UniVerse

SQL User Guide

Version 10.2
September, 2006

IBM Corporation
555 Bailey Avenue
San Jose, CA 95141

Licensed Materials — Property of IBM
© Copyright International Business Machines Corporation 2006. All rights reserved.

AlX, DB2, DB2 Universal Database, Distributed Relational Database Architecture, NUMA-Q, 0S/2, 0S/390, and
0S/400, IBM Informix®, C-ISAM®, Foundation.2000 ™, IBM Informix® 4GL, IBM Informix® DataBlade® module,
Client SDK™, Cloudscape™, Cloudsync™, IBM Informix® Connect, IBM Informix® Driver for JDBC, Dynamic
Connect™, IBM Informix® Dynamic Scalable Architecture™ (DSA), IBM Informix® Dynamic Server™, IBM
Informix® Enterprise Gateway Manager (Enterprise Gateway Manager), IBM Informix® Extended Parallel Server™,
i.Financial Services™, JFoundation™, MaxConnect™, Object Translator™, Red Brick® Decision Server™, IBM
Informix® SE, IBM Informix® SQL, InformiXML ™, RedBack®, SystemBuilder™, U2™, UniData®, UniVerse®,
wlintegrate® are trademarks or registered trademarks of International Business Machines Corporation.

Javaand all Java-based trademarks and logos are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries.

Windows, Windows NT, and Excel are either registered trademarks or trademarks of Microsoft Corporation in the United
States and/or other countries.

UNIX isaregistered trademark in the United States and other countries licensed exclusively through X/Open Company
Limited.

Other company, product, and service names used in this publication may be trademarks or service marks of others.
This product includes cryptographic software written by Eric Young (eay @cryptosoft.com).

This product includes software written by Tim Hudson (tjh@cryptosoft.com).

Documentation Team: Claire Gustafson, Shelley Thompson

US GOVERNMENT USERS RESTRICTED RIGHTS
Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

UniVerse SQL User Guide

Table of Contents

Preface
Organization of ThisManua Vi
Documentation Conventions. iX
UniVerse Documentation. Xi
Related Documentation Xv
APl Documentation XV

Chapter 1 Under standing SQL Concepts

Introductionto SQL . . e £
Overview of Databases, Flls, and Tables P £
UniVerseand SQL Databases. 14
UniVerseFilesandSQL Tables 15
The Sample Database. . . e i
Installing the Sample Database T 5
Deinstalling the SampleDatabase 113

Chapter 2 Using SELECT Statements

TheSQL Language . . . 2
Introduction to UniVerse SQL SELECT 25
UsingtheCommand Processor 25
SELECT Statement Elements. . . . Y
Comparing UniVerse SQL SELECT to Retrl eVe 28
Resultsas Tables. . . . e e 28
Retrieving Datafrom a Single Table 2 [0
Retrieving an EntireTable. 210
Selecting SpecificColumns 212
Obtaining DerivedData 214
SelectingRows e 215
Summarizing Table Contents (Set Functl ons) e e 2-37

ManipulatingtheOutput 24

SortingQutput 24

Formatting Columns 243
Using Field Modifiers. 243
Using Text e e e ... 245
Using the Current Date and T| me 245
Using Field Qualifiers. . . . e 246
Formatting Reports with Report Quallflers e e ... 23

Chapter 3 Using Advanced SELECT Satements

Grouping Rows (GROUPBY). 33
Redtrictionson GroupingRows. 35
Null Valuesin Grouping Columns 3-6
Selecti ng Groups (HAVING) 3-7
Processing SQL Queries . . e 3-9
Showing How a Query Will Be Processed (EXPLAI N) e e 39
Disabling the Query Optimizer (NO.OPTIMIZE) 310
Avoiding Lock Delays (NOWAIT). 311
Joining Tables. 312
Joining Two Tables. 314
Outer Joins . . . C e 318
Selecting on Joined Tableﬁ A 32
Using UNION to Combine SELECT Statements L. 320
Subqueries . . . e e e e 322
Correlated and Uncorrel ated Subquerles PG 92
Subquery Test Types 324
Using SubquerieswithHAVING 331

Chapter 4 Selecting on Multivalued Columns

Usesfor Multivalued Columns 4-3
Associations . . . e e 4-4
Multivalued Columnsin the Sample Database. e e e e 4-5
Selection Criteriaand Multivadlued Columns 4-6

UsSsngWHERE 4-9

UsSsngWHEN 411

UsngUNNEST 414
UsingSet Functions. 419
SubqueriesonNested Tables 422
Using Dynamic Normalization 424

iv UniVerse SQL User Guide

Chapter 5

Chapter 6

M odifying Data

Database Security and UniVerse SQL .
Operating System Security .
UniVerse Security
UniVerse SQL Security .

Data I ntegrity

Transaction Processing .

Avoiding Lock Delays (NOWAIT)

Inserting Data (INSERT) .

Naming the Table and Specn‘yl ng the Col umns .

Supplying the Values .
Using Expressionsin Value Lists.
Inserting Multivalues into aNew Row .
Inserting Multivalues into an Existing Row
Inserting Multiple Rows

Updating Data (UPDATE)
Updating Valuesin a Single Row. .
Updating Values in Multivalued Columns .
Using WHEN with UPDATE .
Updating Globally .
Using an Expression asthe SET VaI ue .
Using Subqueriesin the WHERE Clause .
Selecting Records for Updating .

Deleting Data (DELETE). .
Deleting Multivalues from a Row
Deleting All RowsinaTable .
Deleting Individual Rows .

Using Triggers .
Using Alternate D|ct|onar|es

Establishing and Using Views

Examples of Views.

Creating Views . .
Column-Based (Vertlcal) VI€WS .
Row-Based (Horizontal) Views . .
Combined Vertical and Horizontal Views .
Column Names and Derived Columns .
Summarized Views .

Updating Views.

Dropping Views.

5-4
5-4
55
55
5-7
5-8
5-9

5-10

511

5-12

5-13

5-13

5-15

5-16

5-18

5-18

5-19

5-20

5-21

5-22

5-22

5-23

5-25

5-25

5-26

5-27

5-28

5-29

6-3
6-6
6-6
6-8
6-9
6-10
6-11
6-13
6-14

Table of Contents v

vi

Appendix A

UniVerse SQL User Guide

Listing Information About a View
Privileges and Views.

The Sample Database

ACTS.T Table.
CONCESSIONS.T Table
ENGAGEMENTS.T Table.
EQUIPMENT.T Table .
INVENTORY.T Table .
LIVESTOCK.T Table
LOCATIONS.T Table .
PERSONNEL.T Table .
RIDES.T Table
VENDORS.T Table .

6-15
6-17

A-4
A-5
A-6
A-7
A-8
A-9
A-10
A-11
A-12

Preface

Thismanual isfor application devel opers and system administratorswho are familiar
with UniVerse and want to use the additional functionality of SQL in their UniVerse
applications.

This document uses a multilayered approach. It starts by discussing how to query an
existing, up-to-date database. Then it discusses how to modify the database by
adding, deleting, and changing rows of data. Interspersed among these topics are
discussions of primary keys, data constraints, referential integrity, and transaction
processing.

This manual does not cover the syntax of SQL statements, nor the rules for forming
table and column names. You can find this and related information in the UniVerse
QL Reference.

vii

Organization of ThisManual

This manual contains the following:

Chapter 1, “Understanding SQL Concepts,” introduces SQL , compares UniVerseand
SQL databases, and describes the sampl e database used throughout this document.

Chapter 2, “Using SELECT Statements,” introduces the UniVerse SQL SELECT
statement and shows how to select information from a single table or file, use
expressions and set functions, and format output.

Chapter 3, “Using Advanced SELECT Statements,” describes more advanced forms
of the SELECT statement, including GROUP BY and HAVING clauses, table joins,
and subqueries.

Chapter 4, “ Selecting on Multivalued Columns,” describes how to use UniVerse SQL
to access and manipulate data stored in UniVerse's multivalued columns and use
dynamic normalization.

Chapter 5, “Modifying Data,” covers how to use UniVerse SQL statements to add,
update, and delete data stored in tables and files.

Chapter 6, “Establishing and Using Views,” discusses the application and
manipulation of table views.

Appendix A, “The Sample Database,” contains the CREATE TABLE statements
used to create the tables in the sample database.

The Glossary defines common UniVerse SQL terms.

viii UniVerse SQL User Guide

Documentation Conventions

This manual uses the following conventions:

Convention

Usage

Bold

UPPERCASE

Italic

Courier

Courier Bold

[]
{1}

itemA | itemB

In syntax, bold indicates commands, function names, and
options. In text, bold indicates keys to press, function names,
menu selections, and MS-DOS commands.

In syntax, uppercase indicates UniVerse commands, keywords,
and options; UniVerse BASIC statements and functions; and
SQL statements and keywords. In text, uppercase a so indicates
UniVerseidentifiers such asfile names, account names, schema
names, and Windows file names and paths.

In syntax, italic indicates information that you supply. In text,
italic also indicates UNIX commands and options, file names,
and paths.

Courier indicates examples of source code and system outpui.

In examples, courier bold indicates charactersthat the user types
or keys the user presses (for example, <Return>).

Brackets enclose optional items. Do not type the brackets unless
indicated.

Braces enclose nonoptional items from which you must select at
least one. Do not type the braces.

A vertical bar separating items indicates that you can choose
only oneitem. Do not type the vertical bar.

Three periods indicate that more of the same type of item can
optionally follow.

A right arrow between menu options indicates you should
choose each option in sequence. For example, “Choose
FileaExit” meansyou should choose File from the menu bar,
then choose EXit from the File pull-down menu.

Item mark. For example, the item mark () in the following
string delimits elements 1 and 2, and elements 3 and 4:
1I2F314V5

Documentation Conventions

Convention

Usage

F

Field mark. For example, the field mark (F) in the following
string delimits elements FLD1 and VAL 1:
FLD1FVAL1VSUBV1SSUBV2

Value mark. For example, the value mark (v) in the following
string delimits elements VAL 1 and SUBV 1:
FLD1FVAL1VSUBV1SSUBV2

Subvalue mark. For example, the subvalue mark (s) in the
following string delimits elements SUBV1 and SUBV 2:
FLD1FVAL1VSUBV1SSUBV2

Text mark. For example, thetext mark (1) inthefollowing string
delimits elements 4 and 5: 1F2s3v4T5

X UniVerse SQL User Guide

Documentation Conventions (Continued)

The following conventions are al so used:

B Syntax definitions and examples are indented for ease in reading.

B All punctuation marks included in the syntax—for example, commas,
parentheses, or quotation marks—are required unless otherwise indicated.

B Syntax linesthat do not fit on onelinein thismanual are continued on subse-
guent lines. When entering syntax, type the entire syntax entry, including
the continuation lines, on the same input line.

UniVer se Documentation

UniVerse documentation includes the following:
UniVerse I nstallation Guide: Contains instructions for installing UniVerse 10.2.

UniVerse New Features Version 10.2: Describes enhancements and changes made
in the UniVerse 10.2 release for al UniVerse products.

UniVerse BASIC: Contains comprehensive information about the UniVerse BASIC
language. It isfor experienced programmers.

UniVerse BASIC Commands Reference: Provides syntax, descriptions, and
examples of all UniVerse BASIC commands and functions.

UniVerse BASI C Extensions. Describes the following extensions to UniVerse
BASIC: UniVerse BASIC Socket API, Using CallHTTP, and Using WebSphere MQ
with UniVerse.

UniVerse BASI C SQL Client Interface Guide: Describes how to use the BASIC
SQL Client Interface (BCI), an interface to UniVerse and non-UniVerse databases
from UniVerse BASIC. The BASIC SQL Client Interface uses ODBC-like function
callsto execute SQL statements on local or remote database servers such as
UniVerse, DB2, SYBASE, or INFORMIX. Thisbook is for experienced SQL
programmers.

Administering UniVerse: Describes tasks performed by UniVerse administrators,
such as starting up and shutting down the system, system configuration and mainte-
nance, system security, maintaining and transferring UniVerse accounts, maintaining
peripherals, backing up and restoring files, and managing file and record locks, and
network services. This book includes descriptions of how to use the UniAdmin
program on a Windows client and how to use shell commands on UNIX systemsto
administer UniVerse.

Using UniAdmin: Describes the UniAdmin tool, which enables you to configure
UniVerse, configure and manage servers and databases, and monitor UniVerse
performance and locks.

UniVerse Security Features: Describes security featuresin UniVerse, including
configuring SSL through UniAdmin, using SSL with the CallHttp and Socket
interfaces, using SSL with UniObjects for Java, and automatic data encryption.

Xi

xii

UniVerse Transaction Logging and Recovery: Describes the UniVerse transaction
logging subsystem, including both transaction and warmstart logging and recovery.
This book isfor system administrators.

UniVerse System Description: Provides detailed and advanced information about
UniVerse features and capabilitiesfor experienced users. This book describes how to
use UniVerse commands, work in a UniVerse environment, create a UniVerse
database, and maintain UniVersefiles.

UniVerse User Reference: Contains reference pages for all UniVerse commands,
keywords, and user records, allowing experienced usersto refer to syntax details
quickly.

Guide to RetrieVe: Describes RetrieVe, the UniVerse query language that lets users
select, sort, process, and display datain UniVerse files. Thisbook is for users who
are familiar with UniVerse.

Guide to ProVerb: Describes ProVerb, a UniVerse processor used by application
developers to execute prestored procedures called procs. This book describes tasks
such asrelational datatesting, arithmetic processing, and transfers to subroutines. It
also includes reference pages for all ProVerb commands.

Guide to the UniVerse Editor: Describesin detail how to use the Editor, allowing
usersto modify UniVerse files or programs. Thisbook also includes reference pages
for all UniVerse Editor commands.

UniVerse NLS Guide: Describes how to use and manage UniVerse's National
Language Support (NLS). This book isfor users, programmers, and administrators.

UniVerse SQL Administration for DBAs. Describes administrative tasks typically
performed by DBAS, such as maintaining database integrity and security, and
creating and modifying databases. This book is for database administrators (DBAS)
who are familiar with UniVerse.

UniVerse SQL User Guide: Describes how to use SQL functionality in UniVerse
applications. Thisbook isfor application devel opers who are familiar with UniVerse.

UniVerse SQL Reference: Contains reference pages for all SQL statements and
keywords, alowing experienced SQL usersto refer to syntax details quickly. It
includes the complete UniVerse SQL grammar in Backus Naur Form (BNF).

UniVerse SQL User Guide

Related Documentation

The following documentation is also available:

UniVerse GCI Guide: Describes how to use the General Calling Interface (GCI) to
call subroutineswritten in C, C++, or FORTRAN from UniVerse BASIC programs.
Thisbook isfor experienced programmers who are familiar with UniVerse.

UniVerse ODBC Guide: Describes how to install and configure a UniVerse ODBC
server on aUniVerse host system. It also describes how to use UniVerse ODBC
Config and how to install, configure, and use UniVerse ODBC drivers on client
systems. This book is for experienced UniVerse developers who are familiar with
SQL and ODBC.

UV/Net I Guide: Describes UV/Net 11, the UniVerse transparent database
networking facility that lets users access UniVersefiles on remote systems. Thisbook
isfor experienced UniVerse administrators.

UniVerse Guidefor Pick Users: Describes UniVersefor new UniVerse usersfamiliar
with Pick-based systems.

Moving to UniVerse from Pl/open: Describes how to prepare the Pl/open
environment before converting Pl/open applications to run under UniVerse. This
book includes step-by-step procedures for converting INFO/BASIC programs,
accounts, and files. This book is for experienced Pl/open users and does not assume
detailed knowledge of UniVerse.

xiii

APl Documentation

The following books document application programming interfaces (APIs) used for
developing client applications that connect to UniVerse and UniData servers.

Administrative Supplement for Client APIs: Introduces|BM’s seven common APIs,
and provides important information that developers using any of the common APIs
will need. It includes information about the UniRPC, the UCI Config Editor, the
ud_database file, and device licensing.

UCI Developer’s Guide: Describes how to use UCI (Uni Call Interface), an interface
to UniVerse and UniData databases from C-based client programs. UCI uses ODBC-
like function calls to execute SQL statements on local or remote UniVerse and
UniData servers. This book isfor experienced SQL programmers.

IBM JDBC Driver for UniData and UniVerse: Describes UniJDBC, an interface to
UniData and UniVerse databases from JDBC applications. This book isfor experi-
enced programmers and application developers who are familiar with UniData and
UniVerse, Java, JDBC, and who want to write JDBC applications that access these
databases.

I nterCall Developer’s Guide: Describes how to use the InterCall API to access data
on UniVerse and UniData systems from external programs. This book is for experi-
enced programmers who are familiar with UniVerse or UniData.

UniObjects Developer’s Guide: Describes UniObjects, an interface to UniVerse and
UniData systems from Visual Basic. Thisbook isfor experienced programmers and
application developers who are familiar with UniVerse or UniData, and with Visual
Basic, and who want to write Visual Basic programs that access these databases.

UniObjectsfor Java Developer’s Guide: Describes UniObjectsfor Java, aninterface
to UniVerse and UniData systems from Java. This book is for experienced
programmers and application devel operswho arefamiliar with UniVerseor UniData,
and with Java, and who want to write Java programs that access these databases.

UniObjectsfor .NET Developer’s Guide: Describes UniObjects, an interface to
UniVerse and UniData systems from .NET. This book is for experienced
programmers and application devel operswho arefamiliar with UniVerseor UniData,
and with .NET, and who want to write .NET programs that access these databases.

xiv UniVerse SQL User Guide

Using UniOLEDB: Describes how to use UniOLEDB, an interface to UniVerse and
UniDatasystemsfor OLE DB consumers. Thisbook isfor experienced programmers
and application developers who are familiar with UniVerse or UniData, and with
OLE DB, and who want to write OLE DB programs that access these databases.

XV

Under standing SQL Concepts

IntroductiontoSQL Ce e e 1-3
Overview of Databases, Files, and Tables e 1-4
UniVerseand SQL Databases 1-4
UniVerseFilesand SQL Tables. 1-5
The Sample Database . . . e R
Installing the Sample Database e £

Deingtalling the SampleDatabase 113

Thischapter includesan introduction to SQL, adiscussion of the differencesbetween
UniVerse and SQL concepts, some important database terms, and a description of the
sample database (called Circus) used in examplesin this manual.

1-2 UniVerse SQL User Guide

I ntroduction to SQL

SQL isapopular relational database language. It is not a database management
system or a stand-alone product. SQL is a part of many database management
systems, and over the past decade it has become the standard database language.

UniVerse SQL follows the ANSI/ISO 1989 standard with extensions to
accommodate multivalued fields and other features unique to UniVerse.

Theimplementation of SQL in UniVerse addsanew level of capability to UniVerse's
many features. SQL -related enhancements include:

B Subquerying, which allows you to nest queries

B Relationa joining, which allows you to work with data from more than one
file or table in a single command or statement

W Database security, for added protection of your data
B Database integrity, to prevent writing invalid datato your database

All SQL features are integrated seamlessly into the UniVerse system without losing
or compromising UniVerse's inherent capabilities. Although SQL began as a user-
friendly language for querying databases ad hoc, it in fact has many important uses
in the UniVerse world, as summarized in the following table. SQL uses terms that
differ from those used in UniVerse, both in this text and when dealing with SQL in
general. See the Glossary for common SQL terms.

Function Description

Interactive access Use SQL to directly query and update your UniVerse files and
SQL tablesin an ad hoc fashion.

Database programming Include SQL statements within application programs to access
datain UniVerse files and SQL tables.

Database administration Use SQL to define database structures and impose security and
integrity constraints on the data.

Client/server Use SQL to communicate with database serversover alocal area
network.

Overview of UniVerse SQL

1-3

Overview of Databases, Files, and Tables

To the UniVerse user planning to use SQL, there are more similarities between
UniVerse files and SQL tables than there are differences. However, the distinctions
are important.

UniVerse and SQL Databases

Comparing UniVerse with conventional SQL at the database level involves two
major areas: the concept and structure of the database itself, and the data model on
which it is based. These differences are summarized in the following table and then
discussed in greater detail.

Traditional UniVerse

Databases UniVerse SQL Databases
Located in: An account A schema
Created by: — CREATE SCHEMA
Described in: VOCfile SQL catalog
Contains: One or more UniVersefiles One or more SQL tables, UniVerse
files, or both
Data mode!: Nonfirst-normal form/ First normal form/
postrelational relational and nonfirst-normal
form/postrel ational

Comparison of Traditional UniVerse Databasesto SQL Databases

Database Concepts and Structures

In the traditional (non-SQL) UniVerse environment, a database isloosely defined as
being “one or more UniVersefiles.” The database evolves as those files are created;
there is no single command or process for creating a UniVerse database. Generally,

such filesreside in a single account.

UniVerse SQL associates a database with a schema, which is created using a
CREATE SCHEMA statement, and defines that database in the SQL catal og tables.
In UniVerse SQL, adatabase comprises one or more SQL tables or UniVersefiles, or
both.

1-4 UniVerse SQL User Guide

Data Models

UniVerse uses athree-dimensional file structure, commonly referred to as anonfirst-
normal-form (NF) data model to store multivalued fields. This enablesasinglefile
(table) to contain the information that would otherwise be scattered among several
interrel ated files (tables). Related multival ued columns can be grouped together in an
association, which can be thought of as a“table within atable,” or nested table.

Conventional SQL uses atwo-dimensional table structure called afirst normal form
(INF). Instead of using multivalued fields, it tends to use smaller tables that are
related to one another by common key values. However, the UniVerse implemen-
tation of SQL has added enhancements that allow you to store and process
multivalued fields.

Theimplications of these differencesin data modeling and the relational design of
SQL are discussed further under “File and Table Structures’ on page 7.

UniVerse Filesand SQL Tables

UniVersefilesand SQL tables share much in common. In fact, SQL tablesareimple-
mented as UniVerse files and can be accessed by UniVerse commands.

B The SQL statement to create atable, CREATE TABLE, functions like the
UniVerse CREATE.FILE command.

B Each UniVersefile or SQL tableis actually two files. adatafile and afile
dictionary.

B The data structures of files and tables are comparable, although UniVerse
files commonly are described as containing fields and records, and SQL
tables as containing columns and rows. Under the UniVerseimplementation
of SQL, tables can contain multivalued columns (fields).

B Both UniVersefiles and SQL tables can be accessed using either UniVerse
commands and processes or SQL statements.

1-5

1-6 UniVerse SQL User Guide

UniVerse files and SQL tables also differ in some respects. A comparison is summa-
rized in the following table.
Traditional UniVerse Files SQL Tables

Created by: CREATE.FILE CREATE TABLE

Removed by: DELETE.FILE DROP TABLE

Components: Datafile + file dictionary. Datatable + table dictionary. A

security and integrity constraints
area (SICA) inthe datatable
allows establishment and mainte-
nance of data structure,
permissions, and integrity
constraints.

Structure: Fields and records. Columns and rows.

Accessed by: UniVerse commands (such as UniVerse commands (such as
RetrieVe, ReVise), UniVerseBASIC, RetrieVe, ReVise), UniVerse
UniVerse Editor, and other processes, BASIC, UniVerse Editor, and
and SQL statements. other processes, and SQL

statements.

Security: Permissions (read/write) granted and In addition to operating system
revoked by owners/groups/others. permissions, more extensive

privileges—SELECT, INSERT,
UPDATE, DELETE—on tables,
plus DBA Privilege and
RESOURCE Privilege, may be
granted or revoked.

Dataintegrity: Checked during certain conversions. Integrity constraints can be

defined, which will be enforced
for all attempted writes.

Primary keys: CREATE.FILE alowsfor only CREATE TABLE alowsfor both
single-column record I1Ds. single- and multicolumn primary

keys.

SQL DataTypes Not nativeto UniVerse, but certain An essentia part of column
output conversion and formatting definitions, and associated with
codes can beincluded in afield precise default characteristics
definition. such as arestricted character set,

alignment, etc.
Comparison of Traditional UniVerse Filesto SQL Tables

File and Table Sructures

UniVerse is a nonfirst-normal -form database that permits multivalued fields (arow-
and-column position that can hold more than one data value). SQL works with first-
normal -form databases, which store only one value for every row and column (singl-
evalued fields), but in the UniVerse implementation, SQL can store and process
multivalued fields also.

SQL isrelationally oriented, and allowsyou to access multiple tables by joining them
on common values (or keys), asif they were one table. For example, using SQL, a
retailer can inquire about an inventory item (in an INVENTORY table) and its
supplier (inaDISTRIBUTOR table), provided that the INVENTORY table hasa
“distributor code” column that can be used to join it to the DISTRIBUTOR table.

UniVersewithout SQL isdesigned primarily for accessing onefileat atime, although
you can extract information from a second file, using the TRANS function or the
Tfile correlative, to obtain a similar result. But with the SQL enhancement, you can
use a SELECT statement to join multiple tables and UniVerse filesin any
combination.

Security and Authorization

In addition to UniVerse's security provisions (controlling read/write access to files),
SQL alows you to grant or revoke privileges based on user, table, and operation
(retrieving or selecting data, and inserting, modifying, and deleting rows).

SQL also providesthreelevels of user authority. From the lowest to the highest, they
are asfollows:

B CONNECT alowsyouto create your own tables and do whatever you want
with them (including granting your “owner” privileges to other users).

B RESOURCE alowsyou to create a schemaand assign ownership toit (plus
do everything allowed under CONNECT).

B DBA (asort of “superuser” level) alows you to do everything, including
reading or writing to anyone else's tables.

1-7

Data I ntegrity

In UniVerse, dataintegrity is provided by certain conversion operations (such asdate
conversions) that flag illegal values by returning an error STATUS code. SQL has
many additional dataintegrity constraints, including referential integrity and checks
for nulls, empty columns, nonunique values, and val ue ranges.

Primary Keys

The UniVerse file structure has a single-column primary key (record 1D), whereas
SQL alowsfor either single-column or multicolumn primary keys.

Data Types

Unlike afield in aUniVersefile, acolumnin an SQL tableis defined as being of a
particular datatype. A datatype defines a column in terms of the valid set of data
characters that can be stored in the column, the alignment of the data, conversion
characteristics, and so on. For more information, see the UniVerse SQL Reference or
UniVerse SQL Administration for DBAs.

Datatypes are grouped into string types and numeric types as shown in the following
illustration.

string types numeric types
tﬁring : oy
character string / exact numeric atetime
BIT VARBIT (precision, scale) approx. numeric
(mantissa, exp) DATE
CHAR VARCHAR TIME
NUMERIC REAL\ %,
NCHAR NVARCHAR INTEGER | DECIMAL
DOUBLE
SMALLINT PRECISION

Grouped Data Types

1-8 UniVerse SQL User Guide

The following table summarizes data types.

Data Type Description

BIT Stores hit strings.

CHAR Stores character strings (any combination of numbers, |etters,
and special characters).

DATE Stores dates as whole decimal numbers.

DECIMAL Stores decimal fixed-scale (fixed-point) numbers (same as

DOUBLE PRECISION
FLOAT
INTEGER
NCHAR
NVARCHAR
NUMERIC
REAL
SMALLINT
TIME
VARBIT
VARCHAR

NUMERIC).

Stores high-precision floating-point numbers.
Stores floating-point numbers.

Stores whole decimal numbers.

Stores national character strings.

Stores variable-length national character strings.
Same as DECIMAL.

Stores floating-point (real) numbers.

Stores small whole decimal numbers.

Stores times as whole decimal numbers.
Stores variable-length bit strings.

Stores variable-length character strings.

Data Types

The Sample Database

UniVerse provides a sample database called Circus that you can use to explore many
of the features of UniVerse SQL. This database consists of 10 SQL tablesand is
designed to demonstrate the use of industry-standard SQL access with UniVerse,
SQL extensions implemented for UniVerse's multivalued field associations and
nested tables, and the benefits of programmable virtual fields (1-descriptors).

The CREATE TABLE statements that generated the SQL tablesarein Appendix A,
“The Sample Database.”

Installing the Sample Database

You can install the Circus database as either an account of UniVersefilesor asa
schema of SQL tables (or both). The two versions of the database are distinguished
by a suffix in the file name:

B Fidentifiesthe UniVersefile version.
B T identifiesthe SQL table version.

Thus, INVENTORY.F is the UniVerse file version of the inventory data, and
INVENTORY.T isthe SQL table version of the same data.

Install the version of the files that you prefer. Examplesin this manual use the
UniVerse SQL tableversion. Keepin mind that you canissue SQL statementsagainst
UniVersefiles, and you can issue RetrieVe commands against SQL tables. However,
the results may vary slightly, depending on which you use.

1-10 UniVerse SQL User Guide

Use the following UniVerse commands to generate and remove the Circus database:

Command Action

SETUPDEMO.SCHEMA Registers username as an SQL user (if not one already)
username and makes the current UniVerse account into a schema

called DEMO_username, which is owned by username.
Only an SQL user who isaDBA (database administrator)
can run this command.

MAKE.DEMO.TABLES Creates and loads the Circus database tables into the

current account, making the current user the owner of the
tables. The user must be aregistered SQL user, the account
must be an SQL schema, and the tables must not already
exist in this schema. Resultant tables have a. T suffix.

REMOVE.DEMO.TABLES Deletesthe Circus database tables from the current

schema. The user must be aregistered SQL user who is
either the owner of the tablesor aDBA.

MAKE.DEMO.FILES Creates and |loads the Circus database filesinto the current

account. The files must not already exist in this account.
The file names will have an .F suffix, and the contents of
the files match those of the corresponding .T tables.

REMOVE.DEMO.FILES Deletesthe Circus database filesfrom the current account.

Toinstall the SQL table version of the Circus database on your system:

1

Create adirectory to contain the Circus database and set it up asaUniVerse
account.

If you are aregistered SQL user with RESOURCE privilege, log on to the
account and make the account into a schema by entering:

>CREATE SCHEMA schemaname;
You can use any unique schemaname. You are the owner of the new schema.

If you are not aregistered user with RESOURCE privilege, have your
database administrator (DBA) log in to your account and enter:

>SETUP.DEM O.SCHEMA username

usernameisyour operating system user name. This command registers you
asan SQL user, makesthe directory into aschemacalled DEMO_username,
and sets you up as the schema's owner.

-1

3. To create the tables and load data into them, enter:
>MAKE.DEMO.TABLES
The table names all have the .T suffix. You are the owner of the tables.

Deinstalling the Sample Database

To deinstall the database, use either REMOVE.DEMO.TABLES (if the databaseis
the SQL table version) or REMOVE.DEMO.FILES (if the database isthe UniVerse
file version). For example, to drop the SQL tables for the Circus database, enter:

>REMOVE . DEMO . TABLES

Dropping table constraint UVCON_2
Dropping table constraint UVCON_3
Dropping table constraint UVCON_2

Dropping Table LIVESTOCK.T
Dropping Table VENDORS.T

All demo tables removed.

Note: Torestorethe Circusdatabasetoitsoriginal state, first deletethetablesor files
— with REMOVE.DEMO.TABLES or REMOVE.DEMO.FILES and then repeat
MAKE.DEMO.TABLES or MAKE.DEMO.FILES,

1-12 UniVerse SQL User Guide

Using SELECT Satements

TheSQL Language C e e e 2-3
Introduction to UniVerse SQL SEL ECT Ce e 2-5
Using the Command Processor 2-5
SELECT Statement Elements . . . Ce e e 2-7
Comparing UniVerse SQL SELECT to RetrleVe Ce e 2-8
ResultsasTables e e e 2-8
Retrieving Datafrom a Single Td:)le 2 0]
Retrieving an EntireTable 210
Selecting SpecificColumns 212
Obtaining DerivedData 214
Selecting Rows 215
Summarizing Table Contents (Set Functlons) e e e e .. 237
ManipulatingtheOutput 241
SortingQutput 24
Formatting Columns 243
Using Field Modifiers. 243
Using Text . . . e e e 2455
Using the Current Date and T| me 245
Using Field Qualifiers. . . . e e e 246

Formatting Reports with Report Quallflers. Y

This chapter covers the simplest forms of the SELECT statement and explains how
to query asingletablein various ways, including arranging columns, selecting rows,
using virtual columnsto hold derived results, and using qualifiers to process and
format your output. More advanced discussions of the SELECT statement follow in
Chapter 3, “Using Advanced SELECT Statements,” and Chapter 4, “ Selecting on
Multivalued Columns.”

2-2

code.

The SQL Language

The SQL language, as defined in ANSI/ISO standards, is made up of many distinct
statements, each communicating a specific request to the database “engine,” or core

Each SQL statement starts with averb, followed by one or more clauses. Each clause
starts with a keyword. UniVerse implements 17 of these verbs. The following table
liststhe DML (data manipulation language) statements. The next table liststhe DDL
(data definition language) statements.

Verb

Description

SELECT
INSERT

UPDATE
DELETE

Retrieves data from tables and UniVersefiles.
Inserts new rows into atable or UniVersefile.
Modifies datain atable or UniVersefile.

Removes rows from atable or UniVersefile.

UniVerse DML Verbs

Verb

Description

ALTER TABLE
CREATE INDEX
CREATE SCHEMA
CREATE TABLE
CREATE TRIGGER
CREATE VIEW
DROP INDEX
DROP SCHEMA

DROP TABLE

Modifies the definition of an existing base table.
Creates anew index on atable.

Creates a new schema

Creates a new table in aschema.

Creates atrigger for atable.

Crestesaview of atable.

Delete an index from atable.

Deletes a schema.

Deletes atable.

2-3 UniVerse SQL User Guide

UniVerse DDL Verbs

Verb

Description

DROP TRIGGER
DROP VIEW
GRANT
REVOKE

Deletes atrigger.
Deletesaview.

Assigns privileges on tables and views to a user.

Revokes previously granted privileges from a user.

UniVerse DDL Verbs (Continued)

Introduction to UniVerse SQL SELECT

SQL primarily is adatabase query language, and many installations use SQL amost
exclusively as a database query tool. SELECT isthe primary statement for querying
both SQL tables and UniVersefiles.

Using the Command Pr ocessor

Every statement entered at the system prompt—as well as commands entered from a
stored command sequence, aproc, or aBASIC program—is examined and parsed by
a system program called the command processor.

The command processor maintainsalist of the most recent command lines entered at
the system prompt. Thislist is called the sentence stack, and you can useit to recall,
delete, change, or reexecute a previous statement, or to save a sentence or paragraph
in your UniVerse VOC file. By default, the sentence stack preserves up to 99
sentences from your current session. Each sentenceis numbered from 01 through 99,
with 01 being the most recent.

The UniVerse command processor has afew conventions that should be familiar to
you.

B Enter astatement using the processor’s natural wordwrap and do not press
Enter. However, to control how lines are broken, press Enter to start anew
line. You get a system prompt and then can continue entering your
statement. For example, you could enter the following statement in either of
the ways shown:

>SELECT ENGAGEMENTS.T.LOCATION_CODE, "DATE", TIME, DESCRIPTION,
NAME FROM ENGAGEMENTS.T, LOCATIONS.T WHERE
ENGAGEMENTS.T.LOCATION_CODE = LOCATIONS.T.LOCATION_CODEORDER BY
ENGAGEMENTS.T.LOCATION_CODE, "DATE";<Return>

>SELECT ENGAGEMENTS.T.LOCATION_CODE, "DATE", TIME,<Return>
SQL+DESCRIPTION, NAME FROM ENGAGEMENTS.T, LOCATIONS.T<Return>
SQL+WHERE ENGAGEMENTS.T.LOCATION_CODE =<Return>
SQL+LOCATIONS.T.LOCATION CODE<Return>

SQL+ORDER BY ENGAGEMENTS.T.LOCATION CODE, "DATE";<Return>

You can end aline with an underscore before pressing Enter, but it is not
necessary.

2-5 UniVerse SQL User Guide

B To terminate and execute a statement, do one of the following:
B Typea; (semicolon) and press Enter:
>SELECT LOCATION_CODE, "DATE" FROM ENGAGEMENTS.T;<Return>
B Press Return, then at the continuation prompt, press Enter again:

>SELECT LOCATION_CODE, "DATE" FROM ENGAGEMENTS.T<Return>
SQL+<Return>

H To terminate and save a statement without executing it (for example, when
you notice atypo you want to correct), type a ? (question mark) and press
Enter.

