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1 Missing covariate data

1.1 Introduction

Missing data is one of the most common problems in data analysis. Perhaps the most common approach

when confronted with missing data is excluding the incomplete cases from analysis and proceeding to

analyse the complete cases using standard methods. While valid under certain assumptions regarding the

missingness mechanism, this approach results in a loss of precision due to the ignored observations. In this

report, we are interested in the problem of missing covariates in regression models. In the last two decades,

some analysis methods that accommodate all available cases have been developed. Those methods include

meanscore (Reilly and Pepe, 1995), pseudo likelihood (Breslow and Cain, 1988), weighted likelihood

(Flanders and Greenland, 1991) and nonparametric maximum likelihood (Breslow and Holubkhov, 1998).

The meanscore method is the subject of this report.

The meanscore method that incorporates information from all available cases into the regression model is a

likelihood-based method. For completely random missingness, this results in an improvement in efficiency

over the analysis of complete cases only. More importantly, the method is applicable to a wide range of

patterns of missingness known as MAR (Missing at Random), where missingness may depend on the

completely observed variables but not on the unobserved value of the incompletely observed variable(s).

1.2 Meanscore

The meanscore method is motivated by the EM algorithm (Dempster, et.al., 1977). For simplicity of

notation, let Y denote the response variable, Z the complete covariates (which must be categorical) and X

the covariates of interest in the regression model, where some components of X are missing. The complete

covariates Z may contain some auxiliary or surrogate variables that are informative about the missing

components of X. Interest is focused on estimating the parameters in the regression model fβ (Y| X).

If the relationship between Z and X was fully known, we could obtain the Maximum Likelihood Estimator

(MLE) for the parameters of the regression model by using the EM algorithm, which is equivalent to

solving the score equation:

( | ) [ ( | , ) | ( , )] 0i i j j j j
i V j V

S Y X E S Y X Z Y Zβ β
∈ ∈

+ =∑ ∑
where Sβ (Yi| Xi) = ∂fβ (Y| X)/ ∂β, the usual score statistic (Reilly & Pepe, 1995), V denotes the set of

complete (validation) cases and V  denotes the set of incomplete (non-validation) cases. Throughout this

chapter we will use the same notation.
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Because the exact relationship between X and Z is unknown, Mean Score uses a non-parametric estimate

for the conditional expectation above. Each incomplete case is assigned the average score of complete

cases with matching Y and Z. A little algebra shows that the Mean Score estimator is thus the solution to

the score equation

where ,i iZ Yn  denotes the total number of cases with Z=Zi and Y=Yi. And )( ,i iV Z Yn  denotes the number of

complete (validation) cases with Z= Zi and Y=Yi.

The meanscore estimator is unbiased and has asymptotic variance given by (Reilly & Pepe, 1995):

1 1 11 ( )I I I
n

− − −+ Ω

where:

I = the observed Fisher information matrix

, ( , )

( , )
( , )

var[ ( | , ) | , ]
Z Y V Z Y

V Z Y
Z Y

n n S Y X Z Y Z
n n

βΩ = ∑ .

n = total number of observations (study size)

The term 
( , )

,

V Z Y

Z Y

n
n  is referred as the "validation sampling fraction" or "second stage sampling fraction" for

the (Z,Y) stratum. It can be seen from the form of the variance formula that the variance of the estimates is

a function of the number of observations and the validation sampling fraction in each (Z,Y) stratum. Thus it

is possible to minimise the variance using an appropriate study design. We will develop this idea further in

Chapter 2.

,

( , )( ) ( | ) 0
i i

i i

Z Y

i iV Z Y
i V

n S Y X
n

β
∈

=∑
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2 Optimal Sampling Design for two-stage studies
We define a two-stage study as a study where a response variable and some predictor variables are

measured at the "first stage" for all study subjects and one or more predictor variables are collected only for

a subset of the study subjects at the "second stage". The second stage subjects are selected using stratified

random sampling within the strata defined by the different levels of response and first stage variables.

This type of study is popular in epidemiology where researchers usually collect information on some

`cheap' variables from all study subjects while expensive variables (such as laboratory tests and

radiological imaging) might only be collected for some of the study subjects.

By appropriately choosing the total number of observations and the second stage sampling fractions, such

design can yield more efficient and cost effective estimates than simple random sampling.

The missing covariates setting referred to in Chapter 1 can also be viewed as a two-stage design, where the

response variable Y and the complete variables Z are regarded as the first stage information and the

incomplete components of X are regarded as the second stage information.

2.1 Optimal Design and Meanscore

In chapter 1 we noted that the variance of meanscore estimates depends on the total number of observations

and the validation sampling fraction in each (Z,Y) stratum. Thus it is possible to minimise the variance

using an appropriate study design.

In this chapter we will outline how one can derive optimal sampling designs for two-stage studies for the

following three scenarios:

1. Where we already have the first stage data and would like to sample a specified number of

observations at the second stage. For example if we already have a database or registry, and we

wish to gather additional information on some subjects in order to address a research question.

2. Where a fixed budget is available and we wish to design a study that will minimise the variance

of an estimate subject to the budget constraint.

3. Where a coefficient of interest is to be estimated with a specified precision and we wish to

design a study that will achieve this for a minimum cost.
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2.2 Optimal Design Derivation

2.2.1 Fixed second stage sample size

Suppose we wish to select n2 subjects at the second stage in such a way as to minimise the variance of the

kth component of the regression coefficient ββββ. This is equivalent to minimising the [k,k] element in the

variance-covariance matrix V :

1 1 11 ( [ ] )kk kk kkV I I I
n

− − −= + Ω

with the constraint that the second stage sample size n2 is fixed.

Note that we can write the constraint as:

2( , ) ,

( , )

V Z Y Z Y

Z Y

n
n

ρ ρ =∑

where
,Z Yρ is the prevalence (probability) of the (Z,Y) stratum, ( , )V Z Yρ  is the second stage sampling

fraction for the (Z,Y) stratum, and n is the total number of observations. A Lagrange multiplier (λ) can be

used to accommodate the constraint so that in this case we would minimise:

2
( , ) ,

( , )
( / )kk

V Z Y Z Y

Z Y
V n nλ ρ ρ− −∑

Taking the first derivative of this function with respect to ( , )V Z Yρ  and setting it to zero yields the optimal

second stage sampling fractions. After some algebraic manipulation it can be shown that the optimal

second stage sampling fraction in the (Z,Y) stratum ( , )V Z Yρ  are given by:

2 1 1

( , )

, 1 1

( , )

[ ( | , ) ]

[ ( | , ) ]

kk

kk

V Z Y

Z Y

Z Y

n I Var S Z Y I
n

I Var S Z Y I

β

β

ρ
ρ

− −

− −
=

∑

2.2.2 Fixed budget

Assume now that we wish to minimise the variance of the kth component of the regression coefficient ββββ,

given that we have a fixed budget B available and the first stage and second stage cost per observation are

known to be c1 and c2 respectively.
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Using the fact that 2
( , ) ,

( , )

V Z Y Z Y

Z Y
n nρ ρ =∑  note that we can write the constraint as:

1 2
( , ) ,

( , )

( )V Z Y Z Y

Z Y
B n c c ρ ρ= + ∑ , where n is the study size and 

,Z Yρ and 
( , )V Z Yρ are the prevalence

(probability) and the second stage sampling fraction for the (Z,Y) stratum. Again using a Lagrange

multiplier, our task is to minimise:

1 2
( , ) ,

( , )

( )kk
V Z Y Z Y

Z Y
V nc nc Bλ ρ ρ− + −∑

where Vkk is the [k,k] element of the variance covariance matrix V.

The optimal study size and second stage sampling fractions can be obtained by taking the derivatives of the

function above with respect to n and ( , )V Z Yρ , setting these to zero and solving them simultaneously.

It can be shown (see Reilly and Pepe, 1995) for more details of the theoretical derivation) that the optimal

study size is given by:

1 2

1

1
, 1 1

( , )

1 , 1 1

( , )

[ ( | , ) ]

[ ] [ ( | , ) ]

kk

kk kk

Z Y

Z Y

Z Y

Z Y

c c I Var S Z Y I
n B c

I I Var S Z Y Iβ

ρ β

ρ

−
− −

− − −

 
 

= + 
− 

  

∑

∑

And the optimal second stage sampling fraction for (Z,Y) stratum is given by:

1

2

1 1
( , )

, 1 1

( , )

[ ( | , ) ]

[ ( | , ) ]

kk

kk

V Z Y

Z Y

Z Y

I Var S Z Y IB nc
nc I Var S Z Y I

β

β

ρ
ρ

− −

− −

−=
∑

2.2.3 Fixed precision

In this case we would like to achieve a fixed variance estimate, say δ for the kth component of the

regression coefficient vector ββββ, while minimising the study cost.

Assume again that the first stage cost is c1 per observation and second stage cost is c2 per observation. Note

that as in the fixed budget case above we can write the total study cost as ( , ) ,
1 2

( , )
( )V Z Y Z Y

Z Y
n c c ρ ρ+ ∑ . Using

a Lagrange multiplier, we now wish to minimise the following function:
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( , ) ,
1 2

( , )
( )V Z Y Z Y

kk
Z Y

nc nc Vρ ρ λ δ+ − −∑
The optimal solution can be obtained by taking the first derivative of this function with respect to n and

( , )V Z Yρ  , setting them to zero and solving the resultant equations simultaneously.

It can be shown (Reilly & Pepe, 1995) that the optimal study size is given by:

2

1

1 ,

( , ) , 1 ,

( , ) ( , )

[ ]
1 [ ] [ ]

ZY kk

ZY kk ZY kk

Z Y

Z Y Z Y Z Y

Z Y Z Y

I W
cn W I W
c

ρ
ρ ρ

δ δ

−

−

−
= + −

∑
∑ ∑

and the optimal second stage sampling fraction for the (Z,Y) stratum is given by:

1

2

( , )
1 ,

( , )

[ ]
[ ]

ZY kk

ZY kk

V Z Y
Z Y

Z Y

c W
c I W

ρ
ρ−=

− ∑

Where:
1 1( | , )ZYW I Var S Z Y Iβ

− −=

2.3 Computational Issues

The derivation of the optimal designs above was carried out without constraining the second stage sampling

fractions to be less than or equal to 1 ( ( , ) 1V Z Yρ ≤ ). As a result the "optimal" second stage sampling

fractions computed with these formulae can be greater than 1. Reilly and Pepe (1995) proposed the

following `ad-hoc' method to overcome this problem: sample 100 % from the stratum with the

largest ( , ) 1V Z Yρ > , and optimally sample from the remaining strata. This step was done iteratively until all

( , ) 1V Z Yρ ≤ . In more recent work (Salim and Reilly, 2000) this ad-hoc method was shown to be equivalent

to the active set method discussed by Fletcher (1987), and hence it yields the constrained optimum solution.

In the fixed budget and fixed precision scenarios the problem is more complicated since in addition to the

second stage sampling fractions we have to estimate the optimal study size (total number of observations).

Note that the formula for this quantity involves the square root of 1 , 1 1

,

[ ( ( | , ) )]Z Y
kk

Z Y
I I Var S Z Y Iβρ− − −− ∑ .

In practical examples this term can be negative and thus there is no solution. If this occurs, we proposed to

sample 100% from the stratum with maximum , 1 1[ ( | , ) ]Z Y
kkI Var S Z Y Iβρ − −  and optimally sample from
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the remaining strata. The step was done iteratively until 1 , 1 1

,
[ ( ( | , ) )] 0Z Y

kk
Z Y

I I Var S Z Y Iβρ− − −− >∑ . This ad-

hoc method has also been shown to yield the constrained optimum solution (Salim and Reilly, 2000).
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3 Computer Packages
We have written the Meanscore and optimal sampling algorithms in three programming languanges; R,

S-PLUS and STATA. In this chapter we give a brief introduction to each of these packages. Chapter 4

presents detailed instructions for installing and running the Meanscore function in R, S-PLUS and STATA,

with an introduction section explaining features that are common to all 3 systems. Chapter 5 presents a

similarly structured guide to the optimal sampling software.

The R version of the optimal package is also available as a web-based module for users who do not have

access to R, S-PLUS or STATA. The module uses the R-web (Banfield, 1999) environment. The last two

chapters of this report, chapter 7 and chapter 8 provide, more details about this module

3.1 R language.

R is a language and environment for statistical computing and graphics. It was chosen, because it is an

open, programmable, extendable package with most statistical functions already available, is freely

available and has a large user base of academic statisticians committed to constant improvement and update

of the package. R is similar to the S language and environment which was developed at Bell Laboratories

by John Chambers and colleagues, and in fact R can be viewed as an implementation of S.  There are some

important differences, but much code written for S runs unaltered under R.

R is available as Free Software under the terms of the Free Software Foundation's GNU General Public

License in source code form (see http://www.gnu.org). It runs on many operating systems including

Windows 9x/NT, UNIX and Mac. R can be downloaded at the R project website at http://www.r-

project.org or other mirror sites around the world. The latest version available at the time of writing is R

1.2.3. Once installed the software includes a reference manual and help files from which one can learn.

The r-help mailing list publishes announcements about the development of R, the availability of new code,

questions and answers about problems and solutions using R and so on. One can subscribe to this list by

sending "subscribe'' in the body of an e-mail (not in the subject!) to r-help-request@lists.R-project.org

There are many contributed packages that can be downloaded from the R website and this kind of

contribution is the strength of R because it enables the software to seamlessly include many useful

statistical functions designed by a large expert user-base. Some introductory manuals for R can be found on

the R website. The Venables and Ripley (1999) book on S-PLUS can also be used as an introduction to R

provided it is accompanied by its `R Complements' (http://www.stats.ox.ac.uk/pub/MASS3/) which



12

describe how to use the book with R. The newer book by Venables and Ripley (2000) gives a deeper

introduction to programming issues and also discusses some major differences between S and R.

