
Xpress-Mosel
User guide

Release 2.0

Last update 5 January, 2007

Published by Dash Optimization Ltd
c©Copyright Dash Associates 2007. All rights reserved.

All trademarks referenced in this manual that are not the property of Dash Associates are acknowledged.

All companies, products, names and data contained within this book are completely fictitious and are used solely to
illustrate the use of Xpress-MP. Any similarity between these names or data and reality is purely coincidental.

How to Contact Dash

USA, Canada and all Americas

Dash Optimization Inc

Information and Sales: info@dashoptimization.com
Licensing: license-usa@dashoptimization.com
Product Support: support-usa@dashoptimization.com

Tel: +1 (201) 567 9445
Fax: +1 (201) 567 9443

Dash Optimization Inc.
560 Sylvan Avenue
Englewood Cliffs
NJ 07632
USA

Japan

Dash Optimization Japan

Information and Sales: info@jp.dashoptimization.com
Licensing: license@jp.dashoptimization.com
Product Support: support@jp.dashoptimization.com

Tel: +81 43 297 8836
Fax: +81 43 297 8827

WBG Marive-East 21F FASuC B2124
2-6 Nakase Mihama-ku
261-7121 Chiba
Japan

Worldwide

Dash Optimization Ltd

Information and Sales: info@dashoptimization.com
Licensing: license@dashoptimization.com
Product Support: support@dashoptimization.com

Tel: +44 1926 315862
Fax: +44 1926 315854

Leam House, 64 Trinity Street
Leamington Spa
Warwickshire CV32 5YN
UK

For the latest news and Xpress-MP software and documentation updates, please visit the Xpress-MP website at
http://www.dashoptimization.com or subscribe to our mailing list.

mailto:info@dashoptimization.com
mailto:license-usa@dashoptimization.com
mailto:support-usa@dashoptimization.com
mailto:info@jp.dashoptimization.com
mailto:license@jp.dashoptimization.com
mailto:support@jp.dashoptimization.com
mailto:info@dashoptimization.com
mailto:license@dashoptimization.com
mailto:support@dashoptimization.com
http://www.dashoptimization.com

Contents

I Using the Mosel language 1

Introduction 2
Why you need Mosel . 2
What you need to know before using Mosel . 2
Symbols and conventions . 3
The structure of this guide . 4

1 Getting started with Mosel 5
1.1 Entering a model . 5
1.2 The chess set problem: description . 5

1.2.1 A first formulation . 5
1.3 Solving the chess set problem . 6

1.3.1 Building the model . 6
1.3.2 Obtaining a solution using Mosel . 7
1.3.3 Running Mosel from a command line . 8
1.3.4 Using Xpress-IVE . 9

2 Some illustrative examples 10
2.1 The burglar problem . 10

2.1.1 Model formulation . 10
2.1.2 Implementation . 10
2.1.3 The burglar problem revisited . 13

2.2 A blending example . 14
2.2.1 The model background . 14
2.2.2 Model formulation . 15
2.2.3 Implementation . 15
2.2.4 Re-running the model with new data . 16
2.2.5 Reading data from spreadsheets and databases 17

2.2.5.1 Spreadsheet example . 18
2.2.5.2 Database example . 18
2.2.5.3 Excel spreadsheets . 19

3 More advanced modeling features 21
3.1 Overview . 21
3.2 A transport example . 21

3.2.1 Model formulation . 21
3.2.2 Implementation . 22

3.3 Conditional generation — the | operator . 23
3.3.1 Conditional variable creation and create 24

3.4 Reading sparse data . 25
3.4.1 Data input with initializations from 25
3.4.2 Data input with readln . 26
3.4.3 Data input with diskdata . 26

i Mosel User Guide

4 Integer Programming 28
4.1 Integer Programming entities in Mosel . 28
4.2 A project planning model . 30

4.2.1 Model formulation . 30
4.2.2 Implementation . 31

4.3 The project planning model using Special Ordered Sets 32

5 Overview of subroutines and reserved words 33
5.1 Modules . 33
5.2 Reserved words . 34

6 Correcting errors in Mosel models 36
6.1 Correcting syntax errors in Mosel . 36
6.2 Correcting run time errors in Mosel . 37

II Advanced language features 39

Overview 40

7 Flow control constructs 41
7.1 Selections . 41
7.2 Loops . 42

7.2.1 forall . 43
7.2.1.1 Multiple indices . 43
7.2.1.2 Conditional looping . 44

7.2.2 while . 44
7.2.3 repeat until . 45

8 Sets, lists, and records 46
8.1 Initializing sets . 46

8.1.1 Constant sets . 46
8.1.2 Set initialization from file, finalized and fixed sets 47

8.2 Working with sets . 48
8.2.1 Set operators . 49

8.3 Initializing lists . 50
8.3.1 Constant list . 50
8.3.2 List initialization from file . 50

8.4 Working with lists . 51
8.4.1 Enumeration . 51
8.4.2 List operators . 51
8.4.3 List handling functions . 52

8.5 Records . 54
8.5.1 Defining records . 54
8.5.2 Initialization of records from file . 55

8.6 User types . 56

9 Functions and procedures 58
9.1 Subroutine definition . 58
9.2 Parameters . 59
9.3 Recursion . 60
9.4 forward . 60
9.5 Overloading of subroutines . 62

10 Output 64
10.1 Producing formatted output . 64
10.2 File output . 66

10.2.1 Data input with initializations to . 66
10.2.2 Data output with writeln . 66
10.2.3 Data output with diskdata . 67

Contents ii Mosel User Guide

10.3 Real number format . 68

11 More about Integer Programming 69
11.1 Cut generation . 69

11.1.1 Example problem . 69
11.1.2 Model formulation . 69
11.1.3 Implementation . 70
11.1.4 Cut-and-Branch . 72
11.1.5 Comparison tolerance . 73
11.1.6 Branch-and-Cut . 73

11.2 Column generation . 75
11.2.1 Example problem . 75
11.2.2 Model formulation . 75
11.2.3 Implementation . 76

12 Extensions to Linear Programming 80
12.1 Recursion . 80

12.1.1 Example problem . 80
12.1.2 Model formulation . 80
12.1.3 Implementation . 81

12.2 Goal Programming . 83
12.2.1 Example problem . 83
12.2.2 Implementation . 83

III Working with the Mosel libraries 86

Overview 87

13 C interface 88
13.1 Basic tasks . 88

13.1.1 Compiling a model in C . 88
13.1.2 Executing a model in C . 88

13.2 Parameters . 89
13.3 Accessing modeling objects and solution values . 90

13.3.1 Accessing sets . 90
13.3.2 Retrieving solution values . 91
13.3.3 Sparse arrays . 92
13.3.4 Termination . 93

13.4 Exchanging data between an application and a model 93
13.4.1 Dense arrays . 93
13.4.2 Sparse arrays . 95

13.5 Redirecting the Mosel output . 96
13.6 Problem solving in C with Xpress-Optimizer . 97

14 Other programming language interfaces 100
14.1 Java . 100

14.1.1 Compiling and executing a model in Java . 100
14.1.2 Parameters . 101
14.1.3 Accessing sets . 101
14.1.4 Retrieving solution values . 102
14.1.5 Sparse arrays . 103
14.1.6 Exchanging data between an application and a model 103

14.1.6.1 Dense arrays . 104
14.1.6.2 Sparse arrays . 105

14.1.7 Redirecting the Mosel output . 106
14.2 Visual Basic . 106

14.2.1 Compiling and executing a model in Visual Basic 107
14.2.2 Parameters . 107

Contents iii Mosel User Guide

14.2.3 Redirecting the Mosel output . 108

IV Extensions and tools 110

Overview 111

15 Debugger and Profiler 112
15.1 The Mosel Debugger . 112

15.1.1 Using the Mosel Debugger . 112
15.1.2 Debugger in IVE . 114

15.2 Efficient modeling through the Mosel Profiler . 114
15.2.1 Using the Mosel Profiler . 114
15.2.2 Other commands for model analysis . 116
15.2.3 Some recommendations for efficient modeling 116

16 Packages 118
16.1 Definition of constants . 118
16.2 Definition of subroutines . 119
16.3 Definition of types . 121
16.4 Packages vs. modules . 122

17 Language extensions 124
17.1 Generalized file handling . 124
17.2 Multiple models and parallel solving with mmjobs 127

17.2.1 Running a model from another model . 127
17.2.2 Compiling to memory . 128
17.2.3 Exchanging data between models . 128

17.3 Graphics with mmive and mmxad . 129
17.3.1 Drawing user graphs with mmive . 129
17.3.2 Application development with mmxad . 131

17.4 Solvers . 133

Appendix 134

A Good modeling practice with Mosel 135
A.1 Using constants and parameters . 135
A.2 Naming sets . 135
A.3 Finalizing sets and dynamic arrays . 136
A.4 Ordering indices . 137
A.5 Use of exists . 137
A.6 Structuring a model . 138
A.7 Transforming subroutines into user modules . 138
A.8 Debugging options, IVE . 139
A.9 Algorithm choice and parameter settings . 139

Index 140

Contents iv Mosel User Guide

I. Using the Mosel language

Introduction

Why you need Mosel

‘Mosel’ is not an acronym. It is pronounced like the German river, mo-zul. It is an advanced
modeling and solving language and environment, where optimization problems can be speci-
fied and solved with the utmost precision and clarity.

Here are some of the features of Mosel

• Mosel’s easy syntax is regular and described formally in the reference manual.

• Mosel supports dynamic objects, which do not require pre-sizing. For instance, you do
not have to specify the maximum sizes of the indices of a variable x.

• Mosel models are pre-compiled. Mosel compiles a model into a binary file which can be
run on any computer platform, and which hides the intellectual property in the model if
so required.

• Mosel is embeddable. There is a runtime library which can be called from your favorite
programming language if required. You can access any of the model’s objects from your
programming language.

• Mosel is easily extended through the concept of modules. It is possible to write a set
of functions, which together stand alone as a module. Several modules are supplied by
Dash, including the Xpress-MP Optimizer.

• Support for user-written functions and procedures is provided.

• The use of sets of objects is supported.

• Constraints and variables etc. can be added incrementally. For instance, column genera-
tion can depend on the results of previous optimizations, so subproblems are supported.

The modeling component of Mosel provides you with an easy to use yet powerful language
for describing your problem. It enables you to gather the problem data from text files and
a range of popular spreadsheets and databases, and gives you access to a variety of solvers,
which can find optimal or near-optimal solutions to your model.

What you need to know before using Mosel

Before using Mosel you should be comfortable with the use of symbols such as x or y to rep-
resent unknown quantities, and the use of this sort of variable in simple linear equations and
inequalities, for example:

x + y ≤ 6

Experience of a basic course in Mathematical or Linear Programming is worthwhile, but is not
essential. Similarly some familiarity with the use of computers would be helpful.

2 Mosel User Guide

For all but the simplest models you should also be familiar with the idea of summing over a
range of variables. For example, if producej is used to represent the number of cars produced
on production line j then the total number of cars produced on all N production lines can be
written as:

N∑
j=1

producej

This says ‘sum the output from each production line producej over all production lines j from
j = 1 to j = N’.

If our target is to produce at least 1000 cars in total then we would write the inequality:

N∑
j=1

producej ≥ 1000

We often also use a set notation for the sums. Assuming that LINES is the set of production
lines {1, . . , N}, we may write equivalently:∑

j∈LINES

producej ≥ 1000

This may be read ‘sum the output from each production line producej over all production lines
j in the set LINES’.

Other common mathematical symbols that are used in the text are IN (the set of non-negative
integer numbers {0, 1, 2, . . . }), ∩ and ∪ (intersection and union of sets), ∧ and ∨ (logical ‘and’
and ‘or’), the all-quantifier ∀ (read ‘for all’), and ∃ (read ‘exists’).

Mosel closely mimics the mathematical notation an analyst uses to describe a problem. So
provided you are happy using the above mathematical notation the step to using a modeling
language will be straightforward.

Symbols and conventions

We have used the following conventions within this guide:

• Mathematical objects are presented in italics.

• Examples of commands, models and their output are printed in a Courier font. File-
names are given in lower case Courier.

• Decision variables have lower case names; in the most example problems these are verbs
(such as use, take).

• Constraint names start with an upper case letter, followed by mostly lower case (e.g.
Profit, TotalCost).

• Data (arrays, sets, lists) and constants are written entirely with upper case (e.g. DEMAND,
COST , ITEMS).

• The vertical bar symbol | is found on many keyboards as a vertical line with a small gap in
the middle, but often confusingly displays on-screen without the small gap. In the UNIX
world it is referred to as the pipe symbol. (Note that this symbol is not the same as the
character sometimes used to draw boxes on a PC screen.) In ASCII, the | symbol is 7C in
hexadecimal, 124 in decimal.

Introduction 3 Mosel User Guide

The structure of this guide

This user guide is structured into these main parts

• Part I describes the use of Mosel for people who want to build and solve Mathematical
Programming (MP) problems. These will typically be Linear Programming (LP), Mixed
Integer Programming (MIP), or Quadratic Programming (QP) problems. The part has been
designed to show the modeling aspects of Mosel, omitting most of the more advanced
programming constructs.

• Part II is designed to help those users who want to use the powerful programming lan-
guage facilities of Mosel, using Mosel as a modeling, solving and programming environ-
ment. Items covered include looping (with examples), more about using sets, producing
nicely formatted output, functions and procedures. We also give some advanced MP ex-
amples, including Branch-and-Cut, column generation, Goal Programming and Successive
Linear Programming.

• Part III shows how Mosel models can be embedded into large applications using program-
ming languages like C, Java, or Visual Basic.

• Part IV gives examples of some of the advanced features of Mosel, including the use of
the Mosel Debugger and Profiler for the development and analysis of large-scale Mosel
models, an introduction to the notion of packages, and an overview of the functionality
of the modules in the Mosel distribution.

This user guide is deliberately informal and is not complete. It must be read in conjunction
with the Mosel reference manual, where features are described precisely and completely.

Introduction 4 Mosel User Guide

Chapter 1

Getting started with Mosel

1.1 Entering a model

In this chapter we will take you through a very small manufacturing example to illustrate the
basic building blocks of Mosel.

Models are entered into a Mosel file using a standard text editor (do not use a word processor
as an editor as this may not produce an ASCII file). If you have access to Windows, Xpress-IVE
is the model development environment to use. The Mosel file is then loaded into Mosel, and
compiled. Finally, the compiled file can be run. This chapter will show the stages in action.

1.2 The chess set problem: description

To illustrate the model development and solving process we shall take a very small example.

A joinery makes two different sizes of boxwood chess sets. The smaller size requires 3 hours
of machining on a lathe and the larger only requires 2 hours, because it is less intricate. There
are four lathes with skilled operators who each work a 40 hour week. The smaller chess set
requires 1 kg of boxwood and the larger set requires 3 kg. However boxwood is scarce and
only 200 kg per week can be obtained.

When sold, each of the large chess sets yields a profit of $20, and one of the small chess set
has a profit of $5. The problem is to decide how many sets of each kind should be made each
week to maximize profit.

1.2.1 A first formulation

Within limits, the joinery can vary the number of large and small chess sets produced: there
are thus two decision variables (or simply variables) in our model, one decision variable per
product. We shall give these variables abbreviated names:

small: the number of small chess sets to make
large: the number of large chess sets to make

The number of large and small chess sets we should produce to achieve the maximum contri-
bution to profit is determined by the optimization process. In other words, we look to the
optimizer to tell us the best values of small, and large.

The values which small and large can take will always be constrained by some physical or
technological limits: they may be constrained to be equal to, less than or greater than some
constant. In our case we note that the joinery has a maximum of 160 hours of machine time
available per week. Three hours are needed to produce each small chess set and two hours are
needed to produce each large set. So the number of hours of machine time actually used each

5 Mosel User Guide

week is 3 · small + 2 · large. One constraint is thus:

3 · small + 2 · large ≤ 160 (lathe-hours)

which restricts the allowable combinations of small and large chess sets to those that do not
exceed the lathe-hours available.

In addition, only 200 kg of boxwood is available each week. Since small sets use 1 kg for every
set made, against 3 kg needed to make a large set, a second constraint is:

1 · small + 3 · large ≤ 200 (kg of boxwood)

where the left hand side of the inequality is the amount of boxwood we are planning to use
and the right hand side is the amount available.

The joinery cannot produce a negative number of chess sets, so two further non-negativity
constraints are:

small ≥ 0

large ≥ 0

In a similar way, we can write down an expression for the total profit. Recall that for each of
the large chess sets we make and sell we get a profit of $20, and one of the small chess set
gives us a profit of $5. The total profit is the sum of the individual profits from making and
selling the small small sets and the large large sets, i.e.

Profit = 5 · small + 20 · large

Profit is the objective function, a linear function which is to be optimized, that is, maximized.
In this case it involves all of the decision variables but sometimes it involves just a subset of
the decision variables. In maximization problems the objective function usually represents
profit, turnover, output, sales, market share, employment levels or other ‘good things’. In
minimization problems the objective function describes things like total costs, disruption to
services due to breakdowns, or other less desirable process outcomes.

The collection of variables, constraints and objective function that we have defined are our
model. It has the form of a Linear Programming problem: all constraints are linear equations
or inequalities, the objective function also is a linear expression, and the variables may take
any non-negative real value.

1.3 Solving the chess set problem

1.3.1 Building the model

The Chess Set problem can be solved easily using Mosel. The first stage is to get the model we
have just developed into the syntax of the Mosel language. Remember that we use the nota-
tion that items in italics (for example, small) are the mathematical variables. The corresponding
Mosel variables will be the same name in non-italic courier (for example, small).

We illustrate this simple example by using the command line version of Mosel. The model can
be entered into a file named, perhaps, chess.mos as follows:

model "Chess"
declarations
small: mpvar ! Number of small chess sets to make
large: mpvar ! Number of large chess sets to make
end-declarations

Profit:= 5*small + 20*large ! Objective function
Lathe:= 3*small + 2*large <= 160 ! Lathe-hours
Boxwood:= small + 3*large <= 200 ! kg of boxwood
end-model

Getting started with Mosel 6 Mosel User Guide

Indentations are purely for clarity. The symbol ! signifies the start of a comment, which
continues to the end of the line. Comments over multiple lines start with (! and terminate
with !).

Notice that the character ‘*’ is used to denote multiplication of the decision variables by the
units of machine time and wood that one unit of each uses in the Lathe and Boxwood con-
straints.

The modeling language distinguishes between upper and lower case, so Small would be rec-
ognized as different from small.

Let’s see what this all means.

A model is enclosed in a model / end-model block.

The decision variables are declared as such in the declarations / end-declarations block.
Every decision variable must be declared. LP, MIP and QP variables are of type mpvar. Several
decision variables can be declared on the same line, so

declarations
small, large: mpvar
end-declarations

is exactly equivalent to what we first did. By default, Mosel assumes that all mpvar variables
are constrained to be non-negative unless it is informed otherwise, so there is no need to
specify non-negativity constraints on variables.