B You can choose commandsto edit, recall, insert, reexecute, or delete an SQL
statement in the sentence stack:

.A to add text to the end of a sentence

.C to modify a sentence

.D to delete a sentence

I toinsert anew sentence

.L to list the contents of the sentence stack
.Rto recall a sentence

.Sto save a sentence

.U to convert a sentence to uppercase

X to execute a sentence

.? to obtain help about sentence stack commands

This sequenceisan example of using command processor commands. Bold indicates
user input and italic denotes explanatory comments.

>SELECT LOCATION_CODE, <Return>

SQL+"DATEE", "TIME" ?<Return> Notices typo; enters ?
>.C/DATEE/DATE<Return> Corrects typo

01 SELECT LOCATION_CODE, "DATE", "TIME"

>.A FROM ENGAGEMENTS.T;<Return> Continues statement

01 SELECT LOCATION_CODE, "DATE", "TIME" FROM ENGAGEMENTS.T;
> .X<Return> Executes completed statement

01 SELECT LOCATION_CODE, "DATE", "TIME" FROM ENGAGEMENTS.T;
Satement is parsed and executed

>.L<Return> Lists sentence stack

03 SELECT GATE_NUMBER, AVG(GATE_TICKETS)...
02 SELECT LOCATION_CODE, "DATE" FROM ENGAGEMENTS.T;

01 SELECT LOCATION_CODE, "DATE", "TIME" FROM ENGAGEMENTS.T;
>.R3<Return> Recalls sentence 3

03 SELECT GATE_NUMBER, AVG (GATE_TICKETS)...

>.X<Return> Executes recalled statement

2-6

01 SELECT GATE_NUMBER, AVG (GATE_TICKETS)...

Satement is parsed and executed

>.L<Return> Lists sentence stack again
04 SELECT GATE_NUMBER, AVG (GATE_TICKETS)...

03 SELECT LOCATION_CODE, "DATE" FROM ENGAGEMENTS.T;

02 SELECT LOCATION_CODE, "DATE", "TIME" FROM ENGAGEMENTS.T;
01 SELECT GATE_NUMBER, AVG (GATE_TICKETS)...

>.D3<Return> Deletes sentence 3 from stack
History #3 DELETEd.

>.X2<Return> Executes sentence 2 in stack

02 SELECT LOCATION_CODE, "DATE", "TIME" FROM ENGAGEMENTS.T;

Satement is parsed and executed
>

SELECT Satement Elements

The full form of the SELECT statement consists of the following elements:

Element Description

SELECT clause Describes columns to be retrieved, either columns from the
table or file or calculated (derived) columns (mandatory).

FROM clause Describes tables or files containing the data (mandatory).
WHERE clause Describes the rows to be retrieved.

WHEN clause Limits output from multivalued columns.

GROUPBY clause Describes how the datais to be grouped or summarized.
HAVING clause Describes which groups are to be retrieved.

ORDER BY clause Describes how the results are to be ordered or sorted.

SELECT Satement Elements

2-7 UniVerse SQL User Guide

Comparing UniVerse SQL SELECT to RetrieVe

If you arefamiliar with RetrieVe LIST and SORT commands, you will recognize the
similarities. Either command can be used with UniVerse files and SQL tables. The
following table compares the UniVerse SQL SELECT statement to the RetrieVe
syntax.

Feature SQL SELECT RetrieVe
Source FROM tablelist file name
Columng/fieldsto beretrieved List of columns List of output fields
Virtual columns expressions and EVAL EVAL i.type.expr and
and |-descriptors |-descriptors
Record specification List of primary key values List of records (record IDs)
Record/row selection criteria WHERE clause WITH clause
Multivalued column output WHEN clause WHEN clause
filter
Sorting ORDER BY field (BY, BY.DSND,
BY.EXP, or
BY.EXP.DSND)
Control breaks GROUPBY BREAK.ON or DET.SUP
Aggregate functions Set functions Not supported

Comparison of UniVerse SQL SELECT to RetrieVe

Results as Tables

One unique feature of relational databasesisthat the results of aquery arealsointhe
form of atable that can be treated as though it were a physical table in the database.
For example, if youwereto select ITEM_TY PE, DESCRIPTION, and QOH fromthe
INVENTORY.T tablein the sample database, and there were 44 rowsin that table,
the result would be atable of 3 columns and 44 rows.

Thusyou can query the results themselves as though they were just another database
table. The usefulness of this feature is apparent when you use subqueries, which are
discussed in Chapter 3, “Using Advanced SELECT Statements.”

2-8

Retrieving Data from a Single Table

This section explains the various ways to retrieve data from asingle table or file.
Starting with asimple SELECT statement to retrieve all rowsand columns of atable,
you then ask for the following:

W Specific columns

B Virtual columns (derived data)

B Datasorted by rows

W Specificrows

B Summary of atable’s content using set functions

Retrieving an Entire Table

The simplest form of the SELECT statement is:
SELECT selectlist FROM tablename

In most instances, selectlistisalist of the specific columns you want to see. You may
want to look at every column in atable, particularly when dealing with anew
database and want an idea of what it contains. Use an asterisk (*) to indicate all
columns. For example, you never saw the sampl e database and want to seewhat isin
the LIVESTOCK.T table. To do this, enter:

>SELECT * FROM LIVESTOCK.T;

ANIMAL_ID... 80

NAME........ Kungu

DESCRIPTION. Puma

USE......... Z

DOB......... 02/13/84

ORIGIN...... Chile

COST........ 3940.00
EST_LIFE.... 19

VAC_TYPE VAC_DATE.. VAC_NEXT.. VAC_CERT
R 03/31/93 03/30/96 892361
P 01/09/92 01/08/95 147953
L 01/05/92 01/04/95 432996
ANIMAL_TID... 24

NAME........ Warri

DESCRIPTION. Civet

USE......... Z

2-9 UniVerse SQL User Guide

DOB......... 07/28/81

ORIGIN...... Pakistan
COST........ 10198.00
EST_LIFE.... 18

VAC_TYPE VAC_DATE.. VAC_NEXT.. VAC_CERT
Press any key to continue...

The four vaccination information columns are multivalued with each value listed
separately.

Using the syntax as follows would achieve the same result:

>SELECT LIVESTOCK.T.* FROM LIVESTOCK.T;

Note: The* formof selectlist retrieves columns as specified in the table's @SELECT
phrase. If thereisno @SELECT phrase, columns areretrieved in the order in which
they were defined in the CREATE TABLE statement. If you are selecting froma
UniVersefile, “ all columns’ refersto the columnslisted inthe @SELECT phrasefor
thefile. If thereisno @SELECT phrase, “ all columns’ refersto the columns listed
in the @ phrase, plusthe primary key (unless the @ phrase contains the keyword
ID.SUP). If thereisno @ phrase, you get just the primary key column. If the table
has no primary key, you get the @ID column.

UniVerse SQL assumesthat you are using the primary file dictionary associated with
thetableor file. To use an alternatefiledictionary, includethe USING DICT filename
clause (asin a RetrieVe command):

>SELECT * FROM LIVESTOCK.T USING DICT LV2;

In this case, the column attributes (such as output formatting) defined inthe LV 2 file
dictionary are applied to the datain the LIVESTOCK.T datafile.

If you use just tablename in the FROM clause, it refersto the datafile for that table.
To refer to thefile dictionary instead, include the DICT keyword (similar to
preceding filename with DICT in a RetrieVe command):

>SELECT * FROM DICT LIVESTOCK.T;

Type &
Field......... Field. Field..... Conversion Column...... Output
Depth &
Name.......... Number Definition Code...... Heading..... Format
Assoc
ANIMAL_ID D 0 MDO 5R S
@ID D 0 LIVESTOCK.T 5R S
@KEY PH ANIMAL_ID
USE D 3 1L S
NAME D 1 10T S

2-10

DESCRIPTION D 2 10T S
DOB D 4 D2/ 10L S
ORIGIN D 5 12T S
EST_LIFE D 7 MDO 3R S
COosT D 6 MD22 12R S
VAC_CERT D 11 6L M
VAC_ASSOC
VAC_DATE D 9 D2/ 10L M
VAC_ASSOC
VAC_TYPE D 8 1L M
VAC_ASSOC
VAC_NEXT D 10 D2/ 10L M
VAC_ASSOC
@REVISE PH NAME

DESCRIPTION

USE DOB

ORIGIN COST

EST_LIFE

VAC_TYPE

VAC_DATE

VAC_NEXT

VAC_CERT
@ PH ID.SUP

Selecting Specific Columns

You may want to see only certain columns of atable or file. UniVerse SQL alows
you to specify those column namesin your SELECT statement. To see only the name
and description for each animal, enter:

>SELECT NAME, DESCRIPTION FROM LIVESTOCK.T;

NAME. DESCRIPTION
Kungu Puma

Warri Civet

Morie Kinkajou
Marone Ocelot
Wukari Kodkod

Press any key to continue...

Notethat the two columnnames are separated by acommain the command line. Also
note that the listing is unsorted. To sort the output in a particular order, specify that
order. Refer to “ Sorting Output” on page 39.

2-11 UniVerse SQL User Guide

To obtain the various seating capacities of the sites the circus visits, enter:

>SELECT SEATS FROM LOCATIONS.T;
SEATS

3000
1000
6000
6000
6000

5000
Press any key to continue...

You get along list of seatings with many duplicates. To see just the different seating
capacities, use the keyword DISTINCT to eliminate duplicates:

>SELECT DISTINCT SEATS FROM LOCATIONS.T;
SEATS

1000
3000
6000
4000
2000
7000
10000
5000
8000

9 records listed.

Now, you can see clearly that you booked the show into nine different sizes of
stadium, ranging from 1,000 to 10,000 seats.

You can use the CAST function to force the data type of a SELECT statement to be
different than defined in the table. This can be very useful if you want to perform
operations not normally allowed on adatatype. If you have numerical datastoredin
a character column, you can perform numerical operations on the column by using
the CAST function to define the column as INT for the operation.

To find the date representation of an integer, enter:

>SELECT CAST('11689' AS DATE) FROM TABLE;
CAST ("11689" AS DATE)

01 JAN 2000

01 JAN 2000
01 JAN 2000

2-12

01 JAN 2000
01 JAN 2000
01 JAN 2000
01 JAN 2000

7 records listed.

Obtaining Derived Data

A column can be an expression. This often isreferred to as a calculated column, or
virtual column, which is acolumn that does not exist physically in the database but
instead is cal culated from datastored in the columns of thetable or file. In such cases,
specify an expression using column names, arithmetic operators, and constants.
Group expressions with parentheses to indicate order of precedence. Use calculated
columns in the same way as physical columns.

For example, to examine the effects of an across-the-board cost increase of 10% for

supplies, enter:

>SELECT DESCRIPTION, COST, (COST * 1.10) FROM INVENTORY.T;

DESCRIPTION.......cuvvvun. COST........ (cosT * 1.10)
Jerky 48.90 53.79
Cookies 98.32 108.152
Mustard 91.52 100.672
Handbills 42.78 47.058
French Fries, Frozen 34.95 38.445
Horse Feed 28.37 31.207
Lemonade 14.57 16.027
Elephant Chow 11.00 12.1
Beer 76.92 84.612

Press any key to continue...

In the previous example, COST * 1.10 isacalculated, or virtual, column created by
multiplying COST by 1.10.

To calculate the markup on the inventory items, enter:

>SELECT DESCRIPTION, COST, PRICE, (COST / PRICE)
SQL+CONV 'MD2' COL.HDG 'Markup' FROM INVENTORY.T;

DESCRIPTION.coo.u.. COST........ PRICE.......

Markup

Jerky 48.90 64.55 0.76
Cookies 98.32 143.55 0.68
Mustard 91.52 135.45 0.68

2-13 UniVerse SQL User Guide

Handbills 42.78 57.33 0.75

French Fries, Frozen 34.95 45.78 0.76
Elephant Chow 11.00 16.61 0.66
Beer 76.92 116.92 0.66

Press any key to continue...

Usually, the column heading is the expression itself (COST/PRICE), but here a
COL.HDG field qualifier changesit to “Markup.” You probably would not want the
markup calculated out to nine decimal places, and there are ways to truncate these
values, which are covered later. CONV ‘MD2’ is a conversion code that simply
rounds off the results to two decimal places.

You also can use the EVAL expression to obtain derived data. EVAL Expressions
specify an I-descriptor and can be thought of as an enhancement to SQL's calculated
column feature. In addition to the column names, constants, and arithmetic operators
allowed in simple column expressions, EVAL expressions can contain UniVerse
BASIC language el ements such as conditional statementsand even UniVerse BASIC
subroutines.

Selecting Rows

Now that you know how to retrieve datafrom certain columns, you can limit retrieval
to certain selected rows (records):
B Primary key selection
Sampling
Selection criteria
Negation
Compound search criteria
Select lists
INQUIRING and in-line prompting

2-14

Selecting Rows by Primary Key

A primary key, whether made up of a single column or multiple columns, uniquely
identifies each row in atable or file. If atable has no primary key, the valuesin the
@ID column uniquely identify each row. Therefore, one of the simplest ways to
select rowsisto use primary keys (or valuesin the @I D column) to specify the rows
you want to examine. Always enclose the primary key value in single quotation
marks. For example, tolook at all the datafor animal 48 inthe LIVESTOCK.T table,

enter:
>SELECT * FROM LIVESTOCK.T '48';
ANIMAL_ID... 48
NAME........ Marone
DESCRIPTION. Ocelot
USE......... Z
DOB......... 11/01/91
ORIGIN...... Texas
COST........ 8838.00
EST_LIFE.... 19
VAC_TYPE VAC_DATE.. VAC_NEXT.. VAC_CERT
R 01/23/92 01/22/95 812616
P 05/08/92 05/08/95 659260
L 08/31/92 08/31/95 643116

1 records listed.

To seethe datafor more than one primary key value, list them (although as described
in“Set Membership” on page 23, it is advisable to use a set membership test). Do not
use commas to separate the itemsin a series of primary key values.

>SELECT * FROM LIVESTOCK.T '63' '29' '55';

ANIMAL_ID... 63

NAME........ Foula

DESCRIPTION. Shetland

USE......... P

DOB......... 10/05/79

ORIGIN...... England

COST........ 6608.00
EST_LIFE.... 16

VAC_TYPE VAC_DATE.. VAC_NEXT.. VAC_CERT
R 01/04/92 01/03/95 121250
P 01/12/93 01/12/96 332255
L 04/04/93 04/03/96 1647
ANIMAL_ID... 29

NAME. Okene

DESCRIPTION. Lion

USE......... P

2-15 UniVerse SQL User Guide

DOB......... 11/12/90

ORIGIN...... Kenya
COST........ 8574.00
EST_LIFE.... 14

VAC_TYPE VAC_DATE.. VAC_NEXT.. VAC_CERT
Press any key to continue...

Selecting Rows by Sampling (SAMPLE and SAMPLED)

Another simple, but less common way of selecting rowsis by sampling, which limits
the number of rows selected for output. Sampling is often used to test a complex
guery against alarge table without consuming the system resources that would be
required to run the query against the entire table. Sampling is not a standard SQL
feature, but is one of the many SQL extensionsin UniVerse SQL that are related to
UniVerse features.

Two processing qualifiers control sampling: SAMPLE n selectsthefirst n rows, and
SAMPLED n selectsevery nth row. Even though the SAMPLE or SAMPLED clause
is at the end of the statement, sampling is done first, before any sorting or other
function is performed.

To examine asmall sampling of the vendors with which you do business, and ask for
thefirst 10 vendorsin the table, enter:

>SELECT COMPANY FROM VENDORS.T SAMPLE 10;
COMPANY . .. oiiiiiiinne

Pure Academy

Central Automation
Illinois Operations
Utopia Professionals
Continental Mart

Red Controls

Republic Manufacturers
Northern Outlets
Hollywood Retail

Ohio Treating

Sample of 10 records listed.

2-16

However, you may want to browse the entire table for your samples, looking at every
nth row. Becausethe VENDORS.T table contains 232 rows, selecting every 25th row
produces 9 records (232 rows divided by 25). To ask for asorted listing of every 25th
row, enter:

>SELECT COMPANY FROM VENDORS.T ORDER BY COMPANY SAMPLED 25;
COMPANYiiiiiiiinnenn

Affordable Merchandise
Bayou Manufacturers
Country Traders

Eve Mart

Immediate Enterprises
Lucky Environmental
Main Street Traders
New York Advisers

True Manor

Sample of 9 records listed.

Selecting Rows Based on Selection Criteria (WHERE)

The third way to select rows for retrieval is by using the WHERE Clause to specify
selection criteria. Whenever you use aWHERE clause, SQL evaluates each row of
the table, testing it against the criteriayou have specified. If arow passesthetest, it
isincluded in theresults. If not, it is excluded from the results.

FMT *30L" isaformat option that leaves enough space for DESCRIPTION and
NAME so that they will not wordwrap onto a second line.

To see alisting of only those animals suitable for the petting zoo area, enter:

>SELECT DESCRIPTION FROM LIVESTOCK.T WHERE USE = 'Z';
DESCRIPTION

Puma
Civet
Kinkajou
Ocelot
Kodkod
Sable
Jaguar

Linsang
Press any key to continue...

2-17 UniVerse SQL User Guide

To see only those engagements scheduled for the fourth quarter of 1995, enter:

>SELECT LOCATION_CODE, "DATE" FROM ENGAGEMENTS.T
SQL+WHERE "DATE" BETWEEN '10/01/95' AND '12/31/95';
LOCATION_CODE DATE......

CIAHOO01 10/03/95

CIAHO01 10/04/95

WSEAQ00L 12/07/95

WSEA00L 12/08/95

CCLEOO1 12/15/95

CCLEOO1 12/16/95

CDFW001 10/15/95

CDFW001 10/16/95

ENYCO001 11/23/95

EHARO01 10/23/95

ENYCO001 11/24/95

WLAX001 12/26/95

EHAROO01 10/24/95

WLAX001 12/27/95

14 records listed.

To see only those locations that have 50, 100, or 125 acres, enter:

>SELECT DESCRIPTION FMT '30L', NAME FMT '30L', ACRES FROM
LOCATIONS.T

SQL+WHERE ACRES IN (50, 100, 125);

DESCRIPTION.iuuvvnnn. NAME. i iiiiiiii e
ACRES

Houston State Fair Ground

50

Minneapolis State Fair Ground
125

Washington State Fair Ground
100

Springfield State Fair Ground
125

Los Angeles State Fair Ground
50

Boston State Fair Ground

125

Philadelphia State Fair

50

Seattle State Fair Ground

125

Jacksonville State Fair Ground
100

Indianapolis State Fair Ground
125

10 records listed.

Houston Properties, Inc.
Minneapolis Properties, Inc.
Washington Properties, Inc.
Springfield Properties, Inc.
Los Angeles Properties, Inc.
Boston Properties, Inc.
Philadelphia Properties, Inc.
Seattle Properties, Inc.
Jacksonville Properties, Inc.
Indianapolis Properties, Inc.

2-18

To list only those staff members whose last name is pronounced similarly to
Kowsl owsky, enter:

>SELECT NAME FROM PERSONNEL.T
SQL+WHERE NAME SAID 'KOWSLOWSKY';

Kozlowski, Nicholas
Kozlowski, Bill
Kozlowski, Joe

3 records listed.
To list only those rides whose description begins with Carousel, enter:

>SELECT DESCRIPTION FROM RIDES.T
SQL+WHERE DESCRIPTION LIKE 'Carousel%';
DESCRIPTION.........

Carousel - Horses
Carousel - Jet
Planes

Carousel - Rockets
3 records listed.

To see only those engagements for which the advance payment is null, enter:

>SELECT LOCATION_CODE, "DATE", ADVANCE FROM ENGAGEMENTS.T
SQL+WHERE ADVANCE IS NULL;

LOCATION_CODE DATE...... ADVANCE.
WRENOOL 01/10/94
CMSP001 08/17/92
WDENOOL 04/30/93
WRENOOL 01/11/94
CMSP001 08/18/92

134 records listed.

Null in SQL refersto an unknown value, not a0 or blank, or an empty string. Null
values are covered in greater detail in “Testing for Null Values” on page 25.

Asthe previous examplesiillustrate, selection can be based on:

B Comparisons
B Ranges
B Set membership

2-19 UniVerse SQL User Guide

B Phonetic matching
W Pattern matching
B Null values

In addition, you can add the keyword NOT to negate a search condition, and create
compound search conditions by using the logical operators AND and OR. For more
information, see “Negation” on page 26.

Comparisons

Just as with RetrieVe operations, you can select rows by comparing the contents of a
column to avalue. Comparisons can be simple, testing only one column, or complex,
and employing comparison operators (=, <>, #, <, <=, >, >=) and logical operators
(AND, OR, NOT). The simplest form is a column and a constant, as shown by the
following query, which retrieves all the data concerning employee 93:

>SELECT * FROM PERSONNEL.T
SQL+WHERE BADGE_NO = 93;

BADGE_NO. 93

DOB...... 09/11/65

BENEFITS. O,G,C

NAME. Lewis, Wayne

ADR1l..... 6030 Argonne Street
ADR2..... Security CO 80911
ADR3.....

PHONE. ... 719/984-2824

DEP_NAME.. DEP_DOB... DEP_RELATION

EQUIP_CODE EQUIP_PAY.

17 11.84
60 14.44
ACT_NO ACT_PAY...
2 13.53
1 11.99
4 15.85
RIDE_ID RIDE_PAY..
7 12.37
1 8.60

Press any key to continue...

Thistype of query isused commonly in forms-based dataretrieval, in which the user
types a customer number into a screen form and that number is used to build and
execute a query.

2-20

As an example of amore complex comparison, you could ask for all engagements
with an advance over $10,000 that are scheduled before the end of 1995:

>SELECT ADVANCE, LOCATION_CODE, "DATE" FROM ENGAGEMENTS.T
SQL+WHERE ADVANCE > 10000 AND "DATE" <= '12/31/95';

ADVANCE. LOCATION_CODE DATE......
10572.00 WSEA00L 12/07/95
11935.00 WPHX001 08/09/95
10863.00 CCLEOO1 12/15/95
11971.00 CDFW001 10/15/95
10160.00 EPHIOO01 03/17/95
10280.00 EJACO001 03/18/95

16 records listed.

Remember that in SQL, null represents an unknown value, not a0 (zero) or an empty
value. Consequently, arow with anull value can seem to “disappear,” asin acase
whereyou ask for alist of equipment WHERE COST > $10000 and then you ask
for an equipment liss WHERE COST <= $10000. One might assume that the
combined output would equal the number of rowsin thetable, but if COST isnull for
one or more rows, those rows do not appear in either output.

Ranges

Another type of row selection isthe range test, which you useto select rowsin which
the contents of a column lies between two values, inclusive. Range tests use the
keyword BETWEEN, which provides ashorthand for column >= value AND column
<=value.

A rangetest is handy for selecting rows belonging to a certain calendar period, items
whose dollar amounts fall within acertain monetary range, and so on. Thefollowing
two examples demonstrate this.

To find equipment that costs between $50,000 and $75,000 and get alisting of that
equipment in descending order by cost, enter:

>SELECT COST, DESCRIPTION FROM EQUIPMENT.T
SQL+WHERE COST BETWEEN 50000 AND 75000
SQL+ORDER BY COST DESC;

COST........ DESCRIPTION.......covoo..
75000.00 Calliope
70591.65 Cooling System
70081.99 Electrical Generator

2-21 UniVerse SQL User Guide

69990.43 Mail Machine

68278.35 Truck 665 B C C
67521.49 Coffee/cookies Stand
67448.24 Desk Credenza Sets
66700.54 Truck 897 M X X
61558.17 Truck 102 T I U
58555.15 Hot Dog Stand
57581.61 Subsidiary Tent Frame
57355.77 Harness Equipment
55594.85 V CR

52005.88 Soft Drinks Stand
51004.87 Truck 243 Y G N
50370.08 Copier

16 records listed.
To list the products that have a markup of between 60% and 80%, enter:
>SELECT DESCRIPTION, COST, PRICE, (COST / PRICE) CONV 'MD2'

SQL+FROM INVENTORY.T
SQL+WHERE (COST / PRICE) BETWEEN 0.6 AND 0.8;

DESCRIPTION.ouvvvun. COST........ PRICE....... (COST
/ PRICE)

Mustard 91.52 135.45
0.68

French Fries, Frozen 34.95 45.78
0.76

Jerky 48.90 64.55
0.76

Cookies 98.32 143 .55
0.68

Handbills 42.78 57.33
0.75

Horse Feed 28.37 38.58
0.74

Lemonade 14 .57 20.25
0.72

Nachos 28.61 42.06
0.68

Imported Ale 13.51 20.13
0.67

Press any key to continue...

2-22

Set Member ship

are two examples.

Tolist acts 1, 3, and 5 and their duration, enter:

>SELECT DESCRIPTION, DURATION FROM ACTS.T
SQL+WHERE ACT_NO IN (1, 3, 5);

DESCRIPTION DURATION
Salute to 12
the Circus

Animals on 6
Parade

Rock Around 5

the Big Top

3 records listed.

>SELECT LOCATION_CODE, "DATE"
SQL+FROM ENGAGEMENTS.T
SQL+WHERE RIDE_ID IN (5, 9, 11);

LOCATION_CODE DATE......
CKANO0O1 06/05/96
ENYCO001 06/05/96
CKANO0O1 06/06/96
CDETO001 12/16/96
WRENOOL 01/10/94
CIAHO01 10/03/95

Press any key to continue...

2-23 UniVerse SQL User Guide

When comparing a.column to more than one value, you will typelessby using the IN
Keyword rather than writing out the comparison as a series of column = value
clauses. In effect, the target values against which you are testing the column
congtitute a mathematical set, and is sometimes called a set membership test. Here

Tolist all engagements whererides 5, 9, or 11 have been booked, enter:

Phonetic Matching

Phonetic matching uses a phonetic, or sounds like, algorithm (invoked by the
relational operator Phonetic Matching: SAID) to match atext string to asound. To
list animals with names that sound like “lyon,” “fauks,” or “tyger,” enter:

>SELECT DISTINCT DESCRIPTION FROM LIVESTOCK.T
SQL+WHERE DESCRIPTION SAID 'LYON'

SQL+OR DESCRIPTION SAID 'FAUKS'

SQL+OR DESCRIPTION SAID 'TYGER';

DESCRIPTION

Lion
Tiger
Fox

3 records listed.

Pattern Matching

Aswith RetrieVe, you can use pattern matching to select rows of data. Using Pattern
Matching: LIKE, select rows whose columns match a certain pattern.

The percent sign (%) is awildcard that matches zero or more characters. An under-
score () isawildcard that matches exactly one character.

Placing the % wildcard character before and after the text string effectively says
“search for thistext string no matter whereit appearsin the value.” To select vendors
whose company names contain the word Manufacturers, enter:

>SELECT DISTINCT COMPANY FROM VENDORS.T
SQL+WHERE COMPANY LIKE '%Manufacturers%';
COMPANYoviiiiiinnennn

Republic Manufacturers
Southern Manufacturers
City Manufacturers

New Orleans Manufacturers
Bayou Manufacturers

5 records listed.

2-24

To retrieve al vendor companies that begin with San and have D as the fifth | etter,
enter:

>SELECT COMPANY FROM VENDORS.T
SQL+WHERE COMPANY LIKE 'San_ D%';

San Diego Promotions
1 records listed.

To use either wildcard character (% or _) as a pattern match character, remove its
wildcard status with an escape character. Thisis atwo-step process:

1. Inthe pattern to be matched, precede the wildcard-character-turned-search-
character with an escape character.

2. Define the escape character using the ESCAPE clause, with the escape
character enclosed in single quotation marks. The rarely used backslash (\)
is arecommended escape character.

For example, assume that the INVENTORY.T table contains aMARKUP column,
and that it storesvalueswith an actual “ %" . To search for markups between 20% and
29%, enter:

>SELECT INVENTORY.T
SQL+WHERE MARKUP LIKE '2_\%' ESCAPE '\';

Here, the % is preceded by a\, which identifies the % as an actual character rather
than awildcard. Then \ then is defined as the escape character.

Testing for Null Values

In SQL, the null value represents datawhose valueis unknown. Null is not an empty
string (acharacter string of 0length known to have no value), nor isit astring of zeros
or blanks.

For any given row, the result of a search can be TRUE, FALSE, or (if one of the
columns contains anull value), UNKNOWN. Itisagood ideato check explicitly for
null values before proceeding to apply other search conditions.

2-25 UniVerse SQL User Guide

Use Testing for the Null Value: ISNULL (but not = NULL) to select rows based on
the presence of anull valuein acolumn. To list those engagementsin the last quarter
of 1994 that have an ADVANCE of NULL, enter:

>SELECT LOCATION_CODE, "DATE" FROM ENGAGEMENTS.T
SQL+WHERE "DATE" BETWEEN '10/01/94' AND '12/31/94'
SQL+AND ADVANCE IS NULL;

LOCATION_CODE DATE......
CINDOO1 10/04/94
CINDOO1 10/05/94
EJACO001 12/08/94
EJACO001 12/09/94
EPHIOO01 11/13/94
EPHIOO01 11/14/94

6 records listed.

Using CAST with WHERE

You can usethe CAST function to search for patternsin numerical data. For example,
to find all employees whose badge number ends with 44, enter:

>SELECT BADGE_NO, NAME FROM PERSONNEL.T
SQL+WHERE CAST(BADGE_NO AS VARCHAR) LIKE '%44';

BADGE_NO NAME. . ..ttt t et ie e
144 Hanson, Daniel
44 Vaughan, Mary

2 records listed.

Negation

To negate a search criterion, in most cases all you have to do is precede it with the
keyword NOT, which effectively reverses the original meaning. Thus, taking the
same examples that introduced this section on selecting rows, you could change the
effect of each query by preceding each search criterion with the keyword NOT.

To see those engagements that do not fall within the fourth quarter of 1995, enter:

>SELECT LOCATION_CODE, "DATE" FROM ENGAGEMENTS.T
SQL+WHERE "DATE" NOT BETWEEN '10/01/95' AND '12/31/95';

LOCATION_CODE DATE......
CKANO0O1 06/05/96
ENYCO001 06/05/96
CDET001 12/15/96

2-26

CKANOOL 06/06/96

wsSDO001 04/08/95
Press any key to continue...

To see those locations whose land areaiis not 50, 100, or 125 acres, enter:

>SELECT DESCRIPTION FMT '30L', NAME FMT '30L', ACRES FROM

LOCATIONS.T

SQL+WHERE ACRES NOT IN (50, 100, 125);

DESCRIPTION.uovveunnnn NAME. . ..t iii it i
ACRES

Milwaukee State Fair Ground Milwaukee Properties Inc.
25

Detroit State Fair Ground Detroit Properties, Inc.
150

Dallas State Fair Ground Dallas Properties, Inc.
200

Hartford State Fair Hartford Properties, Inc.
25

Press any key to continue...

To see all personnel whose last names are not pronounced similarly to Kowsl owsky,
enter:

>SELECT NAME FROM PERSONNEL.T
SQL+WHERE NAME NOT SAID 'KOWSLOWSKY';

Torres, Stephen
Hanson, Daniel
Niederberger, Brian

Young, Carol
Press any key to continue...

To list the rides whose names do not begin with Carousel, enter:

>SELECT DESCRIPTION FROM RIDES.T
SQL+WHERE DESCRIPTION NOT LIKE 'Carousel%';
DESCRIPTION.........

Bumper Cars
Moonwalk
Mechanical Bull

2-27 UniVerse SQL User Guide

Tilt

12 records listed.

To see the fourth quarter 1994 engagements where the advance payment is not null,

enter:

>SELECT LOCATION_CODE, "DATE", ADVANCE FROM ENGAGEMENTS.T
SQL+WHERE "DATE" BETWEEN '10/01/94' AND '12/31/94°'

SQL+AND ADVANCE IS NOT NULL;

LOCATION_CODE DATE...... ADVANCE.
CIAHOOL 12/28/94 7392.00
CIAHOO01 12/29/94 8286.00
WRENOO1 12/31/94 8757.00

3 records listed.

For comparisons, use the appropriate comparison operator rather than NOT to form

the negation:

Thenegation of... Is...

= <> or # (inequality)

<>or# = (equality)
< >=

> <=

>= <

<= >

Comparison Operators
Consequently, the negation of the first example

>SELECT DESCRIPTION, USE FROM LIVESTOCK.T
SQL+WHERE USE = 'Z';

2-28

is asfollows:

>SELECT DESCRIPTION, USE FROM LIVESTOCK.T
SQL+WHERE USE <> 'Z';
DESCRIPTION USE

Shetland R
Lion P
Dog P
Shetland P

Press any key to continue...

Compound Search Criteria

You can combine simple search criteriato create more complex search conditions
using the logical operators AND, OR, and NOT.

Thinking of each search criterion as returning avalue of TRUE, FALSE, or
UNKNOWN, you can visualize how compound search criteriawill operate. Looking
at the “truth tables” for AND, OR, and NOT may be helpful.

AND Truth Table

Using the AND operator requires that both or all parts of a statement are true for the
entire statement to be true. If just one part of a statement joined using AND isfalse,
the entire statement is considered false.

TRUE FALSE UNKNOWN
TRUE TRUE FALSE UNKNOWN
FALSE FALSE FALSE FALSE
UNKNOWN UNKNOWN FALSE UNKNOWN
AND Truth Table

2-29 UniVerse SQL User Guide

OR Truth Table

Using the OR operator requires that only one portion of a statement joined using the
operator OR istrue for the entire statement to be considered true. If one portion of a
statement is true, and one portion is false, the entire statement is considered true.

TRUE FALSE UNKNOWN
TRUE TRUE TRUE TRUE
FALSE TRUE FALSE UNKNOWN
UNKNOWN TRUE UNKNOWN UNKNOWN

OR Truth Table

NOT Truth Table
Using the operator NOT negates all portions of a statement.
TRUE FALSE UNKNOWN
FALSE TRUE UNKNOWN
NOT Truth Table

The preceding tables show that if criterion_1 istrue and criterion_2 isfalse, then
criterion_1 AND criterion_2 isfalse, but criterion_1 OR criterion_2 istrue.

When one of the criteriais unknown, thelogic behind the result is not as obvious. For
example, in the OR table, criterion_1 being unknown and criterion_2 being false
produces aresult of unknown. This is because the unknown quality could be true or
false, making the possible result true or false or, in other words, unknown. Thisis
known as three-valued logic.

Use AND to connect two search conditions when you want to select arow only if
both conditions are true.

To list all locations that offer at least 150 or more acres and 6,000 or more seats:

>SELECT DESCRIPTION, ACRES, SEATS FROM LOCATIONS.T
SQL+WHERE ACRES >= 150 AND SEATS >= 6000;

DESCRIPTION.ccooo.. ACRES SEATS
Topsfield Fair 500 10000
Golden Gate Exposition 175 8000

2-30

Center

4 records listed.

acres or 6,000 or more seats, enter:

SQL+WHERE ACRES >= 150 OR SEATS >= 6000;

DESCRIPTION. . .t v vttt e e eenn ACRES
Detroit State Fair Ground 150
Milwaukee State Fair Ground 25
Springfield State Fair Ground 125
Portland State Fair Ground 175
Reno State Fair Ground 175

21 records listed.

>SELECT ANIMAL_ ID, NAME FROM LIVESTOCK.T
SQL+WHERE DESCRIPTION LIKE 'Shetland%'

SQL+AND USE = 'R'
SQL+AND VAC_DATE > '1/1/93';
ANIMAL_ID NAME.

33 Eggau

46 Mora

58 Tumu

43 Gombi

31 Akure

51 Banyo

71 Bousso

15 Kontagora

5 Sokoto

9 records listed.