3.2 S-PLUS

The S-PLUS software was based on the S language, originally designed by John Chambers and colleagues

at Bell laboratories. S-PLUS is sold by Mathsoft,Inc. More details about S-PLUS can be found on the S-

PLUS website http://www.mathsoft.com/splus.

A good introduction to the application of S-PLUS in many statistical areas can be found in Venables and

Ripley (1999). There is a huge amount of user-contributed code for S, available at the

http://lib.stat.cmu.edu/DOS/S/ at Carnegie Melon University.

Discussion about the main differences between S/S-PLUS and R is available at the R-FAQ section of the R

website and in the recent book by Venables and Ripley (2000). The version we used to develop our

software is S-PLUS version 4.0.

3.3 STATA

STATA is a statistical software package sold by STATA corporations. It has attracted a lot of interest from

biostatisticians , epidemiologists and medical researchers for its ease of use and its flexibility. In a single

environment the user has access to a wide range of commands from simple tables to complex models, in

any sequential order. The software has a large library of contributed functions written by users. The

documentation for these functions is published in the STATA Technical Bulletin (STB) and the code made

available in the STATA website. For example the programs we developed have been published in STB-58,

November 2000. A powerful capability in STATA is the web-compatibility; the "search" command inside

STATA allows the user to quickly and easily identify contributed functions and the "net install" command

allows one to directly install from the web, as part of STATA, any function they request. These functions

can be installed directly from the internet if you already have STATA software installed in your computer.

The books by Rabe-Hesketh and Everitt (2000) and Hamilton (1997) provide an introduction to STATA.

More detail about STATA can be found at http://www.stata.com. We developed the package using STATA

6, although STATA 7 has been released since then. However all programs written in the older version of

STATA can be run in the newer version by putting the information about the older version in the beginning

of the program. For example our program uses the "version 6.0" command to inform STATA the

version we used to write it.
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4 Meanscore package

4.1 Package Features

There are many similarities between our packages in R, S-PLUS and STATA. In this section we highlight

common features shared by the packages, and advise you to read this section regardless of which software

you intend work with. Sections 4.2, 4.3 and 4.4 deal with some minor differences in the package for the

different software environments.

The Meanscore package contains functions to implement the Meanscore method  (Reilly and Pepe,1995)

for estimating the coefficients in a logistic regression model from two-stage data. There are 3 functions in

the package:

1. MEANSCORE is called with the combined first- and second-stage data (where the missing covariate

values are represented by NA in R and S-PLUS and in STATA missing values are represented by

a dot)

2. MS.NPREV is called with the second-stage (i.e. complete) data and the first-stage sample sizes (or

prevalences). Prior to running this function, the CODING function (3) should be run to see the order in

which MS.NPREV expects the first-stage sample sizes or prevalences to be provided.

3. CODING, which recodes multiple columns of first-stage covariates into a single column and displays

the coding scheme.

Two illustrative data sets are also provided with the package. In the following section we give a brief

description of each dataset.

  simNA   Simulated dataset for illustrating the meanscore function

DESCRIPTION:

A simulated data set of 1000 observations, with 500 missing values. In STATA, this dataset is called

"sim_miss". There are 3 variables in the dataset. Y is the response variable. It was generated as a Bernoulli

random variable with P(Y=1) = exp(x)/(1+exp(x)), where X is the true covariate, generated as a standard

normal variable ~ N(0,1). Finally, Z is the surrogate for the true covariate X, and was generated using the

following rule:

Z = 0, x ≤ 0

                     1, otherwise
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ectopic The ectopic pregnancy dataset

DESCRIPTION

This dataset, which was analysed in Table 3 of Reilly and Pepe (1995) is from a case-control study of the

association between ectopic pregnancy and sexually transmitted diseases (STDs).  The total sample size is

979, consisting of 264 cases and 715 controls. One year after the study began, the investigators started

collecting serum samples for determining chlamydia antibody status in all cases and in a 50 percent

subsample of controls.  As a result, only 327 out of the 979 patients have measurements for chlamydia

antibody.

The dataset has 979 observations with 5 variables arranged in the following columns:

Column 1 (Pregnancy)

The ectopic pregnancy status of patients at the time of interview

(0 = No, 1 = Yes)

Column 2 (Chlamydia)

The chlamydia antibody status of patients (0 = No, 1 = Yes).

There are some observations with missing values, indicating that at the time these patients were

enrolled, the investigators had not yet started to record chlamydia antibody status.

Column 3 (Gonnorhoea)

(0 = No, 1 = Yes)

Column 4 (Contracept)

The use of contraceptives

(0 = No, 1 = Yes)

Column 5 (Sexpatr)

Multiple sex partners (0 = No, 1 = Yes)

In order to run the Meanscore analysis the user must specify the response variable, first stage variables and

the predictor variables in the model. Multiple first stage variables may be specified but they must all be

categorical, although the second stage variables can be continuous. There is a facility to fit a separate

coefficient for each level of a categorical predictor variable. The implementation of these features is

slightly different from software to software (see sections 4.2, 4.3 and 4.4 for the specific details for each

software).
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4.2 Using the Meanscore package in R

4.2.1 Installation guide

You need to have R installed in your computer. Our program has been tested under R.1.2.0, so we advise

you to first update your R if you still use an older version (see section 3.1 to learn more about R). You can

download our program from the following sites:

 http://www.r-project.org [R website]

 http://www.ucc.ie/ucc/depts/pubh/programs/programs.html

The zip file contains README.packages file (see Appendix B) where you can find the instructions on how

to install the package. Once the package has been installed you can make the meanscore package available

by issuing the command 'library(meanscore)' in the R session window. The command

`help(package=meanscore)' will open a window where you can read more details about the package.

4.2.2 Syntax and features

meanscore Mean Score Method for Missing Covariate Data in Logistic Regression Models

Usage:

             meanscore(y=y,x=x,z=z,factor=NULL,print.all=F)

Arguments:

       y : response variable (binary 0-1)

       x : matrix of predictor variables, one column of which contains some missing values (NA)

       z : matrix of the surrogate or auxiliary variables  which must be categorical

  factor : optional factor variables; if the columns of the matrix of predictor variables have names, supply

  these names,  otherwise supply the column numbers. MEANSCORE will fit separate coefficients

  for each level of the factor variables.

Value:

     A list called "parameters" containing the following will be returned:

     est : the vector of estimates of the regression coefficients

      se : the vector of standard errors of the estimates

       z : Wald statistic for each coefficient
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  pvalue : 2-sided p-value (H0: est=0)

          when print.all = T, it will also return the following lists:

    Ihat : the Fisher information matrix

   varsi : variance of the score for each (ylevel,zlevel) stratum

ms.nprev Logistic regression of two-stage data using second stage sample and first stage sample
              sizes or proportions (prevalences) as input

Usage:

     ms.nprev(y=y,x=x,z=z,n1="option",prev="option",factor=NULL,print.all=F)
Arguments:

     REQUIRED ARGUMENTS

       y: response variable (should be binary 0-1)

       x: matrix of predictor variables for regression model

       z: matrix of any surrogate or auxiliary variables,

          and one of the following:

      n1: vector of the first stage sample sizes  for each (y,z) stratum: must be provided in the correct order

            (see `coding' function)

          OR

    prev: vector of the first-stage or population proportions (prevalences) for each (y,z) stratum: must be

             provided in the correct order  (see `coding' function)

     OPTIONAL ARGUMENTS

print.all: logical value determining all output to be printed.  The default is False (F).

factor  : factor variables; if the columns of the matrix of predictor variables have names, supply these

names,  otherwise supply the column numbers. MS.NPREV will fit separate coefficients

for each level of the factor variables.

Value:

     If called with `prev' will return only:

   A list called "table" containing the following:

  ylevel: the distinct values (or levels) of y

  zlevel: the distinct values (or levels) of z

    prev: the prevalences for each (y,z) stratum
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      n2: the sample sizes at the second stage in each stratum defined by (y,z)

          and a list called "parameters" containing:

     est: the Mean score estimates of the coefficients in the logistic regression model

          If called with `n1' it will return:

          A list called "table" containing:

  ylevel: the distinct values (or levels) of y

  zlevel: the distinct values (or levels) of z

      n1 : the sample size at the first stage in each (y,z) stratum

      n2 : the sample sizes at the second stage in each stratum  defined by (y,z)

          and a list called "parameters" containing:

     est  : the Mean score estimates of the coefficients in the logistic regression model

      se  : the standard errors of the Mean Score estimates

       z   : Wald statistic for each coefficient

  pvalue: 2-sided p-value (H0: est=0)

          If print.all=T, the following lists will also be returned:

     Wzy: the weight matrix used by the mean score algorithm for each (Y,Z) stratum: this will be in the

 same order  as n1 and prev

   varsi : the variance of the score in each Y,Z stratum

    Ihat : the Fisher information matrix

coding combines two or more surrogate/auxiliary variables into a vector

DESCRIPTION

     recodes a matrix of categorical variables into a vector which takes  a unique value for each combination

BACKGROUND

From the matrix Z of first-stage covariates, this function creates a vector which takes a unique value for

each combination as follows:

       z1  z2  z3  new.z

        0   0   0      1

        1   0   0      2

        0   1   0      3
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        1   1   0      4

        0   0   1      5

        1   0   1      6

        0   1   1      7

        1   1   1      8

If some of the combinations do not exist, the function will adjust accordingly: for example if the

combination (0,1,1) is absent above, then (1,1,1) will be coded as 7.

The values of this new.z are reported as `new.z' in the printed  output  (see `Value' below)

This function should be run on second stage data prior to using the ms.nprev function, as it illustrates the

order in which the call to ms.nprev expects the first-stage sample sizes to be provided.

Usage:

     coding(x=x,y=y,z=z,return=F)

Arguments:

     REQUIRED ARGUMENTS

       y: response variable (should be binary 0-1)

       x: matrix of predictor variables for regression model

       z: matrix of any surrogate or auxiliary variables

     OPTIONAL ARGUMENTS

  return: logical value; if it's TRUE(T) the original surrogate or auxiliary variables and the re-coded

auxilliary  variables will be returned. The default is False (F).

Value:

     This function does not return any values except if `return'=T.

     If used with only second stage (i.e. complete) data, it will print the following:

  ylevel : the distinct values (or levels) of y



19

z1 ... zi : the distinct values of first stage variables  z1 ... zi

   new.z : recoded first stage variables. Each value represents a unique combination of first stage variable

  values.

      n2 : second stage sample sizes in each (`ylevel',`new.z') stratum.

          If used with combined first and second stage data (i.e. with NA for missing values), in addition to

          the above items, the function will also print the following:

      n1 : first-stage sample sizes in each (`ylevel',`new.z') stratum.

4.2.3 Examples

4.2.3.1 meanscore

The simulated dataset "simNA" (see section 4.1) has 1000 observations with dichotomous response

variable (Y) in the 1st column, dichotomous surrogate variable for X, called Z in the 2nd column and

continuous predictor variable (X) in the 3rd column. A randomly selected 500 of the X values have been

deleted (i.e. are missing). We would like to use all the data to estimate the coefficient of X in a logistic

regression model:

0 1
( 1)log

1 ( 1)
i

i
i

P Y X
P Y

β β ε= = + +
− =

data(simNA)

meanscore(y=simNA[,1],z=simNA[,2],x=simNA[,3])

OUTPUT:

[1] "For calls to ms.nprev, input n1 or prev in the following order!!"

     ylevel z new.z  n1  n2

[1,]      0 0     0 310 150

[2,]      0 1     1 166  85

[3,]      1 0     0 177  86

[4,]      1 1     1 347 179

$parameters

                  est         se          z    pvalue

(Intercept) 0.0493998 0.07155138  0.6904103 0.4899362

x           1.0188437 0.10187094 10.0013188 0.0000000
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We can extract the "complete cases" and do analysis based on those cases only as follows:

complete_simNA[!is.na(simNA[,3]),]

summary(glm(complete[,1]~complete[,3], family="binomial"))

OUTPUT:

Coefficients:

                   Estimate Std. Error z value Pr(>|z|)

     (Intercept)    0.05258    0.09879   0.532    0.595

     complete[, 3]  1.01942    0.12050   8.460   <2e-16 ***

Notice that the standard error produced by Meanscore is smaller reflecting the additional information we

gained by using the available cases.

4.2.3.2 ms.nprev

The ms.nprev command provides a way of doing Meanscore analysis if we only have the complete

observations but we know the first stage sample size in each stratum. The following lines will do the

Meanscore analysis using the ms.nprev command for the simulated data above. Notice that we have to run

the coding function first to see the order in which we have to enter the vector of first stage sample sizes.

data(simNA)

# extract the complete cases only

complete_simNA[!is.na(simNA[,3]),]

# run the coding function

coding(x=simNA[,3], y=simNA[,1], z=simNA[,2])

[1] "For calls to ms.nprev, input n1 or prev in the following order!!"

          ylevel z new.z  n1  n2

     [1,]      0 0     0 310 150

     [2,]      0 1     1 166  85

     [3,]      1 0     0 177  86

     [4,]      1 1     1 347 179

 # supply the first stage sample sizes in the correct order

 n1_c(310,166,177,347)

 ms.nprev(x=complete[,3],z=complete[,2],y=complete[,1],n1=n1)

 [1] "please run coding function to see the order in which you"



21

 [1] "must supply the first-stage sample sizes or prevalences"

 [1] " Type ?coding for details!"

