

 Version: 04.07 Classification: Public

Haachtsesteenweg 1442
1130 Brussels
Belgium

DEP PKCS#11

User Guide

DEP Documentation

Atos Worldline - Technology & Products / Engineering / DEP Page: 2/35
DEP PKCS#11 User Guide (04.07) Classification: Public

Version Management Report
Version Name(s) Date Comment
04.00 Anna Papayan 02.02.2011 First version
04.01 Anna Papayan 17/05/2011 Update by including the description of

install packages and the installing
procedure for Windows and Linux.

04.02 Anna Papayan 06/06/2011 Add OpenSSL/DEP PKCS#11
integration.

04.03 Anna Papayan 27/07/2011 New functionality added, crypto.cfg
updated for OpenSSL

04.04 Joris Delclef 04/08/2011 Add EJBCA information
04.05 Anna Papayan 05/08/2011 Minor changes
04.06 Anna Papayan 02/09/2011 timeout_connect parameter description

added. Certificate object added in the
Logical View of DEP Token chapter.

04.07 Anna Papayan 26.04.2012 Minor changes

Atos Worldline - Technology & Products / Engineering / DEP Page: 3/35
DEP PKCS#11 User Guide (04.07) Classification: Public

1. TABLE OF CONTENTS

1. TABLE OF CONTENTS .. 3

2. SCOPE OF THE DOCUMENT ... 4

2.1. REFERENCES ... 4
2.2. CONTACTING ATOS WORLDLINE .. 5

3. INTRODUCTION .. 6

4. MAPPING STANDARD/LIBRARY .. 7

4.1. DEP CRYPTOKI MODEL .. 7
4.1.1. Logical view of DEP Token ... 7
4.1.2. Key Objects .. 8

4.2. USERS SUPPORTED IN DEP PKCS#11 LIBRARY .. 9
4.3. SESSIONS .. 9
4.4. FUNCTIONS SUPPORTED BY DEP CRYPTOKI .. 11

4.4.1. General purpose functions ... 11
4.4.2. Slot and Token Management functions .. 11
4.4.3. Session Management functions .. 11
4.4.4. Object Management functions ... 12
4.4.5. Cryptographic functions .. 12
4.4.6. Key Management functions .. 13

5. INSTALLING DEP PKCS#11 .. 14

5.1. INSTALL ON MS WINDOWS ENVIRONMENT .. 14
5.2. INSTALL ON LINUX ENVIRONMENT ... 20
5.3. TESTING THE DEP PKCS#11 LIBRARY ... 21

6. CONFIGURING DEP PKCS#11 .. 23

6.1. CONFIGURATION FILE STRUCTURE .. 24

7. OPENSLL/DEP PKCS#11 INTEGRATION .. 28

7.1. CONFIGURING OPENSSL TO USE THE PKCS#11 DYNAMIC ENGINE 28
7.2. OPENSSL’S S/MIME SIGN AND DECRYPT WITH DEP PKCS#11 LIBRARY .. 29

7.2.1. Prerequisites .. 29
7.2.2. S/MIME Sign with DEP PKCS#11 Library ... 30
7.2.3. S/MIME Decrypt with DEP PKCS#11 Library 30

8. LOAD BALANCING ... 32

8.1. LOAD BALANCING WITH MONO-THREAD SUPPORT .. 33
8.2. LOAD BALANCING WITH MULTI-THREAD SUPPORT .. 33
8.3. FAILOVER ... 33
8.4. IMPACT OF LOAD BALANCING ON KEY MANAGEMENT 34

9. EJBCA/DEP PKCS#11 INTEGRATION .. 35

Atos Worldline - Technology & Products / Engineering / DEP Page: 4/35
DEP PKCS#11 User Guide (04.07) Classification: Public

2. SCOPE OF THE DOCUMENT
This document introduces the DEP PKCS#11 API library for Banksys DEP Hardware
Security Modules (HSM) and provides information about the installation,
configuration use and integration of this library.

It gives an overview of:

• Supported functions;
• Supported operating systems;
• Installation and configuration of DEP PKCS#11 library;
• Load balancing mechanism implemented in DEP PKCS#11 library;
• Key management behaviour in load balancing environment.

The installation and configuration phase details how to install and configure the DEP
PKCS#11 library on each supported operating system.

At the load balancing phase the document details what is a load balancing, describes
the error mechanisms, failover procedures in load balancing environment and key
management behaviour in load balancing environment.

This guide is intended for software developers and Customer Security Officers.

2.1. REFERENCES

This document contains references to other documents. This paragraph gives a list of
all the documents referred to.

• PKCS #11 Base Functionality v2.20
• PKCS#11 v2.20: Cryptographic Token Interface Standard
• PKCS#11 Mechanisms v2.30

PKCS#11 documents and information are available online at
http://www.rsasecurity.com/rsalabs/PKCS/node.asp?id=2133 .

More information about the OpenSSL crypto library and the distribution tarballs can
be found online at www.openssl.org. For the information about the OpenSC
project refer to the www.opensc-project.org web page.

There are no references made to the following documents, but they could be useful to
understand this document.

• DEP Introduction to DEP
• DEP Glossary

http://www.rsasecurity.com/rsalabs/PKCS/node.asp?id=2133�
http://www.opensc-project.org/�

Atos Worldline - Technology & Products / Engineering / DEP Page: 5/35
DEP PKCS#11 User Guide (04.07) Classification: Public

2.2. CONTACTING ATOS WORLDLINE

You can visit Atos Worldline on the World Wide Web to find out about new products
and about various other fields of interest.
URL: www.atosworldline.com.

For the documentation visit www.banksys.com

web page.