Here is an example of a constraint:

Lathe:= 3*small + 2*large <= 160

The name of the constraint is Lathe. The actual constraint then follows. If the ‘constraint’ is
unconstrained (for example, it might be an objective function), then there is no <=, >= or =
part.

In Mosel you enter the entire model before starting to compile and run it. Any errors will
be signaled when you try to compile the model, or later when you run it (see Chapter 6 on
correcting syntax errors).

1.3.2 Obtaining a solution using Mosel

So far, we have just specified a model to Mosel. Next we shall try to solve it. The first thing to
do is to specify to Mosel that it is to use Xpress-Optimizer to solve the problem. Then, assuming
we can solve the problem, we want to print out the optimum values of the decision variables,
small and large, and the value of the objective function. The model becomes

model "Chess 2"
uses "mmxprs" ! We shall use Xpress-Optimizer</p>

declarations
small,large: mpvar ! Decision variables: produced quantities
end-declarations

Profit:= 5*small + 20*large ! Objective function
Lathe:= 3*small + 2*large <= 160 ! Lathe-hours
Boxwood:= small + 3*large <= 200 ! kg of boxwood

maximize(Profit) ! Solve the problem

writeln("Make ", getsol(small), " small sets")
writeln("Make ", getsol(large), " large sets")
writeln("Best profit is ", getobjval)
end-model

The line

Getting started with Mosel 7 Mosel User Guide

uses "mmxprs"

tells Mosel that Xpress-Optimizer will be used to solve the LP. The Mosel modules mmxprs
module provides us with such things as maximization, handling bases etc.

The line

maximize(Profit)

tells Mosel to maximize the objective function called Profit.

More complicated are the writeln statements, though it is actually quite easy to see what
they do. If some text is in quotation marks, then it is written literally. getsol and getobjval
are special Mosel functions that return respectively the optimal value of the argument, and
the optimal objective function value. writeln writes a line terminator after writing all its
arguments (to continue writing on the same line, use write instead). writeln can take many
arguments. The statement

writeln("small: ", getsol(small), " large: ", getsol(large))

will result in the values being printed all on one line.

1.3.3 Running Mosel from a command line

When you have entered the complete model into a file (let us call it chess.mos), we can
proceed to get the solution to our problem. Three stages are required:

1. Compiling chess.mos to a compiled file, chess.bim

2. Loading the compiled file chess.bim

3. Running the model we have just loaded.

We start Mosel at the command prompt, and type the following sequence of commands

mosel
compile chess
load chess
run
quit

which will compile, load and run the model. We will see output something like that below,
where we have highlighted Mosel’s output in bold face.

mosel

** Xpress-Mosel **
(c) Copyright Dash Associates 1998-2002
>compile chess
Compiling ’chess’...
>load chess
>run
Make 0 small sets
Make 66.6667 large sets
Best profit is 1333.33
Returned value: 0
>quit
Exiting.

Since the compile/load/run sequence is so often used, it can be abbreviated to

cl chess
run

or simply

Getting started with Mosel 8 Mosel User Guide

exec chess

The same steps may be done immediately from the command line:

mosel -c "cl chess; run"

or

mosel -c "exec chess"

The -c option is followed by a list of commands enclosed in double quotes. With Mosel’s silent
(-s) option

mosel -s -c "exec chess"

the only output is

Make 0 small sets
Make 66.6667 large sets
Best profit is 1333.33

1.3.4 Using Xpress-IVE

Under Microsoft Windows you may also use Xpress-IVE, sometimes called just IVE, the Xpress
Interactive Visual Environment, for working with your Mosel models. Xpress-IVE is a complete
modeling and optimization development environment that presents Mosel in an easy-to-use
Graphical User Interface (GUI), with a built-in text editor.

To execute the model file chess.mos you need to carry out the following steps.

• Start up IVE.

• Open the model file by choosing File > Open. The model source is then displayed in the
central window (the IVE Editor).

• Click the Run button (green triangle) or alternatively, choose Build > Run.

The Build pane at the bottom of the workspace is automatically displayed when compilation
starts. If syntax errors are found in the model, they are displayed here, with details of the
line and character position where the error was detected and a description of the problem, if
available. Clicking on the error takes the user to the offending line.

When a model is run, the Output/Input pane at the right hand side of the workspace window
is selected to display program output. Any output generated by the model is sent to this
window. IVE will also provide graphical representations of how the solution is obtained, which
are generated by default whenever a problem is optimized. The right hand window contains a
number of panes for this purpose, dependent on the type of problem solved and the particular
algorithm used. IVE also allows the user to draw graphs by embedding subroutines in Mosel
models (see the documentation on the website for further detail).

IVE makes all information about the solution available through the Entities pane in the left
hand window. By expanding the list of decision variables in this pane and hovering over one
with the mouse pointer, its solution and reduced cost are displayed. Dual and slack values for
constraints may also be obtained.

Getting started with Mosel 9 Mosel User Guide

Chapter 2

Some illustrative examples

This chapter develops the basics of modeling set out in Chapter 1. It presents some further
examples of the use of Mosel and introduces new features:

• Use of subscripts: Almost all models of any size have subscripted variables. We show how
to define arrays of data and decision variables, introduce the different types of sets that
may be used as index sets for these arrays, and also simple loops over these sets.

• Working with data files: Mosel provides facilities to read from and write to data files in
text format and also from other data sources (databases and spreadsheets).

2.1 The burglar problem

A burglar sees 8 items, of different worths and weights. He wants to take the items of greatest
total value whose total weight is not more than the maximum WTMAX he can carry.

2.1.1 Model formulation

We introduce binary variables takei for all i in the set of all items (ITEMS) to represent the
decision whether item i is taken or not. takei has the value 1 if item i is taken and 0 other-
wise. Furthermore, let VALUEi be the value of item i and WEIGHTi its weight. A mathematical
formulation of the problem is then given by:

maximize
∑

i∈ITEMS

VALUEi · takei∑
i∈ITEMS

WEIGHTi · takei ≤ WTMAX (weight restriction)

∀i ∈ ITEMS : takei ∈ {0, 1}

The objective function is to maximize the total value, that is, the sum of the values of all items
taken. The only constraint in this problem is the weight restriction. This problem is an example
of a knapsack problem.

2.1.2 Implementation

It may be implemented with Mosel as follows (model file burglar.mos):

model Burglar
uses "mmxprs"

declarations
WTMAX = 102 ! Maximum weight allowed
ITEMS = 1..8 ! Index range for items

10 Mosel User Guide

VALUE: array(ITEMS) of real ! Value of items
WEIGHT: array(ITEMS) of real ! Weight of items

take: array(ITEMS) of mpvar ! 1 if we take item i; 0 otherwise
end-declarations

! Item: 1 2 3 4 5 6 7 8
VALUE :: [15, 100, 90, 60, 40, 15, 10, 1]
WEIGHT:: [2, 20, 20, 30, 40, 30, 60, 10]

! Objective: maximize total value
MaxVal:= sum(i in ITEMS) VALUE(i)*take(i)

! Weight restriction
sum(i in ITEMS) WEIGHT(i)*take(i) <= WTMAX

! All variables are 0/1
forall(i in ITEMS) take(i) is_binary

maximize(MaxVal) ! Solve the MIP-problem

! Print out the solution
writeln("Solution:\n Objective: ", getobjval)
forall(i in ITEMS) writeln(" take(", i, "): ", getsol(take(i)))
end-model

When running this model we get the following output:

Solution:
Objective: 280
take(1): 1
take(2): 1
take(3): 1
take(4): 1
take(5): 0
take(6): 1
take(7): 0
take(8): 0

In this model there are a lot of new features, which we shall now explain.

• Constants:

WTMAX=102

declares a constant called WTMAX, and gives it the value 102. Since 102 is an integer, WTMAX
is an integer constant. Anything that is given a value in a declarations block is a constant.

• Ranges:

ITEMS = 1..8

defines a range set, that is, a set of consecutive integers from 1 to 8. This range is used
as an index set for the data arrays (VALUE and WEIGHT) and for the array of decision
variables take.

• Arrays:

VALUE: array(ITEMS) of real

defines a one-dimensional array of real values indexed by the range ITEMS. Exactly equiv-
alent would be

VALUE: array(1..8) of real ! Value of items

Multi-dimensional arrays are declared in the obvious way e.g.

Some illustrative examples 11 Mosel User Guide

VAL3: array(ITEMS, 1..20, ITEMS) of real

declares a 3-dimensional real array. Arrays of decision variables (type mpvar) are declared
likewise, as shown in our example:

x: array(ITEMS) of mpvar

declares an array of decision variables take(1), take(2), ..., take(8).

All objects (scalars and arrays) declared in Mosel are always initialized with a default
value:

real, integer: 0
boolean: false
string: ’’ (i.e. the empty string)

In Mosel, reals are double precision.

• Assigning values to arrays:

The values of data arrays may either be defined in the model as we show in the example
or initialized from file (see Section 2.2).

VALUE :: [15, 100, 90, 60, 40, 15, 10, 1]

fills the VALUE array as follows:
VALUE(1) gets the value 15; VALUE(2) gets the value 100; ..., VALUE(8) gets the value
1.

For a 2-dimensional array such as

declarations
EE: array(1..2, 1..3) of real
end-declarations

we might write

EE:: [11, 12, 13,
21, 22, 23]

which of course is the same as

EE:: [11, 12, 13, 21, 22, 23]

but much more intuitive. Mosel places the values in the tuple into EE ‘going across the
rows’, with the last subscript varying most rapidly. For higher dimensions, the principle is
the same. If the index sets of an array are other than ranges they must be given when
initializing the array with data, in the case of ranges this is optional. Equivalently to the
above we may write

VALUE :: (ITEMS)[15, 100, 90, 60, 40, 15, 10, 1]
EE:: (1..2, 1..3)[11, 12, 13,21, 22, 23]

or even initialize the two-dimensional array EE rowwise:

EE:: (1, 1..3)[11, 12, 13]
EE:: (2, 1..3)[21, 22, 23]

• Summations:

MaxVal:= sum(i in Items) VALUE(i)*x(i)

defines a linear expression called MaxVal as the sum∑
i∈Items

VALUEi · xi

Some illustrative examples 12 Mosel User Guide

• Naming constraints:

Optionally, constraints may be named (as in the chess set example). In the remainder of
this manual, we shall name constraints only if we need to refer to them at other places in
the model. In most examples, only the objective function is named (here MaxVal) — to
be able to refer to it in the call to the optimization (here maximize(MaxVal)).

• Simple looping:

forall(i in ITEMS) take(i) is_binary

illustrates looping over all values in an index range. Recall that the index range ITEMS is 1,
..., 8, so the statement says that take(1), take(2), ..., take(8) are all binary variables.
There is another example of the use of forall at the penultimate line of the model
when writing out all the solution values.

• Integer Programming variable types:

To make an mpvar variable, say variable xbinvar, into a binary (0/1) variable, we just
have to say

xbinvar is_binary

To make an mpvar variable an integer variable, i.e. one that can only take on integral
values in a MIP problem, we would have

xintvar is_integer

2.1.3 The burglar problem revisited

Consider this model (burglari.mos):

model "Burglar (index set)"
uses "mmxprs"

declarations
WTMAX = 102 ! Maximum weight allowed
ITEMS = {"camera", "necklace", "vase", "picture", "tv", "video",

"chest", "brick"} ! Index set for items

VALUE: array(ITEMS) of real ! Value of items
WEIGHT: array(ITEMS) of real ! Weight of items

take: array(ITEMS) of mpvar ! 1 if we take item i; 0 otherwise
end-declarations

VALUE("camera") := 15; WEIGHT("camera") := 2
VALUE("necklace"):=100; WEIGHT("necklace"):= 20
VALUE("vase") := 90; WEIGHT("vase") := 20
VALUE("picture") := 60; WEIGHT("picture") := 30
VALUE("tv") := 40; WEIGHT("tv") := 40
VALUE("video") := 15; WEIGHT("video") := 30
VALUE("chest") := 10; WEIGHT("chest") := 60
VALUE("brick") := 1; WEIGHT("brick") := 10

! Objective: maximize total value
MaxVal:= sum(i in ITEMS) VALUE(i)*take(i)

! Weight restriction
sum(i in ITEMS) WEIGHT(i)*take(i) <= WTMAX

! All variables are 0/1
forall(i in ITEMS) take(i) is_binary

maximize(MaxVal) ! Solve the MIP-problem

! Print out the solution
writeln("Solution:\n Objective: ", getobjval)
forall(i in ITEMS) writeln(" take(", i, "): ", getsol(take(i)))
end-model

Some illustrative examples 13 Mosel User Guide

What have we changed? The answer is, ‘not very much’.

• String indices:

ITEMS={"camera", "necklace", "vase", "picture", "tv", "video",
"chest", "brick"}

declares that this time ITEMS is a set of strings. The indices now take the string values
‘camera’, ‘necklace’ etc. Since string index sets have no fixed ordering like the range set
we have used in the first version of the model, we now need to initialize every data item
separately, or alternatively, write out the index sets when defining the array values, such
as

VALUE :: (["camera", "necklace", "vase", "picture", "tv", "video",
"chest", "brick"])[15,100,90,60,40,15,10,1]

WEIGHT:: (["camera", "necklace", "vase", "picture", "tv", "video",
"chest", "brick"])[2,20,20,30,40,30,60,10]

If we run the model, we get

Solution:
Objective: 280
take(camera): 1
take(necklace): 1
take(vase): 1
take(picture): 1
take(tv): 0
take(video): 1
take(chest): 0
take(brick): 0

• Continuation lines:

Notice that the statement

ITEMS={"camera", "necklace", "vase", "picture", "tv", "video",
"chest", "brick"}

was spread over two lines. Mosel is smart enough to recognize that the statement is not
complete, so it automatically tries to continue on the next line. If you wish to extend a
single statement to another line, just cut it after a symbol that implies a continuation, like
an operator (+, -, <=, ...) or a comma (,) in order to warn the analyzer that the expression
continues in the following line(s). For example

ObjMax:= sum(i in Irange, j in Jrange) TAB(i,j) * x(i,j) +
sum(i in Irange) TIB(i) * delta(i) +
sum(j in Jrange) TUB(j) * phi(j)

Conversely, it is possible to place several statements on a single line, separating them by
semicolons (like x1 <= 4; x2 >= 7).

2.2 A blending example

2.2.1 The model background

A mining company has two types of ore available: Ore 1 and Ore 2. The ores can be mixed
in varying proportions to produce a final product of varying quality. For the product we are
interested in, the ‘grade’ (a measure of quality) of the final product must lie between the
specified limits of 4 and 5. It sells for REV = £125 per ton. The costs of the two ores vary, as do
their availabilities. The objective is to maximize the total net profit.

Some illustrative examples 14 Mosel User Guide

2.2.2 Model formulation

Denote the amounts of the ores to be used by use1 and use2. Maximizing net profit (i.e., sales
revenue less cost COSTo of raw material) gives us the objective function:∑

o∈ORES

(REV − COSTo) · useo

We then have to ensure that the grade of the final ore is within certain limits. Assuming the
grades of the ores combine linearly, the grade of the final product is:∑

o∈ORES GRADEo · useo∑
o∈ORES useo

This must be greater than or equal to 4 so, cross-multiplying and collecting terms, we have the
constraint: ∑

o∈ORES

(GRADEo − 4) · useo ≥ 0

Similarly the grade must not exceed 5.∑
o∈ORES GRADEo · useo∑

o∈ORES useo
≤ 5

So we have the further constraint:∑
o∈ORES

(5− GRADEo) · useo ≥ 0

Finally only non-negative quantities of ores can be used and there is a limit to the availability
AVAILo of each of the ores. We model this with the constraints:

∀o ∈ ORES : 0 ≤ useo ≤ AVAILo

2.2.3 Implementation

The above problem description sets out the relationships which exist between variables but
contains few explicit numbers. Focusing on relationships rather than figures makes the model
much more flexible. In this example only the selling price REV and the upper/lower limits on
the grade of the final product (MINGRADE and MAXGRADE) are fixed.

Enter the following model into a file blend.mos.

model "Blend"
uses "mmxprs"

declarations
REV = 125 ! Unit revenue of product
MINGRADE = 4 ! Minimum permitted grade of product
MAXGRADE = 5 ! Maximum permitted grade of product
ORES = 1..2 ! Range of ores

COST: array(ORES) of real ! Unit cost of ores
AVAIL: array(ORES) of real ! Availability of ores
GRADE: array(ORES) of real ! Grade of ores (measured per unit of mass)

use: array(ORES) of mpvar ! Quantities of ores used
end-declarations

! Read data from file blend.dat
initializations from ’blend.dat’
COST
AVAIL

Some illustrative examples 15 Mosel User Guide

GRADE
end-initializations

! Objective: maximize total profit
Profit:= sum(o in ORES) (REV-COST(o))* use(o)

! Lower and upper bounds on ore quality
sum(o in ORES) (GRADE(o)-MINGRADE)*use(o) >= 0
sum(o in ORES) (MAXGRADE-GRADE(o))*use(o) >= 0

! Set upper bounds on variables (lower bound 0 is implicit)
forall(o in ORES) use(o) <= AVAIL(o)

maximize(Profit) ! Solve the LP-problem

! Print out the solution
writeln("Solution:\n Objective: ", getobjval)
forall(o in ORES) writeln(" use(" + o + "): ", getsol(use(o)))

end-model

The file blend.dat contains the following:

! Data file for ’blend.mos’
COST: [85 93]
AVAIL: [60 45]
GRADE: [2.1 6.3]

The initializations from / end-initializations block is new here, telling Mosel where
to get data from to initialize named arrays. The order of the data items in the file does not
have to be the same as that in the initializations block; equally acceptable would have been
the statements

initializations from ’blend.dat’
AVAIL GRADE COST
end-initializations

Alternatively, since all data arrays have the same indices, they may be given in the form of a
single record, such as BLENDDATA in the following data file blendb.dat:

! [COST AVAIL GRADE]
BLENDDATA: [[85 60 2.1]

[93 45 6.3]]

In the initializations block we need to indicate the label of the data record and in which
order the data of the three arrays is given:

initializations from ’blendb.dat’
[COST,AVAIL,GRADE] as ’BLENDDATA’
end-initializations

2.2.4 Re-running the model with new data

There is a problem with the model we have just presented — the name of the file contain-
ing the costs date is hard-wired into the model. If we wanted to use a different file, say
blend2.dat, then we would have to edit the model, and recompile it.