 [1] "For calls to ms.nprev,input n1 or prev in the following order!!"

          ylevel z new.z  n2

     [1,]      0 0     0 150

     [2,]      0 1     1  85

     [3,]      1 0     0  86

     [4,]      1 1     1 179

     [1] "Check sample sizes/prevalences"

     $table

          ylevel zlevel  n1  n2

     [1,]      0      0 310 150

     [2,]      0      1 166  85

     [3,]      1      0 177  86

     [4,]      1      1 347 179

     $parameters

                       est         se          z    pvalue

     (Intercept) 0.0493998 0.07155138  0.6904103 0.4899362

     x           1.0188437 0.10187094 10.0013188 0.0000000

4.3 Using the Meanscore package in S-PLUS

4.3.1 Installation guide

Our program has been tested under SPLUS 4 for windows. Some modifications may be needed for other

versions. If you have S-PLUS installed on your computer, you can download our program from the

following sites:

 http://lib.stat.cmu.edu/DOS/S/ [STATLIB website]

 http://www.ucc.ie/ucc/depts/pubh/programs/programs.html

The zip file contains a README file (see Appendix B) where you can find the instructions on how to

install the package. Once the package has been installed you can make the meanscore package available by

issuing the command 'library(meanscore)' in the S-PLUS session window.
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4.3.2 Syntax and features

meanscore Mean Score Method for Missing Covariate Data in Logistic Regression Models

USAGE

meanscore(x=x,y=y,z=z,fctvar=NULL,print.all=F)

REQUIRED ARGUMENTS

      y: response variable (binary 0-1)

       x: matrix of predictor variables, one column of which contains some missing values (NA)

       z: matrix of the surrogate or auxiliary variables  which must be categorical

OPTIONAL ARGUMENTS

  fctvar: optional factor variables; if the columns of the matrix of predictor variables have names, supply

these names, otherwise supply the column numbers. MEANSCORE will fit separate coefficients

for each level of the factor variables.

SIDE EFFECTS:

     A list called "parameters" containing the following will be returned:

     est : the vector of estimates of the regression coefficients

      se : the vector of standard errors of the estimates

       z : Wald statistic for each coefficient

  pvalue : 2-sided p-value (H0: est=0)

          when print.all = T, it will also return the following lists:

    Ihat : the Fisher information matrix

   varsi : variance of the score for each (ylevel,zlevel) stratum

ms.nprev Logistic regression of two-stage data using second stage sample and first stage sample
              sizes or proportions (prevalences) as input

BACKGROUND

This algorithm will analyse the second stage data from a two-stage design, incorporating as appropriate

weights the first stage sample sizes in each of the strata defined by the first-stage variables. If the first-stage
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sample sizes are unknown, you can still get estimates (but not standard errors) using estimated relative

frequencies (prevalences)of the strata. To ensure that the sample sizes or prevalences are provided in the

correct order, it is  advisable to first run the `coding' function.

USAGE

 ms.nprev(y=y,x=x,z=z,n1="option",prev="option",fctvar=NULL,print.all=F)

REQUIRED ARGUMENTS

      y : response variable (should be binary 0-1)

       x : matrix of predictor variables for regression model

       z : matrix of any surrogate or auxiliary variables,

          and one of the following:

      n1 : vector of the first stage sample sizes  for each (y,z) stratum: must be provided in the correct order

  (see `coding' function)

          OR

    prev : vector of the first-stage or population proportions  (prevalences) for each (y,z) stratum: must be

  provided in the correct order  (see `coding' function)

          OPTIONAL ARGUMENTS

print.all : logical value determining all output to be printed. The default is False (F).

  fctvar : factor variables; if the columns of the matrix of predictor variables have names, supply these

  names,  otherwise supply the column numbers. MS.NPREV will fit separate coefficients

  for each level of the factor variables.

SIDE EFFECTS:

    If called with `prev' will return only:

     A list called "table" containing the following:

  ylevel : the distinct values (or levels) of y

  zlevel : the distinct values (or levels) of z

    prev : the prevalences for each (y,z) stratum

      n2 : the sample sizes at the second stage in each stratum defined by (y,z)

          and a list called "parameters" containing:

     est: the Mean score estimates of the coefficients in the logistic regression model
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          If called with `n1' it will return:

          A list called "table" containing:

  ylevel : the distinct values (or levels) of y

  zlevel : the distinct values (or levels) of z

      n1 : the sample size at the first stage in each (y,z) stratum

      n2 : the sample sizes at the second stage in each stratum defined by (y,z)

          and a list called "parameters" containing:

     est : the Mean score estimates of the coefficients in the logistic regression model

      se : the standard errors of the Mean Score estimates

       z : Wald statistic for each coefficient

  pvalue : 2-sided p-value (H0: est=0)

          If print.all=T, the following lists will also be returned:

     wzy : the weight matrix used by the mean score algorithm, for each Y,Z stratum: this will be in the

  same order  as n1 and prev

   varsi : the variance of the score in each Y,Z stratum

    Ihat : the Fisher information matrix

coding combines two or more surrogate/auxiliary variables into a vector

DESCRIPTION

     recodes a matrix of categorical variables into a vector which takes  a unique value for each combination

BACKGROUND

From the matrix Z of first-stage covariates, this function creates a vector which takes a unique value for

each combination as follows:

       z1  z2  z3  new.z

        0   0   0      1

        1   0   0      2

        0   1   0      3

        1   1   0      4

        0   0   1      5

        1   0   1      6

        0   1   1      7
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        1   1   1      8

If some of the combinations do not exist, the function will adjust accordingly: for example if the

combination (0,1,1) is absent above, then (1,1,1) will be coded as 7.

The values of this new.z are reported as `new.z' in the printed output  (see SIDE EFFECTS below)

This function should be run on second stage data prior to using the ms.nprev function, as it illustrates the

order in which the call to ms.nprev expects the first-stage sample sizes to be provided.

USAGE

coding(x=x,y=y,z=z,output=F)

REQUIRED ARGUMENTS

       y: response variable (should be binary 0-1)

       x: matrix of predictor variables for regression model

       z: matrix of any surrogate or auxiliary variables

OPTIONAL ARGUMENTS

  output: logical value; if it's TRUE(T) the original surrogate or auxiliary variables and the re-coded

auxilliary  variables will be returned. The default is False (F).

SIDE EFFECTS:

This function does not return any values except if output=T.

If used with only second stage (i.e. complete) data, it will print the following:

  ylevel : the distinct values (or levels) of y

z1 ... zi : the distinct values of first stage variables  z1 ... zi

   new.z : recoded first stage variables. Each value represents a unique combination of first stage variable

  values.

      n2 : second stage sample sizes in each (`ylevel',`new.z') stratum.

If used with combined first and second stage data (i.e. with NA for missing values), in addition to the above

items, the function will also print the following:

      n1: first-stage sample sizes in each (`ylevel',`new.z') stratum.
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4.3.3 Examples

4.3.3.1 meanscore

Here we again demonstrate the example we illustrated in section 4.2.3.  The "simNA" data set (see section

4.1) is stored in the "simNA" matrix. The matrix is automatically available when you declare

library(meanscore). This implementation is slightly different from R, as in R you need to load the data

matrix to make it available.

meanscore(y=simNA[,1],z=simNA[,2],x=simNA[,3])

[1] "For calls to ms.nprev,input n1 or prev in the following

(ylevel,new.z) order!!"

  ylevel z new.z  n1  n2

1      0 0     1 310 150

2      0 1     2 166  85

3      1 0     1 177  86

4      1 1     2 347 179

$parameters:

                   est         se          z    pvalue

(Intercept) 0.04939797 0.07155154  0.6903831 0.4899533

          x 1.01885599 0.10187166 10.0013679 0.0000000

4.3.3.2 ms.nprev

The ms.nprev command provides a way of doing Meanscore analysis if we only have the complete

observations but we know the first stage sample size in each stratum. The following lines will do the

Meanscore analysis using the ms.nprev command for the simulated data above. Notice that we have to run

the coding function first to see the order in which we have to enter the vector of first stage sample sizes.

# extract the complete cases only

complete_simNA[!is.na(simNA[,3]),]

# run the coding function

coding(x=simNA[,3], y=simNA[,1], z=simNA[,2])

[1] "For calls to ms.nprev,input n1 or prev in the following (ylevel,new.z)

order!!"
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  ylevel z new.z  n1  n2

1      0 0     1 310 150

2      0 1     2 166  85

3      1 0     1 177  86

4      1 1     2 347 179

# supply the first stage sample sizes in the correct order

n1_c(310,166,177,347)

ms.nprev(x=complete[,3],z=complete[,2],y=complete[,1],n1=n1)

[1] "please run coding function first, it will give you idea on which order"

[1] "you have to supply the first sample sizes. Type ?coding for details!"

[1] "For calls to ms.nprev,input n1 or prev in the following (ylevel,new.z)

order!!"

  ylevel z new.z  n2

1      0 0     1 150

2      0 1     2  85

3      1 0     1  86

4      1 1     2 179

[1] "Check sample sizes/prevalences"

$table:

     ylevel zlevel  n1  n2

[1,]      0      1 310 150

[2,]      0      2 166  85

[3,]      1      1 177  86

[4,]      1      2 347 179

$parameters:

                   est         se          z    pvalue

(Intercept) 0.04939797 0.07155154  0.6903831 0.4899533

          x 1.01885599 0.10187166 10.0013679 0.0000000

4.4 Using the Meanscore package in STATA

4.4.1 Installation Guide

The program has been written in STATA version 6 so you need to have STATA 6 or later to be able to use

the package. Because STATA Technical Bulletin require package's name to be no longer than 7 characters,

the meanscore package in STATA is called meanscor. The meanscor package can be installed directly

from the STATA website by following these instructions:
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From inside STATA, type:

net cd stb

net cd stb58

net describe sg156

net install sg156

net get sg156

After executing the last command, the meanscor package is installed in your computer. To test if you have

installed all the components you can type help meanscor or help msnprev and try some of the

examples.

IMPORTANT:

Since we submitted the program to the STB we have improved the calling syntax and the output format of

the functions. The most recent version is available on our website at:

http://www.ucc.ie/ucc/depts/pubh/programs/programs.html

This program is slightly different from the one in the STB website. Therefore, the syntax and features

section below are written based on the version on our website, and there may be some minor differences

from the STB help files.

4.4.2 Syntax and Features

meanscor Meanscore method for missing covariate data in logistic regression models

Command line:

        meanscor depvar [indepvars] [if exp] [in range]  [, first[varlist] second[varlist] odd(#)

Options:

first[varlist]  specifies the complete covariates (i.e. measured at the first stage)

second[varlist] specifies the incomplete covariates (i.e. measured at the second stage)

odd(0)    reports regression co-efficients (default=1: reports odds ratios)
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msnprev Meanscore method for missing covariate data in logistic regression models

                             using validation(second-stage) data and first stage sample sizes or prevalances

Command line:

        msnprev depvar [indepvars] [if exp] [in range] [, first[varlist] prev[vecname] sample[vecname]  odd(0)

Options:

first[varlist]  specifies the first stage covariates

odd(0)          reports regression co-efficients (default: odds ratios),

and one of the following:

sample[vecname] vector of the first stage sample sizes for each stratum

OR

prev[vecname]   vector of the prevalences for each stratum. If prevalences are provided,

no standard errors are estimated

NOTE: you have to run the coding function (see below) prior to using this function in order to know the

order in which to enter the prev or sample vector.

coding orders the strata formed by different levels of dependent variable and first stage

                            covariates

Command line:

        coding depvar [first stage variables]

Description

The coding function orders the strata formed by different levels of the dependent variable and first stage

covariates. This is the order in which the vector of first stage sample sizes or prevalences must be entered

before calling msnprev or any of the optimal sampling functions described in section 5.4. Within the coding

function a variable called grp_yz is created. It contains the distinct groups formed by different levels of the

dependent variable (Y) and first stage covariates (Z). A list is printed indicating the definition of each
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stratum. For calls to msnprev, optfixn, optbud and optprec, the first-stage sample sizes or prevalences must

be entered following the order of grp_yz.

4.4.3 Examples

4.4.3.1 meanscor

Again, the example illustrated in section 4.2.3 is presented. The data set is called "sim_miss" (see section

4.1). The following code in STATA will give the same results as illustrated in section 4.2.3 and 4.3.3 for R

and S-PLUS.

use sim_miss

meanscor y x,first(z) second(x) odd(0)

meanscore estimates

------------------------------------------------------------------------------

         |      Coef.   Std. Err.       z     P>|z|       [95% Conf. Interval]

---------+--------------------------------------------------------------------

    cons |   .0494025   .0715522      0.690   0.490      -.0908373    .1896424

       x |    1.01891   .1018749     10.002   0.000       .8192386    1.218581

------------------------------------------------------------------------------

4.4.3.2 msnprev

The ms.nprev command provides a way of doing Meanscore analysis if we only have the complete

observations but we know the first stage sample size in each stratum. The following lines will do the

Meanscore analysis using the msnprev command for the simulated data above. Notice that we have to run

the coding function first to see the order in which we have to enter the vector of first stage sample sizes.

use sim_miss

coding y z

* keep the second stage sample only

keep if !missing(x)

*input the first stage sample sizes for each stratum

matrix samp=(310,166,177,347)'

msnprev y x,first(z) sample(samp) odd(0)



31

the second stage sample sizes

----------+-----------

group(y   |

z)        |      Freq.

----------+-----------

        1 |        150

        2 |         85

        3 |         86

        4 |        179

----------+-----------

please check the sample sizes!

grp_yz      y         z  grp_z      n1      n2

     1      0         0      1     310     150

     2      0         1      2     166      85

     3      1         0      1     177      86

     4      1         1      2     347     179

meanscore estimates

------------------------------------------------------------------------------

         |      Coef.   Std. Err.       z     P>|z|       [95% Conf. Interval]

---------+--------------------------------------------------------------------

    cons |   .0494025   .0715522      0.690   0.490      -.0908373    .1896424

       x |    1.01891   .1018749     10.002   0.000       .8192386    1.218581

------------------------------------------------------------------------------
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5 Optimal package

5.1 Package Features

The optimal package derives optimal sampling designs for 3 different scenarios as outlined in Chapter 2.