For support on issues related to DEP, customers, partners, resellers, and distributors
can send an email to the DEP Hotline:
mailto: dephotline-atosworldline@atosorigin.com.

http://www.atosworldline.com/�
mailto:dephotline-atosworldline@atosorigin.com�

Atos Worldline - Technology & Products / Engineering / DEP Page: 6/35
DEP PKCS#11 User Guide (04.07) Classification: Public

3. INTRODUCTION

The DEP PKCS#11 library is a cryptographic library which manages standardized
access to DEP Crypto Modules.

PKCS#11 standard defines a platform independent API to cryptographic devices. The
specified API is called “Cryptoki”, which is stands for a “Cryptographic Token
Interface“. Cryptoki is an Application Programming Interface (API) with devices that
hold cryptographic information and perform cryptographic functions. Cryptoki
follows a simple object-based approach, addressing the goals of technology
independence (any kind of device) and resource sharing (multiple applications
accessing multiple devices), presenting to applications a common, logical view of the
device called a “cryptographic token”.

For more information about Cryptographic Token Interface standard refer to the RSA
standard PKCS#11 v2.20: Cryptographic Token Interface Standard document.

The DEP PKCS#11 library is an Atos Worldline’s implementation of Cryptoki, that
gives cryptographic applications standardized access to the DEP Platforms and DEP
Crypto Modules.

The DEP PKCS#11 library is compliant with the PKCS#11 v2.20 standard. For more
information about PKCS#11 standard refer to the PKCS #11 Base Functionality
v2.20.

Application can access the DEP PKCS#11 library in multithreaded or mono threaded
fashion.

Atos Worldline - Technology & Products / Engineering / DEP Page: 7/35
DEP PKCS#11 User Guide (04.07) Classification: Public

4. MAPPING STANDARD/LIBRARY

4.1. DEP CRYPTOKI MODEL

DEP Cryptoki is intended to be an interface between applications and DEP Platforms.
DEP Cryptoki’s general model is illustrated below:

 … …

Cryptoki provides an interface to one or more DEP Platforms/DEP Crypto Modules
that are active in the system through number of “slots”, which configurations are
given in DEP PKCS#11 library configuration file. DEP Platforms with the same
configuration can be present in different slots.

4.1.1. Logical view of DEP Token

Cryptoki’s logical view of a Token is a device that stores objects and can perform
cryptographic functions. Cryptoki defines three classes of object: data, certificates,
and keys.

DEP Cryptoki supports the Key and Certificate classes. The Key class stores the
cryptographic keys. The key may be a public key, a private key, or a secret key. The
Certificate class stores the certificate. This view is illustrated in the following figure:

.cfg
file

Application k

Other Security Layers

DEP Cryptoki

Slot n

DEP
Platform 1

DEP
Platform m

Application 1

Other Security Layers

DEP Cryptoki

Slot 1

DEP
Platform 1

DEP
Platform m

.cfg
file

Atos Worldline - Technology & Products / Engineering / DEP Page: 8/35
DEP PKCS#11 User Guide (04.07) Classification: Public

An object consists of a set of attributes, each of which has a given value. Each
attribute that an object possesses has precisely one value. The DEP PKCS#11 library
only deals with the key and certificate objects attributes specified in 2.20 version of
the RSA Standard.

4.1.2. Key Objects

The DEP PKCS#11 library supports only the key object which holds encryption and
authentication keys, which can be private keys or secret keys; each of these types of
keys has subtypes for use in specific cryptographic operations. DEP Cryptoki uses the
RSA private key objects, which hold the RSA private keys, and the AES Secret Key
objects which hold AES keys.
For more information about key objects, their subtypes and object attributes refer to
the documents PKCS#11 Base Functionality v2.20 and PKCS#11 Mechanisms v2.30.

4.1.2.1.RSA Private Key object attributes

DEP Cryptoki attributes for
RSA private keys Description Value

CKA_ID Key tag in DEP Crypto
Module 04 25 07 xx

CKA_LABEL Key label K_PKI_RSA_PRIV_KEY

CKA_MODULUS Modulus The value is retrieved
from DEP Crypto Module

CKA_PUBLIC_EXPONENT Public exponent The value is retrieved
from DEP Crypto Module

4.1.2.2.AES Secret Key object attributes

DEP Cryptoki attributes
for AES secret keys Description Value

CKA_ID Key tag in DEP Crypto
Module 04 31 04 xx

CKA_LABEL Key label K_SCRYP_AES

Object

Key

Private Key Secret Key Public Key

Certificate

Atos Worldline - Technology & Products / Engineering / DEP Page: 9/35
DEP PKCS#11 User Guide (04.07) Classification: Public

4.2. USERS SUPPORTED IN DEP PKCS#11 LIBRARY

The DEP PKCS#11 library doesn’t support the Security Officer role and only the
normal user role is supported. Only the normal user is allowed to perform
cryptographic operations and to access to private objects on the token, and that access
is granted only after the normal user has been authenticated.

For authentication the application must pass the ‘D’ ‘E’ ‘P’ sequence of ASCII
symbols.

4.3. SESSIONS

Cryptoki requires that an application open one or more sessions with a DEP Token to
gain access to the Token's objects and functions. A session provides a logical
connection between the application and the Token. A session in general can be a
read/write (R/W) session and a read-only (R/O) session.

DEP Cryptoki supports both R/O and R/W session types.

A read-only (R/O) session can be in one of two states, as illustrated in the figure
below. When the session is initially opened, it is in either the “R/O Public Session”
state or the “R/O User Functions” state.

 Open Session Close Session

 Close Session

The following table describes the session states supported in DEP PKCS#11 library.

State Description

R/O Public Functions
The application has opened a read-only session. The
application has read-only access to public token objects
and read/write access to public session objects.