2-31 UniVerse SQL User Guide

Las Vegas Convention 175 8000
Center
Chicago State Fair Ground 150 6000

Use OR to connect two search conditions when you want to select arow if either
search condition is (or both are) true. Tolist al locationsthat offer either 150 or more

>SELECT DESCRIPTION FMT '30L', ACRES, SEATS FROM LOCATIONS.T

SEATS

1000
6000
6000

5000
4000

You can string together more than two search conditions, and the search conditions
connected by the ANDs and ORs can themsel ves be compound search conditions. To
list the Shetlands vaccinated after January 1, 1993, that are suitable for rides, enter:

Use parentheses to clarify the order in which the search conditions should be
evaluated. Conditions enclosed in parentheses are evaluated together and produce a
single result (true, false, or unknown). To list the employees living in Pennsylvania,
Massachusetts, or New York and born before 1950 or after 1969, enter:

>SELECT NAME, ADR2, DOB FROM PERSONNEL.T
SQL+WHERE (ADR2 LIKE '%PA%'

SQL+OR ADR2 LIKE '%MA%'

SQL+OR ADR2 LIKE '%NY%')

SQL+AND (DOB < '1/1/50' OR DOB > '12/31/69');

NAME. ... ittt iiii i ADR2 . i ittt it ettt e DOB.......
Carter, Joseph Boston MA 02116

Galloway, Jane Summer Isle NY 10322 06/09/47
Kozlowski, Bill Sterling MA 01564 09/06/74
Bacon, Roger Leicester MA 01524 03/12/39
Carsley, Rusty Harrisburg, PA 10964 04/10/70

5 records listed.

In the previous example, placing the state and date-of-birth conditions within
parentheses causes them to be eval uated separately, and each set produces oneresullt.
Then, because these two results are connected by AND, both results must be true to
select the row.

Omitting parentheses causes conditions to be evaluated in the following order:

B NOTs
B ANDs
B ORs

If you omit the parentheses, the order of precedence results in the selection of
everyone from Pennsylvania or Massachusetts, anyone from New York who was
born before 1950, and anyone from any state who was born after 1969;

>SELECT NAME, ADR2, DOB FROM PERSONNEL.T
SQL+WHERE ADR2 LIKE '%PA%'

SQL+OR ADR2 LIKE '%MA%'

SQL+OR ADR2 LIKE '%NY%'

SQL+AND DOB < '1/1/50' OR DOB > '12/31/69"';

NAME. ittt ADR2 . it ittt et e et

DOB.......

Nelson, Lisa Energy WY 82422 02/07/71
Niederberger, Brian Equity OH 43749 05/27/72
Torres, Stephen Cash VA 22942 12/04/74
Carter, Joseph Boston MA 02116

Clark, Lisa What Cheer IA 50268 01/03/71
Grant, Nancy Beautiful PA 15009 07/30/59

2-32

Martinez, Suzanne Merit MS 38759 02/03/71
Schultz, Mary Lou Happy TX 79042 12/15/73

27 records listed.

Selecting Rows Through Select Lists

The SELECT and SSELECT commands let you select a subset of rowsfrom atable,
and put their record IDs into a select list. You then can process the select list with
another RetrieVe command.

A UniVerse SQL SELECT statement also can be used to process an active select list
by including the SLIST keyword in the statement.

Thefollowing example uses a SELECT sentenceto create aselect list containing the
record IDs of all INVENTORY.T rows where QOH is greater than 100. A UniVerse
SQL SELECT statement with the SLIST keyword further selects only those items
with avalue of over $60:

>SELECT INVENTORY.T WITH QOH > 100
32 record(s) selected to SELECT list #0.
>>SELECT QOH, COST FROM INVENTORY.T SLIST 0 WHERE COST > 60;

QOH. . COST........
174 98.32
125 91.52
181 90.48
135 87.22
143 79.78
127 76.92
131 96.36
185 102.83
193 69.23

15 records listed.

Selecting Rows Through INQUIRING and I nline Prompting

To instruct the system to interactively prompt for the primary key values (or @D
valuesif the table has no primary key) of the rows you want to see, use the
INQUIRING Keyword or an inline (<<...>>) prompt.

2-33 UniVerse SQL User Guide

Using the INQUIRING Keyword

As with RetrieVe commands, use the INQUIRING keyword to display a prompt to
specify interactively what rows are to be selected from atable. When you specify
INQUIRING in your SELECT statement, the system asks you for the record 1D of
the row you want to see and displays the requested columns of that row.

For example, to create a SELECT statement that you can use to do an ad hoc check
on inventory levels, enter:

>SELECT DESCRIPTION, QOH FROM INVENTORY.T INQUIRING;

DESCRIPTION. ... oot eveenn. QOH. .
Primary key for table INVENTORY.T = 10
DESCRIPTION........c...... QOH. .
Franks 151

Primary key for table INVENTORY.T =

The system prompts for arecord ID (in this case, an inventory item number). After
you have typed the item number, the system displays the item’s description and
guantity on hand, and then prompts for another record ID. To terminate the inquiry
cycle respondto Primary key for table tablename = by pressing Enter.

Note that INQUIRING is specified immediately after the table name, just asyou
specify SLIST or explicit record IDsin RetrieVe. It is not placed at the end of the
statement and is not a report qualifier.

Also note that if you enter something like the following, the output is different
depending on whether or not you enter the record 1D of an item that satisfies the
search criteria (QOH > 150):

>SELECT DESCRIPTION, QOH FROM INVENTORY.T INQUIRING

SQL+WHERE QOH > 150;

DESCRIPTION.......covou.. QOH. .

Primary key for table INVENTORY.T =

If you enter therecord ID of anitem that fitsthe selection criteria, you get this output:

Primary key for table INVENTORY.T = 28
DESCRIPTION.ccooo.. QOH. .
Cookies 174

Primary key for table INVENTORY.T =

2-34

However, if you ask for an item that does not fulfill the selection criteria, you get no
output except column headers:

Primary key for table = 27
DESCRIPTION.coo.... QOH. .

Primary key for table INVENTORY.T =

Using an Inline Prompt

Alternatively, use aninline prompt to prompt the user for valuesrequired to complete
the SQL statement. For example:

>SELECT DESCRIPTION, QOH FROM INVENTORY.T
SQL+WHERE QOH > <<Enter Quantity On Hand>>;
Enter Quantity On Hand = 150

DESCRIPTION.covou.. QOH. .
Cookies 174
Handbills 154
Horse Feed 155
Lemonade 153
Fried Clams 174
Cheese Slices 169
Ice Bags 193

19 records listed.

Summarizing Table Contents (Set Functions)

Rather than retrieve atable asindividual rows, you may want one value that summa-
rizes the contents of an entire column. Like RetrieVe and UniVerse BASIC, SQL
provides set functions that produce sums, averages, minimums and maximums, and

counts:
Set Function Purpose
AVG Averages the values in a column or an expression.
COUNT(*) Counts the number of selected rows.
COUNT Counts the number of valuesin a column.

Set Functions

2-35 UniVerse SQL User Guide

Set Function Purpose

MAX Finds the largest value in a column or an expression.
MIN Finds the smallest value in a column or an expression.
SUM Adds the values in a column or an expression.

Set Functions (Continued)

Averaging and Summing
To find the average cost of the equipment, use the AV G function:;

>SELECT AVG(COST) CONV 'MD2$' FROM EQUIPMENT.T;
AVG (COST)

$49104.94
1 records listed.

To compute the total value of the inventory, for each row multiply the price of each
by the quantity on hand. Then use the SUM function to add the results for the entire
table:

>SELECT SUM(QOH * PRICE) CONV 'MD2$' FROM INVENTORY.T;
SUM (QOH * PRICE)

398309.34

1 records listed.

CONV ‘MD2$' displaystheresult of the computation in dollars and cents. CONV is
afield qualifier that enables you to convert a column’svalue.

Finding the Lowest and Highest Valuesin a Column

To find the lowest and highest values of acolumn, use the MIN and MAX functions:

>SELECT MIN(COST), MAX(COST) FROM INVENTORY.T;
MIN (COST) MAX (COST)

10.76 103.80

1 records listed.

2-36

Counting

Themost common form of COUNT isCOUNT (*), sometimes called the* row count”
function, which counts the number of selected rows. For example, to count all the
engagements, use COUNT (*):

>SELECT COUNT(*) FROM ENGAGEMENTS.T;
COUNT (*)

248
1 records listed.

COUNT counts the number of valuesin a column. Because COUNT ignoresthe
actual valuesin the column, in most cases it does not matter which singlevalued
column you use, because it will return the same answer as COUNT (*).

To do arow-count on LIVESTOCK.T for al petting zoo animals, enter:

>SELECT COUNT(*) FROM LIVESTOCK.T
SQL+WHERE USE = 'Z';
COUNT (*)

50

1 records listed.

To do avalue-count on the DESCRIPTION columnin LIVESTOCK.T for al petting
zoo animals, enter:

>SELECT COUNT (DESCRIPTION) FROM LIVESTOCK.T
SQL+WHERE USE = 'Z';
COUNT (DESCRIPTION)

50

1 records listed.

When COUNT is counting all the selected rows of atable or counting the number of
valuesin the singlevalued DESCRIPTION column, the results are the same. There
are two exceptions.

2-37 UniVerse SQL User Guide

First, if you specify amultivalued column asthe argument for COUNT, it countsthe
total number of values, which will be different from doing a COUNT (*) or counting
asinglevalued column on the same table. The following query uses VAC_TY PE,
which isamultivalued column. You can see that the count differs from the counts
obtained previously.

>SELECT COUNT (VAC_TYPE) FROM LIVESTOCK.T

SQL+WHERE USE = 'Z';
COUNT (VAC_TYPE)

150

1 records listed.

Second, you can add the DISTINCT keyword to the COUNT argument, and use it to
count the number of different valuesin a column. To count the different kinds of
animal suitablefor zoo duty and use COUNT(DISTINCT DESCRIPTION), you will
again get a different result:

>SELECT COUNT (DISTINCT DESCRIPTION) FROM LIVESTOCK.T
SQL+WHERE USE = 'Z';
COUNT (DISTINCT DESCRIPTION)

33

1 records listed.

2-38

Manipulating the Output

Manipulate the output of a UniVerse SQL query by doing any of the following:

B Sorting the output rows according to the content of one or more columns
B Formatting the individual columnsin the report
B Formatting the overall report itself

Sorting Output

Rowsin SQL tables (and UniVerse datafiles) are not stored in any fixed order, and
the physical position of arow has no significance. Consequently, when you retrieve
datafrom atableor file, thereisno guaranteethat it will be presentedin any particular
sequence. For example, asking for alist of engagement dates produces an unsorted

list, in which even instances of the same date might be scattered throughout:

>SELECT "DATE" FROM ENGAGEMENTS.T;

06/05/96
06/05/96
12/15/96
06/06/96

04/08/95
Press any key to continue...

The ORDER BY Clause sorts the output rows meaningfully and is similar to
RetrieVe'sBY keywords. Rows are sorted in ascending order by default, but you can
add the ASC (ascending) keyword. Specify DESC (descending) to sort rowsin
descending order. The following example specifies neither sequence and therefore
presents the dates in ascending order:

>SELECT "DATE" FROM ENGAGEMENTS.T ORDER BY "DATE";

05/31/92
06/01/92
06/01/92
06/02/92

2-39 UniVerse SQL User Guide

08/17/92

12/03/92
Press any key to continue...

You can use expressions and specify more than one sort in aquery (and even ask for
each sorted column to be in a different order). Specifying more than one sort is
sometimes called a nested sort or a sort within a sort.

Anexampleof al threeoptionsisto list theinventory in descending order of markup
and ascending order of item code:

>SELECT (PRICE / COST * 100) COL.HDG 'Markup'
SQL+FMT 'R2', ITEM CODE, DESCRIPTION FROM INVENTORY.T
SQL+ORDER BY 1 DESC, 2;

Markup ITEM_CODE DESCRIPTION. ... cvveeeenn.
37 Dog Chow
42 Cheese Slices
159.00 31 Programs
157.01 29 Paper Plates
156.01 27 Ice Tea
154.00 22 Egg Rolls
153.00 18 Salsa
152.00 1 Beer
151.00 33 Elephant Chow
150.01 35 Domestic Cat Chow
110.00 21 Sea Snails
110.00 44 Onion Rings
0.00 17 Nachos

45 records listed.

Column numbers rather than column names are used in the ORDER BY clause. A
column number represents the position of the column specification in the SELECT
clause, and is a shorthand way to refer to columns already named in the query.
(However, if you used SELECT *, acolumn number would represent the position of
the column specification as it appeared in the CREATE TABLE statement that
created the table, but thisisrarely done.)

The second sort (and any subseguent sorts) is performed only within equal values of
the previous sort field.

2-40

Column numbers are useful particularly when one or more of the columnsis an
expression, asisthe case here. If you were not able to use column numbers (or an AS
field qualifier to create a column alias, as explained later), you would have had to
repeat the entire (PRICE / COST * 100) expression.

Thefield qualifier FMT ‘R2’ reduced the results of the markup computation to two
decimal places, and thefield qualifier COL.HDG changed its column heading to read
‘Markup’ rather than (PRICE / COST * 100).

Formatting Columns

The way a column appears in the output of a query depends, by default, on the way
the column is described in the dictionary of the table or file. SQL provides you with
many ways to modify this output, including:

B Field modifiers
B Text
B Fied qualifiers

Most of these should be familiar to users of RetrieVe.

Using Field Modifiers

Field Modifiers act on the selected contents of a column, EVAL expression, or
temporary name (alias) and include the following:

Field Modifier Synonym
AVERAGE AVG
BREAK ON “text ‘options’...” BREAK.ON “text ‘options’...”
BREAK SUPPRESS “text ‘options'...” BREAK.SUP “text ‘options’...”
CALCULATE CALC
PERCENT n PERC n, %n, PERCENTAGE n
TOTAL

Field Modifiers

2-41 UniVerse SQL User Guide

The AVERAGE (or AVG) and TOTAL field modifiers are not the same asthe AV G
and SUM set functions. AV G and SUM produce asinglerow table containing the sum
or average of the requested column:

>SELECT AVG(COST) FROM LIVESTOCK.T
SQL+WHERE COST > 9000;
AVG (COST)

10046

1 records listed.

However, the AVERAGE and TOTAL field modifiers produce a multirow (detailed
table), followed by the requested average or total on aseparate line at the end. COST
isnot enclosed in parentheses after AVERAGE, since AVERAGE isnot an SQL set
function:

>SELECT AVERAGE COST FROM LIVESTOCK.T
SQL+WHERE COST > 9000;

11 records listed.

2-42

Using Text

To add text to output results so they are more readable, specify the text (enclosed in
single quotation marks) where you want it to appear in the output. For example, to
show each employee’s name and date of birth in the form “ name was born on date”,
enter:

>SELECT NAME, 'was born on',
SQL+P_DOB FROM PERSONNEL.T SUPPRESS COLUMN HEADER;

Torres, Stephen was born on 12/04/74
Hanson, Daniel was born on 12/02/55
Niederberger, Brian was born on 05/27/72
Sullivan, William was born on 07/24/63

Press any key to continue...

The SUPPRESS COLUMN HEADER report qualifier suppresses output of the
column headers, because the use of text in the previous example makes such headers
redundant.

Delimited | dentifiers

Text surrounded by double quotation marksis called delimited identifiers or quoted
identifiers. Thus you can use reserved SQL words and identifiers (schema name,
table name, view name, column name, association name, constraint name, index
name, table alias, column alias or user name) as quoted identifiers. For more infor-
mation about quoted identifiers, see UniVerse SQL Administration for DBAs.

Using the Current Dateand Time

The CURRENT_DATE and CURRENT _TIME keywords makeit easy to maintain a
date last modified or time stamp column in atable, anong other uses.
CURRENT_DATE and CURRENT_TIME literally mean “today’s date” and
“current time,” respectively. They refer to the local date and time as maintained by
the local operating system.

CURRENT_DATE and CURRENT_TIME are constant during execution of asingle
SQL DML statement and can be used in an SQL statement anywhere adate literal or
timeliteral can be used. For example, to find all engagementsfrom morethan 90 days
ago, enter:

>SELECT * FROM ENGAGEMENTS.T WHERE "DATE" < CURRENT DATE-90;

2-43 UniVerse SQL User Guide

Using Field Qualifiers

Field Qualifiers specify an alternative format or conversion for a column. Field
qualifiers override column definitions in the table's dictionary and arein effect only
for the duration of the current SELECT statement. They are summarized as follows:

Field Qualifier Synonym

ASalias

ASSOCIATION *“association” ASSOC “ association”
ASSOCIATED column ASSOC.WITH column
CONVERSION code CONYV *“ code”

DISPLAY LIKE column

DISPLAY NAME “text” DISPLAY.NAME “text”,
COL.HDG *“ text”
FORMAT *“ format” FMT “ format”
MULTIVALUED MULTI.VALUE
SINGLEVALUED SINGLE.VALUE
Field Qualifiers

Four of the most commonly used field qualifiers are AS, DISPLAY NAME (or
COL.HDG), FORMAT (or FMT), and CONVERSION (or CONV).

Assigning a Column Alias

The ASfield qualifier, although optional, specifiesan aliasfor acolumn. Refer to the
column later in the query by using its alias rather than its actual name. However, an
alias cannot duplicate any entry in the file's dictionary.

A column aliasis stored temporarily in the file's dictionary, which therefore must be
writable by the user. Consequently, you cannot define a column aias when using
SELECT to select from DICT tablename, as that requires writing to DICT.DICT,
which isread-only.

2-44

One use of an dliasisto abbreviate along column name. For example:

>SELECT DESCRIPTION AS M1, VENDOR CODE AS M2, COST
SQL+FROM EQUIPMENT.T
SQL+ORDER BY M2, M1;

Ml e e e M2 COST........

Feeding Buckets 1 15704.11
Truck 212 A Q S 3 75334.22
Hamburger Stand 4 44809.61
Harness Equipment 10 57355.77
Taffy Stand 15 86842.75
Panels 74 48120.87

Press any key to continue...

If acolumn aliasis specified, the aliasis used as the column heading unlessit is
overridden by a COL.HDG or DISPLAY.LIKE field qualifier. You also can define a
column alias within a subquery.

Here an aliasis used to assign a meaningful name to an EVAL expression:

>SELECT DESCRIPTION, EVAL 'COST * QOH' AS VALUE FROM
SQL+INVENTORY.T WHERE VALUE > 10000;

DESCRIPTION.ouvvvun. VALUE. ...

Cookies 17107.68
Mustard 11440.00
Sawdust 16376.88
Pretzels 11774.70
Programs 11408.54
Dog Chow 12623.16
Cola 19023.55
Fried Clams 11537.94
Sea Snails 14040.18
Crow 14907.49
Franks 15087.92
Ice Cream, Various 12440.12
Ice Bags 13361.39

13 records listed.
The same result is obtained using an SQL expression:

>SELECT DESCRIPTION, COST * QOH AS VALUE FROM INVENTORY.T WHERE
VALUE > 10000;

Use of the keyword ASto define an aliasisoptional, athough it helpsto distinguish
aliasesclearly and distinctly from other operations. If the AS keyword isomitted, the
ASfield quaifier must be the first field quaifier in the field qualifier list.

2-45 UniVerse SQL User Guide

As of Release 9 of UniVerse, you can assign an aliasto a select expression and set

functions. A column alias may be defined for any of the following select expressions:
B Simple column name

|-descriptor column name

Litera

USER

NULL

SQL expression

Set function

EVAL clause

If acolumn aliasis defined for a simple column name or an I-descriptor column
name, both the original column name and the alias can be referenced later in the
statement. However, an alias cannot be referenced within an UNNEST clause or a
joined table.

An alias can be referenced later in the sasme SELECT statement:

B Within an SQL expression or set function
B Astheargument of a DISPLAY.LIKE fidd qualifier
B In WHERE, WHEN, GROUP BY, HAVING, and ORDER BY clauses

If more than one column diasis specified for the same select expression, the
statement will be rejected.

Creating Column Headings (DI SPLAYNAME)

By default, the column heading for a column or expression is the columnname or
expression itself (or, optionally, adefault DISPLAY NAME specified for the column
in the file dictionary). To customize the heading, use DISPLAY NAME or
COL.HDG:

>SELECT DESCRIPTION DISPLAYNAME 'Inventory Item',
SQL+(QOH * COST) DISPLAYNAME 'Value'
SQL+FROM INVENTORY.T;

Inventory Item........... Value
Mustard 11440
French Fries, Frozen 1782.
45
Crabcakes 2482.

2-46

11

Jerky 5085.
6

Cookies 17107
.68

Handbills 6588.
12

Horse Feed 4397.
35

Lemonade 2229.
21

Press any key to continue...

The output does not look quite right because:
B The 25-character inventory description results in too much space between
the description and the value.
B Thevalue(being alocated only five positions, thelength of the new column
header) wraps to the next line.

Use FORMAT to adjust the output.

Formatting Values (FORMAT)

Use FORMAT to change the width and justification of both itemsin the previous
example. To reduce the inventory description to only 20 left-justified characters and
extend the number of positions allocated to Value and right-justify it, enter:

>SELECT DESCRIPTION FORMAT '20L' DISPLAYNAME 'Inventory Item',
SQL+(QOH * COST) FORMAT 'llR' DISPLAYNAME 'Value'
SQL+FROM INVENTORY.T;

Inventory Item...... Value......
Mustard 11440
French Fries, Frozen 1782.45
Crabcakes 2482.11
Jerky 5085.6
Cookies 17107.68
Handbills 6588.12
Horse Feed 4397.35
Lemonade 2229.21
Sawdust 16376.88

Press any key to continue...

2-47 UniVerse SQL User Guide

Formats for the UniVerse SQL FORMAT match those in RetrieVe and UniVerse
BASIC. Complete syntax of FMT formatsisin UniVerse BASC.

Converting Values (CONVERSI ON)

In the previous example, the valueis not in the dollars-and-cents format you wanted.
You add a conversion field qualifier (CONVERSION or CONV) to the SELECT
statement to convert the result of the expression. Usea CONVERSION code such as
‘MD2$,’ to specify that the column is to be displayed with two decimal places, a
dollar sign, and a comma every third position:

>SELECT DESCRIPTION FORMAT '20L' COL.HDG 'Inventory Item',
SQL+(QOH * COST) FORMAT 'llR' COL.HDG 'Value'
SQL+CONVERSION 'MD2$,' FROM INVENTORY.T;

Inventory Item...... Value......
Mustard $11,440.00
French Fries, Frozen $1,782.45
Crabcakes $2,482.11
Jerky $5,085.60
Cookies $17,107.68
Handbills $6,588.12
Horse Feed $4,397.35
Lemonade $2,229.21
Sawdust $16,376.88

Press any key to continue...

Asseen fromthislast example, you can append aDISPLAY NAME, aFORMAT, and
aCONVERSION qualifier to asingle column or expression to get the desired results.
The UniVerse SQL conversion codes are the same as those used in RetrieVe and
BASIC. A complete list of conversion codesisin UniVerse BASC.

2-48

Other Field Qualifiers

The remaining field qualifiers are summarized as follows:

Field Qualifier Description

ASSOCIATED Same as RetrieVe's ASSOC.WITH qualifier. It associates a
column with another column that is multivalued.

ASSOCIATION Same as RetrieVe's ASSOC qudlifier. It temporarily associates
the column with an existing association of multivalued
columns.

DISPLAYLIKE SameasRetrieVe'sDISPLAY.LIKE qualifier. It setsacolumn’s
display characteristics to the same as those of another column.

MULTIVALUED, Same as RetrieVe's MULTI.VALUE and SINGLE.VALUE

SINGLEVALUED qualifiers. Specify that the column or expressionisto betreated

as multivalued or singlevalued, respectively, overriding any
existing definition in the file dictionary.

Field Qualifier

Formatting Reportswith Report Qualifiers

Report qualifiers affect the report output as awhole, rather than individual row or
column outputs. For example, use report qualifiersto control the report layout in
terms of spacing between columns, spacing between rows, starting on anew page or
screen, and the use of report headers/footers and column headers.

SUPPRESS COLUMN HEADER isdescribed in “Using Text” on page 43. The
report qualifiers and their synonyms are as follows:

Report Qualifier Synonym

AUX.PORT
COLUMN SPACES COL.SPACES, COL.SPCS

COUNT.SUP
DOUBLE SPACE DBL.SPC
FOOTER ‘text’ FOOTING *text’

Report Qualifier Synonyms

2-49 UniVerse SQL User Guide

Report Qualifier Synonym

GRAND TOTAL GRAND.TOTAL
HEADER ‘text’ HEADING *text
LPTR [n]

MARGIN n

NO.INDEX

NOPAGE NO.PAGE

SUPPRESS COLUMN SUPPRESS COLUMN HEADER, COL.SUP
HEADING

SUPPRESS DETAIL DET.SUP
VERTICALLY VERT

Report Qualifier Synonyms (Continued)

Report Headings and Footings

A report heading appears at the top of every screen or page of the report; areport
footing appears at the bottom. If you do not supply a heading, your output report will
have no header and will start on the next line of the screen. If you do supply one, the
report will start on anew page or at the top of the screen, and each page will havethe
specified heading at the top. If you supply afooting, your report will have afooter at
the bottom of each screen or page.

In the following example, the SELECT statement specifies a header showing
MONTHLY LIVESTOCK REPORT andafooter of Press CTL-C to exit or
(whichinthe actual output precedesthe standard messageof Press any key to
continue. . .):

>SELECT NAME FROM LIVESTOCK.T
SQL+HEADER 'MONTHLY LIVESTOCK REPORT'
SQL+FOOTER 'Press CTL-C to exit or';
MONTHLY LIVESTOCK REPORT

Bussa
Warri
Ekiti
Gboko
Marone

2-50

Bassar

Baro
Press CTL-C to exit or
Press any key to continue...

Specifying HEADER DEFAULT instead produces the standard UniVerse header
(query statement, time, date, and page number) at the top of each page. Besides the
report heading and footing, you have achoice of column headers, such asthe column
name, a default COL.HDG from the file dictionary, or a COL.HDG that you supply
inthe query. Using SUPPRESS COLUMN HEADER eliminatesthe column headers
entirely. Suppresstheline nn records listed., which appears at the end of
every query output, by using COUNT.SUP,

Adjusting Spacing, Margins, Pagination, and Orientation

To refine your report layout, use DOUBLE SPACE, COLUMN SPACES, and
MARGIN to adjust the spacing between columns and rows, and the left margin.
Double spacing especialy isimportant when displaying multivalues within rows.
Adjusting column spacing allowsyou to either tighten up or spread out areport. Here,
COLUMN SPACES 2 tightens up the column spacing:

>SELECT LOCATION CODE, "DATE", ADVANCE FMT 'S8R’
SQL+FROM ENGAGEMENTS.T
SQL+ORDER BY LOCATION_CODE COLUMN SPACES 2;

LOCATION_CODE DATE...... ADVANCE.
CCLEOO1 12/16/95 6988.00
CCLEOO1 08/19/94
CCLEOO1 08/20/94
CIAHOO01 12/29/94 8286.00

Press any key to continue...

Setting the left margin may be of interest if you are printing the results to be bound
in anotebook or manual. You also can use it to shift the image to the right on the
screen. Here, MARGIN 10 produces a left margin of 10 characters:

>SELECT LOCATION_CODE, "DATE", ADVANCE FMT 'S8R’

SQL+FROM ENGAGEMENTS.T

SQL+ORDER BY LOCATION_CODE COLUMN SPACES 2 MARGIN 10;
LOCATION_CODE DATE...... ADVANCE.

CCLEOO1 12/16/95 6988.00

2-51 UniVerse SQL User Guide

CCLEOO1 08/19/94
CCLEOO1 08/20/94

CIAHOO1 12/29/94 8286.00
Press any key to continue...

NO.PAGE (or NOPAGE) suppresses automatic pagination and causes the report to
scroll continuously on the screen or to print without formatted page breaks on the
printer.

Use VERTICALLY (or VERT) to force output to be listed in avertical format, that
is, listing each row on a separate line:

>SELECT NAME, USE, COST FROM LIVESTOCK.T VERTICALLY;
NAME. Bussa

USE.. P

COST. 2694.00

NAME. Warri
USE.. Z
COST. 10198.00

NAME. Bongor

USE.. Z

COST. 4572.00

Press any key to continue...

Outputting to the System Printer

Using LPTR [n] directs the query output to your system printer. n can be from 0
through 255, indicating alogical print channel number. You can omit n, inwhich case
print channel 0 is assumed. To output the results of a query to print channel number
32, enter:

>SELECT NAME, USE, COST FROM LIVESTOCK.T LPTR 32;
>

2-52

Using Advanced SELECT
Satements

Grouping Rows (GROUPBY) 3-3
Restrictionson GroupingRows. 35
Null Valuesin Grouping Columns 3-6

Selecting Groups (HAVING) 37

Processing SQL Queries . . . e 39
Showing How a Query Will Be Procmd (EXPLAI N) e 39
Disabling the Query Optimizer (NO.OPTIMIZE) 310
Avoiding Lock Delays (NOWAIT). 311

JoiningTables. 312
Joining TwoTables. 314
Outer Joins S £
Selecting on Joined Tables Coe 320
Using UNION to Combine SELECT Statements e 320

Subqueries. . . . e e e s 322
Correlated and Uncorrel ated Subquen& S (72
Subquery TestTypes 324

Using SubquerieswithHAVING 331

This chapter continues with queries of singlevalued rows but adds six powerful SQL
features to the command repertoire;

B Grouping queries summarizes rows into groups and then selects or rejects
those groups, using the GROUP BY clause.

B Selecting groups selects or rejects groups of rows, based on selection
criteria, using the HAVING clause.

B Using processing qualifiers affects or reports on the processing of SQL
queries.

B Joining tables allows querying multiple tables and selects data from more
than one table or file.

B Subquerying uses the results of one query asinput to another query.

3-2 UniVerse SQL User Guide

Grouping Rows (GROUP BY)

The set functions discussed under “ Summarizing Table Contents (Set Functions)” on
page 35 condensed all of the detailed data selected from atable into asingle,

summary row of data, much like agrand total at the bottom of areport. A singletotal
representing the cost of al of the equipment that was purchased resulted if you asked:

>SELECT SUM(COST) FROM EQUIPMENT.T;
SUM (COST)

2995401.36
1 records listed.
To see thetotal purchases by vendor, use the UniVerse SQL GROUP BY clause:

>SELECT VENDOR_CODE, SUM(COST) FROM EQUIPMENT.T
SQL+GROUP BY VENDOR_CODE;

VENDOR_CODE SUM (COST)
1 15704.11

3 75334.22

4 44809.61

10 57355.77

135 94255.70

Press any key to continue...

This second query produces multiple summary rows, one for each vendor, and
summarizes the total cost of equipment purchased from each. In thisinstance, the
system:

1. Dividesthe equipment rowsinto groups of vendors, using the valuesin the
grouping column, VENDOR_CODE

2. For each group, totals the values in the COST column for all of the rows

3. Generates asingle summary row for each group, showing the value of
VENDOR_CODE and the total cost

The GROUP BY clause divides atable into groups of similar rows, producing a
single result row for each group of rows that have the same values for each column
inthe GROUP BY clause. Frequently, GROUP BY is combined with a set function
to produce summary values for each of these sets.

3-3

A side effect of GROUP BY isthat the output results are sorted by the grouping
columns. This added benefit is not dictated by SQL standards, but is provided in
UniVerse SQL. To override it, use an explicit ORDER BY.

The following examples use GROUP BY.

To get a count of the number of engagements booked at each location, enter:

>SELECT LOCATION_CODE, COUNT(*) FROM ENGAGEMENTS.T
SQL+GROUP BY LOCATION_CODE;

LOCATION_CODE COUNT (*)
CCLE001 8
CDET001 8
CDFW001 8
WVGAO001 8

Press any key to continue...
To get a count of animals by type and the range of prices paid, enter:
>SELECT DESCRIPTION, COUNT(*), MIN(COST), MAX(COST)

SQL+FROM LIVESTOCK.T
SQL+GROUP BY DESCRIPTION;

DESCRIPTION COUNT (*) MIN (COST) MAX (COST)
Aardwolf 2 5583.00 8977.00
Cacomistle 1 10078.00 10078.00
Camel 4 6016.00 8661.00
Cheetah 2 4094.00 4712.00
Shetland 13 1330.00 9924.00

Press any key to continue...

You can specify more than one grouping in the GROUP BY clause. For instance, to
get a count of animals by type and use, enter:

>SELECT DESCRIPTION, USE, COUNT(*)
SQL+FROM LIVESTOCK.T
SQL+GROUP BY DESCRIPTION, USE;

DESCRIPTION USE COUNT (*)
Aardwolf Z 2
Cacomistle Z 1
Camel R 4
Cheetah Z 2
Civet Z 3
Coati Z 2

3-4 UniVerse SQL User Guide

Dhole Z 1
Dog P 1
Elephant P 1
Elephant R 1
Parrot P 2
Puma Z 2
Ratel Z 1

Press any key to continue...

Restrictions on Grouping Rows

Asthislast example illustrates, the GROUP BY Clause allows you to see only one
level of grouping at atime (that, is you cannot nest GROUP BY clauses). However,
you can use certain keywords, such as BREAK ON and DET.SUR, to effectively
produce multilevel totals.

A columnlisted inthe GROUPBY clause must be an actual column, not a cal culated
one, and cannot be multivalued, “ exploding” amultivalued columninto discreterows
usingthe UNNEST feature changesthe column to singleval ued, and you can then use
itinaGROUP BY clause). Furthermore, any column in the select list must be a
constant, a set function, a column listed in the GROUP BY clause, or an expression
comprising some combination of these.

Null Valuesin Grouping Columns

Nulls aretreated in a special way when they appear in a grouping column. Although
SQL treats nulls as unknown values, and therefore each null could represent a
different value, GROUP BY treats two null values found in a column as being
identical, and places them into the same output grouping.

35

Selecting Groups (HAVING)

The HAVING Clause operates with grouped queries similarly to how the WHERE
Clause operates with ungrouped queries, selecting or rejecting row groups depending
on selection criteria. The selection criteriathat can be used with HAVING are the
same as those used with WHERE.

Instead of asking for acount of animals, enter thefollowing to see only those animals
numbering more than six:

>SELECT DESCRIPTION, COUNT(*) FROM LIVESTOCK.T
SQL+GROUP BY DESCRIPTION
SQL+HAVING COUNT(*) > 6;

DESCRIPTION COUNT (*)
Lion 8
Shetland 13

2 records listed.

Another example of HAVING uses two grouping columns. Ask to see only those zoo
and parade animals numbering more than one:

>SELECT DESCRIPTION, USE, COUNT(*) FROM LIVESTOCK.T
SQL+GROUP BY DESCRIPTION, USE

SQL+HAVING (USE = 'Z' OR USE = 'P') AND COUNT(*) > 1;
DESCRIPTION USE COUNT (*)

Aardwolf
Cheetah
Civet
Coati
Fox
Horse

UNNNNN
W NN WM DN

Wolverine Z 3

20 records listed.

3-6 UniVerse SQL User Guide

The selection criteria in a HAVING clause must include at least one set function.
Otherwise, move the search criteria to a WHERE clause and apply it to individual
rows to get the same result. For instance, in the previous example, if you were not
selecting on COUNT(*), you could rephrase the query as.

>SELECT DESCRIPTION, USE, COUNT(*) FROM LIVESTOCK.T

SQL+WHERE USE = 'Z' OR USE = 'P'
SQL+GROUP BY DESCRIPTION, USE;
DESCRIPTION USE COUNT (*)
Aardwolf Z 2
Cacomistle Z 1
Cheetah Z 2
Civet Z 3
Coati Z 2
Dhole Z 1
Dog P 1
Elephant P 1
Ferret Z 1
Mink Z 2

Press any key to continue...

Intheory, you could useaHAVING clause without aGROUPBY clause (making the
entire table, in essence, a single group). However, thisis not common practice.

37

Processing SQL Queries

Processing qualifiers affect or report on the processing of SQL queries. For example,
processing qualifiers can:

B Show you how a statement will be processed
B Suppress the query optimizer
B Avoid lock delays

Showing How a Query Will Be Processed (EXPLAIN)

Use EXPLAIN in a SELECT statement to display information about how the
statement will be processed, so that you can decide if you want to rewrite the query
more efficiently. You can also use EXPLAIN in an INSERT, UPDATE, or DELETE
statement, whenever it contains a WHERE clause or a query specification.