To run any of the three functions you need to have a pilot sample, typically consisting of a few

observations from each stratum defined by the different levels of response variable and first stage variables.

The names of the functions are slightly different for the different software, but they implement the same

algorithm. We summarise the three functions below:

fixed.n Optimal second stage sampling fractions, subject to fixed sample sizes at the first

                             and second stage

Description:

This function computes the optimal second stage sampling fractions (and sample sizes) for each stratum

defined by the different levels of response variable and first stage variables, using the mean score method

for logistic regression models.

Users need to provide the first stage sample size for each stratum, the second stage sample size required

and the name of the predictor variable to be optimised.  Optimality is with respect to the standard error of a

coefficient of interest.

Before running the "fixedn" function you should run the "coding" function, to see the order in which you

must supply the vector of first stage sample size.

In STATA this function is called optfixn, while R and S-PLUS both use the name fixed.n

budget Optimal sampling design for 2-stage studies with fixed budget

Description:

This function calculates the total number of study observations and the second-stage sampling fractions that

will maximise precision subject to an available budget. In addition to specifying the budget the user must

also supply: (i) the unit cost of observations at the first and second stage, (ii) the vector of prevalences in

each of the strata defined by the different levels of response variable and first stage variables, and (iii) the

name of the variable to be optimised.
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Before running the "budget" function you should run the "coding" function, to see the order in which you

must supply the vector of prevalences.

In STATA this function is called optbud, while R and S-PLUS both use the same name budget.

precision Optimal sampling design for 2-stage studies with fixed precision

Description:

This function calculates the total number of study observations and the second-stage sampling fractions that

will minimise the study cost subject to a fixed variance for a specified coefficient.  In addition to specifying

the required variance the user must also supply (i) the unit cost of observations at the first and second stage,

(ii) the vector of prevalences in each of the strata defined by different levels of dependent variable and first

stage covariates and (iii) the name of the variable to be optimised.

Before running this function you should run the "coding" function, to see the order in which you must

supply the vector of prevalences.

In STATA this function is called optprec, while R and S-PLUS both use the same name precision.

coding combines two or more surrogate/auxiliary variables into a vector

The coding function is very important because it must be run prior to running any of the optimal sampling

functions in order to see the order in which you should enter the vector of prevalences or first stage sample

sizes (see syntax and features under the different software).  This function has already been described in

section 4.2.2, 4.3.2 and 4.4.2.

Illustrative datasets

There are two illustrative data sets provided as examples with the package. The data sets have slightly

different names from software to software (see Table 5-1).
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Table 5-1. Illustrative data sets for optimal package in R, S-PLUS and STATA

R S-PLUS STATA Features

cass1 cass1 pilotcas Pilot observations from CASS study (Vliestra, et.al.,

1980) The response variable is mortality, the first

stage variable is sex and the second stage variable is

age. There are 25 observations from each stratum

formed by the different levels of mortality and sex.

cass2 cass2 wtpilot Pilot observations from CASS study (Vliestra, et.al.,

1980). The response variable is mortality, there are

two first stage variables, sex and categorical weight.

The second stage variables are weight (continuous),

age, CHF, angina, LVDBP (lve) and urgency of

surgery (surg). There are 10 observations from each

stratum.

5.2 Using the Optimal package in R

5.2.1 Installation guide

You need to have R installed on your computer (see section 4.2.1 for details). You can download the

optimal package from the following sites:

 http://www.r-project.org1 [R website]

 http://www.ucc.ie/ucc/depts/pubh/programs/programs.html

The zip file contains a README.packages file (see Appendix B) where you can find the procedures on

how to install the package. Once the package has been installed you can use the functions by issuing the

command 'library(optimal)' in the R session window. The command `help(package=optimal)' will open a

window where you can read more details about the package.

5.2.2 Syntax and features

fixed.n Optimal second stage sampling fractions, subject to fixed sample sizes at the first

                             and second stage

Usage:

   fixed.n (x=x,y=y,z=z,n2=n2,factor=NULL,var="var",n1="option",prev="option",frac="option")

                                                          
1 Based on Kurt Hornik's suggestion, the optimal package on the R website has been renamed twostage
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`

Arguments:

     REQUIRED ARGUMENTS

       y : response variable (binary 0-1)

       x : matrix of predictor variables

       z : matrix of the surrogate or auxiliary variables (can be more than one column)

      n2 : size of second stage sample

var : The name of the predictor variable whose coefficient is to be optimised.  See DETAILS if this is

  a factor variable

          and one of the following:

      n1 : vector of the first stage sample sizes for each (y,z) stratum

          OR

    prev : vector of the estimated prevalences for each  (y,z) stratum,  AND

    frac : the second stage sampling fraction i.e., the ratio of second  stage sample size to first stage sample

  size  (NOTE: if `prev' is given, `frac' will also be required)

     OPTIONAL ARGUMENTS

  factor: the names of any factor variables in the predictor matrix

Value:

     A list called `design' consisting of the following items:

  ylevel : the different levels of response variable

  zlevel : the different levels of first stage variables z.

      n1 : the first stage sample size for each (`ylevel',`zlevel') stratum

      n2 : the sample size of pilot observations for each (`ylevel',`zlevel') stratum

    prop : optimal 2nd stage sampling proportion for each (`ylevel',`zlevel') stratum

samp.2nd : optimal 2nd stage sample size for each (`ylevel',`zlevel') stratum

          and a list called `se' containing:

      se : the standard errors of estimates achieved by the optimal design.

budget Optimal sampling design for 2-stage studies with fixed budget

Usage:
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     budget (x=x,y=y,z=z,prev=prev,factor=NULL,var=NULL,b=b,c1=c1,c2=c2)

Arguments:

     REQUIRED ARGUMENTS

       y : response variable (binary 0-1)

       x : matrix of predictor variables

       z : matrix of the surrogate or auxiliary variables (can be more than one column)

    prev : the prevalence of each (y,z) stratum, where (y,z) is the different levels of y and z

var : The name of the predictor variable whose coefficient is to be optimised.  If this is a factor

  variable, see DETAILS at the end of this section.

       b : the total budget available

      c1 : the cost per first stage observation

      c2 : the cost per second stage observation

     OPTIONAL ARGUMENTS

  factor : the names of any factor variables in the predictor matrix

Value:

     The following lists will be returned:

       n : the optimal number of observations (first stage sample size)

  design : a list consisting of the following items:

        ylevel : the different levels of the response variable

        zlevel : the different levels of first stage covariates z.

          prev : the prevalence of each (ylevel,zlevel) stratum

            n2 : the sample size of pilot observations for each (ylevel,zlevel) stratum

          prop : optimal 2nd stage sampling proportion for each (ylevel,zlevel) stratum

      samp.2nd : optimal 2nd stage sample size for each (ylevel,zlevel) stratum

      se : the standard error of estimates achieved by the optimal design

precision Optimal sampling design for 2-stage studies with fixed precision

Usage:
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     precision (x=x,y=y,z=z,prev=prev,factor=NULL,var=NULL,prc=prc,c1=c1,c2=c2)

Arguments:

     REQUIRED ARGUMENTS

       y : response variable (binary 0-1)

       x : matrix of predictor variables

       z : matrix of the surrogate or auxiliary variables (can be more than one column)

    prev : the prevalence of each (y,z) stratum, where (y,z) is the different levels of y and z

     var : The name of the predictor variable whose coefficient is to be optimised.  See DETAILS at the

  end of this section  if this is   a factor variable

     prc : the required variance of the `var' coefficient

      c1 : the cost per first stage observation

      c2:  the cost per second stage observation

          OPTIONAL ARGUMENTS

  factor : the names of any factor variables in the predictor matrix

Value:

     The following lists will be returned:

       n: the optimal number of observations (first stage sample size)

     var: the variance of estimates achieved by the optimal design

    cost: the minimum study cost

          and a list called `design' consisting of the following items:

  ylevel : the different levels of response variable

  zlevel : the different levels of first stage covariates z.

    prev : the prevalence of each (y,z) stratum

      n2 : the sample size of pilot observations for each (y,,z) stratum

    prop : optimal 2nd stage sampling proportion for each (y,z) stratum

samp.2nd : optimal 2nd stage sample size for each (y,z) stratum
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coding combines two or more surrogate/auxiliary variables into a vector

Usage:

     coding(x=x,y=y,z=z,return=F)

Arguments:

     REQUIRED ARGUMENTS

       y: response variable (should be binary 0-1)

       x: matrix of predictor variables for regression model

       z: matrix of any surrogate or auxiliary variables

     OPTIONAL ARGUMENTS

  return: logical value; if it's TRUE(T) the original surrogate or auxiliary variables and the re-coded

auxilliary  variables will be returned.  The default is False (F).

Value:

     This function does not return any values except if `return'=T.

     If used with only second stage (i.e. complete) data, it will print the  following:

  ylevel : the distinct values (or levels) of y

z1 ... zi : the distinct values of first stage variables  z1 ... zi

   new.z : recoded first stage variables. Each value represents a unique combination of  first stage variable

  values.

      n2 : second stage sample sizes in each (`ylevel',`new.z') stratum.

 If used with combined first and second stage data (i.e. with NA for missing values), in addition to the

above items, the function will also print the following:

      n1 : first-stage sample sizes in each (`ylevel',`new.z') stratum.
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DETAILS:

The response, predictor and surrogate variables have to be numeric. If you have multiple columns of z, say

(z1,z2,..zn), these will be recoded into a single vector "new.z". These `new.z' values are reported as `new.z'

in the output (see `value'). For example:

       z1  z2  z3  new.z

        0   0   0      1

        1   0   0      2

        0   1   0      3

        1   1   0      4

        0   0   1      5

        1   0   1      6

        0   1   1      7

        1   1   1      8

If some of the value combinations do not exist in your data, the function will adjust accordingly.  For

example if the combination  (0,1,1) is absent, then (1,1,1) will be coded as 7.

If you wish to optimise the coefficient of a factor variable, you need to specify which level of the variable

to optimise.  For example, if "weight" is a factor variable with 3 categories 1,2 and 3 then var="weight2"

will optimise the estimation of the coefficient which measures the difference between weight=2 and the

baseline (weight=1). By default the baseline is always the category with the smallest value.

5.2.3 Examples

We give an example using the pilot subsample from the CASS data discussed in Reilly (1996) and

described  briefly in Table 5-1. The data are in the cass2 matrix, which can be loaded using data (cass2) and

a description of the data set can be seen using help(cass2). Our model is:

 0 1 2 3 4 5 6 7
( 1)log

1 ( 1)
i

i i i i i i i
i

P Y SEX weight age CHF ANGINA LVE Surgery
P Y

β β β β β β β β= = + + + + + + +
− =

where the response variable is operative mortality.

 In our examples below, we use sex and categorical weight as auxiliary variables. Given an available

budget of £10,000, a first-stage cost of £ 1/unit and second-stage cost of £ 0.5/unit, the code below will

calculate the sampling strategy that optimises the precision of the coefficient for Surgery (surg) : see output

below.
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data(cass2)

y_cass2[,1]            #response variable

z_cass2[,c(2,3)]       #auxiliary variable

x_cass2[,c(2,4:9)]     #predictor variables

# run CODING function to see in which order we should enter prevalences

coding(x=x,y=y,z=z)

[1] "For calls requiring n1 or prev as input, use the following order"

      ylevel sex wtcat new.z n2

 [1,]      0   0     1     1 10

 [2,]      0   1     1     2 10

 [3,]      0   0     2     3 10

 [4,]      0   1     2     4 10

 [5,]      0   0     3     5 10

 [6,]      0   1     3     6 10

 [7,]      1   0     1     1  8

 [8,]      1   1     1     2 10

 [9,]      1   0     2     3 10

[10,]      1   1     2     4 10

[11,]      1   0     3     5 10

[12,]      1   1     3     6 10

# supplying the prevalence (from Table 5, Reilly 1996)

prev_c(.0197823937,0.0544015826,0.1339020772,0.0503214639,0.6698813056,

0.0467359050,0.0009891197,0.0022255193,0.0040801187,0.0032146390,

0.0127349159,0.0017309594)

# optimise surg coefficient

budget(x=x,y=y,z=z,var="surg",prev=prev,b=10000,c1=1,c2=0.5)

[1] "please run coding function to see the order in which you"

[1] "must supply the first-stage sample sizes or prevalences"

[1] " Type ?coding for details!"

[1] "For calls requiring n1 or prev as input, use the following order"

      ylevel sex wtcat new.z n2
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 [1,]      0   0     1     1 10

 [2,]      0   1     1     2 10

 [3,]      0   0     2     3 10

 [4,]      0   1     2     4 10

 [5,]      0   0     3     5 10

 [6,]      0   1     3     6 10

 [7,]      1   0     1     1  8

 [8,]      1   1     1     2 10

 [9,]      1   0     2     3 10

[10,]      1   1     2     4 10

[11,]      1   0     3     5 10

[12,]      1   1     3     6 10

[1] "Check sample sizes/prevalences"

$n

[1] 8752

$design

      ylevel zlevel         prev n2   prop samp.2nd

 [1,]      0      1 0.0197823937 10 0.6181      107

 [2,]      0      2 0.0544015826 10 1.0000      476

 [3,]      0      3 0.1339020772 10 0.5107      598

 [4,]      0      4 0.0503214639 10 0.1465       65

 [5,]      0      5 0.6698813056 10 0.1061      622

 [6,]      0      6 0.0467359050 10 1.0000      409

 [7,]      1      1 0.0009891197  8 1.0000        9

 [8,]      1      2 0.0022255193 10 1.0000       19

 [9,]      1      3 0.0040801187 10 1.0000       36

[10,]      1      4 0.0032146390 10 1.0000       28

[11,]      1      5 0.0127349159 10 1.0000      111

[12,]      1      6 0.0017309594 10 1.0000       15

$se

                   [,1]

(Intercept) 1.181028836

sex         0.219738725

weight      0.006671856

age         0.014483114
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angina      0.241016357

chf         0.074636552

lve         0.009852953

surg        0.175539553

5.3 Using the Optimal package in S-PLUS

5.3.1 Installation guide

Our program has been tested under SPLUS 4 for windows. Some modifications may be needed for other

versions. If you have S-PLUS installed on your computer, you can download our program from the

following sites:

 http://lib.stat.cmu.edu/DOS/S/ [STATLIB website]

 http://www.ucc.ie/ucc/depts/pubh/programs/programs.html

The zip file contains a README file where you can find the instructions on how to install the package.

