to output results so they are more readable, specify the text (enclosed in
single quotation marks) where you want it to appear in the output. For example, to
show each employee’s name and date of birth in the form “name was born on date”,
enter:

>SELECT NAME, 'was born on',
SQL+P_DOB FROM PERSONNEL.T SUPPRESS COLUMN HEADER;
Torres, Stephen was born on 12/04/74
Hanson, Daniel was born on 12/02/55
Niederberger, Brian was born on 05/27/72
.
.
.
Sullivan, William was born on 07/24/63
Press any key to continue...

The SUPPRESS COLUMN HEADER report qualifier suppresses output of the
column headers, because the use of text in the previous example makes such headers
redundant.

Delimited Identifiers

Text surrounded by double quotation marks is called delimited identifiers or quoted
identifiers. Thus you can use reserved SQL words and identifiers (schema name,
table name, view name, column name, association name, constraint name, index
name, table alias, column alias or user name) as quoted identifiers. For more infor-
mation about quoted identifiers, see UniVerse SQL Administration for DBAs.

Using the Current Date and Time
The CURRENT_DATE and CURRENT_TIME keywords make it easy to maintain a
date last modified or time stamp column in a table, among other uses.
CURRENT_DATE and CURRENT_TIME literally mean “today’s date” and
“current time,” respectively. They refer to the local date and time as maintained by
the local operating system.

CURRENT_DATE and CURRENT_TIME are constant during execution of a single
SQL DML statement and can be used in an SQL statement anywhere a date literal or
time literal can be used. For example, to find all engagements from more than 90 days
ago, enter:

>SELECT * FROM ENGAGEMENTS.T WHERE "DATE" < CURRENT_DATE-90;
2-43 UniVerse SQL User Guide

C:\Program
Files\Adobe\FrameMaker7.0\UniVerse
Using Field Qualifiers
Field Qualifiers specify an alternative format or conversion for a column. Field
qualifiers override column definitions in the table’s dictionary and are in effect only
for the duration of the current SELECT statement. They are summarized as follows:

Four of the most commonly used field qualifiers are AS, DISPLAYNAME (or
COL.HDG), FORMAT (or FMT), and CONVERSION (or CONV).

Assigning a Column Alias

The AS field qualifier, although optional, specifies an alias for a column. Refer to the
column later in the query by using its alias rather than its actual name. However, an
alias cannot duplicate any entry in the file’s dictionary.

A column alias is stored temporarily in the file’s dictionary, which therefore must be
writable by the user. Consequently, you cannot define a column alias when using
SELECT to select from DICT tablename, as that requires writing to DICT.DICT,
which is read-only.

Field Qualifier Synonym

AS alias

ASSOCIATION “association” ASSOC “association”

ASSOCIATED column ASSOC.WITH column

CONVERSION code CONV “code”

DISPLAYLIKE column

DISPLAYNAME “text” DISPLAY.NAME “text”,
COL.HDG “text”

FORMAT “format” FMT “format”

MULTIVALUED MULTI.VALUE

SINGLEVALUED SINGLE.VALUE

Field Qualifiers
 2-44

C:\Program Files\Adobe\FrameMaker7.0\UniVerse 10.2\sqluser\Ch2
9/25/06
One use of an alias is to abbreviate a long column name. For example:

>SELECT DESCRIPTION AS M1, VENDOR_CODE AS M2, COST
SQL+FROM EQUIPMENT.T
SQL+ORDER BY M2, M1;
M1................................... M2 COST........

Feeding Buckets 1 15704.11
Truck 212 A Q S 3 75334.22
Hamburger Stand 4 44809.61
Harness Equipment 10 57355.77
Taffy Stand 15 86842.75
.
.
.
Panels 74 48120.87
Press any key to continue...

If a column alias is specified, the alias is used as the column heading unless it is
overridden by a COL.HDG or DISPLAY.LIKE field qualifier. You also can define a
column alias within a subquery.

Here an alias is used to assign a meaningful name to an EVAL expression:

>SELECT DESCRIPTION, EVAL 'COST * QOH' AS VALUE FROM
SQL+INVENTORY.T WHERE VALUE > 10000;
DESCRIPTION.............. VALUE....

Cookies 17107.68
Mustard 11440.00
Sawdust 16376.88
Pretzels 11774.70
Programs 11408.54
Dog Chow 12623.16
Cola 19023.55
Fried Clams 11537.94
Sea Snails 14040.18
Crow 14907.49
Franks 15087.92
Ice Cream, Various 12440.12
Ice Bags 13361.39

13 records listed.

The same result is obtained using an SQL expression:

>SELECT DESCRIPTION, COST * QOH AS VALUE FROM INVENTORY.T WHERE
VALUE > 10000;

Use of the keyword AS to define an alias is optional, although it helps to distinguish
aliases clearly and distinctly from other operations. If the AS keyword is omitted, the
AS field qualifier must be the first field qualifier in the field qualifier list.
2-45 UniVerse SQL User Guide

C:\Program
Files\Adobe\FrameMaker7.0\UniVerse
As of Release 9 of UniVerse, you can assign an alias to a select expression and set
functions. A column alias may be defined for any of the following select expressions:

Simple column name
I-descriptor column name
Literal
USER
NULL
SQL expression
Set function
EVAL clause

If a column alias is defined for a simple column name or an I-descriptor column
name, both the original column name and the alias can be referenced later in the
statement. However, an alias cannot be referenced within an UNNEST clause or a
joined table.

An alias can be referenced later in the same SELECT statement:

Within an SQL expression or set function
As the argument of a DISPLAY.LIKE field qualifier
In WHERE, WHEN, GROUP BY, HAVING, and ORDER BY clauses

If more than one column alias is specified for the same select expression, the
statement will be rejected.

Creating Column Headings (DISPLAYNAME)

By default, the column heading for a column or expression is the columnname or
expression itself (or, optionally, a default DISPLAYNAME specified for the column
in the file dictionary). To customize the heading, use DISPLAYNAME or
COL.HDG:

>SELECT DESCRIPTION DISPLAYNAME 'Inventory Item',
SQL+(QOH * COST) DISPLAYNAME 'Value'
SQL+FROM INVENTORY.T;
Inventory Item........... Value

Mustard 11440
French Fries, Frozen 1782.
 45
Crabcakes 2482.
 2-46

C:\Program Files\Adobe\FrameMaker7.0\UniVerse 10.2\sqluser\Ch2
9/25/06
 11
Jerky 5085.
 6
Cookies 17107
 .68
Handbills 6588.
 12
Horse Feed 4397.
 35
Lemonade 2229.
 21
.
.
.
Press any key to continue...

The output does not look quite right because:

The 25-character inventory description results in too much space between
the description and the value.
The value (being allocated only five positions, the length of the new column
header) wraps to the next line.

Use FORMAT to adjust the output.

Formatting Values (FORMAT)

Use FORMAT to change the width and justification of both items in the previous
example. To reduce the inventory description to only 20 left-justified characters and
extend the number of positions allocated to Value and right-justify it, enter:

>SELECT DESCRIPTION FORMAT '20L' DISPLAYNAME 'Inventory Item',
SQL+(QOH * COST) FORMAT '11R' DISPLAYNAME 'Value'
SQL+FROM INVENTORY.T;
Inventory Item...... Value......

Mustard 11440
French Fries, Frozen 1782.45
Crabcakes 2482.11
Jerky 5085.6
Cookies 17107.68
Handbills 6588.12
Horse Feed 4397.35
Lemonade 2229.21
.
.
.
Sawdust 16376.88
Press any key to continue...
2-47 UniVerse SQL User Guide

C:\Program
Files\Adobe\FrameMaker7.0\UniVerse
Formats for the UniVerse SQL FORMAT match those in RetrieVe and UniVerse
BASIC. Complete syntax of FMT formats is in UniVerse BASIC.

Converting Values (CONVERSION)

In the previous example, the value is not in the dollars-and-cents format you wanted.
You add a conversion field qualifier (CONVERSION or CONV) to the SELECT
statement to convert the result of the expression. Use a CONVERSION code such as
‘MD2$,’ to specify that the column is to be displayed with two decimal places, a
dollar sign, and a comma every third position:

>SELECT DESCRIPTION FORMAT '20L' COL.HDG 'Inventory Item',
SQL+(QOH * COST) FORMAT '11R' COL.HDG 'Value'
SQL+CONVERSION 'MD2$,' FROM INVENTORY.T;
Inventory Item...... Value......

Mustard $11,440.00
French Fries, Frozen $1,782.45
Crabcakes $2,482.11
Jerky $5,085.60
Cookies $17,107.68
Handbills $6,588.12
Horse Feed $4,397.35
Lemonade $2,229.21
.
.
.
Sawdust $16,376.88
Press any key to continue...

As seen from this last example, you can append a DISPLAYNAME, a FORMAT, and
a CONVERSION qualifier to a single column or expression to get the desired results.
The UniVerse SQL conversion codes are the same as those used in RetrieVe and
BASIC. A complete list of conversion codes is in UniVerse BASIC.
 2-48

C:\Program Files\Adobe\FrameMaker7.0\UniVerse 10.2\sqluser\Ch2
9/25/06
Other Field Qualifiers

The remaining field qualifiers are summarized as follows:

Formatting Reports with Report Qualifiers
Report qualifiers affect the report output as a whole, rather than individual row or
column outputs. For example, use report qualifiers to control the report layout in
terms of spacing between columns, spacing between rows, starting on a new page or
screen, and the use of report headers/footers and column headers.

SUPPRESS COLUMN HEADER is described in “Using Text” on page 43. The
report qualifiers and their synonyms are as follows:

Field Qualifier Description

ASSOCIATED Same as RetrieVe’s ASSOC.WITH qualifier. It associates a
column with another column that is multivalued.

ASSOCIATION Same as RetrieVe’s ASSOC qualifier. It temporarily associates
the column with an existing association of multivalued
columns.

DISPLAYLIKE Same as RetrieVe’s DISPLAY.LIKE qualifier. It sets a column’s
display characteristics to the same as those of another column.

MULTIVALUED,
SINGLEVALUED

Same as RetrieVe’s MULTI.VALUE and SINGLE.VALUE
qualifiers. Specify that the column or expression is to be treated
as multivalued or singlevalued, respectively, overriding any
existing definition in the file dictionary.

Field Qualifier

Report Qualifier Synonym

AUX.PORT

COLUMN SPACES COL.SPACES, COL.SPCS

COUNT.SUP

DOUBLE SPACE DBL.SPC

FOOTER ‘text’ FOOTING ‘text’

Report Qualifier Synonyms
2-49 UniVerse SQL User Guide

C:\Program
Files\Adobe\FrameMaker7.0\UniVerse
Report Headings and Footings

A report heading appears at the top of every screen or page of the report; a report
footing appears at the bottom. If you do not supply a heading, your output report will
have no header and will start on the next line of the screen. If you do supply one, the
report will start on a new page or at the top of the screen, and each page will have the
specified heading at the top. If you supply a footing, your report will have a footer at
the bottom of each screen or page.

In the following example, the SELECT statement specifies a header showing
MONTHLY LIVESTOCK REPORT and a footer of Press CTL-C to exit or
(which in the actual output precedes the standard message of Press any key to
continue. . .):

>SELECT NAME FROM LIVESTOCK.T
SQL+HEADER 'MONTHLY LIVESTOCK REPORT'
SQL+FOOTER 'Press CTL-C to exit or';
MONTHLY LIVESTOCK REPORT
NAME......

Bussa
Warri
Ekiti
Gboko
Marone

GRAND TOTAL GRAND.TOTAL

HEADER ‘text’ HEADING ‘text’

LPTR [n]
MARGIN n

NO.INDEX

NOPAGE NO.PAGE

SUPPRESS COLUMN
HEADING

SUPPRESS COLUMN HEADER, COL.SUP

SUPPRESS DETAIL DET.SUP

VERTICALLY VERT

Report Qualifier Synonym

Report Qualifier Synonyms (Continued)
 2-50

C:\Program Files\Adobe\FrameMaker7.0\UniVerse 10.2\sqluser\Ch2
9/25/06
Bassar
.
.
.
Baro
Press CTL-C to exit or
Press any key to continue...

Specifying HEADER DEFAULT instead produces the standard UniVerse header
(query statement, time, date, and page number) at the top of each page. Besides the
report heading and footing, you have a choice of column headers, such as the column
name, a default COL.HDG from the file dictionary, or a COL.HDG that you supply
in the query. Using SUPPRESS COLUMN HEADER eliminates the column headers
entirely. Suppress the line nn records listed., which appears at the end of
every query output, by using COUNT.SUP.

Adjusting Spacing, Margins, Pagination, and Orientation

To refine your report layout, use DOUBLE SPACE, COLUMN SPACES, and
MARGIN to adjust the spacing between columns and rows, and the left margin.
Double spacing especially is important when displaying multivalues within rows.
Adjusting column spacing allows you to either tighten up or spread out a report. Here,
COLUMN SPACES 2 tightens up the column spacing:

>SELECT LOCATION_CODE, "DATE", ADVANCE FMT '8R'
SQL+FROM ENGAGEMENTS.T
SQL+ORDER BY LOCATION_CODE COLUMN SPACES 2;
LOCATION_CODE DATE...... ADVANCE.

CCLE001 12/16/95 6988.00
CCLE001 08/19/94
CCLE001 08/20/94
.
.
.
CIAH001 12/29/94 8286.00
Press any key to continue...

Setting the left margin may be of interest if you are printing the results to be bound
in a notebook or manual. You also can use it to shift the image to the right on the
screen. Here, MARGIN 10 produces a left margin of 10 characters:

>SELECT LOCATION_CODE, "DATE", ADVANCE FMT '8R'
SQL+FROM ENGAGEMENTS.T
SQL+ORDER BY LOCATION_CODE COLUMN SPACES 2 MARGIN 10;
 LOCATION_CODE DATE...... ADVANCE.

 CCLE001 12/16/95 6988.00
2-51 UniVerse SQL User Guide

C:\Program
Files\Adobe\FrameMaker7.0\UniVerse
 CCLE001 08/19/94
 CCLE001 08/20/94
 .
 .
 .
 CIAH001 12/29/94 8286.00
Press any key to continue...

NO.PAGE (or NOPAGE) suppresses automatic pagination and causes the report to
scroll continuously on the screen or to print without formatted page breaks on the
printer.

Use VERTICALLY (or VERT) to force output to be listed in a vertical format, that
is, listing each row on a separate line:

>SELECT NAME, USE, COST FROM LIVESTOCK.T VERTICALLY;
NAME. Bussa
USE.. P
COST. 2694.00

NAME. Warri
USE.. Z
COST. 10198.00
.
.
.

NAME. Bongor
USE.. Z
COST. 4572.00
Press any key to continue...

Outputting to the System Printer

Using LPTR [n] directs the query output to your system printer. n can be from 0
through 255, indicating a logical print channel number. You can omit n, in which case
print channel 0 is assumed. To output the results of a query to print channel number
32, enter:

>SELECT NAME, USE, COST FROM LIVESTOCK.T LPTR 32;
>

 2-52

C:\Prog
Septem
2Administering UniData on Windows NT or Windows 2000
0

3
Chapter

ram Fi
ber 25,

Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta
Using Advanced SELECT
Statements
Grouping Rows (GROUP BY) 3-3
 Restrictions on Grouping Rows 3-5
 Null Values in Grouping Columns 3-6
Selecting Groups (HAVING) 3-7
Processing SQL Queries 3-9
 Showing How a Query Will Be Processed (EXPLAIN) 3-9
 Disabling the Query Optimizer (NO.OPTIMIZE) 3-10
 Avoiding Lock Delays (NOWAIT) 3-11
Joining Tables. 3-12
 Joining Two Tables. 3-14
 Outer Joins 3-18
 Selecting on Joined Tables 3-20
 Using UNION to Combine SELECT Statements 3-20
Subqueries . 3-22
 Correlated and Uncorrelated Subqueries 3-23
 Subquery Test Types 3-24
 Using Subqueries with HAVING 3-31
les\Adobe\FrameMaker7.0\UniVerse 10.2\sqluser\Ch3TOC.fm
 2006 3:33 pm Administering UniData on Windows NT or Windows 2000

C:\Program Files\Adobe\FrameMaker7.0\UniVerse 10.2\sqluser\Ch3
9/25/06
This chapter continues with queries of singlevalued rows but adds six powerful SQL
features to the command repertoire:

Grouping queries summarizes rows into groups and then selects or rejects
those groups, using the GROUP BY clause.
Selecting groups selects or rejects groups of rows, based on selection
criteria, using the HAVING clause.
Using processing qualifiers affects or reports on the processing of SQL
queries.
Joining tables allows querying multiple tables and selects data from more
than one table or file.
Subquerying uses the results of one query as input to another query.
3-2 UniVerse SQL User Guide

C:\Program
Files\Adobe\FrameMaker7.0\UniVerse
Grouping Rows (GROUP BY)
The set functions discussed under “Summarizing Table Contents (Set Functions)” on
page 35 condensed all of the detailed data selected from a table into a single,
summary row of data, much like a grand total at the bottom of a report. A single total
representing the cost of all of the equipment that was purchased resulted if you asked:

>SELECT SUM(COST) FROM EQUIPMENT.T;
SUM (COST)

 2995401.36

1 records listed.

To see the total purchases by vendor, use the UniVerse SQL GROUP BY clause:

>SELECT VENDOR_CODE, SUM(COST) FROM EQUIPMENT.T
SQL+GROUP BY VENDOR_CODE;
VENDOR_CODE SUM (COST)

 1 15704.11
 3 75334.22
 4 44809.61
 10 57355.77
 .
 .
 .
 135 94255.70
Press any key to continue...

This second query produces multiple summary rows, one for each vendor, and
summarizes the total cost of equipment purchased from each. In this instance, the
system:

1. Divides the equipment rows into groups of vendors, using the values in the
grouping column, VENDOR_CODE

2. For each group, totals the values in the COST column for all of the rows
3. Generates a single summary row for each group, showing the value of

VENDOR_CODE and the total cost

The GROUP BY clause divides a table into groups of similar rows, producing a
single result row for each group of rows that have the same values for each column
in the GROUP BY clause. Frequently, GROUP BY is combined with a set function
to produce summary values for each of these sets.
 3-3

C:\Program Files\Adobe\FrameMaker7.0\UniVerse 10.2\sqluser\Ch3
9/25/06
A side effect of GROUP BY is that the output results are sorted by the grouping
columns. This added benefit is not dictated by SQL standards, but is provided in
UniVerse SQL. To override it, use an explicit ORDER BY.

The following examples use GROUP BY.

To get a count of the number of engagements booked at each location, enter:

>SELECT LOCATION_CODE, COUNT(*) FROM ENGAGEMENTS.T
SQL+GROUP BY LOCATION_CODE;
LOCATION_CODE COUNT (*)

CCLE001 8
CDET001 8
CDFW001 8
.
.
.
WVGA001 8
Press any key to continue...

To get a count of animals by type and the range of prices paid, enter:

>SELECT DESCRIPTION, COUNT(*), MIN(COST), MAX(COST)
SQL+FROM LIVESTOCK.T
SQL+GROUP BY DESCRIPTION;
DESCRIPTION COUNT (*) MIN (COST) MAX (COST)

Aardwolf 2 5583.00 8977.00
Cacomistle 1 10078.00 10078.00
Camel 4 6016.00 8661.00
Cheetah 2 4094.00 4712.00
.
.
.
Shetland 13 1330.00 9924.00
Press any key to continue...

You can specify more than one grouping in the GROUP BY clause. For instance, to
get a count of animals by type and use, enter:

>SELECT DESCRIPTION, USE, COUNT(*)
SQL+FROM LIVESTOCK.T
SQL+GROUP BY DESCRIPTION, USE;
DESCRIPTION USE COUNT (*)

Aardwolf Z 2
Cacomistle Z 1
Camel R 4
Cheetah Z 2
Civet Z 3
Coati Z 2
3-4 UniVerse SQL User Guide

C:\Program
Files\Adobe\FrameMaker7.0\UniVerse
Dhole Z 1
Dog P 1
Elephant P 1
Elephant R 1
.
.
.
Parrot P 2
Puma Z 2
Ratel Z 1
Press any key to continue...

Restrictions on Grouping Rows
As this last example illustrates, the GROUP BY Clause allows you to see only one
level of grouping at a time (that, is you cannot nest GROUP BY clauses). However,
you can use certain keywords, such as BREAK ON and DET.SUP, to effectively
produce multilevel totals.

A column listed in the GROUP BY clause must be an actual column, not a calculated
one, and cannot be multivalued, “exploding” a multivalued column into discrete rows
using the UNNEST feature changes the column to singlevalued, and you can then use
it in a GROUP BY clause). Furthermore, any column in the select list must be a
constant, a set function, a column listed in the GROUP BY clause, or an expression
comprising some combination of these.

Null Values in Grouping Columns
Nulls are treated in a special way when they appear in a grouping column. Although
SQL treats nulls as unknown values, and therefore each null could represent a
different value, GROUP BY treats two null values found in a column as being
identical, and places them into the same output grouping.
 3-5

C:\Program Files\Adobe\FrameMaker7.0\UniVerse 10.2\sqluser\Ch3
9/25/06
Selecting Groups (HAVING)
The HAVING Clause operates with grouped queries similarly to how the WHERE
Clause operates with ungrouped queries, selecting or rejecting row groups depending
on selection criteria. The selection criteria that can be used with HAVING are the
same as those used with WHERE.

Instead of asking for a count of animals, enter the following to see only those animals
numbering more than six:

>SELECT DESCRIPTION, COUNT(*) FROM LIVESTOCK.T
SQL+GROUP BY DESCRIPTION
SQL+HAVING COUNT(*) > 6;
DESCRIPTION COUNT (*)

Lion 8
Shetland 13

2 records listed.

Another example of HAVING uses two grouping columns. Ask to see only those zoo
and parade animals numbering more than one:

>SELECT DESCRIPTION, USE, COUNT(*) FROM LIVESTOCK.T
SQL+GROUP BY DESCRIPTION, USE
SQL+HAVING (USE = 'Z' OR USE = 'P') AND COUNT(*) > 1;
DESCRIPTION USE COUNT (*)

Aardwolf Z 2
Cheetah Z 2
Civet Z 3
Coati Z 2
Fox Z 2
Horse P 3
.
.
.
Wolverine Z 3

20 records listed.
3-6 UniVerse SQL User Guide

C:\Program
Files\Adobe\FrameMaker7.0\UniVerse
The selection criteria in a HAVING clause must include at least one set function.
Otherwise, move the search criteria to a WHERE clause and apply it to individual
rows to get the same result. For instance, in the previous example, if you were not
selecting on COUNT(*), you could rephrase the query as:

>SELECT DESCRIPTION, USE, COUNT(*) FROM LIVESTOCK.T
SQL+WHERE USE = 'Z' OR USE = 'P'
SQL+GROUP BY DESCRIPTION, USE;
DESCRIPTION USE COUNT (*)

Aardwolf Z 2
Cacomistle Z 1
Cheetah Z 2
Civet Z 3
Coati Z 2
Dhole Z 1
Dog P 1
Elephant P 1
Ferret Z 1
.
.
.
Mink Z 2
Press any key to continue...

In theory, you could use a HAVING clause without a GROUP BY clause (making the
entire table, in essence, a single group). However, this is not common practice.
 3-7

C:\Program Files\Adobe\FrameMaker7.0\UniVerse 10.2\sqluser\Ch3
9/25/06
Processing SQL Queries
Processing qualifiers affect or report on the processing of SQL queries. For example,
processing qualifiers can:

Show you how a statement will be processed
Suppress the query optimizer
Avoid lock delays

Showing How a Query Will Be Processed (EXPLAIN)
Use EXPLAIN in a SELECT statement to display information about how the
statement will be processed, so that you can decide if you want to rewrite the query
more efficiently. You can also use EXPLAIN in an INSERT, UPDATE, or DELETE
statement, whenever it contains a WHERE clause or a query specification.

EXPLAIN lists the tables included in the query or WHERE clause, explains how data
will be retrieved (that is, by table, select list, index lookup, or explicit ID), and
explains how any joins will be processed. After each message, press Q to quit, or
press any other key to continue the query.

If a client program uses EXPLAIN in a SELECT statement, the statement is not
processed. Instead, an SQLSTATE value of IA000 is returned, along with the
EXPLAIN message as the message text.

To see what the EXPLAIN display looks like, enter the following:

>SELECT ORDER.NO, "DATE", CUST.NO, "DESC", QTY
SQL+FROM UNNEST ORDERS ON PROD.NO, INVENTORY
SQL+WHERE ORDERS.PROD.NO = CAST(INVENTORY.PROD.NO AS INT)
SQL+EXPLAIN;

UniVerse/SQL: Optimizing query block 0
Tuple restriction: ORDERS.PROD.NO = value expression

Driver source: ORDERS
Access method: file scan

1st join primary: ORDERS est. cost: 73
 secondary: INVENTORY est. cost: 42
 type: cartesian join using scan of secondary file

Order No Order Date Customer No
3-8 UniVerse SQL User Guide

C:\Program
Files\Adobe\FrameMaker7.0\UniVerse
Description................... Qty.
10002 14 JUL 92 6518 Collapsible Felt Top Hat
1
10002 14 JUL 92 6518 White Classic Ring
1
10002 14 JUL 92 6518 Red Classic Ring
1
10002 14 JUL 92 6518 Blue Classic Ring
1
10006 22 APR 92 6518 Red Vinyl Stage Ball
3
10004 22 AUG 92 4450 Sure Balance Unicycle
1
10004 22 AUG 92 4450 Classic Polyethylene Club
9
10005 25 NOV 92 9874 Red Classic Ring
9
10003 07 MAR 92 9825 Red Juggling Bag
10
10003 07 MAR 92 9825 Blue Juggling Bag
10
10001 11 FEB 92 3456 Red Vinyl Stage Ball
7
10001 11 FEB 92 3456 Gold Deluxe Stage Torch
4
10001 11 FEB 92 3456 Sure Balance Unicycle
1
10007 06 JUL 92 9874 Classic Polyethylene Club
3

14 records listed.

Disabling the Query Optimizer (NO.OPTIMIZE)
The query optimizer tries to determine the most efficient way to process a SELECT
statement (or an INSERT, UPDATE, or DELETE statement containing a WHERE
clause or a query specification). Use NO.OPTIMIZE to disable the query optimizer
when processing the WHERE clause.

To run the preceding example without using the query optimizer, enter the following:

>SELECT ORDER.NO, "DATE", CUST.NO, "DESC", QTY
SQL+FROM UNNEST ORDERS ON PROD.NO, INVENTORY
SQL+WHERE ORDERS.PROD.NO = CAST(INVENTORY.PROD.NO AS INT)
SQL+NO.OPTIMIZE;
 3-9

C:\Program Files\Adobe\FrameMaker7.0\UniVerse 10.2\sqluser\Ch3
9/25/06
Avoiding Lock Delays (NOWAIT)
Normally when a SELECT statement tries to access a row or table locked by another
user or process, it waits for the lock to be released, then continues processing. Use
the NOWAIT keyword to stop processing when a statement encounters a record or
file lock. If the statement is used in a transaction, processing stops and the transaction
is rolled back. The user ID of the user who owns the lock is returned to the terminal
screen or to the client program.