R/O User Functions

The normal user has been authenticated to the token.
The application has read-only access to all token objects
(public or private) and read/write access to all session
objects (public or private).

R/O Public
Functions

Lo
gi

n
U

se
r

R/O User
Functions

Atos Worldline - Technology & Products / Engineering / DEP Page: 10/35
DEP PKCS#11 User Guide (04.07) Classification: Public

A read/write (R/W) session, like an R/O session type, can be in one of two states.
When the session is opened, it is in either the “R/W Public Functions” state or the
“R/W User Functions” state.

 Open Session Close Session

 Close Session

The following table describes the session states supported in DEP PKCS#11 library.

State Description

R/W Public Functions
The application has opened a read/write session. The
application has read/write access to all public objects.

R/W User Functions
The normal user has been authenticated to the token.
The application has read/write access to all objects.

Multiple sessions on multiple tokens are supported by DEP Cryptoki. An application
may have one or more sessions with one or more DEP Tokens. In general, a DEP
Token may have multiple sessions with one or more applications. A particular
Cryptoki slot may have maximum 128 read-only or read/write sessions.
After opening a session the application has access to the DEP Token’s public and
private objects.

Objects that reside on the token are referred to as token objects. Objects that exist
only for the duration of a session are referred to as session objects. When a session is
closed, any session objects which were created in that session are destroyed. This
holds even for session objects which are being used in other sessions. That is, if a
single application has multiple sessions opened with a token, and it uses one of them
to create a session object, then that session object is visible through any of that
application's sessions. However, as soon as the session that was used to create the
object is closed, that object is destroyed.

For more information about sessions and session states refer to the PKCS #11 Base
Functionality v2.20.

R/W Public
Functions

Lo
gi

n
U

se
r

R/W User
Functions

Atos Worldline - Technology & Products / Engineering / DEP Page: 11/35
DEP PKCS#11 User Guide (04.07) Classification: Public

4.4. FUNCTIONS SUPPORTED BY DEP CRYPTOKI

The DEP Cryptoki consists of number of functions, slot and token management,
object management and cryptographic functions. Not all the functions specified in
PKCS#11 v2.20 are currently implemented in DEP PKCS#11 library. This chapter
indicates the functions that are implemented in DEP PKCS#11 library.

For more information about all functions, their return values and mechanisms refer to
the documents PKCS #11 Base Functionality v2.20 and PKCS#11 Mechanisms v2.30.

4.4.1. General purpose functions

Function Description
C_Initialize
 initializes the Cryptoki library

C_Finalize

cleans up miscellaneous
Cryptoki-associated resources

C_GetFunctionList obtains all entry points (i.e. functions) of the
Cryptoki library

4.4.2. Slot and Token Management functions

Function Description
C_GetSlotList obtains a list of slots from the library

C_GetSlotInfo obtains general information about Slot.

C_GetTokenInfo obtains general information about
Token

C_GetMechanismList obtains a list of mechanism types supported by
a Token

4.4.3. Session Management functions

Function Description
C_OpenSession opens a session between an application and a

particular token
C_CloseSession closes a session

C_Login logs into a token
C_GetSessionInfo obtains information about a session

Atos Worldline - Technology & Products / Engineering / DEP Page: 12/35
DEP PKCS#11 User Guide (04.07) Classification: Public

4.4.4. Object Management functions

Function Description
C_GetAttributeValue obtains the value of an attribute
C_FindObjectsInit initializes an object search operation
C_FindObjects continues an object search operation
C_FindObjectsFinal finishes an object search operation

C_CreateObject1 creates a new object. The DEP PKCS#11
library supports the creation of X.509
certificate objects (certificate type
CKC_X_509) of CKO_CERTIFICATE object
class.

C_SetAttributeValue modifies the value of one or more attributes of
an object

4.4.5. Cryptographic functions

Category Function Description

Encryption
functions

C_EncryptInit initializes an encryption operation

C_Encrypt
encrypts single-part data. The
CKM_AES_CBC mechanism is
supported by this operation.

C_EncryptUpdate
continues a multiple-part encryption
operation

C_EncryptFinal finishes a multiple-part encryption
operation

Decryption
functions

C_DecryptInit initializes a decryption operation

C_Decrypt

decrypts single-part encrypted data.
The CKM_AES_CBC and
CKM_RSA_PKCS mechanisms are
supported by this operation.

C_DecryptUpdate continues a multiple-part decryption
operation

C_DecryptFinal finishes a multiple-part decryption

1 Only Token objects will be created by this function. The created certificate objects
will be stored in certificate folder under the Storage path, which will contain
appropriate <host_token number> subfolders with certificate objects in .xml format.
Note that to use the created certificate objects from another host (in case of the same
configuration), all the content of Storage folder must be copied to the destination
host.
Not supported in load balancing configurations. Otherwise, unexpected behaviour
may occur.

Atos Worldline - Technology & Products / Engineering / DEP Page: 13/35
DEP PKCS#11 User Guide (04.07) Classification: Public

operation
Signing
functions

C_SignInit initializes a signature operation

C_Sign
signs single-part data. The
CKM_RSA_PKCS mechanism is
supported by this operation.

C_SignUpdate

continues a multiple-part signature
operation, processing another data
part. The CKM_SHA1_RSA_PKCS
mechanism is supported by this
operation.

C_SignFinal

finishes a multiple-part signature
operation, returning the signature. The
CKM_SHA1_RSA_PKCS mechanism
is supported by this operation.

4.4.6. Key Management functions

Function Description
C_GenerateKeyPair2 generates a public/private key pair, creating

new key objects. The
CKM_RSA_PKCS_KEY_PAIR_GEN
mechanism is supported by this operation.