Mosel has parameters to help with this situation. A model parameter is a symbol, the value of
which can be set just before running the model, often as an argument of the run command of
the command line interpreter.

model "Blend 2"
uses "mmxprs"

parameters

Some illustrative examples 16 Mosel User Guide

DATAFILE="blend.dat"
end-parameters

declarations
REV = 125 ! Unit revenue of product
MINGRADE = 4 ! Minimum permitted grade of product
MAXGRADE = 5 ! Maximum permitted grade of product
ORES = 1..2 ! Range of ores

COST: array(ORES) of real ! Unit cost of ores
AVAIL: array(ORES) of real ! Availability of ores
GRADE: array(ORES) of real ! Grade of ores (measured per unit of mass)

use: array(ORES) of mpvar ! Quantities of ores used
end-declarations

! Read data from file
initializations from DATAFILE
COST
AVAIL
GRADE
end-initializations

...

end-model

The parameter DATAFILE is recognized as a string, and its default value is specified. If we have
previously compiled the model into say blend2.bim, then the command

mosel -c "load blend2; run DATAFILE=’blend2.dat’"

will read the cost data from the file we want. Or to compile, load, and run the model using a
single command:

mosel -c "exec blend2 DATAFILE=’blend2.dat’"

Notice that a model only takes a single parameters block that must follow immediately after
the uses statement(s) at the beginning of the model.

2.2.5 Reading data from spreadsheets and databases

It is quite easy to create and maintain data tables in text files but in many industrial applications
data are provided in the form of spreadsheets or need to be extracted from databases. So
there is a facility in Mosel whereby the contents of ranges within spreadsheets may be read
into data tables and databases may be accessed. It requires an additional authorization in your
Xpress-MP license.

On the Dash website, separate documentation is provided for the SQL/ODBC interface (Mosel
module mmodbc): the whitepaper Using ODBC with Mosel explains how to set up an ODBC
connection and discusses a large number of examples showing different SQL/ODBC features;
the whitepaper Generalized file handling in Mosel also contains several examples of the use
of ODBC. To give you a flavor of how Mosel’s ODBC interface may be used, we now read the
data of the blending problem from a spreadsheet and then later from a database.

The ODBC technology is a generic means for accessing databases and certain spreadsheets
such as Microsoft Excel also support (a reduced set of) ODBC functionality. As an alternative
to ODBC, Mosel also provides a specific interface to Excel spreadsheets, an example of which
is shown below (Section 2.2.5.3). This interface that supports all basic tasks of data exchange
tends to be slightly more efficient due to its more direct access to the spreadsheet and we
recommend its use if you work exclusively with Excel data.

Some illustrative examples 17 Mosel User Guide

http://www.dashoptimization.com
http://www.dashoptimization.com/home/services/publications/support_papers.html
http://www.dashoptimization.com/home/services/publications/support_papers.html

2.2.5.1 Spreadsheet example

Let us suppose that in a Microsoft Excel spreadsheet called blend.xls you have inserted the
following into the cells indicated:

Table 2.1: Spreadsheet example data

A B C D E F

1

2 ORES COST AVAIL GRADE

3 1 85 60 2.1

4 2 93 45 6.3

5

and called the range B2:E4 MyRange.

You need to make sure that the Excel ODBC driver is installed on your computer (Windows
2000 or XP: Start � Settings � Control Panel � Administrative Tools � Data Sources (ODBC)
� ODBC drivers).

The following model reads the data for the arrays COST, AVAIL, and GRADE from the Excel
range MyRange. Note that we have added "mmodbc" to the uses statement to indicate that
we are using the Mosel SQL/ODBC module.

model "Blend 3"
uses "mmodbc", "mmxprs"

declarations
REV = 125 ! Unit revenue of product
MINGRADE = 4 ! Minimum permitted grade of product
MAXGRADE = 5 ! Maximum permitted grade of product
ORES = 1..2 ! Range of ores

COST: array(ORES) of real ! Unit cost of ores
AVAIL: array(ORES) of real ! Availability of ores
GRADE: array(ORES) of real ! Grade of ores (measured per unit of mass)

use: array(ORES) of mpvar ! Quantities of ores used
end-declarations

! Read data from spreadsheet blend.xls
initializations from "mmodbc.odbc:blend.xls"
[COST,AVAIL,GRADE] as "MyRange"
end-initializations

...

end-model

Instead of using the initializations block that automatically generates SQL commands for
reading and writing data it is also possible to employ SQL statements in Mosel models. The
initializations block above is equivalent to the following sequence of SQL statements:

SQLconnect(’DSN=Excel Files; DBQ=blend.xls’)
SQLexecute("select * from MyRange ", [COST,AVAIL,GRADE])
SQLdisconnect

The SQL statement "select * from MyRange" says ‘select everything from the range called
MyRange’. By using SQL statements directly in the Mosel model it is possible to have much
more complex selection statements than the ones we have used.

2.2.5.2 Database example

If we use Microsoft Access, we might have set up an ODBC DSN called MSAccess, and suppose
we are extracting data from a table called MyTable in the database blend.mdb. There are just

Some illustrative examples 18 Mosel User Guide

the four columns ORES, columns COST, AVAIL, and GRADE in MyTable, and the data are the
same as in the Excel example above. We modify the example above to be

model "Blend 4"
uses "mmodbc", "mmxprs"

declarations
REV = 125 ! Unit revenue of product
MINGRADE = 4 ! Minimum permitted grade of product
MAXGRADE = 5 ! Maximum permitted grade of product
ORES = 1..2 ! Range of ores

COST: array(ORES) of real ! Unit cost of ores
AVAIL: array(ORES) of real ! Availability of ores
GRADE: array(ORES) of real ! Grade of ores (measured per unit of mass)

use: array(ORES) of mpvar ! Quantities of ores used
end-declarations

! Read data from database blend.mdb
initializations from "mmodbc.odbc:blend.mdb"
[COST,AVAIL,GRADE] as "MyTable"
end-initializations

...

end-model

To use other databases, for instance a mysql database (let us call it blend), we merely need
to modify the connection string — provided that we have given the same names to the data
table and its columns:

initializations from "mmodbc.odbc:DSN=mysql;DB=blend"

ODBC, just like Mosel’s text file format, may also be used to output data. The reader is referred
to the ODBC/SQL documentation for more detail.

2.2.5.3 Excel spreadsheets

We shall work once more with the Microsoft Excel spreadsheet called blend.xls shown in
Table 2.1 where we have defined the range B2:E4 MyRange and added a second range B3:E4
(that is, the same as the first without its header line) named MyRangeNoHeader.

This spreadsheet can be accessed directly (that is, without ODBC) from our Mosel model using
a similar syntax to what we have seen for ODBC. The corresponding Mosel model looks as
follows (notice that we still use the Mosel module mmodbc).

model "Blend 3 (Excel)"
uses "mmodbc", "mmxprs"

declarations
REV = 125 ! Unit revenue of product
MINGRADE = 4 ! Minimum permitted grade of product
MAXGRADE = 5 ! Maximum permitted grade of product
ORES = 1..2 ! Range of ores

COST: array(ORES) of real ! Unit cost of ores
AVAIL: array(ORES) of real ! Availability of ores
GRADE: array(ORES) of real ! Grade of ores (measured per unit of mass)

use: array(ORES) of mpvar ! Quantities of ores used
end-declarations

! Read data from spreadsheet blend.xls
initializations from "mmodbc.excel:blend.xls"
[COST,AVAIL,GRADE] as "MyRangeNoHeader"
end-initializations

Some illustrative examples 19 Mosel User Guide

...

end-model

The only two modifications we have made are quite subtle: in the filename we have re-
placed mmodbc.odbc by mmodbc.excel and we now use a data range without header line
(MyRangeNoHeader). It is also possible to work with the same range (MyRange) as we have
used for the ODBC connection by adding the option skiph in the initializations block:

initializations from "mmodbc.excel:blend.xls"
[COST,AVAIL,GRADE] as "skiph;MyRange"
end-initializations

Instead of naming the ranges in the spreadsheet it is equally possible to work directly with the
cell references (including the worksheet name, that is, ‘Sheet1’ in our case):

initializations from "mmodbc.excel:blend.xls"
[COST,AVAIL,GRADE] as "[Sheet1$B3:E4]"
end-initializations

Some illustrative examples 20 Mosel User Guide

Chapter 3

More advanced modeling features

3.1 Overview

This chapter introduces some more advanced features of the modeling language in Mosel. We
shall not attempt to cover all its features or give the detailed specification of their formats.
These are covered in greater depth in the Mosel Reference Manual.

Almost all large scale LP and MIP problems have a property known as sparsity, that is, each vari-
able appears with a non-zero coefficient in a very small fraction of the total set of constraints.
Often this property is reflected in the data tables used in the model in that many values of
the tables are zero. When this happens, it is more convenient to provide just the non-zero
values of the data table rather than listing all the values, the majority of which are zero. This is
also the easiest way to input data into data tables with more than two dimensions. An added
advantage is that less memory is used by Mosel.

The main areas covered in this chapter are related to this property:

• dynamic arrays

• sparse data

• conditional generation

• displaying data

We start again with an example problem. The following sections deal with the different topics
in more detail.

3.2 A transport example

A company produces the same product at different plants in the UK. Every plant has a different
production cost per unit and a limited total capacity. The customers (grouped into customer
regions) may receive the product from different production locations. The transport cost is
proportional to the distance between plants and customers, and the capacity on every delivery
route is limited. The objective is to minimize the total cost, whilst satisfying the demands of all
customers.

3.2.1 Model formulation

Let PLANT be the set of plants and REGION the set of customer regions. We define decision
variables flowpr for the quantity transported from plant p to customer region r. The total cost
of the amount of product p delivered to region r is given as the sum of the transport cost (the
distance between p and r multiplied by a factor FUELCOST) and the production cost at plant p:

minimize
∑

p∈PLANT

∑
r∈REGION

(FUELCOST · DISTANCEpr + PLANTCOSTp) · flowpr

21 Mosel User Guide

The limits on plant capacity are give through the constraints

∀p ∈ PLANT :
∑

r∈REGION

flowpr ≤ PLANTCAPp

We want to meet all customer demands:

∀r ∈ REGION :
∑

p∈PLANT

flowpr = DEMANDr

The transport capacities on all routes are limited and there are no negative flows:

∀p ∈ PLANT, r ∈ REGION : 0 ≤ flowpr ≤ TRANSCAPpr

For simplicity’s sake, in this mathematical model we assume that all routes p → r are defined
and that we have TRANSCAPpr = 0 to indicate that a route cannot be used.

3.2.2 Implementation

This problem may be implemented with Mosel as shown in the following (model file transport.mos):

model Transport
uses "mmxprs"

declarations
REGION: set of string ! Set of customer regions
PLANT: set of string ! Set of plants

DEMAND: array(REGION) of real ! Demand at regions
PLANTCAP: array(PLANT) of real ! Production capacity at plants
PLANTCOST: array(PLANT) of real ! Unit production cost at plants
TRANSCAP: array(PLANT,REGION) of real ! Capacity on each route plant->region
DISTANCE: array(PLANT,REGION) of real ! Distance of each route plant->region
FUELCOST: real ! Fuel cost per unit distance

flow: array(PLANT,REGION) of mpvar ! Flow on each route
end-declarations

initializations from ’transprt.dat’
DEMAND
[PLANTCAP,PLANTCOST] as ’PLANTDATA’
[DISTANCE,TRANSCAP] as ’ROUTES’
FUELCOST
end-initializations

! Create the flow variables that exist
forall(p in PLANT, r in REGION | exists(TRANSCAP(p,r))) create(flow(p,r))

! Objective: minimize total cost
MinCost:= sum(p in PLANT, r in REGION | exists(flow(p,r)))

(FUELCOST * DISTANCE(p,r) + PLANTCOST(p)) * flow(p,r)

! Limits on plant capacity
forall(p in PLANT) sum(r in REGION) flow(p,r) <= PLANTCAP(p)</p>

! Satisfy all demands
forall(r in REGION) sum(p in PLANT) flow(p,r) = DEMAND(r)

! Bounds on flows
forall(p in PLANT, r in REGION | exists(flow(p,r)))
flow(p,r) <= TRANSCAP(p,r)

minimize(MinCost) ! Solve the problem

end-model

REGION and PLANT are declared to be sets of strings, as yet of unknown size. The data arrays
(DEMAND, PLANTCAP, PLANTCOST, TRANSCAP, and DISTANCE) and the array of variables flow

More advanced modeling features 22 Mosel User Guide

are indexed by members of REGION and PLANT, their size is therefore not known at their decla-
ration: they are created as dynamic arrays. There is a slight difference between dynamic arrays
of data and of decision variables (type mpvar): an entry of a data array is created automatically
when it is used in the Mosel program, entries of decision variable arrays need to be created
explicitly (see Section 3.3.1 below).

The data file transprt.dat contains the problem specific data. It might have, for instance,

DEMAND: [(Scotland) 2840 (North) 2800 (SWest) 2600 (SEast) 2820 (Midlands) 2750]

! [CAP COST]
PLANTDATA: [(Corby) [3000 1700]

(Deeside) [2700 1600]
(Glasgow) [4500 2000]
(Oxford) [4000 2100]]

! [DIST CAP]
ROUTES: [(Corby North) [400 1000]

(Corby SWest) [400 1000]
(Corby SEast) [300 1000]
(Corby Midlands) [100 2000]
(Deeside Scotland) [500 1000]
(Deeside North) [200 2000]
(Deeside SWest) [200 1000]
(Deeside SEast) [200 1000]
(Deeside Midlands) [400 300]
(Glasgow Scotland) [200 3000]
(Glasgow North) [400 2000]
(Glasgow SWest) [500 1000]
(Glasgow SEast) [900 200]
(Oxford Scotland) [800 *]
(Oxford North) [600 2000]
(Oxford SWest) [300 2000]
(Oxford SEast) [200 2000]
(Oxford Midlands) [400 500]]

FUELCOST: 17

where we give the ROUTES data only for possible plant/region routes, indexed by the plant and
region. It is possible that some data are not specified; for instance, there is no Corby – Scotland
route. So the data are sparse and we just create the flow variables for the routes that exist.
(The ‘*’ for the (Oxford,Scotland) entry in the capacity column indicates that the entry does
not exist; we may write ’0’ instead: in this case the corresponding flow variable will be created
but bounded to be 0 by the transport capacity limit).

The condition whether an entry in a data table is defined is tested with the Mosel function
exists. With the help of the ‘|’ operator we add this test to the forall loop creating the
variables. It is not required to add this test to the sums over these variables: only the flowpr

variables that have been created are taken into account. However, if the sums involve exactly
the index sets that have been used in the declaration of the variables (here this is the case for
the objective function MinCost), adding the existence test helps to speed up the enumeration
of the existing index-tuples. The following section introduces the conditional generation in a
more systematic way.

3.3 Conditional generation — the | operator

Suppose we wish to apply an upper bound to some but not all members of a set of variables xi.
There are MAXI members of the set. The upper bound to be applied to xi is Ui, but it is only to
be applied if the entry in the data table TABi is greater than 20. If the bound did not depend
on the value in TABi then the statement would read:

forall(i in 1..MAXI) x(i) <= U(i)

Requiring the condition leads us to write

More advanced modeling features 23 Mosel User Guide

forall(i in 1..MAXI | TAB(i) > 20) x(i) <= U(i)

The symbol ‘|’ can be read as ‘such that’ or ‘subject to’.

Now suppose that we wish to model the following

MAXI∑
i=1

Ai>20

xi ≤ 15

In other words, we just want to include in a sum those xi for which Ai is greater than 20. This
is accomplished by

CC:= sum((i in 1..MAXI | A(i)>20) x(i) <= 15

3.3.1 Conditional variable creation and create

As we have already seen in the transport example (Section 3.2), with Mosel we can condition-
ally create variables. In this section we show a few more examples.

Suppose that we have a set of decision variables x(i) where we do not know the set of i for
which x(i) exist until we have read data into an array WHICH.

model doesx
declarations
IR = 1..15
WHICH: set of integer
x: dynamic array(IR) of mpvar
end-declarations

! Read data from file
initializations from ’doesx.dat’
WHICH
end-initializations

! Create the x variables that exist
forall(i in WHICH) create(x(i))

! Build a little model to show what esists
Obj:= sum(i in IR) x(i)
C:= sum(i in IR) i * x(i) >= 5

exportprob(0, "", Obj) ! Display the model
end-model

If the data in doesx.dat are

WHICH: [1 4 7 11 14]

the output from the model is

Minimize
x(1) + x(4) + x(7) + x(11) + x(14)
Subject To
C: x(1) + 4 x(4) + 7 x(7) + 11 x(11) + 14 x(14) >= 5
Bounds
End

Note: exportprob(0, "", Obj) is a nice idiom for seeing on-screen the problem that has
been created.

The key point is that x has been declared as a dynamic array, and then the variables that exist
have been created explicitly with create. In the transport example in Section 3.2 we have
seen a different way of declaring dynamic arrays: the arrays are implicitly declared as dynamic
arrays since the index sets are unknown at their declaration.

More advanced modeling features 24 Mosel User Guide

When we later take operations over the index set of x (for instance, summing), we only include
those x that have been created.

Another way to do this, is

model doesx2
declarations
WHICH: set of integer
end-declarations

initializations from ’doesx.dat’
WHICH
end-initializations

finalize(WHICH)

declarations
x: array(WHICH) of mpvar ! Here the array is _not_ dynamic
end-declarations ! because the set has been finalized

Obj:= sum(i in WHICH) x(i)
C:= sum(i in WHICH) i * x(i) >= 5

exportprob(0, "", Obj)
end-model

By default, an array is of fixed size if all of its indexing sets are of fixed size (i.e. they are either
constant or have been finalized). Finalizing turns a dynamic set into a constant set consisting
of the elements that are currently in the set. All subsequently declared arrays that are indexed
by this set will be created as static (= fixed size). The second method has two advantages: it is
more efficient, and it does not require us to think of the limits of the range IR a priori.

3.4 Reading sparse data

Suppose we want to read in data of the form

i, j, valueij

from an ASCII file, setting up a dynamic array A(range, range) with just the A(i,j)=
valueij for the pairs (i,j) which exist in the file. Here is an example which shows three
different ways of doing this. We read data from differently formatted files into three different
arrays, and using writeln show that the arrays hold identical data.