EXPLAIN liststhetablesincluded in the query or WHERE clause, explains how data
will be retrieved (that is, by table, select list, index lookup, or explicit ID), and
explains how any joinswill be processed. After each message, press Q to quit, or
press any other key to continue the query.

If aclient program uses EXPLAIN in a SELECT statement, the statement is not
processed. Instead, an SQL STATE value of IA000 is returned, along with the
EXPLAIN message as the message text.

To see what the EXPLAIN display looks like, enter the following:

>SELECT ORDER.NO, "DATE", CUST.NO, "DESC", QTY

SQL+FROM UNNEST ORDERS ON PROD.NO, INVENTORY

SQL+WHERE ORDERS.PROD.NO = CAST(INVENTORY.PROD.NO AS INT)
SQL+EXPLAIN;

UniVerse/SQL: Optimizing query block 0
Tuple restriction: ORDERS.PROD.NO = value expression

Driver source: ORDERS
Access method: file scan

1st join primary: ORDERS est. cost: 73
secondary: INVENTORY est. cost: 42
type: cartesian join using scan of secondary file

Order No Order Date Customer No

3-8 UniVerse SQL User Guide

Description.......oueeeenn... oty.

10002 14 JuUL 92 6518 Collapsible Felt Top Hat
10002 14 JUL 92 6518 White Classic Ring

10002 14 JUL 92 6518 Red Classic Ring

10002 14 JUL 92 6518 Blue Classic Ring

10006 22 APR 92 6518 Red Vinyl Stage Ball
iOOO4 22 AUG 92 4450 Sure Balance Unicycle
10004 22 AUG 92 4450 Classic Polyethylene Club
20005 25 NOV 92 9874 Red Classic Ring

20003 07 MAR 92 9825 Red Juggling Bag

18003 07 MAR 92 9825 Blue Juggling Bag

18001 11 FEB 92 3456 Red Vinyl Stage Ball
ZOOOl 11 FEB 92 3456 Gold Deluxe Stage Torch
iOOOl 11 FEB 92 3456 Sure Balance Unicycle
10007 06 JUL 92 9874 Classic Polyethylene Club
3

14 records listed.

Disabling the Query Optimizer (NO.OPTIMIZE)

The query optimizer tries to determine the most efficient way to processa SELECT
statement (or an INSERT, UPDATE, or DEL ETE statement containing a WHERE
clause or aquery specification). Use NO.OPTIMIZE to disable the query optimizer
when processing the WHERE clause.

To run the preceding example without using the query optimizer, enter the following:
>SELECT ORDER.NO, "DATE", CUST.NO, "DESC", QTY
SQL+FROM UNNEST ORDERS ON PROD.NO, INVENTORY

SQL+WHERE ORDERS.PROD.NO = CAST (INVENTORY.PROD.NO AS INT)
SQL+NO.OPTIMIZE;

39

Avoiding Lock Delays (NOWAIT)

Normally when aSELECT statement triesto accessarow or table locked by another
user or process, it waits for the lock to be released, then continues processing. Use
the NOWAIT keyword to stop processing when a statement encounters a record or
filelock. If the statement isused in atransaction, processing stops and thetransaction
isrolled back. The user ID of the user who ownsthe lock is returned to the terminal
screen or to the client program.

If aSELECT statement with NOWAIT selectsan |-descriptor or an EVAL expression
that executesaUniVerse BASIC subroutine, the NOWAIT condition appliesto all the
SQL operations in the subroutine.

You cannot use NOWAIT in asubquery or aview definition.

Note: Atisolation level 0 or 1, a SELECT statement never encounters the locked

y condition.

If the query in the next example encounters alock set by another user, it terminates
immediately; it does not wait for the lock to be released:

>SELECT ORDER.NO, "DATE", CUST.NO, "DESC", QTY

SQL+FROM UNNEST ORDERS ON PROD.NO, INVENTORY

SQL+WHERE ORDERS.PROD.NO = CAST(INVENTORY.PROD.NO AS INT)
SQL+NO.OPTIMIZE NOWAIT;

3-10 UniVerse SQL User Guide

Joining Tables

An important feature of SQL istable joins, the ability to retrieve information from
more than one table. Thusfar, the examples have referred to only one SQL table per
guery. The diagram of the Circus database shows that many of the tables are related
to one another, as expected in arelational database.

For example, the ENGAGEMENTS.T table hasa LOCATION_CODE that links to
aLOCATIONS.T table, an ACT_NO that linksto an ACTS.T table, and a RIDE
_ID that linksto aRIDES.T table. Likewise, the RIDES.T and ACTS.T tableslink
to the PERSONNEL.T, LIVESTOCK.T, and EQUIPMENT.T tables. And both the
INVENTORY.T and EQUIPMENT.T tableslink to the VENDORS.T table. All of
which strongly implies that there are many times when you might want to query two
or more of these tables in the same statement.

Aswith RetrieVe, you can obtain asimilar result by using the TRANS functionin an
|-descriptor. However, in RetrieVe you can do so only if the relationship between the
two filesis defined in the dictionary, and the first file has the primary key of the
other filein one of itsfields.

In UniVerse SQL, you also can use |-descriptors, but it ismuch easier and simpler to
use an impromptu join in your SELECT statement.

Technically, an SQL tablejoin combinesinformation from two or more tables on the
basis of join conditions that describe the rel ationships among the tables. Before
discussing tablejoins, let's ook briefly at Cartesian “joins.”

Cartesian Joins

If you refer to multiple tablesin a SELECT statement that does not explicitly use a
join condition among the tables, the output consists of rows representing every
possible combination of rows from those tables. Thisis commonly called the
Cartesian product (or simply the product) of the two tables. This combined output
amost always is meaningless and misleading. Therefore querying multiple tables
without specifying ajoin condition is not recommended, as shown in the following
example:

>SELECT DESCRIPTION, COMPANY

SQL+FROM EQUIPMENT.T, VENDORS.T

SQL+ORDER BY DESCRIPTION;

DESCRIPTION.............. COMPANYttt

Associated Interests

1

Corporate Professionals
Silver Assemblies
Midwest Intercontinental
Financial Wares

City Manufacturers

Air Compressor Commerce Exchange

Air Compressor Eastern International
Air Compressor Red Controls

Air Compressor Independent Stocks
Air Compressor Universal Devices
Air Compressor Indiana Management
Air Compressor Country Traders

Press any key to continue...

What you wanted was alist of equipment assets and the vendors from whom they
were purchased. SQL combined every item of equipment with every vendor,
producing an output result of over 5,000 rows (all therowsfromthe EQUIPMENT.T
table multiplied by all the rows from the VENDORS.T table). The result is
misleading because the list makes it appear asif an air compressor (and every other
kind of equipment) was purchased from each vendor.

Joining Two Tables

Specifying ajoin condition between the EQUIPMENT.T and VENDORS.T tables
would have produced the intended result. The two tables each have a column on
which you can construct a join based on matching values: the VENDOR_CODE
column of the EQUIPMENT.T table contains the vendor numbers that correspond to
the valuesin the VENDOR_CODE column of the VENDORS.T table.

An equi-join isacondition based on the equalities between two columnsin the two
tables being joined. Rephrase the previous query to use an equi-join to get the
intended result:

>SELECT DESCRIPTION, COMPANY

SQL+FROM EQUIPMENT.T, VENDORS.T

SQL+WHERE EQUIPMENT.T.VENDOR_CODE = VENDORS.T.VENDOR_CODE
SQL+ORDER BY DESCRIPTION;

DESCRIPTION.............. COMPANYtiiiinnnn.

Illinois Operations

Air Compressor London Treating
Amplifiers Reliable Wholesale
Balloon Vending Stand Elite Salvage

Beer Keg Stand Greek Cousins
Calliope Rembrandt Rentals

3-12 UniVerse SQL User Guide

Cash Register Beacon Components

Coffee/cookies Stand European Plus
Computer Immediate Enterprises
Cooling System Custom Group

Copier Miami Acceptances
Merry-Go-Round Provencher Providers

Press any key to continue...

Thistime the output result has much fewer rows, and the information in each row is
properly related. The WHERE clause names one column from each of the two tables
listed in the FROM clause. It was necessary to qualify the column name
VENDOR_CODE, which appears in both the EQUIPMENT.T and VENDORS.T
tables, by its respective table name to indicate the table to which you are referring.

In addition to the equi-join on values common to both tables, you can add other join
selection criteria, even criteria based on inequalities and using a relational operator
other than “=". Assume that you have two versions of the VENDORS.T table,
VENDL.T and VEND2.T, and you want to list those vendorsin VEND1.T whose
third address line is different in VEND2.T. First you join VEND1.T and VEND2.T
on their VENDOR_CODE columns, respectively, and then select only those rows
where ADRS3 differs (is unequal) between the tables. Again, because both tables
employ identical column names, the column names must be qualified:

>SELECT VENDl.T.VENDOR_CODE, VENDl.T.ADR3, VEND2.T.ADR3
SQL+FROM VEND1.T, VEND2.T

SQL+WHERE VENDl.T.VENDOR_CODE = VEND2.T.VENDOR_CODE AND
SQL+VEND1.T.ADR3 <> VEND2.T.ADR3;

UniVerse SQL processes standard tablejoins, also known asinner joins, in one of the
following ways.

B If one of the columnsis aprimary key and you use an equi-join (=),
UniVerse SQL retrieves the matching row directly, much like using the
TRANS function in an I-descriptor. However, it is more efficient because
thereis no UniVerse BASIC code to execute.

B [f neither of the columnsisaprimary key, UniVerse uses a secondary index
tojoin the tables.

B If thereisnoindex, UniVerse SQL triesto use a sort-merge-join.

B All other joins are processed using a Cartesian product. For example, for
each row in the first table, the entire second table is scanned for matching
rows. Thisisaslow process with large tables.

313

Qualifying Column Names

Related tables often shareidentical column names. For example, the Circus database
has a vendor ID column named VENDOR_CODE, which appearsin the
VENDORS.T, INVENTORY.T, and EQUIPMENT.T tables. To write a query
referring to two of these tables and refer to VENDOR_CODE, you need some
method to indicate which VENDOR_CODE column in which table you mean.

In such situations, you must qualify any ambiguous column name by prefacing it with
the appropriate table name and a period, for example, tablename.columnname. In a
previous example, VENDOR_CODE and ADR3 are column names that appear in
both the VEND1.T and VENDZ2.T tables. When they were used in the query, they
were qualified with their respective table names, “VEND1.T” and “VEND2.T".

SQL offers a shorthand way of specifying table qualifiers through the use of table
aliases. In aprevious example, rather than entering“VEND1.T” and “VEND2.T” as
part of each qualified column name, assign a shorter alias to each of the two tables
and then use those aliases as table qualifiers. Specify an aliasfor atable immediately
after its table name in the FROM clause:

FROM tablename alias...

For example, if you assigned “A” asthe aliasfor VENDL1.T and “B” asthe aliasfor
VEND2.T, enter the query as.

>SELECT A.VENDOR_CODE, A.ADR3, B.ADR3
SQL+FROM VEND1.T A, VEND2.T B
SQL+WHERE A.VENDOR_CODE = B.VENDOR_CODE AND A.ADR3 <> B.ADR3;

Such shorthand is valuable when you have identically named tablesin different
databases and systems, neither of which isyour current database or system. Rather
than entering long table.column names, just assign a single-character alias to each
one.

Joining Three or More Tables

Joining several tablesisreally no different from joining two tables—just add ajoin
condition for each pair of tables to be joined.

3-14 UniVerse SQL User Guide

As an example, anew table, ACCTS.T, has been added to the database. It contains
information concerning the accounts with each vendor and it is related to
VENDORS.T through a vendor number stored in VENDOR_CODE. To seethe
balances due (AMOUNT_DUE) for any of the vendors from whom tents were
purchased, enter:

>SELECT DESCRIPTION, COMPANY, AMOUNT_DUE

SQL+FROM EQUIPMENT.T, VENDORS.T, ACCTS.T

SQL+WHERE EQUIPMENT.T.VENDOR_CODE = VENDORS.T.VENDOR_CODE
SQL+AND VENDORS.T.VENDOR _CODE = ACCTS.T.VENDOR_CODE
SQL+AND DESCRIPTION LIKE ’%Tent%’;

UniVerse SQL joinsthe EQUIPMENT.T, VENDORS.T, and ACCTS.T tables, using
vendor number as the match, and then retrieves the requested data.

Joining a Tableto I tself

Sometimesit is useful to join atableto itself. Thisiscalled areflexive join or a self
join. For example, if each row in aPERSONNEL.T table contained not only the
employee number (BADGE_NO) of that empl oyee, but a so the empl oyee number of
that employee’'s manager (MGR), you could join the PERSONNEL.T table to itself
to look up the name of an employee's manager.

In arelational database, you usually expect to find a second table with data about
managers, and then the situation would be atypical two-tablejoin. But sincethereis
no second table, imagine that there are two copies of the PERSONNEL.T table, one
called EMPLOYEES.T and the other called MANAGERS.T. The MGR column of
the EMPLOY EES.T table would be aforeign key pointing to the MANAGERS.T
table. Use the query:

>SELECT EMPLOYEES.T.NAME, MANAGERS.T.NAME
SQL+FROM EMPLOYEES.T, MANAGERS.T
SQL+WHERE EMPLOYEES.T.MGR = MANAGERS.T.BADGE_NO;

Theoretically, this “duplicate table” approach is how UniVerse SQL joins atable to
itself. Instead of physically duplicating thetable, UniVerse SQL letsyourefer toit by
adifferent name using table aliases (see “ Qualifying Column Names’ on page 14).
Rewrite the previous query to assign EMPLOY EES and MANAGERS as aliases:

>SELECT EMPLOYEES.NAME, MANAGERS.NAME
SQL+FROM PERSONNEL.T EMPLOYEES, PERSONNEL.T MANAGERS
SQL+WHERE EMPLOYEES.MGR = MANAGERS.BADGE_NO;

315

The change is minor except for the definition of the two table aiases. You could
assign just one alias, PERSONNEL MANAGERS, for instance, and use the table’'s
own name, PERSONNEL.T, for the other.

Analyzing a Table Join

Showing How a Query Will Be Processed (EXPLAIN) in the UniVerse SQL
Reference provides an analysis of how UniVerse SQL processes atable join. To
produce this analysis, add the keyword EXPLAIN. The report that is produced lists
the tables in the query, indicates how the data will be retrieved, and shows the
estimated |/O costs. Information is provided for each query block (SELECT clause,
subquery, and so on) that specifies multiple tables. Using this information, you can
decideif you want to continue the query, restate the query more efficiently, or bypass
it altogether.

Take one of the previous queries and add the EXPLAIN keyword:

>SELECT DESCRIPTION, COMPANY, COST CONV 'MD2$', USE_LIFE
SQL+FROM EQUIPMENT.T, VENDORS.T

SQL+WHERE EQUIPMENT.T.VENDOR_CODE = VENDORS.T.VENDOR_CODE
SQL+EXPLAIN;

UniVerse/SQL: Optimizing query block 0

Tuple selection criteria:

TRUE

Driver source: EQUIPMENT.T
Access method: file scan

lst join primary: EQUIPMENT.T est. cost: 61
secondary: VENDORS.T est. cost: 191
type: hashed access (primary key)

UniVerse/SQL: Press any key to continue or 'Q' to quit

The analysis names the keys on which the equi-join is based and tells you the 1/O
costs of accessing each table and the type of access that will be used.

Outer Joins

The outer join of one table to another differs from an inner join in that the resulting
table may contain additional rows beyond what would be in the same tables joined
by an inner join: one additional row is produced for each row in the first table speci-
fication (the outer, or left table) that does not meet the join condition against any row
in the second table specification. An outer join isaso known as aleft outer join.

3-16 UniVerse SQL User Guide

The next two queriesillustrate the distinction between an inner join and an outer join.
The first example shows the vendor name and description for every part sold by a
vendor whose name starts with H. AA and BB are table aliases (also known as corre-
lation names), used to simplify the language of the queries:

>SELECT AA.VENDOR_CODE, COMPANY, DESCRIPTION

SQL+FROM VENDORS.T AS AA INNER JOIN EQUIPMENT.T AS BB
SQL+ON AA.VENDOR_CODE = BB.VENDOR_CODE

SQL+WHERE COMPANY LIKE 'H%'

SQL+ORDER BY COMPANY ;

VENDOR_CODE COMPANY.t iiieenenenn. DESCRIPTION............
145 Hollywood Retail Truck 246 YGN
29 Houston Professionals Truck 588 RWJ
29 Houston Professionals Security System
146 Hub Sales Zoo Fencing

4 records listed.
This example also could have been written as the following ordinary join:

>SELECT AA.VENDOR_CODE, COMPANY, DESCRIPTION
SQL+FROM VENDORS.T AS AA, EQUIPMENT.T AS BB
SQL+WHERE AA.VENDOR_CODE = BB.VENDOR_CODE
SQL+AND COMPANY LIKE 'H%'

SQL+ORDER BY COMPANY;

The second example demonstrates an outer join, showing the sameinformation asthe
first example, but aso including vendors whose names start with H but who do not
sell any parts:

>SELECT AA.VENDOR_CODE, COMPANY, DESCRIPTION

SQL+FROM VENDORS.T AS AA LEFT OUTER JOIN EQUIPMENT.T AS BB
SQL+ON AA.VENDOR_CODE = BB.VENDOR_CODE

SQL+WHERE COMPANY LIKE 'H%'

SQL+ORDER BY COMPANY ;

VENDOR_CODE COMPANY . .. iiiiiiieenn DESCRIPTION...........
174 Harvard Consultants
141 High Innovations
92 Hill Marketing

145 Hollywood Retail Truck 246 YGN
59 Hong Kong Imports

29 Houston Professionals Truck 588 RWJ
29 Houston Professionals Security System
146 Hub Sales Zoo Fencing

8 records listed.

317

Selecting on Joined Tables

When retrieving information from multiple joined tables using the SELECT
statement, thetablename.* syntax isuseful. InaSELECT list, the sublist tablename.*
means “all columns of tablename” and is equivalent to specifying each column in
tablename.

The following specifics apply to using tablename.*:
B If tablenameis agiven correlation name corrname in the FROM clause,

then you cannot use tablename.* as a sublist. Use corrname.* instead.

B A sublist of the form schemaname.tablename.* is supported, but only if
schemaname.tablename appears in the FROM clause.

B A sublist of the form tablename_assocname.* is supported, but only if
tablename_assocname appears in the FROM clause.

B A sublist of the form filename.*, where filename is not atable, is supported
if filename appearsin the FROM clause. In this case, the asterisk means
“fields defined by the @ phrase.”

Using UNION to Combine SELECT Satements

Combinetwo or more SELECT statementsinto asingleresult tableusing the UNION
operator. When aset of SELECT statementsisjoined by aUNION operator, it collec-
tively is called a query expression.

A query expression that contains the keyword UNION must satisfy the following
rules:

B INQUIRING isnot allowed in the FROM clause.

B Field modifiersare not allowed.

B Theonly alowed field qualifiersare AS, FMT, CONV, DISPLAY NAME,
and DISPLAY LIKE. Except for AS, thesefield qualifiers must appear inthe
first SELECT of the query.

To specify that duplicate rows not be removed in the result table, add ALL to the
query. If you do not specify ALL, duplicate rows are removed.

Use query expressions as interactive SQL queries and programmatic SQL queries,
and in the CREATE VIEW statement. Query expressions cannot be used as a
subquery or in the INSERT statement.

3-18 UniVerse SQL User Guide

SQL processes SELECT statements joined by UNION from left to right. Specify a
different processing order by using parentheses. You cannot enclose the entire query
expression in parentheses, however.

In addition, column names, column headings, formats, and conversions used in the
result table are taken from the first SELECT statement. All SELECT statements
combined using the UNION operator must specify the same number of result
columns. Corresponding columns among the SELECT statements must belong to the
same data category (character, number, date, or time).

Thisexample uses UNION to show all personnel and al act locations with telephone
numbers in the 617 area code:

>SELECT NAME DISPLAYNAME 'NAME or LOCATION', PHONE FROM
PERSONNEL.T

SQL+WHERE PHONE LIKE '617%'

SQL+UNION

SQL+SELECT NAME, PHONE FROM LOCATIONS.T WHERE PHONE LIKE '617%'
SQL+ORDER BY 1;

NAME or LOCATION.......... PHONE........
Anderson, Suzanne 617/451-1910
Bacon, Roger 617/562-3322
Boston Properties, Inc. 617/565-5859
Carter, Joseph 617/360-6667
Palumbo, Mark 617/541-5373

5 records listed.

DISPLAYNAME isused inthefirst SELECT to provide a sensible column heading,
and an ORDER BY clause is used to sort the output alphabetically.

319

Subqueries

The concept of subqueries, the ability to use a query within another query, is what
originally gave the name “ structured” to Structured Query Language. Subqueriesare
apowerful SQL feature that:

B Permitsthe writing of queries that more closely parallel their English-
language equivalent

B Aidsquerying by letting you reduce a complex query into “bite-sized”
pieces

B Enablesyou to construct queries that cannot be written in any other way

Subqueries often provide an aternative to two separate SEL ECT statements or a
SELECT statement with a multitable join.

A subquery isa SELECT statement (called the inner SELECT) that is nested in
another SELECT statement (called the outer SELECT), or in an INSERT, DELETE,
or UPDATE statement. Like all SELECTS, a subquery SELECT must have a
SELECT clauseand aFROM clause. It optionally caninclude WHERE, GROUPBY,
and HAVING clauses. When used, the subquery isenclosed in parenthesesand is part
of the WHERE or HAVING clause of the outer SELECT:

SELECT... WHERE... [ALL | ANY | IN | EXISTS] (SELECT
subquery)

Subqueries can be nested to a depth of nine levels. A subquery SELECT differsin
several aspects from aregular SELECT in that it:

B Can specify only one select item (column), except in the case of EXISTS
B Cannot include the ORDER BY clause, INQUIRING, or any field
modifiers, field quaifiers, or report qualifiers

A less frequent use of a subquery isincluding it as part of aHAVING clause (see
“Using Subqueries with HAVING” on page 29).

Correlated and Uncorrelated Subqueries

Subqueries are classified as correlated or uncorrelated. A subquery is correlated
when the results it produces depend on the results of the outer SELECT statement
that containsit. All other subqueries are considered uncorrel ated.

3-20 UniVerse SQL User Guide

Correlated Subqueries

A correlated subquery is executed repeatedly, once for each value produced by the
outer SELECT. For example, this correlated subquery lists the 10 youngest
employees on staff:

>SELECT DOB, NAME FROM PERSONNEL.T MAINSEL
SQL+WHERE 10 >

SQL+ (SELECT COUNT (DOB) FROM PERSONNEL.T SUBQ
SQL+WHERE SUBQ.DOB > MAINSEL.DOB)

SQL+AND DOB IS NOT NULL

SQL+ORDER BY DOB;

DOB....... NAME.ttt iiii i
02/03/73 Wang, Isabel
08/06/73 Dickinson, Timothy
08/29/73 Ellsworth, Leonard
10/26/73 Friedrich, Linda
12/10/73 Young, Pamela
12/15/73 Schultz, Mary Lou
01/03/74 Giustino, Carol
09/06/74 Kozlowski, Bill
10/04/74 Parker, Leslie
12/04/74 Torres, Stephen

10 records listed.

This subquery is correlated because the value it produces depends on

MAINSEL .DOB, the value produced by the outer SELECT. The subquery must
execute once for every row that the outer SELECT considers. Within the subquery,
COUNT(DOB) returns a value to the outer SELECT.

Uncorrelated Subqueries

An uncorrelated subquery is executed only once, and the result of executing the
subquery isthe return of no value, onevalue, or aset of valuesto the outer SELECT.
Uncorrelated subqueries probably are the most common, and are shown in the next
examples.

Subquery Test Types

Subqueries always are part of the selection criteriain the WHERE Clause or
HAVING Clause of which they are apart and fall into three basic types:

321

B Comparison test (=, <>, #, <, <=, >, >=): Compares an expression to the
results of the outer SELECT statement. Quantified comparisons, which use
the keyword ANY or ALL, are an extension of this.

B Match test (IN): Determines whether avalueisincluded in the results of
theinner SELECT statement.

B Existencetest (EXISTS): Determines whether any rows were selected by
theinner SELECT statement.

Comparison Test (=, <>, #, <, <=, >, >=)

A subquery comparison test uses the same operators as in the examples of simple
comparisons. It compares the value of each row selected by the outer SELECT with
the single value produced by the subquery.

Unlessyou use ANY or ALL (see“Quantified Comparisons’ on page 23), the
subquery in acomparison test must produce only asinglerow. If it produces multiple
rows, SQL reportsan error; try using the match test instead. If the subquery produces
no rowsor anull value, anull will be returned. For example, list the animalswith an
estimated life span longer than animal 67 (which has an estimated life span of 16
years):

>SELECT ANIMAL_ ID, DESCRIPTION, EST LIFE FROM LIVESTOCK.T

SQL+WHERE EST_LIFE > (SELECT EST LIFE FROM LIVESTOCK.T
SQL+WHERE ANIMAL ID = 67) ORDER BY ANIMAL_ ID;

ANIMAL_ID DESCRIPTION EST_LIFE
2 Mink 17
3 Otter 18
4 Lion 18
16 Lion 18
23 Tiger 18
80 Puma 19
81 Tiger 17

25 records listed.

The processing sequence produced by this query follows. First, the (SELECT
EST_LIFEFROM LIVESTOCK.T WHERE ANIMAL _|ID =67) subquery produces
asingle row consisting of the EST_LIFE value of the row where ANIMAL_ID
equals 67. Then the outer SELECT comparesthe EST_LIFE value of every row of
the LIVESTOCK.T tableto that value and selects any rows whose value is higher.
Thisisan example of an uncorrelated subquery.

3-22 UniVerse SQL User Guide

In another example, list the inventory items that have a quantity on hand that isless
than the average quantity on hand for all the inventory:

>SELECT DESCRIPTION, QOH FROM INVENTORY.T
SQL+WHERE QOH < (SELECT AVG(QOH) FROM INVENTORY.T);

DESCRIPTION.c...... QOH. .
Mustard 125
French Fries, Frozen 51
Crabcakes 87
Large Cat Chow 127
Bird Seed 94

22 records listed.

The subquery (SELECT AVG(QOH)FROM INVENTORY.T) is evaluated first,
calculating the average QOH for the entire inventory and producing a single row
containing that average. Then the QOH in each row of the INVENTORY.T tableis
compared to this value, and those rows with a QOH below the average are output.

This example of a subquery comparison uses two different tablesto list the engage-
ments booked for Houston:

>SELECT LOCATION_CODE, DATE FROM ENGAGEMENTS.T
SQL+WHERE LOCATION_CODE =

SQL+ (SELECT LOCATION _CODE FROM LOCATIONS.T
SQL+WHERE ADR3 LIKE 'HOUSTON%') ;

LOCATION_CODE DATE......
CIAHOO01 10/03/95
CIAHO01 10/04/95
CIAHOO01 01/17/97
CIAHO01 09/16/92
CIAHOO01 01/18/97
CIAHO01 12/28/94
CIAHOO01 09/17/92
CIAHO01 12/29/94

8 records listed.

Quantified Comparisons

Thekeywords ALL and ANY can be used to modify a subquery comparison to make
it into a quantified comparison. Subqueriesin quantified comparisons can return
more than one row.

323

Using the ALL Quantifier

The ALL quantifier probably is the most commonly used quantifier. Here, the test
value is compared to each value in the column of values produced by the subquery,
oneat atime. If al individual comparisons return atrue result, or if no values are
returned, the result is true.

To obtain alist of every inventory item that has a cost higher than the cost of all the
animal chows, enter:

>SELECT DESCRIPTION, COST FROM INVENTORY.T
SQL+WHERE COST > ALL (SELECT COST FROM INVENTORY.T
SQL+WHERE DESCRIPTION LIKE '%Chow%');

DESCRIPTION. ... oo veeeenn. COST........
Cookies 98.32
Cola 102.83
Franks 99.92
Egg Rolls 103.80

4 records listed.

It turns out that animal feed runsfrom $11 for elephant chow up to $96 for domestic
dog chow; you can seeintheresultsalist of all itemsthat cost more than $96. A good
way to think of the ALL test isto read the previous statement as “ Select those rows
where COST is greater than all of the ‘animal chow’ COSTs.”

Using the ANY Quantifier

Usethe ANY quantifier (or its synonym SOME) to determine if a subquery
comparison istrue for at least one of the values returned by the subquery. The value
being tested is compared to each value in the subquery results, one at atime. If any
comparison istrue, atrue result is returned. If the subquery returns no values, the
result isfalse.

Look at theresult if you change the quantifier in the previous example from ALL to
ANY:

>SELECT DESCRIPTION, COST FROM INVENTORY.T
SQL+WHERE COST > ANY (SELECT COST FROM INVENTORY.T
SQL+WHERE DESCRIPTION LIKE '%Chow%');

DESCRIPTION. ... oot eeeenn. COST........
Mustard 91.52
French Fries, Frozen 34.95
Crabcakes 28.53

3-24 UniVerse SQL User Guide

Cheese Slices
Ice Bags

43 records listed.

88.21
69.23

A longer list isreturned because it contains any item whose cost exceeds any one of
the animal chows, and since $11 isthe cost of the elephant chow, the query selected
any item (including any other animal chows) costing more than $11. Think of the

previous SQL statement as reading “ Select those rows where COST is greater than

any one of the ‘animal chow’ COSTs.”

Using ANY can be tricky, especially when used with the inequality operator (<> or
#). To see alist of trucks that were not bought from a company whose name begins
with H, enter:

>SELECT DESCRIPTION,

COMPANY FROM EQUIPMENT.T,
SQL+WHERE EQUIPMENT.T.VENDOR_CODE = VENDORS.T.VENDOR_CODE
SQL+AND DESCRIPTION LIKE

'%Truck®%'

SQL+AND EQUIPMENT.T.VENDOR_ CODE <> ANY
SQL+ (SELECT VENDORS.T.VENDOR_CODE FROM VENDORS.T

SQL+WHERE COMPANY LIKE
DESCRIPTION

Truck
Truck
Truck
Truck
Truck
Truck
Truck
Truck

897
102
413
665
588
243
821
212

8 records

PE KW X AR
O D=0 T HNX
nh<KZzZ4g0OxXRaX

listed.

COMPANYoiiiin..

Beacon Components
King Finishing
Veterans Advisers
Ohio Treating
Houston Professionals
Hollywood Retail
Boston Equipment
Accurate Surplus

VENDORS.T

325

You get all trucks selected, because the subquery produces a two-row table that
containsthe vendor codesfor two different companiesthat begin with H. Becausethe
vendor code being tested always fails to match at least one of the two vendor codes
in the subquery result, the <> comparison aways tests true, even when the source
doesbeginwith an H, and all trucks, including those purchased from Houston Profes-
sionals and Hollywood Retail, appear in the result. The correct query is:

>SELECT DESCRIPTION, COMPANY FROM EQUIPMENT.T, VENDORS.T
SQL+WHERE EQUIPMENT.T.VENDOR_CODE = VENDORS.T.VENDOR_CODE
SQL+AND DESCRIPTION LIKE '%Truck%'

SQL+AND NOT (EQUIPMENT.T.VENDOR_CODE = ANY

SQL+ (SELECT VENDORS.T.VENDOR_CODE FROM VENDORS.T
SQL+WHERE COMPANY LIKE 'H%')):;

DESCRIPTION.coo.... COMPANY oii i it
Truck 897 M X X Beacon Components

Truck 102 T I U King Finishing

Truck 413 X H K Veterans Advisers

Truck 665 B C C Ohio Treating

Truck 821 N H Y Boston Equipment

Truck 212 A Q S Accurate Surplus

6 records listed.

Thistime any trucks bought from compani es with names beginning with H were not
selected.

Changing ANY to EXISTS

You can always turn an ANY test into an EXISTS test by moving the comparison
inside the subquery. Doing so helps avoid the kinds of confusion being discussed.
Take the current example and rewrite it as an EXISTS:

>SELECT DESCRIPTION, COMPANY FROM EQUIPMENT.T, VENDORS.T
SQL+WHERE EQUIPMENT.T.VENDOR_CODE = VENDORS.T.VENDOR.CODE
SQL+AND DESCRIPTION LIKE '%Truck%'

SQL+AND NOT EXISTS (SELECT VENDORS.T.VENDOR_CODE FROM VENDORS.T
SQL+WHERE COMPANY LIKE 'H%'

SQL+AND EQUIPMENT.T.VENDOR CODE = VENDORS.T.VENDOR CODE) ;

DESCRIPTION.coo.... COMPANYt iieeeenn.
Truck 897 M X X Beacon Components

Truck 102 T I U King Finishing

Truck 413 X H K Veterans Advisers

Truck 665 B C C Ohio Treating

Truck 821 N H Y Boston Equipment

Truck 212 A Q S Accurate Surplus

6 records listed.

3-26 UniVerse SQL User Guide

Again, the correct results are returned.

Match Test (IN)

Using the IN Keyword in the UniVerse SQL Reference compares the test valueto a
column of data values produced by the subquery and returns atrue result if the test

value matches any of the values in the column. Therefore, the IN keyword is equiv-
alentto=ANY.

List the engagements that are booked into sites having at least 6,000 seats:

>SELECT ENGAGEMENTS.T.LOCATION_CODE, DATE, SEATS
SQL+FROM ENGAGEMENTS.T, LOCATIONS.T

SQL+WHERE ENGAGEMENTS.T.LOCATION_CODE =
SQL+LOCATIONS.T.LOCATION_CODE

SQL+AND ENGAGEMENTS.T.LOCATION_CODE IN

SQL+ (SELECT LOCATION _CODE FROM LOCATIONS.T
SQL+WHERE SEATS >= 6000)

SQL+ORDER BY ENGAGEMENTS.T.LOCATION_CODE, DATE;

LOCATION_CODE DATE...... SEATS
CINDOO1 02/13/93 8000
CINDOO1 02/14/93 8000
CINDOO1 02/18/94 8000
CINDOO1 02/19/94 8000
CINDOO1 08/19/94 8000
CINDOO1 08/20/94 8000
CINDOO1 10/04/94 8000
CINDOO1 10/05/94 8000
CMILOO1 03/04/93 6000
CMILOO1 03/05/93 6000
WVGAO001 02/12/97 8000
WVGAO001L 02/13/97 8000

72 records listed.
You aso could have entered this as:

>SELECT ENGAGEMENTS.T.LOCATION_CODE, DATE, SEATS
SQL+FROM ENGAGEMENTS.T, LOCATIONS.T

SQL+WHERE ENGAGEMENTS.T.LOCATION_CODE =
SQL+LOCATIONS.T.LOCATION_CODE

SQL+AND ENGAGEMENTS.T.LOCATION_CODE = ANY

SQL+ (SELECT LOCATION_CODE FROM LOCATIONS.T
SQL+WHERE SEATS >= 6000)

SQL+ORDER BY ENGAGEMENTS.T.LOCATION_CODE, DATE;

3-27

Existence Test (EXISTS)

The EXISTS test, sometimes called an existential qualifier, checksto seeif a
subquery produces any rows of results at all. If the subquery select criteria produces
results, atrue result is returned; if not, afalse result is returned.

Because the EXISTS test does not actually use the results of the subquery, the rule
about asubquery returning only asingle column of resultsiswaived, and you can use
aSELECT *. In fact, there is no reason to use anything else.

To list the engagements scheduled in Washington state, enter:

>SELECT ENGAGEMENTS.T.LOCATION CODE, DATE, ADR3
SQL+FROM ENGAGEMENTS.T, LOCATIONS.T

SQL+WHERE ENGAGEMENTS.T.LOCATION_CODE =
SQL+LOCATIONS.T.LOCATION_CODE

SQL+AND EXISTS (SELECT * FROM LOCATIONS.T
SQL+WHERE ENGAGEMENTS.T.LOCATION_CODE =
SQL+LOCATIONS.T.LOCATION_CODE

SQL+AND ADR3 LIKE '% WA %');

LOCATION_CODE DATE...... ADR3 ...ttt ii i it i e
WSEA00L 12/07/95 SEATTLE WA 96030
WSEA00L 12/08/95 SEATTLE WA 96030
WSEA00L 06/04/95 SEATTLE WA 96030
WSEA00L 06/05/95 SEATTLE WA 96030
WSEA00L 02/16/95 SEATTLE WA 96030
WSEA00L 02/17/95 SEATTLE WA 96030
WSEA00L 02/21/96 SEATTLE WA 96030
WSEA001L 02/22/96 SEATTLE WA 96030

8 records listed.