If a SELECT statement with NOWAIT selects an I-descriptor or an EVAL expression
that executes a UniVerse BASIC subroutine, the NOWAIT condition applies to all the
SQL operations in the subroutine.

You cannot use NOWAIT in a subquery or a view definition.

Note: At isolation level 0 or 1, a SELECT statement never encounters the locked
condition.

If the query in the next example encounters a lock set by another user, it terminates
immediately; it does not wait for the lock to be released:

>SELECT ORDER.NO, "DATE", CUST.NO, "DESC", QTY
SQL+FROM UNNEST ORDERS ON PROD.NO, INVENTORY
SQL+WHERE ORDERS.PROD.NO = CAST(INVENTORY.PROD.NO AS INT)
SQL+NO.OPTIMIZE NOWAIT;
3-10 UniVerse SQL User Guide

C:\Program
Files\Adobe\FrameMaker7.0\UniVerse
Joining Tables
An important feature of SQL is table joins, the ability to retrieve information from
more than one table. Thus far, the examples have referred to only one SQL table per
query. The diagram of the Circus database shows that many of the tables are related
to one another, as expected in a relational database.

For example, the ENGAGEMENTS.T table has a LOCATION_CODE that links to
a LOCATIONS.T table, an ACT_NO that links to an ACTS.T table, and a RIDE
_ID that links to a RIDES.T table. Likewise, the RIDES.T and ACTS.T tables link
to the PERSONNEL.T, LIVESTOCK.T, and EQUIPMENT.T tables. And both the
INVENTORY.T and EQUIPMENT.T tables link to the VENDORS.T table. All of
which strongly implies that there are many times when you might want to query two
or more of these tables in the same statement.

As with RetrieVe, you can obtain a similar result by using the TRANS function in an
I-descriptor. However, in RetrieVe you can do so only if the relationship between the
two files is defined in the dictionary, and the first file has the primary key of the
other file in one of its fields.

In UniVerse SQL, you also can use I-descriptors, but it is much easier and simpler to
use an impromptu join in your SELECT statement.

Technically, an SQL table join combines information from two or more tables on the
basis of join conditions that describe the relationships among the tables. Before
discussing table joins, let’s look briefly at Cartesian “joins.”

Cartesian Joins
If you refer to multiple tables in a SELECT statement that does not explicitly use a
join condition among the tables, the output consists of rows representing every
possible combination of rows from those tables. This is commonly called the
Cartesian product (or simply the product) of the two tables. This combined output
almost always is meaningless and misleading. Therefore querying multiple tables
without specifying a join condition is not recommended, as shown in the following
example:

>SELECT DESCRIPTION, COMPANY
SQL+FROM EQUIPMENT.T, VENDORS.T
SQL+ORDER BY DESCRIPTION;
DESCRIPTION.............. COMPANY..................

 Associated Interests
 3-11

C:\Program Files\Adobe\FrameMaker7.0\UniVerse 10.2\sqluser\Ch3
9/25/06
 Corporate Professionals
 Silver Assemblies
 Midwest Intercontinental
 Financial Wares
 City Manufacturers
 .
 .
 .
Air Compressor Commerce Exchange
Air Compressor Eastern International
Air Compressor Red Controls
Air Compressor Independent Stocks
Air Compressor Universal Devices
Air Compressor Indiana Management
Air Compressor Country Traders
Press any key to continue...

What you wanted was a list of equipment assets and the vendors from whom they
were purchased. SQL combined every item of equipment with every vendor,
producing an output result of over 5,000 rows (all the rows from the EQUIPMENT.T
table multiplied by all the rows from the VENDORS.T table). The result is
misleading because the list makes it appear as if an air compressor (and every other
kind of equipment) was purchased from each vendor.

Joining Two Tables
Specifying a join condition between the EQUIPMENT.T and VENDORS.T tables
would have produced the intended result. The two tables each have a column on
which you can construct a join based on matching values: the VENDOR_CODE
column of the EQUIPMENT.T table contains the vendor numbers that correspond to
the values in the VENDOR_CODE column of the VENDORS.T table.

An equi-join is a condition based on the equalities between two columns in the two
tables being joined. Rephrase the previous query to use an equi-join to get the
intended result:

>SELECT DESCRIPTION, COMPANY
SQL+FROM EQUIPMENT.T, VENDORS.T
SQL+WHERE EQUIPMENT.T.VENDOR_CODE = VENDORS.T.VENDOR_CODE
SQL+ORDER BY DESCRIPTION;
DESCRIPTION.............. COMPANY..................

 Illinois Operations
Air Compressor London Treating
Amplifiers Reliable Wholesale
Balloon Vending Stand Elite Salvage
Beer Keg Stand Greek Cousins
Calliope Rembrandt Rentals
3-12 UniVerse SQL User Guide

C:\Program
Files\Adobe\FrameMaker7.0\UniVerse
Cash Register Beacon Components
Coffee/cookies Stand European Plus
Computer Immediate Enterprises
Cooling System Custom Group
Copier Miami Acceptances
.
.
.
Merry-Go-Round Provencher Providers

Press any key to continue...

This time the output result has much fewer rows, and the information in each row is
properly related. The WHERE clause names one column from each of the two tables
listed in the FROM clause. It was necessary to qualify the column name
VENDOR_CODE, which appears in both the EQUIPMENT.T and VENDORS.T
tables, by its respective table name to indicate the table to which you are referring.

In addition to the equi-join on values common to both tables, you can add other join
selection criteria, even criteria based on inequalities and using a relational operator
other than “=”. Assume that you have two versions of the VENDORS.T table,
VEND1.T and VEND2.T, and you want to list those vendors in VEND1.T whose
third address line is different in VEND2.T. First you join VEND1.T and VEND2.T
on their VENDOR_CODE columns, respectively, and then select only those rows
where ADR3 differs (is unequal) between the tables. Again, because both tables
employ identical column names, the column names must be qualified:

>SELECT VEND1.T.VENDOR_CODE, VEND1.T.ADR3, VEND2.T.ADR3
SQL+FROM VEND1.T, VEND2.T
SQL+WHERE VEND1.T.VENDOR_CODE = VEND2.T.VENDOR_CODE AND
SQL+VEND1.T.ADR3 <> VEND2.T.ADR3;

UniVerse SQL processes standard table joins, also known as inner joins, in one of the
following ways:

If one of the columns is a primary key and you use an equi-join (=),
UniVerse SQL retrieves the matching row directly, much like using the
TRANS function in an I-descriptor. However, it is more efficient because
there is no UniVerse BASIC code to execute.
If neither of the columns is a primary key, UniVerse uses a secondary index
to join the tables.
If there is no index, UniVerse SQL tries to use a sort-merge-join.
All other joins are processed using a Cartesian product. For example, for
each row in the first table, the entire second table is scanned for matching
rows. This is a slow process with large tables.
 3-13

C:\Program Files\Adobe\FrameMaker7.0\UniVerse 10.2\sqluser\Ch3
9/25/06
Qualifying Column Names

Related tables often share identical column names. For example, the Circus database
has a vendor ID column named VENDOR_CODE, which appears in the
VENDORS.T, INVENTORY.T, and EQUIPMENT.T tables. To write a query
referring to two of these tables and refer to VENDOR_CODE, you need some
method to indicate which VENDOR_CODE column in which table you mean.

In such situations, you must qualify any ambiguous column name by prefacing it with
the appropriate table name and a period, for example, tablename.columnname. In a
previous example, VENDOR_CODE and ADR3 are column names that appear in
both the VEND1.T and VEND2.T tables. When they were used in the query, they
were qualified with their respective table names, “VEND1.T” and “VEND2.T”.

SQL offers a shorthand way of specifying table qualifiers through the use of table
aliases. In a previous example, rather than entering “VEND1.T” and “VEND2.T” as
part of each qualified column name, assign a shorter alias to each of the two tables
and then use those aliases as table qualifiers. Specify an alias for a table immediately
after its table name in the FROM clause:

FROM tablename alias…

For example, if you assigned “A” as the alias for VEND1.T and “B” as the alias for
VEND2.T, enter the query as:

>SELECT A.VENDOR_CODE, A.ADR3, B.ADR3
SQL+FROM VEND1.T A, VEND2.T B
SQL+WHERE A.VENDOR_CODE = B.VENDOR_CODE AND A.ADR3 <> B.ADR3;

Such shorthand is valuable when you have identically named tables in different
databases and systems, neither of which is your current database or system. Rather
than entering long table.column names, just assign a single-character alias to each
one.

Joining Three or More Tables

Joining several tables is really no different from joining two tables—just add a join
condition for each pair of tables to be joined.
3-14 UniVerse SQL User Guide

C:\Program
Files\Adobe\FrameMaker7.0\UniVerse
As an example, a new table, ACCTS.T, has been added to the database. It contains
information concerning the accounts with each vendor and it is related to
VENDORS.T through a vendor number stored in VENDOR_CODE. To see the
balances due (AMOUNT_DUE) for any of the vendors from whom tents were
purchased, enter:

>SELECT DESCRIPTION, COMPANY, AMOUNT_DUE
SQL+FROM EQUIPMENT.T, VENDORS.T, ACCTS.T
SQL+WHERE EQUIPMENT.T.VENDOR_CODE = VENDORS.T.VENDOR_CODE
SQL+AND VENDORS.T.VENDOR_CODE = ACCTS.T.VENDOR_CODE
SQL+AND DESCRIPTION LIKE ’%Tent%’;

UniVerse SQL joins the EQUIPMENT.T, VENDORS.T, and ACCTS.T tables, using
vendor number as the match, and then retrieves the requested data.

Joining a Table to Itself

Sometimes it is useful to join a table to itself. This is called a reflexive join or a self
join. For example, if each row in a PERSONNEL.T table contained not only the
employee number (BADGE_NO) of that employee, but also the employee number of
that employee’s manager (MGR), you could join the PERSONNEL.T table to itself
to look up the name of an employee’s manager.

In a relational database, you usually expect to find a second table with data about
managers, and then the situation would be a typical two-table join. But since there is
no second table, imagine that there are two copies of the PERSONNEL.T table, one
called EMPLOYEES.T and the other called MANAGERS.T. The MGR column of
the EMPLOYEES.T table would be a foreign key pointing to the MANAGERS.T
table. Use the query:

>SELECT EMPLOYEES.T.NAME, MANAGERS.T.NAME
SQL+FROM EMPLOYEES.T, MANAGERS.T
SQL+WHERE EMPLOYEES.T.MGR = MANAGERS.T.BADGE_NO;

Theoretically, this “duplicate table” approach is how UniVerse SQL joins a table to
itself. Instead of physically duplicating the table, UniVerse SQL lets you refer to it by
a different name using table aliases (see “Qualifying Column Names” on page 14).
Rewrite the previous query to assign EMPLOYEES and MANAGERS as aliases:

>SELECT EMPLOYEES.NAME, MANAGERS.NAME
SQL+FROM PERSONNEL.T EMPLOYEES, PERSONNEL.T MANAGERS
SQL+WHERE EMPLOYEES.MGR = MANAGERS.BADGE_NO;
 3-15

C:\Program Files\Adobe\FrameMaker7.0\UniVerse 10.2\sqluser\Ch3
9/25/06
The change is minor except for the definition of the two table aliases. You could
assign just one alias, PERSONNEL MANAGERS, for instance, and use the table’s
own name, PERSONNEL.T, for the other.

Analyzing a Table Join

Showing How a Query Will Be Processed (EXPLAIN) in the UniVerse SQL
Reference provides an analysis of how UniVerse SQL processes a table join. To
produce this analysis, add the keyword EXPLAIN. The report that is produced lists
the tables in the query, indicates how the data will be retrieved, and shows the
estimated I/O costs. Information is provided for each query block (SELECT clause,
subquery, and so on) that specifies multiple tables. Using this information, you can
decide if you want to continue the query, restate the query more efficiently, or bypass
it altogether.

Take one of the previous queries and add the EXPLAIN keyword:

>SELECT DESCRIPTION, COMPANY, COST CONV 'MD2$', USE_LIFE
SQL+FROM EQUIPMENT.T, VENDORS.T
SQL+WHERE EQUIPMENT.T.VENDOR_CODE = VENDORS.T.VENDOR_CODE
SQL+EXPLAIN;
UniVerse/SQL: Optimizing query block 0
Tuple selection criteria:
TRUE

Driver source: EQUIPMENT.T
Access method: file scan

1st join primary: EQUIPMENT.T est. cost: 61
 secondary: VENDORS.T est. cost: 191
 type: hashed access (primary key)

UniVerse/SQL: Press any key to continue or 'Q' to quit

The analysis names the keys on which the equi-join is based and tells you the I/O
costs of accessing each table and the type of access that will be used.

Outer Joins
The outer join of one table to another differs from an inner join in that the resulting
table may contain additional rows beyond what would be in the same tables joined
by an inner join: one additional row is produced for each row in the first table speci-
fication (the outer, or left table) that does not meet the join condition against any row
in the second table specification. An outer join is also known as a left outer join.
3-16 UniVerse SQL User Guide

C:\Program
Files\Adobe\FrameMaker7.0\UniVerse
The next two queries illustrate the distinction between an inner join and an outer join.
The first example shows the vendor name and description for every part sold by a
vendor whose name starts with H. AA and BB are table aliases (also known as corre-
lation names), used to simplify the language of the queries:

>SELECT AA.VENDOR_CODE, COMPANY, DESCRIPTION
SQL+FROM VENDORS.T AS AA INNER JOIN EQUIPMENT.T AS BB
SQL+ON AA.VENDOR_CODE = BB.VENDOR_CODE
SQL+WHERE COMPANY LIKE 'H%'
SQL+ORDER BY COMPANY;

VENDOR_CODE COMPANY.................. DESCRIPTION............
 145 Hollywood Retail Truck 246 YGN
 29 Houston Professionals Truck 588 RWJ
 29 Houston Professionals Security System
 146 Hub Sales Zoo Fencing
4 records listed.

This example also could have been written as the following ordinary join:

>SELECT AA.VENDOR_CODE, COMPANY, DESCRIPTION
SQL+FROM VENDORS.T AS AA, EQUIPMENT.T AS BB
SQL+WHERE AA.VENDOR_CODE = BB.VENDOR_CODE
SQL+AND COMPANY LIKE 'H%'
SQL+ORDER BY COMPANY;

The second example demonstrates an outer join, showing the same information as the
first example, but also including vendors whose names start with H but who do not
sell any parts:

>SELECT AA.VENDOR_CODE, COMPANY, DESCRIPTION
SQL+FROM VENDORS.T AS AA LEFT OUTER JOIN EQUIPMENT.T AS BB
SQL+ON AA.VENDOR_CODE = BB.VENDOR_CODE
SQL+WHERE COMPANY LIKE 'H%'
SQL+ORDER BY COMPANY;

VENDOR_CODE COMPANY.................. DESCRIPTION...........
 174 Harvard Consultants
 141 High Innovations
 92 Hill Marketing
 145 Hollywood Retail Truck 246 YGN
 59 Hong Kong Imports
 29 Houston Professionals Truck 588 RWJ
 29 Houston Professionals Security System
 146 Hub Sales Zoo Fencing

8 records listed.
 3-17

C:\Program Files\Adobe\FrameMaker7.0\UniVerse 10.2\sqluser\Ch3
9/25/06
Selecting on Joined Tables
When retrieving information from multiple joined tables using the SELECT
statement, the tablename.* syntax is useful. In a SELECT list, the sublist tablename.*
means “all columns of tablename” and is equivalent to specifying each column in
tablename.

The following specifics apply to using tablename.*:

If tablename is a given correlation name corrname in the FROM clause,
then you cannot use tablename.* as a sublist. Use corrname.* instead.
A sublist of the form schemaname.tablename.* is supported, but only if
schemaname.tablename appears in the FROM clause.
A sublist of the form tablename_assocname.* is supported, but only if
tablename_assocname appears in the FROM clause.
A sublist of the form filename.*, where filename is not a table, is supported
if filename appears in the FROM clause. In this case, the asterisk means
“fields defined by the @ phrase.”

Using UNION to Combine SELECT Statements
Combine two or more SELECT statements into a single result table using the UNION
operator. When a set of SELECT statements is joined by a UNION operator, it collec-
tively is called a query expression.

A query expression that contains the keyword UNION must satisfy the following
rules:

INQUIRING is not allowed in the FROM clause.
Field modifiers are not allowed.
The only allowed field qualifiers are AS, FMT, CONV, DISPLAYNAME,
and DISPLAYLIKE. Except for AS, these field qualifiers must appear in the
first SELECT of the query.

To specify that duplicate rows not be removed in the result table, add ALL to the
query. If you do not specify ALL, duplicate rows are removed.

Use query expressions as interactive SQL queries and programmatic SQL queries,
and in the CREATE VIEW statement. Query expressions cannot be used as a
subquery or in the INSERT statement.
3-18 UniVerse SQL User Guide

C:\Program
Files\Adobe\FrameMaker7.0\UniVerse
SQL processes SELECT statements joined by UNION from left to right. Specify a
different processing order by using parentheses. You cannot enclose the entire query
expression in parentheses, however.

In addition, column names, column headings, formats, and conversions used in the
result table are taken from the first SELECT statement. All SELECT statements
combined using the UNION operator must specify the same number of result
columns. Corresponding columns among the SELECT statements must belong to the
same data category (character, number, date, or time).

This example uses UNION to show all personnel and all act locations with telephone
numbers in the 617 area code:

>SELECT NAME DISPLAYNAME 'NAME or LOCATION', PHONE FROM
PERSONNEL.T
SQL+WHERE PHONE LIKE '617%'
SQL+UNION
SQL+SELECT NAME, PHONE FROM LOCATIONS.T WHERE PHONE LIKE '617%'
SQL+ORDER BY 1;

NAME or LOCATION.......... PHONE........

Anderson, Suzanne 617/451-1910
Bacon, Roger 617/562-3322
Boston Properties, Inc. 617/565-5859
Carter, Joseph 617/360-6667
Palumbo, Mark 617/541-5373

5 records listed.

DISPLAYNAME is used in the first SELECT to provide a sensible column heading,
and an ORDER BY clause is used to sort the output alphabetically.
 3-19

C:\Program Files\Adobe\FrameMaker7.0\UniVerse 10.2\sqluser\Ch3
9/25/06
Subqueries
The concept of subqueries, the ability to use a query within another query, is what
originally gave the name “structured” to Structured Query Language. Subqueries are
a powerful SQL feature that:

Permits the writing of queries that more closely parallel their English-
language equivalent
Aids querying by letting you reduce a complex query into “bite-sized”
pieces
Enables you to construct queries that cannot be written in any other way

Subqueries often provide an alternative to two separate SELECT statements or a
SELECT statement with a multitable join.

A subquery is a SELECT statement (called the inner SELECT) that is nested in
another SELECT statement (called the outer SELECT), or in an INSERT, DELETE,
or UPDATE statement. Like all SELECTs, a subquery SELECT must have a
SELECT clause and a FROM clause. It optionally can include WHERE, GROUP BY,
and HAVING clauses. When used, the subquery is enclosed in parentheses and is part
of the WHERE or HAVING clause of the outer SELECT:

SELECT… WHERE… [ALL | ANY | IN | EXISTS] (SELECT
subquery)

Subqueries can be nested to a depth of nine levels. A subquery SELECT differs in
several aspects from a regular SELECT in that it:

Can specify only one select item (column), except in the case of EXISTS
Cannot include the ORDER BY clause, INQUIRING, or any field
modifiers, field qualifiers, or report qualifiers

A less frequent use of a subquery is including it as part of a HAVING clause (see
“Using Subqueries with HAVING” on page 29).

Correlated and Uncorrelated Subqueries
Subqueries are classified as correlated or uncorrelated. A subquery is correlated
when the results it produces depend on the results of the outer SELECT statement
that contains it. All other subqueries are considered uncorrelated.
3-20 UniVerse SQL User Guide

C:\Program
Files\Adobe\FrameMaker7.0\UniVerse
Correlated Subqueries

A correlated subquery is executed repeatedly, once for each value produced by the
outer SELECT. For example, this correlated subquery lists the 10 youngest
employees on staff:

>SELECT DOB, NAME FROM PERSONNEL.T MAINSEL
SQL+WHERE 10 >
SQL+(SELECT COUNT(DOB) FROM PERSONNEL.T SUBQ
SQL+WHERE SUBQ.DOB > MAINSEL.DOB)
SQL+AND DOB IS NOT NULL
SQL+ORDER BY DOB;
DOB....... NAME.....................

02/03/73 Wang, Isabel
08/06/73 Dickinson, Timothy
08/29/73 Ellsworth, Leonard
10/26/73 Friedrich, Linda
12/10/73 Young, Pamela
12/15/73 Schultz, Mary Lou
01/03/74 Giustino, Carol
09/06/74 Kozlowski, Bill
10/04/74 Parker, Leslie
12/04/74 Torres, Stephen

10 records listed.

This subquery is correlated because the value it produces depends on
MAINSEL.DOB, the value produced by the outer SELECT. The subquery must
execute once for every row that the outer SELECT considers. Within the subquery,
COUNT(DOB) returns a value to the outer SELECT.

Uncorrelated Subqueries

An uncorrelated subquery is executed only once, and the result of executing the
subquery is the return of no value, one value, or a set of values to the outer SELECT.
Uncorrelated subqueries probably are the most common, and are shown in the next
examples.

Subquery Test Types
Subqueries always are part of the selection criteria in the WHERE Clause or
HAVING Clause of which they are a part and fall into three basic types:
 3-21

C:\Program Files\Adobe\FrameMaker7.0\UniVerse 10.2\sqluser\Ch3
9/25/06
Comparison test (=, <>, #, <, <=, >, >=): Compares an expression to the
results of the outer SELECT statement. Quantified comparisons, which use
the keyword ANY or ALL, are an extension of this.
Match test (IN): Determines whether a value is included in the results of
the inner SELECT statement.
Existence test (EXISTS): Determines whether any rows were selected by
the inner SELECT statement.

Comparison Test (=, <>, #, <, <=, >, >=)

A subquery comparison test uses the same operators as in the examples of simple
comparisons. It compares the value of each row selected by the outer SELECT with
the single value produced by the subquery.

Unless you use ANY or ALL (see “Quantified Comparisons” on page 23), the
subquery in a comparison test must produce only a single row. If it produces multiple
rows, SQL reports an error; try using the match test instead. If the subquery produces
no rows or a null value, a null will be returned. For example, list the animals with an
estimated life span longer than animal 67 (which has an estimated life span of 16
years):

>SELECT ANIMAL_ID, DESCRIPTION, EST_LIFE FROM LIVESTOCK.T
SQL+WHERE EST_LIFE > (SELECT EST_LIFE FROM LIVESTOCK.T
SQL+WHERE ANIMAL_ID = 67) ORDER BY ANIMAL_ID;
ANIMAL_ID DESCRIPTION EST_LIFE

 2 Mink 17
 3 Otter 18
 4 Lion 18
 16 Lion 18
 23 Tiger 18
 .
 .
 .
 80 Puma 19
 81 Tiger 17

25 records listed.

The processing sequence produced by this query follows. First, the (SELECT
EST_LIFE FROM LIVESTOCK.T WHERE ANIMAL_ID = 67) subquery produces
a single row consisting of the EST_LIFE value of the row where ANIMAL_ID
equals 67. Then the outer SELECT compares the EST_LIFE value of every row of
the LIVESTOCK.T table to that value and selects any rows whose value is higher.
This is an example of an uncorrelated subquery.
3-22 UniVerse SQL User Guide

C:\Program
Files\Adobe\FrameMaker7.0\UniVerse
In another example, list the inventory items that have a quantity on hand that is less
than the average quantity on hand for all the inventory:

>SELECT DESCRIPTION, QOH FROM INVENTORY.T
SQL+WHERE QOH < (SELECT AVG(QOH) FROM INVENTORY.T);
DESCRIPTION.............. QOH..

Mustard 125
French Fries, Frozen 51
Crabcakes 87
.
.
.
Large Cat Chow 127
Bird Seed 94

22 records listed.

The subquery (SELECT AVG(QOH)FROM INVENTORY.T) is evaluated first,
calculating the average QOH for the entire inventory and producing a single row
containing that average. Then the QOH in each row of the INVENTORY.T table is
compared to this value, and those rows with a QOH below the average are output.

This example of a subquery comparison uses two different tables to list the engage-
ments booked for Houston:

>SELECT LOCATION_CODE, DATE FROM ENGAGEMENTS.T
SQL+WHERE LOCATION_CODE =
SQL+(SELECT LOCATION_CODE FROM LOCATIONS.T
SQL+WHERE ADR3 LIKE 'HOUSTON%');
LOCATION_CODE DATE......

CIAH001 10/03/95
CIAH001 10/04/95
CIAH001 01/17/97
CIAH001 09/16/92
CIAH001 01/18/97
CIAH001 12/28/94
CIAH001 09/17/92
CIAH001 12/29/94

8 records listed.

Quantified Comparisons

The keywords ALL and ANY can be used to modify a subquery comparison to make
it into a quantified comparison. Subqueries in quantified comparisons can return
more than one row.
 3-23

C:\Program Files\Adobe\FrameMaker7.0\UniVerse 10.2\sqluser\Ch3
9/25/06
Using the ALL Quantifier

The ALL quantifier probably is the most commonly used quantifier. Here, the test
value is compared to each value in the column of values produced by the subquery,
one at a time. If all individual comparisons return a true result, or if no values are
returned, the result is true.

To obtain a list of every inventory item that has a cost higher than the cost of all the
animal chows, enter:

>SELECT DESCRIPTION, COST FROM INVENTORY.T
SQL+WHERE COST > ALL (SELECT COST FROM INVENTORY.T
SQL+WHERE DESCRIPTION LIKE '%Chow%');
DESCRIPTION.............. COST........

Cookies 98.32
Cola 102.83
Franks 99.92
Egg Rolls 103.80

4 records listed.

It turns out that animal feed runs from $11 for elephant chow up to $96 for domestic
dog chow; you can see in the results a list of all items that cost more than $96. A good
way to think of the ALL test is to read the previous statement as “Select those rows
where COST is greater than all of the ‘animal chow’ COSTs.”

Using the ANY Quantifier

Use the ANY quantifier (or its synonym SOME) to determine if a subquery
comparison is true for at least one of the values returned by the subquery. The value
being tested is compared to each value in the subquery results, one at a time. If any
comparison is true, a true result is returned. If the subquery returns no values, the
result is false.

Look at the result if you change the quantifier in the previous example from ALL to
ANY:

>SELECT DESCRIPTION, COST FROM INVENTORY.T
SQL+WHERE COST > ANY (SELECT COST FROM INVENTORY.T
SQL+WHERE DESCRIPTION LIKE '%Chow%');
DESCRIPTION.............. COST........

Mustard 91.52
French Fries, Frozen 34.95
Crabcakes 28.53
.
3-24 UniVerse SQL User Guide

C:\Program
Files\Adobe\FrameMaker7.0\UniVerse
.