3.4.1 Data input with initializations from

The first method, using the initializations block, has already been introduced (transport
problem in Section 3.2).

model "Trio input (1)"
declarations
A1: array(range,range) of real
end-declarations

! First method: use an initializations block
initializations from ’data_1.dat’
A1 as ’MYDATA’
end-initializations

! Now let us see what we have
writeln(’A1 is: ’, A1)
end-model

The data file data_1.dat could be set up thus (every data item is preceded by its index-tuple):

More advanced modeling features 25 Mosel User Guide

MYDATA: [(1 1) 12.5 (2 3) 5.6 (10 9) -7.1 (3 2) 1]

This model produces the following output:

A1 is: [(1,1,12.5),(2,3,5.6),(3,2,1),(10,9,-7.1)]

3.4.2 Data input with readln

The second way of setting up and accessing data demonstrates the immense flexibility of
readln. The format of the data file may be freely defined by the user. After every call to
read or readln the parameter nbread contains the number of items read. Its value should
be tested to check whether the end of the data file has been reached or an error has occurred
(e.g. unrecognized data items due to incorrect formating of a data line). Notice that read
and readlninterpret spaces as separators between data items; strings containing spaces must
therefore be quoted using either single or double quotes.

model "Trio input (2)"
declarations
A2: array(range,range) of real
i, j: integer
end-declarations

! Second method: use the built-in readln function
fopen("data_2.dat",F_INPUT)
repeat
readln(’Tut(’, i, ’and’, j, ’)=’, A2(i,j))
until getparam("nbread") < 6
fclose(F_INPUT)

! Now let us see what we have
writeln(’A2 is: ’, A2)
end-model

The data file data_2.dat could be set up thus:

File data_2.dat:

Tut(1 and 1)=12.5
Tut(2 and 3)=5.6
Tut(10 and 9)=-7.1
Tut(3 and 2)=1

When running this second model version we get the same output as before:

A2 is: [(1,1,12.5),(2,3,5.6),(3,2,1),(10,9,-7.1)]

3.4.3 Data input with diskdata

As a third possibility, one may use the diskdata I/O driver from module mmetc to read in
comma separated value (CSV) files. With this driver the data file may contain single line com-
ments preceded with !.

model "Trio input (3)"
uses "mmetc" ! Required for diskdata

declarations
A3: array(range,range) of real
end-declarations

! Third method: use diskdata driver
initializations from ’mmetc.diskdata:’
A3 as ’sparse,data_3.dat’
end-initializations

More advanced modeling features 26 Mosel User Guide

! Now let us see what we have
writeln(’A3 is: ’, A3)
end-model

The data file data_3.dat is set up thus (one data item per line, preceded by its indices, all
separated by commas):

1, 1, 12.5
2, 3, 5.6
10,9, -7.1
3, 2, 1

We obtain again the same output as before when running this model version:

A3 is: [(1,1,12.5),(2,3,5.6),(3,2,1),(10,9,-7.1)]

Note: the diskdata format is deprecated, it is provided to enable the use of data sets designed
for mp-model and does not support certain new features introduced by Mosel.

More advanced modeling features 27 Mosel User Guide

Chapter 4

Integer Programming

Though many systems can accurately be modeled as Linear Programs, there are situations
where discontinuities are at the very core of the decision making problem. There seem to
be three major areas where non-linear facilities are required

• where entities must inherently be selected from a discrete set;

• in modeling logical conditions; and

• in finding the global optimum over functions.

Mosel lets you model these non-linearities using a range of discrete (global) entities and then
the Xpress-MP Mixed Integer Programming (MIP) optimizer can be used to find the overall
(global) optimum of the problem. Usually the underlying structure is that of a Linear Pro-
gram, but optimization may be used successfully when the non-linearities are separable into
functions of just a few variables.

4.1 Integer Programming entities in Mosel

We shall show how to make variables and sets of variables into global entities by using the
following declarations.

declarations
IR = 1..8 ! Index range
WEIGHT: array(IR) of real ! Weight table
x: array(IR) of mpvar
end-declarations

WEIGHT:: [2, 5, 7, 10, 14, 18, 22, 30]

Xpress-MP handles the following global entities:

• Binary variables: decision variables that can take either the value 0 or the value 1 (do/
don’t do variables).
We make a variable, say x(4), binary by

x(4) is_binary

• Integer variables: decision variables that can take only integer values.
We make a variable, say x(7), integer by

x(7) is_integer

• Partial integer variables: decision variables that can take integer values up to a specified
limit and any value above that limit.

28 Mosel User Guide

x(1) is_partint 5 ! Integer up to 5, then continuous

• Semi-continuous variables: decision variables that can take either the value 0, or a value
between some lower limit and upper limit. Semi-continuous variables help model situa-
tions where if a variable is to be used at all, it has to be used at some minimum level.

x(2) is_semcont 6 ! A ’hole’ between 0 and 6, then continuous

• Semi-continuous integer variables: decision variables that can take either the value 0,
or an integer value between some lower limit and upper limit. Semi-continuous integer
variables help model situations where if a variable is to be used at all, it has to be used at
some minimum level, and has to be integer.

x(3) is_semint 7 ! A ’hole’ between 0 and 7, then integer

• Special Ordered Sets of type one (SOS1): an ordered set of non-negative variables at most
one of which can take a non-zero value.

• Special Ordered Sets of type two (SOS2): an ordered set of non-negative variables, of
which at most two can be non-zero, and if two are non-zero these must be consecutive
in their ordering. If the coefficients in the WEIGHT array determine the ordering of the
variables, we might form a SOS1 or SOS2 set MYSOS by

MYSOS:= sum(i in IRng) WEIGHT(i)*x(i) is_sosX

where is_sosX is either is_sos1 for SOS1 sets, or is_sos2 for SOS2 sets.
Alternatively, if the set S holds the members of the set and the linear constraint L contains
the set variables’ coefficients used in ordering the variables (the so-called reference row
entries), then we can do thus:

makesos1(S,L)

with the obvious change for SOS2 sets. This method must be used if the coefficient (here
WEIGHT(i)) of an intended set member is zero. With is_sosX the variable will not
appear in the set since it does not appear in the linear expression.
Another point to note about Special Ordered Sets is that the ordering coefficients must
be distinct (or else they are not doing their job of supplying an order!).

The most commonly used entities are binary variables, which can be employed to model a
whole range of logical conditions. General integers are more frequently found where the un-
derlying decision variable really has to take on a whole number value for the optimal solution
to make sense. For instance, we might be considering the number of airplanes to charter,
where fractions of an airplane are not meaningful and the optimal answer will probably in-
volve so few planes that rounding to the nearest integer may not be satisfactory.

Partial integers provide some computational advantages in problems where it is acceptable to
round the LP solution to an integer if the optimal value of a decision variable is quite large, but
unacceptable if it is small. Semi-continuous variables are useful where, if some variable is to be
used, its value must be no less than some minimum amount. If the variable is a semi-continuous
integer variable, then it has the added restriction that it must be integral too.

Special Ordered Sets of type 1 are often used in modeling choice problems, where we have
to select at most one thing from a set of items. The choice may be from such sets as: the
time period in which to start a job; one of a finite set of possible sizes for building a factory;
which machine type to process a part on. Special Ordered Sets of type 2 are typically used to
model non-linear functions of a variable. They are the natural extension of the concepts of
Separable Programming, but when embedded in a Branch-and-Bound code (see below) enable
truly global optima to be found, and not just local optima. (A local optimum is a point where
all the nearest neighbors are worse than it, but where we have no guarantee that there is not
a better point some way away. A global optimum is a point which we know to be the best. In
the Himalayas the summit of K2 is a local maximum height, whereas the summit of Everest is
the global maximum height).

Integer Programming 29 Mosel User Guide

Theoretically, models that can be built with any of the entities we have listed above can be
modeled solely with binary variables. The reason why modern IP systems have some or all
of the extra entities is that they often provide significant computational savings in computer
time and storage when trying to solve the resulting model. Most books and courses on Integer
Programming do not emphasize this point adequately. We have found that careful use of the
non-binary global entities often yields very considerable reductions in solution times over ones
that just use binary variables.

To illustrate the use of Mosel in modeling Integer Programming problems, a small example
follows. The first formulation uses binary variables. This formulation is then modified to use
Special Ordered Sets.

For the interested reader, an excellent text on Integer Programming is Integer Programming
by Laurence Wolsey, Wiley Interscience, 1998, ISBN 0-471-28366-5.

4.2 A project planning model

A company has several projects that it must undertake in the next few months. Each project
lasts for a given time (its duration) and uses up one resource as soon as it starts. The resource
profile is the amount of the resource that is used in the months following the start of the
project. For instance, project 1 uses up 3 units of resource in the month it starts, 4 units in its
second month, and 2 units in its last month.

The problem is to decide when to start each project, subject to not using more of any resource
in a given month than is available. The benefit from the project only starts to accrue when
the project has been completed, and then it accrues at BENp per month for project p, up to
the end of the time horizon. Below, we give a mathematical formulation of the above project
planning problem, and then display the Mosel model form.

4.2.1 Model formulation

Let PROJ denote the set of projects and MONTHS = {1, . . . , NM} the set of months to plan for.
The data are:

DURp the duration of project p

RESUSEpt the resource usage of project p in its tth month

RESMAXm the resource available in month m

BENp the benefit per month when project finishes

We introduce the binary decision variables startpm that are 1 if project p starts in month m, and
0 otherwise.

The objective function is obtained by noting that the benefit coming from a project only starts
to accrue when the project has finished. If it starts in month m then it finishes in month
m+DURp−1. So, in total, we get the benefit of BENp for NM−(m+DURp−1) = NM−m−DURp+1
months. We must consider all the possible projects, and all the starting months that let the
project finish before the end of the planning period. For the project to complete it must start
no later than month NM− DURp. Thus the profit is:

∑
p∈PROJ

NM−DURp∑
m=1

(
BENp ·

(
NM−m− DURp + 1

))
· startpm

Each project must be done once, so it must start in one of the months 1 to NM− DURp:

∀p ∈ PROJ :
∑

m∈MONTHS

startpm = 1

Integer Programming 30 Mosel User Guide

We next need to consider the implications of the limited resource availability each month.
Note that if a project p starts in month m it is in its (k−m + 1)th month in month k, and so will
be using RESUSEp,k−m+1 units of the resource. Adding this up for all projects and all starting
months up to and including the particular month k under consideration gives:

∀k ∈ MONTHS :
∑

p∈PROJ

k∑
m=1

RESUSEp,k+1−m · startpm ≤ RESMAXk

Finally we have to specify that the startpm are binary (0 or 1) variables:

∀p ∈ PROJ, m ∈ MONTHS : startpm ∈ {0, 1}

Note that the start month of a project p is given by:

NM−DURp∑
m=1

m · startpm

since if an startpm is 1 the summation picks up the corresponding m.

4.2.2 Implementation

The model as specified to Mosel is as follows (file pplan.mos):

model Pplan
uses "mmxprs"

declarations
PROJ = 1..3 ! Set of projects
NM = 6 ! Time horizon (months)
MONTHS = 1..NM ! Set of time periods (months) to plan for

DUR: array(PROJ) of integer ! Duration of project p
RESUSE: array(PROJ,MONTHS) of integer

! Res. usage of proj. p in its t’th month
RESMAX: array(MONTHS) of integer ! Resource available in month m
BEN: array(PROJ) of real ! Benefit per month once project finished

start: array(PROJ,MONTHS) of mpvar ! 1 if proj p starts in month t, else 0
end-declarations

DUR :: [3, 3, 4]
RESMAX:: [5, 6, 7, 7, 6, 6]
BEN :: [10.2, 12.3, 11.2]
RESUSE:: (1,1..3)[3, 4, 2]
RESUSE:: (2,1..3)[4, 1, 5]
RESUSE:: (3,1..4)[3, 2, 1, 2] ! Other RESUSE entries are 0 by default

! Objective: Maximize Benefit
! If project p starts in month t, it finishes in month t+DUR(p)-1 and
! contributes a benefit of BEN(p) for the remaining NM-(t+DUR(p)-1) months:
MaxBen:=
sum(p in PROJ, m in 1..NM-DUR(p)) (BEN(p)*(NM-m-DUR(p)+1)) * start(p,m)

! Each project starts once and only once:
forall(p in PROJ) One(p):= sum(m in MONTHS) start(p,m) = 1

! Resource availability:
! A project starting in month m is in its k-m+1’st month in month k:
forall(k in MONTHS) ResMax(k):=
sum(p in PROJ, m in 1..k) RESUSE(p,k+1-m)*start(p,m) <= RESMAX(k)

! Make all the start variables binary
forall(p in PROJ, m in MONTHS) start(p,m) is_binary

maximize(MaxBen) ! Solve the MIP-problem

Integer Programming 31 Mosel User Guide

writeln("Solution value is: ", getobjval)
forall(p in PROJ) writeln(p, " starts in month ",

getsol(sum(m in 1..NM-DUR(p)) m*start(p,m)))
end-model

Note that in the solution printout we apply the getsol function not to a single variable but
to a linear expression.

4.3 The project planning model using Special Ordered Sets

The example can be modified to use Special Ordered Sets of type 1 (SOS1). The startpm variables
for a given p form a set of variables which are ordered by m, the month. The ordering is
induced by the coefficients of the startpm in the specification of the SOS. For example, startp1’s
coefficient, 1, is less than startp2’s, 2, which in turn is less than startp3’s coefficient, and so on
The fact that the startpm variables for a given p form a set of variables is specified to Mosel as
follows:

(! Define SOS-1 sets that ensure that at most one start(p,m) is non-zero
for each project p. Use month index to order the variables !)

forall(p in PROJ) XSet(p):= sum(m in MONTHS) m*start(p,m) is_sos1

The is_sos1 specification tells Mosel that Xset(p) is a Special Ordered Set of type 1.

The linear expression specifies both the set members and the coefficients that order the set
members. It says that all the startpm variables for m in the MONTHS index range are members
of an SOS1 with reference row entries m.

The specification of the startpm as binary variables must now be removed. The binary nature
of the startpm is implied by the SOS1 property, since if the startpm must add up to 1 and only
one of them can differ from zero, then just one is 1 and the others are 0.

If the two formulations are equivalent why were Special Ordered Sets invented, and why are
they useful? The answer lies in the way the reference row gives the search procedure in Integer
Programming (IP) good clues as to where the best solution lies. Quite frequently the Linear
Programming (LP) problem that is solved as a first approximation to an Integer Program gives
an answer where startp1 is fractional, say with a value of 0.5, and startp,NM takes on the same
fractional value. The IP will say:

‘my job is to get variables to 0 or 1. Most of the variables are already there so I will try moving
xp1 or xpT. Since the set members must add up to 1.0, one of them will go to 1, and one to 0.
So I think that we start the project either in the first month or in the last month.’

A much better guess is to see that the startpm are ordered and the LP solution is telling us it
looks as if the best month to start is somewhere midway between the first and the last month.
When sets are present, the IP can branch on sets of variables. It might well separate the months
into those before the middle of the period, and those later. It can then try forcing all the early
startpm to 0, and restricting the choice of the one startpm that can be 1 to the later startpm. It
has this option because it now has the information to ‘know’ what is an early and what is a
late startpm, whereas these variables were unordered in the binary formulation.

The power of the set formulation can only really be judged by its effectiveness in solving large,
difficult problems. When it is incorporated into a good IP system such as Xpress-MP it is often
found to be an order of magnitude better than the equivalent binary formulation for large
problems.

Integer Programming 32 Mosel User Guide

Chapter 5

Overview of subroutines and
reserved words

There is a range of built-in functions and procedures available in Mosel. They are described
fully in the Mosel Language Reference Manual. Here is a summary.

• Accessing solution values: getsol, getact, getcoeff, getdual, getrcost, getslack,
getobjval

• Arithmetic functions: arctan, cos, sin, ceil, floor, round, exp, ln, log, sqrt, isodd

• List functions: maxlist, minlist

• String functions:strfmt, substr

• Dynamic array handling: create, finalize

• File handling: fclose, fflush, fopen, fselect, fskipline, getfid, iseof, read,
readln

• Accessing control parameters: getparam, setparam

• Getting information: getsize, gettype, getvars

• Hiding constraints: sethidden, ishidden

• Miscellaneous functions: exportprob, bittest, random, setcoeff, settype, exit

5.1 Modules

The distribution of Mosel contains several modules that add extra functionality to the lan-
guage.

A full list of the functionality of a module can be obtained by using Mosel’s exam command,
for instance

mosel -c "exam mmsystem"

In this manual, we always use Xpress-Optimizer as solver. Access to the corresponding opti-
mization functions is provided by the module mmxprs.

In the mmxprs module are the following useful functions.

• Optimize: minimize, maximize

• MIP directives: setmipdir, clearmipdir

• Handling bases: savebasis, loadbasis, delbasis

33 Mosel User Guide

• Force problem loading: loadprob

• Accessing problem status: getprobstat

• Deal with bounds: setlb, setub, getlb, getub

• Model cut functions: setmodcut, clearmodcut

For example, here is a nice habit to get into when solving a problem with the Xpress-MP
Optimizer.

declarations
status:array({XPRS_OPT,XPRS_UNF,XPRS_INF,XPRS_UNB,XPRS_OTH}) of string

end-declarations

status::([XPRS_OPT,XPRS_UNF,XPRS_INF,XPRS_UNB,XPRS_OTH])[
"Optimum found","Unfinished","Infeasible","Unbounded","Failed"]

...
minimize(Obj)
writeln(status(getprobstat))

In the mmsystem module are various useful functions provided by the underlying operating
system and a few programming utilities :

• Delete a file/directory: fdelete, removedir

• Copy/move a file: fcopy, fmove

• Make a directory: makedir

• Current working directory: getcwd

• Get/set an environment variable’s value: getenv, setenv

• File and system status: getfstat, getsysstat

• General system call: system

• Time and date: gettime, getdate, getweekday, getasnumber, ...

• Handling the type text: copytext, cuttext, deltext, readtextline, ...

• Sort an array of numbers: qsort

Other modules mentioned in this manual are mmodbc and mmetc.

See the module reference manuals for full details.

5.2 Reserved words

The following words are reserved in Mosel. The upper case versions are also reserved (i.e. AND
and and are keywords but not And). Do not use them in a model except with their built-in
meaning.

and, array, as
boolean, break
case
declarations, div, do, dynamic
elif, else, end
false, forall, forward, from, function
if, import, in, include, initialisations, initializations, integer, inter,
is_binary, is_continuous, is_free, is_integer, is_partint, is_semcont,
is_semint, is_sos1, is_sos2

Overview of subroutines and reserved words 34 Mosel User Guide

linctr, list
max, min, mod, model, mpvar
next, not
of, options, or
package, parameters, procedure, public, prod
range, real, record, repeat, requirements
set, string, sum
then, to, true
union, until, uses
version
while

Overview of subroutines and reserved words 35 Mosel User Guide

Chapter 6

Correcting errors in Mosel models

The parser of Mosel is able to detect a large number of errors that may occur when writing a
model. In this chapter we shall try to analyze and correct some of these. As a next step, we
also show how to obtain information for dealing with run time errors.

Other types of errors that are in general more difficult to detect are mistakes in the data
or logical errors in the formulation of Mosel models—you may use the Mosel Debugger (see
Section 15.1) to trace these.

6.1 Correcting syntax errors in Mosel

If we compile the model poerror1.mos

model ‘Plenty of errors’
declarations
small, large: mpvar
end-declarations

Profit= 5*small + 20*large
Boxwood:= small + 3*large <= 200
Lathe:= 3*small + 2*large <= 160

maximize(Profit)

writeln("Best profit is ", getobjval
end-model

we get the following output:

Mosel: E-100 at (1,7) of ‘poerror.mos’: Syntax error before ‘‘’.
Parsing failed.

The second line of the output informs us that the compilation has not been executed correctly.
The first line tells us exactly the type of the error that has been detected, namely a syntax error
with the code E-100 (where E stands for error) and its location: line 1 character 7. The problem
is caused by the apostrophe ‘ (or something preceding it). Indeed, Mosel expects either single
or double quotes around the name of the model if the name contains blanks. We therefore
replace it by ’ and compile the corrected model, resulting in the following display:

Mosel: E-100 at (6,8) of ‘poerror.mos’: Syntax error before ‘=’.
Mosel: W-121 at (6,29) of ‘poerror.mos’: Statement with no effect.
Mosel: E-100 at (10,16) of ‘poerror.mos’: ‘Profit’ is not defined.
Mosel: E-123 at (10,17) of ‘poerror.mos’: ‘maximize’ is not defined.
Mosel: E-100 at (12,37) of ‘poerror.mos’: Syntax error.
Parsing failed.