Thisisone of thoseinstances where it would be simpler to use atable join instead of
asubquery:

>SELECT ENGAGEMENTS.T.LOCATION CODE, DATE, ADR3
SQL+FROM ENGAGEMENTS.T, LOCATIONS.T

SQL+WHERE ENGAGEMENTS.T.LOCATION_CODE =
SQL+LOCATIONS.T.LOCATION_CODE

SQL+AND ADR3 LIKE '% WA %';

3-28 UniVerse SQL User Guide

Using Subquerieswith HAVING

Although subqueries are more commonly found in WHERE clauses, you also can use

them in HAVING clauses. An example of how you would use a subquery in a

HAVING clause is a case where you list al the animals, grouped by use, with an
estimated life span greater than the average estimated life span of all the animals:

>SELECT USE,

SQL+GROUP BY USE,
SQL+HAVING EST LIFE > (SELECT AVG(EST_LIFE) FROM LIVESTOCK.T);
EST_LIFE

USE

+ 'Wwod

Z

Bassar
Bauchi
Bussa
Foula

Mongo

EST_LIFE FROM LIVESTOCK.T
EST_LIFE

18
18
18
16

15

Press any key to continue...

This subquery computed the average estimated life span (14.26 years) of all the

animalsinthe LIVESTOCK.T table, then compared the estimated life of each animal

to that average, selecting those that are greater than the average.

3-29

Selecting on Multivalued
Columns

Uses for Multivalued Columns
Associations . P
Multivalued Columnsin the Sample Database
Selection Criteria and Multivalued Columns .
Using WHERE .
Using WHEN
Using UNNEST
Using Set Functions. .
Subqueries on Nested Tables .
Using Dynamic Normalization

4-3
4-4
4-5
4-6
4-9
4-11
4-14
4-19
4-22
4-24

Thischapter explains how to use UniVerse SQL to access and manipul ate data stored
in UniVerse's multivalued columns. It also discusses dynamic normalization.

Thereal world operatesin ways that are difficult to represent in a database. Real-
world data often is multilayered—people have multiple charge accounts, more than
one dependent, several telephone numbers at which they can be reached, and along
string of placesthey havelived, schoolsthey have attended, and companiesfor which
they have worked.

Most conventional relational databases can hold only asinglevalue in each cell (the
intersection of acolumn and arow). Multiple values are consigned to aseparate table
and linked to their associated rows using acommon key field. UniVerseis designed
to handle multivalued columns, which enable asingle cell to hold an array of values,
with each value separated from the next by a delimiter called a value mark.

4-2

Usesfor Multivalued Columns

One common use of amultivalued column isto store awhere-used list. Suppose you
have a particular part that is a component of many different products. A multivalued
columnin a PARTS record would contain the primary key values of all the
PRODUCT records for products that include that part. As another example, you
might have a number of people working on a particular project. A multivalued
column in a PROJECT record would contain the employee IDs of al the people
working on that project. In the Circus database, an example of awhere-used lististhe
multivalued column EQUIP_CODE inthe VENDORS.T table, which liststhe IDs of
the equipment purchased from each vendor.

Another use for multivalued columnsisto store asmall number of alternate pieces of
information. A PHONE column could contain more than one phone number per row:
aprimary contact number, alternate numbers, afax number, and even an Internet
address. In the Circus database, the three different kinds of vaccination given the
circus animals are stored in a group of multivalued columnsin the LIVESTOCK.T
table.

In conventional database management systems, you must create your own secondary
tables to handle these relatively common situations. Sometimesit may be beneficial
to store such information in separate tables, for ease of updating, for example.
However, such separation often created extrawork for the implementors and
unnecessary overhead for the system.

With UniVerse SQL, you have the best of both worlds. You can use multivalued
columns and related tables, choosing the approach best suited to your needs.

4-3 UniVerse SQL User Guide

Associations

You can group related multivalued columns together as an association. This means
that, in each row, the first value in one multivalued column of an association has a
one-to-one relationship to the first values in all the other associated columns, all the
second position valuesin each associated column have the same relationship, and so
forth. An association, therefore, isan array of columnscontaining related multivalues
and, in effect, can be thought of as a nested table or atable within a table.

To extend one of the earlier examples, suppose that people are assigned to a project
for afinite period of time. In UniVerse, you could create three associated multivalued
columns in the PROJECT.T table for the employee ID, his or her start date on the
project, and the scheduled release date. It is necessary to define these three columns
as an association, because the start and release dates are not just a pile of dates, but
each one is associated with an employee.

Although not required, many associations are generated specifying akey. An
association key, when combined with the primary key of the base table (or the @ID
column if the table has no primary key), can be thought of as the primary key of the
“table within atable” that the association represents. If you designate only one
column as the key, that column automatically has the column constraint
ROWUNIQUE. The depth of an association (number of nested association rows
within a particular base table row) is determined by the maximum number of values
in any of itskey columns, or in all of its columnsif thereis no association key.

4-4

Multivalued Columnsin the Sample Database

The Circus database has many examples of multivalued columns. INVENTORY.T,
for example, shows how such columns are used.

In INVENTORY.T, multivalued columns store an order history for each inventory
item. The ordering information is stored in the columns named VENDOR_CODE
and ORDER_QTY, which record the vendor from which the item was purchased and
the quantity purchased. These columns are related to one another through an
association called ORDERS A SSOC, whichtellsthe system that thefirst valueinthe
VENDOR_CODE column for arow is associated with the first value in the
ORDER_QTY column for that row.

To see the orders for hot dog buns, enter:
>SELECT DESCRIPTION, VENDOR_CODE, ORDER_QTY

SQL+FROM INVENTORY.T
SQL+WHERE DESCRIPTION = 'Hot Dog Buns';

DESCRIPTION.ouvvvun. VENDOR_CODE ORDER_QTY
Hot Dog Buns 43 300
231 700

63 700

13 500

210 700

36 500

34 500

67 900

1 records listed.

The output shows that eight orders have been placed for hot dog buns. In UniVerse,
data about all eight orders can be stored in asingle row of the INVENTORY.T table,
the row for hot dog buns.

If this database were stored in a conventional relational database management
system, the orders datawould be stored in aseparate ORDERS.T table, with each row
in the table linked to a corresponding row in the INVENTORY.T table by an
ITEM_CODE that matchesthe ITEM_CODE of the INVENTORY.T table. The
SELECT would be more complex:

>SELECT DESCRIPTION, VENDOR_CODE, ORDER_QTY

SQL+FROM INVENTORY.T, ORDERS.T

SQL+WHERE ORDERS.T.ITEM_CODE = INVENTORY.T.ITEM CODE
SQL+AND DESCRIPTION = 'Hot Dog Buns';

4-5 UniVerse SQL User Guide

Selection Criteria and Multivalued Columns

You can select rows based on multivalued columnsin much the same way asyou use
singlevalued columns, but multivalued columns offer afew more options. With
multivalued columns, you can use several types of clausesto select the datayou want
to see. The WHERE clause also is used with singleval ued columns, but the remaining
three clauses are used solely with multivalued columns:

Clause Effect

WHERE Clause Selects rows where at |east one of the values in the multivalued
column matches the selection criteria.

WHERE EVERY Selectsrowswhere all of the valuesin the multivalued column match
the selection criteria.

WHEN Clause Further determines which of the multivaluesin the selected rows are
to be actually displayed in the output.

UNNEST Clause Explodes the multivalued association values so that each such value
is combined with the other datain the row to form a complete and
separate record.

Selection Criteriawith Multivalued Columns

It isalmost impossible to understand these different clauses and how they work in
combination from just aline or two of explanation. The best way to learn about them
isto observe their different effects on the output results, as shown in the following
sections. You are encouraged to experiment with different combinations of these
clauses to fine tune your output.

To show how these clauses work, the next several examples start with asimple
request and build upon it. To list the animals that have any booster shots due before
1996, enter:

>SELECT NAME, VAC_TYPE, VAC_NEXT
SQL+FROM LIVESTOCK.T

SQL+WHERE VAC_NEXT <= '12/31/95';
NAME...... VAC_TYPE VAC_NEXT. .

10/11/96
04/25/95
05/05/96
09/03/95
05/05/96
11/25/96

[VA= VB L o

4-6

Ekiti R 08/25/95
P 08/04/95
L 03/11/95
Gboko R 01/03/95
wWurno R 02/08/96

Press any key to continue...

Using just the WHERE clause, you get alisting of al the animals who have any
booster shots scheduled before 1996. But all the multivaluesin any selected row are
treated as one entity, with no attempt to distinguish between those values that satisfy
the WHERE clause and those that don’t. For example, Bussa has three booster shots
scheduled, one during 1995, and two in 1996. The output showsthe datafor all three
boosters because you asked to see al rows that have at least one booster scheduled
before 1996. If thisis confusing, think of using WHERE alone as really asking for
WHERE ANY.

WHERE may be what you want in some cases, but at other times you may want to
see only those boosters that match your criteria. In the latter case, to extract a subset
of the multivalued data selected, use aWHEN clause. List the animalsthat have any
booster shots due before the end of 1995, and show the particulars for only those
shots:

>SELECT NAME, VAC_TYPE, VAC_NEXT
SQL+FROM LIVESTOCK.T

SQL+WHERE VAC_NEXT <= '12/31/95'
SQL+WHEN VAC_NEXT <= '12/31/95';

NAME. VAC_TYPE VAC_NEXT. .
Bussa P 04/25/95
Warri R 09/03/95
Ekiti R 08/25/95
P 08/04/95
L 03/11/95
Gboko R 01/03/95
Imese P 12/03/95
L 12/03/95

Press any key to continue...

Theeffect of thisversionisto first select the rowswith at least one booster scheduled
before 1996, and from those rows extract only the applicable data. Thistime, in
Imese’s case, you see only the two boosters that are scheduled before 1996, because
the WHEN clause filters the multivalues selected by the WHERE clause.

4-7 UniVerse SQL User Guide

You can achieve almost the same result by using an UNNEST clause to “explode”
each set of multivaluesinto discrete rows, so that the WHERE clause can operate on
each exploded row asif it were singlevalued. For example:

>SELECT NAME, VAC_TYPE, VAC_NEXT
SQL+FROM UNNEST LIVESTOCK.T ON VAC_ASSOC
SQL+WHERE VAC_NEXT <= '12/31/95';

NAME. VAC_TYPE VAC_NEXT. .
Bussa P 04/25/95
Warri R 09/03/95
Ekiti R 08/25/95
Ekiti P 08/04/95
Ekiti L 03/11/95
Gboko R 01/03/95
Gboko P 08/19/95
Gboko L 12/17/95
Marone R 01/22/95
Marone P 05/08/95
Marone L 08/31/95
Imese P 12/03/95

Press any key to continue...

In this query, the UNNEST clause creates a virtual table containing arow for each
multivalue and then the WHERE clause selects on those rows. Again, the output
shows only those vaccination values that satisfy the date criterion. The difference
between the output of this example and that of the previous oneis that the datain
columns not included in the association (NAME) is repeated on each line.

Note: You cannot use UNNEST and WHEN clauses that both refer to the same
association because an UNNEST clause changes the multivalued columnsin the
association to singlevalued, and the WHEN clause does not operate on singlevalued
columns.

If you use aWHERE EVERY clause, there is no problem with seeing extraneous
vaccination information, because the query selects only those rowswhere all booster
shots satisfy the date criterion.

List those animals with all three booster shots scheduled before 1996:
>SELECT NAME, VAC_TYPE, VAC_NEXT

SQL+FROM LIVESTOCK.T
SQL+WHERE EVERY VAC_NEXT <= '12/31/95';

NAME. VAC_TYPE VAC_NEXT. .
Ekiti R 08/25/95
P 08/04/95

4-8

03/11/95
01/03/95
08/19/95
12/17/95
01/22/95
05/08/95
08/31/95
06/12/95
03/27/95
03/30/95
09/17/95

Gboko

Marone

Moundon

oI s v B B e v B OB L v B I

Namoda

Kribi R 08/13/95
Press any key to continue...

Now the output lists only those animals that have all three booster shots scheduled
before 1996.

The preceding examples give you some idea of the variety of outputs you can get
when selecting on multivalued columns. The following sections explain each option
in greater detail.

Using WHERE

In dealing with multivalued columns, you must understand the distinction between
the function of the WHERE Clause and the function of the WHEN clause, which is
aUniVerse SQL enhancement that is used exclusively with multivalued columns.
Remember that WHERE retrieves rows, and WHEN selectively displays multivalues
in those selected rows.

When you want to retrieve rows where one or more of the valuesin amultivalued
column satisfies the criteria, use the WHERE clause, which operates somewhat like
it did with singlevalued columns. Aswith singlevalued columns, you can use any of
the other comparison operators or any keywords such as BETWEEN, IN, SAID,
LIKE, ISNULL, and NOT.

List the employees who have any dependents born since 2/1/89:

>SELECT NAME, DEP_DOB, DEP_NAME FROM PERSONNEL.T
SQL+WHERE DEP_DOB > '2/1/89';

NAME.ttt i e DEP_DOB. .. DEP_NAME. .

Nelson, Lisa 09/27/69 Robert
04/13/94 Brian

Niederberger, Brian 11/16/68 Darlene

4-9 UniVerse SQL User Guide

06/30/94 Marion

Torres, Stephen 10/26/76 Patricia
11/27/94 Cecilia
Osborne, Paul 03/07/58 Evelyn
10/13/92 Russell
01/30/93 Harold
Perry, Patricia 02/18/62 Brian
Morse, Carol 09/06/67 Leonard
06/06/90 Jacqueline

Press any key to continue...

The next query does atablejoin using the multivalued column EQUIP_CODE inthe
PERSONNEL.T table and the singlevalued column EQUIP_CODE in the
EQUIPMENT.T tableto obtain alist of employeeswho have had experience running
the hot dog stand:

>SELECT NAME FROM PERSONNEL.T, EQUIPMENT.T
SQL+WHERE PERSONNEL.T.EQUIP_CODE = EQUIPMENT.T.EQUIP_CODE
SQL+AND DESCRIPTION LIKE 'Hot Dog%';

Morse, Leonard
King, Nathaniel
Ford, Hope
Milosz, Charles
Anderson, Suzanne

5 records listed.

Inthiscase, PERSONNEL.T.EQUIP_CODE = EQUIPMENT.T. EQUIP_CODE
isthejoin condition between PERSONNEL .T and EQUIPMENT.T, asexpected. But
no join condition is necessary between each employee in the PERSONNEL.T table
and his or her list of equipment operating skills (the multivalued column,
EQUIP_CODE) becauseit is part of a“table within atable’ (the association
EQUIP_ASSOC, which comprises the multivalued columns EQUIP_CODE and
EQUIP_PAY).

Using EVERY

To select only those rows where every value in a multivalued column meets the
selection criteria, you can add the keyword EVERY to the WHERE clause.

4-10

Thisexample uses EVERY tolist thoseinventory itemsfor which all order quantities
are 700 unitsor less. The output listsonly those rowswhere every multival ue satisfies
the selection criterion.

>SELECT ITEM TYPE, DESCRIPTION, ORDER_QTY FROM INVENTORY.T
SQL+WHERE EVERY ORDER_QTY <= 700;

ITEM_TYPE DESCRIPTION.coo.... ORDER_QTY
D Mustard 400
R French Fries, Frozen 600
R Cookies 500
B Film 500
200
400
600

Press any key to continue...

WHERE EVERY selectsarow for which the association contai ning the multival ued
column has no association rows (that is, the multivalued column has no values).
When a set is empty, every one of its values meets any selection criteria, whatever
they are.

Using WHEN

When you use just the WHERE clause, the output result contains al of the valuesin
the multivalued column, even though you may be interested in only some of them.

In the example that asked for alist of animals who had any booster shots scheduled
before 1996, the output listed the VAC_TY PE and VAC_NEXT for all of the
animal’s shots, even those that were not scheduled before 1996. To see only those
shots scheduled during the period regquested, add a WHEN clause:

>SELECT NAME, VAC_TYPE, VAC_NEXT
SQL+FROM LIVESTOCK.T

SQL+WHERE VAC_NEXT < '12/31/95'
SQL+WHEN VAC_NEXT < '12/31/95';

The WHEN Clause limits output from multivalued columnsto only those values that
meet specified criteria, without having to unnest the columns first.

4-11 UniVerse SQL User Guide

As another example, ask for alist of al locations and the fees charged by their
government agencies:

>SELECT DESCRIPTION FMT '30L', GOV_AGENCY, GOV_FEE
SQL+FROM LOCATIONS.T;

DESCRIPTION.ouvueenn.. GOV_AGENCY............... GOV_FEE.....
Detroit State Fair Ground Health Inspector 3231.00
Sales Tax Authority 1504.00
Police, Paid Detail 615.00
Labor Inspector 4045.00
Alcohol Tobacco Firearms 1772.00
Weights And Measures 3274.00
Food & Ag (Animal Health) 3082.00
Fire Marshal 4659.00
Environmental Permitting 761.00
Zoning Board 2218.00
Houston State Fair Ground Health Inspector 3931.00
Sales Tax Authority 2673.00
Police, Paid Detail 3931.00
Labor Inspector 2756.00
Alcohol Tobacco Firearms 4582.00
Weights And Measures 2325.00
Food & Ag (Animal Health) 3523.00
Fire Marshal 3109.00
Environmental Permitting 4596.00
Zoning Board 2094.00
Milwaukee State Fair GroundHealth Inspector 1295.00

Press any key to continue...

WHEN is most commonly used with a WHERE clause. Recall that WHERE affects
retrieval, and WHEN affects output results.

The next example retrieves the rows from LOCATIONS.T for those towns where at
least one government agency charges a fee of over $5,200:
>SELECT DESCRIPTION FMT '30L', GOV_AGENCY, GOV_FEE

SQL+FROM LOCATIONS.T
SQL+WHERE GOV_FEE > 5200;

DESCRIPTION.cuuuueen.. GOV_AGENCY GOV_FEE.....
Milwaukee State Fair Ground Health Inspector 1295.00
Sales Tax Authority 3217.00
Police, Paid Detail 2394.00
Labor Inspector 4262.00
Alcohol Tobacco Firearms 1916.00
Weights And Measures 793.00
Food & Ag (Animal Health) 5219.00
Fire Marshal 1440.00
Environmental Permitting 3649.00
Zoning Board 645.00
Minneapolis State Fair Ground Health Inspector 5321.00
Sales Tax Authority 3433.00
Police, Paid Detail 2783.00
Labor Inspector 3603.00
Alcohol Tobacco Firearms 5455.00
Weights And Measures 1844.00
Food & Ag (Animal Health) 868.00

4-12

Los Angeles State Fair Ground

Press any key to continue...

WHERE clause's selection criteria

>SELECT DESCRIPTION FMT
SQL+FROM LOCATIONS.T

SQL+WHERE GOV_FEE > 5200
SQL+WHEN GOV_FEE > 5200;
DESCRIPTION. ..ot v eenenenannn

'30L',

Milwaukee State Fair Ground
Minneapolis State Fair Ground

Los Angeles State Fair Ground
Cleveland State Fair Ground

Dallas State Fair Ground
New Orleans State Fair Ground

Topsfield Fair

Seattle State Fair Ground
Golden Gate Exposition Center
Atlanta State Fair Ground
Chicago State Fair Ground

Savannah State Fair Ground
Reno State Fair Ground

13 records selected.

>SELECT DESCRIPTION FMT
SQL+FROM LOCATIONS.T
SQL+WHEN GOV_FEE >= 5200;
DESCRIPTION.0ivuenn..

'30L',

Detroit State Fair Ground
Houston State Fair Ground
Milwaukee State Fair Ground
Minneapolis State Fair Ground

Springfield State Fair Ground

4-13 UniVerse SQL User Guide

Fire Marshal
Environmental Permitting
Zoning Board

Health Inspector

Sales Tax Authority
Police, Paid Detail
Labor Inspector

Alcohol Tobacco Firearms
Weights And Measures
Food & Ag (Animal Health)
Fire Marshal

GOV_AGENCY, GOV_FEE

GOV_AGENCY...............

Food & Ag (Animal Health)
Health Inspector

Alcohol Tobacco Firearms
Food & Ag (Animal Health)
Police, Paid Detail
Environmental Permitting
Alcohol Tobacco Firearms
Sales Tax Authority

Fire Marshal

Fire Department

Health Inspector

Labor Inspector

Police, Paid Detail
Police, Paid Detail

Fire Marshal

Police, Paid Detail

Food & Ag (Animal Health)

17 values listed.

GOV_AGENCY, GOV_FEE

GOV_AGENCY...............

Food & Ag (Animal Health)
Health Inspector
Alcohol Tobacco Firearms

1422.00
1428.00
5019.00
2604.00
4681.00
4289.00
3175.00
3684.00
1103.00
5473.00
4194.00

Theresult lists all the government fees charged at those locations. If you want the
output to include only those fees over $5,200, add a WHEN clause that echoes the

GOV_FEE.....

5219.00
5321.00
5455.00
5473.00
5360.00
5240.00
5288.00
5277.00
5207.00
5430.00
5235.00
5347.00
5226.00
5326.00
5449.00
5330.00
5462.00

You can use the WHEN clause alone, without a corresponding WHERE clause, to
suppress display of certain multivalues. Tolist all of the rowsinthe LOCATIONS.T
table, but not display any multivalued agency fees that are below $5,200, enter:

GOV_FEE.....

5219.00
5321.00
5455.00

Washington State Fair Ground

Los Angeles State Fair Ground Food & Ag (Animal Health) 5473.00
Cleveland State Fair Ground Police, Paid Detail 5360.00
Environmental Permitting 5240.00
Dallas State Fair Ground Alcohol Tobacco Firearms 5288.00
New Orleans State Fair Ground Sales Tax Authority 5277.00
Fire Marshal 5207.00
Chicago State Fair Ground Police, Paid Detail 5326.00
Fire Marshal 5449.00

Hartford State Fair Ground
Press any key to continue...

Using UNNEST

When retrieving data from multivalued columns, the output consists of one line for
each selected row, with the values of any multivalued columns listed on successive
lines:

>SELECT ANIMAL_ID, NAME, VAC_TYPE, VAC_DATE
SQL+FROM LIVESTOCK.T

SQL+WHERE NAME = 'Ekiti';
ANIMAL_ID NAME. VAC_TYPE VAC_DATE. .
32 Ekiti R 08/25/92
P 08/04/92
L 03/11/92

1 records listed.

Even though it may look like three rows of output, what you are actually seeingisa
single output row displayed on three lines, which isconfirmed by the 1 records
listed. message. Sometimesyou want to treat each association row as aseparate
row.

There are severa reasons to do this. One reason was mentioned earlier, when
UNNEST Clause was used as an aternative to the WHERE/WHEN clause
combination to produce output of only those multivalues that satisfied the selection
criterion. Another reason isto include the values from the other (nonmultivalued)
columnsin the table on every line of the output.

The UNNEST clause “unnests’ or explodes associated table rows containing
multivalued data and produces a separate row for each multivalue. Unnesting is
performed before anything el se, and the unnested columns are treated as singleval ued
columns for the remainder of the processing of the query.

4-14

The UNNEST clause names the table, and either an association name or the name of
amultivalued column (column aliases cannot be used) within the association. Its
syntax is asfollows:

FROM UNNEST tablename ON { association_name | columnname}

Add an UNNEST clause to the previous query and see the difference in the output
result:

>SELECT ANIMAL_ ID, NAME, VAC_TYPE, VAC_DATE
SQL+FROM UNNEST LIVESTOCK.T ON VAC_ASSOC

SQL+WHERE NAME = 'Ekiti';

ANIMAL_ID NAME. VAC_TYPE VAC_DATE. .
32 Ekiti R 08/25/92
32 Ekiti P 08/04/92
32 Ekiti L 03/11/92

3 records listed.

Getting a totally separate and complete row for each multivalue in the association
VAC_ASSOC, with the common single-column data (ANIMAL_ID and NAME)
replicated on each line, provides several potential advantages:

W By repeating the datafrom the singleval ued columns on each line, the output
may be rendered more readable in certain circumstances.

B By retrieving avirtual row for each value in amultivalued column, you can
treat the retrieved rows asif they contained all singlevalued columns. An
earlier example used UNNEST to cause aWHERE clauseto select on multi-
valued columns asif they were singlevalued, without needing to add a
WHEN clause:

>SELECT NAME, VAC_TYPE, VAC_NEXT

SQL+FROM UNNEST LIVESTOCK.T ON VAC_ASSOC
SQL+WHERE VAC_NEXT < '12/31/95';

4-15 UniVerse SQL User Guide

The next query does atable join using the multivalued column EQUIP_CODE inthe
PERSONNEL.T table and the singlevalued column EQUIP_CODE in the
EQUIPMENT.T table to obtain alist of the equipment that Daniel Hanson has used:

>SELECT NAME, PERSONNEL.T.EQUIP_CODE, DESCRIPTION
SQL+FROM UNNEST PERSONNEL.T ON EQUIP_ASSOC, EQUIPMENT.T
SQL+WHERE NAME LIKE 'Hanson, Daniel%'

SQL+AND PERSONNEL.T.EQUIP CODE = EQUIPMENT.T.EQUIP_CODE;

NAME.ttt it ii e EQUIP_CODE

DESCRIPTION.ouvvvun.

Hanson, Daniel 28 Truck 897 M X X
Hanson, Daniel 39 Zoo Fencing
Hanson, Daniel 42 Desk Credenza Sets
Hanson, Daniel 26 Truck 243 Y G N

4 records listed.

Use the same join to determine which pieces of equipment each of the staff members
has used:

>SELECT NAME, PERSONNEL.T.EQUIP_CODE, DESCRIPTION
SQL+FROM UNNEST PERSONNEL.T ON EQUIP_ASSOC, EQUIPMENT.T
SQL+WHERE PERSONNEL.T.EQUIP_CODE = EQUIPMENT.T.EQUIP_CODE;

NAME. EQUIP_CODE

DESCRIPTION. ... oot eeeenn.

Sunshine, Susie 12 Beer Keg Stand
Irwin, Rebecca 4 Lucky Dip Stand
Hanson, Daniel 28 Truck 897 M X X
Hanson, Daniel 39 Zoo Fencing
Hanson, Daniel 42 Desk Credenza Sets
Hanson, Daniel 26 Truck 243 Y G N
Vaughan, Randall 50 Video Cameras
Vaughan, Randall 1 Souvenir Stand
Nelson, Lisa 48 Copier

Bailey, Cheryl 42 Desk Credenza Sets
Kozlowski, Nicholas 43 Feeding Buckets
Kozlowski, Nicholas 1 Souvenir Stand

Press any key to continue...

4-16

The following example shows the use of a multivalued column in a subquery to get
alist of those inventory items that had order quantities higher than 1.5 times the
average of al order quantities:

>SELECT DESCRIPTION, ORDER_QTY

SQL+FROM UNNEST INVENTORY.T ON ORDERS_ASSOC
SQL+WHERE ORDER_QTY >

SQL+ (SELECT (AVG(ORDER_QTY) * 1.5) FROM INVENTORY.T);

DESCRIPTION.cco.... ORDER_QTY
Crabcakes 800
Crabcakes 900
Jerky 900
Handbills 800
Handbills 900
Horse Feed 900
Ticket Stock 900
Popcorn 800

Press any key to continue...

Although all of the UNNEST examples have used the association name connected
with the multivalued columnsinits ON phrase, they could just aswell have used the
name of one of the multivalued columns within the association. But even if multi-
valued columns are unassociated, the “table within atable” principle still holds. As
mentioned earlier, the VENDORS.T table contains a pure where-used list in the
multivalued column EQUIP_CODE. You can treat EQUIP_CODE asthough it were
in an association.

List the IDs of the equipment that was purchased from Utopia Professionals:

>SELECT VENDORS.T.EQUIP_CODE

SQL+FROM UNNEST VENDORS.T ON EQUIP_CODE, EQUIPMENT.T
SQL+WHERE COMPANY LIKE 'Utopia Professionals%'

SQL+AND VENDORS.T.EQUIP_CODE = EQUIPMENT.T.EQUIP_CODE;
EQUIP_CODE

49
34
27

3 records listed.

4-17 UniVerse SQL User Guide

Using Set Functions

The set functions (AVG, COUNT, MAX, MIN, and SUM), described in Chapter 2,
“Using SELECT Statements,” are as applicable to multivalued columns as they are
to singlevalued ones.

Asan example, each row of the ENGAGEMENTS.T table represents abooking at a
particular location (LOCATION_CODE) on a particular date (DATE). One associ-
ation of multivalued columns in that table represents entrance gates,
GATE_NUMBER represents the gate number (1 through 20), and GATE_TICKETS
records the number of tickets sold at that gate. There isalso athird column,
GATE_REVENUE, which records the revenues for the gate.

1. Toseetheticket sales by gate for the performance in East Atlanta on
3/18/94, enter:

>SELECT LOCATION_CODE, DATE, GATE_NUMBER, GATE_TICKETS
SQL+FROM ENGAGEMENTS.T

SQL+WHERE LOCATION CODE LIKE 'EATL%' AND DATE = '03/18/94';
LOCATION_CODE DATE...... GATE_NUMBER GATE_TICKETS
EATLOO1 03/18/94 1 163
2 615
3 133
4 774
5 261
6 1006
7 479
8 594
9 504
10 888
11 419
12 1192
13 653
14 677
15 303
16 471
17 435
18 305
19 577
20 115

1 records listed.

4-18

2. Tocaculate the average ticket sales per gate on that date, just replace the
column specifications with the AV G function:
>SELECT AVG(GATE_TICKETS) CONV 'MDO'
SQL+FROM ENGAGEMENTS.T

SQL+WHERE LOCATION CODE LIKE 'EATL%' AND DATE = '03/18/94°';
AVG (GATE_TICKETS)

528

1 records listed.

3. Averageticket sales more selectively intwo ways. First, ask for the average
ticket sales for gates 1 through 5 on that day:

>SELECT AVG(GATE_TICKETS) CONV 'MDO'

SQL+FROM ENGAGEMENTS.T

SQL+WHERE LOCATION_CODE LIKE 'EATL%' AND DATE = '03/18/94'

SQL+WHEN GATE_NUMBER < 6;
AVG (GATE_TICKETS)

389

1 records listed.

Ask for the average ticket sales for gate 3 for all performance datesin
Atlanta

>SELECT AVG(GATE_TICKETS) CONV 'MDO'

SQL+FROM ENGAGEMENTS.T

SQL+WHERE LOCATION_CODE LIKE 'EATL%'

SQL+AND GATE_TICKETS > 0 WHEN GATE NUMBER = 3;
AVG (GATE_TICKETS)

306

1 records listed.

Note that it was necessary to includethe AND GATE_TICKETS > 0 con-
dition because some engagement dates are in the future and no tickets have
been sold yet. Including such dateswould produce alower-than-actual aver-
ageresult (assuming that every gate sells sometickets at each engagement).

4. Ask for the average ticket sales by gate for al performance dates:

>SELECT GATE_NUMBER, AVG(GATE_TICKETS) CONV 'MDO’
SQL+FROM UNNEST ENGAGEMENTS.T ON GATES_ASSOC
SQL+WHERE LOCATION CODE LIKE 'EATL%'

SQL+AND GATE_TICKETS > 0

SQL+GROUP BY GATE_NUMBER;

GATE_NUMBER AVG (GATE_TICKETS)
1 352
2 356
3 306

4-19 UniVerse SQL User Guide

P O WO Jo Ul

R

20

20 records listed.

One reason for using UNNEST here isthat GROUP BY can refer only to a

570
364
588
318
462
430
509
337

220

singlevalued column. Including the UNNEST clause explodes the multivaluesin
GATE_TICKETS into discrete rows, making it appear to be a singlevalued column.
If youtry todoaGROUPBY onamultivalued column without unnesting it first, you

seethe error message GROUP BY columns must be single valued.

4-20

Subguerieson Nested Tables

Subqueries allow you to ask questions such as how sales on one date or for one gate
compare to calculated averages. Suppose you want to know which gates at the
3/18/94 performance in East Atlanta sold more tickets than the average of al gates
on that date. You must begin with the outer SELECT that lists the gates and their
ticket counts, but you cannot just add a selection condition. For example:

>SELECT LOCATION_CODE, DATE, GATE_NUMBER, GATE_TICKETS

SQL+FROM ENGAGEMENTS.T

SQL+WHERE LOCATION CODE LIKE 'EATL%' AND DATE = '03/18/94"'
SQL+AND GATE_TICKETS > AVG(GATE_TICKETS);

UnivVerse/SQL: Set functions may not be specified directly in the
WHERE clause

You cannot specify aset function directly inaWHERE clause, but even if you could,
this phraseol ogy would not be precise enough. Instead, perform the comparison
against an inner SELECT whose result is the appropriate average:

>SELECT LOCATION_CODE, DATE, GATE_NUMBER, GATE_TICKETS
SQL+FROM ENGAGEMENTS.T

SQL+WHERE LOCATION CODE LIKE 'EATL%' AND DATE = '03/18/94'
SQL+WHEN GATE_TICKETS >

SQL+ (SELECT AVG(GATE_TICKETS)

SQL+ FROM ENGAGEMENTS.T

SQL+ WHERE LOCATION CODE LIKE 'EATL%' AND

SQL+ DATE = '03/18/94"');

LOCATION_CODE DATE...... GATE_NUMBER GATE_TICKETS

EATLO01 03/18/94 2 615
4 774
6 1006
8 594
10 888
12 1192
13 653
14 677
19 577

1 records selected.

4-21 UniVerse SQL User Guide

For another example, suppose that you want to know the dates on which ticket sales
for gate 12 were above the average of ticket sales for that gate on al datesin East
Atlanta (remember to exclude from the average al dates for which tickets have not
yet been sold):

>SELECT LOCATION_CODE, GATE_NUMBER, DATE, GATE_TICKETS
SQL+FROM UNNEST ENGAGEMENTS.T ON GATE_NUMBER

SQL+WHERE LOCATION CODE LIKE 'EATL%'

SQL+AND GATE_NUMBER = 12

SQL+AND GATE_TICKETS >

SQL+ (SELECT AVG(GATE_TICKETS)

SQL+ FROM UNNEST ENGAGEMENTS.T ON GATE_NUMBER

SQL+ WHERE LOCATION_CODE LIKE 'EATL%'

SQL+ AND GATE_NUMBER = 12

SQL+ AND GATE_TICKETS > 0);

LOCATION_CODE GATE_NUMBER DATE...... GATE_TICKETS
EATLOO1 12 03/18/94 1192
EATLOO1 12 05/24/94 514

2 records listed.

You might use WHEN GATE_NUMBER = 12 in the subquery, but because you
cannot use WHEN in a subquery, the alternative is to unnest the association rows.

You can perform other combinations of set functionsin asimilar fashion. The
UNNEST operation is not necessary in a statement such as SELECT AVG
(GATE_TICKETS); however, UNNEST is essential in the outer SELECT.

4-22

Using Dynamic Normalization

Dynamic normalization is a UniVerse extension that explodes multivalued columns
(associated or unassociated) so that they appear as singlevalued. In other words,
dynamic normalization allows you to process a nonfirst-normal-form (N FZ) tableas
if it were afirst-normal-form (INF) table and, in effect, performsan UNNEST on an
association or multivalued column within that table. A major use of dynamic normal-
ization is to enable client (such as UniVerse Call Interface, or UCI) applicationsto
treat NF2 tables and associations as if they were INF structures, although you can
also use dynamic normalization in interactive SQL queries and in UniVerse BASIC
programs using the UniVerse BASIC SQL Client Interface.