.
Cheese Slices 88.21
Ice Bags 69.23

43 records listed.

A longer list is returned because it contains any item whose cost exceeds any one of
the animal chows, and since $11 is the cost of the elephant chow, the query selected
any item (including any other animal chows) costing more than $11. Think of the
previous SQL statement as reading “Select those rows where COST is greater than
any one of the ‘animal chow’ COSTs.”

Using ANY can be tricky, especially when used with the inequality operator (<> or
#). To see a list of trucks that were not bought from a company whose name begins
with H, enter:

>SELECT DESCRIPTION, COMPANY FROM EQUIPMENT.T, VENDORS.T
SQL+WHERE EQUIPMENT.T.VENDOR_CODE = VENDORS.T.VENDOR_CODE
SQL+AND DESCRIPTION LIKE '%Truck%'
SQL+AND EQUIPMENT.T.VENDOR_CODE <> ANY
SQL+(SELECT VENDORS.T.VENDOR_CODE FROM VENDORS.T
SQL+WHERE COMPANY LIKE 'H%');
DESCRIPTION.............. COMPANY..................

Truck 897 M X X Beacon Components
Truck 102 T I U King Finishing
Truck 413 X H K Veterans Advisers
Truck 665 B C C Ohio Treating
Truck 588 R W J Houston Professionals
Truck 243 Y G N Hollywood Retail
Truck 821 N H Y Boston Equipment
Truck 212 A Q S Accurate Surplus

8 records listed.
 3-25

C:\Program Files\Adobe\FrameMaker7.0\UniVerse 10.2\sqluser\Ch3
9/25/06
You get all trucks selected, because the subquery produces a two-row table that
contains the vendor codes for two different companies that begin with H. Because the
vendor code being tested always fails to match at least one of the two vendor codes
in the subquery result, the <> comparison always tests true, even when the source
does begin with an H, and all trucks, including those purchased from Houston Profes-
sionals and Hollywood Retail, appear in the result. The correct query is:

>SELECT DESCRIPTION, COMPANY FROM EQUIPMENT.T, VENDORS.T
SQL+WHERE EQUIPMENT.T.VENDOR_CODE = VENDORS.T.VENDOR_CODE
SQL+AND DESCRIPTION LIKE '%Truck%'
SQL+AND NOT (EQUIPMENT.T.VENDOR_CODE = ANY
SQL+(SELECT VENDORS.T.VENDOR_CODE FROM VENDORS.T
SQL+WHERE COMPANY LIKE 'H%'));
DESCRIPTION.............. COMPANY..................

Truck 897 M X X Beacon Components
Truck 102 T I U King Finishing
Truck 413 X H K Veterans Advisers
Truck 665 B C C Ohio Treating
Truck 821 N H Y Boston Equipment
Truck 212 A Q S Accurate Surplus

6 records listed.

This time any trucks bought from companies with names beginning with H were not
selected.

Changing ANY to EXISTS

You can always turn an ANY test into an EXISTS test by moving the comparison
inside the subquery. Doing so helps avoid the kinds of confusion being discussed.
Take the current example and rewrite it as an EXISTS:

>SELECT DESCRIPTION, COMPANY FROM EQUIPMENT.T, VENDORS.T
SQL+WHERE EQUIPMENT.T.VENDOR_CODE = VENDORS.T.VENDOR.CODE
SQL+AND DESCRIPTION LIKE '%Truck%'
SQL+AND NOT EXISTS (SELECT VENDORS.T.VENDOR_CODE FROM VENDORS.T
SQL+WHERE COMPANY LIKE 'H%'
SQL+AND EQUIPMENT.T.VENDOR_CODE = VENDORS.T.VENDOR_CODE);
DESCRIPTION.............. COMPANY..................

Truck 897 M X X Beacon Components
Truck 102 T I U King Finishing
Truck 413 X H K Veterans Advisers
Truck 665 B C C Ohio Treating
Truck 821 N H Y Boston Equipment
Truck 212 A Q S Accurate Surplus

6 records listed.
3-26 UniVerse SQL User Guide

C:\Program
Files\Adobe\FrameMaker7.0\UniVerse
Again, the correct results are returned.

Match Test (IN)

Using the IN Keyword in the UniVerse SQL Reference compares the test value to a
column of data values produced by the subquery and returns a true result if the test
value matches any of the values in the column. Therefore, the IN keyword is equiv-
alent to = ANY.

List the engagements that are booked into sites having at least 6,000 seats:

>SELECT ENGAGEMENTS.T.LOCATION_CODE, DATE, SEATS
SQL+FROM ENGAGEMENTS.T, LOCATIONS.T
SQL+WHERE ENGAGEMENTS.T.LOCATION_CODE =
SQL+LOCATIONS.T.LOCATION_CODE
SQL+AND ENGAGEMENTS.T.LOCATION_CODE IN
SQL+(SELECT LOCATION_CODE FROM LOCATIONS.T
SQL+WHERE SEATS >= 6000)
SQL+ORDER BY ENGAGEMENTS.T.LOCATION_CODE, DATE;
LOCATION_CODE DATE...... SEATS

CIND001 02/13/93 8000
CIND001 02/14/93 8000
CIND001 02/18/94 8000
CIND001 02/19/94 8000
CIND001 08/19/94 8000
CIND001 08/20/94 8000
CIND001 10/04/94 8000
CIND001 10/05/94 8000
CMIL001 03/04/93 6000
CMIL001 03/05/93 6000
.
.
.
WVGA001 02/12/97 8000
WVGA001 02/13/97 8000

72 records listed.

You also could have entered this as:

>SELECT ENGAGEMENTS.T.LOCATION_CODE, DATE, SEATS
SQL+FROM ENGAGEMENTS.T, LOCATIONS.T
SQL+WHERE ENGAGEMENTS.T.LOCATION_CODE =
SQL+LOCATIONS.T.LOCATION_CODE
SQL+AND ENGAGEMENTS.T.LOCATION_CODE = ANY
SQL+(SELECT LOCATION_CODE FROM LOCATIONS.T
SQL+WHERE SEATS >= 6000)
SQL+ORDER BY ENGAGEMENTS.T.LOCATION_CODE, DATE;
 3-27

C:\Program Files\Adobe\FrameMaker7.0\UniVerse 10.2\sqluser\Ch3
9/25/06
Existence Test (EXISTS)

The EXISTS test, sometimes called an existential qualifier, checks to see if a
subquery produces any rows of results at all. If the subquery select criteria produces
results, a true result is returned; if not, a false result is returned.

Because the EXISTS test does not actually use the results of the subquery, the rule
about a subquery returning only a single column of results is waived, and you can use
a SELECT *. In fact, there is no reason to use anything else.

To list the engagements scheduled in Washington state, enter:

>SELECT ENGAGEMENTS.T.LOCATION_CODE, DATE, ADR3
SQL+FROM ENGAGEMENTS.T, LOCATIONS.T
SQL+WHERE ENGAGEMENTS.T.LOCATION_CODE =
SQL+LOCATIONS.T.LOCATION_CODE
SQL+AND EXISTS (SELECT * FROM LOCATIONS.T
SQL+WHERE ENGAGEMENTS.T.LOCATION_CODE =
SQL+LOCATIONS.T.LOCATION_CODE
SQL+AND ADR3 LIKE '% WA %');
LOCATION_CODE DATE...... ADR3.....................

WSEA001 12/07/95 SEATTLE WA 96030
WSEA001 12/08/95 SEATTLE WA 96030
WSEA001 06/04/95 SEATTLE WA 96030
WSEA001 06/05/95 SEATTLE WA 96030
WSEA001 02/16/95 SEATTLE WA 96030
WSEA001 02/17/95 SEATTLE WA 96030
WSEA001 02/21/96 SEATTLE WA 96030
WSEA001 02/22/96 SEATTLE WA 96030

8 records listed.

This is one of those instances where it would be simpler to use a table join instead of
a subquery:

>SELECT ENGAGEMENTS.T.LOCATION_CODE, DATE, ADR3
SQL+FROM ENGAGEMENTS.T, LOCATIONS.T
SQL+WHERE ENGAGEMENTS.T.LOCATION_CODE =
SQL+LOCATIONS.T.LOCATION_CODE
SQL+AND ADR3 LIKE '% WA %';
3-28 UniVerse SQL User Guide

C:\Program
Files\Adobe\FrameMaker7.0\UniVerse
Using Subqueries with HAVING
Although subqueries are more commonly found in WHERE clauses, you also can use
them in HAVING clauses. An example of how you would use a subquery in a
HAVING clause is a case where you list all the animals, grouped by use, with an
estimated life span greater than the average estimated life span of all the animals:

>SELECT USE, NAME, EST_LIFE FROM LIVESTOCK.T
SQL+GROUP BY USE, NAME, EST_LIFE
SQL+HAVING EST_LIFE > (SELECT AVG(EST_LIFE) FROM LIVESTOCK.T);
USE NAME...... EST_LIFE

P Bassar 18
P Bauchi 18
P Bussa 18
P Foula 16
.
.
.
Z Mongo 15
Press any key to continue...

This subquery computed the average estimated life span (14.26 years) of all the
animals in the LIVESTOCK.T table, then compared the estimated life of each animal
to that average, selecting those that are greater than the average.
 3-29

C:\Prog
Septem
3Administering UniData on Windows NT or Windows 2000
0

4
Chapter

ram Fi
ber 25,

Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta
Selecting on Multivalued
Columns
Uses for Multivalued Columns 4-3
Associations . 4-4
Multivalued Columns in the Sample Database 4-5
Selection Criteria and Multivalued Columns 4-6
 Using WHERE 4-9
 Using WHEN 4-11
 Using UNNEST 4-14
Using Set Functions 4-19
Subqueries on Nested Tables 4-22
Using Dynamic Normalization 4-24
les\Adobe\FrameMaker7.0\UniVerse 10.2\sqluser\Ch4TOC.fm
 2006 3:33 pm Administering UniData on Windows NT or Windows 2000

C:\Program
Files\Adobe\FrameMaker7.0\UniVerse
This chapter explains how to use UniVerse SQL to access and manipulate data stored
in UniVerse’s multivalued columns. It also discusses dynamic normalization.

The real world operates in ways that are difficult to represent in a database. Real-
world data often is multilayered—people have multiple charge accounts, more than
one dependent, several telephone numbers at which they can be reached, and a long
string of places they have lived, schools they have attended, and companies for which
they have worked.

Most conventional relational databases can hold only a singlevalue in each cell (the
intersection of a column and a row). Multiple values are consigned to a separate table
and linked to their associated rows using a common key field. UniVerse is designed
to handle multivalued columns, which enable a single cell to hold an array of values,
with each value separated from the next by a delimiter called a value mark.
 4-2

C:\Program Files\Adobe\FrameMaker7.0\UniVerse 10.2\sqluser\Ch4
9/25/06
Uses for Multivalued Columns
One common use of a multivalued column is to store a where-used list. Suppose you
have a particular part that is a component of many different products. A multivalued
column in a PARTS record would contain the primary key values of all the
PRODUCT records for products that include that part. As another example, you
might have a number of people working on a particular project. A multivalued
column in a PROJECT record would contain the employee IDs of all the people
working on that project. In the Circus database, an example of a where-used list is the
multivalued column EQUIP_CODE in the VENDORS.T table, which lists the IDs of
the equipment purchased from each vendor.

Another use for multivalued columns is to store a small number of alternate pieces of
information. A PHONE column could contain more than one phone number per row:
a primary contact number, alternate numbers, a fax number, and even an Internet
address. In the Circus database, the three different kinds of vaccination given the
circus animals are stored in a group of multivalued columns in the LIVESTOCK.T
table.

In conventional database management systems, you must create your own secondary
tables to handle these relatively common situations. Sometimes it may be beneficial
to store such information in separate tables, for ease of updating, for example.
However, such separation often created extra work for the implementors and
unnecessary overhead for the system.

With UniVerse SQL, you have the best of both worlds. You can use multivalued
columns and related tables, choosing the approach best suited to your needs.
4-3 UniVerse SQL User Guide

C:\Program
Files\Adobe\FrameMaker7.0\UniVerse
Associations
You can group related multivalued columns together as an association. This means
that, in each row, the first value in one multivalued column of an association has a
one-to-one relationship to the first values in all the other associated columns, all the
second position values in each associated column have the same relationship, and so
forth. An association, therefore, is an array of columns containing related multivalues
and, in effect, can be thought of as a nested table or a table within a table.

To extend one of the earlier examples, suppose that people are assigned to a project
for a finite period of time. In UniVerse, you could create three associated multivalued
columns in the PROJECT.T table for the employee ID, his or her start date on the
project, and the scheduled release date. It is necessary to define these three columns
as an association, because the start and release dates are not just a pile of dates, but
each one is associated with an employee.

Although not required, many associations are generated specifying a key. An
association key, when combined with the primary key of the base table (or the @ID
column if the table has no primary key), can be thought of as the primary key of the
“table within a table” that the association represents. If you designate only one
column as the key, that column automatically has the column constraint
ROWUNIQUE. The depth of an association (number of nested association rows
within a particular base table row) is determined by the maximum number of values
in any of its key columns, or in all of its columns if there is no association key.
 4-4

C:\Program Files\Adobe\FrameMaker7.0\UniVerse 10.2\sqluser\Ch4
9/25/06
Multivalued Columns in the Sample Database
The Circus database has many examples of multivalued columns. INVENTORY.T,
for example, shows how such columns are used.

In INVENTORY.T, multivalued columns store an order history for each inventory
item. The ordering information is stored in the columns named VENDOR_CODE
and ORDER_QTY, which record the vendor from which the item was purchased and
the quantity purchased. These columns are related to one another through an
association called ORDERS_ASSOC, which tells the system that the first value in the
VENDOR_CODE column for a row is associated with the first value in the
ORDER_QTY column for that row.

To see the orders for hot dog buns, enter:

>SELECT DESCRIPTION, VENDOR_CODE, ORDER_QTY
SQL+FROM INVENTORY.T
SQL+WHERE DESCRIPTION = 'Hot Dog Buns';
DESCRIPTION.............. VENDOR_CODE ORDER_QTY

Hot Dog Buns 43 300
 231 700
 63 700
 13 500
 210 700
 36 500
 34 500
 67 900
1 records listed.

The output shows that eight orders have been placed for hot dog buns. In UniVerse,
data about all eight orders can be stored in a single row of the INVENTORY.T table,
the row for hot dog buns.

If this database were stored in a conventional relational database management
system, the orders data would be stored in a separate ORDERS.T table, with each row
in the table linked to a corresponding row in the INVENTORY.T table by an
ITEM_CODE that matches the ITEM_CODE of the INVENTORY.T table. The
SELECT would be more complex:

>SELECT DESCRIPTION, VENDOR_CODE, ORDER_QTY
SQL+FROM INVENTORY.T, ORDERS.T
SQL+WHERE ORDERS.T.ITEM_CODE = INVENTORY.T.ITEM_CODE
SQL+AND DESCRIPTION = 'Hot Dog Buns';
4-5 UniVerse SQL User Guide

C:\Program
Files\Adobe\FrameMaker7.0\UniVerse
Selection Criteria and Multivalued Columns
You can select rows based on multivalued columns in much the same way as you use
singlevalued columns, but multivalued columns offer a few more options. With
multivalued columns, you can use several types of clauses to select the data you want
to see. The WHERE clause also is used with singlevalued columns, but the remaining
three clauses are used solely with multivalued columns:

It is almost impossible to understand these different clauses and how they work in
combination from just a line or two of explanation. The best way to learn about them
is to observe their different effects on the output results, as shown in the following
sections. You are encouraged to experiment with different combinations of these
clauses to fine tune your output.

To show how these clauses work, the next several examples start with a simple
request and build upon it. To list the animals that have any booster shots due before
1996, enter:

>SELECT NAME, VAC_TYPE, VAC_NEXT
SQL+FROM LIVESTOCK.T
SQL+WHERE VAC_NEXT <= '12/31/95';
NAME...... VAC_TYPE VAC_NEXT..

Bussa R 10/11/96
 P 04/25/95
 L 05/05/96
Warri R 09/03/95
 P 05/05/96
 L 11/25/96

Clause Effect

WHERE Clause Selects rows where at least one of the values in the multivalued
column matches the selection criteria.

WHERE EVERY Selects rows where all of the values in the multivalued column match
the selection criteria.

WHEN Clause Further determines which of the multivalues in the selected rows are
to be actually displayed in the output.

UNNEST Clause Explodes the multivalued association values so that each such value
is combined with the other data in the row to form a complete and
separate record.

Selection Criteria with Multivalued Columns
 4-6

C:\Program Files\Adobe\FrameMaker7.0\UniVerse 10.2\sqluser\Ch4
9/25/06
Ekiti R 08/25/95
 P 08/04/95
 L 03/11/95
Gboko R 01/03/95
.
.
.
Wurno R 02/08/96
Press any key to continue...

Using just the WHERE clause, you get a listing of all the animals who have any
booster shots scheduled before 1996. But all the multivalues in any selected row are
treated as one entity, with no attempt to distinguish between those values that satisfy
the WHERE clause and those that don’t. For example, Bussa has three booster shots
scheduled, one during 1995, and two in 1996. The output shows the data for all three
boosters because you asked to see all rows that have at least one booster scheduled
before 1996. If this is confusing, think of using WHERE alone as really asking for
WHERE ANY.

WHERE may be what you want in some cases, but at other times you may want to
see only those boosters that match your criteria. In the latter case, to extract a subset
of the multivalued data selected, use a WHEN clause. List the animals that have any
booster shots due before the end of 1995, and show the particulars for only those
shots:

>SELECT NAME, VAC_TYPE, VAC_NEXT
SQL+FROM LIVESTOCK.T
SQL+WHERE VAC_NEXT <= '12/31/95'
SQL+WHEN VAC_NEXT <= '12/31/95';
NAME...... VAC_TYPE VAC_NEXT..

Bussa P 04/25/95
Warri R 09/03/95
Ekiti R 08/25/95
 P 08/04/95
 L 03/11/95
Gboko R 01/03/95
.
.
.
Imese P 12/03/95
 L 12/03/95
Press any key to continue...

The effect of this version is to first select the rows with at least one booster scheduled
before 1996, and from those rows extract only the applicable data. This time, in
Imese’s case, you see only the two boosters that are scheduled before 1996, because
the WHEN clause filters the multivalues selected by the WHERE clause.
4-7 UniVerse SQL User Guide

C:\Program
Files\Adobe\FrameMaker7.0\UniVerse
You can achieve almost the same result by using an UNNEST clause to “explode”
each set of multivalues into discrete rows, so that the WHERE clause can operate on
each exploded row as if it were singlevalued. For example:

>SELECT NAME, VAC_TYPE, VAC_NEXT
SQL+FROM UNNEST LIVESTOCK.T ON VAC_ASSOC
SQL+WHERE VAC_NEXT <= '12/31/95';
NAME...... VAC_TYPE VAC_NEXT..

Bussa P 04/25/95
Warri R 09/03/95
Ekiti R 08/25/95
Ekiti P 08/04/95
Ekiti L 03/11/95
Gboko R 01/03/95
Gboko P 08/19/95
Gboko L 12/17/95
Marone R 01/22/95
Marone P 05/08/95
Marone L 08/31/95
.
.
.
Imese P 12/03/95
Press any key to continue...

In this query, the UNNEST clause creates a virtual table containing a row for each
multivalue and then the WHERE clause selects on those rows. Again, the output
shows only those vaccination values that satisfy the date criterion. The difference
between the output of this example and that of the previous one is that the data in
columns not included in the association (NAME) is repeated on each line.

Note: You cannot use UNNEST and WHEN clauses that both refer to the same
association because an UNNEST clause changes the multivalued columns in the
association to singlevalued, and the WHEN clause does not operate on singlevalued
columns.

If you use a WHERE EVERY clause, there is no problem with seeing extraneous
vaccination information, because the query selects only those rows where all booster
shots satisfy the date criterion.

List those animals with all three booster shots scheduled before 1996:

>SELECT NAME, VAC_TYPE, VAC_NEXT
SQL+FROM LIVESTOCK.T
SQL+WHERE EVERY VAC_NEXT <= '12/31/95';
NAME...... VAC_TYPE VAC_NEXT..

Ekiti R 08/25/95
 P 08/04/95
 4-8

C:\Program Files\Adobe\FrameMaker7.0\UniVerse 10.2\sqluser\Ch4
9/25/06
 L 03/11/95
Gboko R 01/03/95
 P 08/19/95
 L 12/17/95
Marone R 01/22/95
 P 05/08/95
 L 08/31/95
Moundon R 06/12/95
 P 03/27/95
 L 03/30/95
Namoda R 09/17/95
.
.
.
Kribi R 08/13/95
Press any key to continue...

Now the output lists only those animals that have all three booster shots scheduled
before 1996.

The preceding examples give you some idea of the variety of outputs you can get
when selecting on multivalued columns. The following sections explain each option
in greater detail.

Using WHERE
In dealing with multivalued columns, you must understand the distinction between
the function of the WHERE Clause and the function of the WHEN clause, which is
a UniVerse SQL enhancement that is used exclusively with multivalued columns.
Remember that WHERE retrieves rows, and WHEN selectively displays multivalues
in those selected rows.

When you want to retrieve rows where one or more of the values in a multivalued
column satisfies the criteria, use the WHERE clause, which operates somewhat like
it did with singlevalued columns. As with singlevalued columns, you can use any of
the other comparison operators or any keywords such as BETWEEN, IN, SAID,
LIKE, IS NULL, and NOT.

List the employees who have any dependents born since 2/1/89:

>SELECT NAME, DEP_DOB, DEP_NAME FROM PERSONNEL.T
SQL+WHERE DEP_DOB > '2/1/89';
NAME..................... DEP_DOB... DEP_NAME..

Nelson, Lisa 09/27/69 Robert
 04/13/94 Brian
Niederberger, Brian 11/16/68 Darlene
4-9 UniVerse SQL User Guide

C:\Program
Files\Adobe\FrameMaker7.0\UniVerse
 06/30/94 Marion
Torres, Stephen 10/26/76 Patricia
 11/27/94 Cecilia
Osborne, Paul 03/07/58 Evelyn
 10/13/92 Russell
 01/30/93 Harold
Perry, Patricia 02/18/62 Brian
.
.
.
Morse, Carol 09/06/67 Leonard
 06/06/90 Jacqueline
Press any key to continue...

The next query does a table join using the multivalued column EQUIP_CODE in the
PERSONNEL.T table and the singlevalued column EQUIP_CODE in the
EQUIPMENT.T table to obtain a list of employees who have had experience running
the hot dog stand:

>SELECT NAME FROM PERSONNEL.T, EQUIPMENT.T
SQL+WHERE PERSONNEL.T.EQUIP_CODE = EQUIPMENT.T.EQUIP_CODE
SQL+AND DESCRIPTION LIKE 'Hot Dog%';
NAME.....................

Morse, Leonard
King, Nathaniel
Ford, Hope
Milosz, Charles
Anderson, Suzanne

5 records listed.

In this case, PERSONNEL.T.EQUIP_CODE = EQUIPMENT.T. EQUIP_CODE
is the join condition between PERSONNEL.T and EQUIPMENT.T, as expected. But
no join condition is necessary between each employee in the PERSONNEL.T table
and his or her list of equipment operating skills (the multivalued column,
EQUIP_CODE) because it is part of a “table within a table” (the association
EQUIP_ASSOC, which comprises the multivalued columns EQUIP_CODE and
EQUIP_PAY).

Using EVERY

To select only those rows where every value in a multivalued column meets the
selection criteria, you can add the keyword EVERY to the WHERE clause.
 4-10

C:\Program Files\Adobe\FrameMaker7.0\UniVerse 10.2\sqluser\Ch4
9/25/06
This example uses EVERY to list those inventory items for which all order quantities
are 700 units or less. The output lists only those rows where every multivalue satisfies
the selection criterion.

>SELECT ITEM_TYPE, DESCRIPTION, ORDER_QTY FROM INVENTORY.T
SQL+WHERE EVERY ORDER_QTY <= 700;
ITEM_TYPE DESCRIPTION.............. ORDER_QTY

D Mustard 400
R French Fries, Frozen 600
R Cookies 500
.
.
.
B Film 500
 200
 400
 600
Press any key to continue...

WHERE EVERY selects a row for which the association containing the multivalued
column has no association rows (that is, the multivalued column has no values).
When a set is empty, every one of its values meets any selection criteria, whatever
they are.

Using WHEN
When you use just the WHERE clause, the output result contains all of the values in
the multivalued column, even though you may be interested in only some of them.

In the example that asked for a list of animals who had any booster shots scheduled
before 1996, the output listed the VAC_TYPE and VAC_NEXT for all of the
animal’s shots, even those that were not scheduled before 1996. To see only those
shots scheduled during the period requested, add a WHEN clause:

>SELECT NAME, VAC_TYPE, VAC_NEXT
SQL+FROM LIVESTOCK.T
SQL+WHERE VAC_NEXT < '12/31/95'
SQL+WHEN VAC_NEXT < '12/31/95';

The WHEN Clause limits output from multivalued columns to only those values that
meet specified criteria, without having to unnest the columns first.
4-11 UniVerse SQL User Guide

C:\Program
Files\Adobe\FrameMaker7.0\UniVerse
As another example, ask for a list of all locations and the fees charged by their
government agencies:

>SELECT DESCRIPTION FMT '30L', GOV_AGENCY, GOV_FEE
SQL+FROM LOCATIONS.T;
DESCRIPTION.................. GOV_AGENCY............... GOV_FEE.....

Detroit State Fair Ground Health Inspector 3231.00
 Sales Tax Authority 1504.00
 Police, Paid Detail 615.00
 Labor Inspector 4045.00
 Alcohol Tobacco Firearms 1772.00
 Weights And Measures 3274.00
 Food & Ag (Animal Health) 3082.00
 Fire Marshal 4659.00
 Environmental Permitting 761.00
 Zoning Board 2218.00
Houston State Fair Ground Health Inspector 3931.00
 Sales Tax Authority 2673.00
 Police, Paid Detail 3931.00
 Labor Inspector 2756.00
 Alcohol Tobacco Firearms 4582.00
 Weights And Measures 2325.00
 Food & Ag (Animal Health) 3523.00
 Fire Marshal 3109.00
 Environmental Permitting 4596.00
 Zoning Board 2094.00
Milwaukee State Fair GroundHealth Inspector 1295.00
Press any key to continue...

WHEN is most commonly used with a WHERE clause. Recall that WHERE affects
retrieval, and WHEN affects output results.

The next example retrieves the rows from LOCATIONS.T for those towns where at
least one government agency charges a fee of over $5,200:

>SELECT DESCRIPTION FMT '30L', GOV_AGENCY, GOV_FEE
SQL+FROM LOCATIONS.T
SQL+WHERE GOV_FEE > 5200;
DESCRIPTION.................. GOV_AGENCY............... GOV_FEE.....