2 Not supported in load balancing configurations. Otherwise, unexpected behaviour may
occur. Only Token objects will be created by this function.

Atos Worldline - Technology & Products / Engineering / DEP Page: 14/35
DEP PKCS#11 User Guide (04.07) Classification: Public

5. INSTALLING DEP PKCS#11
The purpose of this chapter is to describe the DEP PKCS#11 library installation
process.

The DEP PKCS#11 library currently works with all recent 32-bit and 64-bit versions
of Windows and also with Linux environments.

Two different procedures are described below; the installation for MS Windows
environment and for Linux environment.

5.1. INSTALL ON MS WINDOWS ENVIRONMENT

An installation procedure is available for the DEP PKCS#11 library. It is a wizard-
driven procedure that lets you to install the DEP PKCS#11 library on your computer.

Extract the delivered archive (.zip) in any directory. There are two installation
packages: installerx64 for 64-bit version of Windows and installerx86 for 32-bit
version.

The following message-box will appear if you will try to install the DEP PKCS#11
library for 64-bit operating system on your 32-bit operating system.

Choose the appropriate install package and run the .msi file. The Welcome dialog box
appears and you can proceed with the installation by clicking Next and following the
instructions that the wizard presents.

Atos Worldline - Technology & Products / Engineering / DEP Page: 15/35
DEP PKCS#11 User Guide (04.07) Classification: Public

In the Select Installation Folder dialog box you have to specify the path to the folder
where the DEP PKCS#11 library will be installed.
The default path is C:\Program Files\Atos Worldline\ DEP PKCS11\.
It is recommended to use the default path, yet you can specify a different folder by
clicking Browse and selecting the desired folder for the installation of the DEP
PKCS#11 library.

Click Next to continue. If you want to abort the procedure, click Cancel.

Atos Worldline - Technology & Products / Engineering / DEP Page: 16/35
DEP PKCS#11 User Guide (04.07) Classification: Public

The Confirm Installation dialog box that gives an overview of the settings selected
during the installation procedure will appear.

Click Next to continue. If you want to return to the previous screen, press Back or if
you want to abort the procedure, press Cancel.

Atos Worldline - Technology & Products / Engineering / DEP Page: 17/35
DEP PKCS#11 User Guide (04.07) Classification: Public

Once you have confirmed the installation options, the actual installation starts. A
progress bar combined with status information show you how the installation moves
on. After completing the installation procedure, the Installation Complete dialog box
appears to notify you of a successful installation.
Click Close to exit.

Atos Worldline - Technology & Products / Engineering / DEP Page: 18/35
DEP PKCS#11 User Guide (04.07) Classification: Public

The installation setup creates the PKCS#11 files under the default path C:\Program
Files\Atos Worldline\ DEP PKCS11\, or in the installation folder which
you have specified during the installation. The PKCS#11 files are contained in the
following directories:

Atos Worldline - Technology & Products / Engineering / DEP Page: 19/35
DEP PKCS#11 User Guide (04.07) Classification: Public

The Bin folder contains the cryptoki.dll file which should be found by the DEP
Cryptoki application to able to use the DEP PKCS#11 services.
In the Docs folder you can find the documentation about the DEP PKCS#11 library.
The Include folder contains C header files (.h) that define the standard PKCS#11
declarations and can be included with Cryptoki application projects written on native
C/C++ programming language.
The Lib folder contains the cryptoki.lib object library file for building the Cryptoki
applications with the static library linkage.
The Storage folder contains the token objects created by Cryptoki application, but not
supported by DEP (certificate objects).
And the TestSuite folder contains the following source tree to test the Cryptoki
application:

After preparing the cryptoki.cfg configuration file, run the testsuite.exe executable
with the appropriate input arguments to start the specific test.
The testsuite.exe can be also produced by compiling the TestSuite.vcproj file with the
MS Visual Studio 2008.

To use the DEP PKCS#11 library, the following steps should be done.

• Add the full path of cryptoki.dll file (<installdirectory>\Bin,
where the installdirectory is the directory where the DEP PKCS#11 library
was installed) to the system or user PATH environment variables, so the
DEP cryptoki application can find the cryptoki.dll file,

Atos Worldline - Technology & Products / Engineering / DEP Page: 20/35
DEP PKCS#11 User Guide (04.07) Classification: Public

• Or you can copy the cryptoki.dll file to the same directory as the DEP
Cryptoki application or at any path defined by environment (e.g.
C:\WINDOWS\system32), so that the DEP Cryptoki application can find it;

• Prepare the configuration file (see paragraph 6 on page 23) based on provided
cryptoki.cfg template;

• Copy the cryptoki.cfg to the same directory as the cryptoki.dll or the DEP
Cryptoki application. Note that first the DEP PKCS#11 library will look for
the cryptoki.cfg file in the same directory as the cryptoki.dll file.

The DEP PKCS#11 library should be removed using the Add/Remove Programs
utility in the Control Panel. This will remove all the DEP PKCS#11 files. After
uninstalling the library, the <installdirectory>\Bin directory will not be
removed from the system or user PATH environment variables. The PATH should be
removed manually.

5.2. INSTALL ON LINUX ENVIRONMENT

The delivered PKCS#11 archive (.tar.gz) should be unpacked in any directory using
either

tar xvf filename.tar.gz,
or

gzip -dc filename.tar.gz | tar x -

command.

You will have the pkcs11_installer folder.
To install the DEP PKCS#11 library, proceed with the following steps:

1. Run the ./configure command to configure the PKCS#11 build
environment,

2. If the configuration is successfully done, run the make command to compile the
source codes. The libdepp11.so file will be generated under pkcs11_installer
directory. The native GCC compiler can be used to create a libdepp11.so file.
The build of DEP Cryptoki library uses only standard runtime libraries and
does not require any additional third party libraries.