There is a problem with the sign = in the 6th line:

36 Mosel User Guide

Profit= 5*small + 20*large

In the model body the equality sign = may only be used in the definition of constraints or
in logical expressions. Constraints are linear relations between variables, but profit has not
been defined as a variable, so the parser detects an error. What we really want, is to assign the
linear expression 5*small + 20*large to Profit. For such an assignment we have to use
the sign :=. Using just = is a very common error.

As a consequence of this error, the linear expression after the equality sign does not have any
relevance to the problem that is stated. The parser informs us about this fact in the second line:
it has found a statement with no effect. This is not an error that would cause the failure of the
compilation taken on its own, but simply a warning (marked by the W in the error code W-121)
that there may be something to look into. Since Profit has not been defined, it cannot be
used in the call to the optimization, hence the third error message.

As we have seen, the second and the third error messages are consequences of the first mistake
we have made. Before looking at the last message that has been displayed we recompile the
model with the corrected line

Profit:= 5*small + 20*large

to get rid of all side effects of this error. Unfortunately, we still get a few error messages:

Mosel: E-123 at (10,17) of ‘poerror.mos’: ‘maximize’ is not defined.
Mosel: E-100 at (12,37) of ‘poerror.mos’: Syntax error.

There is still a problem in line 10; this time it shows up at the very end of the line. Although ev-
erything appears to be correct, the parser does not seem to know what to do with maximize.
The solution to this enigma is that we have forgotten to load the module mmxprs that provides
the optimization function maximize. To tell Mosel that this module is used we need to add
the line

uses "mmxprs"

immediately after the start of the model, before the declarations block. Forgetting to specify
mmxprs is another common error. We now have a closer look at line 12 (which has now be-
come line 13 due to the addition of the uses statement). All subroutines called in this line
(writeln and getobjval) are provided by Mosel, so there must be yet another problem: we
have forgotten to close the parentheses. After adding the closing parenthesis after getobjval
the model finally compiles without displaying any errors. If we run it we obtain the desired
output:

Best profit is 1333.33
Returned value: 0

6.2 Correcting run time errors in Mosel

Besides the detection of syntax errors, Mosel may also give some help in finding run time errors.
It should only be pointed out here that it is possible to add the flag -g to the compile command
to obtain some information about where the error occurred in the program, resulting in a
command sequence such as

mosel -c "cl -g mymodel.mos; run"

or short

mosel -c "exec -g mymodel.mos"

Xpress-IVE compiles by default with this debug flag.

Also useful is turning on verbose reporting, for instance

Correcting errors in Mosel models 37 Mosel User Guide

setparam("XPRS_VERBOSE",true)
setparam("XPRS_LOADNAMES",true)

Correcting errors in Mosel models 38 Mosel User Guide

II. Advanced language features

Overview

This part takes the reader who wants to use Mosel as a modeling, solving and programming en-
vironment through its powerful programming language facilities. The following topics, most
of which have already shortly been mentioned in the first part, are covered in a more detailed
way:

• Selections and loops (Chapter 7)

• Working with sets, lists, and records (Chapter 8)

• Functions and procedures (Chapter 9)

• Output to files and producing formatted output (Chapter 10)

Whilst the first four chapters in this part present pure programming examples, the last two
chapters contain some advanced examples of LP and MIP that make use of the programming
facilities in Mosel:

• Cut generation (Section 11.1)

• Column generation (Section 11.2)

• Recursion or Successive Linear Pogramming (Section 12.1)

• Goal Programming (Section 12.2)

40 Mosel User Guide

Chapter 7

Flow control constructs

Flow control constructs are mechanisms for controlling the order of the execution of the ac-
tions in a program. In this chapter we are going to have a closer look at two fundamental
types of control constructs in Mosel: selections and loops.

Frequently actions in a program need to be repeated a certain number of times, for instance
for all possible values of some index or depending on whether a condition is fulfilled or not.
This is the purpose of loops. Since in practical applications loops are often interwoven with
conditions (selection statements), these are introduced first.

7.1 Selections

Mosel provides several statements to express a selection between different actions to be taken
in a program. The simplest form of a selection is the if-then statement:

• if-then: ‘If a condition holds do something’. For example:

if A >= 20 then
x <= 7
end-if

For an integer number A and a variable x of type mpvar, x is constrained to be less or equal to
7 if A is greater or equal 20.

Note that there may be any number of expressions between then and end-if, not just a single
one.

In other cases, it may be necessary to express choices with alternatives.

• if-then-else: ‘If a condition holds, do this, otherwise do something else’. For example:

if A >= 20 then
x <= 7
else x >= 35
end-if

Here the upper bound 7 is applied to the variable x if the value of A is greater or equal
20, otherwise the lower bound 35 is applied to it.

• if-then-elif-then-else: ‘If a condition holds do this, otherwise, if a second condition holds
do something else etc.’

if A >= 20 then
x <= 7
elif A <= 10 then
x >= 35
else
x = 0
end-if

41 Mosel User Guide

Here the upper bound 7 is applied to the variable x if the value of A is greater or equal
20, and if the value of A is less or equal 10 then the lower bound 35 is applied to x. In all
other cases (that is, A is greater than 10 and smaller than 20), x is fixed to 0.
Note that this could also be written using two separate if-then statements but it is more
efficient to use if-then-elif-then[-else] if the cases that are tested are mutually
exclusive.

• case: ‘Depending on the value of an expression do something’.

case A of
-MAX_INT..10 : x >= 35
20..MAX_INT : x <= 7
12, 15 : x = 1
else x = 0
end-case

Here the upper bound 7 is applied to the variable x if the value of A is greater or equal
20, and the lower bound 35 is applied if the value of A is less or equal 10. In addition, x is
fixed to 1 if A has value 12 or 15, and fixed to 0 for all remaining values.
An example for the use of the case statement is given in Section 12.2.

The following example (model minmax.mos) uses the if-then-elif-then statement to com-
pute the minimum and the maximum of a set of randomly generated numbers:

model Minmax

declarations
SNumbers: set of integer
LB=-1000 ! Elements of SNumbers must be between LB
UB=1000 ! and UB
end-declarations

! Generate a set of 50 randomly chosen numbers
forall(i in 1..50)
SNumbers += {round(random*200)-100}

writeln("Set: ", SNumbers, " (size: ", getsize(SNumbers), ")")

minval:=UB
maxval:=LB
forall(p in SNumbers)
if p<minval then
minval:=p

elif p>maxval then
maxval:=p

end-if

writeln("Min: ", minval, ", Max: ", maxval)

end-model

Instead of writing the loop above, it would of course be possible to use the corresponding
operators min and max provided by Mosel:

writeln("Min: ", min(p in SNumbers) p, ", Max: ", max(p in SNumbers) p)

It is good programming practice to indent the block of statements in loops or selections as
in the preceding example so that it becomes easy to get an overview where the loop or the
selection ends. — At the same time this may serve as a control whether the loop or selection
has been terminated correctly (i.e. no end-if or similar key words terminating loops have
been left out).

7.2 Loops

Loops group actions that need to be repeated a certain number of times, either for all values

Flow control constructs 42 Mosel User Guide

of some index or counter (forall) or depending on whether a condition is fulfilled or not
(while, repeat-until).

This section presents the complete set of loops available in Mosel, namely forall, forall-do,
while, while-do, and repeat-until.

7.2.1 forall

The forall loop repeats a statement or block of statements for all values of an index or
counter. If the set of values is given as an interval of integers (range), the enumeration starts
with the smallest value. For any other type of sets the order of enumeration depends on the
current (internal) order of the elements in the set.

The forall loop exists in two different versions in Mosel. The inline version of the forall
loop (i.e. looping over a single statement) has already been used repeatedly, for example as in
the following loop that constrains variables x(i) (i=1,...,10) to be binary.

forall(i in 1..10) x(i) is_binary

The second version of this loop, forall-do, may enclose a block of statements, the end of
which is marked by end-do.

Note that the indices of a forall loop can not be modified inside the loop. Furthermore, they
must be new objects: a symbol that has been declared cannot be used as index of a forall
loop.

The following example (model perfect.mos) that calculates all perfect numbers between 1
and a given upper limit combines both types of the forall loop. (A number is called perfect
if the sum of its divisors is equal to the number itself.)

model Perfect

parameters
LIMIT=100
end-parameters

writeln("Perfect numbers between 1 and ", LIMIT, ":")

forall(p in 1..LIMIT) do
sumd:=1
forall(d in 2..p-1)
if p mod d = 0 then ! Mosel’s built-in mod operator

sumd+=d ! The same as sum:= sum + d
end-if

if p=sumd then
writeln(p)

end-if
end-do

end-model

The outer loop encloses several statements, we therefore need to use forall-do. The inner
loop only applies to a single statement (if statement) so that we may use the inline version
forall.

If run with the default parameter settings, this program computes the solution 1, 6, 28.

7.2.1.1 Multiple indices

The forall statement (just like the sum operator and any other statement in Mosel that re-
quires index set(s)) may take any number of indices, with values in sets of any basic type or
ranges of integer values. If two or more indices have the same set of values as in

forall(i in 1..10, j in 1..10) y(i,j) is_binary

Flow control constructs 43 Mosel User Guide

(where y(i,j) are variables of type mpvar) the following equivalent short form may be used:

forall(i,j in 1..10) y(i,j) is_binary

7.2.1.2 Conditional looping

The possibility of adding conditions to a forall loop via the ‘|’ symbol has already been men-
tioned in Chapter 3. Conditions may be applied to one or several indices and the selection
statement(s) can be placed accordingly. Take a look at the following example where A and U
are one- and two-dimensional arrays of integers or reals respectively, and y a two-dimensional
array of decision variables (mpvar):

forall(i in -10..10, j in 0..5 | A(i) > 20) y(i,j) <= U(i,j)

For all i from -10 to 10, the upper bound U(i,j) is applied to the variable y(i,j) if the value
of A(i) is greater than 20.

The same conditional loop may be reformulated (in an equivalent but usually less efficient
way) using the if statement:

forall(i in -10..10, j in 0..5)
if A(i) > 20
y(i,j) <= U(i,j)

end-if

If we have a second selection statement on both indices with B a two-dimensional array of
integers or reals, we may either write

forall(i in -10..10, j in 0..5 | A(i) > 20 and B(i,j) <> 0) y(i,j) <= U(i,j)

or, more efficiently, since the second condition on both indices is only tested if the condition
on index i holds:

forall(i in -10..10 | A(i) > 20, j in 0..5 | B(i,j) <> 0) y(i,j) <= U(i,j)

7.2.2 while

A while loop is typically employed if the number of times that the loop needs to be executed is
not know beforehand but depends on the evaluation of some condition: a set of statements is
repeated while a condition holds. As with forall, the while statement exists in two versions,
an inline version (while) and a version (while-do) that is to be used with a block of program
statements.

The following example (model lcdiv1.mos) computes the largest common divisor of two
integer numbers A and B (that is, the largest number by which both A and B, can be divided
without remainder). Since there is only a single if-then-else statement in the while loop
we could use the inline version of the loop but, for clarity’s sake, we have given preference to
the while-do version that marks where the loop terminates clearly.

model Lcdiv1

declarations
A,B: integer
end-declarations

write("Enter two integer numbers:\n A: ")
readln(A)
write(" B: ")
readln(B)

while (A <> B) do
if (A>B) then
A:=A-B

Flow control constructs 44 Mosel User Guide

else B:=B-A
end-if
end-do

writeln("Largest common divisor: ", A)

end-model

7.2.3 repeat until

The repeat-until structure is similar to the while statement with the difference that the
actions in the loop are executed once before the termination condition is tested for the first
time.

The following example (model shsort.mos) combines the three types of loops (forall, while,
repeat-until) that are available in Mosel. It implements a Shell sort algorithm for sorting
an array of numbers into numerical order. The idea of this algorithm is to first sort, by straight
insertion, small groups of numbers. Then several small groups are combined and sorted. This
step is repeated until the whole list of numbers is sorted.

The spacings between the numbers of groups sorted on each pass through the data are called
the increments. A good choice is the sequence which can be generated by the recurrence
inc1 = 1, inck+1 = 3 · inck + 1, k = 1, 2, . . .

model "Shell sort"

declarations
N: integer ! Size of array ANum
ANum: array(range) of real ! Unsorted array of numbers
end-declarations

N:=50
forall(i in 1..N)
ANum(i):=round(random*100)

writeln("Given list of numbers (size: ", N, "): ")
forall(i in 1..N) write(ANum(i), " ")
writeln

inc:=1 ! Determine the starting increment
repeat
inc:=3*inc+1

until (inc>N)

repeat ! Loop over the partial sorts
inc:=inc div 3
forall(i in inc+1..N) do ! Outer loop of straight insertion
v:=ANum(i)
j:=i
while (ANum(j-inc)>v) do ! Inner loop of straight insertion

ANum(j):=ANum(j-inc)
j -= inc
if j<=inc then break; end-if

end-do
ANum(j):= v

end-do
until (inc<=1)

writeln("Ordered list: ")
forall(i in 1..N) write(ANum(i), " ")
writeln

end-model

The example introduces a new statement: break. It can be used to interrupt one or several
loops. In our case it stops the inner while loop. Since we are jumping out of a single loop,
we could as well write break 1. If we wrote break 3, the break would make the algorithm
jump 3 loop levels higher, that is outside of the repeat-until loop.

Note that there is no limit to the number of nested levels of loops and/or selections in Mosel.

Flow control constructs 45 Mosel User Guide

Chapter 8

Sets, lists, and records

The Mosel language defines the structured types set, array, list, and record. So far we have
worked with arrays and sets relying on an intuitive understanding of what is an ‘array’ or a
‘set’. More formally, we may define an array as a collection of labeled objects of a given type
where the label of an array entry is defined by its index tuple.

A set collects objects of the same type without establishing an order among them (as opposed
to arrays and lists). Set elements are unique: if the same element is added twice the set still
only contains it once.

A list groups objects of the same type. Unlike sets, a list may contain the same element several
times. The order of the list elements is specified by construction.

Mosel arrays, sets and lists may be defined for any type, that is the elementary types (includ-
ing the basic types integer, real, string, boolean and the MP types mpvar and linctr),
structured types (array, set, list, record), and external types (contributed to the language
by a module).

A record is a finite collection of objects of any type. Each component of a record is called a
field and is characterized by its name and its type.

This chapter first presents in a more systematic way the different possibilities of how sets may
be initialized (all of which the reader has already encountered in the examples in the first part),
and also shows more advanced ways of working with sets. We then introduce lists, showing
how to initialize and access them, and finally give some examples of the use of records.

8.1 Initializing sets

In the revised formulation of the burglar problem in Chapter 2 and also in the models in
Chapter 3 we have already seen different examples for the use of index sets. We recall here
the relevant parts of the respective models.

8.1.1 Constant sets

In the Burglar example the index set is assigned directly in the model:

declarations
ITEMS={"camera", "necklace", "vase", "picture", "tv", "video",

"chest", "brick"}
end-declarations

Since in this example the set contents is set in the declarations section, the index set ITEMS is
a constant set (its contents cannot be changed). To declare it as a dynamic set, the contents
needs to be assigned after its declaration:

declarations

46 Mosel User Guide

ITEMS: set of string
end-declarations

ITEMS:={"camera", "necklace", "vase", "picture", "tv", "video",
"chest", "brick"}

8.1.2 Set initialization from file, finalized and fixed sets

In Chapter 4 the reader has encountered several examples how the contents of sets may be
initialized from data files.

The contents of the set may be read in directly as in the following case:

declarations
WHICH: set of integer
end-declarations

initilizations from ’idata.dat’
WHICH
end-initializations

Where idata.dat contains data in the following format:

WHICH: [1 4 7 11 14]

Unless a set is constant, arrays that are indexed by this set are created as dynamic arrays. Since
in many cases the contents of a set does not change any more after its initialization, Mosel
provides the finalize statement that turns a (dynamic) set into a constant set. Consider the
continuation of the example above:

finalize(WHICH)

declarations
x: array(WHICH) of mpvar
end-declarations

The array of variables x will be created as a static array, without the finalize statement it
would be dynamic since the index set WHICH may still be subject to changes. Declaring arrays
in the form of static arrays is preferable if the indexing set is known before because this allows
Mosel to handle them in a more efficient way.

Index sets may also be initialized indirectly during the initialization of dynamic arrays:

declarations
REGION: set of string
DEMAND: array(REGION) of real
end-declarations

initializations from ’transprt.dat’
DEMAND
end-initilizations

If file transprt.dat contains the data:

DEMAND: [(Scotland) 2840 (North) 2800 (West) 2600 (SEast) 2820 (Midlands) 2750]

then printing the set REGION after the initialization will give the following output:

{‘Scotland’,‘North’,‘West’,‘SEast’,‘Midlands’}

Once a set is used for indexing an array (of data, decision variables etc.) it is fixed, that is, its
elements can no longer be removed, but it may still grow in size.

The indirect initialization of (index) sets is not restricted to the case that data is input from
file. In the following example (model chess3.mos) we add an array of variable descriptions to
the chess problem introduced in Chapter 1. These descriptions may, for instance, be used for

Sets, lists, and records 47 Mosel User Guide

generating a nice output. Since the array DescrV and its indexing set Allvars are dynamic
they grow with each new variable description that is added to DescrV.

model "Chess 3"
uses "mmxprs"

declarations
Allvars: set of mpvar
DescrV: array(Allvars) of string
small, large: mpvar
end-declarations

DescrV(small):= "Number of small chess sets"
DescrV(large):= "Number of large chess sets"

Profit:= 5*small + 20*large
Lathe:= 3*small + 2*large <= 160
Boxwood:= small + 3*large <= 200

maximize(Profit)

writeln("Solution:\n Objective: ", getobjval)
writeln(DescrV(small), ": ", getsol(small))
writeln(DescrV(large), ": ", getsol(large))

end-model

The reader may have already remarked another feature that is illustrated by this example: the
indexing set Allvars is of type mpvar. So far only basic types have occurred as index set types
but as mentioned earlier, sets in Mosel may be of any elementary type, including the MP types
mpvar and linctr.

8.2 Working with sets

In all examples of sets given so far sets are used for indexing other modeling objects. But they
may also be used for different purposes.