When you want to dynamically normalize atable, use the construct
tablename_association or tablename_mvcolname instead of tablename, where
mvcolname is an unassociated multivalued column. The result isavirtual table,
containing the table's primary key (or @ID column if the table has no primary key)
plus the columns of the association or the unassociated column, with an individual
row generated for each value entry in the association or column. Dynamic normal-
izationissimilar to UNNEST inthat thevirtual INF table contains only singlevalued
data and you use WHERE instead of WHEN to select from the table.

For example, this query references avirtual table consisting of ANIMAL_ID (the
primary key of the LIVESTOCK.T table) and the four columns of the VAC_ASSOC
association, exploded. To use aWHERE clause to show all booster shots due during
September 1995, enter:

>SELECT * FROM LIVESTOCK.T_VAC_ASSOC
SQL+WHERE VAC_NEXT BETWEEN '9/1/95' AND '9/30/95'
SQL+ORDER BY ANIMAL_ ID;

ANIMAL_ID VAC_TYPE VAC_DATE VAC_NEXT VAC_CERT

1 o) 09/08/92 09/08/95 498062

4 L 09/02/92 09/02/95 814600

4 R 09/08/92 09/08/95 242744

9 R 09/17/92 09/17/95 716025
24 R 09/03/92 09/03/95 745200
26 L 09/28/92 09/28/95 391399
70 R 09/02/92 09/02/95 821955
71 R 09/07/92 09/07/95 12329

8 records listed.

You a so can dynamically normalize unconverted UniVersefilesand SQL tables. Use
the construct filename_association or filename_mvcol name.

4-23 UniVerse SQL User Guide

When referring to an association or unassociated multivalued column through
dynamic normalization, you can reference avirtual column called @ASSOC_ROW
whose value is a numeric position within a multiset. For example, to see an order
number and the first item from each order, enter:

>SELECT ORDNO. ITEM FROM ORDERS_DETAIL WHERE @ASSOC_ROW = 1;

Dynamic normalization isuseful when adding valuesto or modifying valuesin multi-
valued columnsin an existing base table row.

4-24

Modifying Data

Database Security and UniVerseSQL 5-4
Operating System Security 5-4
UniVerseSecurity 55
UniVerse SQL Security 55

Datalntegrity 5-7

Transaction Processing . . . Ce e 5-8

Avoiding Lock Delays (NOWAIT) e e e 59

Inserting Data (INSERT) 510
Naming the Table and Specifying the CoI umns. 511
Supplyingthevalues 512
Using ExpressionsinValuelLists 513
Inserting MultivaluesintoaNewRow 513
Inserting Multivaluesinto an ExistingRow 515
Inserting MultipleRows 516

Updating Data (UPDATE). 518
Updating ValuesinaSingleRow 518
Updating Valuesin Multivalued Columns 519
Usng WHEN withUPDATE 520
Updating Globally e & i
Using an Expression as the SET Val ue 52
Using Subqueriesinthe WHEREClause. 522
Selecting Records for Updating. 523

Deleting Data(DELETE) 525
Deleting MultivaluesfromaRow 525
Deleting All RowsinaTable 526
Deleting Individual Rows 527

UsingTriggers 528

Using Alternate Dictionaries 529

5-2 UniVerse SQL User Guide

This chapter explains how to use the UniVerse SQL statements INSERT, UPDATE,
and DELETE to add, update, and delete data in tables and files.

You also can modify tables and filesin any of the following ways:

Using the UniVerse ReVise process

Writing a UniVerse BASIC program

Using the UniVerse Editor

Using client software such asinterCALL and UniVerse ODBC

Before performing any of these operations on a table, you must have permission to
do so. Thisraises the issue of database security. Additionally, be aware that data
integrity imposes certain restrictions on the values you can enter into certain

columns.

5-3

Database Security and UniVer se SQL

Before you can change atable or file, you must have been granted the appropriate
privileges. You should be aware that data integrity imposes certain restrictions on the
values you legitimately can enter into certain columns. How to grant UniVerse SQL
database privilegesis covered in detail in UniVerse SQL Administration for DBAs.
This section provides a basic understanding of database security.

There are three layers to database security:

B An operating system layer
B A UniVerselayer
B A UniVerse SQL layer

Operating System Security

File permissions on a UniVerse user’s files and directories are set when the user is
added to the system and when the user’s UniVerse account is created. Default file
permissions are set by the umask environment variable in the user’s .profilefileor in
aUniVerse account’s LOGIN paragraph. These default file permissions determine
permissions for all files and directories subsequently created by the user.

Use UniAdmin or the UniVerse System Administration menus to set and change
permissions for a UniVerse account. Files can be protected in a number of ways.
Permission must be granted to the owner, to the owner’s group, and/or to others
outside the group before a file can be written to, read from, and/or executed. Either
the system administrator or the owner of afile can change these permissions at will.
All such security isbased on password protection, which prevents unauthorized users
from logging on to an account and gaining access to its protected files.

More detailed information about operating system security isin the documentation
for your operating system.

5-4 UniVerse SQL User Guide

UniVer se Security

In addition to operating system security, another way of controlling user actionsisto
edit the contents of the VOC file for an account, then setting file permissions to
prevent users from changing the VOC file. Because aVOC file contains al of the
commands and verbs that a user can execute, removing certain entries from the file
prevents users from executing them.

Also, VOC entries that point to remote items provide a further mechanism for
controlling access to certain commands. By specifying a user-supplied subroutinein
field 4 of remote-type VOC entries, you can set aflag that permits or restricts access
to the remote item.

UniVerse SQL Security

With UniVerse SQL you have athird layer of security beyond operating system
security and basic UniVerse security. The UniVerse SQL GRANT statement assigns
database privileges and user privileges on tables and views.

Only aDBA (database administrator) can grant database privilegesto users. The
three levels of database privileges, from lowest level to highest, are as follows:

B CONNECT registersauser asaUniVerse SQL user. Granting CONNECT
privilege to users alows them to create new tables and alter, delete, and
grant and revoke privileges on tables they own.

B RESOURCE includes all capabilities of the CONNECT privilege, plusthe
power to create schemas. RESOURCE privilege can be granted only to
those users who aready have CONNECT privilege.

55

5-6 UniVerse SQL User Guide

B DBA includesall capabilities of the RESOURCE privilege, plusthe ability
to create schemas and tables for other users, grant privileges on any tableto
any user, revoke privileges on any table from any user, and the ability to
perform SELECT, INSERT, UPDATE, and DELETE operations on any
table.

Whenever you create atable, you are the only user with privileges on it,
except for users with DBA privilege. You then can grant any or all of the
following table privileges to others:

SELECT Privilege
INSERT Privilege
UPDATE Privilege
DELETE Privilege
REFERENCES Privilege
ALTER Privilege

Whether you can modify datain a specific table depends on whether you have
operating system permissionsfor the table, UniVerse accessto the needed commands
and verbs, and the necessary UniVerse SQL table privileges.

Data Integrity

Completeness, consistency, and accuracy are extremely important in any application.
Asdiscussed in UniVerse SQL Administration for DBAs, UniVerse SQL helpsensure
all three standards by providing anumber of dataintegrity constraintsthat are or can
be imposed on database INSERT and UPDATE operations.

Consequently, some values that you might attempt to enter or change will not be
accepted, because they violate certain rules. To give you an idea of how UniVerse
SQL maintains data integrity, here are afew things you are not allowed to do in the
Circus database:

B Enter anull value asa LOCATION_CODE, VENDOR_CODE,
ITEM_CODE, BADGE_NO, or any other record ID column. Thisisa
Required Data Violation because null valuesare not allowed inrecord ID or
primary key columns.

B Enter anonunique value into any of these columns. Thisis an Entity
Integrity Violation because all valuesin record ID or primary key columns
must be unique.

B Enter aVENDOR_CODE vaueinthe EQUIPMENT.T table that doesn’t
match avalue in the VENDOR_CODE column of the VENDORS.T table.
Thisis a Referential Integrity Violation because VENDOR_CODE in the
EQUIPMENT.T tableisdefined asreferencing the VENDOR_CODE inthe
VENDORS.T table.

Dataintegrity isfurther enforced by the CHECK column constraint, which specifies
that avalueto beinserted into a column must meet certain criteria, and by the CONV
format specification, which requires that data entered for a column be convertible.

5-7

Transaction Processing

To be able to use the individual UniVerse SQL statements for modifying data, you
need some understanding of transaction processing.

Transaction processing ensures database integrity by guaranteeing that unless a
sequence of commands is completed successfully its effects are cancelled. Four
transaction statementsin UniVerse BASIC (BEGIN TRANSACTION, COMMIT,
ROLLBACK, and END TRANSACTION) provide the ahility to define and control
transactions.

Asasimple example, assumethat you have aUniVerse BASIC program that removes
an act from your roster and, conseguently, updates any references to that act in the
ENGAGEMENTS.T table. If you are not using transaction processing and you
remove the act from the ACTS.T table just when the system crashes but before the
program has had a chanceto removeall referencesto theactin ENGAGEMENTS.T,
the database would be out of synch (because ENGAGEMENTS.T isreferring to an
act that no longer exists).

With transaction management, the two operations—removing the act from ACTS.T
and removing any references to the act from ENGAGEMENTS. T—are defined as a
unified transaction sequence. If the execution sequence is not completed, as
happened here, the database is “rolled back” (much like reversing afilm or
videotape) to the beginning of the transaction, restoring both tables to their state
before the transaction began. However, if the entire sequence had executed success-
fully, a COMMIT would have been executed instead, recording the changes
permanently in the database.

Aninteractive UniVerse SQL session isalways considered to bein transaction mode,
even though you never specifically define atransaction. Each transaction you enter
defaults to an autocommit mode (that is, its results are always recorded in the
database). In effect, each UniVerse SQL interactive statement constitutes atrans-
action by itself.

The remainder of this chapter discusses each UniVerse SQL data modification
statement (INSERT, UPDATE, and DELETE), with special emphasis on handling
multivalued columns.

5-8 UniVerse SQL User Guide

Avoiding Lock Delays (NOWAIT)

Normally when an INSERT, UPDATE, or DELETE statement tries to access arow
or table locked by another user or process, it waits for the lock to be released, then
continues processing. Use the NOWAIT keyword to stop processing when a
statement encounters arecord or file lock. If the statement is used in a transaction,
processing stops and the transaction isrolled back. The user 1D of the user who owns
the lock isreturned to the terminal screen or to the client program.

5-9

Inserting Data (INSERT)

Databases are areflection of reality. As such, adding a new employee, stock item,
ride, vendor, or animal will require adding one or more rows of data somewhere in
the database. In the context of the Circus database, this could be anything like
booking a new engagement date, purchasing a new animal or concession, hiring a
new staff member, or signing up a new vendor.

INSERT isthe statement you use for adding new rowsto atable (UPDATE isfor
changing valuesin existing rows). In its most basic form, INSERT names the table
where the row isto be inserted and specifies the columns to be filled and the values
to be inserted in those columns.

Before you can add arow to atable, you must know the names of the columnsin the
tableand their format. If you do not have acopy of thetablelayout, one way to obtain
thisisto display the dictionary entriesfor thetable. If you just purchased anew truck
and want to add a new row to the EQUIPMENT.T table, retrieve the dictionary for

EQUIPMENT.T:

>SELECT * FROM DICT EQUIPMENT.T;
Type &
Field......... Field. Field........ Conversion.. Column..... Output Depth &
Name. Number Definition... Code........ Heading.... Format Assoc..
EQUIP_CODE D 0 MDO 5R S
@ID D 0 EQUIPMENT 5R S
@KEY PH EQUIP_CODE
VENDOR_CODE D 1 MDO 5R S
VENDOR_REF D 2 10L S
DESCRIPTION D 4 25T S
DEPRECIATION D 3 1L S
TAX_LIFE D 7 MDO 5R S
VOLTS D 8 MDO 5R S
COST D 5 MD22 12R S
USE_LIFE D 6 MDO 5R S
PURCHASE_DATE D 9 D2/ 10L S
@REVISE PH VENDOR_CODE

VENDOR_REF

DEPRECIATION

DESCRIPTION

COST USE_LIFE

TAX_LIFE

VOLTS

Press any key to continue...

5-10 UniVerse SQL User Guide

Thisdisplay showsthat the EQUIPMENT.T table contains 10 singlevalued columns.
The specs on the new truck include:

Make and Model 1992 Mack Truck Model 4500L
Purchased From Century Group (Vendor #90)
Cost $16,725.00

Date Purchased December 15, 1994

Naming the Table and Specifying the Columns

To construct the INSERT statement, first name the table:
>INSERT INTO EQUIPMENT.T...

You then specify a column list, naming the columns into which you want to insert
values. For example, if you want to fill in just the record ID, description, vendor
source, cost, and date of purchase, enter the following column list:

>INSERT INTO EQUIPMENT.T
SQL+ (EQUIP_CODE, DESCRIPTION, VENDOR_CODE,
SQL+COST, PURCHASE_DATE) VALUES (...

Sometimesyou can eliminate the column list. In the case of an SQL table, if you omit
the column list, you must supply avaluefor every columnin thetable, inthe order in
which the columns were defined in the original CREATE TABLE statement or in a
later ALTER TABLE statement. So, if you want to insert afull row of datain the

EQUIPMENT.T table, you would omit the list of columns and enter only the values:

>INSERT INTO EQUIPMENT.T VALUES (...

In the case of aUniVersefile, however, if you areinserting arow and do not include
acolumn list, there must be an @INSERT phrase in the file dictionary. This
@INSERT will define the columns to be filled and their order.

51

Supplying the Values
Finaly, supply the values to go in those columnsin the form of avalue list:

>INSERT INTO EQUIPMENT.T

SQL+ (EQUIP_CODE, DESCRIPTION, VENDOR_CODE,
SQL+COST, PURCHASE_DATE)

SQL+VALUES (61, '1992 Mack Truck Model 4500L', 90,
SQL+16725.00, '12/15/94');

UniVerse/SQL: 1 record inserted.

Think of the column list and valuelist as being paired, with each column namein the
column list matched in a one-to-one correspondence to its value in the value list.

Remember that database conventions require that the record ID (in this case,
EQUIP_CODE) is set to aunique value. In thistable, record IDs are assigned
sequentialy, and 60 was the last number used. Therefore, assign 61 as the record ID
of the new row.

All values must be listed in the same order as the column list and must conform to
any format conventions or constraints that apply to their corresponding columns.

To double-check the new entry, enter:

>SELECT * FROM EQUIPMENT.T
SQL+WHERE EQUIP_CODE = 61;

EQUIP_CODE.. .. 61

VENDOR_CODE. . . 90

VENDOR_REF.. ..

DEPRECIATION. .

DESCRIPTION... 1992 Mack Truck Model
4500L

COST. ..o 16725.00

PURCHASE_DATE. 12/15/94
1 records listed.

Any column not included in the column list will be set to a default value, if one was
supplied in the table definition; otherwise, it will be set to null (or to an empty string
if itisaUniVersefile). You can specify anull value for any column, particularly if
you want to override its default value.

5-12 UniVerse SQL User Guide

For example, if you wanted to enter the basic information for anew vendor but there
isno third line of address (ADR3) and you do not have a contact name (CONTACT)
asyet, your INSERT statement would omit the names of these two columns and also
omit their respective values:

>INSERT INTO VENDORS.T

SQL+ (VENDOR_CODE, COMPANY, ADR1l, ADR2, TERMS, PHONE, FAX,
SQL+EQUIP_CODE, ITEM_CODE)

SQL+VALUES (233, 'New Age Plastics', '7300 Huntington Avenue',
SQL+'Boston MA 02116', 'Net 60', '617-555-3243',
SQL+'617-555-3246"', 16, 44);

UniVerse/SQL: 1 record inserted.

Alternatively, you could enter the INSERT statement by retaining the names of the
two columns and specifying NULL astheir values:

>INSERT INTO VENDORS.T (VENDOR_CODE, COMPANY, ADR1l, ADR2,
SQL+ADR3, TERMS, CONTACT, PHONE, FAX, EQUIP_CODE, ITEM CODE)
SQL+VALUES (233, 'New Age Plastics', '7300 Huntington Avenue',
SQL+'Boston MA 02116', NULL, 'Net 60', NULL, '617-555-3243',
SQL+'617-555-3246"', 16, 44);

UniVerse/SQL: 1 record inserted.

Using Expressionsin Value Lists

Instead of an explicit value, you can use an expression in avaluelist. Although there
isno particular reason for doing thisin the Circus database, it is useful in other situa-
tions. In an application such as aretail operation, you might want to record both the
retail price and the discounted price of each item. Use an INSERT such as:

>INSERT IN SALES.T VALUES (..., 10.50, 10.50 * 0.75,...);

Inserting Multivaluesinto a New Row

When specifying values to beinserted into multivalued columns when adding anew
row, the only clause affected is the values list. Separate the values by commas and
enclose the values for each multivalued column in angle brackets.

5-13

Suppose you placed four orders for anew stock item, corn dogs, and you want to
reflect thisin the INVENTORY.T table. Specifications for the new stock item are;

Column Values

Type R

Description Corn Dogs
Quantity on Hand 825

Cost $50.95

Price $78.00

Vendors 79, 52, 95, 67
Order Quantities 150, 200, 350, 125

These specifications trandate into the statement:

>INSERT INTO INVENTORY.T (ITEM_CODE, ITEM TYPE, DESCRIPTION,
SQL+QOH, COST, PRICE, VENDOR_CODE, ORDER_QTY)

SQL+VALUES (46, 'R', 'Corn Dogs', 825, 50.95, 78.00,
SQL+<79, 52, 95, 67>, <150, 200, 350, 125>);

UniVerse/SQL: 1 record inserted.

Aswas the case with EQUIPMENT.T, therecord ID of INVENTORY.T isalso a
sequentially assigned number (the last number assigned was 45). Now retrieve this
row to make sure it has been stored properly:

>SELECT * FROM INVENTORY.T WHERE ITEM_CODE = 46;

ITEM_CODE. .. 46
ITEM _TYPE... R
DESCRIPTION. Corn Dogs
QOH......... 825
COST........ 50.95
PRICE....... 78.00
VENDOR_CODE ORDER_QTY

79 150

52 200

95 350

67 125

1 records listed.

5-14 UniVerse SQL User Guide

Inserting Multivaluesinto an Existing Row

Sometimes you want to add values to an association within an already existing row,
such as adding a new vaccination entry for one of the animals.

You might assume that making a change to an existing row would be handled as an
update and use an UPDATE statement. But because a table association isa“table
within atable,” use an INSERT statement instead and use dynamic normalization so
that you can operate on the association as if it were a INF table.

For example, to add a new vaccination entry, you would apply dynamic
normalization to the vaccination association (VAC_ASSOC). Take animal 73, which
has records of three vaccinations:

>SELECT ANIMAL_ ID, VAC_TYPE, VAC_DATE, VAC_NEXT, VAC_CERT
SQL+FROM LIVESTOCK.T WHERE ANIMAL_ID = 73;

ANIMAL_ID VAC_TYPE VAC_DATE. . VAC_NEXT. . VAC_CERT
73 R 06/12/92 06/12/95 80782
P 03/27/92 03/27/95 252906
L 03/30/92 03/30/95 469618

1 records listed.

To add a new vaccination entry for vaccination type D, enter an INSERT statement
that usesthe LIVESTOCK.T_VAC_ASSOC table association. The virtual table
consists of the primary key of thetable (ANIMAL_ID) plusthefour fieldsdefined in
VAC_ASSOC. Because the INSERT fillsin all columnsin thisvirtual table, thereis
no need to list the column names in the statement:

>INSERT INTO LIVESTOCK.T_VAC_ASSOC
SQL+VALUES (73, 'D', '08/03/95', '08/03/97', '800971');
UniVerse/SQL: 1 record inserted.

Now if you look at the row again, you see that the new vaccination entry has been
added:

>SELECT VAC_TYPE, VAC_DATE, VAC_NEXT, VAC_CERT
SQL+FROM LIVESTOCK.T WHERE ANIMAL ID = 73;

ANTMAL_TID VAC_TYPE VAC_DATE. . VAC_NEXT. . VAC_CERT
73 R 06/12/92 06/12/95 80782
P 03/27/92 03/27/95 252906
L 03/30/92 03/30/95 469618
D 08/03/95 08/03/97 800971

1 records listed.

5-15

The new row was added to the end of existing association rows, but such order is not
guaranteed. However, an option of the CREATE TABLE statement allows some
measure of control over where new rows are positioned in an association. The
choices are LAST, which isthe default, FIRST, and in order by the valuesin a
specified column of the association.

Inserting Multiple Rows

Rather than add asingle row of datato atable using asingle-row INSERT statement,
you can add multiple rows of datausing avariation of the INSERT statement. A
multirow INSERT is avariation of the INSERT statement that takesits values from
the database, rather than from the INSERT statement. Since the data valuesto be
inserted are taken from tables rather than from the INSERT statement itself, theform
of thevaluelistisa SELECT statement.

One use of amultirow INSERT isto copy selected rows and columns from one table
to another, perhaps for the purpose of archiving old data. Suppose you create an
abbreviated ENGAGEMENTS.T table, calling it OLD_ENGAGEMENTS.T, and
use it to archive past bookings. Then, at the end of each year, you copy that year’s
engagementsinto the table. You can find the CREATE TABLE statement for gener-
ating thistablein Appendix A, “ The Sample Database,” (notethat, unlikethe original
table, the new tabl e has no associ ations defined because they would impose unwanted
constraints on the data). The statement for copying all 1994 dates from ENGAGE-
MENTS.T to OLD_ ENGAGEMENTS.T is:

>INSERT INTO OLD_ENGAGEMENTS.T (LOCATION_CODE, DATE,
SQL+GATE_REVENUE, RIDE_REVENUE, CONC_REVENUE)
SQL+SELECT LOCATION_CODE, DATE, GATE_REVENUE,
SQL+RIDE_REVENUE, CONC_REVENUE

SQL+FROM ENGAGEMENTS.T

SQL+WHERE DATE BETWEEN '01/01/94' AND '12/31/94';
UniVerse/SQL: 14 records inserted.

Then use a DEL ETE statement (see “Deleting Data (DELETE)” on page 25) to
remove those rows from the ENGAGEMENTS.T table.

Other uses for multirow insertions are as follows:

5-16 UniVerse SQL User Guide

B Combining datafrom two or moretablesinto asingletable. Onereason you
might do thisisto perform complex analyses on alarge amount of datathat
is scattered among several tables. Among the advantages of doing so arethe
elimination of extraneous data and multitable joins (thereby speeding up
retrieval), “freezing” the data at a particular point in time, and performing
the analysis without affecting the production database.

B Using the SAMPLE keyword to create a test database.
B Doing statistical joins that require intermediate results.

For example, you might want to combine booking datafrom ENGAGEMENTS.T,
ACTS.T, and PERSONNEL.T for the first quarter of 1995. Then analyze what acts
were used for which dates, who comprised the staff, and how much they were paid.
To load the table using an INSERT statement, enter:

>INSERT INTO NEWTAB.T (ENG_ID, ENG_DATE, ACT_DESC, EMP_ID,
SQL+EMP_NAME, ACT_PAY)

SQL+SELECT LOCATION_CODE, DATE, DESCRIPTION,

SQL+BADGE_NO, NAME, ACT_PAY

SQL+FROM ENGAGEMENTS.T, ACTS.T, PERSONNEL.T

SQL+WHERE PERSONNEL.T.ACT _NO = ACTS.T.ACT_NO

SQL+AND OPERATOR = BADGE_NO

SQL+AND DATE BETWEEN '1/1/95' AND '3/31/95';

Now you have a combined table that contains just the data with which you want to
work. You also can query and refine without disturbing your production data.

A subquery in an INSERT statement cannot include field modifiers (AVERAGE,
BREAK ON, BREAK SUPPRESS, CALCULATE, PERCENT, and TOTAL), field
qualifiers (CONVERSION, FORMAT, and so forth), report qualifiers, processing
qualifiers (except SAMPLE and SAMPLED), or the ORDER BY clause.

5-17

Updating Data (UPDATE)

UPDATE modifies the values of one or more columns in one or more selected rows
of atable. The UPDATE statement specifies the table to be updated, the columnsto
be modified, and the rows to be selected.

Updating Valuesin a Single Row

Initssimplest form, UPDATE modifies asingle column value in a specific row. For
example, to increase the depreciable life for equipment item 28 from 3 to 5 years,
enter:

>UPDATE EQUIPMENT.T

SQL+SET TAX LIFE = 5

SQL+WHERE EQUIP_CODE = 28;
UniVerse/SQL: 1 record updated.

In addition to setting acolumn to aliteral value or expression, you also can do any of
the following:
B SET column=NULL
B SET column=USER
B SET column=DEFAULT
B SET column = CURRENT_DATE
B SET column = CURRENT_TIME

Perhaps you want to update more than one column of the row. To update the quantity
on hand, cost, and price for inventory item 13, enter:

>UPDATE INVENTORY.T

SQL+SET QOH = 65, COST = 38.94, PRICE = 50.76
SQL+WHERE ITEM_CODE = 13;

UniVerse/SQL: 1 record updated.

5-18 UniVerse SQL User Guide

Updating Valuesin Multivalued Columns

You can update values in amultival ued column of arow by specifying amultivalued
literal, much as you do when you insert values into a multivalued column. When
using UPDATE on a multivalued column, supply the same number of values as are
currently in the association’skey column (the number of valuesin the association key
of an association is called the depth of association).

For example, you might move the dates of the next scheduled vaccinations ahead
three months for animal 74. First find out the depth of the VAC_ASSOC associ-
ation—how many entriesexist in the VAC_TY PE column (the association key)—by
entering:

>SELECT * FROM LIVESTOCK.T WHERE ANIMAL_ ID = 74;

ANIMAL_TID... 74

NAME........ Doba

DESCRIPTION. Hyena

USE......... Z

DOB......... 08/21/84

ORIGIN...... Kenya

COST........ 10229.00
EST_LIFE.... 15

VAC_TYPE VAC_DATE.. VAC_NEXT.. VAC_CERT
R 06/18/93 09/17/96 957640
P 05/24/92 05/24/95 573198
L 06/08/92 06/08/95 772270

1 records listed.

Since there are three vaccination entries for this row, include exactly three valuesin
the update;

>UPDATE LIVESTOCK.T

SQL+SET VAC_NEXT = <'12/17/96', '08/24/95', '09/08/95'>
SQL+WHERE ANIMAL_ID = 74;

UniVerse/SQL: 1 record updated.

An update of thistype replaces all the valuesin the column for the selected row. To
update just one of the multivalues, add a WHEN clause to identify the value to be
changed, as explained under “Using WHEN with UPDATE” on page 20.

5-19

Alternatively, update each dateindividually using dynamic normalization and issuing
three UPDATE statements, one for each of the date values to be changed:

>UPDATE LIVESTOCK.T_ VAC_ASSOC

SQL+SET VAC_NEXT = '12/17/96'

SQL+WHERE ANIMAL_ID = 74 AND VAC_NEXT = '09/17/96°';
UniVerse/SQL: 1 record updated.

>UPDATE LIVESTOCK.T_VAC_ASSOC

SQL+SET VAC_NEXT = '08/24/95"

SQL+WHERE ANIMAL_ID = 74 AND VAC_NEXT = '05/24/95';
UniVerse/SQL: 1 record updated.

>UPDATE LIVESTOCK.T_VAC_ASSOC

SQL+SET VAC_NEXT = '09/08/95"

SQL+WHERE ANIMAL_ID = 74 AND VAC_NEXT = '06/08/95';
UniVerse/SQL: 1 record updated.

Using WHEN with UPDATE

Bevery careful using WHERE with multivalued columns when updating atable. For
example, take the statement:

>UPDATE ACTS.T SET EQUIP_CODE = 33
SQL+WHERE ACT_NO = 2 AND EQUIP_CODE = 32;
UniVerse/SQL: 1 record updated.

You might think that you are changing only those EQUIP_CODE values equal to 32
for act 2. Based on how the SEL ECT statement works, remember that by using just
aWHERE clause, you retrieve all of the multivalues in the EQUIP_CODE column
for act 2 (even though only one of them is equal to 32). You added a WHEN clause
to see only the values equal to 32.

Similarly, what you are doing hereis changing all of the EQUIP_CODE values for
act 2 (assuming that at least one of them isequal to 32). To change only those values
equal to 32, enter:

>UPDATE ACTS.T SET EQUIP_CODE = 33
SQL+WHERE ACT_NO = 2 WHEN EQUIP_CODE = 32;
UniVerse/SQL: 1 record updated.

5-20 UniVerse SQL User Guide

Updating Globally

Most of the time, an UPDATE affects more than one row of atable. For instance, if
you do not specify aWHERE clausein an UPDATE statement, the update appliesto
all rows of thetable, in effect doing a bulk update of the table—something you will
rarely want to do. For example, to change the payment termsin all rows of
VENDORS.T to net 30 days, use the statement:

>UPDATE VENDORS.T SET TERMS = 'Net 30 Days';
UniVerse/SQL: 232 records updated.

Sometimes, you do want to change several selected rows, which you can accomplish
by doing a global search-and-change. Expanding the example under “Updating
Valuesin aSingle Row” on page 18, increase the depreciable tax life of any
equipment purchased since January 1993 and having atax life of three years:

>UPDATE EQUIPMENT.T SET TAX LIFE = 5
SQL+WHERE PURCHASE_DATE > '1/1/93' AND TAX LIFE = 3;
UniVerse/SQL: 2 records updated.

Use any form of the WHERE clause that isvalid in a SELECT statement:

>UPDATE EQUIPMENT.T SET TAX LIFE = 5
SQL+WHERE TAX LIFE IS NULL;
UniVerse/SQL: 1 record updated.

>UPDATE EQUIPMENT.T SET TAX LIFE = 5, USE_LIFE = 10
SQL+WHERE EQUIP CODE IN (23, 29, 34, 41);
UniVerse/SQL: 4 records updated.

Add the keyword REPORTING to your UPDATE statement to get alist of the
primary keys of those rows affected:

>UPDATE EQUIPMENT.T SET TAX LIFE = 5
SQL+WHERE TAX LIFE IS NULL REPORTING;
UniVerse/SQL: Record "37" updated.
UniVerse/SQL: 1 record updated.

521

Using an Expression asthe SET Value

You can use an expression as part of the SET clause. For example, to unload the
overstock and make room for incoming merchandise, you decide to give a 20%
discount on al inventory items, of which you have more than 600. I ssue the
statement:

>UPDATE INVENTORY.T SET PRICE = PRICE * .8
SQL+WHERE QOH > 600;
UniVerse/SQL: 1 record updated.

Using Subqueriesin the WHERE Clause

It is not uncommon to find a subquery in the WHERE clause of an UPDATE
statement. In fact, a subguery can be useful in determining which rows to update in
atable, based on data contained in one or more other tables.

As one example, suppose that an employee, Hope Saarinen, has quit. To remove her
name from any ride assignments, enter:

>UPDATE RIDES.T SET OPERATOR = 0,

SQL+WHERE OPERATOR = (SELECT BADGE_NO FROM PERSONNEL.T
SQL+WHERE NAME LIKE '%Saarinen, Hope%'):;

UniVerse/SQL: 2 records updated.

You have searched the PERSONNEL.T table to find Hope Saarinen, found her ID,
and then removed the ID from any rows in the RIDES.T table that match her ID.

As another example, all vendors with whom you have placed more than three orders
have offered to stretch their payment terms from the current net 30 days to amore
lenient net 60 days. To update the VENDORS.T table to reflect this new devel-
opment, enter:

>UPDATE VENDORS.T SET TERMS = 'Net 60 Days'

SQL+WHERE 3 < (SELECT COUNT(*) FROM INVENTORY.T

SQL+WHERE VENDORS.T.VENDOR_CODE = INVENTORY.T.VENDOR_CODE) ;
UniVerse/SQL: 4 records updated.

Thisisan example of acorrelated subquery, as explained under “Correlated and
Uncorrelated Subqueries’ on page 20. VENDOR_CODE in the subquery is an outer
reference, referring to VENDOR_CODE in the VENDORS.T tablethat is being
updated.

5-22 UniVerse SQL User Guide

Selecting Records for Updating

The FOR UPDATE clauselocksall selected rowswith update record locks (READU)
or exclusive file locks (FX) until the end of the current transaction. Thislets client
programs update or del ete the sel ected rows |l ater within the sametransaction, without
being delayed by locks held by other users. You can also use the FOR UPDATE
clause in an interactive SELECT statement.

The syntax of the FOR UPDATE clause is:

SELECT [ALL | DISTINCT] column_specifications
FROM table_specification
[WHERE clause]
FOR UPDATE [OF column|[,column]....]

The OF clause limits the acquiring of update record locks or file locks to those tables
or files containing the named columns. It isuseful only inajoin where datais selected
from two or more tables.

You cannot use the FOR UPDATE clausein:
B A subquery

B A view definition

W A trigger program
You cannot use the FOR UPDATE clause if the SELECT statement includes:
The UNION operator
Set functions

A GROUPBY clause
A HAVING clause

Thecurrent isolation level determineswhich locks are set when aSELECT statement
includes the FOR UPDATE clause.

A filelock isset instead of record lockswhen atable or file aready hasthe maximum
number of record locks allowed by your system. The MAXRLOCK configurable
parameter determines the maximum number of record locks.

Note: The FOR UPDATE clause has no effect on locks set by a subquery. Rows,
tables, and files selected by a subquery are given shared record locks appropriate to
the current isolation level.

5-23

This example selects one column from each of two tablesfor update. It sets READU
lockson all rows selected from the ORDERS table and setsREADL lockson all rows
selected from the CUSTOMER table.

>SELECT ORDERS.CUSTNO, CUSTOMER.CUSTID
SQL+FROM ORDERS, CUSTOMER

SQL+WHERE ORDERS.CUSTNO = CUSTOMER.CUSTID
SQL+FOR UPDATE OF ORDERS.CUSTNO;

5-24 UniVerse SQL User Guide

Deleting Data (DELETE)

Deleting data rows from atableis just as common as inserting data. When an entity
no longer exists, this must be reflected in the database by removing any rows that
represent that entity.

The DELETE statement is structured like the UPDATE statement, and includes a
FROM clause naming the table and a WHERE clause for selecting the rowsto be
deleted. And, like UPDATE, DELETE can operate on just a single row, multiple
rows, or al the rows of atable. Also, you can add the REPORTING keyword to see
alist of the primary key values (or @ID valuesif the table has no primary key) for
the rows that were deleted.

>DELETE FROM EQUIPMENT.T

SQL+WHERE VENDOR_CODE = 110 REPORTING;
UniVerse/SQL: Record "18" deleted.
UniVerse/SQL: 1 record deleted.

When you delete arow in thisway, you delete all of the multivalues associated with
it. Also note that with the referential constraint on EQUIP_CODE in thistable, this
deletion would not be allowed until that constraint is removed.

Deleting Multivalues from a Row

To delete one or more values from amultivalued column in arow, you must use
dynamic normalization so that you can operate on the association row containing the
multivalue asif it were a INF row.

Recall how dynamic normalization works with a SELECT statement. If you use
dynamic normalization to retrieve all the vaccination datafor animal 74, you get one
row for each vaccination row:

>SELECT * FROM LIVESTOCK.T_VAC_ASSOC WHERE ANIMAL ID = 74;

ANIMAL_TID VAC_TYPE VAC_DATE. . VAC_NEXT. . VAC_CERT
74 R 06/18/93 06/17/96 957640
74 P 05/24/92 05/24/95 573198
74 L 06/08/92 06/08/95 772270

3 records listed.

5-25

To delete the association row for the L vaccination, construct the DELETE statement
just asif the association row to be deleted were arow in the table, but use
tablename_association instead of just tablename. Remember to use WHERE instead
of WHEN to specify the selection criteria because the virtual table produced by
tablename_association contains only singlevalued columns.

To delete the vaccination data for vaccination type L in the previous example, enter:

>DELETE FROM LIVESTOCK.T_VAC_ASSOC
SQL+WHERE ANIMAL_ID = 74 AND VAC_TYPE = "L";
UniVerse/SQL: 1 record deleted.