3. Run the sudo make install command to install the PKCS#11 library. This
command will install the PKCS#11 library into the shared library location:

/usr/lib/

To make the cryptoki.cfg configuration file accessible by the DEP PKCS#11 library,
copy the cryptoki.cfg to the user’s home folder or to the same directory as the DEP
Cryptoki application. Note that first the DEP PKCS#11 library will look for the
cryptoki.cfg file in user’s home folder.

To uninstall the PKCS#11 library, run the sudo make command with the uninstall
target.

Atos Worldline - Technology & Products / Engineering / DEP Page: 21/35
DEP PKCS#11 User Guide (04.07) Classification: Public

The PKCS#11 installer includes also the testsuite cryptoki testing application. This
application must be built separately with the use of make command. After preparing
the cryptoki.cfg file (see paragraph 6.1 on page 24), you can run the generated
testsuite executable.

5.3. TESTING THE DEP PKCS#11 LIBRARY

The TestSuite application is designed to test the basic functionalities of newly
installed DEP PKCS#11 library.

First the cryptoki.cfg file should be configured so that the PKCS#11 library can use it
(see paragraph 6.1 on page 23).

To execute the TestSuite application on Windows, run the testsuite.exe as follows:

After the execution of testsuite.exe, you will have the list of input parameters.

All the usage parameters are given in the following table:

Atos Worldline - Technology & Products / Engineering / DEP Page: 22/35
DEP PKCS#11 User Guide (04.07) Classification: Public

Parameter Value Description
-t ON

OFF
Thread support on DEP PKCS#11 library is ON
NO thread support on DEP PKCS#11 library

-s APP

OS

Synchronization primitives provided by the cryptoki
application will be used
Native operating system primitives will be used by the
DEP PKCS#11 library

-c Number of threads
-i Number of iterations per thread
-o Key object switching will be used after each test

iteration
-m encdecrp

encdecrs
signp
signs
signupdatep
signupdates
rsadecrs
rsagenkey
getmechlist
getsessinfo
createobject

Encryption/Decryption performance test
Encryption/Decryption stress test
Sign in single part performance test
Sign in single part stress test
Sign in multiple parts stress test
Sign in multiple parts performance test
RSA Decrypt stress test
RSA Generate key pair test
Getting mechanism list test
Getting session info test
Creating object test

Table 1

To create any test case, run the testsuite command with appropriate parameters.

Below is an example of a Sign in single part performance test that is run on Windows
environment.

The same principles are used when running the TestSuite application on Linux
environment.

Atos Worldline - Technology & Products / Engineering / DEP Page: 23/35
DEP PKCS#11 User Guide (04.07) Classification: Public

Run the generated testsuite executable using the ./testsuite command, and create the
appropriate test cases using the input arguments described in Table 1.

6. CONFIGURING DEP PKCS#11
To use the DEP PKCS#11 library the following conditions should be true for DEP
Platforms and the DEP Crypto Modules:

• The DEP Platform software should be VENUS 4.1.6 or higher, which supports
128 connections simultaneously;

• DEP Application Software should be loaded on DEP Crypto Modules. It
should support the following interfaces:

o I_STD_GET_DEP_INFO,
o I_STD_GET_TAG_STATUS,
o I_PKI_OUTPUT_RSA_PUBLIC_FROM_KEY_TABLE,
o I_STD_ECHO,
o I_PKI_RSA_MODEXP_SK,
o I_PKI_GENERATE_RSA_KEY,
o I_PKI_RSA_IN_KEY_TABLE_ONE_TAG,
o I_SCRYP_AES_ENCRYPT_CBC,
o I_SCRYP_AES_DECRYPT_CBC.

• K_PKI_RSA_PRIV_KEY and K_SCRYPT_AES keys should be loaded in
DEP Crypto Modules.

The configuration file containing all mandatory parameters is necessary to configure
and initialize the DEP PKCS#11 library.

The DEP Cryptoki configuration file should be created manually and resided under
the same directory as the DEP PKCS#11 library or DEP Cryptoki application, which
uses the library.

Atos Worldline - Technology & Products / Engineering / DEP Page: 24/35
DEP PKCS#11 User Guide (04.07) Classification: Public

6.1. CONFIGURATION FILE STRUCTURE

The configuration file should be an ASCII encoded text file with the use of LF3 as
line-break marker (without using carriage return CR4

 before it) and should be named
“cryptoki.cfg”.

To convert fi le format with DOS(CR/LF line-break markers)
line breaks to Unix line breaks(with single LF line-break
markers) use free “dos2unix” ut ility.

Note:

The Cryptoki.cfg file is subdivided into the global parameters part and a number of
sections. Each of these sections contains parameter-value pairs that are valid within
that section.
In the latest 2.0 version of configuration file the slot sections have the highest level
and contain nested DEP Platform subsections. For load balancing mechanism the 2.0
version of configuration file should be used.

The file identifies a parameter and its value in following form:

<global parameter name>=<global parameter value>

section {
 <slot parameter name>=<slot parameter value>

section{
<DEP Platform parameter name>=<DEP Platform

parameter value>
}

}
Note
 The configuration file should contain at least one slot section
and each slot section should have at least one DEP Platform
subsection.

:

All parameters are given in the following table:

Section Name Value

Global
parameters

version Configuration file version. The default value is 1.0
(in this version the configuration file does not
contain any nested subsections).