Milwaukee State Fair Ground Health Inspector 1295.00
 Sales Tax Authority 3217.00
 Police, Paid Detail 2394.00
 Labor Inspector 4262.00
 Alcohol Tobacco Firearms 1916.00
 Weights And Measures 793.00
 Food & Ag (Animal Health) 5219.00
 Fire Marshal 1440.00
 Environmental Permitting 3649.00
 Zoning Board 645.00
Minneapolis State Fair Ground Health Inspector 5321.00
 Sales Tax Authority 3433.00
 Police, Paid Detail 2783.00
 Labor Inspector 3603.00
 Alcohol Tobacco Firearms 5455.00
 Weights And Measures 1844.00
 Food & Ag (Animal Health) 868.00
 4-12

C:\Program Files\Adobe\FrameMaker7.0\UniVerse 10.2\sqluser\Ch4
9/25/06
 Fire Marshal 1422.00
 Environmental Permitting 1428.00
 Zoning Board 5019.00
Los Angeles State Fair Ground Health Inspector 2604.00
 Sales Tax Authority 4681.00
 Police, Paid Detail 4289.00
 Labor Inspector 3175.00
 Alcohol Tobacco Firearms 3684.00
 Weights And Measures 1103.00
 Food & Ag (Animal Health) 5473.00
 Fire Marshal 4194.00
Press any key to continue...

The result lists all the government fees charged at those locations. If you want the
output to include only those fees over $5,200, add a WHEN clause that echoes the
WHERE clause’s selection criteria:

>SELECT DESCRIPTION FMT '30L', GOV_AGENCY, GOV_FEE
SQL+FROM LOCATIONS.T
SQL+WHERE GOV_FEE > 5200
SQL+WHEN GOV_FEE > 5200;
DESCRIPTION................... GOV_AGENCY............... GOV_FEE.....

Milwaukee State Fair Ground Food & Ag (Animal Health) 5219.00
Minneapolis State Fair Ground Health Inspector 5321.00
 Alcohol Tobacco Firearms 5455.00
Los Angeles State Fair Ground Food & Ag (Animal Health) 5473.00
Cleveland State Fair Ground Police, Paid Detail 5360.00
 Environmental Permitting 5240.00
Dallas State Fair Ground Alcohol Tobacco Firearms 5288.00
New Orleans State Fair Ground Sales Tax Authority 5277.00
 Fire Marshal 5207.00
Topsfield Fair Fire Department 5430.00
Seattle State Fair Ground Health Inspector 5235.00
Golden Gate Exposition Center Labor Inspector 5347.00
Atlanta State Fair Ground Police, Paid Detail 5226.00
Chicago State Fair Ground Police, Paid Detail 5326.00
 Fire Marshal 5449.00
Savannah State Fair Ground Police, Paid Detail 5330.00
Reno State Fair Ground Food & Ag (Animal Health) 5462.00

13 records selected. 17 values listed.

You can use the WHEN clause alone, without a corresponding WHERE clause, to
suppress display of certain multivalues. To list all of the rows in the LOCATIONS.T
table, but not display any multivalued agency fees that are below $5,200, enter:

>SELECT DESCRIPTION FMT '30L', GOV_AGENCY, GOV_FEE
SQL+FROM LOCATIONS.T
SQL+WHEN GOV_FEE >= 5200;
DESCRIPTION................... GOV_AGENCY............... GOV_FEE.....

Detroit State Fair Ground
Houston State Fair Ground
Milwaukee State Fair Ground Food & Ag (Animal Health) 5219.00
Minneapolis State Fair Ground Health Inspector 5321.00
 Alcohol Tobacco Firearms 5455.00
Springfield State Fair Ground
4-13 UniVerse SQL User Guide

C:\Program
Files\Adobe\FrameMaker7.0\UniVerse
Washington State Fair Ground
Los Angeles State Fair Ground Food & Ag (Animal Health) 5473.00
Cleveland State Fair Ground Police, Paid Detail 5360.00
 Environmental Permitting 5240.00
Dallas State Fair Ground Alcohol Tobacco Firearms 5288.00
New Orleans State Fair Ground Sales Tax Authority 5277.00
 Fire Marshal 5207.00

Chicago State Fair Ground Police, Paid Detail 5326.00
 Fire Marshal 5449.00
Hartford State Fair Ground
Press any key to continue...

Using UNNEST
When retrieving data from multivalued columns, the output consists of one line for
each selected row, with the values of any multivalued columns listed on successive
lines:

>SELECT ANIMAL_ID, NAME, VAC_TYPE, VAC_DATE
SQL+FROM LIVESTOCK.T
SQL+WHERE NAME = 'Ekiti';
ANIMAL_ID NAME...... VAC_TYPE VAC_DATE..

 32 Ekiti R 08/25/92
 P 08/04/92
 L 03/11/92

1 records listed.

Even though it may look like three rows of output, what you are actually seeing is a
single output row displayed on three lines, which is confirmed by the 1 records
listed. message. Sometimes you want to treat each association row as a separate
row.

There are several reasons to do this. One reason was mentioned earlier, when
UNNEST Clause was used as an alternative to the WHERE/WHEN clause
combination to produce output of only those multivalues that satisfied the selection
criterion. Another reason is to include the values from the other (nonmultivalued)
columns in the table on every line of the output.

The UNNEST clause “unnests” or explodes associated table rows containing
multivalued data and produces a separate row for each multivalue. Unnesting is
performed before anything else, and the unnested columns are treated as singlevalued
columns for the remainder of the processing of the query.
 4-14

C:\Program Files\Adobe\FrameMaker7.0\UniVerse 10.2\sqluser\Ch4
9/25/06
The UNNEST clause names the table, and either an association name or the name of
a multivalued column (column aliases cannot be used) within the association. Its
syntax is as follows:

FROM UNNEST tablename ON {association_name | columnname}
Add an UNNEST clause to the previous query and see the difference in the output
result:

>SELECT ANIMAL_ID, NAME, VAC_TYPE, VAC_DATE
SQL+FROM UNNEST LIVESTOCK.T ON VAC_ASSOC
SQL+WHERE NAME = 'Ekiti';
ANIMAL_ID NAME...... VAC_TYPE VAC_DATE..

 32 Ekiti R 08/25/92
 32 Ekiti P 08/04/92
 32 Ekiti L 03/11/92

3 records listed.

Getting a totally separate and complete row for each multivalue in the association
VAC_ASSOC, with the common single-column data (ANIMAL_ID and NAME)
replicated on each line, provides several potential advantages:

By repeating the data from the singlevalued columns on each line, the output
may be rendered more readable in certain circumstances.
By retrieving a virtual row for each value in a multivalued column, you can
treat the retrieved rows as if they contained all singlevalued columns. An
earlier example used UNNEST to cause a WHERE clause to select on multi-
valued columns as if they were singlevalued, without needing to add a
WHEN clause:

>SELECT NAME, VAC_TYPE, VAC_NEXT
SQL+FROM UNNEST LIVESTOCK.T ON VAC_ASSOC
SQL+WHERE VAC_NEXT < '12/31/95';
4-15 UniVerse SQL User Guide

C:\Program
Files\Adobe\FrameMaker7.0\UniVerse
The next query does a table join using the multivalued column EQUIP_CODE in the
PERSONNEL.T table and the singlevalued column EQUIP_CODE in the
EQUIPMENT.T table to obtain a list of the equipment that Daniel Hanson has used:

>SELECT NAME, PERSONNEL.T.EQUIP_CODE, DESCRIPTION
SQL+FROM UNNEST PERSONNEL.T ON EQUIP_ASSOC, EQUIPMENT.T
SQL+WHERE NAME LIKE 'Hanson, Daniel%'
SQL+AND PERSONNEL.T.EQUIP_CODE = EQUIPMENT.T.EQUIP_CODE;
NAME..................... EQUIP_CODE
DESCRIPTION..............

Hanson, Daniel 28 Truck 897 M X X
Hanson, Daniel 39 Zoo Fencing
Hanson, Daniel 42 Desk Credenza Sets
Hanson, Daniel 26 Truck 243 Y G N

4 records listed.

Use the same join to determine which pieces of equipment each of the staff members
has used:

>SELECT NAME, PERSONNEL.T.EQUIP_CODE, DESCRIPTION
SQL+FROM UNNEST PERSONNEL.T ON EQUIP_ASSOC, EQUIPMENT.T
SQL+WHERE PERSONNEL.T.EQUIP_CODE = EQUIPMENT.T.EQUIP_CODE;
NAME..................... EQUIP_CODE
DESCRIPTION..............

Sunshine, Susie 12 Beer Keg Stand
Irwin, Rebecca 4 Lucky Dip Stand
Hanson, Daniel 28 Truck 897 M X X
Hanson, Daniel 39 Zoo Fencing
Hanson, Daniel 42 Desk Credenza Sets
Hanson, Daniel 26 Truck 243 Y G N
Vaughan, Randall 50 Video Cameras
Vaughan, Randall 1 Souvenir Stand
Nelson, Lisa 48 Copier

Bailey, Cheryl 42 Desk Credenza Sets
.
.
.
Kozlowski, Nicholas 43 Feeding Buckets
Kozlowski, Nicholas 1 Souvenir Stand
Press any key to continue...
 4-16

C:\Program Files\Adobe\FrameMaker7.0\UniVerse 10.2\sqluser\Ch4
9/25/06
The following example shows the use of a multivalued column in a subquery to get
a list of those inventory items that had order quantities higher than 1.5 times the
average of all order quantities:

>SELECT DESCRIPTION, ORDER_QTY
SQL+FROM UNNEST INVENTORY.T ON ORDERS_ASSOC
SQL+WHERE ORDER_QTY >
SQL+(SELECT (AVG(ORDER_QTY) * 1.5) FROM INVENTORY.T);
DESCRIPTION.............. ORDER_QTY

Crabcakes 800
Crabcakes 900
Jerky 900
Handbills 800
Handbills 900
Horse Feed 900
Ticket Stock 900
.
.
.
Popcorn 800
Press any key to continue...

Although all of the UNNEST examples have used the association name connected
with the multivalued columns in its ON phrase, they could just as well have used the
name of one of the multivalued columns within the association. But even if multi-
valued columns are unassociated, the “table within a table” principle still holds. As
mentioned earlier, the VENDORS.T table contains a pure where-used list in the
multivalued column EQUIP_CODE. You can treat EQUIP_CODE as though it were
in an association.

List the IDs of the equipment that was purchased from Utopia Professionals:

>SELECT VENDORS.T.EQUIP_CODE
SQL+FROM UNNEST VENDORS.T ON EQUIP_CODE, EQUIPMENT.T
SQL+WHERE COMPANY LIKE 'Utopia Professionals%'
SQL+AND VENDORS.T.EQUIP_CODE = EQUIPMENT.T.EQUIP_CODE;
EQUIP_CODE

 49
 34
 27

3 records listed.
4-17 UniVerse SQL User Guide

C:\Program
Files\Adobe\FrameMaker7.0\UniVerse
Using Set Functions
The set functions (AVG, COUNT, MAX, MIN, and SUM), described in Chapter 2,
“Using SELECT Statements,” are as applicable to multivalued columns as they are
to singlevalued ones.

As an example, each row of the ENGAGEMENTS.T table represents a booking at a
particular location (LOCATION_CODE) on a particular date (DATE). One associ-
ation of multivalued columns in that table represents entrance gates,
GATE_NUMBER represents the gate number (1 through 20), and GATE_TICKETS
records the number of tickets sold at that gate. There is also a third column,
GATE_REVENUE, which records the revenues for the gate.

1. To see the ticket sales by gate for the performance in East Atlanta on
3/18/94, enter:

>SELECT LOCATION_CODE, DATE, GATE_NUMBER, GATE_TICKETS
SQL+FROM ENGAGEMENTS.T
SQL+WHERE LOCATION_CODE LIKE 'EATL%' AND DATE = '03/18/94';
LOCATION_CODE DATE...... GATE_NUMBER GATE_TICKETS

EATL001 03/18/94 1 163
 2 615
 3 133
 4 774
 5 261
 6 1006
 7 479
 8 594
 9 504
 10 888
 11 419
 12 1192
 13 653
 14 677
 15 303
 16 471
 17 435
 18 305
 19 577
 20 115

1 records listed.
 4-18

C:\Program Files\Adobe\FrameMaker7.0\UniVerse 10.2\sqluser\Ch4
9/25/06
2. To calculate the average ticket sales per gate on that date, just replace the
column specifications with the AVG function:

>SELECT AVG(GATE_TICKETS) CONV 'MD0'
SQL+FROM ENGAGEMENTS.T
SQL+WHERE LOCATION_CODE LIKE 'EATL%' AND DATE = '03/18/94';
AVG (GATE_TICKETS)

 528

1 records listed.

3. Average ticket sales more selectively in two ways. First, ask for the average
ticket sales for gates 1 through 5 on that day:

>SELECT AVG(GATE_TICKETS) CONV 'MD0'
SQL+FROM ENGAGEMENTS.T
SQL+WHERE LOCATION_CODE LIKE 'EATL%' AND DATE = '03/18/94'
SQL+WHEN GATE_NUMBER < 6;
AVG (GATE_TICKETS)

 389

1 records listed.

Ask for the average ticket sales for gate 3 for all performance dates in
Atlanta:

>SELECT AVG(GATE_TICKETS) CONV 'MD0'
SQL+FROM ENGAGEMENTS.T
SQL+WHERE LOCATION_CODE LIKE 'EATL%'
SQL+AND GATE_TICKETS > 0 WHEN GATE_NUMBER = 3;
AVG (GATE_TICKETS)

 306

1 records listed.

Note that it was necessary to include the AND GATE_TICKETS > 0 con-
dition because some engagement dates are in the future and no tickets have
been sold yet. Including such dates would produce a lower-than-actual aver-
age result (assuming that every gate sells some tickets at each engagement).

4. Ask for the average ticket sales by gate for all performance dates:
>SELECT GATE_NUMBER, AVG(GATE_TICKETS) CONV 'MD0'
SQL+FROM UNNEST ENGAGEMENTS.T ON GATES_ASSOC
SQL+WHERE LOCATION_CODE LIKE 'EATL%'
SQL+AND GATE_TICKETS > 0
SQL+GROUP BY GATE_NUMBER;
GATE_NUMBER AVG (GATE_TICKETS)

 1 352
 2 356
 3 306
4-19 UniVerse SQL User Guide

C:\Program
Files\Adobe\FrameMaker7.0\UniVerse
 4 570
 5 364
 6 588
 7 318
 8 462
 9 430
 10 509
 11 337
 .
 .
 .
 20 220

20 records listed.

One reason for using UNNEST here is that GROUP BY can refer only to a
singlevalued column. Including the UNNEST clause explodes the multivalues in
GATE_TICKETS into discrete rows, making it appear to be a singlevalued column.
If you try to do a GROUP BY on a multivalued column without unnesting it first, you
see the error message GROUP BY columns must be single valued.
 4-20

C:\Program Files\Adobe\FrameMaker7.0\UniVerse 10.2\sqluser\Ch4
9/25/06
Subqueries on Nested Tables
Subqueries allow you to ask questions such as how sales on one date or for one gate
compare to calculated averages. Suppose you want to know which gates at the
3/18/94 performance in East Atlanta sold more tickets than the average of all gates
on that date. You must begin with the outer SELECT that lists the gates and their
ticket counts, but you cannot just add a selection condition. For example:

>SELECT LOCATION_CODE, DATE, GATE_NUMBER, GATE_TICKETS
SQL+FROM ENGAGEMENTS.T
SQL+WHERE LOCATION_CODE LIKE 'EATL%' AND DATE = '03/18/94'
SQL+AND GATE_TICKETS > AVG(GATE_TICKETS);
UniVerse/SQL: Set functions may not be specified directly in the
WHERE clause

You cannot specify a set function directly in a WHERE clause, but even if you could,
this phraseology would not be precise enough. Instead, perform the comparison
against an inner SELECT whose result is the appropriate average:

>SELECT LOCATION_CODE, DATE, GATE_NUMBER, GATE_TICKETS
SQL+FROM ENGAGEMENTS.T
SQL+WHERE LOCATION_CODE LIKE 'EATL%' AND DATE = '03/18/94'
SQL+WHEN GATE_TICKETS >
SQL+ (SELECT AVG(GATE_TICKETS)
SQL+ FROM ENGAGEMENTS.T
SQL+ WHERE LOCATION_CODE LIKE 'EATL%' AND
SQL+ DATE = '03/18/94');
LOCATION_CODE DATE...... GATE_NUMBER GATE_TICKETS

EATL001 03/18/94 2 615
 4 774
 6 1006
 8 594
 10 888
 12 1192
 13 653
 14 677
 19 577

1 records selected.
4-21 UniVerse SQL User Guide

C:\Program
Files\Adobe\FrameMaker7.0\UniVerse
For another example, suppose that you want to know the dates on which ticket sales
for gate 12 were above the average of ticket sales for that gate on all dates in East
Atlanta (remember to exclude from the average all dates for which tickets have not
yet been sold):

>SELECT LOCATION_CODE, GATE_NUMBER, DATE, GATE_TICKETS
SQL+FROM UNNEST ENGAGEMENTS.T ON GATE_NUMBER
SQL+WHERE LOCATION_CODE LIKE 'EATL%'
SQL+AND GATE_NUMBER = 12
SQL+AND GATE_TICKETS >
SQL+ (SELECT AVG(GATE_TICKETS)
SQL+ FROM UNNEST ENGAGEMENTS.T ON GATE_NUMBER
SQL+ WHERE LOCATION_CODE LIKE 'EATL%'
SQL+ AND GATE_NUMBER = 12
SQL+ AND GATE_TICKETS > 0);
LOCATION_CODE GATE_NUMBER DATE...... GATE_TICKETS

EATL001 12 03/18/94 1192
EATL001 12 05/24/94 514

2 records listed.

You might use WHEN GATE_NUMBER = 12 in the subquery, but because you
cannot use WHEN in a subquery, the alternative is to unnest the association rows.

You can perform other combinations of set functions in a similar fashion. The
UNNEST operation is not necessary in a statement such as SELECT AVG
(GATE_TICKETS); however, UNNEST is essential in the outer SELECT.
 4-22

C:\Program Files\Adobe\FrameMaker7.0\UniVerse 10.2\sqluser\Ch4
9/25/06
Using Dynamic Normalization
Dynamic normalization is a UniVerse extension that explodes multivalued columns
(associated or unassociated) so that they appear as singlevalued. In other words,
dynamic normalization allows you to process a nonfirst-normal-form (NF2) table as
if it were a first-normal-form (1NF) table and, in effect, performs an UNNEST on an
association or multivalued column within that table. A major use of dynamic normal-
ization is to enable client (such as UniVerse Call Interface, or UCI) applications to
treat NF2 tables and associations as if they were 1NF structures, although you can
also use dynamic normalization in interactive SQL queries and in UniVerse BASIC
programs using the UniVerse BASIC SQL Client Interface.

When you want to dynamically normalize a table, use the construct
tablename_association or tablename_mvcolname instead of tablename, where
mvcolname is an unassociated multivalued column. The result is a virtual table,
containing the table’s primary key (or @ID column if the table has no primary key)
plus the columns of the association or the unassociated column, with an individual
row generated for each value entry in the association or column. Dynamic normal-
ization is similar to UNNEST in that the virtual 1NF table contains only singlevalued
data and you use WHERE instead of WHEN to select from the table.

For example, this query references a virtual table consisting of ANIMAL_ID (the
primary key of the LIVESTOCK.T table) and the four columns of the VAC_ASSOC
association, exploded. To use a WHERE clause to show all booster shots due during
September 1995, enter:

>SELECT * FROM LIVESTOCK.T_VAC_ASSOC
SQL+WHERE VAC_NEXT BETWEEN '9/1/95' AND '9/30/95'
SQL+ORDER BY ANIMAL_ID;
ANIMAL_ID VAC_TYPE VAC_DATE VAC_NEXT VAC_CERT

 1 p 09/08/92 09/08/95 498062
 4 L 09/02/92 09/02/95 814600
 4 R 09/08/92 09/08/95 242744
 9 R 09/17/92 09/17/95 716025
 24 R 09/03/92 09/03/95 745200
 26 L 09/28/92 09/28/95 391399
 70 R 09/02/92 09/02/95 821955
 71 R 09/07/92 09/07/95 12329

8 records listed.

You also can dynamically normalize unconverted UniVerse files and SQL tables. Use
the construct filename_association or filename_mvcolname.
4-23 UniVerse SQL User Guide

C:\Program
Files\Adobe\FrameMaker7.0\UniVerse
When referring to an association or unassociated multivalued column through
dynamic normalization, you can reference a virtual column called @ASSOC_ROW
whose value is a numeric position within a multiset. For example, to see an order
number and the first item from each order, enter:

>SELECT ORDNO. ITEM FROM ORDERS_DETAIL WHERE @ASSOC_ROW = 1;

Dynamic normalization is useful when adding values to or modifying values in multi-
valued columns in an existing base table row.
 4-24

C:\Prog
Septem
4Administering UniData on Windows NT or Windows 2000
0

5
Chapter

ram Fi
ber 25,

Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta
Modifying Data
Database Security and UniVerse SQL 5-4
 Operating System Security 5-4
 UniVerse Security 5-5
 UniVerse SQL Security 5-5
Data Integrity . 5-7
Transaction Processing 5-8
Avoiding Lock Delays (NOWAIT) 5-9
Inserting Data (INSERT) 5-10
 Naming the Table and Specifying the Columns 5-11
 Supplying the Values 5-12
 Using Expressions in Value Lists 5-13
 Inserting Multivalues into a New Row 5-13
 Inserting Multivalues into an Existing Row 5-15
 Inserting Multiple Rows 5-16
Updating Data (UPDATE) 5-18
 Updating Values in a Single Row 5-18
 Updating Values in Multivalued Columns 5-19
 Using WHEN with UPDATE 5-20
 Updating Globally 5-21
 Using an Expression as the SET Value 5-22
 Using Subqueries in the WHERE Clause 5-22
 Selecting Records for Updating 5-23
Deleting Data (DELETE) 5-25
 Deleting Multivalues from a Row 5-25
 Deleting All Rows in a Table 5-26
 Deleting Individual Rows 5-27
Using Triggers 5-28
les\Adobe\FrameMaker7.0\UniVerse 10.2\sqluser\Ch5TOC.fm
 2006 3:33 pm Administering UniData on Windows NT or Windows 2000

5-2 Uni

C:\Program Files\Adobe\FrameMaker7.0\UniVerse 10.2\sqluser\Ch5TOC.fm
September 25, 2006 3:33 pm Administering UniData on Windows NT or Windows 2000

Beta
Using Alternate Dictionaries 5-29
Verse SQL User Guide

C:\Program
Files\Adobe\FrameMaker7.0\UniVerse
This chapter explains how to use the UniVerse SQL statements INSERT, UPDATE,
and DELETE to add, update, and delete data in tables and files.

You also can modify tables and files in any of the following ways:

Using the UniVerse ReVise process
Writing a UniVerse BASIC program
Using the UniVerse Editor
Using client software such as interCALL and UniVerse ODBC

Before performing any of these operations on a table, you must have permission to
do so. This raises the issue of database security. Additionally, be aware that data
integrity imposes certain restrictions on the values you can enter into certain
columns.
 5-3

C:\Program Files\Adobe\FrameMaker7.0\UniVerse 10.2\sqluser\Ch5
9/25/06
Database Security and UniVerse SQL
Before you can change a table or file, you must have been granted the appropriate
privileges. You should be aware that data integrity imposes certain restrictions on the
values you legitimately can enter into certain columns. How to grant UniVerse SQL
database privileges is covered in detail in UniVerse SQL Administration for DBAs.
This section provides a basic understanding of database security.

There are three layers to database security:

An operating system layer
A UniVerse layer
A UniVerse SQL layer

Operating System Security
File permissions on a UniVerse user’s files and directories are set when the user is
added to the system and when the user’s UniVerse account is created. Default file
permissions are set by the umask environment variable in the user’s .profile file or in
a UniVerse account’s LOGIN paragraph. These default file permissions determine
permissions for all files and directories subsequently created by the user.

Use UniAdmin or the UniVerse System Administration menus to set and change
permissions for a UniVerse account. Files can be protected in a number of ways.
Permission must be granted to the owner, to the owner’s group, and/or to others
outside the group before a file can be written to, read from, and/or executed. Either
the system administrator or the owner of a file can change these permissions at will.
All such security is based on password protection, which prevents unauthorized users
from logging on to an account and gaining access to its protected files.

More detailed information about operating system security is in the documentation
for your operating system.
5-4 UniVerse SQL User Guide

C:\Program
Files\Adobe\FrameMaker7.0\UniVerse
UniVerse Security
In addition to operating system security, another way of controlling user actions is to
edit the contents of the VOC file for an account, then setting file permissions to
prevent users from changing the VOC file. Because a VOC file contains all of the
commands and verbs that a user can execute, removing certain entries from the file
prevents users from executing them.

Also, VOC entries that point to remote items provide a further mechanism for
controlling access to certain commands. By specifying a user-supplied subroutine in
field 4 of remote-type VOC entries, you can set a flag that permits or restricts access
to the remote item.

UniVerse SQL Security
With UniVerse SQL you have a third layer of security beyond operating system
security and basic UniVerse security. The UniVerse SQL GRANT statement assigns
database privileges and user privileges on tables and views.

Only a DBA (database administrator) can grant database privileges to users. The
three levels of database privileges, from lowest level to highest, are as follows:

CONNECT registers a user as a UniVerse SQL user. Granting CONNECT
privilege to users allows them to create new tables and alter, delete, and
grant and revoke privileges on tables they own.
RESOURCE includes all capabilities of the CONNECT privilege, plus the
power to create schemas. RESOURCE privilege can be granted only to
those users who already have CONNECT privilege.
 5-5

C:\Program Files\Adobe\FrameMaker7.0\UniVerse 10.2\sqluser\Ch5
9/25/06
DBA includes all capabilities of the RESOURCE privilege, plus the ability
to create schemas and tables for other users, grant privileges on any table to
any user, revoke privileges on any table from any user, and the ability to
perform SELECT, INSERT, UPDATE, and DELETE operations on any
table.
Whenever you create a table, you are the only user with privileges on it,
except for users with DBA privilege. You then can grant any or all of the
following table privileges to others:

SELECT Privilege
INSERT Privilege
UPDATE Privilege
DELETE Privilege
REFERENCES Privilege
ALTER Privilege

Whether you can modify data in a specific table depends on whether you have
operating system permissions for the table, UniVerse access to the needed commands
and verbs, and the necessary UniVerse SQL table privileges.
5-6 UniVerse SQL User Guide

C:\Program
Files\Adobe\FrameMaker7.0\UniVerse
Data Integrity
Completeness, consistency, and accuracy are extremely important in any application.
As discussed in UniVerse SQL Administration for DBAs, UniVerse SQL helps ensure
all three standards by providing a number of data integrity constraints that are or can
be imposed on database INSERT and UPDATE operations.

