
easyObject
modern web applications made easy

User Manual

version 1.0 - December 2012

by Cedric Françoys

http://www.cedricfrancoys.be/easyobject

This document is released under the Attribution-NonCommercial-ShareAlike 3.0 Unported Contract

available online at http://creativecommons.org/licenses/by-nc-sa/3.0/

or by mail writing to Creative Commons, 171 Second Street, Suite 300, San Francisco, California 94105, USA.

documentation easyObject v.1.0 - December 2012

2/20

Table of contents

1. How is it working ? ... 3

BSUR: Browse, Search, Update, Remove .. 3

Tree structure description .. 4

Object definition .. 4

Consistency between a .class.php definition and database schema .. 5

Fields types .. 5

System fields .. 6

Common methods.. 6

getColumns() method .. 6

getDefaults() method ... 11

getTable() method ... 12

Inheritance .. 12

Permissions management system .. 12

Translation mechanism .. 14

Translation of the terms related to a class .. 14

Translation of objects fields values ... 14

2. How to use it? .. 16

Main methods.. 16

user_id() method ... 16

user_lang() method .. 16

login() method ... 16

validate() method ... 16

browse() method ... 17

search() method ... 17

update() method .. 17

remove() method ... 17

get() method .. 18

getStatic() method ... 18

Objects edition... 18

Basic applications .. 20

Utility and stand-alone scripts .. 20

documentation easyObject v.1.0 - December 2012

3/20

1. How is it working ?

BSUR: Browse, Search, Update, Remove

There are only four main methods to handle objects, and they are the same for all objects classes:

- browse (to obtain the value of one or more fields from one or more objects) ;

- search (too look for identifiers of objects matching one or more criteria) ;

- update (to create an object or modify one or more fields of one or more objects) ;

- remove (to delete one or more objects).

Examples :
// create a new object
$ids = update('core\User', array(0));

// update an object
update('core\User', $ids, array(
 'firstname' => 'John',
 'lastname' => 'Doe',
 'password' => 'secret'
));

// create and update 3 objects at once
$ids = update('core\User', array(0, 0, 0), array(
 'firstname' => 'John',
 'lastname' => 'Doe',
 'password' => 'secret'
));

// update several objects
update('core\User', $ids, array('password'=>md5('test')));

// search for one or more objects
$ids = search('core\User', array(
 array('lastname', 'like', '%oe%'),
 array('id', 'in', range(1, 100)
));

// browse one or more objects (obtain firstnames of users whose id is in the list)
$values = &browse('core\User', $ids, array('firstname'));

For a complete list of methods and their signatures, see description of the main methods.

documentation easyObject v.1.0 - December 2012

4/20

Tree structure description

Location Description

Root Directory where the easyObject application is located

(ex. : home/easyobject/www)
 files

 .htaccess Apache configuration file used to prevent directory listing and handle

404 errors
 fc.lib.php Classes and files inclusion library
 index.php This script is also referred to as the dispatcher : its task is to include

required libraries and to set the context.

This is the unique entry point.
 rpc_server.php Server script for client-server mode
 url_resolver.php Script invoked when a 404 error is raised, in charge of url rewriting
 folders

 actions Folder containing scripts that do some operations on objects and that

might return JSON data (?do=…)
 apps Folder containing applications scripts that output HTML pages

(?show=…)
 data Folder containing scripts that give information about objects by

returning JSON answers (?get=…)
 library Folder containing every file that might be included by PHP scripts (files

and classes)
 classes dossier contenant les classes php
 objects Folder containing objects definitions (files .class.php), so that the

edition templates (views) and translation (i18n) files.
 orm Applicative core: contains classes object.class.php,

objectManager.class.php, IdentificationManager.class.php,

I18n.class.php and ErrorHandler.class.php
 db Dossier contenant les classes associées à l’interface avec la base de

données.