3 Line feed, '\n', 0x0A, 10 in decimal
4 Carriage return, '\r', 0x0D, 13 in decimal

Atos Worldline - Technology & Products / Engineering / DEP Page: 25/35
DEP PKCS#11 User Guide (04.07) Classification: Public

log_level The current logging level
(possible values LOG_LEVEL_ERROR = 1
(only the error messages will be logged),
 LOG_LEVEL_WARNING = 2
(error and warning messages will be logged),
 LOG_LEVEL_INFO = 3,
(error, warning and info messages will be logged),
 LOG_LEVEL_DEBUG = 4 (all
messages will be logged)). The default value is 1.

log_file The file name for output log. The default file
name is “log.txt”.

storage_path The path to store the host objects, which are
supported by the DEP PKCS#11 library
(certificate objects). If it is not specified, the host
objects will be located in the Storage subfolder of
installation directory in Windows and in the
depp11/storage subfolder of Home folder in
Linux.

Slot
parameters

slot The ID of the slot (starts from 0). The value is
mandatory; otherwise the library initialization will
be failed.

busy_skip The number of loops to skip busy (failed) DEP
Platforms from pool in load balancing mechanism.
The default value is 5.

busy_timeout The maximum time in milliseconds to wait to
process the ECHO request to the DEP Crypto
Module during the DEP Platform selection from
pool in load balancing mechanism. The default
busy timeout is 5000.

DEP
Platform

Parameters

token DEP Crypto Module number (0..4) The default
value is 0. In case of 0 value the transactions are
processed to the DEP Platform pool.

host DEP Platform address. The address can be IPv4
address or the host name. The host value is
mandatory: otherwise the library initialization will
be failed.

port DEP Platform host handling port. The default
value is 1000.

msg_len_bytes The length (in bytes) of the DEP message field
(possible values 2 or 4). The default value is 4.

msg_type The type of the DEP message: Little or Big
Endian (LSB or MSB). The default type is LSB.

timeout_send The timeout in milliseconds is used to send DEP
message to the DEP Platform. The default value is
10000.

timeout_receive The timeout in milliseconds is used to receive

Atos Worldline - Technology & Products / Engineering / DEP Page: 26/35
DEP PKCS#11 User Guide (04.07) Classification: Public

DEP message from the DEP Platform. The default
value is 10000.

timeout_connect The timeout in milliseconds is used to make
connect attempt to the DEP Platform. The default
value is 10000.

If any non mandatory parameter is missing in the configuration file, the default value
of the parameter will be used.

Atos Worldline - Technology & Products / Engineering / DEP Page: 27/35
DEP PKCS#11 User Guide (04.07) Classification: Public

Below is an example of Cryptoki.cfg version 2.0 configuration file for one slot and
three DEP Platforms using load balancing mechanism:

Examples:

Atos Worldline - Technology & Products / Engineering / DEP Page: 28/35
DEP PKCS#11 User Guide (04.07) Classification: Public

Below is an example of ready to use configuration file with minimal necessary
parameters:

7. OPENSLL/DEP PKCS#11 INTEGRATION
The DEP PKCS#11 library is integrated with OpenSSL crypto library to perform RSA
sign and decrypt cryptographic operations. This integration is done by using the
OpenSC project.

More information about the OpenSC project is available online at www.opensc-
project.org.

The information and the distribution tarballs of OpenSSL released versions are
available online at www.openssl.org.

7.1. CONFIGURING OPENSSL TO USE THE PKCS#11
DYNAMIC ENGINE

The cryptographic operations supported by the OpenSSL crypto library are being
implemented either by native OpenSSL or by another dynamic engine.

The following OpenSC sub-projects are used for DEP PKCS#11 and OpenSSL
integration:

• libp11. The libp11 is a C wrapper library for working with PKCS#11 modules;
• engine_pkcs11; an OpenSSL dynamic engine for PKCS#11 providers.

To be able to load the dynamic engine, the mentioned libp11 and pkcs11_engine
OpenSC sub-projects should be installed on the system.

The libp11 and the pkcs11_engine sub-projects are stored in openssl subfolder under
the DEP PKCS#11 installation directory.

http://www.opensc-project.org/�
http://www.opensc-project.org/�

Atos Worldline - Technology & Products / Engineering / DEP Page: 29/35
DEP PKCS#11 User Guide (04.07) Classification: Public

For more information on how to install the lib11 and the pkcs11_engine sub-projects
refer to the http://www.opensc-project.org/libp11/wiki/QuickStart and
http://www.opensc-project.org/engine_pkcs11/wiki/QuickStart web pages
accordingly.
The dynamic engine can be loaded either from the OpenSSL command shell or from
the OpenSSL configuration file. For more information on how to configure the
OpenSSL configuration file refer to the http://www.opensc-
project.org/engine_pkcs11/wiki/QuickStart web page.

To dynamically load an engine into OpenSSL execution environment, run the openssl
in command shell and load the engine using the following command:

engine dynamic -pre SO_PATH:./engine_pkcs11.so -pre ID:pkcs11 -pre
LIST_ADD:1 -pre LOAD -pre MODULE_PATH:./libdepp11.so –pre PIN:DEP,

All the control commands used to load the PKCS#11 dynamic engine are given in the
following table:

Parameter Value
SO_PATH The directory of engine_pkcs11.so file
ID Engine ID
LIST_ADD This command is used to add the engine to the list

to be discoverable by application code later on
using the engine’s ID.

LOAD The "LOAD" command is the only one that takes
no parameters and is the command that loads and
uses the settings from any previous commands.

MODULE_PATH The DEP Cryptoki library (libdepp11.so file) path
PIN This parameter can be used to automatically

authenticate a user on DEP PKCS#11 Token.

7.2. OPENSSL’S S/MIME SIGN AND DECRYPT WITH
DEP PKCS#11 LIBRARY

The S/MIME utility of OpenSSL crypto library is used to perform the sign and
decrypt operations using the supplied certificate and the RSA private key.