Consequently, some values that you might attempt to enter or change will not be
accepted, because they violate certain rules. To give you an idea of how UniVerse
SQL maintains data integrity, here are a few things you are not allowed to do in the
Circus database:

Enter a null value as a LOCATION_CODE, VENDOR_CODE,
ITEM_CODE, BADGE_NO, or any other record ID column. This is a
Required Data Violation because null values are not allowed in record ID or
primary key columns.
Enter a nonunique value into any of these columns. This is an Entity
Integrity Violation because all values in record ID or primary key columns
must be unique.
Enter a VENDOR_CODE value in the EQUIPMENT.T table that doesn’t
match a value in the VENDOR_CODE column of the VENDORS.T table.
This is a Referential Integrity Violation because VENDOR_CODE in the
EQUIPMENT.T table is defined as referencing the VENDOR_CODE in the
VENDORS.T table.

Data integrity is further enforced by the CHECK column constraint, which specifies
that a value to be inserted into a column must meet certain criteria, and by the CONV
format specification, which requires that data entered for a column be convertible.
 5-7

C:\Program Files\Adobe\FrameMaker7.0\UniVerse 10.2\sqluser\Ch5
9/25/06
Transaction Processing
To be able to use the individual UniVerse SQL statements for modifying data, you
need some understanding of transaction processing.

Transaction processing ensures database integrity by guaranteeing that unless a
sequence of commands is completed successfully its effects are cancelled. Four
transaction statements in UniVerse BASIC (BEGIN TRANSACTION, COMMIT,
ROLLBACK, and END TRANSACTION) provide the ability to define and control
transactions.

As a simple example, assume that you have a UniVerse BASIC program that removes
an act from your roster and, consequently, updates any references to that act in the
ENGAGEMENTS.T table. If you are not using transaction processing and you
remove the act from the ACTS.T table just when the system crashes but before the
program has had a chance to remove all references to the act in ENGAGEMENTS.T,
the database would be out of synch (because ENGAGEMENTS.T is referring to an
act that no longer exists).

With transaction management, the two operations—removing the act from ACTS.T
and removing any references to the act from ENGAGEMENTS.T—are defined as a
unified transaction sequence. If the execution sequence is not completed, as
happened here, the database is “rolled back” (much like reversing a film or
videotape) to the beginning of the transaction, restoring both tables to their state
before the transaction began. However, if the entire sequence had executed success-
fully, a COMMIT would have been executed instead, recording the changes
permanently in the database.

An interactive UniVerse SQL session is always considered to be in transaction mode,
even though you never specifically define a transaction. Each transaction you enter
defaults to an autocommit mode (that is, its results are always recorded in the
database). In effect, each UniVerse SQL interactive statement constitutes a trans-
action by itself.

The remainder of this chapter discusses each UniVerse SQL data modification
statement (INSERT, UPDATE, and DELETE), with special emphasis on handling
multivalued columns.
5-8 UniVerse SQL User Guide

C:\Program
Files\Adobe\FrameMaker7.0\UniVerse
Avoiding Lock Delays (NOWAIT)
Normally when an INSERT, UPDATE, or DELETE statement tries to access a row
or table locked by another user or process, it waits for the lock to be released, then
continues processing. Use the NOWAIT keyword to stop processing when a
statement encounters a record or file lock. If the statement is used in a transaction,
processing stops and the transaction is rolled back. The user ID of the user who owns
the lock is returned to the terminal screen or to the client program.
 5-9

C:\Program Files\Adobe\FrameMaker7.0\UniVerse 10.2\sqluser\Ch5
9/25/06
Inserting Data (INSERT)
Databases are a reflection of reality. As such, adding a new employee, stock item,
ride, vendor, or animal will require adding one or more rows of data somewhere in
the database. In the context of the Circus database, this could be anything like
booking a new engagement date, purchasing a new animal or concession, hiring a
new staff member, or signing up a new vendor.

INSERT is the statement you use for adding new rows to a table (UPDATE is for
changing values in existing rows). In its most basic form, INSERT names the table
where the row is to be inserted and specifies the columns to be filled and the values
to be inserted in those columns.

Before you can add a row to a table, you must know the names of the columns in the
table and their format. If you do not have a copy of the table layout, one way to obtain
this is to display the dictionary entries for the table. If you just purchased a new truck
and want to add a new row to the EQUIPMENT.T table, retrieve the dictionary for
EQUIPMENT.T:

>SELECT * FROM DICT EQUIPMENT.T;
Type &
Field......... Field. Field........ Conversion.. Column..... Output Depth &
Name.......... Number Definition... Code........ Heading.... Format Assoc..

EQUIP_CODE D 0 MD0 5R S
@ID D 0 EQUIPMENT 5R S
@KEY PH EQUIP_CODE

VENDOR_CODE D 1 MD0 5R S
VENDOR_REF D 2 10L S
DESCRIPTION D 4 25T S
DEPRECIATION D 3 1L S
TAX_LIFE D 7 MD0 5R S
VOLTS D 8 MD0 5R S
COST D 5 MD22 12R S
USE_LIFE D 6 MD0 5R S
PURCHASE_DATE D 9 D2/ 10L S
@REVISE PH VENDOR_CODE
 VENDOR_REF
 DEPRECIATION
 DESCRIPTION
 COST USE_LIFE
 TAX_LIFE
 VOLTS
Press any key to continue...
5-10 UniVerse SQL User Guide

C:\Program
Files\Adobe\FrameMaker7.0\UniVerse
This display shows that the EQUIPMENT.T table contains 10 singlevalued columns.
The specs on the new truck include:

Naming the Table and Specifying the Columns
To construct the INSERT statement, first name the table:

>INSERT INTO EQUIPMENT.T...

You then specify a column list, naming the columns into which you want to insert
values. For example, if you want to fill in just the record ID, description, vendor
source, cost, and date of purchase, enter the following column list:

>INSERT INTO EQUIPMENT.T
SQL+(EQUIP_CODE, DESCRIPTION, VENDOR_CODE,
SQL+COST, PURCHASE_DATE) VALUES (...

Sometimes you can eliminate the column list. In the case of an SQL table, if you omit
the column list, you must supply a value for every column in the table, in the order in
which the columns were defined in the original CREATE TABLE statement or in a
later ALTER TABLE statement. So, if you want to insert a full row of data in the
EQUIPMENT.T table, you would omit the list of columns and enter only the values:

>INSERT INTO EQUIPMENT.T VALUES (...

In the case of a UniVerse file, however, if you are inserting a row and do not include
a column list, there must be an @INSERT phrase in the file dictionary. This
@INSERT will define the columns to be filled and their order.

Make and Model 1992 Mack Truck Model 4500L

Purchased From Century Group (Vendor #90)

Cost $16,725.00

Date Purchased December 15, 1994
 5-11

C:\Program Files\Adobe\FrameMaker7.0\UniVerse 10.2\sqluser\Ch5
9/25/06
Supplying the Values
Finally, supply the values to go in those columns in the form of a value list:

>INSERT INTO EQUIPMENT.T
SQL+(EQUIP_CODE, DESCRIPTION, VENDOR_CODE,
SQL+COST, PURCHASE_DATE)
SQL+VALUES (61, '1992 Mack Truck Model 4500L', 90,
SQL+16725.00, '12/15/94');
UniVerse/SQL: 1 record inserted.

Think of the column list and value list as being paired, with each column name in the
column list matched in a one-to-one correspondence to its value in the value list.

Remember that database conventions require that the record ID (in this case,
EQUIP_CODE) is set to a unique value. In this table, record IDs are assigned
sequentially, and 60 was the last number used. Therefore, assign 61 as the record ID
of the new row.

All values must be listed in the same order as the column list and must conform to
any format conventions or constraints that apply to their corresponding columns.

To double-check the new entry, enter:

>SELECT * FROM EQUIPMENT.T
SQL+WHERE EQUIP_CODE = 61;

EQUIP_CODE.... 61
VENDOR_CODE... 90
VENDOR_REF....
DEPRECIATION..
DESCRIPTION... 1992 Mack Truck Model
 4500L
COST.......... 16725.00
USE_LIFE......
TAX_LIFE......
VOLTS.........
PURCHASE_DATE. 12/15/94

1 records listed.

Any column not included in the column list will be set to a default value, if one was
supplied in the table definition; otherwise, it will be set to null (or to an empty string
if it is a UniVerse file). You can specify a null value for any column, particularly if
you want to override its default value.
5-12 UniVerse SQL User Guide

C:\Program
Files\Adobe\FrameMaker7.0\UniVerse
For example, if you wanted to enter the basic information for a new vendor but there
is no third line of address (ADR3) and you do not have a contact name (CONTACT)
as yet, your INSERT statement would omit the names of these two columns and also
omit their respective values:

>INSERT INTO VENDORS.T
SQL+(VENDOR_CODE, COMPANY, ADR1, ADR2, TERMS, PHONE, FAX,
SQL+EQUIP_CODE, ITEM_CODE)
SQL+VALUES (233, 'New Age Plastics', '7300 Huntington Avenue',
SQL+'Boston MA 02116', 'Net 60', '617-555-3243',
SQL+'617-555-3246', 16, 44);
UniVerse/SQL: 1 record inserted.

Alternatively, you could enter the INSERT statement by retaining the names of the
two columns and specifying NULL as their values:

>INSERT INTO VENDORS.T (VENDOR_CODE, COMPANY, ADR1, ADR2,
SQL+ADR3, TERMS, CONTACT, PHONE, FAX, EQUIP_CODE, ITEM_CODE)
SQL+VALUES (233, 'New Age Plastics', '7300 Huntington Avenue',
SQL+'Boston MA 02116', NULL, 'Net 60', NULL, '617-555-3243',
SQL+'617-555-3246', 16, 44);
UniVerse/SQL: 1 record inserted.

Using Expressions in Value Lists
Instead of an explicit value, you can use an expression in a value list. Although there
is no particular reason for doing this in the Circus database, it is useful in other situa-
tions. In an application such as a retail operation, you might want to record both the
retail price and the discounted price of each item. Use an INSERT such as:

>INSERT IN SALES.T VALUES (..., 10.50, 10.50 * 0.75,...);

Inserting Multivalues into a New Row
When specifying values to be inserted into multivalued columns when adding a new
row, the only clause affected is the values list. Separate the values by commas and
enclose the values for each multivalued column in angle brackets.
 5-13

C:\Program Files\Adobe\FrameMaker7.0\UniVerse 10.2\sqluser\Ch5
9/25/06
Suppose you placed four orders for a new stock item, corn dogs, and you want to
reflect this in the INVENTORY.T table. Specifications for the new stock item are:

These specifications translate into the statement:

>INSERT INTO INVENTORY.T (ITEM_CODE, ITEM_TYPE, DESCRIPTION,
SQL+QOH, COST, PRICE, VENDOR_CODE, ORDER_QTY)
SQL+VALUES (46, 'R', 'Corn Dogs', 825, 50.95, 78.00,
SQL+<79, 52, 95, 67>, <150, 200, 350, 125>);
UniVerse/SQL: 1 record inserted.

As was the case with EQUIPMENT.T, the record ID of INVENTORY.T is also a
sequentially assigned number (the last number assigned was 45). Now retrieve this
row to make sure it has been stored properly:

>SELECT * FROM INVENTORY.T WHERE ITEM_CODE = 46;
ITEM_CODE... 46
ITEM_TYPE... R
DESCRIPTION. Corn Dogs
QOH......... 825
COST........ 50.95
PRICE....... 78.00
VENDOR_CODE ORDER_QTY
 79 150
 52 200
 95 350
 67 125

1 records listed.

Column Values

Type R

Description Corn Dogs

Quantity on Hand 825

Cost $50.95

Price $78.00

Vendors 79, 52, 95, 67

Order Quantities 150, 200, 350, 125
5-14 UniVerse SQL User Guide

C:\Program
Files\Adobe\FrameMaker7.0\UniVerse
Inserting Multivalues into an Existing Row
Sometimes you want to add values to an association within an already existing row,
such as adding a new vaccination entry for one of the animals.

You might assume that making a change to an existing row would be handled as an
update and use an UPDATE statement. But because a table association is a “table
within a table,” use an INSERT statement instead and use dynamic normalization so
that you can operate on the association as if it were a 1NF table.

For example, to add a new vaccination entry, you would apply dynamic
normalization to the vaccination association (VAC_ASSOC). Take animal 73, which
has records of three vaccinations:

>SELECT ANIMAL_ID, VAC_TYPE, VAC_DATE, VAC_NEXT, VAC_CERT
SQL+FROM LIVESTOCK.T WHERE ANIMAL_ID = 73;
ANIMAL_ID VAC_TYPE VAC_DATE.. VAC_NEXT.. VAC_CERT

 73 R 06/12/92 06/12/95 80782
 P 03/27/92 03/27/95 252906
 L 03/30/92 03/30/95 469618

1 records listed.

To add a new vaccination entry for vaccination type D, enter an INSERT statement
that uses the LIVESTOCK.T_VAC_ASSOC table association. The virtual table
consists of the primary key of the table (ANIMAL_ID) plus the four fields defined in
VAC_ASSOC. Because the INSERT fills in all columns in this virtual table, there is
no need to list the column names in the statement:

>INSERT INTO LIVESTOCK.T_VAC_ASSOC
SQL+VALUES (73, 'D', '08/03/95', '08/03/97', '800971');
UniVerse/SQL: 1 record inserted.

Now if you look at the row again, you see that the new vaccination entry has been
added:

>SELECT VAC_TYPE, VAC_DATE, VAC_NEXT, VAC_CERT
SQL+FROM LIVESTOCK.T WHERE ANIMAL_ID = 73;
ANIMAL_ID VAC_TYPE VAC_DATE.. VAC_NEXT.. VAC_CERT

 73 R 06/12/92 06/12/95 80782
 P 03/27/92 03/27/95 252906
 L 03/30/92 03/30/95 469618
 D 08/03/95 08/03/97 800971

1 records listed.
 5-15

C:\Program Files\Adobe\FrameMaker7.0\UniVerse 10.2\sqluser\Ch5
9/25/06
The new row was added to the end of existing association rows, but such order is not
guaranteed. However, an option of the CREATE TABLE statement allows some
measure of control over where new rows are positioned in an association. The
choices are LAST, which is the default, FIRST, and in order by the values in a
specified column of the association.

Inserting Multiple Rows
Rather than add a single row of data to a table using a single-row INSERT statement,
you can add multiple rows of data using a variation of the INSERT statement. A
multirow INSERT is a variation of the INSERT statement that takes its values from
the database, rather than from the INSERT statement. Since the data values to be
inserted are taken from tables rather than from the INSERT statement itself, the form
of the value list is a SELECT statement.

One use of a multirow INSERT is to copy selected rows and columns from one table
to another, perhaps for the purpose of archiving old data. Suppose you create an
abbreviated ENGAGEMENTS.T table, calling it OLD_ENGAGEMENTS.T, and
use it to archive past bookings. Then, at the end of each year, you copy that year’s
engagements into the table. You can find the CREATE TABLE statement for gener-
ating this table in Appendix A, “The Sample Database,” (note that, unlike the original
table, the new table has no associations defined because they would impose unwanted
constraints on the data). The statement for copying all 1994 dates from ENGAGE-
MENTS.T to OLD_ ENGAGEMENTS.T is:

>INSERT INTO OLD_ENGAGEMENTS.T (LOCATION_CODE, DATE,
SQL+GATE_REVENUE, RIDE_REVENUE, CONC_REVENUE)
SQL+SELECT LOCATION_CODE, DATE, GATE_REVENUE,
SQL+RIDE_REVENUE, CONC_REVENUE
SQL+FROM ENGAGEMENTS.T
SQL+WHERE DATE BETWEEN '01/01/94' AND '12/31/94';
UniVerse/SQL: 14 records inserted.

Then use a DELETE statement (see “Deleting Data (DELETE)” on page 25) to
remove those rows from the ENGAGEMENTS.T table.

Other uses for multirow insertions are as follows:
5-16 UniVerse SQL User Guide

C:\Program
Files\Adobe\FrameMaker7.0\UniVerse
Combining data from two or more tables into a single table. One reason you
might do this is to perform complex analyses on a large amount of data that
is scattered among several tables. Among the advantages of doing so are the
elimination of extraneous data and multitable joins (thereby speeding up
retrieval), “freezing” the data at a particular point in time, and performing
the analysis without affecting the production database.
Using the SAMPLE keyword to create a test database.
Doing statistical joins that require intermediate results.

For example, you might want to combine booking data from ENGAGEMENTS.T,
ACTS.T, and PERSONNEL.T for the first quarter of 1995. Then analyze what acts
were used for which dates, who comprised the staff, and how much they were paid.
To load the table using an INSERT statement, enter:

>INSERT INTO NEWTAB.T (ENG_ID, ENG_DATE, ACT_DESC, EMP_ID,
SQL+EMP_NAME, ACT_PAY)
SQL+SELECT LOCATION_CODE, DATE, DESCRIPTION,
SQL+BADGE_NO, NAME, ACT_PAY
SQL+FROM ENGAGEMENTS.T, ACTS.T, PERSONNEL.T
SQL+WHERE PERSONNEL.T.ACT_NO = ACTS.T.ACT_NO
SQL+AND OPERATOR = BADGE_NO
SQL+AND DATE BETWEEN '1/1/95' AND '3/31/95';

Now you have a combined table that contains just the data with which you want to
work. You also can query and refine without disturbing your production data.

A subquery in an INSERT statement cannot include field modifiers (AVERAGE,
BREAK ON, BREAK SUPPRESS, CALCULATE, PERCENT, and TOTAL), field
qualifiers (CONVERSION, FORMAT, and so forth), report qualifiers, processing
qualifiers (except SAMPLE and SAMPLED), or the ORDER BY clause.
 5-17

C:\Program Files\Adobe\FrameMaker7.0\UniVerse 10.2\sqluser\Ch5
9/25/06
Updating Data (UPDATE)
UPDATE modifies the values of one or more columns in one or more selected rows
of a table. The UPDATE statement specifies the table to be updated, the columns to
be modified, and the rows to be selected.

Updating Values in a Single Row
In its simplest form, UPDATE modifies a single column value in a specific row. For
example, to increase the depreciable life for equipment item 28 from 3 to 5 years,
enter:

>UPDATE EQUIPMENT.T
SQL+SET TAX_LIFE = 5
SQL+WHERE EQUIP_CODE = 28;
UniVerse/SQL: 1 record updated.

In addition to setting a column to a literal value or expression, you also can do any of
the following:

SET column = NULL
SET column = USER
SET column = DEFAULT
SET column = CURRENT_DATE
SET column = CURRENT_TIME

Perhaps you want to update more than one column of the row. To update the quantity
on hand, cost, and price for inventory item 13, enter:

>UPDATE INVENTORY.T
SQL+SET QOH = 65, COST = 38.94, PRICE = 50.76
SQL+WHERE ITEM_CODE = 13;
UniVerse/SQL: 1 record updated.
5-18 UniVerse SQL User Guide

C:\Program
Files\Adobe\FrameMaker7.0\UniVerse
Updating Values in Multivalued Columns
You can update values in a multivalued column of a row by specifying a multivalued
literal, much as you do when you insert values into a multivalued column. When
using UPDATE on a multivalued column, supply the same number of values as are
currently in the association’s key column (the number of values in the association key
of an association is called the depth of association).

For example, you might move the dates of the next scheduled vaccinations ahead
three months for animal 74. First find out the depth of the VAC_ASSOC associ-
ation—how many entries exist in the VAC_TYPE column (the association key)—by
entering:

>SELECT * FROM LIVESTOCK.T WHERE ANIMAL_ID = 74;

ANIMAL_ID... 74
NAME........ Doba
DESCRIPTION. Hyena
USE......... Z
DOB......... 08/21/84
ORIGIN...... Kenya
COST........ 10229.00
EST_LIFE.... 15
VAC_TYPE VAC_DATE.. VAC_NEXT.. VAC_CERT
R 06/18/93 09/17/96 957640
P 05/24/92 05/24/95 573198
L 06/08/92 06/08/95 772270

1 records listed.

Since there are three vaccination entries for this row, include exactly three values in
the update:

>UPDATE LIVESTOCK.T
SQL+SET VAC_NEXT = <'12/17/96', '08/24/95', '09/08/95'>
SQL+WHERE ANIMAL_ID = 74;
UniVerse/SQL: 1 record updated.

An update of this type replaces all the values in the column for the selected row. To
update just one of the multivalues, add a WHEN clause to identify the value to be
changed, as explained under “Using WHEN with UPDATE” on page 20.
 5-19

C:\Program Files\Adobe\FrameMaker7.0\UniVerse 10.2\sqluser\Ch5
9/25/06
Alternatively, update each date individually using dynamic normalization and issuing
three UPDATE statements, one for each of the date values to be changed:

>UPDATE LIVESTOCK.T_VAC_ASSOC
SQL+SET VAC_NEXT = '12/17/96'
SQL+WHERE ANIMAL_ID = 74 AND VAC_NEXT = '09/17/96';
UniVerse/SQL: 1 record updated.

>UPDATE LIVESTOCK.T_VAC_ASSOC
SQL+SET VAC_NEXT = '08/24/95'
SQL+WHERE ANIMAL_ID = 74 AND VAC_NEXT = '05/24/95';
UniVerse/SQL: 1 record updated.

>UPDATE LIVESTOCK.T_VAC_ASSOC
SQL+SET VAC_NEXT = '09/08/95'
SQL+WHERE ANIMAL_ID = 74 AND VAC_NEXT = '06/08/95';
UniVerse/SQL: 1 record updated.

Using WHEN with UPDATE
Be very careful using WHERE with multivalued columns when updating a table. For
example, take the statement:

>UPDATE ACTS.T SET EQUIP_CODE = 33
SQL+WHERE ACT_NO = 2 AND EQUIP_CODE = 32;
UniVerse/SQL: 1 record updated.

You might think that you are changing only those EQUIP_CODE values equal to 32
for act 2. Based on how the SELECT statement works, remember that by using just
a WHERE clause, you retrieve all of the multivalues in the EQUIP_CODE column
for act 2 (even though only one of them is equal to 32). You added a WHEN clause
to see only the values equal to 32.

Similarly, what you are doing here is changing all of the EQUIP_CODE values for
act 2 (assuming that at least one of them is equal to 32). To change only those values
equal to 32, enter:

>UPDATE ACTS.T SET EQUIP_CODE = 33
SQL+WHERE ACT_NO = 2 WHEN EQUIP_CODE = 32;
UniVerse/SQL: 1 record updated.
5-20 UniVerse SQL User Guide

C:\Program
Files\Adobe\FrameMaker7.0\UniVerse
Updating Globally
Most of the time, an UPDATE affects more than one row of a table. For instance, if
you do not specify a WHERE clause in an UPDATE statement, the update applies to
all rows of the table, in effect doing a bulk update of the table—something you will
rarely want to do. For example, to change the payment terms in all rows of
VENDORS.T to net 30 days, use the statement:

>UPDATE VENDORS.T SET TERMS = 'Net 30 Days';
UniVerse/SQL: 232 records updated.

Sometimes, you do want to change several selected rows, which you can accomplish
by doing a global search-and-change. Expanding the example under “Updating
Values in a Single Row” on page 18, increase the depreciable tax life of any
equipment purchased since January 1993 and having a tax life of three years:

>UPDATE EQUIPMENT.T SET TAX_LIFE = 5
SQL+WHERE PURCHASE_DATE > '1/1/93' AND TAX_LIFE = 3;
UniVerse/SQL: 2 records updated.

Use any form of the WHERE clause that is valid in a SELECT statement:

>UPDATE EQUIPMENT.T SET TAX_LIFE = 5
SQL+WHERE TAX_LIFE IS NULL;
UniVerse/SQL: 1 record updated.

>UPDATE EQUIPMENT.T SET TAX_LIFE = 5, USE_LIFE = 10
SQL+WHERE EQUIP_CODE IN (23, 29, 34, 41);
UniVerse/SQL: 4 records updated.

Add the keyword REPORTING to your UPDATE statement to get a list of the
primary keys of those rows affected:

>UPDATE EQUIPMENT.T SET TAX_LIFE = 5
SQL+WHERE TAX_LIFE IS NULL REPORTING;
UniVerse/SQL: Record "37" updated.
UniVerse/SQL: 1 record updated.
 5-21

C:\Program Files\Adobe\FrameMaker7.0\UniVerse 10.2\sqluser\Ch5
9/25/06
Using an Expression as the SET Value
You can use an expression as part of the SET clause. For example, to unload the
overstock and make room for incoming merchandise, you decide to give a 20%
discount on all inventory items, of which you have more than 600. Issue the
statement:

>UPDATE INVENTORY.T SET PRICE = PRICE * .8
SQL+WHERE QOH > 600;
UniVerse/SQL: 1 record updated.

Using Subqueries in the WHERE Clause
It is not uncommon to find a subquery in the WHERE clause of an UPDATE
statement. In fact, a subquery can be useful in determining which rows to update in
a table, based on data contained in one or more other tables.

As one example, suppose that an employee, Hope Saarinen, has quit. To remove her
name from any ride assignments, enter:

>UPDATE RIDES.T SET OPERATOR = 0,
SQL+WHERE OPERATOR = (SELECT BADGE_NO FROM PERSONNEL.T
SQL+WHERE NAME LIKE '%Saarinen, Hope%');
UniVerse/SQL: 2 records updated.

You have searched the PERSONNEL.T table to find Hope Saarinen, found her ID,
and then removed the ID from any rows in the RIDES.T table that match her ID.

As another example, all vendors with whom you have placed more than three orders
have offered to stretch their payment terms from the current net 30 days to a more
lenient net 60 days. To update the VENDORS.T table to reflect this new devel-
opment, enter:

>UPDATE VENDORS.T SET TERMS = 'Net 60 Days'
SQL+WHERE 3 < (SELECT COUNT(*) FROM INVENTORY.T
SQL+WHERE VENDORS.T.VENDOR_CODE = INVENTORY.T.VENDOR_CODE);
UniVerse/SQL: 4 records updated.

This is an example of a correlated subquery, as explained under “Correlated and
Uncorrelated Subqueries” on page 20. VENDOR_CODE in the subquery is an outer
reference, referring to VENDOR_CODE in the VENDORS.T table that is being
updated.
5-22 UniVerse SQL User Guide

C:\Program
Files\Adobe\FrameMaker7.0\UniVerse
Selecting Records for Updating
The FOR UPDATE clause locks all selected rows with update record locks (READU)
or exclusive file locks (FX) until the end of the current transaction. This lets client
programs update or delete the selected rows later within the same transaction, without
being delayed by locks held by other users. You can also use the FOR UPDATE
clause in an interactive SELECT statement.

The syntax of the FOR UPDATE clause is:

SELECT [ALL | DISTINCT] column_specifications
FROM table_specification
[WHERE clause]
FOR UPDATE [OF column [, column] …]

The OF clause limits the acquiring of update record locks or file locks to those tables
or files containing the named columns. It is useful only in a join where data is selected
from two or more tables.

You cannot use the FOR UPDATE clause in:

A subquery
A view definition
A trigger program

You cannot use the FOR UPDATE clause if the SELECT statement includes:

The UNION operator
Set functions
A GROUP BY clause
A HAVING clause

The current isolation level determines which locks are set when a SELECT statement
includes the FOR UPDATE clause.