If you check thetablerow afterward, you find that all datafor vaccination type L has
been deleted:

>SELECT ANIMAL_ ID, VAC_TYPE, VAC_DATE, VAC_NEXT, VAC_CERT
SQL+FROM LIVESTOCK.T WHERE ANIMAL_ID = 74;

ANIMAL_ID VAC_TYPE VAC_DATE. . VAC_NEXT. . VAC_CERT
74 R 06/18/93 06/17/96 957640
P 05/24/92 05/24/95 573198

1 records listed.

Deleting All Rowsin a Table

Obviously, omitting the WHERE clause in aDEL ETE statement can have disastrous
effects unless you want to remove atable completely. You do not want to do that to
the Circus database. But if you did, and wanted to erase all the datain the
EQUIPMENT.T table, enter:

>DELETE FROM EQUIPMENT.T;
UniVerse/SQL: 61 records deleted.

Then all rows of EQUIPMENT.T would be gone. Note that while all the data has
been erased, the EQUIPMENT.T tablewould still exist inthe database, and you could
add new rowsto it at any time. DROP TABLE isthe statement that deletes the table
itself.

5-26 UniVerse SQL User Guide

Deleting Individual Rows

DELETE can be adangerous statement in any form, even when you remember to
include aWHERE clause. It is recommended that you first do a SELECT using the
same WHERE clause you will be using in the DELETE to make sure those are the
rows you intended.

You may remember that, as one example of using INSERT, you copied all of the 1994
rows from ENGAGEMENTS.T to OLD_ENGAGEMENTS.T for archiving. It
would make sense to delete those same rows from ENGAGEMENTS.T.

But before you do so, use a SELECT statement to make sure your WHERE clause
selects the rows you want:

>SELECT LOCATION_CODE, DATE FROM ENGAGEMENTS.T
SQL+WHERE DATE BETWEEN 'l1/1/94' AND '12/31/94';

LOCATION_CODE DATE......
WRENOO1 01/10/94
WRENOO1 01/11/94
EMIAO001 05/21/94
CSPROOL 05/08/94

Press any key to continue...

After you are sure that the listed rows are the rows you want to del ete, reenter the
statement, changing it as shown:
>DELETE FROM ENGAGEMENTS.T

SQL+WHERE DATE BETWEEN '1/1/94' AND '12/31/94°';
UniVerse/SQL: 53 records deleted.

5-27

Using Triggers

You can augment and regul ate the modification of datain tables by creating atrigger
for the table. A trigger specifies actions to perform before or after the execution of
certain database modification events. You can defineup to six triggersfor atable. The
names of all triggers and their corresponding UniVerse BASIC programs are stored
inthetable's SICA.

Usethe CREATE TRIGGER statement to create atrigger for atable. You must bethe
table's owner or have ALTER Privilege on the table, or you must be aDBA to create
atrigger.

You can set atrigger to fire (execute) before an INSERT, UPDATE, or DELETE
event changes data. A BEFORE trigger can examine the new data and determine
whether to allow the INSERT, UPDATE, or DELETE event to proceed; if thetrigger
rejects a data change, UniVerse rolls back the entire transaction. You can also set
triggersto fire after an INSERT, UPDATE, or DELETE event, for example, to
change related rows, audit database activity, and print or send messages.

5-28 UniVerse SQL User Guide

Using Alternate Dictionaries

All three data modification statements—INSERT, UPDATE, and DELETE—can
specify an alternate file dictionary instead of the table's primary file dictionary. As
with the SELECT statement, choose this option by adding aUSING DICT clauseto
the statement. For example, to add anew truck to the EQUIPMENT.T table using the
alternate dictionary EQUIP_D1, enter:

>INSERT INTO EQUIPMENT.T USING DICT EQUIP_D1
SQL+ (EQD_CODE, DESCRIPTION, VENDOR_CODE,
SQL+COST, PURCHASE_DATE)

SQL+VALUES (68, '1995 Renault Truck', 90,
SQL+21575.00, '05/23/95');

UniVerse/SQL: 1 record inserted.

Alternate dictionaries provide different ways of looking at the same data. For
example, one dictionary might use American-style dates, while another might use
European-style dates. A table used by several departments within a company might
have separate dictionaries because each department uses different terminology to
refer to the columns.

5-29

Establishing and Using Views

Examples of Views .

Creating Views .
Column-Based (Vertlcal) Vlews
Row-Based (Horizontal) Views.

Combined Vertical and Horizontal Views.

Column Names and Derived Columns.
Summarized Views.
Updating Views .
Dropping Views . .
Listing Information About aV|aN
Privileges and Views

6-3
6-6
6-6
6-8
6-9
6-10
6-11
6-13
6-14
6-15
6-17

This chapter discusses views. In simplest terms, aview isavirtual table. More
precisely, aview isthe definition of avirtua table.

A view isrepresented in the database as metadata, derivesits data from one or more
“real” tables (called base tablesin this context) or even other views, and has a user-
defined name. The metadatafor aview describesthevirtual tablein termsof columns
and rows of one or more base (physical) tables or views. A view behaves much like
areal table. Up through Release 8.3.3 of UniVerse, viewsareread-only. With Release
9.3.1 and later, some views also are updatable.

Views are useful in a number of ways:
B Data security. Views act asamask to limit user access to certain rows and
columnsin the “real” tables.

B Appearance. Views can vary the appearance of a database, presenting a
facade that is most familiar to each user.

B Convenience. Instead of naming the same columns and specifying the same
complex selection criteria repeatedly in your SELECT statements, you can
define aview (which is actually a stored query) once, and reuse it often.

While this chapter discusses views alone, they are closely related to tables.
Discussion of how to create tables appears in UniVerse SQL Administration for
DBAs.

6-2

Examples of Views

A view isused commonly for security reasons. Giving a user limited access to the
PERSONNEL.T table, for example, allows that user to look at nonsensitive infor-
mation such as name and address, but hides such data as pay and date of birth. Do not
grant the user privileges onthe PERSONNEL.T tableat al, but instead create aview
that encompasses only the columns you want him or her to see, then grant privileges
on that view.

Views are always expressed in terms of a query specification (SELECT statement)
that defines the datato be included in the view. The general syntax for the CREATE
VIEW statement is as follows:

CREATE VIEW viewname [(columnnames)] AS SELECT....

For example, enter:

>CREATE VIEW GENERALl

SQL+AS SELECT NAME, ADR1l, ADR2, ADR3
SQL+FROM PERSONNEL.T;

Creating View "GENERALL"

Adding Column NAME

Adding Column ADRI1

Adding Column ADR2

Adding Column ADR3

>GRANT SELECT ON GENERAL1l TO jimc;
Granting privilege(s).

To use aview for the sake of convenience, define one that extracts data about big
orders and major vendors:

B ThelTEM_CODE, DESCRIPTION, and ORDER_QTY columns of the
INVENTORY.T table and the COMPANY column of the VENDORS.T
table

B Only those rows whose order quantity equals or exceeds 800

6-3 UniVerse SQL User Guide

The following is an example of ajoined view, becauseit joinsthe INVENTORY.T
and VENDORS.T tables. It also selects data on the basis of rows aswell as columns.

>CREATE VIEW MAJOR_SUPPLIERS

SQL+AS SELECT INVENTORY.T.ITEM CODE, DESCRIPTION, ORDER_QTY,
SQL+COMPANY FROM UNNEST INVENTORY.T ON VENDOR_CODE, VENDORS.T
SQL+WHERE INVENTORY.T.VENDOR_CODE = VENDORS.T.VENDOR_CODE
SQL+AND ORDER_QTY >= 800;

Creating View "MAJOR_SUPPLIERS"

Adding Column ITEM_CODE

Adding Column DESCRIPTION

Adding Column ORDER_QTY

Adding Column COMPANY

Refer to aview in a SELECT statement as you would any other table, keeping in
mind that whatever you ask for is always superimposed on the selection criteria
defined in the view:

>SELECT COMPANY, ORDER_QTY, DESCRIPTION
SQL+FROM MAJOR_SUPPLIERS
SQL+ORDER BY COMPANY;

COMPANY . ..t ittt et e ORDER_QTY DESCRIPTION..........
African Environmental 900 T-shirts
Amalgamated Academy 800 Large Cat Chow
Brown Assets 800 Taffy
California Sourcing 900 Cola
Cincinnati Solutions 900 Sawdust
Citizens Division 800 Nachos

City Manufacturers 800 Fried Clams
Cleveland Center 900 Jerky

Commerce Exchange 900 Pretzels
Convenient Promotions 800 Cola

Precision Exports 800 Pretzels

Prime Automation 800 Handbills

Press any key to continue...

This means:

B Retrieve al data selected by MAJOR_SUPPLIERS

B [nventory item number, inventory description, order quantity, and
vendor company

B For only those items ordered in quantities of 800 or greater
B Display just the vendor company, order quantity, and description, sorted

6-4

Once you have created a view, you can perform all sorts of queries on it, without
repeating the column names and selection criteria you have defined in the view.

6-5 UniVerse SQL User Guide

Creating Views

Creating aview involvesusing a SELECT statement on one or more tablesto define
the columns and rows to be included in a view, then assigning the view a name. For
security reasons, you must have SELECT privilege on all of the tables making up the
view. You cannot base aview on aUniVersefile.

A view behaves much like atable and has afile dictionary associated with it. The
characteristics of the columnsin the view are taken from their definitionsin the base
tables and cannot be overridden. Thus, in the CREATE VIEW statement you cannot
include certain field modifiers (AVERAGE, BREAK ON, BREAK SUPPRESS,
CALCULATE, PERCENT, or TOTAL), field qualifiers (SINGLEVALUED,
MULTIVALUED, ASSOC, or ASSOCIATION), or any report qualifiers or
processing qualifiers. Also, you cannot include an ORDER BY clausein aCREATE
VIEW statement. Instead, any ordering must be specified inthe SELECT statements
that addresses the view.

Using views, you can:
B Select columnsin tables and other views
Select rows in tables and other views
Select a combination of columns and rows
Add DISPLAYNAME, CONVERSION, and FORMAT qualifiers
Add derived columns

Summarize rows in tables and other views

Column-Based (Vertical) Views

You can define aview that permits accessto only certain columnsin atable. To build
upon the earlier example using the PERSONNEL.T table, the Human Resources and
Payroll departments might need access to the entire PERSONNEL.T table, but
others—such as ride supervisors, ticket booth managers, and concession
supervisors—have a much more limited “need to know.” For example:

B A ride supervisor might need to know only whether Joe Davis has ever
worked rides and his hourly rate.

6-6

B A concessionaire might need to access the INVENTORY.T table to check
on the number of hot dogsin stock and their price, but does not need to know
the wholesale cost.

These and other cases can be handled by creating a vertical, or column-based, view
of thetablesin question. Specify in the column list portion of the SELECT statement
the columnsto include in the view:

>CREATE VIEW RIDE_OP_INFO

SQL+AS SELECT BADGE_NO, NAME, RIDE_ID, RIDE_PAY
SQL+FROM PERSONNEL.T;

Creating View "RIDE_OP_INFO"

Adding Column BADGE_NO

Adding Column NAME

Adding Column RIDE_ID

Adding Column RIDE_PAY

Adding association RIDES_ASSOC

>SELECT * FROM RIDE_OP_INFO ORDER BY BADGE_NO;

BADGE_NO NAME. . .ttt ettt et e e e RIDE_TID RIDE_PAY..
1 Nelson, Suzanne 5 15.93

14 10.93

7 15.21

3 Grant, Nancy 13 12.09

1 11.01

4 15.95

4 Giustino, Carol 5 10.67

Press any key to continue...

Then, if you grant the ride supervisors SELECT privilege onthisview (but not on the
PERSONNEL.T tableitself), they can obtain the information they need without
accessing sensitive personnel data. Note that aview inheritsany association from the
table or view from which it is derived if the view definition includes all columnsin
that association, as was the case with RIDES_ASSOC in the previous example.

In asense, avertical view slices atable into vertica strips (columns), and then
combines them into a private table containing only those columns.

6-7 UniVerse SQL User Guide

Row-Based (Horizontal) Views

You can restrict access to certain rows of atable. Thisis called ahorizontal view.
Using the PERSONNEL.T table once again, allow access only to records for
nonmanagement personnel (employeesin any position earning less than $15 per
hour):

>CREATE VIEW NON_MANAGEMENT AS SELECT *

SQL+FROM PERSONNEL.T

SQL+WHERE EVERY EQUIP_PAY < 15.00 AND EVERY EQUIP_PAY <> 0
SQL+AND EVERY ACT PAY < 15.00 AND EVERY ACT_PAY <> 0
SQL+AND EVERY RIDE_PAY < 15.00 AND EVERY RIDE_PAY <> 0;
Creating View "NON_MANAGEMENT"

Adding Column BADGE_NO

Adding Column DOB

Adding Column RIDE_PAY

Adding association DEP_ASSOC

Adding association EQUIP_ASSOC

Adding association ACTS_ASSOC

Adding association RIDES_ASSOC

>SELECT NAME, EQUIP_PAY, ACT_PAY, RIDE_PAY FROM NON_MANAGEMENT
SQL+ORDER BY NAME;

NAME. . ..ot i i i i EQUIP_PAY. ACT_PAY... RIDE_PAY..
Bailey, Cheryl 8.24 13.75 12.90
14.40
Carr, Stephen 9.33 9.41 9.15
10.70
Clark, Kelly 8.55 10.79 12.94
13.25 14.86 11.68
13.51 8.16 12.08
8.90 8.38
Dickinson, Cecilia 13.46 8.17 8.84
8.84 13.96
9.67
Dickinson, Timothy 9.94 13.23 12.57
Hanson, Allen 12.70 13.65 10.12
10.79 8.44
13.28

Press any key to continue...

6-8

You also could create aview of all personnel who have no dependents:

>CREATE VIEW NO_DEPENDENTS AS SELECT *
SQL+FROM PERSONNEL.T

SQL+WHERE EVERY DEP_NAME = '';
Creating View "NO_DEPENDENTS"

Adding Column BADGE_NO

Adding Column DOB

Adding Column BENEFITS

Adding Column NAME

Adding Column RIDE_PAY

Adding association DEP_ASSOC

Adding association EQUIP_ASSOC

Adding association ACTS_ASSOC

Adding association RIDES_ASSOC

>SELECT NAME, DEP_NAME FROM NO_DEPENDENTS ORDER BY NAME;
NAME. . . ittt ittt e e e DEP_NAME. .

Astin, Jocelyn
Bacon, Roger
Bennett, Nicholas
Bowana, Keltu
Burrows, Alan

Press any key to continue...

Combined Vertical and Horizontal Views

You can create aview that combines both vertical and horizontal views. Thiswasthe
casein the earlier example of the MAJOR_SUPPLIERS view, which specified both
column names and selection criteria:

>CREATE VIEW MAJOR_SUPPLIERS

SQL+AS SELECT INVENTORY.T.ITEM_CODE, DESCRIPTION, ORDER_QTY,
SQL+COMPANY FROM UNNEST INVENTORY.T ON VENDOR_CODE, VENDORS.T
SQL+WHERE INVENTORY.T.VENDOR_CODE = VENDORS.T.VENDOR_CODE
SQL+AND ORDER_QTY >= 800;

Slicing atable in both directionsis common, and is used for both security and
convenience.

6-9 UniVerse SQL User Guide

Column Names and Derived Columns

Previous examples omitted the optional columnname, which assigns view-specific
namesto the columns. When included, the number of columnslisted in columnnames
must be the same as the number of columnsin the SELECT clause.

The columnnames option is required for any virtual (derived) column that is part of
the view. The columnnames option is also useful when you want to supply aternate
names for the columns.

Assigning Column Namesin a View

The columnnames option isalist of alternate names and does not include any field
modifiers or qualifiers. Qualifiers, if used, must be supplied in the column
specifications of the SELECT clause. If you do not supply columnnames, the names
of the view columns will be the same as the column names of the tables from which
the view is derived.

If the view definition includes derived columns, aggregate functions, or multiple
columns of the same name, you must include the columnnames option in the
CREATE VIEW statement.

In the previous example, to assign different column names in the view, enter:

>CREATE VIEW MAJOR_SUPPLIERS (INVENTORY #, ITEM DESCRIPTION,
SQL+ORDER_QUANTITY, VENDOR_ NAME)

SQL+AS SELECT INVENTORY.T.ITEM CODE, DESCRIPTION, ORDER_QTY,
SQL+COMPANY FROM INVENTORY.T, VENDORS.T

SQL+WHERE INVENTORY.T.VENDOR CODE = VENDORS.T.VENDOR_CODE
SQL+AND ORDER_QTY >= 800;

A direct correspondence exists between the first namelisted in columnnames and the
first column specified in the SELECT clause: INVENTORY _# pairs with
ITEM_CODE, ITEM_DESCRIPTION pairs with DESCRIPTION, and so on.

Derived, or Calculated, Columnsin a View

Often aview should contain one or more virtual or derived columns, that is, datathat
doesn’t exist in the tables from which the view isderived but is cal cul ated from those
columns.

6-10

Because such columnsdo not have defined names, supply namesin the columnnames
portion of the CREATE VIEW statement. For example, to create aview based on the
INVENTORY.T table that includes an additional column showing inventory markup
(COST / PRICE), enter:

>CREATE VIEW INVENTORY1l (DESCRIPTION, WHOLESALE_COST,
SQL+RETAIL_PRICE, MARKUP)

SQL+AS SELECT DESCRIPTION, COST, PRICE, (COST / PRICE)
SQL+FROM INVENTORY.T;

Creating View "INVENTORY1"

Adding Column DESCRIPTION

Adding Column WHOLESALE_COST

Adding Column RETAIL_PRICE

Adding Column MARKUP

Note once again that the number of names in columnnames matches the number of
columnsin the SELECT statement.

Summarized Views

Another way to use aview isto summarize data contained in tables, again for either
convenience or security. As an example of convenience, people arerarely interested
in details but want summaries. A properly defined view can provide an appropriate
summary without coding itinaSELECT statement. Interms of security, for example,
it might be okay for someone to look at the average employee salary but not
individual salaries.

The GROUPBY clauseisthe most common way to produce a summarized result. To
create aview that summarizes the average cost per animal by use category, enter:

>CREATE VIEW AVG_COST

SQL+ (USE_CATEGORY, AVERAGE_COST)
SQL+AS SELECT USE, AVG(COST)
SQL+FROM LIVESTOCK.T GROUP BY USE;
Creating View 'AVG_COST'

Adding Column USE_CATEGORY

Adding Column AVERAGE_COST
>SELECT * FROM AVG_COST;

USE_CATEGORY AVERAGE_COST. ..
P 6105.45
R 6529.73
Z 6112.16

3 records listed.

6-11 UniVerse SQL User Guide

As another example, to create aview that allows someone to find out the average
hourly rate for ride operators (but not their individual hourly rates), enter:

>CREATE VIEW RIDE_AVG_RATE (AVERAGE_RATE)

SQL+AS SELECT AVG(RIDE_PAY) COL.HDG 'AV RIDE PAY'
SQL+FROM PERSONNEL.T WHERE RIDE_PAY > 0

SQL+AND RIDE_PAY IS NOT NULL;

Creating View "RIDE_AVG_RATE"

Adding Column AVERAGE_RATE

>SELECT * FROM RIDE_AVG_RATE;

AV RIDE PAY

11.74

1 records listed.

Note that this view defines a single result row (average rate) that has no one-to-one
correspondence to arow in the source table, PERSONNEL.T. Also note that any
qualifiers, such as COL.HDG as shown here, are specified as part of the SELECT
statement, not in columnnames, because it isthe SELECT statement that defines the

view.

6-12

Updating Views

You can now use an INSERT, DELETE, or UPDATE statement to modify some

views. A view isupdatable if the user has appropriate rights on the view, and when:
B The FROM clause identifies one table

The view does not include the keyword DISTINCT

The table reference identifies either a base table or an updatable view

There is no subquery into the sametable

Thereisno GROUP BY, HAVING, WHEN, or UNNEST clause

Dynamic normalization has not been performed

INSERT isthe statement you use for adding new datato aview (UPDATE isfor
changing valuesin existing views). In its most basic form, INSERT names the view
where the dataisto be inserted and specifies the columns to be filled and the values
to be inserted in those columns.

UPDATE modifies the values of one or more columnsin one or more selected rows
of aview. The UPDATE statement specifies the view to be updated, the columns to
be modified, and the rows to be selected.

Deleting data rows from aview is just as common as inserting data. When an entity
no longer exists, this must be reflected in the database by removing any rows that
represent that entity.

The DELETE statement is structured like the UPDATE statement, and includes a
FROM clause naming the view and a WHERE clause for selecting the rows to be
deleted. And, like UPDATE, DELETE can operate on just a single row, multiple
rows, or all the rows of atable.

You can query the UV_TABLES table in the SQL catalog to find out whether atable
isabasetableor aview, and to obtain alist of viewsthat are derived from abasetable
or view.

Views created before Release 9.3.1 of UniVerse are read-only. They must be
recreated from the bottom up to be updatable in Release 9.3.1 or later.

For more information about using INSERT, UPDATE, and DELETE, see Chapter 5,
“Modifying Data.”

6-13 UniVerse SQL User Guide

Dropping Views
Remove aview in the same way that you remove atable, through a DROP VIEW
Statement:

DROP VIEW viewname [CASCADE];

Issuing aDROP VIEW statement deletes the view from the SQL catalog, deletesits
associated file dictionary, and revokes all user privileges on the view. If aview has

other views derived from it, you must include the keyword CASCADE to drop those
dependent views.

To drop the RIDE_AVG_RATE view created previoudly, enter:

>DROP VIEW RIDE_AVG_RATE;
Dropping View RIDE_AVG_RATE

6-14

Listing Information About a View

Because a view behaves much like areal table, views also comprise:

B A filedictionary
B A datafile (whichis empty)
B A SICA (security and integrity constraints area) region

Aswith tables, you can examine all of these as sources of information about the view.

To see the contents of the file dictionary of atable or view, use the UniVerse LIST
command with the DICT keyword:

>LIST DICT AVG_COST

DICT AVG_COST 03:44:18pm 10 Jan 1995 Page 1
Type &

Field......... Field. Field........ Conversion.. Column...... Output Depth &
Name.......... Number Definition... Code........ Heading..... Format Assoc..
USE_CATEGORY D 1 1L S
AVERAGE_COST D 2 MD22 12R S
@REVISE PH USE_CATEGORY

AVERAGE_COST
¢} PH ID.SUP

USE_CATEGORY
AVERAGE_COST

4 records listed.

Alternatively, you could enter:
>SELECT * FROM DICT AVG_COST;

To print the dictionary, use either the RetrieVe PRINT.DICT command or the
UniVerse SQL SELECT statement:

>PRINT.DICT AVG_COST
>SELECT * FROM DICT AVG_COST LPTR;

To seethe contents of aview’sdata, use the UniVerse SQL SELECT statement. Note
that you cannot use RetrieVe commands on the view itself.

>SELECT * FROM AVG_COST;

6-15 UniVerse SQL User Guide

Finaly, to seetheinformation in aview’s SICA region, use the following command:

>LIST.SICA AVG_COST
LIST.SICA AVG_COST 11:35:41AM 02 May 1995

Sica Region for View "AVG_COST"

Schema: CIRCUS
Revision: 2
Checksum is: 8263
Should Be: 8263
Size: 304
Creator: 719

Total Col Count: 2
Key Columns:
Data Columns:

Check Count:

Permission Count:

History Count:

[oNeNoN SN o]

Page 1

Query specification: SELECT USE , AVG (COST) FROM

LIVESTOCK.T GROUP BY USE
Underlying Tables: CIRCUS.LIVESTOCK.T
WITH CHECK OPTION: No

Data for Column "USE_CATEGORY"

Position: 1

Key Position: 0
Multivalued: No

Not Null: No

Not Empty: No
Unique: No

Row Unique: No
Primary Key: No
Default Type: None

Data Type: CHARACTER

Press any key to continue...

6-16

Privileges and Views

Privileges work with views as they do with tables, but practically speaking, the only
table privilege applicable to views isthe SELECT privilege:

B When you create aview, you are the owner of that view and, as such,
automatically have SELECT privilege onit.

B You can accessaview only if you areits creator or have otherwise been
granted SELECT privilege on it.

B You can grant the SELECT privilege on your view to other users, provided
that you own thetables comprising the view, or the ownersof thetableshave
granted you SELECT privilege WITH GRANT OPTION.

Because views are based on tables and other views, one consideration unique to
views isthat before you can create a view, you must have SELECT privilege on all
of its underlying tables and views.

6-17 UniVerse SQL User Guide

The Sample Database

This appendix presents the structure of Circus, the sample database
used for the examplesin this manual. The descriptions of the tables are
presented alphabetically in the form of their CREATE TABLE
Statements.

The Circus database isillustrated in the following illustration.

ENGAGE-
- — — — -LOCATION |DATE
| Lissof T - - — — = = -
| Concessions \
| Listof Rides [— — — 7 | CONCESSIONS.T
v List of Gates v | _'(L)i;er(;ftors
LOCATIONS.T _ i RIDEST Cgo
List of Acts 1 | EI o .
quipmen |
| List of | [Cistof |
[Operators T | Inventory
| |
| |Listof L
| —| Equipment | | |
| Tistof INVENTORY.T |
| |Livestock L
: v | | V
ACTST | || EQuIP
| List of | | |
| Performers r— — — 7 l |
| List of |
— —|Equipment | \ | |
| |Cstor | ||
| Livestock \
| |y I
AN
N
INVENTORY.T EQUIPMENT.T N | PERSONNEL.T
i List of Vendors | List of
List of Vendors \ Qualifications
. l N
| | LIVESTOCK T
L _ _ _pp |VENDORST
List of Items
--- Broken linesindicate
logical joins between tables.

A-2 UniVerse SQL User Guide

The Sample Database

ACTS.T Table

CREATE TABLE ACTS.T
ACT_NO
DESCRIPTION
DURATION
OPERATOR
ANIMAL_TID

EQUIP_CODE

)

(

INT FMT '5R' PRIMARY KEY,
VARCHAR FMT '6T',

INT FMT '5R',

INT FMT '5R' MULTIVALUED,
INT FMT '5R' MULTIVALUED
REFERENCES LIVESTOCK.T,
INT FMT '5R' MULTIVALUED
REFERENCES EQUIPMENT.T

A-4 UniVerse SQL User Guide

CREATE TABLE CONCESSIONS.T

CONC_NO
DESCRIPTION
OPERATOR

EQUIP_CODE

ITEM_CODE

QTY

ASSOCIATION
);

CONCESSIONS.T Table

(

INT FMT '5R' PRIMARY KEY,
VARCHAR FMT '25T',

INT FMT '5R' MULTIVALUED
REFERENCES PERSONNEL.T,
INT FMT '5R' MULTIVALUED
REFERENCES EQUIPMENT.T,
INT FMT '5R' MULTIVALUED
NOT NULL ROWUNIQUE
REFERENCES INVENTORY.T,
INT FMT '5R' MULTIVALUED,
STOCK (ITEM_CODE KEY, QTY)

ENGAGEMENTS.T Table

CREATE TABLE ENGAGEMENTS.T

LOCATION_CODE
"DATE"

"TIME"
ADVANCE
GATE_NUMBER

GATE_REVENUE
MULTIVALUED,
GATE_TICKETS
ACT_NO

RIDE_ID

RIDE_REVENUE
MULTIVALUED,
MULTIVALUED,
CONC_ID

CONC_REVENUE
MULTIVALUED,
CONC_TICKETS
LABOR

PAY
ASSOCIATION

ASSOCIATION

ASSOCIATION

PRIMARY KEY
) ;

(

CHAR(7) FMT '7L',

DATE CONV 'D2/',

TIME CONV 'MTH',
DEC(9,2) FMT 'l12R',

INT FMT '5R' MULTIVALUED
NOT NULL ROWUNIQUE,
DEC(9,2) FMT '12R'

INT FMT '5R' MULTIVALUED,
INT FMT '5R' MULTIVALUED
NOT NULL ROWUNIQUE
REFERENCES ACTS.T,
INT FMT '5R' MULTIVALUED
NOT NULL ROWUNIQUE
REFERENCES RIDES.T,
DEC(9,2) FMT '12R'

RIDE_TICKETSINT FMT '5R'

INT FMT '5R' MULTIVALUED
NOT NULL ROWUNIQUE
REFERENCES CONCESSIONS.T,
DEC(9,2) FMT '12R'

INT FMT '5R' MULTIVALUED,
INT FMT '5R',

DEC(5,2) FMT '10R',
GATES_ASSOC (GATE_NUMBER KEY,
GATE_REVENUE, GATE_TICKETS),
CONCS_ASSOC (CONC_ID KEY,
CONC_REVENUE, CONC_TICKETS),
RIDES_ASSOC (RIDE_ID KEY,
RIDE_REVENUE, RIDE_TICKETS),
(LOCATION_CODE, "DATE")

A-6 UniVerse SQL User Guide

EQUIPMENT.T Table

CREATE TABLE EQUIPMENT.T

EQUIP_CODE
VENDOR_CODE

VENDOR_REF
DEPRECIATION
DESCRIPTION
COST

USE_LIFE
TAX_LIFE
VOLTS
PURCHASE_DATE
)i

INT FMT '5R' PRIMARY KEY,

INT FMT '5R'
REFERENCES VENDORS.T,
VARCHAR FMT '10L‘',
CHAR (1) FMT '1L°',
VARCHAR FMT '25T',
DEC(9,2) FMT '12R',
INT FMT '5R',

INT FMT '5R',

INT FMT '5R',

DATE CONV 'D2/'

INVENTORY.T Table

CREATE TABLE INVENTORY.T (
ITEM_CODE
ITEM_TYPE
DESCRIPTION
QOH
COST
PRICE
VENDOR_CODE

ORDER_QTY
ASSOCIATION
KEY,

)

INT FMT '5R' PRIMARY KEY,
CHAR(1l) FMT '1L',
VARCHAR FMT '25T',

INT FMT '5R',

DEC(9,2) FMT 'l12R',
DEC(9,2) FMT 'l12R',

INT FMT '5R' MULTIVALUED

NOT NULL ROWUNIQUE
REFERENCES VENDORS.T,

INT FMT '5R' MULTIVALUED,
ORDERS_ASSOC (VENDOR_CODE

ORDER_QTY)

A-8 UniVerse SQL User Guide

LIVESTOCK.T Table

CREATE TABLE LIVESTOCK.T

ANIMAL_ID
NAME
DESCRIPTION
USE

DOB

ORIGIN

COST
EST_LIFE
VAC_TYPE

VAC_DATE
VAC_NEXT
VAC_CERT
ASSOCIATION

);

(

INT FMT '5R' PRIMARY KEY,
VARCHAR FMT '10T',

VARCHAR FMT '10T',

CHAR (1) FMT '1L°',

DATE CONV 'D2/',

VARCHAR FMT '12T',

DEC(9,2) FMT '12R',

INT FMT '3R',

CHAR(1l) FMT '1lL' MULTIVALUED
NOT NULL ROWUNIQUE,

DATE CONV 'D2/' MULTIVALUED,
DATE CONV 'D2/' MULTIVALUED,
VARCHAR FMT '6L' MULTIVALUED,
VAC_ASSOC (VAC_TYPE KEY,
VAC_DATE, VAC_NEXT, VAC_CERT)

LOCATION_CODE
DESCRIPTION
NAME

ADR1

ADR2

ADR3

PHONE

FAX

ACRES

SEATS

PARKS
MEDIA_NAME

MEDIA_CONTACT
MULTIVALUED,
MEDIA_PHONE
MULTIVALUED,
MEDIA_FAX
GOV_AGENCY

GOV_CONTACT
MULTIVALUED,
GOV_PHONE
MULTIVALUED,
GOV_FAX
GOV_FEE
MULTIVALUED,
GOV_CHECK
GOV_RATE
MULTIVALUED,
ASSOCIATION

ASSOCIATION

GOV_FAX,

)

LOCATIONST Table

CREATE TABLE LOCATIONS.T

(

CHAR(7) FMT '7L' PRIMARY KEY,
VARCHAR FMT '25T',
VARCHAR FMT '25T',
VARCHAR FMT '25T',
VARCHAR FMT '25T',
VARCHAR FMT '25T',
VARCHAR FMT '12L°',
VARCHAR FMT '8L',
INT FMT '5R',

INT FMT '5R',

INT FMT '5R',

VARCHAR FMT '25L' MULTIVALUED
NOT NULL ROWUNIQUE,

VARCHAR FMT '25L'

VARCHAR FMT '12L‘'

VARCHAR FMT '8L' MULTIVALUED,
VARCHAR FMT '25L' MULTIVALUED
NOT NULL ROWUNIQUE,

VARCHAR FMT '25L'

VARCHAR FMT '12L‘'

VARCHAR FMT '8L' MULTIVALUED,
DEC(9,2) FMT '12R'

VARCHAR FMT '5L' MULTIVALUED,
DEC(3,3) FMT '7R'

MEDIA_ASSOC (MEDIA_NAME KEY,
MEDIA_CONTACT, MEDIA_PHONE,
MEDIA_FAX),

GOV_ASSOC (GOV_AGENCY KEY,
GOV_CONTACT, GOV_PHONE,

GOV_FEE, GOV_CHECK, GOV_RATE)

PERSONNEL.T Table

CREATE TABLE PERSONNEL.T (

BADGE_NO

DOB

BENEFITS

NAME

ADR1

ADR2

ADR3

PHONE

DEP_NAME

DEP_DOB
DEP_RELATION
EQUIP_CODE

EQUIP_PAY
MULTIVALUED,
ACT_NO

ACT_PAY
MULTIVALUED,
RIDE_ID

RIDE_PAY
MULTIVALUED,
ASSOCIATION
DEP_DOB,

ASSOCIATION
ASSOCIATION
ACT_PAY),

ASSOCIATION

);

A-10 UniVerse SQL User Guide

INT FMT '5R' PRIMARY KEY,
DATE CONV 'D2/',

VARCHAR FMT '10T',

VARCHAR FMT '25T',

VARCHAR FMT '25T',

VARCHAR FMT '25T',

VARCHAR FMT '25T',

VARCHAR FMT '12L°',

VARCHAR FMT '10T' MULTIVALUED

NOT NULL ROWUNIQUE,

DATE CONV 'D2/' MULTIVALUED,
VARCHAR FMT '5L' MULTIVALUED,
INT FMT '5R' MULTIVALUED
NOT NULL ROWUNIQUE
REFERENCES EQUIPMENT.T,
DEC(5,2) FMT '10R'

INT FMT '5R' MULTIVALUED
NOT NULL ROWUNIQUE
REFERENCES ACTS.T,
DEC(5,2) FMT '10R'

INT FMT '5R' MULTIVALUED
NOT NULL ROWUNIQUE
REFERENCES RIDES.T,
DEC(5,2) FMT '10R'
DEP_ASSOC (DEP_NAME KEY,
DEP_RELATION) ,

EQUIP_ASSOC (EQUIP_CODE KEY,
EQUIP_PAY),
ACTS_ASSOC (ACT_NO KEY,
RIDES_ASSOC
RIDE_PAY)

(RIDE_ID KEY,

RIDES.T Table

CREATE TABLE RIDES.T
RIDE_ID
DESCRIPTION
OPERATOR
ANIMAL_TID

EQUIP_CODE

)

(

INT FMT '5R' PRIMARY KEY,
VARCHAR FMT '20T',

INT FMT '5R' MULTIVALUED,
INT FMT '5R' MULTIVALUED
REFERENCES LIVESTOCK.T
INT FMT '5R' MULTIVALUED
REFERENCES EQUIPMENT.T

A-11

VENDORS.T Table

CREATE TABLE VENDORS.T (

VENDOR_CODE INT FMT '5R' PRIMARY KEY,

COMPANY VARCHAR FMT '25T',

ADR1 VARCHAR FMT '25T',

ADR2 VARCHAR FMT '25T',

ADR3 VARCHAR FMT '25T',

TERMS VARCHAR FMT '10T',

CONTACT VARCHAR FMT '25T',

PHONE VARCHAR FMT '12L°',

FAX VARCHAR FMT '8L',

EQUIP_CODE INT FMT '5R' MULTIVALUED,

ITEM_CODE INT FMT '5R' MULTIVALUED
NOT NULL ROWUNIQUE,

LEAD_TIME INT FMT '5R' MULTIVALUED,

ASSOCIATION PROD_ASSOC (ITEM_CODE KEY,
LEAD_TIME)

);

A-12 UniVerse SQL User Guide

Glossary

INF

account

aggregate
functions
dias

ANS|

association

association depth

association key

Glossary

Seefirst normal form.