Once the package has been installed you can use the functions by issuing the command 'library(optimal)' in

the S-PLUS session window.

5.3.2 Syntax and features

fixed.n Optimal second stage sampling fractions, subject to fixed sample sizes at the first

                             and second stage

Usage:

     fixed.n (x=x,y=y,z=z,n2=n2,fctvar=NULL,var="var",n1="option",prev="option",frac="option")

Arguments:

     REQUIRED ARGUMENTS

       y : response variable (binary 0-1)

       x : matrix of predictor variables

       z : matrix of the surrogate or auxiliary variables (can be more than one column)

      n2 : size of second stage sample

     var : The name of the predictor variable whose coefficient is to be optimised.  If this is a factor

                variable please see DETAILS at the end of this section.
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and one of the following:

      n1 : vector of the first stage sample sizes for each (y,z) stratum OR

    prev : vector of the estimated prevalences for each  (y,z) stratum,  AND

    frac : the second stage sampling fraction i.e., the ratio of second  stage sample  size to first stage

  sample size  (NOTE: if `prev' is given, `frac' will also be required)

     OPTIONAL ARGUMENTS

  fctvar : the names of any factor variables in the predictor matrix

SIDE EFFECTS:

         A list called `design' consisting of the following items:

  ylevel : the different levels of response variable

  zlevel : the different levels of first stage variables z.

      n1 : the first stage sample size for each (`ylevel',`zlevel') stratum

      n2 : the sample size of pilot observations for each (`ylevel',`zlevel') stratum

    prop : optimal 2nd stage sampling proportion for each (`ylevel',`zlevel') stratum

samp.2nd : optimal 2nd stage sample size for each (`ylevel',`zlevel') stratum

          and a list called `se' containing:

      se : the standard errors of estimates achieved by the optimal design.

budget Optimal sampling design for 2-stage studies with fixed budget

Usage:

     budget (x=x,y=y,z=z,prev=prev,fctvar=NULL,var=NULL,b=b,c1=c1,c2=c2)

Arguments:

     REQUIRED ARGUMENTS

       y : response variable (binary 0-1)

       x : matrix of predictor variables

       z : matrix of the surrogate or auxiliary variables (can be more than one column)

    prev : the prevalence of each (y,z) stratum, where (y,z) is the different levels of y and z

     var : The name of the predictor variable whose coefficient is to be optimised. If this is a factor

                variable please see DETAILS at the end of this section.

       b : the total budget available
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      c1 : the cost per first stage observation

      c2 : the cost per second stage observation

     OPTIONAL ARGUMENTS

  fctvar : the names of any factor variables in the predictor matrix

SIDE EFFECTS:

     The following lists will be returned:

       n : the optimal number of observations (first stage sample size)

  design : a list consisting of the following items:

  ylevel  : the different levels of the response variable

 zlevel  : the different levels of first stage covariates z.

  prev  : the prevalence of each (ylevel,zlevel) stratum

       n2  : the sample size of pilot observations for each (ylevel,zlevel) stratum

   prop  : optimal 2nd stage sampling proportion for each (ylevel,zlevel) stratum

      samp.2nd: optimal 2nd stage sample size for each (ylevel,zlevel) stratum

      se : the standard error of estimates achieved by the optimal design

precision Optimal sampling design for 2-stage studies with fixed precision

Usage:

     precision (x=x,y=y,z=z,prev=prev,fctvar=NULL,var=NULL,prc=prc,c1=c1,c2=c2)

 Arguments:

  REQUIRED ARGUMENTS

       y : response variable (binary 0-1)

       x : matrix of predictor variables

       z : matrix of the surrogate or auxiliary variables (can be more than one column)

    prev : the prevalence of each (y,z) stratum, where (y,z) is the different levels of y and z

     var : The name of the predictor variable whose coefficient is to be optimised. If this is a factor

                variable please see DETAILS at the end of this section.

     prc : the fixed variance of `var' coefficient

      c1 : the cost per first stage observation

      c2 : the cost per second stage observation
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     OPTIONAL ARGUMENTS

  fctvar: the names of any factor variables in the predictor matrix

SIDE EFFECTS:

     The following lists will be returned:

       n : the optimal number of observations (first stage sample size)

  design : a list consisting of the following items:

  ylevel : the different levels of response variable

  zlevel : the different levels of first stage covariates z.

  prev : the prevalence of each (ylevel,zlevel) stratum

          n2 : the sample size of pilot observations for each (ylevel,zlevel) stratum

  prop : optimal 2nd stage sampling proportion for each (ylevel,zlevel) stratum

      samp.2nd : optimal 2nd stage sample size for each (ylevel,zlevel) stratum

     var : the variance of estimates achieved by the optimal design

    cost : the minimum study cost

coding combines two or more surrogate/auxiliary variables into a vector

Usage:

coding(x=x,y=y,z=z,output=F)

      REQUIRED ARGUMENTS

       y : response variable (should be binary 0-1)

       x : matrix of predictor variables for regression model

       z : matrix of any surrogate or auxiliary variables

     OPTIONAL ARGUMENTS

  output : logical value; if it's TRUE(T) the original surrogate or auxiliary variables and the re-coded

  auxiliary variables will be returned. The default is False (F).

SIDE EFFECTS:

This function does not return any values except if output=T.

    If used with only second stage (i.e. complete) data, it will print the following:

ylevel : the distinct values (or levels) of y
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z1 ... zi : the distinct values of first stage variables  z1 ... zi

   new.z : recoded first stage variables. Each value represents a unique combination of

 first stage variable values.

      n2 : second stage sample sizes in each (`ylevel',`new.z') stratum.

If used with combined first and second stage data (i.e. with NA for  missing values), in addition to the

above items, the function will also print the following:

      n1 : first-stage sample sizes in each (`ylevel',`new.z') stratum.

DETAILS:

The response, predictor and surrogate variables have to be numeric. If you have multiple columns of z, say

(z1,z2,..zn), these will be recoded into a single vector "new.z". These `new.z' values are reported as `new.z'

in the output (see `value').

       z1  z2  z3  new.z

        0   0   0      1

        1   0   0      2

        0   1   0      3

        1   1   0      4

        0   0   1      5

        1   0   1      6

        0   1   1      7

        1   1   1      8

If some of the value combinations do not exist in your data, the function will adjust accordingly.  For

example if the combination  (0,1,1) is absent, then (1,1,1) will be coded as 7.

If you wish to optimise the coefficient of a factor variable, you need to specify which level of the variable

to optimise.  For example, if "weight" is a factor variable with 3 categories 1,2 and 3 then var="weight2"

will optimise the estimation of the coefficient which measures the difference between weight=2 and the

baseline (weight=1). By default the baseline is always the category with the smallest value.
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5.3.3 Examples
Here, we show the same example as in section 5.2.3 above. We assume, as before, that we have a £10,000

budget and the first stage and second stage cost per observations are £ 1 and £ 0.5 respectively. Suppose we

would like to optimise the precision of the urgency of surgery (surg) coefficient.

y_cass2[,1]            #response variable

z_cass2[,c(2,3)]       #auxiliary variables

x_cass2[,c(2,4:9)]     #predictor variables

# run CODING function to see in which order we should enter prevalences

coding(x=x,y=y,z=z)     

[1] "For calls to ms.nprev,input n1 or prev in the following

(ylevel,new.z) order!!"

   ylevel z1 z2 new.z n2

 1      0  0  1     1 10

 2      0  1  1     2 10

 3      0  0  2     3 10

 4      0  1  2     4 10

 5      0  0  3     5 10

 6      0  1  3     6 10

 7      1  0  1     1  8

 8      1  1  1     2 10

 9      1  0  2     3 10

10      1  1  2     4 10

11      1  0  3     5 10

12      1  1  3     6 10

# enter the prevalences (from Table 5, Reilly (1996))

prev_c(.0197823937,0.0544015826,0.1339020772,0.0503214639,0.6698813056,

0.0467359050,0.0009891197,0.0022255193,0.0040801187,0.0032146390,

0.0127349159,0.0017309594)

# optimise the surg coefficient

budget(x=x,y=y,z=z,var="surg",prev=prev,b=10000,c1=1,c2=0.5)
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[1] "please run coding function first, it will give you idea on which order"

[1] "you have to supply the first sample sizes. Type ?coding for details!"

[1] "For calls to ms.nprev,input n1 or prev in the following (ylevel,new.z)

order!!"

   ylevel z1 z2 new.z n2

 1      0  0  1     1 10

 2      0  1  1     2 10

 3      0  0  2     3 10

 4      0  1  2     4 10

 5      0  0  3     5 10

 6      0  1  3     6 10

 7      1  0  1     1  8

 8      1  1  1     2 10

 9      1  0  2     3 10

10      1  1  2     4 10

11      1  0  3     5 10

12      1  1  3     6 10

[1] "Check sample sizes/prevalences"

$n:

[1] 8752

$design:

   ylevel zlevel         prev n2   prop samp.2nd

 1      0      1 0.0197823937 10 0.6181      107

 2      0      2 0.0544015826 10 1.0000      476

 3      0      3 0.1339020772 10 0.5107      598

 4      0      4 0.0503214639 10 0.1465       65

 5      0      5 0.6698813056 10 0.1061      622

 6      0      6 0.0467359050 10 1.0000      409

 7      1      1 0.0009891197  8 1.0000        9

 8      1      2 0.0022255193 10 1.0000       19

 9      1      3 0.0040801187 10 1.0000       36

10      1      4 0.0032146390 10 1.0000       28

11      1      5 0.0127349159 10 1.0000      111

12      1      6 0.0017309594 10 1.0000       15
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$se:

                     SE

(Intercept) 1.181027372

        sex 0.219738497

         wt 0.006671847

        age 0.014483091

     angina 0.241016110

        chf 0.074636521

        lve 0.009852944

       surg 0.175539344

5.4 Using the Optimal package in STATA

5.4.1 Installation guide

We have written the package in STATA version 6, so you need to have STATA version 6 or later. The

optimal package can be installed directly from the STATA website by following these instructions:

From inside STATA, type:

net cd stb

net cd stb58

net describe sxd2

net install sxd2

net get sxd2

After executing the last command, the optimal package is installed in your computer. To test if you have

installed all the components you can type help optfixn or help optbud or help optprec to try

some of the examples.

IMPORTANT:

Since we submitted the program to the STB we have improved the calling syntax and the output format.

The most recent version is available at  http://www.ucc.ie/depts/ucc/pubh/programs/programs.html

Note that this program is slightly different from the STB version. The most noticeable change is that the

functions now call the name of the variable to be optimised in the optvar option instead of the position of

the variable in the predictor matrix.
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Since the syntax and features section below are written based on the version in our website, there may be

some minor differences from the STB help files.

5.4.2 Syntax and features

optfixn optimal sampling design for 2-stage study with fixed second stage sample size

Command line:

optfixn depvar [indepvars] [if exp] [in range] [, first[varlist] n1[vecname] n2(#) optvar(varname) coding(#)

Options

first[varlist]  specifies the first stage variables

n1[vecname]           vector of first stage sample sizes for each stratum formed by different levels of

dependent variable and first stage covariates.

n2(#)         second stage sample sizes

optvar    the covariate whose variance estimate is to be minimised (i.e. optimised). If the

covariate is a factor (categorical) variable, you need to specify the level whose

coefficient is to be optimised (see ANALYSIS WITH CATEGORICAL

VARIABLES)

coding(#)  a logical flag: default of 0 (FALSE) means that prior to calling the optfixn

function you have run the "coding" function ( help coding for details) to create

the vector grp_yz, containing the distinct groups (strata)  formed by the different

levels of response (Y) and first stage covariates (Z). If you have not run

"coding" and you call the "optfixn" function with coding=1, the grp_yz vector

will be created within the optfixn function, but it is imperative that the vector

[vecname] is provided to optfixn in the correct order! For this reason, we

strongly suggest that any call to optfixn is preceded by a call to coding. For

more details about the coding function see section 4.4 Using the Meanscore

package in STATA.
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optbud Optimal sampling design for 2-stage studies with fixed budget

Command line:

optbud depvar [indepvars] [if exp] [in range] [, first[varlist] prev[vecname] b(#) c1(#) c2(#)

optvar(varname) coding(#)

Options:

first[varlist] specifies the first stage variables

prev[vecname]  vector of prevalences for each stratum formed by different levels of dependent

variable and first stage covariates.

b(#)        available budget

c1(#)       cost per study subject at the first stage

c2(#)       cost per study subject at the second stage

optvar(varname)  the covariate whose variance estimate is to be minimised (i.e. optimised). If the

covariate is a factor variable you need to specify the level whose coefficient is to

be optimised (see ANALYSIS WITH CATEGORICAL VARIABLES).

coding(#)   a logical flag: default of 0 (FALSE) means that prior to  calling the optbud

function you have run the "coding" function ( help coding for details) to create

the vector grp_yz, containing the distinct groups (strata)  formed by the different

levels of response (Y) and first stage covariates (Z). If you have not run

"coding" and you call the "optbud" function with coding=1, the grp_yz vector

will be created within the optbud function, but it is imperative that the vector

[vecname] is provided to optbud in the correct order! For this reason, we

strongly suggest that any call to optbud is preceded by a call to coding. For more

details about the coding function see at section 4.4 Using the Meanscore

package in STATA.

optprec Optimal sampling design for 2-stage studies with fixed precision

Command line:

optprec depvar [indepvars] [if exp] [in range] [, first[varlist] prev[vecname] prec(#) c1(#) c2(#)

optvar(varname) coding(#)

Options:

first[varlist] specifies the first stage variables

prev[vecname]   vector of prevalences for each stratum formed by different levels of dependent

variable and first stage covariates
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prec(#)     the variance we want to achieve, while minimising cost

c1(#)       cost per study subject at the first stage

c2(#)       cost per study subject at the second stage

optvar(varname)   the covariate for which we want to achieve a variance=prec. If the covariate is a

factor variable you need to specify the level whose coefficient is to be optimised

(see ANALYSIS WITH CATEGORICAL VARIABLES).

coding(#)   a logical flag: default of 0 (FALSE) means that prior to calling the optprec

function you have run the "coding" function ( help coding for details) to create

the vector grp_yz, containing the distinct groups (strata)  formed by the different

levels of response (Y) and first stage covariates (Z). If you have not run

"coding" and you call the "optprec" function with coding=1, the grp_yz vector

will be created within the optprec function, but it is imperative that the vector

[vecname] is provided to optprec in the correct order! For this reason, we

strongly suggest that any call to optprec is preceded by a call to coding. For

more details about the coding function see section 4.4 Using the Meanscore

package in STATA.