DBConnection.class.php : factory pattern

DBManipulator.cass.php et classes héritées : adaptation des

méthodes avec les commandes propres au DBMS utilisé
 utils Classes utilitaires utilisées par le cœur applicatif
 files contains config.inc.php
 [Zend] If required, this is where the Zend framework must be placed

Note : it’s not required by easyObject
 html
 js The javascript libraries used by applications scripts (/apps)
 css html stylesheets required by application scripts (/apps)

Object definition

The structure of every object class is defined in a .class.php placed into:

library/classes/objects/[package].

documentation easyObject v.1.0 - December 2012

5/20

Every class inherits from a common ancestor: the Object class declared in the \core namespace and

defined in library/classes/orm/Object.class.php

A class is always referred to with the package name to which it belongs. The syntax is :

'package_name\class_name' (ex. :'school\Teacher').

A class consists of several fields, each of them having a name and a type, and a list of methods.

Some methods are system (their name is standard and used by the ORM), and others are specific to a

class and defined by the user (see below).

Consistency between a .class.php definition and database schema

In parallel, a table must be defined in the database that has a structure matching the related class

definition. The main constraint being that the types must be compatibles (ex.: a varchar(255) column in

the database may represent a string, as well as a short_text or a text in the related class).

Consistency between type definition and related table structure in DB must be permanently maintained.

This is left to the responsibility of the developer: no process neither checks nor fixes potential errors

(seeUtility and stand-alone scripts).

Fields types

There are three kinds of fields:

1) Direct types

boolean, integer, string, short_text, text, date, time, datetime, timestamp, selection, binary

2) Relational types

one2many, many2many, many2one, related

3) Functional types

function

or two categories:

1) Basic fields: the value of those fields is stored directly in the SQL table related to the object and

don’t need to be processed
boolean, integer, string, short_text, text, date, time, datetime, timestamp, selection, binary, many2one

2) Complex fields: those fields require more work to be retrieved

one2many, many2many, related, function

documentation easyObject v.1.0 - December 2012

6/20

System fields

Some fields are common to all objects:

Field Description

id unique identifier of the instance

created date and time of the object creation

modified date and time of the last modification of the object

creator identifier of the user that created the object

modifier identifier of the user that made the last changes

published boolean telling if the object has been published

deleted boolean telling if the object has been deleted (object in the trash bin)

Common methods

Some methods, defined in the core\Object class, are common to all objects:

Method Description

__construct the constructor, invoked when a new instance is created

getSpecialFields returns the names and types of the system fields (described above)

getColumns returns the description of the user fields

getSchema returns the full schema (system fields + fields defined in getColumns)

gettable returns the name of the related SQL table

getId return the identifier of the current object

getModifiedFields returns the list of loaded fields

getModifiedFields returns the list of fields that have been modified since the object has been loaded

resetLoadedFields reset load flags

resetModifiedFields reset modification flags

getUsedLangs returns the list of the languages for which at least one field is defined

getFieldsNames returns the names of the fields which type is mentioned in the specified list

getValues returns an associative arrau containing the names and values of the specified fields

setValues assign the specified values to the fields of the object

getColumns() method

The definition of this method is mandatory for every object. It returns the structure of the object (list of

fields and their attributes) under the form of an associative array.

documentation easyObject v.1.0 - December 2012

7/20

Example from the school\Course class:
public static function getColumns() {
 return array(
 'label' => array(
 'type' => 'string'),
 'school_id' => array(
 'type' => 'many2one',
 'foreign_object' => 'school\School'),
 'teachers_ids' => array(
 'type' => 'many2many',
 'foreign_object' => 'school\Teacher',
 'foreign_field' => 'courses_ids',
 'rel_table' => 'school_rel_course_teacher',
 'rel_foreign_key' => 'teacher_id',
 'rel_local_key' => 'course_id'),
 'classes_ids' => array(
 'type' => 'one2many',
 'foreign_object' => 'school_Class',
 'foreign_field' => 'course_id'),
);
}

Common base

Here is the list of the attributes common to all fields:

Attribute Description

type the field type (a valid easyObject type)

[label] the label of the field (that may appear in the edition forms)

default value = name of the field

[help] a tip to provide the final user about the role of the field or the way to fill it in