A file lock is set instead of record locks when a table or file already has the maximum
number of record locks allowed by your system. The MAXRLOCK configurable
parameter determines the maximum number of record locks.

Note: The FOR UPDATE clause has no effect on locks set by a subquery. Rows,
tables, and files selected by a subquery are given shared record locks appropriate to
the current isolation level.
 5-23

C:\Program Files\Adobe\FrameMaker7.0\UniVerse 10.2\sqluser\Ch5
9/25/06
This example selects one column from each of two tables for update. It sets READU
locks on all rows selected from the ORDERS table and sets READL locks on all rows
selected from the CUSTOMER table.

>SELECT ORDERS.CUSTNO, CUSTOMER.CUSTID
SQL+FROM ORDERS, CUSTOMER
SQL+WHERE ORDERS.CUSTNO = CUSTOMER.CUSTID
SQL+FOR UPDATE OF ORDERS.CUSTNO;
5-24 UniVerse SQL User Guide

C:\Program
Files\Adobe\FrameMaker7.0\UniVerse
Deleting Data (DELETE)
Deleting data rows from a table is just as common as inserting data. When an entity
no longer exists, this must be reflected in the database by removing any rows that
represent that entity.

The DELETE statement is structured like the UPDATE statement, and includes a
FROM clause naming the table and a WHERE clause for selecting the rows to be
deleted. And, like UPDATE, DELETE can operate on just a single row, multiple
rows, or all the rows of a table. Also, you can add the REPORTING keyword to see
a list of the primary key values (or @ID values if the table has no primary key) for
the rows that were deleted.

>DELETE FROM EQUIPMENT.T
SQL+WHERE VENDOR_CODE = 110 REPORTING;
UniVerse/SQL: Record "18" deleted.
UniVerse/SQL: 1 record deleted.

When you delete a row in this way, you delete all of the multivalues associated with
it. Also note that with the referential constraint on EQUIP_CODE in this table, this
deletion would not be allowed until that constraint is removed.

Deleting Multivalues from a Row
To delete one or more values from a multivalued column in a row, you must use
dynamic normalization so that you can operate on the association row containing the
multivalue as if it were a 1NF row.

Recall how dynamic normalization works with a SELECT statement. If you use
dynamic normalization to retrieve all the vaccination data for animal 74, you get one
row for each vaccination row:

>SELECT * FROM LIVESTOCK.T_VAC_ASSOC WHERE ANIMAL_ID = 74;
ANIMAL_ID VAC_TYPE VAC_DATE.. VAC_NEXT.. VAC_CERT

 74 R 06/18/93 06/17/96 957640
 74 P 05/24/92 05/24/95 573198
 74 L 06/08/92 06/08/95 772270

3 records listed.
 5-25

C:\Program Files\Adobe\FrameMaker7.0\UniVerse 10.2\sqluser\Ch5
9/25/06
To delete the association row for the L vaccination, construct the DELETE statement
just as if the association row to be deleted were a row in the table, but use
tablename_association instead of just tablename. Remember to use WHERE instead
of WHEN to specify the selection criteria because the virtual table produced by
tablename_association contains only singlevalued columns.

To delete the vaccination data for vaccination type L in the previous example, enter:

>DELETE FROM LIVESTOCK.T_VAC_ASSOC
SQL+WHERE ANIMAL_ID = 74 AND VAC_TYPE = "L";
UniVerse/SQL: 1 record deleted.

If you check the table row afterward, you find that all data for vaccination type L has
been deleted:

>SELECT ANIMAL_ID, VAC_TYPE, VAC_DATE, VAC_NEXT, VAC_CERT
SQL+FROM LIVESTOCK.T WHERE ANIMAL_ID = 74;
ANIMAL_ID VAC_TYPE VAC_DATE.. VAC_NEXT.. VAC_CERT

 74 R 06/18/93 06/17/96 957640
 P 05/24/92 05/24/95 573198

1 records listed.

Deleting All Rows in a Table
Obviously, omitting the WHERE clause in a DELETE statement can have disastrous
effects unless you want to remove a table completely. You do not want to do that to
the Circus database. But if you did, and wanted to erase all the data in the
EQUIPMENT.T table, enter:

>DELETE FROM EQUIPMENT.T;
UniVerse/SQL: 61 records deleted.

Then all rows of EQUIPMENT.T would be gone. Note that while all the data has
been erased, the EQUIPMENT.T table would still exist in the database, and you could
add new rows to it at any time. DROP TABLE is the statement that deletes the table
itself.
5-26 UniVerse SQL User Guide

C:\Program
Files\Adobe\FrameMaker7.0\UniVerse
Deleting Individual Rows
DELETE can be a dangerous statement in any form, even when you remember to
include a WHERE clause. It is recommended that you first do a SELECT using the
same WHERE clause you will be using in the DELETE to make sure those are the
rows you intended.

You may remember that, as one example of using INSERT, you copied all of the 1994
rows from ENGAGEMENTS.T to OLD_ENGAGEMENTS.T for archiving. It
would make sense to delete those same rows from ENGAGEMENTS.T.

But before you do so, use a SELECT statement to make sure your WHERE clause
selects the rows you want:

>SELECT LOCATION_CODE, DATE FROM ENGAGEMENTS.T
SQL+WHERE DATE BETWEEN '1/1/94' AND '12/31/94';
LOCATION_CODE DATE......

WREN001 01/10/94
WREN001 01/11/94
EMIA001 05/21/94
.
.
.
CSPR001 05/08/94
Press any key to continue...

After you are sure that the listed rows are the rows you want to delete, reenter the
statement, changing it as shown:

>DELETE FROM ENGAGEMENTS.T
SQL+WHERE DATE BETWEEN '1/1/94' AND '12/31/94';
UniVerse/SQL: 53 records deleted.
 5-27

C:\Program Files\Adobe\FrameMaker7.0\UniVerse 10.2\sqluser\Ch5
9/25/06
Using Triggers
You can augment and regulate the modification of data in tables by creating a trigger
for the table. A trigger specifies actions to perform before or after the execution of
certain database modification events. You can define up to six triggers for a table. The
names of all triggers and their corresponding UniVerse BASIC programs are stored
in the table’s SICA.

Use the CREATE TRIGGER statement to create a trigger for a table. You must be the
table’s owner or have ALTER Privilege on the table, or you must be a DBA to create
a trigger.

You can set a trigger to fire (execute) before an INSERT, UPDATE, or DELETE
event changes data. A BEFORE trigger can examine the new data and determine
whether to allow the INSERT, UPDATE, or DELETE event to proceed; if the trigger
rejects a data change, UniVerse rolls back the entire transaction. You can also set
triggers to fire after an INSERT, UPDATE, or DELETE event, for example, to
change related rows, audit database activity, and print or send messages.
5-28 UniVerse SQL User Guide

C:\Program
Files\Adobe\FrameMaker7.0\UniVerse
Using Alternate Dictionaries
All three data modification statements—INSERT, UPDATE, and DELETE—can
specify an alternate file dictionary instead of the table’s primary file dictionary. As
with the SELECT statement, choose this option by adding a USING DICT clause to
the statement. For example, to add a new truck to the EQUIPMENT.T table using the
alternate dictionary EQUIP_D1, enter:

>INSERT INTO EQUIPMENT.T USING DICT EQUIP_D1
SQL+(EQD_CODE, DESCRIPTION, VENDOR_CODE,
SQL+COST, PURCHASE_DATE)
SQL+VALUES (68, '1995 Renault Truck', 90,
SQL+21575.00, '05/23/95');
UniVerse/SQL: 1 record inserted.

Alternate dictionaries provide different ways of looking at the same data. For
example, one dictionary might use American-style dates, while another might use
European-style dates. A table used by several departments within a company might
have separate dictionaries because each department uses different terminology to
refer to the columns.
 5-29

C:\Prog
Septem
5Administering UniData on Windows NT or Windows 2000
0

6
Chapter

ram Fi
ber 25,

Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta
Establishing and Using Views
Examples of Views 6-3
Creating Views 6-6
 Column-Based (Vertical) Views. 6-6
 Row-Based (Horizontal) Views 6-8
 Combined Vertical and Horizontal Views. 6-9
 Column Names and Derived Columns. 6-10
 Summarized Views. 6-11
Updating Views 6-13
Dropping Views 6-14
Listing Information About a View 6-15
Privileges and Views 6-17
les\Adobe\FrameMaker7.0\UniVerse 10.2\sqluser\Ch6TOC.fm
 2006 3:33 pm Administering UniData on Windows NT or Windows 2000

C:\Program
Files\Adobe\FrameMaker7.0\UniVerse
This chapter discusses views. In simplest terms, a view is a virtual table. More
precisely, a view is the definition of a virtual table.

A view is represented in the database as metadata, derives its data from one or more
“real” tables (called base tables in this context) or even other views, and has a user-
defined name. The metadata for a view describes the virtual table in terms of columns
and rows of one or more base (physical) tables or views. A view behaves much like
a real table. Up through Release 8.3.3 of UniVerse, views are read-only. With Release
9.3.1 and later, some views also are updatable.

Views are useful in a number of ways:

Data security. Views act as a mask to limit user access to certain rows and
columns in the “real” tables.
Appearance. Views can vary the appearance of a database, presenting a
facade that is most familiar to each user.
Convenience. Instead of naming the same columns and specifying the same
complex selection criteria repeatedly in your SELECT statements, you can
define a view (which is actually a stored query) once, and reuse it often.

While this chapter discusses views alone, they are closely related to tables.
Discussion of how to create tables appears in UniVerse SQL Administration for
DBAs.
 6-2

C:\Program Files\Adobe\FrameMaker7.0\UniVerse 10.2\sqluser\Ch6
9/25/06
Examples of Views
A view is used commonly for security reasons. Giving a user limited access to the
PERSONNEL.T table, for example, allows that user to look at nonsensitive infor-
mation such as name and address, but hides such data as pay and date of birth. Do not
grant the user privileges on the PERSONNEL.T table at all, but instead create a view
that encompasses only the columns you want him or her to see, then grant privileges
on that view.

Views are always expressed in terms of a query specification (SELECT statement)
that defines the data to be included in the view. The general syntax for the CREATE
VIEW statement is as follows:

CREATE VIEW viewname [(columnnames)] AS SELECT…

For example, enter:

>CREATE VIEW GENERAL1
SQL+AS SELECT NAME, ADR1, ADR2, ADR3
SQL+FROM PERSONNEL.T;
Creating View "GENERAL1"
Adding Column NAME
Adding Column ADR1
Adding Column ADR2
Adding Column ADR3
>GRANT SELECT ON GENERAL1 TO jimc;
Granting privilege(s).

To use a view for the sake of convenience, define one that extracts data about big
orders and major vendors:

The ITEM_CODE, DESCRIPTION, and ORDER_QTY columns of the
INVENTORY.T table and the COMPANY column of the VENDORS.T
table
Only those rows whose order quantity equals or exceeds 800
6-3 UniVerse SQL User Guide

C:\Program
Files\Adobe\FrameMaker7.0\UniVerse
The following is an example of a joined view, because it joins the INVENTORY.T
and VENDORS.T tables. It also selects data on the basis of rows as well as columns.

>CREATE VIEW MAJOR_SUPPLIERS
SQL+AS SELECT INVENTORY.T.ITEM_CODE, DESCRIPTION, ORDER_QTY,
SQL+COMPANY FROM UNNEST INVENTORY.T ON VENDOR_CODE, VENDORS.T
SQL+WHERE INVENTORY.T.VENDOR_CODE = VENDORS.T.VENDOR_CODE
SQL+AND ORDER_QTY >= 800;
Creating View "MAJOR_SUPPLIERS"
Adding Column ITEM_CODE
Adding Column DESCRIPTION
Adding Column ORDER_QTY
Adding Column COMPANY

Refer to a view in a SELECT statement as you would any other table, keeping in
mind that whatever you ask for is always superimposed on the selection criteria
defined in the view:

>SELECT COMPANY, ORDER_QTY, DESCRIPTION
SQL+FROM MAJOR_SUPPLIERS
SQL+ORDER BY COMPANY;
COMPANY.................. ORDER_QTY DESCRIPTION..........

African Environmental 900 T-shirts
Amalgamated Academy 800 Large Cat Chow
Brown Assets 800 Taffy
California Sourcing 900 Cola
Cincinnati Solutions 900 Sawdust
Citizens Division 800 Nachos
City Manufacturers 800 Fried Clams
Cleveland Center 900 Jerky
Commerce Exchange 900 Pretzels
Convenient Promotions 800 Cola
.
.
.
Precision Exports 800 Pretzels
Prime Automation 800 Handbills
Press any key to continue...

This means:

Retrieve all data selected by MAJOR_SUPPLIERS
Inventory item number, inventory description, order quantity, and
vendor company
For only those items ordered in quantities of 800 or greater

Display just the vendor company, order quantity, and description, sorted
 6-4

C:\Program Files\Adobe\FrameMaker7.0\UniVerse 10.2\sqluser\Ch6
9/25/06
Once you have created a view, you can perform all sorts of queries on it, without
repeating the column names and selection criteria you have defined in the view.
6-5 UniVerse SQL User Guide

C:\Program
Files\Adobe\FrameMaker7.0\UniVerse
Creating Views
Creating a view involves using a SELECT statement on one or more tables to define
the columns and rows to be included in a view, then assigning the view a name. For
security reasons, you must have SELECT privilege on all of the tables making up the
view. You cannot base a view on a UniVerse file.

A view behaves much like a table and has a file dictionary associated with it. The
characteristics of the columns in the view are taken from their definitions in the base
tables and cannot be overridden. Thus, in the CREATE VIEW statement you cannot
include certain field modifiers (AVERAGE, BREAK ON, BREAK SUPPRESS,
CALCULATE, PERCENT, or TOTAL), field qualifiers (SINGLEVALUED,
MULTIVALUED, ASSOC, or ASSOCIATION), or any report qualifiers or
processing qualifiers. Also, you cannot include an ORDER BY clause in a CREATE
VIEW statement. Instead, any ordering must be specified in the SELECT statements
that addresses the view.

Using views, you can:

Select columns in tables and other views
Select rows in tables and other views
Select a combination of columns and rows
Add DISPLAYNAME, CONVERSION, and FORMAT qualifiers
Add derived columns
Summarize rows in tables and other views

Column-Based (Vertical) Views
You can define a view that permits access to only certain columns in a table. To build
upon the earlier example using the PERSONNEL.T table, the Human Resources and
Payroll departments might need access to the entire PERSONNEL.T table, but
others—such as ride supervisors, ticket booth managers, and concession
supervisors—have a much more limited “need to know.” For example:

A ride supervisor might need to know only whether Joe Davis has ever
worked rides and his hourly rate.
 6-6

C:\Program Files\Adobe\FrameMaker7.0\UniVerse 10.2\sqluser\Ch6
9/25/06
A concessionaire might need to access the INVENTORY.T table to check
on the number of hot dogs in stock and their price, but does not need to know
the wholesale cost.

These and other cases can be handled by creating a vertical, or column-based, view
of the tables in question. Specify in the column list portion of the SELECT statement
the columns to include in the view:

>CREATE VIEW RIDE_OP_INFO
SQL+AS SELECT BADGE_NO, NAME, RIDE_ID, RIDE_PAY
SQL+FROM PERSONNEL.T;
Creating View "RIDE_OP_INFO"
Adding Column BADGE_NO
Adding Column NAME
Adding Column RIDE_ID
Adding Column RIDE_PAY
Adding association RIDES_ASSOC
>SELECT * FROM RIDE_OP_INFO ORDER BY BADGE_NO;
BADGE_NO NAME..................... RIDE_ID RIDE_PAY..

 1 Nelson, Suzanne 5 15.93
 14 10.93
 7 15.21
 3 Grant, Nancy 13 12.09
 1 11.01
 4 15.95
 4 Giustino, Carol 5 10.67
 .
 .
 .
Press any key to continue...

Then, if you grant the ride supervisors SELECT privilege on this view (but not on the
PERSONNEL.T table itself), they can obtain the information they need without
accessing sensitive personnel data. Note that a view inherits any association from the
table or view from which it is derived if the view definition includes all columns in
that association, as was the case with RIDES_ASSOC in the previous example.

In a sense, a vertical view slices a table into vertical strips (columns), and then
combines them into a private table containing only those columns.
6-7 UniVerse SQL User Guide

C:\Program
Files\Adobe\FrameMaker7.0\UniVerse
Row-Based (Horizontal) Views
You can restrict access to certain rows of a table. This is called a horizontal view.
Using the PERSONNEL.T table once again, allow access only to records for
nonmanagement personnel (employees in any position earning less than $15 per
hour):

>CREATE VIEW NON_MANAGEMENT AS SELECT *
SQL+FROM PERSONNEL.T
SQL+WHERE EVERY EQUIP_PAY < 15.00 AND EVERY EQUIP_PAY <> 0
SQL+AND EVERY ACT_PAY < 15.00 AND EVERY ACT_PAY <> 0
SQL+AND EVERY RIDE_PAY < 15.00 AND EVERY RIDE_PAY <> 0;
Creating View "NON_MANAGEMENT"
Adding Column BADGE_NO
Adding Column DOB
.
.
.
Adding Column RIDE_PAY
Adding association DEP_ASSOC
Adding association EQUIP_ASSOC
Adding association ACTS_ASSOC
Adding association RIDES_ASSOC
>SELECT NAME, EQUIP_PAY, ACT_PAY, RIDE_PAY FROM NON_MANAGEMENT
SQL+ORDER BY NAME;
NAME..................... EQUIP_PAY. ACT_PAY... RIDE_PAY..

Bailey, Cheryl 8.24 13.75 12.90
 14.40
Carr, Stephen 9.33 9.41 9.15
 10.70
Clark, Kelly 8.55 10.79 12.94
 13.25 14.86 11.68
 13.51 8.16 12.08
 8.90 8.38
Dickinson, Cecilia 13.46 8.17 8.84
 8.84 13.96
 9.67
Dickinson, Timothy 9.94 13.23 12.57
.
.
.
Hanson, Allen 12.70 13.65 10.12
 10.79 8.44
 13.28
Press any key to continue...
 6-8

C:\Program Files\Adobe\FrameMaker7.0\UniVerse 10.2\sqluser\Ch6
9/25/06
You also could create a view of all personnel who have no dependents:

>CREATE VIEW NO_DEPENDENTS AS SELECT *
SQL+FROM PERSONNEL.T
SQL+WHERE EVERY DEP_NAME = '';
Creating View "NO_DEPENDENTS"
Adding Column BADGE_NO
Adding Column DOB
Adding Column BENEFITS
Adding Column NAME
.
.
.
Adding Column RIDE_PAY
Adding association DEP_ASSOC
Adding association EQUIP_ASSOC
Adding association ACTS_ASSOC
Adding association RIDES_ASSOC
>SELECT NAME, DEP_NAME FROM NO_DEPENDENTS ORDER BY NAME;
NAME..................... DEP_NAME..

Astin, Jocelyn
Bacon, Roger
Bennett, Nicholas
Bowana, Keltu
Burrows, Alan
.
.
.
Press any key to continue...

Combined Vertical and Horizontal Views
You can create a view that combines both vertical and horizontal views. This was the
case in the earlier example of the MAJOR_SUPPLIERS view, which specified both
column names and selection criteria:

>CREATE VIEW MAJOR_SUPPLIERS
SQL+AS SELECT INVENTORY.T.ITEM_CODE, DESCRIPTION, ORDER_QTY,
SQL+COMPANY FROM UNNEST INVENTORY.T ON VENDOR_CODE, VENDORS.T
SQL+WHERE INVENTORY.T.VENDOR_CODE = VENDORS.T.VENDOR_CODE
SQL+AND ORDER_QTY >= 800;

Slicing a table in both directions is common, and is used for both security and
convenience.
6-9 UniVerse SQL User Guide

C:\Program
Files\Adobe\FrameMaker7.0\UniVerse
Column Names and Derived Columns
Previous examples omitted the optional columnname, which assigns view-specific
names to the columns. When included, the number of columns listed in columnnames
must be the same as the number of columns in the SELECT clause.

The columnnames option is required for any virtual (derived) column that is part of
the view. The columnnames option is also useful when you want to supply alternate
names for the columns.

Assigning Column Names in a View

The columnnames option is a list of alternate names and does not include any field
modifiers or qualifiers. Qualifiers, if used, must be supplied in the column
specifications of the SELECT clause. If you do not supply columnnames, the names
of the view columns will be the same as the column names of the tables from which
the view is derived.

If the view definition includes derived columns, aggregate functions, or multiple
columns of the same name, you must include the columnnames option in the
CREATE VIEW statement.

In the previous example, to assign different column names in the view, enter:

>CREATE VIEW MAJOR_SUPPLIERS (INVENTORY_#, ITEM_DESCRIPTION,
SQL+ORDER_QUANTITY, VENDOR_NAME)
SQL+AS SELECT INVENTORY.T.ITEM_CODE, DESCRIPTION, ORDER_QTY,
SQL+COMPANY FROM INVENTORY.T, VENDORS.T
SQL+WHERE INVENTORY.T.VENDOR_CODE = VENDORS.T.VENDOR_CODE
SQL+AND ORDER_QTY >= 800;

A direct correspondence exists between the first name listed in columnnames and the
first column specified in the SELECT clause: INVENTORY_# pairs with
ITEM_CODE, ITEM_DESCRIPTION pairs with DESCRIPTION, and so on.

Derived, or Calculated, Columns in a View

Often a view should contain one or more virtual or derived columns, that is, data that
doesn’t exist in the tables from which the view is derived but is calculated from those
columns.
 6-10

C:\Program Files\Adobe\FrameMaker7.0\UniVerse 10.2\sqluser\Ch6
9/25/06
Because such columns do not have defined names, supply names in the columnnames
portion of the CREATE VIEW statement. For example, to create a view based on the
INVENTORY.T table that includes an additional column showing inventory markup
(COST / PRICE), enter:

>CREATE VIEW INVENTORY1 (DESCRIPTION, WHOLESALE_COST,
SQL+RETAIL_PRICE, MARKUP)
SQL+AS SELECT DESCRIPTION, COST, PRICE, (COST / PRICE)
SQL+FROM INVENTORY.T;
Creating View "INVENTORY1"
Adding Column DESCRIPTION
Adding Column WHOLESALE_COST
Adding Column RETAIL_PRICE
Adding Column MARKUP

Note once again that the number of names in columnnames matches the number of
columns in the SELECT statement.

Summarized Views
Another way to use a view is to summarize data contained in tables, again for either
convenience or security. As an example of convenience, people are rarely interested
in details but want summaries. A properly defined view can provide an appropriate
summary without coding it in a SELECT statement. In terms of security, for example,
it might be okay for someone to look at the average employee salary but not
individual salaries.

The GROUP BY clause is the most common way to produce a summarized result. To
create a view that summarizes the average cost per animal by use category, enter:

>CREATE VIEW AVG_COST
SQL+(USE_CATEGORY, AVERAGE_COST)
SQL+AS SELECT USE, AVG(COST)
SQL+FROM LIVESTOCK.T GROUP BY USE;
Creating View 'AVG_COST'
Adding Column USE_CATEGORY
Adding Column AVERAGE_COST
>SELECT * FROM AVG_COST;
USE_CATEGORY AVERAGE_COST...
P 6105.45
R 6529.73
Z 6112.16

3 records listed.
6-11 UniVerse SQL User Guide

C:\Program
Files\Adobe\FrameMaker7.0\UniVerse
As another example, to create a view that allows someone to find out the average
hourly rate for ride operators (but not their individual hourly rates), enter:

>CREATE VIEW RIDE_AVG_RATE (AVERAGE_RATE)
SQL+AS SELECT AVG(RIDE_PAY) COL.HDG 'AV RIDE PAY'
SQL+FROM PERSONNEL.T WHERE RIDE_PAY > 0
SQL+AND RIDE_PAY IS NOT NULL;
Creating View "RIDE_AVG_RATE"
Adding Column AVERAGE_RATE
>SELECT * FROM RIDE_AVG_RATE;
AV RIDE PAY

 11.74

1 records listed.

Note that this view defines a single result row (average rate) that has no one-to-one
correspondence to a row in the source table, PERSONNEL.T. Also note that any
qualifiers, such as COL.HDG as shown here, are specified as part of the SELECT
statement, not in columnnames, because it is the SELECT statement that defines the
view.
 6-12

C:\Program Files\Adobe\FrameMaker7.0\UniVerse 10.2\sqluser\Ch6
9/25/06
Updating Views
You can now use an INSERT, DELETE, or UPDATE statement to modify some
views. A view is updatable if the user has appropriate rights on the view, and when:

The FROM clause identifies one table
The view does not include the keyword DISTINCT
The table reference identifies either a base table or an updatable view
There is no subquery into the same table
There is no GROUP BY, HAVING, WHEN, or UNNEST clause
Dynamic normalization has not been performed

INSERT is the statement you use for adding new data to a view (UPDATE is for
changing values in existing views). In its most basic form, INSERT names the view
where the data is to be inserted and specifies the columns to be filled and the values
to be inserted in those columns.

UPDATE modifies the values of one or more columns in one or more selected rows
of a view. The UPDATE statement specifies the view to be updated, the columns to
be modified, and the rows to be selected.

Deleting data rows from a view is just as common as inserting data. When an entity
no longer exists, this must be reflected in the database by removing any rows that
represent that entity.

The DELETE statement is structured like the UPDATE statement, and includes a
FROM clause naming the view and a WHERE clause for selecting the rows to be
deleted. And, like UPDATE, DELETE can operate on just a single row, multiple
rows, or all the rows of a table.

You can query the UV_TABLES table in the SQL catalog to find out whether a table
is a base table or a view, and to obtain a list of views that are derived from a base table
or view.

Views created before Release 9.3.1 of UniVerse are read-only. They must be
recreated from the bottom up to be updatable in Release 9.3.1 or later.

For more information about using INSERT, UPDATE, and DELETE, see Chapter 5,
“Modifying Data.”
6-13 UniVerse SQL User Guide

C:\Program
Files\Adobe\FrameMaker7.0\UniVerse
Dropping Views
Remove a view in the same way that you remove a table, through a DROP VIEW
statement:

DROP VIEW viewname [CASCADE];

Issuing a DROP VIEW statement deletes the view from the SQL catalog, deletes its
associated file dictionary, and revokes all user privileges on the view. If a view has
other views derived from it, you must include the keyword CASCADE to drop those
dependent views.

To drop the RIDE_AVG_RATE view created previously, enter:

>DROP VIEW RIDE_AVG_RATE;
Dropping View RIDE_AVG_RATE
 6-14

C:\Program Files\Adobe\FrameMaker7.0\UniVerse 10.2\sqluser\Ch6
9/25/06
Listing Information About a View
Because a view behaves much like a real table, views also comprise:

A file dictionary
A data file (which is empty)
A SICA (security and integrity constraints area) region

As with tables, you can examine all of these as sources of information about the view.

To see the contents of the file dictionary of a table or view, use the UniVerse LIST
command with the DICT keyword:

>LIST DICT AVG_COST
DICT AVG_COST 03:44:18pm 10 Jan 1995 Page 1

 Type &
Field......... Field. Field........ Conversion.. Column......Output Depth &
Name.......... Number Definition... Code........ Heading.....Format Assoc..