ANALYSIS WITH CATEGORICAL VARIABLES

When we have categorical predictor variables we usually fit separate coefficients for each category. The xi

command prefix is a standard STATA command which can be used with optfixn, optbud and optprec to

accommodate this need. STATA will create some new variables with names I`varname'_`level'. For

example variable Isex_1 is a categorical variable for variable SEX with level = 1. If you want to optimise

the variance estimates for this variable you should set optvar(Isex_1) in the command syntax.

xi: optfixn mort i.sex age,first(sex) n1(fstsamp) n2(1000) optvar(Isex_1)

5.4.3 Examples

We illustrate the same example as discussed in sections 5.2.3 and 5.3.3. We assume, as before, that we have

a £10,000 budget and the first stage and second stage cost per observation are £ 1 and £ 0.5 respectively.

The first stage variables are sex and categorical weight. Suppose we would like to optimise the precision of

the urgency of the surgery (surg) coefficient. The following STATA commands will run the analysis:

use wtpilot

coding mort sex wtcat

** enter the prevalences in the order suggested by coding function
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** NOTE: the transpose operator ' is essential

matrix prev=(0.02,.134,.670,.054,.05,.047,.001,.004,.013,.002,.003,.002)'

** optimise the surg coefficient

optbud mort sex-surg,first(sex wtcat) prev(prev) optvar(surg) b(10000) c1(1) c2(0.5)

OUTPUT:
the second stage sample sizes

----------+-----------

group(mor |

t sex     |

wtcat)    |      Freq.

----------+-----------

        1 |         10

        2 |         10

        3 |         10

        4 |         10

        5 |         10

        6 |         10

        7 |          8

        8 |         10

        9 |         10

       10 |         10

       11 |         10

       12 |         10

----------+-----------

please check the sample sizes!

grp_yz   mort    sex     wtcat  grp_z    prev  n2_pilot

     1      0      0         1      1     .02      10

     2      0      0         2      2    .134      10

     3      0      0         3      3     .67      10

     4      0      1         1      4    .054      10

     5      0      1         2      5     .05      10

     6      0      1         3      6    .047      10

     7      1      0         1      1    .001       8

     8      1      0         2      2    .004      10

     9      1      0         3      3    .013      10
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    10      1      1         1      4    .002      10

    11      1      1         2      5    .003      10

    12      1      1         3      6    .002      10

the optimal sampling fraction (sample size) for grp_yz 1 = .604 (106)

the optimal sampling fraction (sample size) for grp_yz 2 = .504 (591)

the optimal sampling fraction (sample size) for grp_yz 3 = .106 (624)

the optimal sampling fraction (sample size) for grp_yz 4 = 1 (473)

the optimal sampling fraction (sample size) for grp_yz 5 = .146 (64)

the optimal sampling fraction (sample size) for grp_yz 6 = 1 (412)

the optimal sampling fraction (sample size) for grp_yz 7 = 1 (9)

the optimal sampling fraction (sample size) for grp_yz 8 = 1 (35)

the optimal sampling fraction (sample size) for grp_yz 9 = 1 (114)

the optimal sampling fraction (sample size) for grp_yz 10 = 1 (18)

the optimal sampling fraction (sample size) for grp_yz 11 = 1 (26)

the optimal sampling fraction (sample size) for grp_yz 12 = 1 (18)

the optimal number of obs = 8756

the minimum variance for surg : .0311946

total budget spent:  10001

Note:

The optimal study size and second stage sampling fractions are slightly different from those obtained using

R and S-PLUS, but this is simply because we rounded the prevalence vector.
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6 Comparative studies

6.1 Motivation

The purpose of this chapter is to compare our methods with other approaches to the analysis of incomplete

data and optimal two-stage sampling.

Meanscore is only one of many approaches to the analysis of incomplete data. There are many other

methods such as multiple imputation and likelihood-based methods such as pseudo-likelihood (Cain and

Breslow, 1988) and maximum likelihood (Breslow and Holubkhov, 1997). In section 6.2, we compare

meanscore with hotdeck multiple imputation, while in section 6.3, we compare meanscore to other

likelihood-based methods.

Our optimal sampling methodology relies on the Meanscore method (in particular the variance formula).

We looked for published work (and associated software) which adopted an alternative approach so that we

could compare the performance of our method. This is described in section 6.4

6.2 Meanscore and Hotdeck multiple imputation

Hotdeck is a non-parametric version of multiple imputation. It refers to a procedure in which each

incomplete case is "filled-in" (i.e. imputed) using several cases that are sampled randomly (with

replacement) from the list of similar complete cases to form several imputed data sets. The hotdeck

estimate is the average of the standard estimates from all imputed data sets. However the usual multiple

imputation variance formula when applied to hotdeck multiple imputation underestimates the between-

imputation variance. This is because simple hotdeck multiple imputation acts as if the distribution of non-

missing sample values was exactly the same as the population distribution of the values (Little and Rubin,

1987). The Approximate Bayesian bootstrap (ABB) method can be used to increase the between-

imputation variability so that hotdeck can be implemented using a two-step procedure (Mander and

Clayton, 2000) to yield unbiased variance estimate.

To investigate the behaviour of the various estimators and more importantly their variance estimates, we

generated 200 observations of a standard normal predictor variable X~ N(0,1). The response variable (Y)

was then generated as a Bernoulli random variable with p= exp(x)/(1+exp(x)).  A dichotomous surrogate

variable for X, called Z, was generated as follows:

Z = 1, X >0

         0, otherwise 
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We deleted 100(1 )%Vρ−  observations of the predictor variable X, where Vρ  is the validation sampling

fraction, using both a random and a balanced sampling scheme. We used two different sampling fraction,
Vρ =0.25, and Vρ =0.5. Under each setting, 3 and 10 imputations were used to compare the effect on the

estimates of the increasing number of imputations. We performed 500 simulations to study the variability

of the estimates. In every simulation the data are analysed using 3 different methods; simple hotdeck,

hotdeck using the ABB method and the meanscore method.  We developed R functions for simple

hotdeck and hotdeck using the ABB method. The function for hotdeck using the ABB method was built

using the same procedure suggested by Mander and Clayton (2000). Several statistics were calculated and

compared:

Mean(β) the average of the estimate from all 500 simulations.

Monte Carlo SE the 'true' standard error of the estimate computed from 500 estimates as square

root of 500

_
2500

1

( )
499

i

i

β β
=

−∑ , where βi is the estimate from the ith  simulation and 
_

500β

is the average of the estimate as listed in Mean(β) column.

Estimated SE represents the average over 500 simulations of the estimated standard error
using the appropriate variance formula for the methods. This was computed as

the square root of 
500

1

1 var( )
500

i
i

β
=
∑ , where var(βi) is the variance estimate from

the ith simulation.

Bias measures the bias of the standard error estimates of each method: it was

computed as the difference between the Monte Carlo SE and estimated standard

error, relative to the Monte Carlo standard error.

95% coverage the proportion of simulations where the nominal 95 % confidence interval for β

covers the true β=1.

The results are presented Table A-1.

As expected, all methods give unbiased estimates for β=1, with the Meanscore giving the most stable

estimate (least variability). Not surprisingly, the largest departure from β=1 occurs when the validation

sampling fraction is small (ρv=0.25) and there are small number of imputations (3 imputations).
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By comparing the 'estimated SE' and 'Monte Carlo SE' columns under each sampling scheme we see that

simple hotdeck consistently gives standard error estimates which are biased downward for all sampling

fractions and number of imputations.

Examining the interval estimates, nominal 95% confidence intervals for the simple hotdeck gives a low

coverage, which is not suprising in view of the bias discussed above. This effect is more obvious for

smaller validation sampling fraction, where the coverage of the nominal 95% confidence interval never

exceeded 87 %.  The Mean Score and ABB hotdeck meanwhile give good coverage for all settings.

We conclude that the Meanscore method works as well as the hotdeck multiple imputation using

Approximate Bayesian Boostrap.  This conclusion is supported by Reilly and Pepe (1997) who proved that

the meanscore estimate has the same asympotic distribution as the hotdeck estimate with infinite number of

imputations. But meanscore has an advantage since it can produce the estimates in only one pass through

the data whereas hotdeck is more demanding on computer time, especially if the data set is large.

6.3 Meanscore and other likelihood-based method

We compare Meanscore with three other methods of estimation for missing covariate data. Those methods

are pseudo-likelihood (Breslow and Cain, 1988), weighted-likelihood (Flanders and Greenland, 1991) and

maximum likelihood (Breslow and Holubkhov, 1997). The S-PLUS functions for implementing the last

three methods were developed by Breslow and Chatterjee.  The programs can be downloaded from

http://www.biostat.washington.edu/~norm/software.html. Readers interested in the theoretical details of

those methods should consult the original articles.

We used the following 5 data sets to compare the performance of the methods:

1. Simulated dataset of 1000 2nd stage observations from the CASS dataset.

The "cass1" pilot dataset (see Table 5-1 p. 34, for more details about this dataset) was used to obtain

this 2nd stage sample, optimal with respect to age. We used the first stage sample size from Table 3 of

Reilly (1996).

2. Simulated dataset of 1000 2nd stage observations from the CASS dataset.

The "cass2" pilot dataset (see Table 5-1 p. 34 for more details about this dataset) was used to obtain

this 2nd stage sample, optimal with respect to left ventricular diastolic blood pressure (LVDBP). We

used the first stage sample size from Table 5 of Reilly (1996).
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3. Ectopic pregnancy data set (Sherman, et.al, 1990).

This dataset, which was analysed in Table 3 of Reilly and Pepe (1995) is from a case-control study of

the association between ectopic pregnancy and sexually transmitted diseases(STDs).  The total sample

size is 979 consisting of 264 cases and 715 controls. The variables collected from the beginning of the

study included gonnorhoea, contraceptive use and sexual partners. One year after the study began, the

investigators started  collecting serum samples for determining chlamydia antibody status in all cases

and in a 50 percent subsample of controls.  As a result, only 327 out of the 979 patients have

measurements for chlamydia antibody. This dataset is described briefly in section 4.1.

4. National Wilms Tumor dataset with Institutional Histology as the first stage variable

(Breslow and Chatterjee, 1999)

This dataset comes from the National Wilms Tumor Study Group (NWTSG). There are 3 variables in

the dataset; the treatment outcome (relapse or not), the type of tumor ('favourable histology' (FH) or

'unfavourable histology' (UH)) measured at the NWTSG pathology centre (Central Histology) and the

type of tumor predicted by pathologists at the participating institutions (Institutional Histology). There

are 4088 patients in the original dataset. In this dataset the treatment outcome is the response variable,

the Institutional Histology is the first stage variable and the Central Histology is the second stage

variable. A second stage sample of 1142 observations were drawn using a "balanced" sampling

scheme. The term "balanced" here is used as the investigators attempted to sample all relapsed cases

and those with UH tumors predicted by institutional pathologists. The sampling fraction for controls

with FH tumor was chosen so that the number of controls and cases in the dataset are the same.

5. National Wilms Tumor data with Institutional Histology and Stage of tumor as the first stage

variable (Breslow and Chatterjee, 1999)

This dataset contain the same observations as dataset 4 above. In addition to Institutional Histology,

we also have Stage of Tumor as a first stage variable.

Each dataset was analysed using 4 different methods (meanscore, weighted likelihood, pseudo likelihood

and maximum likelihood). The results are presented in Table A-2 - Table A-6.

From those tables we note the similar performance of all methods. In particular it is encouraging to see that

the performance of Meanscore is comparable to the full maximum likelihood method even when the 2nd

stage sampling fraction is small. As expected, maximum likelihood is slightly more efficient, yielding

smaller standard errors. However, this small gain is achieved at the expense of a more complex algorithm

and lack of robustness when the model being fit is wrong (Breslow and Chatterjee, 1999).
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6.4 Optimal Two-stage (Validation) Studies

The paper by Holcroft and Spiegelman (1999) derives a method for two-stage (validation) sampling for

estimation of the odd-ratio (OR) in a logistic regression analysis, essentially the same problem we

addressed. These authors offer a FORTRAN programme for calculating the optimal design. We obtained

the program from Dr. Spiegelman (stdls@channing.harvard.edu). The program uses the  FFSQP routine by

Dr. Andre Tits (andre@isr.umd.edu), which is free for non-commercial purposes. After some email

correspondence we managed to get a copy of the routine, by linking it with the main program, we could run

the optimal design calculations.