[multilang] boolean telling if this field can be translated

dafult value = false

note : only basic fields can be translated (that excludes relational and functional fields)

[search] boolean telling if the UI have to present this field as a search criteria

default value = false

notes :

- a search query is possible on complex fields that have the store attribute set

(see below)

- search queries have better performances if related fields are indexed in

database

[domain] attribute for many2many and one2many fields

allows to limit the list of related objects to those that match a specific criteria (same

format as the one used in the search method)

documentation easyObject v.1.0 - December 2012

8/20

Available types

boolean

Used for fields holding a numeric value of Boolean type (true or false).

notes : we use the PHP built-in constant : true and false

integer

Used for fields holding a signed numeric value (negative or positive).

notes: with PHP it depends on the platform (generally 32 bits signed), with SQL it depends on the chosen

type and size

string

Used for fields holding a short string with no formatting nor carriage returns (ex.: lastname, place, …)

short_text

Used for fields holding a string of characters that may contain carriage returns but no formatting (ex.: a

short description, an address, …).

text

Used for fields holding a text that might be long and include formatting.

notes : with SQL, the types TEXT, BLOB or MEDIUMTEXT, MEDIUMBLOB are recommended

binary

Used for fields holding any binary value (ex. : a picture, a document, …)

notes : with SQL, the MEDIUMBLOB type is recommended

selection

Used for fields holding a value selected from a pre-defined list.

Example from the core\Log class:
'action' => array(
 'type' => 'selection',
 'selection' => array(
 'R_CREATE' => R_CREATE,
 'R_READ' => R_READ,
 'R_WRITE' => R_WRITE,
 'R_DELETE' => R_DELETE,
 'R_MANAGE' => R_MANAGE)),

Note : the part at the left side of the arrow is the one that will be outputted in the selection box, the

right part is the one stored in DB.

date

Used for fields holding a date with the following format: YYYY-mm-dd

time

Used for fields holding a time with the following format: HH:mm:ss

documentation easyObject v.1.0 - December 2012

9/20

datetime

Used for fields holding a date with the following format: YYYY-mm-dd HH:mm:ss

timestamp

Equivalent to datetime, but measured in number of seconds since the Unix Epoch (1
st

 January 1970

00:00:00 GMT).

many2one

Used for fields holding a N-1 relation, that is to say a numeric value that represents the identifier of the

pointed object.

Attribute Description

foreign_object the class toward which is pointing the current field

Example from the school\Course class:
'school_id' => array(
 'type' => 'many2one',
 'foreign_object' => 'school\School'),

one2many

Used for a field holding à 1-N relation.

Attribute Description

foreign_object the class toward which is pointing the current field

foreign_field the name of the field of the pointed clqss that is pointing back toward the current class

[foreign_key] the field that serves as identifier for objects pointed by the relation (by default, id field)

Example from the school\Teacher class:
'classes_ids' => array(
 'type' => 'one2many',
 'foreign_object' => 'school_Class',
 'foreign_field' => 'teacher_id'),

many2many

Used for a field holding a M-N relation.

Attribute Description

foreign_object the class toward which is pointing the current field

foreign_field the name of the field of the pointed clqss that is pointing back toward the current class

rel_table the name of the SQL table dedicated to the m2m relation

(recommended syntax: package_rel_class1_class2)

rel_local_key name of the column in rel_table holding the identifier of the current object

rel_foreign_key name of the column in de rel_table holding the identifier of the pointed object

documentation easyObject v.1.0 - December 2012

10/20

Example from the school\Teacher class:
'courses_ids' => array(
 'type' => 'many2many',
 'foreign_object' => 'school\Course',
 'foreign_field' => 'teachers_ids',
 'rel_table' => 'school_rel_course_teacher',
 'rel_foreign_key' => 'course_id',
 'rel_local_key' => 'teacher_id'
),

related

This kind of field allows to specify an indirect relation of type many2one or one2many.

The principle is to indicate the field of another object, accessible by successive relations.

