
NetInf Streaming Solution User Guide

Al Hinai, Abdullah Andersson, Conny Forouzani, Sepehr
Halteh, Faris Ivanou, Aliaksandr Karkanis, Iosif
Klingsbo, Lukas Lan, Fangming L̊ang, Magnus
McCain, Daniel Sean Noorani Subramanian, Varun

Omer, Enghin Santos Rivera, Juan De Dios

January 16, 2015

Contents

1 Android 1

1.1 Introduction . 1

1.2 Required Android SDK packages . 1

1.3 Android phone udev Rules . 2

1.4 Building with Gradle . 2

1.5 Importing into Android Studio . 2

1.6 Running and testing the application on a device 2

1.7 Application preferences . 4

1.7.1 Database . 4

1.7.2 After successful GET . 4

1.7.3 UDP . 4

1.7.4 HTTP . 4

1.7.5 Settings . 5

1.8 Streaming and encoding settings . 5

1.9 Application Snapshots . 5

2 Backend 9

2.1 EENR NetInf Router . 9

2.1.1 EENR NetInf Router dependencies 9

2.1.2 Building the EENR NetInf Router 9

2.1.3 Starting the EENR NetInf Router 10

2.2 NRS . 10

2.2.1 NRS dependencies . 10

2.2.2 Building the NRS . 10

2.2.3 Starting the NRS . 11

2.3 WallE . 11

2.3.1 WallE dependencies . 11

2.3.2 Building WallE . 11

2.3.3 Starting WallE . 12

Chapter 1

Android

1.1 Introduction

The User Guide is intended for those who need to deploy the NetInf Streaming so-
lution on both servers and phones. The guide does not explain the technical aspects
of the code, there is a separate document for that called the System Description.
The User Guide explains how to build and configure the components of the NetInf
streaming solution.

1.2 Required Android SDK packages

• Android SDK Tools

• Android SDK Platform-tools v.21

• Android SDK Platform-tools v.20

• Android SDK Build-tools v.21.1.2

• Android 5.0 SDK Platform

• Android Support Repository

• Google Repository

These packages can be found in the Android SDK Manager. For more in-
formation how to add SDK package, visit http://developer.android.com/sdk/

installing/adding-packages.html. Later versions of these packages can be used,
but since the version numbers need to be hard-coded in the Gradle build scripts,
the build scripts will need to be changed.

1

http://developer.android.com/sdk/installing/adding-packages.html
http://developer.android.com/sdk/installing/adding-packages.html

1.3 Android phone udev Rules

In order for your SDK to recognize the Android devices in Ubuntu Linux, you have
to write the following commands in your terminal:

• wget https://raw.githubusercontent.com/snowdream/51-android/master/
51-android.rules

• sudo install -m644 51-android.rules /etc/udev/rules.d

• rm 51-android.rules

• sudo service udev restart

For more details, visit: http://developer.android.com/tools/device.html

1.4 Building with Gradle

To build the project using Gradle, execute the following command in the terminal
while in the root of the android-netinf directory:

./gradlew build

For more information how to build the project with Gradle, visit: http://

tools.android.com/build/gradleplugin

1.5 Importing into Android Studio

To import the project into Android Studio, select “Open an existing Android Studio
project”, and select the root folder of the source distribution. In the dialog that pops
up, make sure that the path in the “Gradle project:” text box is the root folder of
the source distribution (see Figure 1.1), and click OK.

1.6 Running and testing the application on a de-

vice

First, you have to connect your Android device to your computer. You can use
an “Android Virtual Device (AVD)” to view streams, but you will not be able to
stream them.

In Android Studio, press the green arrow or green bug icon on the tool bar and
select your device in the dialog that pops up. If you selected the bug icon, the
debugger will immediately be attached to the app.

If you are not using Android Studio, you can install the app to the phone directly
from Gradle using the following command:

./gradlew installDebug

2

https://raw.githubusercontent.com/snowdream/51-android/master/51-android.rules
https://raw.githubusercontent.com/snowdream/51-android/master/51-android.rules
http://developer.android.com/tools/device.html
http://tools.android.com/build/gradleplugin
http://tools.android.com/build/gradleplugin

Figure 1.1: The Android Studio import dialog

3

1.7 Application preferences

The application has a settings page to manage the developer settings. This settings
activity can be opened by touching the screen four times using three fingers on the
main page.