7.2.1. Prerequisites

• The minimum version of DEP PKCS#11 Library must be 4.5;
• The DEP Application Software that supports the following interfaces should

be loaded on DEP Crypto Module:
o I_STD_GET_DEP_INFO,
o I_STD_GET_TAG_STATUS,
o I_PKI_OUTPUT_RSA_PUBLIC_FROM_KEY_TABLE,
o I_STD_ECHO,

http://www.opensc-project.org/libp11/wiki/QuickStart�
http://www.opensc-project.org/engine_pkcs11/wiki/QuickStart�
http://www.opensc-project.org/engine_pkcs11/wiki/QuickStart�
http://www.opensc-project.org/engine_pkcs11/wiki/QuickStart�

Atos Worldline - Technology & Products / Engineering / DEP Page: 30/35
DEP PKCS#11 User Guide (04.07) Classification: Public

o I_PKI_RSA_MODEXP_SK;
• The K_PKI_RSA_PRIV_KEY key should be loaded on DEP Crypto

Module;
• The PKCS#7 formatted certificate file corresponding to the

K_PKI_RSA_PRIV_KEY key should be present;
• An OpenSSL PKCS#11 dynamic engine should be loaded;
• An ASCII or Binary message should be given for input file when signing;
• An encrypted message in MIME format should be given for input message

when decrypting.

7.2.2. S/MIME Sign with DEP PKCS#11 Library

Use the –sign option of smime command with appropriate parameters in openssl
command prompt.

smime -sign -in data/inputmsg.txt -text -out data/signedoutputmsg.txt
-signer certificates/certificate.pem -inkey id_042507xx -keyform
engine -engine pkcs11

All the parameters of sign command are given in the following table:

Parameter Value
-in directory/filename directory and the filename of the input message to be

signed
-text adds plain text (text/plain) MIME headers to the

supplied message
-out directory/filename the directory and the filename of the output MIME

format message that has been signed
-signer directory/filename the directory and the filename of the signer’s

certificate
-inkey the ID of RSA private key object managed by the

DEP PKCS#11 Library. This must match with the
corresponding PKCS#7 formatted certificate

-keyform Specifies the source of RSA private key parameter.
Must take an engine value

-engine loaded PKCS#11 engine’s ID

7.2.3. S/MIME Decrypt with DEP PKCS#11 Library

Use the –decrypt option of smime command with appropriate parameters in openssl
command prompt.

smime -decrypt -in data/encryptedinputmsg.enc -out
data/decryptedoutputmsg.dec -inkey id_042507xx -keyform engine -
engine pkcs11

All the parameters of decrypt command are given in the following table:

Parameter Value

Atos Worldline - Technology & Products / Engineering / DEP Page: 31/35
DEP PKCS#11 User Guide (04.07) Classification: Public

-in directory/filename directory and the name of the input message to be

decrypted
-out directory/filename the directory and the name of the message text that

has been decrypted
-inkey the ID of RSA private key object managed by the

DEP PKCS#11 Library
-keyform Specifies the source of RSA private key parameter.

Must take an engine value
-engine Loaded PKCS#11 engine’s ID

Atos Worldline - Technology & Products / Engineering / DEP Page: 32/35
DEP PKCS#11 User Guide (04.07) Classification: Public

8. LOAD BALANCING
Load balancing is a mechanism to distribute the workload evenly across two or more
DEP Tokens transparently to the calling application, in order to get optimal resource
utilization, minimize response time and avoid overload. If one DEP Platform or DEP
Crypto Module is not available due to a failure, the operation is sent to one of the
other DEP Platforms/DEP Crypto Modules. It requires additional measures to check
the DEP’s status and switch a failed DEP to another one (see paragraph 8.3 on page
33).

In order to take advantage of the load balancing mechanism, the Cryptoki slot maps
several opened sessions to more than one DEP Platforms/DEP Crypto Modules. For
example, when there are three DEP Platforms a crypto request may be sent to either
DEP Platform/DEP Crypto Module based on session mapping.

During the open session when one DEP is non-responsive, one of the other resources
is chosen. For this purpose, the round-robin method is used to choose the resource
from a list of available DEP Platforms/DEP Crypto Modules. The round-robin works
in a looping fashion; the DEP Platforms/DEP Crypto Modules in a pool are selected
starting from the first DEP Platform/DEP Crypto Module to the last one. When the
last DEP Platform/DEP Crypto Module in the list is selected it moves back to the
beginning of the list. The slot should have at least one DEP Platform/DEP Crypto
Module.

After the session is opened, the operations are distributed to the selected DEP
Platforms/DEP Crypto Modules. If the DEP Platform/DEP Crypto Module mapped to
the session fails, then all future operations on this session will fail until the DEP
Platform/DEP Crypto Module is recovered, otherwise the session should be closed.

Cryptoki applications can access the DEP PKCS#11 library both in multi-threaded
and mono-threaded fashion.

When the application initializes the DEP PKCS#11 library, it can specify that either it
will be accessing the library from one thread, so the library need not worry about
performing any type of locking for the sake of thread-safety, or it will be accessing
the library concurrently from multiple threads. In this case the library must use a set
of application-supplied synchronization primitives to ensure proper thread-safe
behaviour. Refer to the PKCS #11 Base Functionality v2.20 document for more
information about applications and threads.

The load balancing mechanism with mono-thread and multi-thread support is
described in this chapter.

Atos Worldline - Technology & Products / Engineering / DEP Page: 33/35
DEP PKCS#11 User Guide (04.07) Classification: Public

8.1. LOAD BALANCING WITH MONO-THREAD
SUPPORT

In mono-threaded fashion, the Cryptoki application accesses the functionalities of the
DEP PKCS#11 library with one thread by using a Cryptoki slot with a pool of DEP
Platforms/DEP Crypto Modules.