Attribute Description

result_type the type resulting from the indirect relation (i.e. type of the final pointed field)

foreign_object name of the final pointed field

path array holding the names of the cascade fields to consult in order to get to the final field

(note : the first field must belong to the current class)

Example of the school_id field from the school\Lesson class:
'school_id' => array(
 'type’ => 'related',
 'result_type' => 'many2one',
 'foreign_object' => 'school\School',
 'path' => array('class_id','course_id','school_id')),

function

A functional field (or calculated field) allows to provide a class with fields which value depend on one or

more other fields from the current object or any other object.

Notes : the use of the store attribute require, most of the time, that the fields on which depends the

value of the functional field have an onchange event triggering the update of the calculated field (see

example).

Attribute Description

result_type type of the value resulting from the invoked function

store boolean telling if the function result must be stored in database (in that case, the

related table must contain a column for the field)

function string holding the name of the method to invoke, with format :
package\ Class:: method

(note : this method will be called with PHP function call_user_func)

documentation easyObject v.1.0 - December 2012

11/20

Example of the field rights_txt from the core\Permission class:

Extrait de la méthode getColumns() :
'rights' => array(
 'type' => 'integer',
 'onchange' => 'core\Permission::onchange_Rights'),
'rights_txt' => array(
 'type' => 'function',
 'store' => true,
 'result_type' => 'string',
 'function' => 'core\Permission::callable_getRights Txt'),

Méthodes additionnelles :
public static function callable_getRightsTxt($om, $uid, $oid, $lang) {
 $rights_txt = array();
 $res = $om->browse($uid, 'core\Permission', array($oid), array('rights'), $lang);
 $rights = $res[$oid]['rights'];
 if($rights & R_CREATE) $rights_txt[] = 'create';
 if($rights & R_READ) $rights_txt[] = 'read';
 if($rights & R_WRITE) $rights_txt[] = 'write';
 if($rights & R_DELETE) $rights_txt[] = 'delete';
 if($rights & R_MANAGE) $rights_txt[] = 'manage';
 return implode(',', $rights_txt);
}

public static function onchange_Rights($om, $uid, $oid, $lang) {
 $om->update($uid,
 'core\Permission',
 array($oid),
 array('rights_txt' =>
 Permission::callable_getRightsTxt($om, $uid,$oid , $lang)),
 $lang);
}

getDefaults() method

The returned values are either the result of a closure, or a static method (from the current class or any

other class).

Example from the school\Student class:

Extrait de la méthode getColumns() :
 'birthdate' => array('type' => 'date'),
 'subscription' => array('type' => 'date'),

Méthodes additionnelles :
public static function getDefaults() {
 return array(
 'subscription' => 'school\Student::default_subscr iption',
 'birthdate' => function() { return '2000-01-01'; }
);
}

public static function default_subscription() {
 return date("Y-m-d");
}

documentation easyObject v.1.0 - December 2012

12/20

getTable() method

It is also possible to rewrite the getTable() method. This can be useful when the name by default is not a

good choice or if, for any reason, it does not fit the developer needs.

Example : school_Class

public function getTable() { return 'school_class'; }

Inheritance

It is possible to rewrite a class (in some situations, the overwriting is even mandatory).

To set up an inheritance mechanism:

- the class must not extend the \core\Object class, but the class from which it inherits;

- the getTable() method must be used to define the name of the related table in database (by

default the name of the related table will be the one of the parent class) ;

- the getColumns() class must return an associative array holding every field of the new class (in

order not to rewrite the fields that are common with the parent class, one may use the PHP

function array_merge with parent::getColumns() as first parameter).

Example : knine\User

namespace knine {
 class User extends \core\User {

 public function getTable() { return 'core_user'; }

 public static function getColumns() {
 return array_merge(parent::getColumns(),
 array(
 'articles_ids' => array(
 'type' => 'many2many',
 'foreign_object' => 'knine\Article',
 'foreign_field' => 'authors_ids',
 'rel_table' => 'knine_rel_article_user',
 'rel_foreign_key' => 'article_id',
 'rel_local_key' => 'user_id')
));
 }
 }
}

Permissions management system

The ‘Permission’ class is dedicated to the rights management: for each object class (including the

‘Permission’ class itself), rights can be defined for one or more user groups.