The following example (model setops.mos) demonstrates the use of basic set operations in
Mosel: union (+), intersection (*), and difference (-):

model "Set example"

declarations
Cities={"rome", "bristol", "london", "paris", "liverpool"}
Ports={"plymouth", "bristol", "glasgow", "london", "calais",

"liverpool"}
Capitals={"rome", "london", "paris", "madrid", "berlin"}
end-declarations

Places:= Cities+Ports+Capitals ! Create the union of all 3 sets
In_all_three:= Cities*Ports*Capitals ! Create the intersection of all 3 sets
Cities_not_cap:= Cities-Capitals ! Create the set of all cities that are

! not capitals

writeln("Union of all places: ", Places)
writeln("Intersection of all three: ", In_all_three)
writeln("Cities that are not capitals: ", Cities_not_cap)

end-model

The output of this example will look as follows:

Union of all places:{‘rome’,‘bristol’,‘london’,‘paris’,‘liverpool’,
‘plymouth’,‘bristol’,‘glasgow’,‘calais’,‘liverpool’,‘rome’,‘paris’,
‘madrid’,‘berlin’}
Intersection of all three: {‘london’}
Cities that are not capitals: {‘bristol’,‘liverpool}

Sets, lists, and records 48 Mosel User Guide

Sets in Mosel are indeed a powerful facility for programming as in the following example
(model prime.mos) that calculates all prime numbers between 2 and some given limit.

Starting with the smallest one, the algorithm takes every element of a set of numbers SNumbers
(positive numbers between 2 and some upper limit that may be specified when running the
model), adds it to the set of prime numbers SPrime and removes the number and all its multi-
ples from the set SNumbers.

model Prime

parameters
LIMIT=100 ! Search for prime numbers in 2..LIMIT
end-parameters

declarations
SNumbers: set of integer ! Set of numbers to be checked
SPrime: set of integer ! Set of prime numbers
end-declarations

SNumbers:={2..LIMIT}

writeln("Prime numbers between 2 and ", LIMIT, ":")

n:=2
repeat
while (not(n in SNumbers)) n+=1
SPrime += {n} ! n is a prime number
i:=n
while (i<=LIMIT) do ! Remove n and all its multiples
SNumbers-= {i}
i+=n

end-do
until SNumbers={}

writeln(SPrime)
writeln(" (", getsize(SPrime), " prime numbers.)")

end-model

This example uses a new function, getsize, that if applied to a set returns the number of
elements of the set. The condition in the while loop is the logical negation of an expres-
sion, marked with not: the loop is repeated as long as the condition n in SNumbers is not
satisfied.

8.2.1 Set operators

The preceding example introduces the operator += to add sets to a set (there is also an operator
-= to remove subsets from a set). Another set operator used in the example is in denoting
that a single object is contained in a set. We have already encountered this operator in the
enumeration of indices for the forall loop.

Mosel also defines the standard operators for comparing sets: subset (<=), superset (>=),
difference (<>), end equality (=). Their use is illustrated by the following example (model
setcomp.mos):

model "Set comparisons"

declarations
RAINBOW = {"red", "orange", "yellow", "green", "blue", "purple"}
BRIGHT = {"yellow", "orange"}
DARK = {"blue", "brown", "black"}
end-declarations

writeln("BRIGHT is included in RAINBOW: ", BRIGHT <= RAINBOW)
writeln("RAINBOW is a superset of DARK: ", RAINBOW >= DARK)
writeln("BRIGHT is different from DARK: ", BRIGHT <> DARK)
writeln("BRIGHT is the same as RAINBOW: ", BRIGHT = RAINBOW)

Sets, lists, and records 49 Mosel User Guide

end-model

As one might have expected, this example produces the following output:

BRIGHT is included in RAINBOW: true
RAINBOW is a superset of DARK: false
BRIGHT is different from DARK: true
BRIGHT is the same as RAINBOW: false

8.3 Initializing lists

Lists are not commonly used in the standard formulation of Mathematical Programming prob-
lems. However, this data structure may be useful for the Mosel implementation of some more
advanced solving and programming tasks.

8.3.1 Constant list

If the contents of a list are specified at the declaration of the list, such as

declarations
L = [1,2,3,4,5,6,7,8,9,10]
end-declarations

we have defined a constant list (its contents cannot be changed). If we want to be able to
modify the list contents subsequently we need to separate the definition of the list contents
from the declaration, resulting in a dynamic list:

declarations
L: list of integer
end-declarations

L:= [1,2,3,4,5,6,7,8,9,10]

A two-dimensional array of lists may be defined thus (and higher dimensional arrays by anal-
ogy):

declarations
M: array(range,set of integer) of list of string
end-declarations

M:: (2..4,1)[[’A’,’B’,’C’], [’D’,’E’], [’F’,’G’,’H’,’I’]]

8.3.2 List initialization from file

Similarly to what we have already seen for other data structures, the contents of lists may be
initialized from file through initializations blocks. For example,

declarations
K: list of integer
N: array(range,set of integer) of list of string
end-declarations

initializations from "listinit.dat"
K N
end-initializations

writeln("K: ", K)
writeln("An entry of N: ", N(5,3))

Assuming the datafile listinit.dat contains these lines

K: [5,4,3,2,1,1,2,3,4,5]

Sets, lists, and records 50 Mosel User Guide

N: [(3) [’B’,’C’,’A’]
(5) [’K’,’L’]
(5) [’D’,’E’]
(6) [’H’,’I’,’F’,’G’]]

we obtain the following output from the model fragment above:

K: [5,4,3,2,1,1,2,3,4,5]
An entry of N: [‘K’,‘L’,‘D’,‘E’]

8.4 Working with lists

8.4.1 Enumeration

Similarly to the way we have used sets so far, lists may be used as loop indices for enumeration.
The following enumerates a given list L from beginning to end:

declarations
L: list of integer
end-declarations

L:= [1,2,3,4,5]

forall(i in L) writeln(i)

Since lists have an ordering we may choose, for instance, to reverse the order of list elements
for the enumeration. The model listenum.mos below shows several possibilities for enumer-
ating lists in inverse order: (1) reversing a copy of the list to enumerate, (2) reversing the list to
enumerate. In the first case we obtain the reversed copy of the list with function getreverse,
in the second case we modify the original list by applying to it the procedure reverse.

model "Reversing lists"

declarations
K,L: list of integer
end-declarations

L:= [1,2,3,4,5]

! Enumeration in inverse order:
! 1. Reversed copy of the list (i.e., no change to ’L’)
K:=getreverse(L)
forall(i in K) writeln(i)

! 2. Reversing the list itself
reverse(L)
forall(i in L) writeln(i)

end-model

8.4.2 List operators

Lists are composed by concatenating several lists or by truncating their extremities (refered to
as head and tail). The operators += and + serve for concatenating lists. Their inverses (-= and
-) may be used to remove the tail of a list—they will not remove the given sublist if it is not
positioned at the end.

The following model listops.mos shows some examples of the use of list operators. Besides
the concatenation operators + and += we also use the aggregate form sum. Another list oper-
ator used in this example is the comparison operator <> (the comparison operator = may also
be used with lists).

model "List operators"

Sets, lists, and records 51 Mosel User Guide

declarations
L,M: list of integer
end-declarations

L:= [1,2,3] + [4,5]; writeln("L (1): ", L)
L+= [6,7,8]; writeln("L (2): ", L)
L-= [1,2,3]; writeln("L (3): ", L)

M:= sum(l in L) [l*2]; writeln("M: ", M)

writeln("L and M are different: ", L<>M)

end-model

As can be seen in the output, the list [1,2,3] is not removed from L since it is not located at
its tail:

L (1): [1,2,3,4,5]
L (2): [1,2,3,4,5,6,7,8]
L (3): [1,2,3,4,5,6,7,8]
M: [2,4,6,8,10,12,14,16]
L and M are different: true

8.4.3 List handling functions

The Mosel subroutines for list handling form two groups, namely

• Operations preserving the list they are applied to: retrieving a list element (getfirst,
getlast), occurrence of an element (findfirst, findlast), retrieving a copy of the
head or tail (gethead, gettail), reversed copy of a list (getreverse)

• Operations modifying the list they are applied to: cutting off (=discard) the head or tail
(cuthead, cuttail), splitting off (=retrieve) the head or tail (splithead, splittail),
reverse the list (reverse)

The following example listmerge.mos merges two lists of integers K and L, the elements of
which are ordered in increasing order of their values into a new list M that is ordered in the
same way. The elements of the two original lists are added one-by-one to the new list using
the concatenation operator +=. Whilst the elements of the list K are simply enumerated, we
iteratively split off the first element from list L (using splithead with second argument 1 to
take away just the first list element) so that this list will be empty at the end of the forall
loop. If this is not desired, we need to work with a copy of this list.

model "Merging lists"

declarations
K,L,M: list of integer
end-declarations

K:= [1,4,5,8,9,10,13]
L:= [-1,0,4,6,7,8,9,9,11,11]

forall(k in K) do
while (L<>[] and k >= getfirst(L)) M += splithead(L,1)
M+= [k]
end-do

writeln(M)

end-model

The resulting list M is:

[-1,0,1,4,4,5,6,7,8,8,9,9,9,10,11,11,13]

Sets, lists, and records 52 Mosel User Guide

List handling routines provide a powerful means of programming, illustrated by the following
example euler.mos that constructs a Eulerian circuit for the network shown in Figure 8.1
(thick arrows indicate that the corresponding arc is to be used twice). This example is an
alternative implementation of the Eulerian circuit algorithm described in Section 15.4 ‘Gritting
roads’ (problem j4grit) of the book ’Applications of optimization with Xpress-MP’.

1 2 3 4

8765

9 10 11 12

Figure 8.1: Network forming a Eulerian circuit

A Eulerian circuit is a tour through a network that uses every given arc exactly once. To con-
struct such a circuit for a given set of arcs we may employ the following algorithm

• Choose a start node and add it to the tour.

• while there are unused arcs:
– Find the first node in the tour with unused outgoing arcs.
– Construct a closed subtour starting from this node.
– Insert the new subtour into the main tour.

model "Eulerian circuit"

declarations
NODES = 1..12 ! Set of nodes
UNUSED: array(NODES) of list of integer
TOUR: list of integer
NEWT, TAIL: list of integer
end-declarations

initializations from ’euler.dat’
UNUSED
end-initializations

ct:=sum(i in NODES) getsize(UNUSED(i))

TOUR:=[1] ! Choose node 1 as start point

while(ct>0) do ! While there are unused arcs:
! Find first node in TOUR with unused outgoing arc(s)

node:=0
forall(i in TOUR)
if UNUSED(i) <> [] then
node:=i
break
end-if

! Insertion position (first occurrence of ’node’ in TOUR)
pos:= findfirst(TOUR, node)

! Construct a new subtour starting from ’node’
cur:=node ! Start with current node
NEWT:=[]
while(UNUSED(cur) <> []) do
NEWT+=splithead(UNUSED(cur),1) ! Take first unused arc
cur:=getlast(NEWT) ! End point of arc is new current node
end-do

Sets, lists, and records 53 Mosel User Guide

http://www.dashoptimization.com/home/services/publications/applications_book.html

! Stop if the subtour is not a closed loop (=> no Eulerian circuit)
if cur<>node then ! Compare start and end of subtour
writeln("Tour cannot be closed")
exit(1)
end-if

! Add the new subtour to the main journey
TAIL:=splittail(TOUR, -pos) ! Split off the tail from main tour
TOUR += NEWT + TAIL ! Attach subtour and tail to main tour
ct -= getsize(NEWT)
end-do

writeln("Tour: ", TOUR) ! Print the result

end-model

The data file euler.dat corresponding to the graph in Figure 8.1 has the following contents:

UNUSED: [(1) [2 5] (2) [3 5 6] (3) [2 4 4] (4) [3 8 8]
(5) [1 1 6 6] (6) [2 5 7 9 9 10] (7) [3 6 8 11]
(8) [4 11 12] (9) [5 10] (10) [6 6 7]
(11) [7 7 10] (12) [11]]

A Eulerian circuit for this data set is the tour

1 → 2 → 6 → 5 → 6 → 7 → 8 → 12 → 11 → 7 → 11 → 10 → 7 → 3 → 4 → 3 → 4 → 8 → 4 → 8 →
11 → 7 → 6 → 9 → 5 → 6 → 9 → 10 → 6 → 10 → 6 → 2 → 3 → 2 → 5 → 1 → 5 → 1

8.5 Records

Records group Mosel objects of different types. They may be used, for instance, to structure
the data of a large-scale model by collecting all information relating to the same object.

8.5.1 Defining records

The definition of a record has some similarities with the declarations block: it starts with the
keyword record, followed by a list of field names and types, and the keyword end-record
marks the end of the definition. The definition of records must be placed in a declarations
block. The following code extract defines a record with two fields (‘name’ and ‘values’).

declarations
R = 1..10
D: record
name: string
values: array(R) of real
end-record
end-declarations

We need to define a name (e.g., ‘mydata’) for the record if we want to be able to refer to it
elsewhere in the model. For example:

declarations
R = 1..10
mydata = record
name: string
values: array(R) of real
end-record
D: mydata
A: array(range) of mydata
end-declarations

The fields of a record are accessed by appending .fieldname to the record, for instance:

D.name:= "D"

Sets, lists, and records 54 Mosel User Guide

forall(i in R) D.values(i):= i
writeln("Values of ", D.name, ": ", D.values)

writeln("An entry of A: ", A(1))
writeln("’name’ of an entry of A: ", A(4).name)
writeln("’values’ of an entry of A: ", A(3).values)
writeln("First entry of ’values’: ", A(3).values(1))

Note: if a record field is an array, the index set(s) of the array must be either constant or be
declared outside of the record definition. So, these are valid record definitions:

declarations
R: range
P: record
values: array(R) of real
end-record

Q: record
values: array(1..10) of real
end-record
end-declarations

whereas this form can not be used:

Q: record
values: array(range) of real
end-record

8.5.2 Initialization of records from file

The contents of a record may be assigned fieldwise within a model as shown above or else
be read in from file using initializations. The data file must contain the data entries for
the different record fields in their order of occurrence in the record definition. An array A of
the record type mydata defined in the previous section is initialized with data from file in the
obvious way (model recorddef.mos):

declarations
A: array(T:range) of mydata
end-declarations

initializations from "recorddef.dat"
A
end-initializations

writeln(A(1))
forall(i in T | exists(A(i))) writeln(A(i).name)

If the data file recorddef.dat has these contents:

A: [(1) [’A1’ [(2) 2 (3) 3 (4) 4]]
(3) [’A3’ [(3) 6 (6) 9]]
(4) [’A4’ [5 6 7 8]]
]

we obtain the following output:

[name=‘A1’ values=[0,2,3,4,0,0,0,0,0,0]]
A1
A3
A4

An example of the use of records is the encoding of arcs and associated information such as
for representing the network in Figure 8.2.

Sets, lists, and records 55 Mosel User Guide

A

B

C

F

D

E

4

3

7

5
1

22

4
8

5

1

Figure 8.2: Network with costs on arcs

A data file with the network data may look as follows (file arcs.dat):

ARC: [(1) ["A" "B" 2]
(2) ["A" "D" 4]
(3) ["A" "C" 7]
(4) ["B" "F" 4]
(5) ["B" "D" 3]
(6) ["C" "B" 5]
(7) ["C" "D" 1]
(8) ["C" "E" 1]
(9) ["D" "F" 2]
(10) ["D" "E" 5]
(11) ["E" "F" 8]]

We may then write our model arcs.mos thus

model "Arcs"

declarations
NODES: set of string ! Set of nodes
ARC: array(ARCSET:range) of record ! Arcs:
Source,Sink: string ! Source and sink of arc
Cost: real ! Cost coefficient
end-record
end-declarations

initializations from ’arcs.dat’
ARC
end-initializations

! Calculate the set of nodes
NODES:=union(a in ARCSET) {ARC(a).Source, ARC(a).Sink}
writeln(NODES)

writeln("Average arc cost: ", sum(a in ARCSET) ARC(a).Cost / getsize(ARCSET))

end-model

8.6 User types

In a Mosel model, the user may define new types that will be treated in the same way as the
predefined types of the Mosel language. New types are defined in declarations blocks by
specifying a type name, followed by =, and the definition of the type. The simplest form of a
type definition is to introduce a new name for an existing type, such as:

declarations
myint = integer
myreal = real
end-declarations

Sets, lists, and records 56 Mosel User Guide

In the section on records above we have already seen an example of a user type definition for
records (where we have named the record ‘mydata’). Another possible use of a user type is as
a kind of ‘shorthand’ where several (data) arrays have the same structure, such as in the model
blend.mos from Chapter 2, where, instead of

declarations
ORES = 1..2 ! Range of ores

COST: array(ORES) of real ! Unit cost of ores
AVAIL: array(ORES) of real ! Availability of ores
GRADE: array(ORES) of real ! Grade of ores (measured per unit of mass)
end-declarations

we could have written

declarations
ORES = 1..2 ! Range of ores

myarray = array(ORES) of real ! Define a user type

COST: myarray ! Unit cost of ores
AVAIL: myarray ! Availability of ores
GRADE: myarray ! Grade of ores (measured per unit of mass)
end-declarations

without making any other modifications to the model.

Sets, lists, and records 57 Mosel User Guide

Chapter 9

Functions and procedures

When programs grow larger than the small examples presented so far, it becomes necessary to
introduce some structure that makes them easier to read and to maintain. Usually, this is done
by dividing the tasks that have to be executed into subtasks which may again be subdivided,
and indicating the order in which these subtasks have to be executed and which are their
activation conditions. To facilitate this structured approach, Mosel provides the concept of
subroutines. Using subroutines, longer and more complex programs can be broken down into
smaller subtasks that are easier to understand and to work with. Subroutines may be employed
in the form of procedures or functions. Procedures are called as a program statement, they
have no return value, functions must be called in an expression that uses their return value.

Mosel provides a set of predefined subroutines (for a comprehensive documentation the reader
is referred to the Mosel Reference Manual), and it is possible to define new functions and pro-
cedures according to the needs of a specific program. A procedure that has occured repeatedly
in this document is writeln. Typical examples of functions are mathematical functions like abs,
floor, ln, sin etc.