USE_CATEGORY D 1 1L S
AVERAGE_COST D 2 MD22 12R S
@REVISE PH USE_CATEGORY
 AVERAGE_COST
@ PH ID.SUP
 USE_CATEGORY
 AVERAGE_COST

4 records listed.

Alternatively, you could enter:

>SELECT * FROM DICT AVG_COST;

To print the dictionary, use either the RetrieVe PRINT.DICT command or the
UniVerse SQL SELECT statement:

>PRINT.DICT AVG_COST
>SELECT * FROM DICT AVG_COST LPTR;

To see the contents of a view’s data, use the UniVerse SQL SELECT statement. Note
that you cannot use RetrieVe commands on the view itself.

>SELECT * FROM AVG_COST;
6-15 UniVerse SQL User Guide

C:\Program
Files\Adobe\FrameMaker7.0\UniVerse
Finally, to see the information in a view’s SICA region, use the following command:

>LIST.SICA AVG_COST
LIST.SICA AVG_COST 11:35:41AM 02 May 1995 Page 1
==
Sica Region for View "AVG_COST"

 Schema: CIRCUS
 Revision: 2
 Checksum is: 8263
 Should Be: 8263
 Size: 304
 Creator: 719
 Total Col Count: 2
 Key Columns: 0
 Data Columns: 2
 Check Count: 0
 Permission Count:0
 History Count: 0

 Query specification: SELECT USE , AVG (COST) FROM

LIVESTOCK.T GROUP BY USE
 Underlying Tables: CIRCUS.LIVESTOCK.T
 WITH CHECK OPTION: No

 Data for Column "USE_CATEGORY"

 Position: 1
 Key Position: 0
 Multivalued: No
 Not Null: No
 Not Empty: No
 Unique: No
 Row Unique: No
 Primary Key: No
 Default Type: None
 Data Type: CHARACTER
Press any key to continue...
 6-16

C:\Program Files\Adobe\FrameMaker7.0\UniVerse 10.2\sqluser\Ch6
9/25/06
Privileges and Views
Privileges work with views as they do with tables, but practically speaking, the only
table privilege applicable to views is the SELECT privilege:

When you create a view, you are the owner of that view and, as such,
automatically have SELECT privilege on it.
You can access a view only if you are its creator or have otherwise been
granted SELECT privilege on it.
You can grant the SELECT privilege on your view to other users, provided
that you own the tables comprising the view, or the owners of the tables have
granted you SELECT privilege WITH GRANT OPTION.

Because views are based on tables and other views, one consideration unique to
views is that before you can create a view, you must have SELECT privilege on all
of its underlying tables and views.
6-17 UniVerse SQL User Guide

C:\Prog
9/25/06
A
Appendix

Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta
The Sample Database
This appendix presents the structure of Circus, the sample database
used for the examples in this manual. The descriptions of the tables are
presented alphabetically in the form of their CREATE TABLE
statements.

The Circus database is illustrated in the following illustration.
ram Files\Adobe\FrameMaker7.0\UniVerse 10.2\sqluser\AppA

C:\Program Files\Adobe\FrameMaker7.0\UniVerse 10.2\sqluser\AppA
9/25/06

Beta
The Sample Database

RIDES.T

LOCATION

LOCATIONS.T

ENGAGE-

List of
Concessions

List of Rides

List of Gates

List of Acts

List of
Operators

List of
Equipment

List of
Livestock

EQUIPMENT.T

List of
Performers

List of
Equipment
List of
Livestock

CONCESSIONS.T

List of
Operators
List of
Equipment
List of
Inventory

INVENTORY.T

List of Vendors List of Vendors

PERSONNEL.T

List of
Qualifications

LIVESTOCK.T

VENDORS.T

ACTS.T

INVENTORY.T

EQUIP-

DATE

List of Items
--- Broken lines indicate
 logical joins between tables.

A-2 UniVerse SQL User Guide

C:\Program Files\Adobe\FrameMaker7.0\UniVerse 10.2\sqluser\AppA
9/25/06

Beta
ACTS.T Table
CREATE TABLE ACTS.T (

ACT_NO INT FMT '5R' PRIMARY KEY,
DESCRIPTION VARCHAR FMT '6T',
DURATION INT FMT '5R',
OPERATOR INT FMT '5R' MULTIVALUED,
ANIMAL_ID INT FMT '5R' MULTIVALUED

REFERENCES LIVESTOCK.T,
EQUIP_CODE INT FMT '5R' MULTIVALUED

REFERENCES EQUIPMENT.T
);
 A-3

C:\Program Files\Adobe\FrameMaker7.0\UniVerse 10.2\sqluser\AppA
9/25/06

Beta
CONCESSIONS.T Table
CREATE TABLE CONCESSIONS.T (

CONC_NO INT FMT '5R' PRIMARY KEY,
DESCRIPTION VARCHAR FMT '25T',
OPERATOR INT FMT '5R' MULTIVALUED

REFERENCES PERSONNEL.T,
EQUIP_CODE INT FMT '5R' MULTIVALUED

REFERENCES EQUIPMENT.T,
ITEM_CODE INT FMT '5R' MULTIVALUED

NOT NULL ROWUNIQUE
REFERENCES INVENTORY.T,

QTY INT FMT '5R' MULTIVALUED,
ASSOCIATION STOCK (ITEM_CODE KEY, QTY)
);
A-4 UniVerse SQL User Guide

C:\Program Files\Adobe\FrameMaker7.0\UniVerse 10.2\sqluser\AppA
9/25/06

Beta
ENGAGEMENTS.T Table
CREATE TABLE ENGAGEMENTS.T (

LOCATION_CODE CHAR(7) FMT '7L',
"DATE" DATE CONV 'D2/',
"TIME" TIME CONV 'MTH',
ADVANCE DEC(9,2) FMT '12R',
GATE_NUMBER INT FMT '5R' MULTIVALUED

NOT NULL ROWUNIQUE,
GATE_REVENUE DEC(9,2) FMT '12R'
MULTIVALUED,
GATE_TICKETS INT FMT '5R' MULTIVALUED,
ACT_NO INT FMT '5R' MULTIVALUED

NOT NULL ROWUNIQUE
REFERENCES ACTS.T,

RIDE_ID INT FMT '5R' MULTIVALUED
NOT NULL ROWUNIQUE
REFERENCES RIDES.T,

RIDE_REVENUE DEC(9,2) FMT '12R'
MULTIVALUED, RIDE_TICKETSINT FMT '5R'
MULTIVALUED,
CONC_ID INT FMT '5R' MULTIVALUED

NOT NULL ROWUNIQUE
REFERENCES CONCESSIONS.T,

CONC_REVENUE DEC(9,2) FMT '12R'
MULTIVALUED,
CONC_TICKETS INT FMT '5R' MULTIVALUED,
LABOR INT FMT '5R',
PAY DEC(5,2) FMT '10R',
ASSOCIATION GATES_ASSOC (GATE_NUMBER KEY,

GATE_REVENUE, GATE_TICKETS),
ASSOCIATION CONCS_ASSOC (CONC_ID KEY,

CONC_REVENUE, CONC_TICKETS),
ASSOCIATION RIDES_ASSOC (RIDE_ID KEY,

RIDE_REVENUE, RIDE_TICKETS),
PRIMARY KEY (LOCATION_CODE, "DATE")
);
 A-5

C:\Program Files\Adobe\FrameMaker7.0\UniVerse 10.2\sqluser\AppA
9/25/06

Beta
EQUIPMENT.T Table
CREATE TABLE EQUIPMENT.T (

EQUIP_CODE INT FMT '5R' PRIMARY KEY,
VENDOR_CODE INT FMT '5R'

REFERENCES VENDORS.T,
VENDOR_REF VARCHAR FMT '10L',
DEPRECIATION CHAR(1) FMT '1L',
DESCRIPTION VARCHAR FMT '25T',
COST DEC(9,2) FMT '12R',
USE_LIFE INT FMT '5R',
TAX_LIFE INT FMT '5R',
VOLTS INT FMT '5R',
PURCHASE_DATE DATE CONV 'D2/'
);
A-6 UniVerse SQL User Guide

C:\Program Files\Adobe\FrameMaker7.0\UniVerse 10.2\sqluser\AppA
9/25/06

Beta
INVENTORY.T Table
CREATE TABLE INVENTORY.T (

ITEM_CODE INT FMT '5R' PRIMARY KEY,
ITEM_TYPE CHAR(1) FMT '1L',
DESCRIPTION VARCHAR FMT '25T',
QOH INT FMT '5R',
COST DEC(9,2) FMT '12R',
PRICE DEC(9,2) FMT '12R',
VENDOR_CODE INT FMT '5R' MULTIVALUED

NOT NULL ROWUNIQUE
REFERENCES VENDORS.T,

ORDER_QTY INT FMT '5R' MULTIVALUED,
ASSOCIATION ORDERS_ASSOC (VENDOR_CODE
KEY,

ORDER_QTY)
);
 A-7

C:\Program Files\Adobe\FrameMaker7.0\UniVerse 10.2\sqluser\AppA
9/25/06

Beta
LIVESTOCK.T Table
CREATE TABLE LIVESTOCK.T (

ANIMAL_ID INT FMT '5R' PRIMARY KEY,
NAME VARCHAR FMT '10T',
DESCRIPTION VARCHAR FMT '10T',
USE CHAR(1) FMT '1L',
DOB DATE CONV 'D2/',
ORIGIN VARCHAR FMT '12T',
COST DEC(9,2) FMT '12R',
EST_LIFE INT FMT '3R',
VAC_TYPE CHAR(1) FMT '1L' MULTIVALUED

NOT NULL ROWUNIQUE,
VAC_DATE DATE CONV 'D2/' MULTIVALUED,
VAC_NEXT DATE CONV 'D2/' MULTIVALUED,
VAC_CERT VARCHAR FMT '6L' MULTIVALUED,
ASSOCIATION VAC_ASSOC (VAC_TYPE KEY,

VAC_DATE, VAC_NEXT, VAC_CERT)
);
A-8 UniVerse SQL User Guide

C:\Program Files\Adobe\FrameMaker7.0\UniVerse 10.2\sqluser\AppA
9/25/06

Beta
LOCATIONS.T Table
CREATE TABLE LOCATIONS.T (

LOCATION_CODE CHAR(7) FMT '7L' PRIMARY KEY,
DESCRIPTION VARCHAR FMT '25T',
NAME VARCHAR FMT '25T',
ADR1 VARCHAR FMT '25T',
ADR2 VARCHAR FMT '25T',
ADR3 VARCHAR FMT '25T',
PHONE VARCHAR FMT '12L',
FAX VARCHAR FMT '8L',
ACRES INT FMT '5R',
SEATS INT FMT '5R',
PARKS INT FMT '5R',
MEDIA_NAME VARCHAR FMT '25L' MULTIVALUED

NOT NULL ROWUNIQUE,
MEDIA_CONTACT VARCHAR FMT '25L'
MULTIVALUED,
MEDIA_PHONE VARCHAR FMT '12L'
MULTIVALUED,
MEDIA_FAX VARCHAR FMT '8L' MULTIVALUED,
GOV_AGENCY VARCHAR FMT '25L' MULTIVALUED

NOT NULL ROWUNIQUE,
GOV_CONTACT VARCHAR FMT '25L'
MULTIVALUED,
GOV_PHONE VARCHAR FMT '12L'
MULTIVALUED,
GOV_FAX VARCHAR FMT '8L' MULTIVALUED,
GOV_FEE DEC(9,2) FMT '12R'
MULTIVALUED,
GOV_CHECK VARCHAR FMT '5L' MULTIVALUED,
GOV_RATE DEC(3,3) FMT '7R'
MULTIVALUED,
ASSOCIATION MEDIA_ASSOC (MEDIA_NAME KEY,

MEDIA_CONTACT, MEDIA_PHONE,
MEDIA_FAX),

ASSOCIATION GOV_ASSOC (GOV_AGENCY KEY,
GOV_CONTACT, GOV_PHONE,

GOV_FAX,
GOV_FEE, GOV_CHECK, GOV_RATE)

);
 A-9

C:\Program Files\Adobe\FrameMaker7.0\UniVerse 10.2\sqluser\AppA
9/25/06

Beta
PERSONNEL.T Table
CREATE TABLE PERSONNEL.T (

BADGE_NO INT FMT '5R' PRIMARY KEY,
DOB DATE CONV 'D2/',
BENEFITS VARCHAR FMT '10T',
NAME VARCHAR FMT '25T',
ADR1 VARCHAR FMT '25T',
ADR2 VARCHAR FMT '25T',
ADR3 VARCHAR FMT '25T',
PHONE VARCHAR FMT '12L',
DEP_NAME VARCHAR FMT '10T' MULTIVALUED

NOT NULL ROWUNIQUE,
DEP_DOB DATE CONV 'D2/' MULTIVALUED,
DEP_RELATION VARCHAR FMT '5L' MULTIVALUED,
EQUIP_CODE INT FMT '5R' MULTIVALUED

NOT NULL ROWUNIQUE
REFERENCES EQUIPMENT.T,

EQUIP_PAY DEC(5,2) FMT '10R'
MULTIVALUED,
ACT_NO INT FMT '5R' MULTIVALUED

NOT NULL ROWUNIQUE
REFERENCES ACTS.T,

ACT_PAY DEC(5,2) FMT '10R'
MULTIVALUED,
RIDE_ID INT FMT '5R' MULTIVALUED

NOT NULL ROWUNIQUE
REFERENCES RIDES.T,

RIDE_PAY DEC(5,2) FMT '10R'
MULTIVALUED,
ASSOCIATION DEP_ASSOC (DEP_NAME KEY,
DEP_DOB,

DEP_RELATION),
ASSOCIATION EQUIP_ASSOC (EQUIP_CODE KEY,

EQUIP_PAY),
ASSOCIATION ACTS_ASSOC (ACT_NO KEY,
ACT_PAY),
ASSOCIATION RIDES_ASSOC (RIDE_ID KEY,

RIDE_PAY)
);
A-10 UniVerse SQL User Guide

C:\Program Files\Adobe\FrameMaker7.0\UniVerse 10.2\sqluser\AppA
9/25/06

Beta
RIDES.T Table
CREATE TABLE RIDES.T (

RIDE_ID INT FMT '5R' PRIMARY KEY,
DESCRIPTION VARCHAR FMT '20T',
OPERATOR INT FMT '5R' MULTIVALUED,
ANIMAL_ID INT FMT '5R' MULTIVALUED

REFERENCES LIVESTOCK.T
EQUIP_CODE INT FMT '5R' MULTIVALUED

REFERENCES EQUIPMENT.T
);
 A-11

C:\Program Files\Adobe\FrameMaker7.0\UniVerse 10.2\sqluser\AppA
9/25/06

Beta
VENDORS.T Table
CREATE TABLE VENDORS.T (

VENDOR_CODE INT FMT '5R' PRIMARY KEY,
COMPANY VARCHAR FMT '25T',
ADR1 VARCHAR FMT '25T',
ADR2 VARCHAR FMT '25T',
ADR3 VARCHAR FMT '25T',
TERMS VARCHAR FMT '10T',
CONTACT VARCHAR FMT '25T',
PHONE VARCHAR FMT '12L',
FAX VARCHAR FMT '8L',
EQUIP_CODE INT FMT '5R' MULTIVALUED,
ITEM_CODE INT FMT '5R' MULTIVALUED

NOT NULL ROWUNIQUE,
LEAD_TIME INT FMT '5R' MULTIVALUED,
ASSOCIATION PROD_ASSOC (ITEM_CODE KEY,

LEAD_TIME)
);
A-12 UniVerse SQL User Guide

Glossary

C:\Prog
9/25/06

Beta BetaBeta Beta Beta Beta Beta BetaBeta Beta Beta Beta Beta BetaBeta Beta Beta Beta Beta Beta
Glossary
1NF See first normal form.

account User accounts are defined at the operating system level. Each user
account has a user name, a user ID number, and a home directory.

UniVerse accounts are defined in the UV.ACCOUNT file of the UV
account. Each UniVerse account has a name and resides in a directory
that contains special UniVerse files such as the VOC,
&SAVEDLISTS&, and so on. See also schema.

aggregate
functions

See set functions.

alias A name assigned to a table, column, or value expression that lasts for
the duration of the statement. See also correlation name.

ANSI American National Standards Institute. A U.S. organization charged
with developing American national standards.

association A group of related multivalued columns in a table. The first value in any
association column corresponds to the first value of every other column
in the association, the second value corresponds to the second value,
and so on. An association can be thought of as a nested table.

association depth For any base table row, the number of values in the association key
columns determines the association depth. If an association does not
have keys, the column with the most association rows determines the
association depth.

association key The values in one or more columns of an association that uniquely
identify each row in the association. If an association does not have
keys, the @ASSOC_ROW keyword can generate unique association
row identifiers.
ram Files\Adobe\FrameMaker7.0\UniVerse 10.2\sqluser\Glossary
 Using SQL in UniVerse

C:\Program Files\Adobe\FrameMaker7.0\UniVerse 10.2\sqluser\Glossary
9/25/06 Using SQL in UniVerse

Beta BetaBeta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta BetaBeta Beta Beta Beta Beta Beta
association row A sequence of related data values in an association. A row in a nested table.

authority See database privilege.

BASIC SQL
Client Interface

The UniVerse BASIC application programming interface (API) that lets application
programmers write client programs using SQL function calls to access data in SQL
server databases.

BNF Backus Naur Form. A notation format using a series of symbols and production rules
that successively break down statements into their components. Appendix A, “The
Sample Database,” shows UniVerse SQL syntax in BNF.

Boolean See logical values, three-valued logic.

Cartesian product All possible combinations of rows from specified tables.

CATALOG
schema

The schema that contains the SQL catalog.

cell The intersection of a row and a column in a table. In UniVerse SQL, cells can contain
more than one value. Such values are often called multivalues. See also multivalued
column.

character string A set of zero or more alphabetic, numeric, and special characters. Character strings
must be enclosed in single quotation marks.

check constraint A condition that data to be inserted in a row must meet before it can be written to a
table.

client A computer system or program that uses the resources and services of another system
or program (called a server).

column A set of values occurring in all rows of a table and representing the same kind of
information, such as names or phone numbers. A field in a table. See also
multivalued column, row, cell, table.

comparison
operator

See relational operator.

concurrency
control

Methods, such as locking, that prevent two or more users from changing the same
data at the same time.

CONNECT The database privilege that grants users access to UniVerse SQL. Users with
CONNECT privilege are registered in the SQL catalog. See also registered users.
2 UniVerse SQL Reference

C:\Program Files\Adobe\FrameMaker7.0\UniVerse 10.2\sqluser\Glossary
9/25/06 Using SQL in UniVerse

Beta BetaBeta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta BetaBeta Beta Beta Beta Beta Beta
connecting
columns

Columns in one or more tables that contain similar values. In a join, the connecting
column enables a table to link to another table or to itself.

constant A data value that does not change. See also literal.

constraint See integrity constraint.

correlated
subquery

A subquery that depends on the value produced by an outer query for its results.

correlation name A name assigned to a table, column, or value expression, that can be used in a
statement as a qualifier or as the name of an unnamed column.

DBA Database administrator. DBA is the highest-level database privilege. Like superuser,
a user with DBA privilege has complete access to all SQL objects in the database.

DBMS Database management system.

DDL Data definition language.

DML Data manipulation language.

database privilege Permission to access SQL database objects. See also CONNECT, RESOURCE,
DBA, privilege.

default value The value inserted into a column when no value is specified.

depth See association depth.

dynamic
normalization

A mechanism for letting DML statements access an association of multivalued
columns or an unassociated multivalued column as a virtual first-normal-form table.

effective user
name

In a BASIC program, the user specified in an AUTHORIZATION statement;
otherwise, the user who is logged in as running the program.

empty string A character string of zero length. This is not the same as the null value.

expression See value expression.

field See column.

first normal form The name of a kind of relational database that can have only one value for each row
and column position (or cell). Its abbreviation is 1NF.

foreign key The value in one or more columns that references a primary key or unique column in
the same or in another table. Only values in the referenced column can be included
in the foreign key column. See also referential constraint.
Glossary 3

C:\Program Files\Adobe\FrameMaker7.0\UniVerse 10.2\sqluser\Glossary
9/25/06 Using SQL in UniVerse

Beta BetaBeta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta BetaBeta Beta Beta Beta Beta Beta
identifier The name of a user or an SQL object such as a schema, table, or column.

inclusive range The range specified with the BETWEEN keyword that includes the upper and lower
limits of the range.

integrity
constraint

A condition that data to be inserted in a row must meet before it can be written to a
table.

isolation level A mechanism for separating a transaction from other transactions running
concurrently, so that no transaction affects any of the others. There are five isolation
levels, numbered 0 through 4.

join Combining data from more than one table.

join column A column used to specify join conditions.

key A data value used to locate a row.

keyword A word, such as SELECT, FROM, or TO, that has special meaning in UniVerse SQL
statements.

literal A constant value. UniVerse SQL has four kinds of literal: character strings, numbers,
dates, and times.

logical values Value expressions can have any of the following logical values: true (1), false (0), or
unknown (NULL).

multivalued
column

A column that can contain more than one value for each row in a table. See also cell,
association.

NF2 See nonfirst-normal form.

nested query See subquery.

nested sort A sort within a sort.

nested table See association.

nonfirst-normal
form

The name of a kind of relational database that can have more than one value for a row
and column position (or cell). Its abbreviation is NF2. Thus, the UniVerse nonfirst-
normal-form database can be thought of as an extended relational database.

NT
AUTHORITY
\SYSTEM

On Windows platforms, the user name of the database administrator (DBA) who
owns the SQL catalog.
4 UniVerse SQL Reference

C:\Program Files\Adobe\FrameMaker7.0\UniVerse 10.2\sqluser\Glossary
9/25/06 Using SQL in UniVerse

Beta BetaBeta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta BetaBeta Beta Beta Beta Beta Beta
null value A special value representing an unknown value. This is not the same as 0 (zero), a
blank, or an empty string.

ODBC Open Database Connectivity. A programming language interface for connecting to
databases.

outer query A query whose value determines the value of a correlated subquery.

outer table The first table specified in an outer join expression.

owner The creator of a database object such as a schema or table. The owner has all
privileges on the object.

parameter marker In a programmatic SQL statement, a single ? (question mark) used in place of a
constant. Each time the program executes the statement, a value is used in place of
the marker.

permissions See privilege.

precision The number of significant digits in a number. See also scale.

primary key The value in one or more columns that uniquely identifies each row in a table.

primary key
constraint

A column or table constraint that defines the values in specified columns as the
table’s primary keys. Primary keys cannot be null values and must also be unique. If
a table has no primary key, the @ID column functions as an implicit primary key.

privilege Permission to access, use, and change database objects. See also database privilege,
table privilege.

programmatic
SQL

A dialect of the UniVerse SQL language used in client programs that access SQL
server databases. Programmatic SQL differs from interactive SQL in that certain
keywords and clauses used for report formatting are not supported.

qualifier An identifier prefixed to the name of a column, table, or alias to distinguish names
that would otherwise be identical.

query A request for data from the database.

record See row.

referenced
column

A column referenced by a foreign key column. See also referential constraint.

referencing
column

A foreign key column that references another column. See also referential
constraint.
Glossary 5

C:\Program Files\Adobe\FrameMaker7.0\UniVerse 10.2\sqluser\Glossary
9/25/06 Using SQL in UniVerse

Beta BetaBeta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta BetaBeta Beta Beta Beta Beta Beta
referential
constraint

A column or table constraint that defines a dependent relationship between two
columns. Only values contained in the referenced column can be inserted into the
referencing column. See also foreign key.

reflexive join A join that joins a table to itself. Both join columns are in the same table.

registered users Users with CONNECT privilege, whose names are listed in the SQL catalog.
Registered UniVerse SQL users can create and drop tables, grant and revoke
privileges on tables on which they have privileges, and so on.

relational
operator

An operator used to compare one expression to another in a WHERE, WHEN, or
HAVING clause, or in a check constraint. Relational operators include = (equal to),
> (greater than), < (less than), >= (greater than or equal to), <= (less than or equal to),
and <> (not equal to).

RESOURCE Second-highest level database privilege. A user with RESOURCE privilege can
create schemas.

root On UNIX systems, the user name of the database administrator (DBA) who owns the
SQL catalog if uvsql or uvadm is not the owner.

row A sequence of related data elements in a table; a record. See also column, cell, table.

rowunique
constraint

A column or table constraint requiring that values in the cells of specified
multivalued columns must be unique in each cell. Values need not be unique
throughout each column, but only in each row of each column.

scale The number of places to the right of the decimal point in a number. See also
precision.

schema A group of related tables and files contained in a UniVerse account directory and
listed in the SQL catalog.

security
constraint

A condition that users must meet before they can perform a specified action on a
table.

server A computer system or program that provides resources and services to other systems
or programs (called clients).

set functions Arithmetic functions that produce a single value from a group of values in a specific
column. Set functions include AVG, COUNT, COUNT(*), MAX, MIN, and SUM.
Set functions can be used only in the SELECT and HAVING clauses of the SELECT
statement.
6 UniVerse SQL Reference

C:\Program Files\Adobe\FrameMaker7.0\UniVerse 10.2\sqluser\Glossary
9/25/06 Using SQL in UniVerse

Beta BetaBeta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta BetaBeta Beta Beta Beta Beta Beta
SICA Security and integrity constraints area. This is an area of each table where data
structure, privileges, and integrity constraints are defined and maintained.

SQL A language for defining, querying, modifying, and controlling data in a relational
database.

SQL catalog A set of tables that describe all SQL objects, privileges, and users in the system:
UV_ASSOC, UV_COLUMNS, UV_SCHEMA, UV_TABLES, UV_USERS, and
UV_VIEWS. The SQL catalog is located in the CATALOG schema.

SQL Client
Interface

See BASIC SQL Client Interface.

statement An SQL command that defines, manipulates, or administers data.

string See character string.

subquery A SELECT statement that nests within a WHERE, WHEN, or HAVING clause.

table A matrix of rows and columns containing data. See also column, row, cell.

table privilege Permission to read or write to a table. These include SELECT, INSERT, UPDATE,
DELETE, ALTER, and REFERENCES. See also privilege.

temporary name See alias.

three-valued logic An extension of Boolean logic that includes a third value, unknown (NULL), in
addition to the Boolean values true (1) and false (0). See also logical values.

transaction A strategy that treats a group of database operations as one unit. The database
remains consistent because either all or none of the operations are completed.

transaction
management

A strategy that either completes or cancels transactions so that the database is never
inconsistent.

trigger A BASIC program associated with a table, executed (“fired”) when some action
changes the table’s data.