Involved classes are:

documentation easyObject v.1.0 - December 2012

13/20

core\User (library/classes/objects/core/User.class.php)

public static function getColumns() {
 return array(
 'firstname' => array('type' => 'string'),
 'lastname' => array('type' => 'string'),
 'login' => array('type' => 'string', 'label' => 'Username'),
 'password' => array('type' => 'string', 'label' => 'Password'),
 'language' => array('type' => 'string'),
 'groups_ids' => array('type' => 'many2many',
 'foreign_object' => 'core\Group',
 'foreign_field' => 'users_ids',
 'rel_table' => 'core_rel_group_user',
 'rel_foreign_key' => 'group_id',
 'rel_local_key' => 'user_id')
);
}

core\Group (library/classes/objects/core/Group.class.php)

public static function getColumns() {
 return array(
 'name' => array('type' => 'string'),
 'users_ids' => array('type' => 'many2many',
 'foreign_object' => 'core\User',
 'foreign_field' => 'groups_ids',
 'rel_table' => 'core_rel_group_user',
 'rel_foreign_key' => 'user_id',
 'rel_local_key' => 'group_id'),
 'permissions_ids' => array('type' => 'one2many',
 'foreign_object' => 'core\Permission',
 'foreign_field' => 'group_id')
);
}

core\Permission (library/classes/objects/core/Permission.class.php)

public static function getColumns() {
 return array(
 'class_name' => array('type' => 'string'),
 'group_id' => array(
 'type' => 'many2one',
 'foreign_object' => 'core\Group',
 'foreign_field' => 'permissions_ids'
),
 'rights' => array('type' => 'integer')
);
}

The possible rights that can be assigned are defined in the file config.inc.php :

 define('R_CREATE', 1);

 define('R_READ', 2);

 define('R_WRITE', 4);

 define('R_DELETE', 8);

 define('R_MANAGE', 16); // autorisation to manage the rights

documentation easyObject v.1.0 - December 2012

14/20

The field ‘rights’ of the Permission class is a binary mask (logical OR) of the rights given to the related

group.

If, for some class, no permission is defined for none of the groups to which belongs a user, this one

receives the default permissions, defined in the configuration file (DEFAULT_RIGHTS constant).

Translation mechanism

Two distinct mechanisms are used depending on what we are handling:

1) translation of the terms related to a class;

2) translation of object fields values (instance).

Translation of the terms related to a class

Each package has a folder named ‘i18n’ containing, for each language, a subfolder which name matches

the IS0 639 code of the language (ex. : fr_BE ou zh_CN). Inside those folders, for each class, is a .json file

which prefix is identical to the class it refers to (ex. : Student.json).

Those translation files are in UTF-8 and in JSON format, and contain the translation terms of all items

that might be translated (attributes ‘label’ et ‘help’).

This system is not the lighter in terms of overhead but offers the advantage of being usable as is by the

UI (no processing server-side).

Indeed, the translation file is directly accessible via HTTP request:

'library/classes/objects/'+package_name+'/i18n/'+lang+'/'+object_name+'.json',

On the other hand, to obtain the file via script, you have to invoke ?get=core_i18n_lang.

Location : data/core/i18n/lang.php

URL example: http://localhost/easyobject/?get=core_i18n_lang&class=school\Student&lang=fr

Translation of objects fields values

All basic fields can be translaterd (see Fields types).

To allow this, a table in DB is dedicated to the translation terms.

When a field is marked as ‘multilang’, the values of its translations can be retrieved with a SQL query.

 'Translation' object

 fields:

 string lang (code ISO 639-1)

 string object_class

 string object_field

 integer object_id

 mediumblob value

For the value field, the SQL MEDIUMBLOB type is used (overhead of 3 bytes, max size of 16,7 Mo).

Indeed, the size of the 'value' column may vary greatly from one type to another (the binary type may

represent a document, a picture, a video, …). And, most of the time, fields that must be translated are

documentation easyObject v.1.0 - December 2012

15/20

texts (string, short_text ou text). In any case, a 3 characters overhead is acceptable (and set a 16 Mo limit

should not be a problem).