To change these preferences from the code, go to the “android-service” directory
and open the xml folder where you will find the file preferences.xml.

The preferences are divided into seven categories. These are:

• Database

• After successful GET

• UDP

• HTTP

• Stream

• Storage

• Settings

1.7.1 Database

Clears the database content from the user device.

1.7.2 After successful GET

Enables or disables caching, the default value set to true.

1.7.3 UDP

Allows the app to discover and connect to NetInf UDP services (IP and Port) in
the network. Default value set to automatic. If needed set it to a specific address,
it can be changed statically from the user settings page in the app.

1.7.4 HTTP

Allows to discover and connect to NetInf TCP services (IP and Port) in the network.
Default value is automatic searching. If needed set it to specific address, it can be
changed statically from the user setting page in the app.

4

1.7.5 Settings

Restores the default preference values.

1.8 Streaming and encoding settings

In the edu.projectcs.falun.streamer package within the android-netinf project,
users can find the settings that are related to the streaming of videos and the camera
preview.

From the Encoder.java class, the bit rate, i-frame intervals, estimated frame
time for window and the mime type can be changed from the following vari-
ables: BIT RATE, IFRAME INTERVAL, FRAMETIME ESTIMATE WINDOW,
and MIME TYPE.

From the CameraPreview.java class, settings such as the maximum width, max-
imum height and the frames per second (fps) of the video stream can be changed
by modifying the following variables: MAX WIDTH, MAX HEIGHT and DE-
SIRED FPS.

1.9 Application Snapshots

Figure 1.2: First time screen Figure 1.3: Main screen

When first using the application, a small tutorial will be presented. (Figure 1.2).

The main screen, Figure 1.3, contains two buttons: a Stream button, which
allows the user to stream video to other users; and a Watch button, which allows
the user to show live streams recorded by other users.

5

Figure 1.4: Tutorial screen Figure 1.5: Watch screen Figure 1.6: Sort options

6

Users can view the tutorial again by clicking the overflow menu (i.e. the three
squares on the right top corner of the main page. (Figure 1.4).

If the user presses the Watch button, they will be presented with the Watch
page, which contains two tabs: one is list view and the other is map view. In both
these views the user can select between live or non-live streams, as well as the date
and time of previously published streams (i.e. non-live). (Figure 1.5).

The streams can be sorted on the date of the recorded stream, the region it was
recorded in, and the title of the video. (Figure 1.6) .

Figure 1.7: Region options Figure 1.8: Map view

In the list view, there is also the possibility to filter streams by the region they
were recorded in. (Figure 1.7).

When the user filters by region, while in the map view, only the streams recorded
in that particular region will be shown on the map. (Figure (1.8).

When first entering the Streaming screen, or if the preference is selected, a dialog
will appear where the user can enter the title and/or the description of the stream.
In the dialog there are also two checkboxes where the user can choose whether or
not the stream should be saved on the phone, and whether or not the user wants this
dialog to appear automatically every time the Stream page is entered. (Figure(1.9).

To reach the developer settings, touch the screen four times using three fingers
on the main page. (Figure (1.10).

7

Figure 1.9: Streaming options

Figure 1.10: Settings screen

8

Chapter 2

Backend

2.1 EENR NetInf Router

The Ericsson Erlang NetInf Router (EENR) is an implementation of a NetInf router.
This implementation has been updated with several features and fixes. A few ex-
amples of this include a new, static, routing model, using Mnesia to store data,
a stand-alone NRS featuring document-database-like searches in metadata, and a
statistics collection platform.

2.1.1 EENR NetInf Router dependencies

Erlang/OTP 17+ is needed to build and run this application. g++ and lib-netfilter-
queue needs to be installed to be able to build it. Our build tool (erlang.mk) will
fetch the rest of the dependencies from remote sources using git and wget, so make
sure that you have them installed. The following dependencies are automatically
fetched when building the first time:

jiffy Used for JSON parsing

cowboy Used for handling everything regarding the HTTP stack

lager Used for logging

proper Used for property testing

2.1.2 Building the EENR NetInf Router

To build the router with the default settings you simply go to the root folder of the
application and execute make, it will fetch all the dependencies and build them and
the router. You need internet connectivity the first time you run it as the build tool
needs to download the dependencies.