This program only accommodates a single predictor and one surrogate variable in the analysis. In addition

the user must supply the prevalence of the outcome, P(Y=1), the sensitivity and specificity of the surrogate

variable, the prevalence of the surrogate variable, P(V=1), the odd-ratio estimates and the 2nd stage

sampling fraction. Unfortunately the program failed to run for many settings, even using the same

parameters the authors considered in the paper. For one setting for which the program successfully ran, it

returned the optimal sampling design for different sampling schemes: OPTIMAL, BALANCED,

RANDOM, CASE-CONTROL and PROSPECTIVE.  The OPTIMAL sampling scheme here is a hybrid

design which is the same as what we considered in our algorithm. Hence we compared the OPTIMAL

sampling scheme with our results using the same set of parameters. However, it appears that the results

given by Holcroft and Spiegelman's algorithm is counter-intuitive in the sense that their OPTIMAL design

does not "like" to sample from rare cells. Our algorithm, conversely, samples more from rare cells,

indicating that observations in rare cells tend to be more informative. We have communicated our findings

to the authors, but at the time of this writing we have not had any response. Our assessment to their

program is that it is not user-friendly, not general enough (it can only take single predictor) and in its

current form, we could not recommend it.
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7 Rweb modules for optimal sampling: development and
configuration

Rweb is a Web based interface to the R statistical package. R is a freely distributed open source system for

statistical computation and graphics (Hornik, 2000). R was initially written by Ross Ihaka and Robert

Gentleman and is available for download from any CRAN (Comprehensive R Archive Network) mirror

site. See R home page at <http://www.r-project.org/> for more information about downloading and

installing R.

Rweb was developed by Banfield (1999) to provide an easy to use interface to all of R statistical and data

management functions. Rweb is available at http://www.math.montana.edu/Rweb/index.html  It comes in

three versions:

• The basic Rweb code window will run on most browsers but requires knowledge of R

programming,

• The JavaScript version provides a more sophisticated interface but requires a JavaScript-capable

browser like Netscape Navigator or Microsoft Internet Explorer,

• Rweb modules: these are point and click interfaces that allow the user to perform standard

statistical analyses on built-in or user-supplied datasets.

Rweb currently has modules for summary statistics, two-way tables, ANOVA and linear regression. We

developed four additional modules for calculating the optimal two-stage sampling strategies in Reilly

(1996). The following section briefly describes the implementation of these modules. The rest of the

document will explain how to install and configure them.

7.1 Implementation of the optimal sampling modules:

Rweb modules are implemented as dynamically created HTML forms. Behind the scenes, the scripts

collect user choices and convert them to R code. Rweb then runs R, in batch mode, with the submitted

code, and returns the output (printed and graphical) in standard HTML format. The optimal sampling

modules were developed using this same approach. Each module is implemented in two script files. The

setup script builds the HTML form where users select the options they want. The run script analyzes and

validates user input and builds a text file that contains the appropriate R commands for the selected options.

For our application we created a cut down version of Rweb with new improved opening and help pages.
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This version excludes the code window in order to minimise the security risks associated with giving direct

access to R and operating system commands.

7.2 Software needed to run Optimal Sampling Software on Rweb

1.  Unix/Linux Operating System:

Rweb was originally developed on a Sun workstation. We installed and tested Rweb on an Intel Pentium

machine running RedHat Linux version 6.2 without any modifications.  Linux is a free open source

operating system that is widely used to power Internet servers. For more information on downloading and

installing Linux visit www.redhat.com.

2. Unix Web server e.g. the Apache Web Server:

We used Apache to test Rweb in our setup. Rweb does not use any specific feature of the Apache server so

it should run on any Unix Web server. Apache is a free open source web server and is available for

download from many web sites including www.apche.org.

3. R version 1.1.1 or greater:

R is downloadable from http://www.r-project.org.

4. Perl version 5.004 or greater:

Perl is downloadable from http://www.perl.com/pace/pub/perldocs/latest.html.

5. The following Perl modules:

• LWP Perl module for accessing URL's through Perl. The LWP module is part of libwww and is

available at: http://www.perl.com/CPAN-local//CPAN.html#www.

• CGI Perl module for uploading local files and formatting some of the html output. It can be

downloaded from < http://stein.cshl.org/WWW/software/CGI/>.

6. Ghostscript.

Ghostscript is available at:http://www.cs.wisc.edu/~ghost/aladdin/get510.html.

7. The NetPBM libaray (pstopnm, ppmtogif, pnmcrop, and pnmflip)

This is used by Rweb to convert R images to GIF images. It can be downloaded from

ftp://wuarchive.wustl.edu/graphics/graphics/packages/NetPBM/.

8. The Rweb package, version 1.03:



62

Downloadable from http://www.math.montana.edu/Rweb/Resources.html. Read the included Readme file

for information on how to install and configure Rweb.

9. The optimal sampling R package (Section 5.2).

This library contains the optimal two-stage sampling functions. Consult your R documentation for

information on how to install R add-on packages. The package is available from

<http://www.ucc.ie/depts/ucc/pubh/programs/programs.html.>.

10. The optimal sampling Rweb modules.

This module moves the CGI scripts to the AnalysisModules subdirectory in the Rweb CGI directory. It

also moves the data files and their associated description files to the DataSets directory.



63

8 Using the Rweb optimal sampling modules
The opening HTML page introduces the three RWeb modules for calculating the optimal two-stage

sampling designs as explained above. Rweb is a Web based interface to R (a statistical analysis package)

that takes the user-submitted code, runs R on the code (in batch mode), and returns the output (printed and

graphical).

Clicking on a link at the bottom of this opening page brings the user to the main screen. This screen allows

the user to:

1. Select a module to use.

There are three modules and one supporting function named "coding". The fixed.n function

calculates the sampling fractions at the second stage (given fixed first- and second-stage

sample sizes) which will minimise the variance of a specified co-efficient in the regression

model. The budget function calculates the first-stage sample size and the second stage

sampling fractions that will maximise precision of a specified co-efficient subject to a given

budget. The precision function calculates the first-stage sample size and the second stage

sampling fractions that will minimise cost subject to a given precision for a specified co-

efficient. The supporting function, coding combines two or more first stage covariates into a

vector i.e. it recodes a matrix of categorical variables into a vector that takes a unique value for

each combination. Before running any of the three modules, you should run the coding

function, to see in which order you must supply the vector of prevalences.

2. Supply the dataset to be used in the analysis.

Small datasets can be copied and pasted into the text box near the bottom of the screen. One

can also type in a URL for a Web-accessible dataset. For testing purposes, there are two built-

in datasets provided (cass1 or cass2). The data must be in text format where lines represent

observations and columns represent variables, are separated by spaces. The first line should

contain the variable names separated by spaces.

When the module and a dataset have been selected the user clicks the ‘submit’ button. The system will

attempt to open the dataset and report any errors encountered in the process. If no errors were detected, you

will be presented with the analysis page. The options in this page will depend on the module you selected

in the previous step. You simply follow the instructions on the screen and click ‘submit’ when you have

provide d all the parameters required for the analysis.
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Appendix A

Results of Comparative Study of Meanscore and Hotdeck

Table A-1 Simulation Studies to Compare Meanscore and Hotdeck Multiple Imputation
Random Sampling Balanced SampingN ρv No. Imp Method

Mean (β) Monte
Carlo

SE

Estimated
SE

Bias (%) 95 %
coverage

Mean (β) Monte
Carlo

SE

Estimated
SE

Bias (%) 95 %
coverage

200 0.5 10 Meanscore 1.032 0.2335 0.2268 -2.87 0.936 1.046 0.2426 0.2283 -5.89 0.948
ABB 1.044 0.2420 0.2282 -5.70 0.942 1.055 0.2468 0.2286 -7.37 0.938
Hotdeck 1.037 0.2370 0.2101 -11.35 0.912 1.05 0.2462 0.2131 -13.44 0.918

200 0.25 10 Meanscore 1.023 0.3166 0.2896 -8.53 0.934 1.046 0.3084 0.2866 -7.07 0.948
ABB 1.052 0.3332 0.2934 -11.94 0.924 1.072 0.3222 0.2854 -11.42 0.942
Hotdeck 1.029 0.3195 0.2186 -31.58 0.850 1.053 0.3113 0.2218 -28.75 0.844

200 0.5 3 Meanscore 1.037 0.2388 0.2284 -4.36 0.938 1.037 0.243 0.2279 -6.21 0.944
ABB 1.048 0.2520 0.2336 -7.30 0.936 1.045 0.2532 0.2309 -8.81 0.942
Hotdeck 1.04 0.2444 0.2149 -12.07 0.928 1.041 0.2476 0.2134 -13.81 0.906

200 0.25 3 Meanscore 1.064 0.3097 0.2931 -5.36 0.940 1.057 0.2925 0.2884 -1.40 0.960
ABB 1.096 0.3482 0.2924 -16.03 0.932 1.087 0.32 0.302 -5.63 0.936
Hotdeck 1.068 0.3146 0.2250 -28.48 0.866 1.068 0.3035 0.2276 -25.01 0.862
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Comparison of Meanscore, weighted likelihood (WL), pseudo likelihood (PL) and nonparametric maximum likelihood (ML)

Table A-2 Comparison of meanscore and other likelihood based methods using 1000 2nd stage observations from CASS data

     (optimal with respect to age, see section 6.3)

Variable Meanscore WL PL ML
Coef SE Coef SE Coef SE Coef SE

Intercept -7.75272 0.62692 -7.75284 0.67666 -7.59179 0.63523 -7.59180 0.63485
Sex 0.59564 0.17130 0.59564 0.17340 0.61852 0.16995 0.61852 0.16486
Age 0.06801 0.01053 0.06801 0.01141 0.06515 0.01064 0.06515 0.01066

Table A-3 Comparison of meanscore and other likelihood based methods using 1000 2nd stage observations from CASS data

                   (optimal with respect to left ventricular blood pressure, see section 6.3)

Meanscore WL PL MLVariable
Coef SE Coef SE Coef SE Coef SE

(Intercept) -6.09724 1.00602 -6.09740 1.11720 -5.91887 1.01303 -5.93357 1.00116
Sex 0.21135 0.21497 0.21134 0.22433 0.27818 0.20438 0.29358 0.19507
Weight -0.01584 0.00797 -0.01584 0.00817 -0.01563 0.00772 -0.01533 0.00738
Age 0.04594 0.01194 0.04595 0.01371 0.04304 0.01248 0.04284 0.01247
Angina 0.13795 0.29977 0.13796 0.30433 0.15164 0.29085 0.15032 0.29080
Chf 0.36390 0.09456 0.36391 0.09486 0.40086 0.09380 0.40235 0.09355
LVDBP 0.02521 0.01172 0.02521 0.01137 0.02112 0.01107 0.02125 0.01107
Surg 1.04214 0.19520 1.04215 0.20183 0.99580 0.18658 1.00156 0.18634
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Table A-4 Comparison of meanscore and other likelihood based methods using the Ectopic pregnancy data (see section 6.3)

Variable Meanscore WL PL ML
Coef SE Coef SE Coef SE Coef SE

Intercept -0.78892 0.21727 -1.58107 0.28143 -1.55017 0.28756 -1.60172 0.28130
Chlam 0.90485 0.31592 0.85737 0.31862 0.89721 0.30574 0.89400 0.30467
Gonn -0.05172 0.30077 0.06865 0.33482 0.03353 0.35763 0.05117 0.32208
Contracept -2.36030 0.18715 -2.25818 0.23860 -2.25721 0.23934 -2.26657 0.23400
sexpatr 0.74156 0.23526 0.85534 0.31331 0.81079 0.30252 0.87355 0.30779

Table A-5 Comparison of meanscore and other likelihood based methods using the NWTSG data with Institutional Histology as the first stage variables

Variable Meanscore WL PL ML
Coef SE Coef SE Coef SE Coef SE

Intercept -3.2032 0.5708 -3.2035 0.5648 -3.2408 0.5518 -3.2590 0.5470
Stage I -1.1781 0.2138 -1.1787 0.2116 -1.0150 0.2085 -1.0172 0.2087
Stage II -0.3742 0.2150 -0.3742 0.2129 -0.2635 0.2064 -0.2647 0.2065
Stage III -0.1461 0.2152 -0.1461 0.2110 -0.1400 0.2067 -0.1407 0.2067
Central Hist 1.8020 0.1522 1.8022 0.1496 1.7876 0.1526 1.8099 0.1324
Age 0.0109 0.0022 0.0109 0.0022 0.0117 0.0021 0.0117 0.0021
Study -0.2088 0.1394 -0.2088 0.1383 -0.2270 0.1332 -0.2282 0.1331
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Table A-6 Comparison of meanscore and other likelihood based methods using the NWTSG data with Institutional Histology and Stage of Tumor as the

                   first stage variables

Variable Meanscore WL PL ML
Coef SE Coef SE Coef SE Coef SE

Intercept -3.2813 0.5495 -3.2815 0.5398 -3.2565 0.5300 -3.2283 0.5282
Stage I -1.1330 0.1718 -1.1335 0.1686 -0.9525 0.1659 -1.0476 0.1502
Stage II -0.3572 0.1646 -0.3572 0.1610 -0.2448 0.1578 -0.3210 0.1408
Stage III -0.3088 0.1627 -0.3088 0.1566 -0.2824 0.1575 -0.3340 0.1384
Central Hist 1.8554 0.1530 1.8555 0.1481 1.7844 0.1498 1.8527 0.1293
Age 0.0113 0.0021 0.0114 0.0021 0.0119 0.0020 0.0115 0.0021
Study -0.2053 0.1392 -0.2053 0.1369 -0.2241 0.1316 -0.2299 0.1326



69

Appendix B

INSTALLATION GUIDELINES

1. Meanscore package in R

The Mean Score method for missing and auxiliary covariate data is

described in the paper by Reilly & Pepe in Biometrika (1995). This

likelihood-based method is asymptotically equivalent to "hot-deck"

multiple imputation (Reilly & Pepe, 1997). Missingness may depend on the

available response and covariate values but not on the unobserved

covariate values (i.e. MAR, Missing At Random) and the method is

applicable to cohort or case-control designs. The subsample of subjects

on whom the incomplete covariate is available is referred to as the

"validation sample" or the "second-stage sample", and the remaining

subjects are the "non-validation sample" or the "first-stage sample"

The code provided here implements a Mean Score analysis for a logistic

regression model where the incomplete covariate(s) may be continuous,

but the first stage covariates and/or auxiliary variables must be

categorical.