Note : as the only condition for the SQL type is to be compatible with the associated easyObject type,

one must pay attention, in order for a binary field to be translated (for instance a PDF doc available in

different languages), that the value of this field never has a greater size to the one of the SQL

MEDIUMBLOB type (by example : BLOB, LONGBLOB, …).

documentation easyObject v.1.0 - December 2012

16/20

2. How to use it?

Main methods

The following methods can be invoked as is at any time.

Note : these methods are defined in PHP (easyobject.api.php) as well as in Javascript (easyobject.api.js),

and their signatures are strictly identical in both languages.

If an error is raised, most of these methods return an integer holding one or more error codes (that can

be isolated with a binary mask), that are defined in the config.inc.php file:

Constant Value Description

UNKNOWN_ERROR 0 something went wrong (that requires to check the logs)
INVALID_PARAM 1 one or more parameters have invalid or incompatible value
SQL_ERROR 2 error while building SQL query or processing it
UNKNOWN_OBJECT 3 unknown class or object

NOT_ALLOWED 4 action violates some rule or user don't have required permissions

user_id() method

integer user_id()

Returns the identifier of the current user (based on the current PHP session id).

user_lang() method

string user_lang()

Returns the language (ISO 639 format) of the current user (based on the current PHP session id).

login() method

boolean login(string $login, string $password)

This method tries to validate the identification of a user. If the identification succeeds, the method

returns TRUE and the current session is then bound to the id of the related User object.

validate() method

mixed validate(string $object_class , array $values)

Checks whether the values of given object fields are valid or not.

The returned value is either FALSE or an array associating, for each invalid field, the field name and the

associated error message id.

documentation easyObject v.1.0 - December 2012

17/20

browse() method

mixed &browse(string $object_class [, $ids=null [, $fields=null [, $lang=DEFAULT_LANG]]])

On success this method returns, for the specified class, an array associating the list of the values of each

given field for each given object id.

If an error occurs, an integer holding one or more error codes is returned.

Note: This method may generate a SQL query for each of the specified ids (for objects that have not yet

been loaded into the manager). A good practice then consists of not calling the method for each field

separately, but by grouping all required fields in the $fields array.

Example:

$values = &browse('core\User', array(3), array('login', 'firstname', 'lastname'));
echo "{$values[3]['login']}, {$values[3]['firstname']}, {$values[3]['lastname']}" ;

search() method

mixed search(string $object_class, array $domain=null, string $order='', string

$sort='asc', integer $start=0, $limit='', $lang=DEFAULT_LANG)

Returns the list of the objects identifiers matching a given domain, sorted on a given field, possibly

limited to a specific section.

update() method

mixed update(string $object_class, array $ids, array $values [, $lang=DEFAULT_LANG])

This method serves for creating new objects as well as for modifying them.

When an item of the ids list is set to zero, a new object is created and its identifier placed in the array

returned by the method. For examples, see BSUR: Browse, Search, Update, Remove.

remove() method

mixed remove(string $object_class, array $ids, boolean $permanent=false)

This method allows to remove one or more objects. If the parameter ‘permanent’ is left to FALSE, the

field delete of the object is set to TRUE and the object does not appear in the lists but the object may be

retrieved and the removal canceled. If the parameter ‘permanent’ is set to TRUE, then is object is

removed from the database (and can no longer be retrieve unless the database has been backed up).

documentation easyObject v.1.0 - December 2012

18/20

get() method

mixed &get(string $object_class , integer $object_id)

It is also possible to get the instance of an object.

To retrieve or change the value of the fields declared in the getColumns method, it is then possible to

use getters and setters using standard OO syntax (implemented with the PHP magic method __call).

Example :

$User = &get('core\User', 3);
$first_name = $User->getFirstname();
$User->setFirstname('Lulu');

Notes: This method implies the loading of all fields (that may be numerous and which value may require

a lot of processing to be obtained). So, it is recommended to use it only when the complete instance of

the object is actually needed and not in order to retrieve only one specific field (in which case, it is

preferable to use the browse method).

getStatic() method

mixed &getStatic(string $object_class)

In some cases, it’s necessary to get an empty object for a specific class (for instance, while validating the

schema of a class).