User accounts are defined at the operating system level. Each user
account has a user name, a user ID number, and a home directory.

UniVerse accounts are defined in the UV.ACCOUNT file of the UV
account. Each UniVerse account has a name and resides in a directory
that contains special UniVerse files such asthe VOC,

& SAVEDLISTS&, and so on. See aso schema.

See set functions.

A name assigned to atable, column, or value expression that lasts for
the duration of the statement. See also correlation name.

American National Standards Institute. A U.S. organization charged
with developing American national standards.

A group of related multivalued columnsin atable. Thefirst valueinany
association column correspondsto thefirst value of every other column
in the association, the second value corresponds to the second value,
and so on. An association can be thought of as a nested table.

For any base table row, the number of values in the association key
columns determines the association depth. If an association does not
have keys, the column with the most association rows determines the
association depth.

The values in one or more columns of an association that uniquely
identify each row in the association. If an association does not have
keys, the @ASSOC_ROW keyword can generate unique association
row identifiers.

association row
authority

BASIC SQL
Client Interface

BNF

Boolean
Cartesian product

CATALOG
schema

cell

character string

check constraint

client

column

comparison
operator

concurrency
control

CONNECT

A sequence of related data values in an association. A row in a nested table.
See database privilege.

The UniVerse BASIC application programming interface (API) that |ets application
programmers write client programs using SQL function calls to access datain SQL
server databases.

Backus Naur Form. A notation format using aseries of symbolsand production rules
that successively break down statements into their components. Appendix A, “The
Sample Database,” shows UniVerse SQL syntax in BNF.

See logical values, three-valued logic.
All possible combinations of rows from specified tables.

The schemathat contains the SQL catalog.

Theintersection of arow and acolumnin atable. In UniVerse SQL, cellscan contain
more than one value. Such values are often called multivalues. See also multivalued
column.

A set of zero or more aphabetic, numeric, and special characters. Character strings
must be enclosed in single quotation marks.

A condition that datato be inserted in arow must meet before it can be written to a
table.

A computer system or program that usesthe resources and services of another system
or program (called a server).

A set of values occurring in all rows of atable and representing the same kind of
information, such as names or phone numbers. A field in atable. See aso
multivalued column, row, cell, table.

Seerelational operator.

Methods, such aslocking, that prevent two or more users from changing the same
data at the same time.

The database privilege that grants users access to UniVerse SQL. Users with
CONNECT privilege are registered in the SQL catalog. See also registered users.

2 UniVerse SQL Reference

connecting
columns

constant
constraint

correl ated
subquery

correlation name

DBA

DBMS
DDL
DML

database privilege

default value
depth

dynamic
normalization

effective user
name

empty string
expression
field

first normal form

foreign key

Columnsin one or more tables that contain similar values. In ajoin, the connecting
column enables atable to link to another table or to itself.

A datavalue that does not change. See also literal.
Seeintegrity constraint.

A subquery that depends on the value produced by an outer query for its results.

A name assigned to atable, column, or value expression, that can beused in a
statement as a qualifier or as the name of an unnamed column.

Database administrator. DBA isthe highest-level database privilege. Like superuser,
auser with DBA privilege has complete access to all SQL objects in the database.

Database management system.
Data definition language.
Data manipulation language.

Permission to access SQL database objects. See dso CONNECT, RESOURCE,
DBA, privilege.

The value inserted into a column when no value is specified.
See association depth.

A mechanism for letting DML statements access an association of multivalued
columns or an unassociated multivalued column as avirtual first-normal-form table.

InaBASIC program, the user specified in an AUTHORIZATION statement;
otherwise, the user who islogged in as running the program.

A character string of zero length. Thisis not the same as the null value.
See value expression.
See column.

The name of akind of relational database that can have only one value for each row
and column position (or cell). Its abbreviation is INF.

Thevaluein one or more columnsthat references a primary key or unique columnin
the same or in another table. Only values in the referenced column can be included
in the foreign key column. See also referential constraint.

Glossary 3

identifier

inclusive range

integrity
constraint

isolation level

join

join column
key
keyword

literal

logical values

multivalued
column

NF?

nested query
nested sort
nested table

nonfirst-normal
form

NT
AUTHORITY
\SYSTEM

The name of a user or an SQL object such as a schema, table, or column.

The range specified with the BETWEEN keyword that includes the upper and lower
limits of the range.

A condition that data to be inserted in arow must meet before it can be written to a
table.

A mechanism for separating a transaction from other transactions running
concurrently, so that no transaction affects any of the others. There arefiveisolation
levels, numbered O through 4.

Combining data from more than one table.
A column used to specify join conditions.
A data value used to locate a row.

A word, such as SELECT, FROM, or TO, that has special meaning in UniVerse SQL
Statements.

A constant value. UniVerse SQL hasfour kinds of literal: character strings, numbers,
dates, and times.

Value expressions can have any of the following logical values:. true (1), false (0), or
unknown (NULL).

A column that can contain more than one value for each row in atable. See also cell,
association.

See nonfirst-normal form.
See subquery.

A sort within a sort.

See association.

The name of akind of relational database that can have more than onevaluefor arow
and column position (or cell). Its abbreviation is NF2. Thus, the UniVerse nonfirst-
normal-form database can be thought of as an extended relational database.

On Windows platforms, the user name of the database administrator (DBA) who
owns the SQL catal og.

4 UniVerse SQL Reference

null value

ODBC

outer query
outer table

owner

parameter marker

permissions
precision
primary key

primary key
constraint

privilege

programmatic

SQL

qualifier

query
record

referenced
column

referencing
column

A special value representing an unknown value. Thisis not the same as 0 (zero), a
blank, or an empty string.

Open Database Connectivity. A programming language interface for connecting to
databases.

A query whose value determines the value of a correlated subquery.
The first table specified in an outer join expression.

The creator of a database object such as a schema or table. The owner has al
privileges on the object.

In aprogrammatic SQL statement, a single ? (question mark) used in place of a
constant. Each time the program executes the statement, avalueis used in place of
the marker.

See privilege.
The number of significant digitsin anumber. See also scale.
The value in one or more columns that uniquely identifies each row in atable.

A column or table constraint that defines the values in specified columns as the
table's primary keys. Primary keys cannot be null values and must also be unique. If
atable has no primary key, the @ID column functions as an implicit primary key.

Permission to access, use, and change database objects. See also database privilege,
table privilege.

A dialect of the UniVerse SQL language used in client programs that access SQL
server databases. Programmatic SQL differs from interactive SQL in that certain
keywords and clauses used for report formatting are not supported.

An identifier prefixed to the name of acolumn, table, or alias to distinguish names
that would otherwise be identical.

A request for data from the database.
Seerow.

A column referenced by aforeign key column. See also referential constraint.

A foreign key column that references another column. See also referential
constraint.

Glossary 5

referentia
constraint

reflexivejoin

registered users

relationa
operator

RESOURCE
root

row
rowunique
constraint
scae
schema
security
constraint

server

set functions

A column or table constraint that defines a dependent rel ationship between two
columns. Only values contained in the referenced column can be inserted into the
referencing column. See also foreign key.

A join that joins atable to itself. Both join columns are in the same table.

Userswith CONNECT privilege, whose names are listed in the SQL catalog.
Registered UniVerse SQL users can create and drop tables, grant and revoke
privileges on tables on which they have privileges, and so on.

An operator used to compare one expression to another in aWHERE, WHEN, or
HAVING clause, or in acheck constraint. Relational operators include = (equal to),
> (greater than), < (lessthan), >= (greater than or equal to), <= (lessthan or equal to),
and <> (not equa to).

Second-highest level database privilege. A user with RESOURCE privilege can
create schemas.

On UNIX systems, the user name of the database administrator (DBA) who ownsthe
SQL catalog if uvsgl or uvadmis not the owner.

A sequence of related dataelementsin atable; arecord. See also column, cell, table.

A column or table constraint requiring that values in the cells of specified
multivalued columns must be unique in each cell. Values need not be unique
throughout each column, but only in each row of each column.

The number of places to the right of the decimal point in a number. See also
precision.

A group of related tables and files contained in a UniVerse account directory and
listed in the SQL catalog.

A condition that users must meet before they can perform a specified action on a
table.

A computer system or program that provides resources and servicesto other systems
or programs (called clients).

Arithmetic functions that produce a single value from agroup of valuesin a specific
column. Set functions include AVG, COUNT, COUNT(*), MAX, MIN, and SUM.
Set functions can be used only inthe SELECT and HAVING clauses of the SELECT
statement.

6 UniVerse SQL Reference

SICA

SQL

SQL catalog

SQL Client
Interface

statement
string
subquery
table

table privilege

temporary name

three-valued logic
transaction
transaction
management

trigger

ucCl

unique constraint

Security and integrity constraints area. Thisis an area of each table where data
structure, privileges, and integrity constraints are defined and maintained.

A language for defining, querying, modifying, and controlling datain arelational
database.

A set of tables that describe all SQL objects, privileges, and usersin the system:
UV_ASSOC, UV_COLUMNS, UV_SCHEMA, UV_TABLES, UV_USERS, and
UV_VIEWS. The SQL catalog islocated in the CATALOG schema.

See BASIC SQL Client Interface.

An SQL command that defines, manipulates, or administers data.

See character string.

A SELECT statement that nests within a WHERE, WHEN, or HAVING clause.
A matrix of rows and columns containing data. See also column, row, cell.

Permission to read or write to atable. These include SELECT, INSERT, UPDATE,
DELETE, ALTER, and REFERENCES. See also privilege.

Seealias.

An extension of Boolean logic that includes athird value, unknown (NULL), in
addition to the Boolean values true (1) and false (0). See aso logical values.

A strategy that treats a group of database operations as one unit. The database
remains consistent because either all or none of the operations are completed.

A strategy that either completes or cancels transactions so that the database is never
inconsi stent.

A BASIC program associated with atable, executed (“fired”) when some action
changes the tabl€'s data.

Uni Call Interface. A C-language application programming interface (API) that lets
application programmers write client programs using SQL function calls to access
datain UniVerse databases.

A column or table constraint requiring that valuesin specified columns must contain
unique values.

Glossary 7

unnested table
user privilege
uvadm

uvsgl

value expression
view

wildcard

The result of unnesting, or exploding, an association of multivalued columns to
produce a separate row for each set of associated multivalues. Unnested datais
treated as singlevalued.

See database privilege.

On UNIX systems, the user name of the database administrator (DBA). uvadmisthe
owner of the SQL catalog if uvsgl or root is not the owner.

On UNIX systems, the user name of the database administrator (DBA). uvsgl isthe
owner of the SQL catalog if root or uvadm s not the owner.

One or more literals, column specifications, and set functions, combined with
arithmetic operators and parentheses, that produce a value when eval uated.

A derived table created by a SELECT statement that is part of the view’s definition.

Either of two characters used in pattern matches. The _ (underscore) represents any
single character. The % (percent sign) represents any number of characters.

8 UniVerse SQL Reference

A B C D EF G H I

J K LMNOPOQRSTUVWXY Z @

| ndex

Symbols

operator 2-21

% (percent sign) 2-43

* selection specification 2-10
<> (angle brackets) 5-13
< operator 2-21

<= operator 2-21

<> operator 2-21

= operator 2-21

> operator 2-21

>= operator 2-21

_ (underscore) 2-25

A

accounts
definition GI-1
advanced SELECT statements 3-2—3-
31
aggregate functions, see set functions
aliases
column 2-46
definition GI-1
ALL keyword 3-26
aternatefile dictionaries
with DELETE statement 5-29
with INSERT statement 5-29
with SELECT statement 2-11, 5-29
with UPDATE statement 5-29
AND truth table 2-30
angle brackets (< >) 5-13
ANSI (American National Standards
Institute)
definition Gl-1
ANY keyword 3-26, 4-7
changing to EXISTS 3-28

arithmetic operators 2-14
ASkeyword 2-46
ASC keyword 2-41
ASSOC keyword 2-51
ASSOC.WITH keyword 2-51
ASSOCIATED keyword 2-51
association depth 4-4
association keys 4-4

definition GI-2
association rows

definition GI-2

deleting 5-25, 6-13

inserting 5-15
associations

and dynamic normalization 4-24

definition GI-1

depthof 4-4

table within atable concept 4-4

with multivalued columns 4-4
authority, see database privileges
AUX.PORT keyword 2-52
averaging 2-37

see also AVG: set function
AVG

keyword 2-43, 2-44

set function 2-37

B

basetable 6-2

BASIC SQL Client Interface
definition GI-2

BETWEEN keyword 2-19, 2-22

BNF (Backus Naur Form)
definition GI-2

Boolean
see also three-valued logic

A B C D E F G H

definition GI-2
brackets, angle (<>) 5-13
BREAK ON keyword 2-43
BREAK SUPPRESS keyword 2-43
BREAK.ON keyword 2-43
BREAK.SUP keyword 2-43

C

CALC keyword 2-43
CALCULATE keyword 2-43
calculated column, see derived data,
expressions
Cartesianjoins 3-13
Cartesian product
definition GI-2
CAST function 2-13, 2-27
CATALOG schema
definition GI-2
catalog, see SQL catalog
cell 4-2
cell, definition GI-2
character strings
definition GI-2
characters
wildcard
definition GI-8
characters, wildcard 2-25
check constraints
definition GI-2
Circus database 1-11
see also sample database
client
definition GI-2
COL.HDG keyword 2-43, 2-49
COL.SUP keyword 2-52
column headings 2-49
column names, assigning unique
column namesinaview 6-10
COLUMN SPACES keyword 2-52
column-based views 6-6
columnname specification 6-10
columns
dias 2-46
calculated, see derived data,
expressions
connecting
definition GI-3
definition GI-2

2 UniVerse SQL User Guide

J K L MNOWPOQWRSTUVWXY Z @

formatting for output 2-43
join 3-14
multivalued 4-2—4-25
definition GI-4
uses 4-3
numbers 2-42
referenced
definition GI-6
referencing
definition GI-6
selecting 2-12
command processor, using 2-5
commands
breaking up lines 2-5
sentence stack 2-6
terminating a statement 2-6
comparison
selection 2-18
test in subqueries 3-24, 3-26
comparison operators, see relational
operators
compound search criteria
expressing 2-30
use of parentheses 2-33
concurrency control, definition GI-2
CONNECT
privilege
definition GI-3
CONNECT privilege 5-5
connecting columns, definition GI-3
constants 2-14
see also literals
definition GI-3
CONV keyword 2-50
CONVERSION keyword, see CONV
keyword
correlated subqueries 3-23
correlated subqueries, definition GI-3
correlation name
definition GI-3
COUNT set function 2-37
COUNT(*) set function 2-37
COUNT.SUP keyword 2-52
counting 2-38
rows 2-38
values 2-39
CREATE VIEW statement 6-3, 6-6
creating views 6-6
CURRENT_DATE keyword 2-45

CURRENT_TIME keyword 2-45

D

data
integrity and database updating 5-7
modifying 5-3—5-29
data model
SQL 1-5
UniVerse 1-5
datatypes
grouping of 1-9
numeric 1-9
string 1-9
database privileges
CONNECT 5-5
definition GI-3
DBA 5-6
definition GI-3
definition GI-3
RESOURCE 5-5
definition GI-6
threelevels 5-5
databases
Circus 1-11
concepts 1-2—A-2
and structures 1-4
first-normal-form
definition Gl-4
nonfirst-normal-form, definition Gl-
5
privileges, levels 5-5
sample 1-11, A-1
security
UniVerse 5-5
UniVerse SQL 54, 55
UNIX 5-4
updating 5-7, 5-18, 6-13
and dataintegrity 5-7
with DELETE statement 5-25, 6-
13
with INSERT statement 5-10
and transaction processing 5-8
with UPDATE statement 5-18, 6-
13
date, see CURRENT_DATE keyword
DBA
privilege
definition GI-3

A B C D E F G H

DBA privilege 5-6
DBMS, definition GI-3
DDL (data definition language) 2-3
definition GI-3
default values
definition GI-3
deinstalling the sample database 1-13
DELETE statement 5-25, 6-13
deleting
all rows from atable 5-26
association rows 5-25
individual rows 5-27
multivaluesfromarow 5-25
views 6-13
delimited identifiers 2-45
see also identifiers
demonstration database, see sample
database
derived data
and EVAL clause 2-15
obtaining 2-14
inviews 6-10
DESC keyword 2-41
disabling the query optimizer 3-10
DISPLAY .LIKE keyword 2-51
DISPLAYLIKE keyword 2-51
DISPLAYNAME keyword 2-49
DML (data manipulation language) 2-
3
definition GI-3
DOUBLE SPACE keyword 2-52
double-spacing of reports 2-54
DROP VIEW statement 6-14
dropping views 6-14
dynamic normalization 4-24
definition GI-3
inserting multivalues into existing
rows 5-15
and unassociated multival ued
columns 4-25
updating values in multivalued
columns 5-20

E

effective user name
definition GI-3

empty strings
definition GI-3

J K

equi-join 3-14, 3-15, 3-18
EVAL clause and derived data 2-15
EVERY keyword 4-6, 4-8, 4-11
existencetest in subqueries 3-24, 3-30
EXISTS keyword 3-30
EXPLAIN keyword 3-9
exploding multivalued columns 4-15
expressions

as columns, see derived data

in SET clause 5-22

invaluelists 5-13

value

definition GI-8

F

fields, definition GI-3
file dictionaries, aternate
with DELETE statement 5-29
with INSERT statement 5-29
with SELECT statement 2-11, 5-29
with UPDATE statement 5-29
first normal form 1-5
definition Gl-4
FMT keyword 2-43, 2-49
FOOTER keyword 2-52
FOR UPDATE clause 5-23
foreign keys
definition Gl-4
FORMAT keyword, see FMT keyword
formatting
columns 2-43
output 2-41
ASSOC keyword 2-51
ASSOCIATED keyword 2-51
column headings 2-49
CONV keyword 2-50
DISPLAYLIKE keyword 2-51
DISPLAYNAME keyword 2-49
FMT keyword 2-49
MULTIVALUED keyword 2-51
SINGLEVALUED keyword 2-51
using text 2-45
reports
AUX.PORT keyword 2-52
COLUMN SPACES keyword 2-
52
COUNT.SUP keyword 2-52
DOUBLE SPACE keyword 2-52

L M NOPQRSTUUVWXY Z @

FOOTER keyword 2-52
GRAND TOTAL keyword 2-52
HEADER keyword 2-38, 2-52
LPTR keyword 2-52
MARGIN keyword 2-52
NO.INDEX keyword 2-52
NO.PAGE keyword 2-52
outputting to the printer 2-55
SUPPRESS COLUMN HEADER
keyword 2-52
SUPPRESS DETAIL keyword 2-
52
suppressing automatic
pagination 2-54
VERT keyword 2-52
vertical format 2-55
VERTICALLY keyword 2-52
FROM clause 2-7
functions
set, see set functions

G

global updating 5-21
GRAND TOTAL keyword 2-52
GROUPBY clause 2-7, 3-3
in summarized views 6-11
more than one grouping 3-5
using with UNNEST clause 4-21
grouped queries 3-3
grouping rows 3-3
null valuesin the grouping
column 3-6
regrictionson 3-5
groups, selectingon 3-7

H

HAVING clause 2-7, 3-7
with subqueries 3-31
HEADER keyword 2-38, 2-52
highest valuein field 2-38
see also MAX set function
horizontal views
combining with vertical 6-9
defining 6-8

Index 3

A B C D E F G H

I
identifiers
definition GI-4
delimited 2-45
quoted 2-45
IN keyword 2-19, 2-24
in-line prompts 2-35, 2-36
inclusive range
expressing 2-19, 2-22
inclusive range, definition GI-4
inner joins, seejoins
inner SELECT statement 3-22
INSERT statement 5-10
naming thetable 5-11
specifying the columns 5-11
supplying the values 5-12
inserting
association rows 5-15
multiplerows 5-16
multivalues
into existing row 5-15
into new row 5-13
views 6-13
installing the sample database 1-12
integrity constraints
see also column constraints, table
constraints
definition Gl-4
ISNULL keyword 2-20, 2-26
isolation levels 3-11, 5-23
definition Gl-4

J

join column, definition GI-4

joincolumns 3-14

joined view 6-4

joining
atabletoitself 3-17
tables 3-12—3-18
three or more tables 3-16
two tables 3-14

joins 3-12—3-18
Cartesian product 3-13
conditions and multivalued

columns 4-10

definition Gl-4
inner 3-14

4 UniVerse SQL User Guide

J K

outer 3-18
reflexive 3-17
reflexive, definition GI-6

K

keys
association 4-4
definition GI-2
definition Gl-4
foreign
definition GI-4
keywords 2-3
definition Gl-4

L

|eft outer joins, see joins
LIKE keyword 2-20, 2-25
literals
definition Gl-4
locking rows 5-23
locks 3-11, 5-9, 5-23
logical values 2-30
logical values, definition Gl-4
lowest valuein field 2-38
see also MIN set function
LPTR keyword 2-52

M

MAKE.DEMO.FILES command 1-12
MAKE.DEMO.TABLEScommand 1-
12
MARGIN keyword 2-52
match test in subqueries 3-24
MAX set function 2-37, 2-38
MIN set function 2-37, 2-38
modifying data 5-3—5-29
MULTI.VALUE keyword 2-51
multivalued columns 4-2—4-25
associations 4-4
definition Gl-4
deleting multivalues from 5-25
and dynamic normalization 4-24
and EVERY keyword 4-6, 4-8
exploding with UNNEST clause 4-
15

L M NOPQRSTUVWXY Z @

inserting values into existing row 5-
15

inserting valuesinto new row 5-13

and join conditions 4-10

in sample database 4-5

and selection criteria 4-6

storing alternate pieces of
information 4-3

unassociated 4-17

and UNNEST clause 4-8, 4-14, 4-15

updating valuesin 5-19

usesfor 4-3

using set functionswith 4-19

and WHEN clause 4-7, 4-11

with WHERE 4-12
and WHERE clause 4-7, 4-9, 4-11
where-used lists 4-3
MULTIVALUED keyword 2-51

N

names
correlation
definition GI-3
user 1-12
nested queries, see subqueries
nested sort
example 2-42
nested sort, definition Gl-4
nested tables 1-5
definition Gl-4
description 4-4
using subquerieson 4-22
NO.INDEX keyword 2-52
NO.OPTIMIZE keyword 3-10
NO.PAGE keyword 2-52
nonfirst-normal form 1-5
definition GI-5
NOT
keyword 2-21
truth table 2-31
NOWAIT keyword 3-11, 5-9
NT AUTHORITY\SY STEM user
definition GI-5
null value 2-26
definition GI-5
description 2-20
numeric datatypes 1-9

A B C D E F G H

O

obtaining derived data 2-14
ODBC

definition GI-5
operators

arithmetic 2-14

comparison, see relational

relational 2-21, 2-29

definition GI-6

OR truth table 2-31
ORDER BY clause 2-7
outer joins, seejoins
outer queries, definition GI-5
outer SELECT statement

defining 3-22

and UNNEST clause 4-22, 4-23
output

formatting 2-41

sorting 2-41

see also ORDER BY clause

outputting to the printer 2-55
overview of UniVerse SQL 1-3
owner

definition GI-5

P

page image orientation 2-55
pagination, suppressing 2-54
parameter markers

definition GI-5
parentheses

in compound search criteria 2-33

in expressions 2-14
pattern matching 2-20, 2-25
PERC keyword 2-43
PERCENT keyword 2-43
percent sign (%) 2-43
PERCENTAGE keyword 2-43
permissions, see database privileges,

table privileges

phonetic matching 2-20, 2-25
precision

definition GI-5
primary keys

constraint

definition GI-5
selecting rows 2-16

J K

privileges
user 5-5
and views 6-17
privileges, see database privileges,
table privileges
processing qualifiers 2-17, 3-9
processing queries
EXPLAIN keyword 3-9
NO.OPTIMIZE keyword 3-10
NOWAIT keyword 3-11, 5-9
programmatic SQL
and dynamic normalization 4-24
definition GI-5

prompts
in SQL queries 2-35
in-line 2-36
Q
qualifiers
definition GI-5
queries
definition GI-6
grouped 3-3

nested, see subqueries

outer, definition GI-5
query optimizer, disabling 3-10
quoted identifiers 2-45

R

range, see inclusive range
record I1Ds, see primary keys
records, definition GI-6
referenced columns
definition GI-6
referencing columns
definition GI-6
referential constraints
definition GI-6
reflexivejoins 3-17
seealso joins
reflexive joins, definition GI-6
registered users, definition GI-6
relationa operators 2-21, 2-29
definition GI-6
REMOVE.DEMO.FILES
command 1-12

L M NOPQRSTUUVWXY Z @

REMOVE.DEMO.TABLES
command 1-12
report qudifiers 2-51
REPORTING keyword 5-21
reports
double-spacing 2-54
footings 2-52
headings 2-52
RESOURCE
privilege
definition Gl-6
RESOURCE privilege 5-5
restrictions on grouping rows 3-5
results astables 2-8
root
definition GI-6
row-based view 6-8
rows
adding 5-10
association
definition Gl-2
definition GI-6
deleting 5-25, 6-13
deleting all rows 5-26
deleting individual rows 5-27
global updating 5-21
grouping 3-3
inserting multiple rows 5-16
locking 5-23
sampling 2-17
selecting 2-15
updating 5-18, 6-13
updating multivaluesin 5-19
updating singlerow 5-18
ROWUNIQUE
constraint
definition GI-6

S

SAID keyword 2-20, 2-25
sample database 1-11

CREATE TABLE statementsfor A-

1
deinstalling 1-13
diagram A-2
installing 1-12
SAMPLE keyword 2-17
SAMPLED keyword 2-17

Index 5

A B C D E F G H

sampling rows 2-17
scae
definition Gl-6
schemas
CATALOG
definition Gl-2
definition GI-6
security 5-4—5-6
database
and UniVerse 5-5
and UniVerse SQL 5-4, 5-5
and UNIX 5-4
views 6-2
security and integrity constraints area,
see SICA
security constraints, definition Gl-6
SELECT clause 2-7
SELECT command 2-34
select lists 2-10
used in selecting rows 2-34
SELECT privilege and views 6-17
SELECT statement 2-7
advanced 3-2—3-31
elementsof 2-7
FOR UPDATE clause 5-23
FROM clause 2-7
GROUPBY clause 2-7
HAVING clause 2-7
inner SELECT 3-22
ORDER BY clause 2-7
outer SELECT 3-22
simpler forms 2-2—2-55
subqueries 3-22—3-31
UNION operator 3-20
versus RetrieVe commands 2-8
WHEN clause 2-7
WHERE clause 2-7
selecting
columns 2-12
ongroups 3-7
on multivalued columns 4-2—4-25
rows 2-15
by primary key 2-16
by selection criteria 2-18
sampling 2-17
through select lists 2-34
using in-line prompts 2-35, 2-36
selection
compound search criteria 2-30

6 UniVerse SQL User Guide

J K

inclusiveranges 2-19, 2-22
null values 2-20, 2-26
pattern matching 2-20, 2-25
phonetic matching 2-20, 2-25
set membership 2-19, 2-24
selection comparisons 2-18, 2-21
selection criteria and multivalued
columns 4-6
selection specification 2-7
* form of 2-10
self-join 3-17
sentence stack
commands 2-6
description 2-5
servers
definition GI-7
SET clause
in UPDATE statement 5-18
using expressionsin 5-22
set functions 2-37
AVG 2-37
COUNT 2-37
COUNT(*) 2-37
definition GI-7
MAX 2-37
MIN 2-37
SUM 2-37
using with multivalued columns 4-
19
set membership 2-19, 2-24
SETUP.DEMO.SCHEMA
command 1-12

SICA (security andintegrity constraints

ared), definition GI-7

SINGLE.VALUE keyword 2-51
SINGLEVALUED keyword 2-51
SOME keyword 3-26

see also ANY keyword
sort-merge-join 3-15
sort, nested, see nested sort
sorting 2-41
SQL

datamodel 1-5

and database security 5-4, 5-5

databases and UniVerse 1-4

definition GI-7

enhancementsto UniVerse 1-3

overview 1-3

programmatic

L M NOPQRSTUVWXY Z @

definition GI-5
SELECT statements versus RetrieVe
commands 2-8
statements, see statements
statements, see statements
tablesand UniVersefiles 1-5
verbs 2-3
SQL catalog
definition GI-7
SSELECT command 2-34
statements
definition GI-7
description 2-3
SELECT 2-5, 2-10
string datatypes 1-9
strings
empty
definition GI-3
subqueries 3-22—3-31
comparisontest 3-24, 3-26
correlated 3-23
correlated, definition GI-3
definition GI-7
existencetest 3-24, 3-30
in HAVING clause 3-22, 3-31
match test 3-24
and nested tables 4-22
types of tests 3-24
uncorrelated 3-23
in UPDATE statement 5-22
in WHERE clause 5-22
SUM set function 2-37
summarized views 6-11
summing, see SUM set function
SUPPRESS COLUMN HEADER
keyword 2-45, 2-52
SUPPRESS DETAIL keyword 2-52

T

table privileges
definition GI-7
tables
see also truth tables
base 6-2
definition GI-7
joining 3-12—3-18
atabletoitself 3-17
three or more 3-16

A B C D E F G H

two 3-14
joins, how UniVerse SQL
processes 3-15
nested
definition GlI-4
resultsas 2-8
retrieving an entire table 2-10
retrieving datafrom asingletable 2-
10
table within a table concept using
associations 4-4
unnested, definition GI-8
updating 5-18, 6-13
temporary name, see aliases
textin output 2-45
three-valued logic 2-31
three-valued logic, definition GI-7
time, see CURRENT_TIME keyword
TOTAL keyword 2-43, 2-44
transaction management,
definition GI-8
transaction processing and database
updating 5-8
transactions
definition GI-7
triggers 5-28
definition GI-8
truth tables
AND 2-30
NOT 2-31
OR 2-31

U

UCl

definition GI-8
unassociated multivalued columns 4-

17

uncorrelated subquery 3-23
underscore (_) 2-25
UNION operator 3-20
unigue constraint

definition GI-8
UniVerse

datamodel 1-5

database security 5-5

and SQL databases 1-4
UniVersefilesand SQL tables 1-5
UniVerse SQL 1-3

J K

UNIX database security 5-4
UNNEST clause

exploding multivalued columns 4-15

and multivalued columns 4-8

and outer SELECT statements 4-22,

4-23

unnested tables, definition GI-8
UPDATE statement 5-18, 6-13

global updating 5-21

multivalued columns 5-19

SET clause 5-18

singlerows 5-18

using subqueriesin WHERE

clause 5-22

using WHEN clause 5-20
updating

singlerows 5-18

tables 5-18, 6-13

views 6-13
user name 1-12
user privileges, see database privileges
users, registered, definition GI-6
USING DICT keyword

and DELETE statement 5-29

and INSERT statement 5-29

and SELECT statement 2-11, 5-29

and UPDATE statement 5-29
uvadm

definition GI-8
uvsql

definition GI-8

Vv

value expressions 5-13
definition GI-8
vauelists 5-12
expressionsin 5-13
values
default
definition GI-3
logical, definition Gl-4
null, definition GI-5
VERT keyword 2-52
vertical views
combining with horizontal 6-9
using 6-6
VERTICALLY keyword 2-52
views 6-2

L M NOPQRSTUUVWXY Z @

assigning unigue column names 6-
10
column-based 6-6
combining vertical and horizontal 6-
9
creating 6-6
definition GI-8
deleting 6-13
derived datain 6-10
dropping 6-14
establishing 6-2—6-17
examples 6-3
of joined 6-4
of using for convenience 6-3
of using for security 6-3
horizontal 6-8
inserting 6-13
listing information about 6-15
privileges 6-17
row-based 6-8
security 6-2
summarized 6-11
updating 6-13
usesof 6-2
using 6-2—6-17
using in SELECT statements 6-4
vertical 6-6
virtua tables, see views

W

WHEN clause 2-7, 4-11

compared to WHERE clause 4-9

and multivalued columns 4-7, 4-11

in UPDATE statement 5-20

with WHERE clause 4-12
WHERE clause 2-7, 4-9

compared to WHEN clause 4-9

and multivalued columns 4-7, 4-8

and selecting rows 2-18

with WHEN clause 4-12
where-used lists 4-17

multivalued columns 4-3
wildcard characters 2-25

definition GI-8

Index 7

	Online Guide
	Table of Contents
	Preface
	Organization of This Manual
	Documentation Conventions
	UniVerse Documentation
	Related Documentation
	API Documentation

	Understanding SQL Concepts
	Introduction to SQL
	Overview of Databases, Files, and Tables
	UniVerse and SQL Databases
	UniVerse Files and SQL Tables

	The Sample Database
	Installing the Sample Database
	Deinstalling the Sample Database

	Using SELECT Statements
	The SQL Language
	Introduction to UniVerse SQL SELECT
	Using the Command Processor
	SELECT Statement Elements
	Comparing UniVerse SQL SELECT to RetrieVe
	Results as Tables

	Retrieving Data from a Single Table
	Retrieving an Entire Table
	Selecting Specific Columns
	Obtaining Derived Data
	Selecting Rows
	Summarizing Table Contents (Set Functions)

	Manipulating the Output
	Sorting Output
	Formatting Columns
	Using Field Modifiers
	Using Text
	Using the Current Date and Time
	Using Field Qualifiers
	Formatting Reports with Report Qualifiers

	Using Advanced SELECT Statements
	Grouping Rows (GROUP BY)
	Restrictions on Grouping Rows
	Null Values in Grouping Columns

	Selecting Groups (HAVING)
	Processing SQL Queries
	Showing How a Query Will Be Processed (EXPLAIN)
	Disabling the Query Optimizer (NO.OPTIMIZE)
	Avoiding Lock Delays (NOWAIT)

	Joining Tables
	Joining Two Tables
	Outer Joins
	Selecting on Joined Tables
	Using UNION to Combine SELECT Statements

	Subqueries
	Correlated and Uncorrelated Subqueries
	Subquery Test Types
	Using Subqueries with HAVING

	Selecting on Multivalued Columns
	Uses for Multivalued Columns
	Associations
	Multivalued Columns in the Sample Database
	Selection Criteria and Multivalued Columns
	Using WHERE
	Using WHEN
	Using UNNEST

	Using Set Functions
	Subqueries on Nested Tables
	Using Dynamic Normalization

	Modifying Data
	Database Security and UniVerse SQL
	Operating System Security
	UniVerse Security
	UniVerse SQL Security

	Data Integrity
	Transaction Processing
	Avoiding Lock Delays (NOWAIT)
	Inserting Data (INSERT)
	Naming the Table and Specifying the Columns
	Supplying the Values
	Using Expressions in Value Lists
	Inserting Multivalues into a New Row
	Inserting Multivalues into an Existing Row
	Inserting Multiple Rows

	Updating Data (UPDATE)
	Updating Values in a Single Row
	Updating Values in Multivalued Columns
	Using WHEN with UPDATE
	Updating Globally
	Using an Expression as the SET Value
	Using Subqueries in the WHERE Clause
	Selecting Records for Updating

	Deleting Data (DELETE)
	Deleting Multivalues from a Row
	Deleting All Rows in a Table
	Deleting Individual Rows

	Using Triggers
	Using Alternate Dictionaries

	Establishing and Using Views
	Examples of Views
	Creating Views
	Column-Based (Vertical) Views
	Row-Based (Horizontal) Views
	Combined Vertical and Horizontal Views
	Column Names and Derived Columns
	Summarized Views

	Updating Views
	Dropping Views
	Listing Information About a View
	Privileges and Views

	The Sample Database
	ACTS.T Table
	CONCESSIONS.T Table
	ENGAGEMENTS.T Table
	EQUIPMENT.T Table
	INVENTORY.T Table
	LIVESTOCK.T Table
	LOCATIONS.T Table
	PERSONNEL.T Table
	RIDES.T Table
	VENDORS.T Table

	Glossary
	Index