INSTALLATION GUIDE

The simplest installation can be done by unzipping the BINARY package

directly to R_HOME/library.

For users familiar with building R packages the full features of the R

help systems can be made available by using the standard command:

`make BUILD=option pkg-meanscore'

executed from R_HOME/src/gnuwin32, after you have unzipped this package

to R_HOME/src/library.

Alternatively you can use the UNIX-type command:

`Rcmd install meanscore'

executed from R_HOME/src/library
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With the simpler installation the function will still work properly but

some nice features of the help systems may be lost.

After you have installed the package, the command

> library(meanscore)

makes available the following 3 functions:

   1. MEANSCORE: this function is called with the combined first-

      and second-stage data where the missing values in the

      incomplete covariate(s) are represented by NA, the usual

      notation in Splus/R.

   2. MS.NPREV: this function is called with the second-stage

      (i.e. complete) data and the first-stage sample sizes

      (or prevalences): if only prevalences are available,

      then estimates are provided but no standard errors.

      Prior to running this function, the CODING function (3.)

      should be run to see the order in which MS.NPREV expects

      the first-stage sample sizes or prevalences to be provided.

   3. CODING: this function recodes multiple columns of first-stage

      covariates into a single vector and displays the coding scheme

Help on these functions and on the illustrative data sets

provided can be viewed using help or ? or the HTML help file system.

This code has only been tested under R 1.2.0 for Windows,

and may need some modifications for use with other

versions or other operating systems.

We would be happy to hear about any bugs that you find, and to

receive any comments or suggestions for improvements.

Marie Reilly PhD. & Agus Salim

Dept. of Epidemiology Dept. of Statistics

University College Cork, University College Cork,

Ireland Ireland

E-mail: marie.reilly@ucc.ie agus@stat.ucc.ie
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2. Meanscore package in S-PLUS

The Mean Score method for missing and auxiliary covariate data is

described in the paper by Reilly & Pepe (Biometrika, 1995). This

likelihood-based method is asymptotically equivalent to "hot-deck"

multiple imputation (Reilly & Pepe, Stats in Medicine 1997). Missingness

may depend on the available response and covariate values but not on the

unobserved covariate values (i.e. MAR, Missing At Random) and the method

is applicable to cohort or case-control designs. The subsample of

subjects on whom the incomplete covariate is available is referred to as

the "validation sample" or the "second-stage sample", and the remaining

subjects are the "non-validation sample" or the "first-stage sample"

The code provided here implements a Mean Score analysis for a logistic

regression model where the incomplete covariate(s) may be continuous,

but the first stage covariates and/or auxiliary variables must be

categorical.

After extracting the ZIP file in the "library" subfolder of your SPlus

directory, the command

> library(meanscore)

makes available the following 3 functions:

   1. MEANSCORE: this function is called with the combined first-

      and second-stage data where the missing values in the

      incomplete covariate(s) are represented by NA, the usual

      notation in Splus/R.

   2. MS.NPREV: this function is called with the second-stage

      (i.e. complete) data and the first-stage sample sizes

      (or prevalences): if only prevalences are available,

      then estimates are provided but no standard errors.

      Prior to running this function, the CODING function (3.)

      should be run to see the order in which MS.NPREV expects

      the first-stage sample sizes or prevalences to be provided.

   3. CODING: this function recodes multiple columns of first-

      stage covariates into a single vector and displays the

      coding scheme
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Help on these functions and on the illustrative data sets

provided can be viewed using help or ?

This code has only been tested under S-PLUS 4.0 for Windows,

and may need some modifications for use with other

versions or other operating systems.

We would be happy to hear about any bugs that you find, and to

receive any comments or suggestions for improvements.

Marie Reilly         & Agus Salim

Dept. of Epidemiology Dept. of Statistics

University College Cork, University College Cork,

Ireland Ireland

E-mail: marie.reilly@ucc.ie E-mail: agus@stat.ucc.ie

3. Meanscore package in STATA

SUBJECT: Meanscore algorithm for missing covariate data in logistic

   regression models

AUTHORS: Marie Reilly

 Dept. of Epidemiology & Public Health

 and

 Agus Salim

 Dept. of Statistics,

 University College Cork (UCC) Cork, Ireland

SUPPORT: marie.reilly@ucc.ie

INSTALLATION (Stata version 6):

Installing from internet, please check:
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[U] 20.6 How do I install an addition?

[R] net

Installing from floopy disk

type 'net from a:'

     'net install meanscor'   to install program

     'net get meanscor' to access illustrative datasets

Installing from C drive:

type 'net from c:/[dirname]'

     'net install meanscor'    to install program

     'net get meanscor'        to access illustrative datasets

where [dirname] is the name of the directory where you put the source

files.

HELP

After installation, from inside Stata online help is available

by typing

.help meanscor

.help msnprev

.help coding
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4. Optimal package in R

This library contains functions for calculating the optimal two-stage

sampling strategies in Reilly (1996). Briefly, the methods are

applicable in studies where some categorical covariates (Z) and a

dichotomous outcome variable (Y) are to be measured at the first stage

and additional covariates (X, which may be continuous) are to be

gathered on a subsample at the second stage. Logistic regression

analysis of all the data will then proceed using the Mean Score method

(Reilly and Pepe, 1995). In addition to the total sample size, the

variance of the Mean Score estimate depends on the second-stage sampling

fractions in each of the (Y,Z) strata. Hence the study size and/or the

second-stage sampling fractions can be "optimised".

The three functions here provide the optimal sampling strategies under

different constraints:

  fixed.n       calculates the sampling fractions at the second stage

(given fixed first- and second-stage sample sizes)

which will minimise the variance of a specified

coefficient in the regression model.

  budget calculates the first-stage sample size and the second

stage sampling fractions that will maximise precision

of a specified coefficient subject to a given budget.

  precision     calculates the first-stage sample size and the second

stage sampling fractions that will minimise cost

subject to a given precision for a specified

coefficient.

Each of the functions requires pilot data on (Z,Y,X) as input:

this would typically be a small number of X observations in each of the

(Y,Z) strata. Knowledge is also required of the prevalences of these

strata in the population, which can be provided as estimates or can be

computed from the first-stage data if available.
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INSTALLATION GUIDE

The simplest installation can be done by unzipping the BINARY package

directly to R_HOME/library.

For users familiar with building R packages, the following command can

be used to install the package:

`make BUILD=option pkg-optimal'

executed from R_HOME/src/gnuwin32, after you have unzipped

this package to R_HOME/src/library.

Alternatively you can use the UNIX command:

`Rcmd install optimal'

executed from R_HOME/src/library

After the package has been installed, the command:

library(optimal)

will make the functions available. Detailed help on each function and on

the illustrative data sets (cass1, cass2) can then be viewed by using

help or ? or the HTML help file system.

This code has been tested under R1.2.0 for windows, some changes may be

needed for other versions or operating systems.

We would be happy to hear about any bugs that you find, and to receive

any comments or suggestions for improvements.

Marie Reilly         & Agus Salim

Dept. of Epidemiology Dept. of Statistics

University College Cork, University College Cork,

Ireland Ireland

E-mail: marie.reilly@ucc.ie E-mail: agus@stat.ucc.ie
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5. Optimal package in S-PLUS

This library contains functions for calculating the optimal two-stage

sampling strategies in Reilly (1996). Briefly, the methods are

applicable in studies where some categorical covariates (Z) and a

dichotomous outcome variable (Y) are to be measured at the first stage

and additional covariates (X, which may be continuous) are to be

gathered on a subsample at the second stage. Logistic regression

analysis of all the data will then proceed using the Mean Score method

(Reilly and Pepe, 1995). In addition to the total sample size, the

variance of the Mean Score estimate depends on the second-stage sampling

fractions in each of the (Y,Z) strata. Hence the study size and/or the

second-stage sampling fractions can be "optimised".

The three functions here provide the optimal sampling strategies under

different constraints:

  fixed.n       calculates the sampling fractions at the second stage

(given fixed first- and second-stage sample sizes)

which will minimise the variance of a specified

coefficient in the regression model.

  budget calculates the first-stage sample size and the second

stage sampling fractions that will maximise precision

of a specified coefficient subject to a given budget.

  precision     calculates the first-stage sample size and the second

stage sampling fractions that will minimise cost

subject to a given precision for a specified

coefficient.

Each of the functions requires pilot data on (Z,Y,X) as input: this

would typically be a small number of X observations in each of the (Y,Z)

strata. Knowledge is also required of the prevalences of these strata in

the population, which can be provided as estimates or can be computed

from the first-stage data if available.
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After extracting the ZIP file in the "library" subfolder of your

 SPLUS directory, the command

 library(optimal)

will make the functions available. Detailed help on each function and on

the illustrative data sets (cass1, cass2) can then be viewed by issuing

the help or ? command.

The library has only been tested under S-PLUS 4 for windows, so some

changes may be needed for other versions or operating systems.

We would be happy to hear about any bugs that you find, and to receive

any comments or suggestions for improvements.

Marie Reilly         & Agus Salim

Dept. of Epidemiology Dept. of Statistics

University College Cork, University College Cork,

Ireland Ireland

E-mail: marie.reilly@ucc.ie        E-mail: agus@stat.ucc.ie

6. Optimal package in STATA

SUBJECT: Optimal sampling designs using the Meanscore algorithm

AUTHORS: Marie Reilly

   Dept. of Epidemiology & Public Health

 and

   Agus Salim

   Dept. of Statistics,

   University College Cork (UCC) Cork, Ireland

SUPPORT: marie.reilly@ucc.ie
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INSTALLATION (Stata version 6):

Installing from internet, please check:

[U] 20.6 How do I install an addition?

[R] net

Installing from floopy disk

type 'net from a:'

     'net install optimal'    to install program

     'net get optimal' to access illustrative datasets

Installing from C drive:

type 'net from c:/[dirname]'

     'net install optimal'    to install program

     'net get optimal'        to access illustrative datasets

where [dirname] is the name of the directory where you put the source

files.

HELP

After installation, from inside Stata online help is available

by typing

.help coding

.help optfixn

.help optbud

.help optprec



79

Bibliography

Banfield, J. (1999). Rweb: web based statistical analysis. Journal of Statistical Software 4: 1-15.

Breslow, N.E. and Cain, K.C. (1988). Logistic regression for two-stage case control data. Biometrika 75:
11-20

Breslow, N.E. and Holubkhov, R. (1997). Maximum likelihood estimation of logistic regression parameters
under two-phase, outcome-dependent sampling. J.R.Statist. Soc. B. 59: 447-61

Breslow, N.E. and Chatterjee, N. (1999). Design and analysis of two-phase studies with binary outcome
applied to Wilms tumor prognosis. Appl. Statist. 48: 457-68

Dempster, A.P., Laird, N.M., Rubin, D.B. (1977). Maximum likelihood from incomplete data via the EM
algorithm. J.R.Statist. Soc. B. 39: 1-38

Flanders, W.D. and Greenland, S. (1991). Analytic methods for two-stage case-control studies and other
stratified designs. Statist. Med. 10: 739-47.

Fletcher, R. (1987). Practical methods of optimization. Chichester : Wiley

Hamilton, L.C. (1997). Statistics with STATA 5. Brooks/Cole Pub Co.

Holcroft, C. and Spiegelman, D. (1999). Design of validation studies for estimating the odd ratio of
exposure-disease relationships when exposure is misclassified. Biometrics 55: 1193-1201.

Hornik, K. (2000). The R FAQ. http://www.ci.tuwien.ac.at/~hornik/R.

Little, R.J and Rubin, D.B. (1987). Statistical analysis with missing data. New York : Wiley

Mander, A. and Clayton, D. (1999). sg116: Hotdeck imputation. STATA Technical Bulletin 54: 32-4.

Rabe-Hesketh, S. and Everitt, B. (2000). A handbook of statistical analyses using Stata. Second Edition.
London: CRC.

Reilly, M and Pepe, MS. (1995). A mean score method for missing and auxiliary outcome covariate data in
regression models. Biometrika 82: 299-314

Reilly, M. (1996). Optimal sampling strategies for two-stage studies.  Amer. J. Epidemiol. 143:92-100

Reilly M and Pepe MS (1997). The relationship between hot-deck multiple imputation and weighted
                likelihood. Statist. Med.16:5-19.

Rweb: Statistical analysis on the web. http://www.math.montana.edu/Rweb/

Salim, A. and Reily, M. (2000). Practical problems arising in computing optimal sampling designs for two-
stage studies. Presentation at the Research student conference (RSC 2000), Cardiff.

Sherman, K.J., et.al. .1990. Sexually transmitted diseases and tubal pregnancy. Sex. Transm.Dis. 7: 115-21

SPLUS. http://www.mathsoft.com/splus

STATA. http://www.stata.com/



80

The R Project for Statistical Computing. http://www.r-project.org

Venables, W.N. and Ripley, B.D. (1999). Modern Applied Statistics with S-PLUS. Third Edition. Springer.

Venables, W. N. and Ripley, B.D. (2000). S Programming. Springer

Vliestra,R.E.,Frye R.L., Kromnal R.A.,et.al.(1980). Risk factors and angiographic coronary artery disease:
a report from the Coronary Artery Surgery Study (CASS). Circulation 62:254-61