9

2.1.3 Starting the EENR NetInf Router

To start the router with the default settings run make start in the root directory
of the source tree. This will start the router using port 8082 for TCP connections
and 2345 for UDP connections. If you want to send custom parameters you can use:

erl -pa ebin deps/*/ebin -config eenr -s eenr -eenr Par Val

Where Par is the parameter name and Val is the value of that parameter. A full
list of parameters that can be set can be seen in src/eenr.app.src. A few useful ones
are:

• tcp port (default value: 8082)

• udp port (default value: 2345)

• request timeout (default value: 10000)

2.2 NRS

The NRS is a centralized NetInf database for use by the EENR router. It also allows
queries in the metadata of NDOs, similar to a document database. However, it’s
currently implemented using Mnesia rather than a document database.

2.2.1 NRS dependencies

Erlang/OTP 17+ is needed to build and run this application. Our build tool (er-
lang.mk) will fetch the rest of the dependencies from remote sources using git and
wget, so make sure that you have them installed. The following dependencies are
automatically fetched when building the first time:

jiffy Used for JSON parsing

lager Used for logging

proper Used for property testing

ranch Used to accept TCP connections

2.2.2 Building the NRS

To build the NRS with the default settings you simply go to the root folder of the
application and execute make, it will fetch all the dependencies and build them and
the router. You need internet connectivity the first time you run it as the build tool
needs to download the dependencies.

10

2.2.3 Starting the NRS

To start the NRS with the default settings run: make start. Only one node in the
network should run the NRS. If you want to send custom parameters you can use:

erl -pa ebin deps/*/ebin -s nrs -nrs Par Val

Where Par is the parameter name and Val is the value of that parameter. The only
parameter that the NRS provides is:

• api port (default value: 8912)

2.3 WallE

WallE is the cleaning robot of our Android streaming solution. Its purpose is to
tag streams that have been interrupted by a network outage or application crash, so
they will no longer appear as live. It also deletes recorded streams that are shorter
than a set length (currently 2 seconds by default), stopping streams from showing
up in the history if a user starts and immediately stops them.

2.3.1 WallE dependencies

Erlang/OTP 17+ is needed to build and run this application. Our build tool (er-
lang.mk) will fetch the rest of the dependencies from remote sources using git and
wget, so make sure that you have them installed. The following dependencies are
automatically fetched when building the first time:

jiffy Used for JSON parsing

lager Used for logging

2.3.2 Building WallE

To build the NRS with the default settings you simply go to the root folder of the
application and execute make, it will fetch all the dependencies and build them and
the router. You need internet connectivity the first time you run it as the build tool
needs to download the dependencies.

11

2.3.3 Starting WallE

To start the router with the default settings run: make start. WallE should only run
on a node that runs the NRS. If you want to send custom parameters you can use:
erl -pa ebin deps/*/ebin -s walle -Application Par Val where Par Val is
each custom parameter, Par for the parameter name and Val for the value of that
parameter. A full list of parameters that can be set can be seen in src/walle.app.src.
A few useful ones are:

• nrs endpoint (default value: localhost, 8912)

• udp endpoint (no default value)

• dead search interval – how often to query for dead streams (default value:
milliseconds, 240000)

• search interval – how often to query for live streams to see if they are dead
(default value: milliseconds, 60000)

• minimum length – the minimum length that a video needs to be to be kept
(default value: milliseconds, 2000)

12

	Android
	Introduction
	Required Android SDK packages
	Android phone udev Rules
	Building with Gradle
	Importing into Android Studio
	Running and testing the application on a device
	Application preferences
	Database
	After successful GET
	UDP
	HTTP
	Settings

	Streaming and encoding settings
	Application Snapshots

	Backend
	EENR NetInf Router
	EENR NetInf Router dependencies
	Building the EENR NetInf Router
	Starting the EENR NetInf Router

	NRS
	NRS dependencies
	Building the NRS
	Starting the NRS

	WallE
	WallE dependencies
	Building WallE
	Starting WallE