UCI Uni Call Interface. A C-language application programming interface (API) that lets
application programmers write client programs using SQL function calls to access
data in UniVerse databases.

unique constraint A column or table constraint requiring that values in specified columns must contain
unique values.
Glossary 7

C:\Program Files\Adobe\FrameMaker7.0\UniVerse 10.2\sqluser\Glossary
9/25/06 Using SQL in UniVerse

Beta BetaBeta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta BetaBeta Beta Beta Beta Beta Beta
unnested table The result of unnesting, or exploding, an association of multivalued columns to
produce a separate row for each set of associated multivalues. Unnested data is
treated as singlevalued.

user privilege See database privilege.

uvadm On UNIX systems, the user name of the database administrator (DBA). uvadm is the
owner of the SQL catalog if uvsql or root is not the owner.

uvsql On UNIX systems, the user name of the database administrator (DBA). uvsql is the
owner of the SQL catalog if root or uvadm is not the owner.

value expression One or more literals, column specifications, and set functions, combined with
arithmetic operators and parentheses, that produce a value when evaluated.

view A derived table created by a SELECT statement that is part of the view’s definition.

wildcard Either of two characters used in pattern matches. The _ (underscore) represents any
single character. The % (percent sign) represents any number of characters.
8 UniVerse SQL Reference

@

C:\Program Files\Adobe\Fram
10.2\sqluser\SqluserIX.doc

Index

O Q C A B D E F G H I J K L M N P R S T U V W X Y Z
Index
Symbols
operator 2-21
% (percent sign) 2-43
* selection specification 2-10
< > (angle brackets) 5-13
< operator 2-21
<= operator 2-21
<> operator 2-21
= operator 2-21
> operator 2-21
>= operator 2-21
_ (underscore) 2-25

A
accounts

definition Gl-1
advanced SELECT statements 3-2–3-

31
aggregate functions, see set functions
aliases

column 2-46
definition Gl-1

ALL keyword 3-26
alternate file dictionaries

with DELETE statement 5-29
with INSERT statement 5-29
with SELECT statement 2-11, 5-29
with UPDATE statement 5-29

AND truth table 2-30
angle brackets (< >) 5-13
ANSI (American National Standards

Institute)
definition Gl-1

ANY keyword 3-26, 4-7
changing to EXISTS 3-28

arithmetic operators 2-14
AS keyword 2-46
ASC keyword 2-41
ASSOC keyword 2-51
ASSOC.WITH keyword 2-51
ASSOCIATED keyword 2-51
association depth 4-4
association keys 4-4

definition Gl-2
association rows

definition Gl-2
deleting 5-25, 6-13
inserting 5-15

associations
and dynamic normalization 4-24
definition Gl-1
depth of 4-4
table within a table concept 4-4
with multivalued columns 4-4

authority, see database privileges
AUX.PORT keyword 2-52
averaging 2-37

see also AVG: set function
AVG

keyword 2-43, 2-44
set function 2-37

B
base table 6-2
BASIC SQL Client Interface

definition Gl-2
BETWEEN keyword 2-19, 2-22
BNF (Backus Naur Form)

definition Gl-2
Boolean

see also three-valued logic
eMaker7.0\UniVerse

@

C:\Program Files\Adobe\FrameMaker7.0\UniVerse
10.2\sqluser\SqluserIX.doc

O Q C A B D E F G H I J K L M N P R S T U V W X Y Z
definition Gl-2
brackets, angle (< >) 5-13
BREAK ON keyword 2-43
BREAK SUPPRESS keyword 2-43
BREAK.ON keyword 2-43
BREAK.SUP keyword 2-43

C
CALC keyword 2-43
CALCULATE keyword 2-43
calculated column, see derived data,

expressions
Cartesian joins 3-13
Cartesian product

definition Gl-2
CAST function 2-13, 2-27
CATALOG schema

definition Gl-2
catalog, see SQL catalog
cell 4-2
cell, definition Gl-2
character strings

definition Gl-2
characters

wildcard
definition Gl-8

characters, wildcard 2-25
check constraints

definition Gl-2
Circus database 1-11

see also sample database
client

definition Gl-2
COL.HDG keyword 2-43, 2-49
COL.SUP keyword 2-52
column headings 2-49
column names, assigning unique

column names in a view 6-10
COLUMN SPACES keyword 2-52
column-based views 6-6
columnname specification 6-10
columns

alias 2-46
calculated, see derived data,

expressions
connecting

definition Gl-3
definition Gl-2

formatting for output 2-43
join 3-14
multivalued 4-2–4-25

definition Gl-4
uses 4-3

numbers 2-42
referenced

definition Gl-6
referencing

definition Gl-6
selecting 2-12

command processor, using 2-5
commands

breaking up lines 2-5
sentence stack 2-6
terminating a statement 2-6

comparison
selection 2-18
test in subqueries 3-24, 3-26

comparison operators, see relational
operators

compound search criteria
expressing 2-30
use of parentheses 2-33

concurrency control, definition Gl-2
CONNECT

privilege
definition Gl-3

CONNECT privilege 5-5
connecting columns, definition Gl-3
constants 2-14

see also literals
definition Gl-3

CONV keyword 2-50
CONVERSION keyword, see CONV

keyword
correlated subqueries 3-23
correlated subqueries, definition Gl-3
correlation name

definition Gl-3
COUNT set function 2-37
COUNT(*) set function 2-37
COUNT.SUP keyword 2-52
counting 2-38

rows 2-38
values 2-39

CREATE VIEW statement 6-3, 6-6
creating views 6-6
CURRENT_DATE keyword 2-45

CURRENT_TIME keyword 2-45

D
data

integrity and database updating 5-7
modifying 5-3–5-29

data model
SQL 1-5
UniVerse 1-5

data types
grouping of 1-9
numeric 1-9
string 1-9

database privileges
CONNECT 5-5

definition Gl-3
DBA 5-6

definition Gl-3
definition Gl-3
RESOURCE 5-5

definition Gl-6
three levels 5-5

databases
Circus 1-11
concepts 1-2–A-2

and structures 1-4
first-normal-form

definition Gl-4
nonfirst-normal-form, definition Gl-

5
privileges, levels 5-5
sample 1-11, A-1
security

UniVerse 5-5
UniVerse SQL 5-4, 5-5
UNIX 5-4

updating 5-7, 5-18, 6-13
and data integrity 5-7
with DELETE statement 5-25, 6-

13
with INSERT statement 5-10
and transaction processing 5-8
with UPDATE statement 5-18, 6-

13
date, see CURRENT_DATE keyword
DBA

privilege
definition Gl-3
2 UniVerse SQL User Guide

C:\Program Files\Adobe\FrameMaker7.0\UniVerse
10.2\sqluser\SqluserIX.doc

O Q C A B D E F G H I J K L M N P R S T U V W X Y Z @
DBA privilege 5-6
DBMS, definition Gl-3
DDL (data definition language) 2-3

definition Gl-3
default values

definition Gl-3
deinstalling the sample database 1-13
DELETE statement 5-25, 6-13
deleting

all rows from a table 5-26
association rows 5-25
individual rows 5-27
multivalues from a row 5-25
views 6-13

delimited identifiers 2-45
see also identifiers

demonstration database, see sample
database

derived data
and EVAL clause 2-15
obtaining 2-14
in views 6-10

DESC keyword 2-41
disabling the query optimizer 3-10
DISPLAY.LIKE keyword 2-51
DISPLAYLIKE keyword 2-51
DISPLAYNAME keyword 2-49
DML (data manipulation language) 2-

3
definition Gl-3

DOUBLE SPACE keyword 2-52
double-spacing of reports 2-54
DROP VIEW statement 6-14
dropping views 6-14
dynamic normalization 4-24

definition Gl-3
inserting multivalues into existing

rows 5-15
and unassociated multivalued

columns 4-25
updating values in multivalued

columns 5-20

E
effective user name

definition Gl-3
empty strings

definition Gl-3

equi-join 3-14, 3-15, 3-18
EVAL clause and derived data 2-15
EVERY keyword 4-6, 4-8, 4-11
existence test in subqueries 3-24, 3-30
EXISTS keyword 3-30
EXPLAIN keyword 3-9
exploding multivalued columns 4-15
expressions

as columns, see derived data
in SET clause 5-22
in value lists 5-13
value

definition Gl-8

F
fields, definition Gl-3
file dictionaries, alternate

with DELETE statement 5-29
with INSERT statement 5-29
with SELECT statement 2-11, 5-29
with UPDATE statement 5-29

first normal form 1-5
definition Gl-4

FMT keyword 2-43, 2-49
FOOTER keyword 2-52
FOR UPDATE clause 5-23
foreign keys

definition Gl-4
FORMAT keyword, see FMT keyword
formatting

columns 2-43
output 2-41

ASSOC keyword 2-51
ASSOCIATED keyword 2-51
column headings 2-49
CONV keyword 2-50
DISPLAYLIKE keyword 2-51
DISPLAYNAME keyword 2-49
FMT keyword 2-49
MULTIVALUED keyword 2-51
SINGLEVALUED keyword 2-51
using text 2-45

reports
AUX.PORT keyword 2-52
COLUMN SPACES keyword 2-

52
COUNT.SUP keyword 2-52
DOUBLE SPACE keyword 2-52

FOOTER keyword 2-52
GRAND TOTAL keyword 2-52
HEADER keyword 2-38, 2-52
LPTR keyword 2-52
MARGIN keyword 2-52
NO.INDEX keyword 2-52
NO.PAGE keyword 2-52
outputting to the printer 2-55
SUPPRESS COLUMN HEADER

keyword 2-52
SUPPRESS DETAIL keyword 2-

52
suppressing automatic

pagination 2-54
VERT keyword 2-52
vertical format 2-55
VERTICALLY keyword 2-52

FROM clause 2-7
functions

set, see set functions

G
global updating 5-21
GRAND TOTAL keyword 2-52
GROUP BY clause 2-7, 3-3

in summarized views 6-11
more than one grouping 3-5
using with UNNEST clause 4-21

grouped queries 3-3
grouping rows 3-3

null values in the grouping
column 3-6

restrictions on 3-5
groups, selecting on 3-7

H
HAVING clause 2-7, 3-7

with subqueries 3-31
HEADER keyword 2-38, 2-52
highest value in field 2-38

see also MAX set function
horizontal views

combining with vertical 6-9
defining 6-8
Index 3

@

C:\Program Files\Adobe\FrameMaker7.0\UniVerse
10.2\sqluser\SqluserIX.doc

O Q C A B D E F G H I J K L M N P R S T U V W X Y Z
I
identifiers

definition Gl-4
delimited 2-45
quoted 2-45

IN keyword 2-19, 2-24
in-line prompts 2-35, 2-36
inclusive range

expressing 2-19, 2-22
inclusive range, definition Gl-4
inner joins, see joins
inner SELECT statement 3-22
INSERT statement 5-10

naming the table 5-11
specifying the columns 5-11
supplying the values 5-12

inserting
association rows 5-15
multiple rows 5-16
multivalues

into existing row 5-15
into new row 5-13

views 6-13
installing the sample database 1-12
integrity constraints

see also column constraints, table
constraints

definition Gl-4
IS NULL keyword 2-20, 2-26
isolation levels 3-11, 5-23

definition Gl-4

J
join column, definition Gl-4
join columns 3-14
joined view 6-4
joining

a table to itself 3-17
tables 3-12–3-18
three or more tables 3-16
two tables 3-14

joins 3-12–3-18
Cartesian product 3-13
conditions and multivalued

columns 4-10
definition Gl-4
inner 3-14

outer 3-18
reflexive 3-17
reflexive, definition Gl-6

K
keys

association 4-4
definition Gl-2

definition Gl-4
foreign

definition Gl-4
keywords 2-3

definition Gl-4

L
left outer joins, see joins
LIKE keyword 2-20, 2-25
literals

definition Gl-4
locking rows 5-23
locks 3-11, 5-9, 5-23
logical values 2-30
logical values, definition Gl-4
lowest value in field 2-38

see also MIN set function
LPTR keyword 2-52

M
MAKE.DEMO.FILES command 1-12
MAKE.DEMO.TABLES command 1-

12
MARGIN keyword 2-52
match test in subqueries 3-24
MAX set function 2-37, 2-38
MIN set function 2-37, 2-38
modifying data 5-3–5-29
MULTI.VALUE keyword 2-51
multivalued columns 4-2–4-25

associations 4-4
definition Gl-4
deleting multivalues from 5-25
and dynamic normalization 4-24
and EVERY keyword 4-6, 4-8
exploding with UNNEST clause 4-

15

inserting values into existing row 5-
15

inserting values into new row 5-13
and join conditions 4-10
in sample database 4-5
and selection criteria 4-6
storing alternate pieces of

information 4-3
unassociated 4-17
and UNNEST clause 4-8, 4-14, 4-15
updating values in 5-19
uses for 4-3
using set functions with 4-19
and WHEN clause 4-7, 4-11

with WHERE 4-12
and WHERE clause 4-7, 4-9, 4-11
where-used lists 4-3

MULTIVALUED keyword 2-51

N
names

correlation
definition Gl-3

user 1-12
nested queries, see subqueries
nested sort

example 2-42
nested sort, definition Gl-4
nested tables 1-5

definition Gl-4
description 4-4
using subqueries on 4-22

NO.INDEX keyword 2-52
NO.OPTIMIZE keyword 3-10
NO.PAGE keyword 2-52
nonfirst-normal form 1-5

definition Gl-5
NOT

keyword 2-21
truth table 2-31

NOWAIT keyword 3-11, 5-9
NT AUTHORITY\SYSTEM user

definition Gl-5
null value 2-26

definition Gl-5
description 2-20

numeric data types 1-9
4 UniVerse SQL User Guide

C:\Program Files\Adobe\FrameMaker7.0\UniVerse
10.2\sqluser\SqluserIX.doc

O Q C A B D E F G H I J K L M N P R S T U V W X Y Z @
O
obtaining derived data 2-14
ODBC

definition Gl-5
operators

arithmetic 2-14
comparison, see relational
relational 2-21, 2-29

definition Gl-6
OR truth table 2-31
ORDER BY clause 2-7
outer joins, see joins
outer queries, definition Gl-5
outer SELECT statement

defining 3-22
and UNNEST clause 4-22, 4-23

output
formatting 2-41
sorting 2-41

see also ORDER BY clause
outputting to the printer 2-55
overview of UniVerse SQL 1-3
owner

definition Gl-5

P
page image orientation 2-55
pagination, suppressing 2-54
parameter markers

definition Gl-5
parentheses

in compound search criteria 2-33
in expressions 2-14

pattern matching 2-20, 2-25
PERC keyword 2-43
PERCENT keyword 2-43
percent sign (%) 2-43
PERCENTAGE keyword 2-43
permissions, see database privileges,

table privileges
phonetic matching 2-20, 2-25
precision

definition Gl-5
primary keys

constraint
definition Gl-5

selecting rows 2-16

privileges
user 5-5
and views 6-17

privileges, see database privileges,
table privileges

processing qualifiers 2-17, 3-9
processing queries

EXPLAIN keyword 3-9
NO.OPTIMIZE keyword 3-10
NOWAIT keyword 3-11, 5-9

programmatic SQL
and dynamic normalization 4-24
definition Gl-5

prompts
in SQL queries 2-35
in-line 2-36

Q
qualifiers

definition Gl-5
queries

definition Gl-6
grouped 3-3
nested, see subqueries
outer, definition Gl-5

query optimizer, disabling 3-10
quoted identifiers 2-45

R
range, see inclusive range
record IDs, see primary keys
records, definition Gl-6
referenced columns

definition Gl-6
referencing columns

definition Gl-6
referential constraints

definition Gl-6
reflexive joins 3-17

see also joins
reflexive joins, definition Gl-6
registered users, definition Gl-6
relational operators 2-21, 2-29

definition Gl-6
REMOVE.DEMO.FILES

command 1-12

REMOVE.DEMO.TABLES
command 1-12

report qualifiers 2-51
REPORTING keyword 5-21
reports

double-spacing 2-54
footings 2-52
headings 2-52

RESOURCE
privilege

definition Gl-6
RESOURCE privilege 5-5
restrictions on grouping rows 3-5
results as tables 2-8
root

definition Gl-6
row-based view 6-8
rows

adding 5-10
association

definition Gl-2
definition Gl-6
deleting 5-25, 6-13
deleting all rows 5-26
deleting individual rows 5-27
global updating 5-21
grouping 3-3
inserting multiple rows 5-16
locking 5-23
sampling 2-17
selecting 2-15
updating 5-18, 6-13
updating multivalues in 5-19
updating single row 5-18

ROWUNIQUE
constraint

definition Gl-6

S
SAID keyword 2-20, 2-25
sample database 1-11

CREATE TABLE statements for A-
1

deinstalling 1-13
diagram A-2
installing 1-12

SAMPLE keyword 2-17
SAMPLED keyword 2-17
Index 5

@

C:\Program Files\Adobe\FrameMaker7.0\UniVerse
10.2\sqluser\SqluserIX.doc

O Q C A B D E F G H I J K L M N P R S T U V W X Y Z
sampling rows 2-17
scale

definition Gl-6
schemas

CATALOG
definition Gl-2

definition Gl-6
security 5-4–5-6

database
and UniVerse 5-5
and UniVerse SQL 5-4, 5-5
and UNIX 5-4

views 6-2
security and integrity constraints area,

see SICA
security constraints, definition Gl-6
SELECT clause 2-7
SELECT command 2-34
select lists 2-10

used in selecting rows 2-34
SELECT privilege and views 6-17
SELECT statement 2-7

advanced 3-2–3-31
elements of 2-7
FOR UPDATE clause 5-23
FROM clause 2-7
GROUP BY clause 2-7
HAVING clause 2-7
inner SELECT 3-22
ORDER BY clause 2-7
outer SELECT 3-22
simpler forms 2-2–2-55
subqueries 3-22–3-31
UNION operator 3-20
versus RetrieVe commands 2-8
WHEN clause 2-7
WHERE clause 2-7

selecting
columns 2-12
on groups 3-7
on multivalued columns 4-2–4-25
rows 2-15

by primary key 2-16
by selection criteria 2-18
sampling 2-17
through select lists 2-34
using in-line prompts 2-35, 2-36

selection
compound search criteria 2-30

inclusive ranges 2-19, 2-22
null values 2-20, 2-26
pattern matching 2-20, 2-25
phonetic matching 2-20, 2-25
set membership 2-19, 2-24

selection comparisons 2-18, 2-21
selection criteria and multivalued

columns 4-6
selection specification 2-7

* form of 2-10
self-join 3-17
sentence stack

commands 2-6
description 2-5

servers
definition Gl-7

SET clause
in UPDATE statement 5-18
using expressions in 5-22

set functions 2-37
AVG 2-37
COUNT 2-37
COUNT(*) 2-37
definition Gl-7
MAX 2-37
MIN 2-37
SUM 2-37
using with multivalued columns 4-

19
set membership 2-19, 2-24
SETUP.DEMO.SCHEMA

command 1-12
SICA (security and integrity constraints

area), definition Gl-7
SINGLE.VALUE keyword 2-51
SINGLEVALUED keyword 2-51
SOME keyword 3-26

see also ANY keyword
sort-merge-join 3-15
sort, nested, see nested sort
sorting 2-41
SQL

data model 1-5
and database security 5-4, 5-5
databases and UniVerse 1-4
definition Gl-7
enhancements to UniVerse 1-3
overview 1-3
programmatic

definition Gl-5
SELECT statements versus RetrieVe

commands 2-8
statements, see statements
statements, see statements
tables and UniVerse files 1-5
verbs 2-3

SQL catalog
definition Gl-7

SSELECT command 2-34
statements

definition Gl-7
description 2-3
SELECT 2-5, 2-10

string data types 1-9
strings

empty
definition Gl-3

subqueries 3-22–3-31
comparison test 3-24, 3-26
correlated 3-23
correlated, definition Gl-3
definition Gl-7
existence test 3-24, 3-30
in HAVING clause 3-22, 3-31
match test 3-24
and nested tables 4-22
types of tests 3-24
uncorrelated 3-23
in UPDATE statement 5-22
in WHERE clause 5-22

SUM set function 2-37
summarized views 6-11
summing, see SUM set function
SUPPRESS COLUMN HEADER

keyword 2-45, 2-52
SUPPRESS DETAIL keyword 2-52

T
table privileges

definition Gl-7
tables

see also truth tables
base 6-2
definition Gl-7
joining 3-12–3-18

a table to itself 3-17
three or more 3-16
6 UniVerse SQL User Guide

C:\Program Files\Adobe\FrameMaker7.0\UniVerse
10.2\sqluser\SqluserIX.doc

O Q C A B D E F G H I J K L M N P R S T U V W X Y Z @
two 3-14
joins, how UniVerse SQL

processes 3-15
nested

definition Gl-4
results as 2-8
retrieving an entire table 2-10
retrieving data from a single table 2-

10
table within a table concept using

associations 4-4
unnested, definition Gl-8
updating 5-18, 6-13

temporary name, see aliases
text in output 2-45
three-valued logic 2-31
three-valued logic, definition Gl-7
time, see CURRENT_TIME keyword
TOTAL keyword 2-43, 2-44
transaction management,

definition Gl-8
transaction processing and database

updating 5-8
transactions

definition Gl-7
triggers 5-28

definition Gl-8
truth tables

AND 2-30
NOT 2-31
OR 2-31

U
UCI

definition Gl-8
unassociated multivalued columns 4-

17
uncorrelated subquery 3-23
underscore (_) 2-25
UNION operator 3-20
unique constraint

definition Gl-8
UniVerse

data model 1-5
database security 5-5
and SQL databases 1-4

UniVerse files and SQL tables 1-5
UniVerse SQL 1-3

UNIX database security 5-4
UNNEST clause

exploding multivalued columns 4-15
and multivalued columns 4-8
and outer SELECT statements 4-22,

4-23
unnested tables, definition Gl-8
UPDATE statement 5-18, 6-13

global updating 5-21
multivalued columns 5-19
SET clause 5-18
single rows 5-18
using subqueries in WHERE

clause 5-22
using WHEN clause 5-20

updating
single rows 5-18
tables 5-18, 6-13
views 6-13

user name 1-12
user privileges, see database privileges
users, registered, definition Gl-6
USING DICT keyword

and DELETE statement 5-29
and INSERT statement 5-29
and SELECT statement 2-11, 5-29
and UPDATE statement 5-29

uvadm
definition Gl-8

uvsql
definition Gl-8

V
value expressions 5-13

definition Gl-8
value lists 5-12

expressions in 5-13
values

default
definition Gl-3

logical, definition Gl-4
null, definition Gl-5

VERT keyword 2-52
vertical views

combining with horizontal 6-9
using 6-6

VERTICALLY keyword 2-52
views 6-2

assigning unique column names 6-
10

column-based 6-6
combining vertical and horizontal 6-

9
creating 6-6
definition Gl-8
deleting 6-13
derived data in 6-10
dropping 6-14
establishing 6-2–6-17
examples 6-3

of joined 6-4
of using for convenience 6-3
of using for security 6-3

horizontal 6-8
inserting 6-13
listing information about 6-15
privileges 6-17
row-based 6-8
security 6-2
summarized 6-11
updating 6-13
uses of 6-2
using 6-2–6-17
using in SELECT statements 6-4
vertical 6-6

virtual tables, see views

W
WHEN clause 2-7, 4-11

compared to WHERE clause 4-9
and multivalued columns 4-7, 4-11
in UPDATE statement 5-20
with WHERE clause 4-12

WHERE clause 2-7, 4-9
compared to WHEN clause 4-9
and multivalued columns 4-7, 4-8
and selecting rows 2-18
with WHEN clause 4-12

where-used lists 4-17
multivalued columns 4-3

wildcard characters 2-25
definition Gl-8
Index 7

	Online Guide
	Table of Contents
	Preface
	Organization of This Manual
	Documentation Conventions
	UniVerse Documentation
	Related Documentation
	API Documentation

	Understanding SQL Concepts
	Introduction to SQL
	Overview of Databases, Files, and Tables
	UniVerse and SQL Databases
	UniVerse Files and SQL Tables

	The Sample Database
	Installing the Sample Database
	Deinstalling the Sample Database

	Using SELECT Statements
	The SQL Language
	Introduction to UniVerse SQL SELECT
	Using the Command Processor
	SELECT Statement Elements
	Comparing UniVerse SQL SELECT to RetrieVe
	Results as Tables

	Retrieving Data from a Single Table
	Retrieving an Entire Table
	Selecting Specific Columns
	Obtaining Derived Data
	Selecting Rows
	Summarizing Table Contents (Set Functions)

	Manipulating the Output
	Sorting Output
	Formatting Columns
	Using Field Modifiers
	Using Text
	Using the Current Date and Time
	Using Field Qualifiers
	Formatting Reports with Report Qualifiers

	Using Advanced SELECT Statements
	Grouping Rows (GROUP BY)
	Restrictions on Grouping Rows
	Null Values in Grouping Columns

	Selecting Groups (HAVING)
	Processing SQL Queries
	Showing How a Query Will Be Processed (EXPLAIN)
	Disabling the Query Optimizer (NO.OPTIMIZE)
	Avoiding Lock Delays (NOWAIT)

	Joining Tables
	Joining Two Tables
	Outer Joins
	Selecting on Joined Tables
	Using UNION to Combine SELECT Statements

	Subqueries
	Correlated and Uncorrelated Subqueries
	Subquery Test Types
	Using Subqueries with HAVING

	Selecting on Multivalued Columns
	Uses for Multivalued Columns
	Associations
	Multivalued Columns in the Sample Database
	Selection Criteria and Multivalued Columns
	Using WHERE
	Using WHEN
	Using UNNEST

	Using Set Functions
	Subqueries on Nested Tables
	Using Dynamic Normalization

	Modifying Data
	Database Security and UniVerse SQL
	Operating System Security
	UniVerse Security
	UniVerse SQL Security

	Data Integrity
	Transaction Processing
	Avoiding Lock Delays (NOWAIT)
	Inserting Data (INSERT)
	Naming the Table and Specifying the Columns
	Supplying the Values
	Using Expressions in Value Lists
	Inserting Multivalues into a New Row
	Inserting Multivalues into an Existing Row
	Inserting Multiple Rows

	Updating Data (UPDATE)
	Updating Values in a Single Row
	Updating Values in Multivalued Columns
	Using WHEN with UPDATE
	Updating Globally
	Using an Expression as the SET Value
	Using Subqueries in the WHERE Clause
	Selecting Records for Updating

	Deleting Data (DELETE)
	Deleting Multivalues from a Row
	Deleting All Rows in a Table
	Deleting Individual Rows

	Using Triggers
	Using Alternate Dictionaries

	Establishing and Using Views
	Examples of Views
	Creating Views
	Column-Based (Vertical) Views
	Row-Based (Horizontal) Views
	Combined Vertical and Horizontal Views
	Column Names and Derived Columns
	Summarized Views

	Updating Views
	Dropping Views
	Listing Information About a View
	Privileges and Views

	The Sample Database
	ACTS.T Table
	CONCESSIONS.T Table
	ENGAGEMENTS.T Table
	EQUIPMENT.T Table
	INVENTORY.T Table
	LIVESTOCK.T Table
	LOCATIONS.T Table
	PERSONNEL.T Table
	RIDES.T Table
	VENDORS.T Table

	Glossary
	Index