9.1 Subroutine definition

User defined subroutines in Mosel have to be marked with procedure / end-procedure and
function / end-function respectively. The return value of a function has to be assigned to
returned as shown in the following example (model subrout.mos).

model "Simple subroutines"

declarations
a:integer
end-declarations

function three:integer
returned := 3
end-function

procedure print_start
writeln("The program starts here.")
end-procedure

print_start
a:=three
writeln("a = ", a)

end-model

This program will produce the following output:

The program starts here.
a = 3

58 Mosel User Guide

9.2 Parameters

In many cases, the actions to be performed by a procedure or the return value expected from
a function depend on the current value of one or several objects in the calling program. It is
therefore possible to pass parameters into a subroutine. The (list of) parameter(s) is added in
parantheses behind the name of the subroutine:

function times_two(b:integer):integer
returned := 2*b

end-function

The structure of subroutines being very similar to the one of model, they may also include
declarations sections for declaring local parameters that are only valid in the correspond-
ing subroutine. It should be noted that such local parameters may mask global parameters
within the scope of a subroutine, but they have no effect on the definition of the global pa-
rameter outside of the subroutine as is shown below in the extension of the example ‘Simple
subroutines’. Whilst it is not possible to modify function/procedure parameters in the corre-
sponding subroutine, as in other programming languages the declaration of local parameters
may hide these parameters. Mosel considers this as a possible mistake and prints a warning
during compilation (without any consequence for the execution of the program).

model "Simple subroutines"

declarations
a:integer
end-declarations

function three:integer
returned := 3
end-function

function times_two(b:integer):integer
returned := 2*b

end-function

procedure print_start
writeln("The program starts here.")
end-procedure

procedure hide_a_1
declarations
a: integer
end-declarations

a:=7
writeln("Procedure hide_a_1: a = ", a)
end-procedure

procedure hide_a_2(a:integer)
writeln("Procedure hide_a_2: a = ", a)
end-procedure

procedure hide_a_3(a:integer)
declarations
a: integer
end-declarations

a := 15
writeln("Procedure hide_a_3: a = ", a)
end-procedure

print_start
a:=three
writeln("a = ", a)
a:=times_two(a)
writeln("a = ", a)
hide_a_1
writeln("a = ", a)

Functions and procedures 59 Mosel User Guide

hide_a_2(-10)
writeln("a = ", a)
hide_a_3(a)
writeln("a = ", a)

end-model

During the compilation we get the warning

Mosel: W-165 at (30,3) of ‘subrout.mos’: Declaration of ‘a’ hides a parameter.

This is due to the redefinition of the parameter in procedure hide_a_3. The program results
in the following output:

The program starts here.
a = 3
a = 6
Procedure hide_a_1: a = 7
a = 6
Procedure hide_a_2: a = -10
a = 6
Procedure hide_a_3: a = 15
a = 6

9.3 Recursion

The following example (model lcdiv2.mos) returns the largest common divisor of two num-
bers, just like the example ‘Lcdiv1’ in the previous chapter. This time we implement this task
using recursive function calls, that is, from within function lcdiv we call again function lcdiv.

model Lcdiv2

function lcdiv(A,B:integer):integer
if(A=B) then
returned:=A
elif(A>B) then
returned:=lcdiv(B,A-B)
else
returned:=lcdiv(A,B-A)
end-if
end-function

declarations
A,B: integer
end-declarations

write("Enter two integer numbers:\n A: ")
readln(A)
write(" B: ")
readln(B)

writeln("Largest common divisor: ", lcdiv(A,B))

end-model

This example uses a simple recursion (a subroutine calling itself). In Mosel, it is also possible
to use cross-recursion, that is, subroutine A calls subroutine B which again calls A. The only
pre-requisite is that any subroutine that is called prior to its definition must be declared before
it is called by using the forward statement (see below).

9.4 forward

A subroutine has to be ‘known’ at the place where it is called in a program. In the preceding
examples we have defined all subroutines at the start of the programs but this may not always

Functions and procedures 60 Mosel User Guide

be feasible or desirable. Mosel therefore enables the user to declare a subroutine seperately
from its definition by using the keyword forward. The declaration of of a subroutine states
its name, the parameters (type and name) and, in the case of a function, the type of the
return value. The definition that must follow later in the program contains the body of the
subroutine, that is, the actions to be executed by the subroutine.

The following example (model qsort1.mos) implements a quick sort algorithm for sorting a
randomly generated array of numbers into ascending order. The procedure qsort that starts
the sorting algorithm is defined at the very end of the program, it therefore needs to be
declared at the beginning, before it is called. Procedure qsort_start calls the main sorting
routine, qsort. Since the definition of this procedure precedes the place where it is called
there is no need to declare it (but it still could be done). Procedure qsort calls yet again another
subroutine, swap.

The idea of the quick sort algorithm is to partition the array that is to be sorted into two parts.
The ‘left’ part containing all values smaller than the partitioning value and the ‘right’ part all
the values that are larger than this value. The partitioning is then applied to the two subarrays,
and so on, until all values are sorted.

model "Quick sort 1"

parameters
LIM=50
end-parameters

forward procedure qsort_start(L:array(range) of integer)

declarations
T:array(1..LIM) of integer
end-declarations

forall(i in 1..LIM) T(i):=round(.5+random*LIM)
writeln(T)
qsort_start(T)
writeln(T)

! Swap the positions of two numbers in an array
procedure swap(L:array(range) of integer,i,j:integer)
k:=L(i)
L(i):=L(j)
L(j):=k
end-procedure

! Main sorting routine
procedure qsort(L:array(range) of integer,s,e:integer)
v:=L((s+e) div 2) ! Determine the partitioning value
i:=s; j:=e
repeat ! Partition into two subarrays
while(L(i)<v) i+=1
while(L(j)>v) j-=1
if i<j then
swap(L,i,j)
i+=1; j-=1
end-if
until i>=j

! Recursively sort the two subarrays
if j<e and s<j then qsort(L,s,j); end-if
if i>s and i<e then qsort(L,i,e); end-if
end-procedure

! Start of the sorting process
procedure qsort_start(L:array(r:range) of integer)
qsort(L,getfirst(r),getlast(r))
end-procedure

end-model

The quick sort example above demonstrates typical uses of subroutines, namely grouping ac-
tions that are executed repeatedly (qsort) and isolating subtasks (swap) in order to structure

Functions and procedures 61 Mosel User Guide

a program and increase its readability.

The calls to the procedures in this example are nested (procedure swap is called from qsort
which is called from qsort_start): in Mosel there is no limit as to the number of nested calls
to subroutines (it is not possible, though, to define subroutines within a subroutine).

9.5 Overloading of subroutines

In Mosel, it is possible to re-use the names of subroutines, provided that every version has a
different number and/or types of parameters. This functionality is commonly referred to as
overloading.

An example of an overloaded function in Mosel is getsol: if a variable is passed as a parameter
it returns its solution value, if the parameter is a constraint the function returns the evaluation
of the corresponding linear expression using the current solution.

Function abs (for obtaining the absolute value of a number) has different return types de-
pending on the type of the input parameter: if an integer is input it returns an integer value,
if it is called with a real value as input parameter it returns a real.

Function getcoeff is an example of a function that takes different numbers of parameters:
if called with a single parameter (of type linctr) it returns the constant term of the input
constraint, if a constraint and a variable are passed as parameters it returns the coefficient of
the variable in the given constraint.

The user may define (additional) overloaded versions of any subroutines defined by Mosel as
well as for his own functions and procedures. Note that it is not possible to overload a function
with a procedure and vice versa.

Using the possibility to overload subroutines, we may rewrite the preceding example ‘Quick
sort’ as follows (model qsort2.mos).

model "Quick sort 2"

parameters
LIM=50
end-parameters

forward procedure qsort(L:array(range) of integer)

declarations
T:array(1..LIM) of integer
end-declarations

forall(i in 1..LIM) T(i):=round(.5+random*LIM)
writeln(T)
qsort(T)
writeln(T)

procedure swap(L:array(range) of integer,i,j:integer)
(...) (same procedure body as in the preceding example)
end-procedure

procedure qsort(L:array(range) of integer,s,e:integer)
(...) (same procedure body as in the preceding example)
end-procedure

! Start of the sorting process
procedure qsort(L:array(r:range) of integer)
qsort(L,getfirst(r),getlast(r))
end-procedure

end-model

The procedure qsort_start is now also called qsort. The procedure bearing this name in the
first implementation keeps its name too; it has got two additional parameters which suffice

Functions and procedures 62 Mosel User Guide

to ensure that the right version of the procedure is called. To the contrary, it is not possible
to give procedure swap the same name qsort because it takes exactly the same parameters
as the original procedure qsort and hence it would not be possible to differentiate between
these two procedures any more.

Functions and procedures 63 Mosel User Guide

Chapter 10

Output

10.1 Producing formatted output

In some of the previous examples the procedures write and writeln have been used for
displaying data, solution values and some accompanying text. To produce better formatted
output, these procedures can be combined with the formatting procedure strfmt. In its sim-
plest form, strfmt’s second argument indicates the (minimum) space reserved for writing the
first argument and its placement within this space (negative values mean left justified print-
ing, positive right justified). When writing a real, a third argument may be used to specify
the maximum number of digits after the decimal point.

For example, if file fo.mos contains

model FO
parameters
r = 1.0 ! A real
i = 0 ! An integer
end-parameters

writeln("i is ", i)
writeln("i is ", strfmt(i,6))
writeln("i is ", strfmt(i,-6))
writeln("r is ", r)
writeln("r is ", strfmt(r,6))
writeln("r is ",strfmt(r,10,4))
end-model

and we run Mosel thus:

mosel -s -c "exec fo ’i=123, r=1.234567’"

we get output

i is 123
i is 123
i is 123
r is 1.23457
r is 1.23457
r is 1.2346

The following example (model transport2.mos) prints out the solution of model ‘Transport’
(Section 3.2) in table format. The reader may be reminded that the objective of this problem
is to compute the product flows from a set of plants (PLANT) to a set of sales regions (REGION)
so as to minimize the total cost. The solution needs to comply with the capacity limits of the
plants (PLANTCAP) and satisfy the demand DEMAND of all regions.

procedure print_table
declarations
rsum: array(REGION) of integer ! Auxiliary data table for printing

64 Mosel User Guide

psum,prsum,ct,iflow: integer ! Counters
end-declarations

! Print heading and the first line of the table
writeln("\nProduct Distribution\n--------------------")
writeln(strfmt("Sales Region",44))
write(strfmt("",14))
forall(r in REGION) write(strfmt(r,9))
writeln(strfmt("TOTAL",9), " Capacity")

! Print the solution values of the flow variables and
! calculate totals per region and per plant

ct:=0
forall(p in PLANT) do
ct += 1
if ct=2 then

write("Plant ",strfmt(p,-8))
else

write(" ",strfmt(p,-8))
end-if
psum:=0
forall(r in REGION) do

iflow:=integer(getsol(flow(p,r)))
psum += iflow
rsum(r) += iflow
if iflow<>0 then
write(strfmt(iflow,9))

else
write(" ")

end-if
end-do
writeln(strfmt(psum,9), strfmt(integer(PLANTCAP(p)),9))

end-do

! Print the column totals
write("\n", strfmt("TOTAL",-14))
prsum:=0
forall(r in REGION) do
prsum += rsum(r);
write(strfmt(rsum(r),9))

end-do
writeln(strfmt(prsum,9))

! Print demand of every region
write(strfmt("Demand",-14))
forall(r in REGION) write(strfmt(integer(DEMAND(r)),9))

! Print objective function value
writeln("\n\nTotal cost of distribution = ", strfmt(getobjval/1e6,0,3),

" million.")

end-procedure

With the data from Chapter 3 the procedure print_table produces the following output:

Product Distribution

Sales Region
Scotland North SWest SEast Midlands TOTAL Capacity

Corby 180 820 2000 3000 3000
Plant Deeside 1530 920 250 2700 2700

Glasgow 2840 1270 4110 4500
Oxford 1500 2000 500 4000 4000

TOTAL 2840 2800 2600 2820 2750 13810
Demand 2840 2800 2600 2820 2750

Total cost of distribution = 81.018 million.

Output 65 Mosel User Guide

10.2 File output

If we do not want the output of procedure print_tab in the previous section to be displayed
on screen but to be saved in the file out.txt, we simply open the file for writing at the
beginning of the procedure by adding

fopen("out.txt",F_OUTPUT)

before the first writeln statement, and close it at the end of the procedure, after the last
writeln statement with

fclose(F_OUTPUT)

If we do not want any existing contents of the file out.txt to be deleted, so that the result
table is appended to the end of the file, we need to write the following for opening the file
(closing it the same way as before):

fopen("out.txt",F_OUTPUT+F_APPEND)

As with input of data from file, there are several ways of outputting data (e.g. solution values)
to a file in Mosel. The following example demonstrates three different ways of writing the
contents of an array A to a file.

10.2.1 Data input with initializations to

The first method uses the initializations block for creating or updating a file in Mosel’s
initializations format.

model "Trio output (1)"
declarations
A: array(-1..1,5..7) of real
end-declarations

A :: [2, 4, 6,
12, 14, 16,
22, 24, 26]

! First method: use an initializations block
initializations to "out_1.dat"
A as "MYOUT"
end-initializations
end-model

File out_1.dat will contain the following:

’MYOUT’: [2 4 6 12 14 16 22 24 26]

If this file contains already a data entry MYOUT, it is replaced with this output without modifying
or deleting any other contents of this file. Otherwise, the output is appended at the end of it.

10.2.2 Data output with writeln

As mentioned above, we may create freely formatted output files by redirecting the output of
write and writeln statements to a file:

model "Trio output (2)"
declarations
A: array(-1..1,5..7) of real
end-declarations

A :: [2, 4, 6,
12, 14, 16,
22, 24, 26]

Output 66 Mosel User Guide

! Second method: use the built-in writeln function
fopen("out_2.dat", F_OUTPUT)
forall(i in -1..1, j in 5..7)
writeln(’A_out(’, i, ’ and ’, j, ’) = ’, A(i,j))
fclose(F_OUTPUT)
end-model

The nicely formatted output to out_2.dat results in the following:

A_out(-1 and 5) = 2
A_out(-1 and 6) = 4
A_out(-1 and 7) = 6
A_out(0 and 5) = 12
A_out(0 and 6) = 14
A_out(0 and 7) = 16
A_out(1 and 5) = 22
A_out(1 and 6) = 24
A_out(1 and 7) = 26

10.2.3 Data output with diskdata

As a third possibility, one may use the diskdata subroutine from module mmetc to write out
comma separated value (CSV) files.

model "Trio output (3)"
uses "mmetc"

declarations
A: array(-1..1,5..7) of real
end-declarations

A :: [2, 4, 6,
12, 14, 16,
22, 24, 26]

! Third method: use diskdata
diskdata(ETC_OUT+ETC_SPARSE,"out_3.dat", A)
end-model

The output with diskdata simply prints the contents of the array to out_3.dat, with option
ETC_SPARSE each entry is preceded by the corresponding indices:

-1,5,2
-1,6,4
-1,7,6
0,5,12
0,6,14
0,7,16
1,5,22
1,6,24
1,7,26

Without option ETC_SPARSE out_3.dat looks as follows:

2,4,6
12,14,16
22,24,26

Instead of using the diskdata subroutine, we may equally use the diskdata IO driver that is
defined by the same module, mmetc. In the example above we replace the diskdata state-
ment by the following initializations to block.

[initializations to ’mmetc.diskdata:’
A as ’sparse,out_3.dat’
end-initializations

Output 67 Mosel User Guide

10.3 Real number format

Whenever output is printed (including matrix export to a file) Mosel uses the standard repre-
sentation of floating point numbers of the operating system (C format %g). This format may
apply rounding when printing large numbers or numbers with many decimals. It may therefore
sometimes be preferable to change the output format to a fixed format to see the exact results
of an optimization run or to produce a matrix output file with greater accuracy. Consider the
following example (model numformat.mos):

model "Formatting numbers"
parameters
a = 12345000.0
b = 12345048.9
c = 12.000045
d = 12.0
end-parameters

writeln(a, " ", b, " ", c, " ", d)

setparam("REALFMT", "%1.6f")
writeln(a, " ", b, " ", c, " ", d)
end-model

This model produces the following output.

1.2345e+07 1.2345e+07 12 12
12345000.000000 12345048.900000 12.000045 12.000000

That is, with the default printing format it is not possible to distinguish between a and b or to
see that c is not an integer. After setting a fixed format with 6 decimals all these numbers are
output with their exact values.

Output 68 Mosel User Guide

Chapter 11

More about Integer Programming

This chapter presents two applications to (Mixed) Integer Programming of the programming
facilities in Mosel that have been introduced in the previous chapters.

11.1 Cut generation

Cutting plane methods add constraints (cuts) to the problem that cut off parts of the convex
hull of the integer solutions, thus drawing the solution of the LP relaxation closer to the integer
feasible solutions and improving the bound provided by the solution of the relaxed problem.

The Xpress-Optimizer provides automated cut generation (see the optimizer documentation
for details). To show the effects of the cuts that are generated by our example we switch off
the automated cut generation.

11.1.1 Example problem

The problem we want to solve is the following: a large company is planning to outsource the
cleaning of its offices at the least cost. The NSITES office sites of the company are grouped into
areas (set AREAS = {1, . . . , NAREAS}). Several professional cleaning companies (set CONTR =
{1, . . . , NCONTRACTORS}) have submitted bids for the different sites, a cost of 0 in the data
meaning that a contractor is not bidding for a site.

To avoid being dependent on a single contractor, adjacent areas have to be allocated to differ-
ent contractors. Every site s (s in SITES = {1, . . . , NSITES}) is to be allocated to a single contractor,
but there may be between LOWCONa and UPPCONa contractors per area a.

11.1.2 Model formulation

For the mathematical formulation of the problem we introduce two sets of variables:

cleancs indicates whether contractor c is cleaning site s
allocca indicates whether contractor c is allocated any site in area a

The objective to minimize the total cost of all contracts is as follows (where PRICEsc is the price
per site and contractor):

minimize
∑

c∈CONTR

∑
s∈SITES

PRICEsc · cleancs

We need the following three sets of constraints to formulate the problem:

1. Each site must be cleaned by exactly one contractor.

∀s ∈ SITES :
∑

c∈CONTR

cleancs = 1

69 Mosel User Guide

2. Adjacent areas must not be allocated to the same contractor.

∀c ∈ CONTR, a, b ∈ AREAS, a > b and ADJACENTab = 1 : allocca + alloccb ≤ 1

3. The lower and upper limits on the number of contractors per area must be respected.

∀a ∈ AREAS :
∑

c∈CONTR

allocca ≥ LOWCONa

∀a ∈ AREAS :
∑

c∈CONTR

allocca ≤ UPPCONa

To express the relation between the two sets of variables we need more constraints: a contrac-
tor c is allocated to an area a if and only if he is allocated a site s in this area, that is, yca is 1 if
and only if some xcs (for a site s in area a) is 1. This equivalence is expressed by the following
two sets of constraints, one for each sense of the implication (AREAs is the area a site s belongs
to and NUMSITEa the number of sites in area a):

∀c ∈ CONTR, a ∈ AREAS : allocca ≤
∑

s∈SITES
AREAs=a

cleancs

∀c ∈ CONTR, a ∈ AREAS : allocca ≥
1

NUMSITEa
·

∑
s∈SITES

AREAs=a

cleancs

11.1.3 Implementation

The resulting Mosel program is the following model clean.mos. The variables cleancs are
defined as a dynamic array and are only created if contractor c bids for site s (that is, PRICEsc > 0
or, taking into account inaccuracies in the data, PRICEsc > 0. 01).