The Cryptoki application starts a single thread and operates with the several number
of sessions opened in the context of this thread. The Cryptoki application can request
a cryptographic operation on each opened session. The DEP PKCS#11 library handles
these requests sequentially. When the cryptographic request is sent to the DEP, the
Cryptoki application is blocked until a reply is received from the DEP Platform/DEP
Crypto Module. For example, there are 2 sessions mapped to two different DEP
Platforms/DEP Crypto Modules. The first session initializes a request to the DEP
Platform/DEP Crypto Module and waits for reply. The Cryptoki application will be
blocked and the second session cannot initialize other requests while there is an
operation request waiting for reply. Only after the first session receives the reply the
second session can initialize the call.
This architecture increases the reliability of DEP PKCS#11 library.

8.2. LOAD BALANCING WITH MULTI-THREAD
SUPPORT

In multi-threaded fashion, the Cryptoki application accesses the functionalities of the
DEP PKCS#11 library with multiple threads by using a Cryptoki slot with a pool of
DEP Platforms/DEP Crypto Modules.

The DEP PKCS#11 library handles the parallelization of cryptographic functions
called from different sessions distributed over many threads, which improves speed
and reliability.

The Cryptoki application starts the required number of threads and operates with the
sessions in the context of these opened threads. The Cryptoki application can request
a cryptographic operation on each opened session. The DEP Cryptoki internally
maintains the synchronization of threads that handle these requests in parallel. This
architecture results in improved throughput because each session opened in different
threads and mapped to the different DEP Platforms/DEP Crypto Modules can
initialize function calls in parallel. For example, if there are two sessions opened in
different threads, the first session initializes a request to the selected DEP
Platform/DEP Crypto Module and the second session from another thread context can
also initialize a request to another or to the same DEP Platform/DEP Crypto Module.

8.3. FAILOVER

The DEP PKCS#11 library supports the failover during the open session operation on
the load balancing Cryptoki slots. If one of the DEP Platforms/DEP Crypto Modules

Atos Worldline - Technology & Products / Engineering / DEP Page: 34/35
DEP PKCS#11 User Guide (04.07) Classification: Public

fails in pool, the failover mechanism is used to exclude the failed DEP Platforms/DEP
Crypto Modules from the pool and switch to another one.

While opening the session, a dummy request is sent to check if the DEP Platform or
the DEP Crypto Module is available or not. The maximum waiting time (in
milliseconds) for the response is defined in the configuration file by busy_timeout
variable (see paragraph 6 on page 23). Failed DEP Platforms and DEP Crypto
Modules will be excluded from the pool. The number of rounds to skip an
unresponsive DEP Platforms/DEP Crypto Modules from the pool is defined in the
configuration file by skip_busy parameter (see 6 on page 23).

8.4. IMPACT OF LOAD BALANCING ON KEY
MANAGEMENT

To keep the transparency of the load balancing mechanism for Cryptoki applications,
it is required to have the same keys loaded in all DEP Crypto Modules connected to
the same Cryptoki slot.

When the session is opened on a Cryptoki slot, the operations are distributed to the
pool of DEP Platforms/DEP Crypto Modules connected to it. If the key tables are not
synchronized, the result of the cryptographic operation will depend on which DEP
Crypto Module was addressed.

Atos Worldline - Technology & Products / Engineering / DEP Page: 35/35
DEP PKCS#11 User Guide (04.07) Classification: Public

9. EJBCA/DEP PKCS#11 INTEGRATION
The DEP PKCS#11 cryptographic library can be used as a PKCS#11 provider for the
Enterprise Java Beans Certificate Authority (EJBCA) OpenSource PKI. With this
framework, application developers can benefit from the Java API regardless of the
low-level DEP protocols.

More information on EJBCA can be found on www.ejbca.org.

http://www.ejbca.org/�

	1. TABLE OF CONTENTS
	2. SCOPE OF THE DOCUMENT
	2.1. References
	2.2. CONTACTING ATOS WORLDLINE

	3. INTRODUCTION
	4. MAPPING STANDARD/LIBRARY
	4.1. DEP Cryptoki Model
	4.1.1. Logical view of DEP Token
	4.1.2. Key Objects
	4.1.2.1. RSA Private Key object attributes
	4.1.2.2. AES Secret Key object attributes

	4.2. Users supported in DEP PKCS#11 library
	4.3. Sessions
	4.4. Functions supported by DEP Cryptoki
	4.4.1. General purpose functions
	4.4.2. Slot and Token Management functions
	4.4.3. Session Management functions
	4.4.4. Object Management functions
	4.4.5. Cryptographic functions
	4.4.6. Key Management functions

	5. INSTALLING DEP PKCS#11
	5.1. Install on MS Windows Environment
	5.2. Install on Linux Environment
	5.3. Testing the DEP PKCS#11 library

	6. CONFIGURING DEP PKCS#11
	6.1. Configuration file structure

	7. OPENSLL/DEP PKCS#11 INTEGRATION
	7.1. Configuring OpenSSL to use the PKCS#11 dynamic engine
	7.2. OpenSSL’s S/MIME Sign and Decrypt with DEP PKCS#11 Library
	7.2.1. Prerequisites
	7.2.2. S/MIME Sign with DEP PKCS#11 Library
	7.2.3. S/MIME Decrypt with DEP PKCS#11 Library

	8. LOAD BALANCING
	8.1. Load balancing with mono-thread support
	8.2. Load balancing with multi-thread support
	8.3. Failover
	8.4. Impact of load balancing on key management

	9. EJBCA/DEP PKCS#11 INTEGRATION