Objects edition

To define the layout, the list of the fields and the possible interactions between the fields of an edition

form, we use a system of views similar to templates.

Each package has a folder names ‘views’ that contains, for each class, one or more HTML file.

These files are written in HTML5, and contain information about the fields and labels to display and their

positioning, for the edition of the related class.

Again, this system is not the lightest in terms of overhead but has the advantage of being usable as is by

the Javascript client (no server-side processing).

Their name format is: object_name.(list | form).view_name.html

A series of HTML5 tags has been chosen in order to be used in views. Those tags were chosen because of

the usage that is generally done of them:

- reserved to inputs (as this part is generated automatically)

- having, by default, no visual impact

documentation easyObject v.1.0 - December 2012

19/20

Tags and attributs for the views:

Tag Attribute Description

form action the action to be executed when form is submitted (button ‘save’)

section name used to group several items in sections accessible by selecting tabs

fieldset title displays a frame that allows to group several items

span width width of the span, in % of the parent width

div width width of the du div, in % of the parent width

label [for] the name of the field the label is related to, if any

 [name] the identifier of the independent label, if any

var id name of the field

 [onchange] action to be executed in case the field is modified by the user (written in

javascript, using jQuery syntax)

 [readonly] boolean telling if the UI must allow the modification of the field

(default value = false)

note : this mechanism is limited to the presentation layer and must not be

used as right management

 [required] boolean telling if the field is mandatory

(default value = false)

 [domain] string containing the domain to which we want to limit the items to

display (applicable with m2m or o2m lists)

 [view] the name of the view to be used (if this attribute is not specified, the

related *.list.default.html file will be used)

Example of a form for the school\Student class (Student.form.default.html):
<form action="core_objects_update">
 <section name="identification">
 <fieldset title="identification">

 <label for="firstname"></label>
 <var id="firstname" required="true" ></var>

 <label for="lastname"></label>
 <var id="lastname" required="true"> </var>

 <label for="birthdate"></label>
 <var id="birthdate" required="true" ></var>

 <label for="subscription"></label>
 <var id="subscription" required="fa lse"></var>

 </fieldset>
 </section>
 <section name="data">
 <fieldset title="data">

 <label name="classes_ids"></label>

 <var id="classes_ids" view="list.de fault"></var>

 </fieldset>
 </section>
</form>

documentation easyObject v.1.0 - December 2012

20/20

Example of a list for the school\Student class (Student.list.default.html):

 <li id="id" width="10%">
 <li id="firstname" width="23%">
 <li id="lastname" width="23%">
 <li id="birthdate" width="22%">
 <li id="subscription" width="22%">

Basic applications
Some applications (?show queries) are included in the core to ease management and development of

new packages:

- core_manage : management of existing objects (list, creation, edition, removal) by package

(URL example: http://localhost/easyobject/?show=core_manage)

- core_utils : (see Utility and stand-alone scripts)

(URL example: http://localhost/easyobject/?show=core_utils)

- core_setup : to validate a fresh install of easyObject.

Utility and stand-alone scripts
Utility scripts allow to achieve some tasks that are not handled by the core, for instance checking the

consistency of a new package.

They act like some sort of plugins, written in PHP and located in the folder: data/utils/

Some scripts are planned, in progress or already available:

Available (beta):

- core validation

- package validation: consistency checks between DB and class as well as syntax validation for

classes (PHP), views (HTML) and translation files (json)

Planned :

- Create a compatible database based on a SQL schema

- Generate a PHP class from an existing table

- Generate files for default views (list.default.html and form.default.html)

- Data import / export

To consult the list of the plugins and apply them to one or more package, you may use the core_utils

application (URL example: http://localhost/easyobject/index.php?show=core_utils).

Note: Of course, those scripts may be written by the user-developer or adapted to any particular

purposes.