Another implementation detail that the reader may notice is the separate initialization of the
array sizes: we are thus able to create all arrays with fixed sizes (with the exception of the
previously mentioned array of variables that is explicitly declared dynamic). This allows Mosel
to handle them in a more efficient way.

model "Office cleaning"
uses "mmxprs","mmsystem"

declarations
PARAM: array(1..3) of integer
end-declarations

initializations from ’clparam.dat’
PARAM
end-initializations

declarations
NSITES = PARAM(1) ! Number of sites
NAREAS = PARAM(2) ! Number of areas (subsets of sites)
NCONTRACTORS = PARAM(3) ! Number of contractors
AREAS = 1..NAREAS
CONTR = 1..NCONTRACTORS
SITES = 1..NSITES
AREA: array(SITES) of integer ! Area site is in
NUMSITE: array(AREAS) of integer ! Number of sites in an area
LOWCON: array(AREAS) of integer ! Lower limit on the number of

! contractors per area
UPPCON: array(AREAS) of integer ! Upper limit on the number of

! contractors per area
ADJACENT: array(AREAS,AREAS) of integer ! 1 if areas adjacent, 0 otherwise
PRICE: array(SITES,CONTR) of real ! Price per contractor per site

clean: dynamic array(CONTR,SITES) of mpvar ! 1 iff contractor c cleans site s
alloc: array(CONTR,AREAS) of mpvar ! 1 iff contractor allocated to a site

! in area a

More about Integer Programming 70 Mosel User Guide

end-declarations

initializations from ’cldata.dat’
[NUMSITE,LOWCON,UPPCON] as ’AREA’
ADJACENT
PRICE
end-initializations

ct:=1
forall(a in AREAS) do
forall(s in ct..ct+NUMSITE(a)-1)
AREA(s):=a
ct+= NUMSITE(a)
end-do

forall(c in CONTR, s in SITES | PRICE(s,c) > 0.01) create(clean(c,s))

! Objective: Minimize total cost of all cleaning contracts
Cost:= sum(c in CONTR, s in SITES) PRICE(s,c)*clean(c,s)

! Each site must be cleaned by exactly one contractor
forall(s in SITES) sum(c in CONTR) clean(c,s) = 1

! Ban same contractor from serving adjacent areas
forall(c in CONTR, a,b in AREAS | a > b and ADJACENT(a,b) = 1)
alloc(c,a) + alloc(c,b) <= 1

! Specify lower & upper limits on contracts per area
forall(a in AREAS | LOWCON(a)>0)
sum(c in CONTR) alloc(c,a) >= LOWCON(a)
forall(a in AREAS | UPPCON(a)<NCONTRACTORS)
sum(c in CONTR) alloc(c,a) <= UPPCON(a)

! Define alloc(c,a) to be 1 iff some clean(c,s)=1 for sites s in area a
forall(c in CONTR, a in AREAS) do
alloc(c,a) <= sum(s in SITES| AREA(s)=a) clean(c,s)
alloc(c,a) >= 1.0/NUMSITE(a) * sum(s in SITES| AREA(s)=a) clean(c,s)

end-do

forall(c in CONTR) do
forall(s in SITES) clean(c,s) is_binary
forall(a in AREAS) alloc(c,a) is_binary
end-do

minimize(Cost) ! Solve the MIP problem
end-model

In the preceding model, we have chosen to implement the constraints that force the variables
allocca to become 1 whenever a variable cleancs is 1 for some site s in area a in an aggregated
way (this type of constraint is usually referred to as Multiple Variable Lower Bound, MVLB,
constraints). Instead of

forall(c in CONTR, a in AREAS)
alloc(c,a) >= 1.0/NUMSITE(a) * sum(s in SITES| AREA(s)=a) clean(c,s)

we could also have used the stronger formulation

forall(c in CONTR, s in SITES)
alloc(c,AREA(s)) >= clean(c,s)

but this considerably increases the total number of constraints. The aggregated constraints are
sufficient to express this problem, but this formulation is very loose, with the consequence that
the solution of the LP relaxation only provides a very bad approximation of the integer solution
that we want to obtain. For large data sets the Branch-and-Bound search may therefore take
a long time.

More about Integer Programming 71 Mosel User Guide

11.1.4 Cut-and-Branch

To improve this situation without blindly adding many unnecessary constraints, we implement
a cut generation loop at the top node of the search that only adds those constraints that are
violated be the current LP solution.

The cut generation loop (procedure top_cut_gen) performs the following steps:

• solve the LP and save the basis

• get the solution values

• identify violated constraints and add them to the problem

• load the modified problem and load the previous basis

procedure top_cut_gen
declarations
MAXCUTS = 2500 ! Max no. of constraints added in total
MAXPCUTS = 1000 ! Max no. of constraints added per pass
MAXPASS = 50 ! Max no. passes
ncut, npass, npcut: integer ! Counters for cuts and passes
feastol: real ! Zero tolerance
solc: array(CONTR,SITES) of real ! Sol. values for variables ‘clean’
sola: array(CONTR,AREAS) of real ! Sol. values for variables ‘alloc’
objval,starttime: real
cut: array(range) of linctr
bas: basis ! LP basis
end-declarations

starttime:=gettime
setparam("XPRS_CUTSTRATEGY", 0) ! Disable automatic cuts
setparam("XPRS_PRESOLVE", 0) ! Switch presolve off
feastol:= getparam("XPRS_FEASTOL") ! Get the Optimizer zero tolerance
setparam("ZEROTOL", feastol * 10) ! Set the comparison tolerance of Mosel
ncut:=0
npass:=0

while (ncut<MAXCUTS and npass<MAXPASS) do
npass+=1
npcut:= 0
minimize(XPRS_LIN, Cost) ! Solve the LP
if (npass>1 and objval=getobjval) then break; end-if
savebasis(bas) ! Save the current basis
objval:= getobjval ! Get the objective value

forall(c in CONTR) do ! Get the solution values
forall(a in AREAS) sola(c,a):=getsol(alloc(c,a))
forall(s in SITES) solc(c,s):=getsol(clean(c,s))

end-do

! Search for violated constraints and add them to the problem:
forall(c in CONTR, s in SITES)
if solc(c,s) > sola(c,AREA(s)) then
cut(ncut):= alloc(c,AREA(s)) >= clean(c,s)
ncut+=1
npcut+=1
if (npcut>MAXPCUTS or ncut>MAXCUTS) then break 2; end-if
end-if

writeln("Pass ", npass, " (", gettime-starttime, " sec), objective value ",
objval, ", cuts added: ", npcut, " (total ", ncut,")")

if npcut=0 then
break

else
loadprob(Cost) ! Reload the problem
loadbasis(bas) ! Load the saved basis

end-if
end-do

! Display cut generation status

More about Integer Programming 72 Mosel User Guide

write("Cut phase completed: ")
if (ncut >= MAXCUTS) then writeln("space for cuts exhausted")
elif (npass >= MAXPASS) then writeln("maximum number of passes reached")
else writeln("no more violations or no improvement to objective")
end-if
end-procedure

Assuming we add the definition of procedure top_cut_gen to the end of our model, we need
to add its declaration at the beginning of the model:

forward procedure topcutgen

and the call to this function immediately before the optimization:

top_cut_gen ! Constraint generation at top node
minimize(Cost) ! Solve the MIP problem

Since we wish to use our own cut strategy, we switch off the default cut generation in Xpress-
Optimizer:

setparam("XPRS_CUTSTRATEGY", 0)

We also turn the presolve off since we wish to access the solution to the original problem after
solving the LP-relaxations:

setparam("XPRS_PRESOLVE", 0)

11.1.5 Comparison tolerance

In addition to the parameter settings we also retrieve the feasibility tolerance used by Xpress-
Optimizer: the Optimizer works with tolerance values for integer feasibility and solution fea-
sibility that are typically of the order of 10−6 by default. When evaluating a solution, for
instance by performing comparisons, it is important to take into account these tolerances.

After retrieving the feasibility tolerance of the Optimizer we set the comparison tolerance of
Mosel (ZEROTOL) to this value. This means, for example, the test x = 0 evaluates to true if x lies
between -ZEROTOL and ZEROTOL, x ≤ 0 is true if the value of x is at most ZEROTOL, and x > 0
is fulfilled if x is greater than ZEROTOL.

Comparisons in Mosel always use a tolerance, with a very small default value. By resetting this
parameter to the Optimizer feasibility tolerance Mosel evaluates solution values just like the
Optimizer.

11.1.6 Branch-and-Cut

The cut generation loop presented in the previous subsection only generates violated inqual-
ities at the top node before entering the Branch-and-Bound search and adds them to the
problem in the form of additional constraints. We may do the same using the cut manager
of Xpress-Optimizer. In this case, the violated constraints are added to the problem via the
cut pool. We may even generate and add cuts during the Branch-and-Bound search. A cut
added at a node using addcuts only applies to this node and its descendants, so one may use
this functionality to define local cuts (however, in our example, all generated cuts are valid
globally).

The cut manager is set up with a call to procedure tree_cut_gen before starting the optimiza-
tion (preceded by the declaration of the procedure using forward earlier in the program). To
avoid initializing the solution arrays and the feasibility tolerance repeatedly, we now turn these
into globally defined objects:

declarations
feastol: real ! Zero tolerance
solc: array(CONTR,SITES) of real ! Sol. values for variables ‘clean’
sola: array(CONTR,AREAS) of real ! Sol. values for variables ‘alloc’

More about Integer Programming 73 Mosel User Guide

end-declarations

tree_cut_gen ! Set up cut generation in B&B tree
minimize(Cost) ! Solve the MIP problem

As we have seen before, procedure tree_cut_gen disables the default cut generation and
turns presolve off. It also indicates the number of extra rows to be reserved in the matrix for
the cuts we are generating:

procedure tree_cut_gen
setparam("XPRS_CUTSTRATEGY", 0) ! Disable automatic cuts
setparam("XPRS_PRESOLVE", 0) ! Switch presolve off
setparam("XPRS_EXTRAROWS", 5000) ! Reserve extra rows in matrix

feastol:= getparam("XPRS_FEASTOL") ! Get the zero tolerance
setparam("zerotol", feastol * 10) ! Set the comparison tolerance of Mosel

setcallback(XPRS_CB_CM, "cb_node")
end-procedure

The last line of this procedure defines the cut manager entry callback function that will be
called by the optimizer from every node of the Branch-and-Bound search tree. This cut gener-
ation routine (function cb_node) performs the following steps:

• get the solution values

• identify violated inequalities and add them to the problem

It is implemented as follows (we restrict the generation of cuts to the first three levels, i.e.
depth <4, of the search tree):

public function cb_node:boolean

declarations
ncut: integer ! Counters for cuts
cut: array(range) of linctr ! Cuts
cutid: array(range) of integer ! Cut type identification
type: array(range) of integer ! Cut constraint type
end-declarations

returned:=false ! Call this function once per node

depth:=getparam("XPRS_NODEDEPTH")
node:=getparam("XPRS_NODES")

if depth<4 then
ncut:=0

! Get the solution values
setparam("XPRS_SOLUTIONFILE",0)
forall(c in CONTR) do
forall(a in AREAS) sola(c,a):=getsol(alloc(c,a))
forall(s in SITES) solc(c,s):=getsol(clean(c,s))
end-do
setparam("XPRS_SOLUTIONFILE",1)

! Search for violated constraints
forall(c in CONTR, s in SITES)
if solc(c,s) > sola(c,AREA(s)) then
cut(ncut):= alloc(c,AREA(s)) - clean(c,s)
cutid(ncut):= 1
type(ncut):= CT_GEQ
ncut+=1
end-if

! Add cuts to the problem
if ncut>0 then
returned:=true ! Call this function again
addcuts(cutid, type, cut);

More about Integer Programming 74 Mosel User Guide

writeln("Cuts added : ", ncut, " (depth ", depth, ", node ", node,
", obj. ", getparam("XPRS_LPOBJVAL"), ")")

end-if
end-if

end-function

The prototype of this function is prescribed by the type of the callback (see the Xpress-Optimizer
Reference Manual and the chapter on mmxprs in the Mosel Language Reference Manual). We
declare the function as public to make sure that our model continues to work if it is com-
piled with the -s (strip) option. At every node this function is called repeatedly, followed by a
re-solution of the current LP, as long as it returns true.

Remark: if one wishes to access the solution values in a callback function, the Xpress-Optimizer
parameter XPRS_SOLUTIONFILE must be set to 0 before getting the solution and after getting
the solutions it must be set back to 1.

11.2 Column generation

The technique of column generation is used for solving linear problems with a huge number of
variables for which it is not possible to generate explicitly all columns of the problem matrix.
Starting with a very restricted set of columns, after each solution of the problem a column
generation algorithm adds one or several columns that improve the current solution. These
columns must have a negative reduced cost (in a minimization problem) and are calculated
based on the dual value of the current solution.

For solving large MIP problems, column generation typically has to be combined with a Branch-
and-Bound search, leading to a so-called Branch-and-Price algorithm. The example problem
described below is solved by solving a sequence of LPs without starting a tree search.

11.2.1 Example problem

A paper mill produces rolls of paper of a fixed width MAXWIDTH that are subsequently cut into
smaller rolls according to the customer orders. The rolls can be cut into NWIDTHS different
sizes. The orders are given as demands for each width i (DEMANDi). The objective of the
paper mill is to satisfy the demand with the smallest possible number of paper rolls in order to
minimize the losses.

11.2.2 Model formulation

The objective of minimizing the total number of rolls can be expressed as choosing the best set
of cutting patterns for the current set of demands. Since it may not be obvious how to calculate
all possible cutting patterns by hand, we start off with a basic set of patterns (PATTERNS1,...,
PATTERNSNWIDTH), that consists of cutting small rolls all of the same width as many times as
possible out of the large roll. This type of problem is called a cutting stock problem.

If we define variables usej to denote the number of times a cutting pattern j (j ∈ WIDTHS =
{1, . . . , NWIDTH}) is used, then the objective becomes to minimize the sum of these variables,
subject to the constraints that the demand for every size has to be met.

minimize
∑

j∈WIDTHS

usej∑
j∈WIDTHS

PATTERNSij · usej ≥ DEMANDi

∀j ∈ WIDTHS : usej ≤ ceil(DEMANDj / PATTERNSjj), usej ∈ IN

Function ceil means rounding to the next larger integer value.

More about Integer Programming 75 Mosel User Guide

11.2.3 Implementation

The first part of the Mosel model paper.mos implementing this problem looks as follows:

model Papermill
uses "mmxprs"

forward procedure column_gen
forward function knapsack(C:array(range) of real, A:array(range) of real,

B:real, xbest:array(range) of integer,
pass: integer): real

forward procedure show_new_pat(dj:real, vx: array(range) of integer)

declarations
NWIDTHS = 5 ! Number of different widths
WIDTHS = 1..NWIDTHS ! Range of widths
RP: range ! Range of cutting patterns
MAXWIDTH = 94 ! Maximum roll width
EPS = 1e-6 ! Zero tolerance

WIDTH: array(WIDTHS) of real ! Possible widths
DEMAND: array(WIDTHS) of integer ! Demand per width
PATTERNS: array(WIDTHS,WIDTHS) of integer ! (Basic) cutting patterns

use: array(RP) of mpvar ! Rolls per pattern
soluse: array(RP) of real ! Solution values for variables ‘use’
Dem: array(WIDTHS) of linctr ! Demand constraints
MinRolls: linctr ! Objective function

KnapCtr, KnapObj: linctr ! Knapsack constraint+objective
x: array(WIDTHS) of mpvar ! Knapsack variables
end-declarations

WIDTH:: [17, 21, 22.5, 24, 29.5]
DEMAND:: [150, 96, 48, 108, 227]

! Make basic patterns
forall(j in WIDTHS) PATTERNS(j,j) := floor(MAXWIDTH/WIDTH(j))

forall(j in WIDTHS) do
create(use(j)) ! Create NWIDTHS variables ‘use’
use(j) is_integer ! Variables are integer and bounded
use(j) <= integer(ceil(DEMAND(j)/PATTERNS(j,j)))
end-do

MinRolls:= sum(j in WIDTHS) use(j) ! Objective: minimize no. of rolls

forall(i in WIDTHS) ! Satisfy all demands
Dem(i):= sum(j in WIDTHS) PATTERNS(i,j) * use(j) >= DEMAND(i)

column_gen ! Column generation at top node

minimize(MinRolls) ! Compute the best integer solution
! for the current problem (including
! the new columns)

writeln("Best integer solution: ", getobjval, " rolls")
write(" Rolls per pattern: ")
forall(i in RP) write(getsol(use(i)),", ")

The paper mill can satisfy the demand with just the basic set of cutting patterns, but it is
likely to incur significant losses through wasting more than necessary of every large roll and
by cutting more small rolls than its customers have ordered. We therefore employ a column
generation heuristic to find more suitable cutting patterns.

The following procedure column_gen defines a column generation loop that is executed at
the top node (this heuristic was suggested by M. Savelsbergh for solving a similar cutting stock
problem). The column generation loop performs the following steps:

• solve the LP and save the basis

• get the solution values

More about Integer Programming 76 Mosel User Guide

• compute a more profitable cutting pattern based on the current solution

• generate a new column (= cutting pattern): add a term to the objective function and to
the corresponding demand constraints

• load the modified problem and load the saved basis

To be able to increase the number of variables usej in this function, these variables have been
declared at the beginning of the program as a dynamic array without specifying any index
range.

By setting Mosel’s comparison tolerance to EPS, the test zbest = 0 checks whether zbest lies
within EPS of 0 (see explanation in Section 11.1).

procedure column_gen
declarations
dualdem: array(WIDTHS) of real
xbest: array(WIDTHS) of integer
dw, zbest, objval: real
bas: basis
end-declarations

defcut:=getparam("XPRS_CUTSTRATEGY") ! Save setting of ‘CUTSTRATEGY’
setparam("XPRS_CUTSTRATEGY", 0) ! Disable automatic cuts
setparam("XPRS_PRESOLVE", 0) ! Switch presolve off
setparam("zerotol", EPS) ! Set comparison tolerance of Mosel
npatt:=NWIDTHS
npass:=1

while(true) do
minimize(XPRS_LIN, MinRolls) ! Solve the LP

savebasis(bas) ! Save the current basis
objval:= getobjval ! Get the objective value

! Get the solution values
forall(j in 1..npatt) soluse(j):=getsol(use(j))
forall(i in WIDTHS) dualdem(i):=getdual(Dem(i))

! Solve a knapsack problem
zbest:= knapsack(dualdem, WIDTH, MAXWIDTH, xbest, npass) - 1.0

write("Pass ", npass, ": ")
if zbest = 0 then

writeln("no profitable column found.\n")
break

else
show_new_pat(zbest, xbest) ! Print the new pattern
npatt+=1
create(use(npatt)) ! Create a new var. for this pattern
use(npatt) is_integer

MinRolls+= use(npatt) ! Add new var. to the objective
dw:=0
forall(i in WIDTHS)
if xbest(i) > 0 then
Dem(i)+= xbest(i)*use(npatt) ! Add new var. to demand constr.s
dw:= maxlist(dw, ceil(DEMAND(i)/xbest(i)))
end-if

use(npatt) <= dw ! Set upper bound on the new var.

loadprob(MinRolls) ! Reload the problem
loadbasis(bas) ! Load the saved basis

end-if
npass+=1

end-do

writeln("Solution after column generation: ", objval, " rolls, ",
getsize(RP), " patterns")

write(" Rolls per pattern: ")
forall(i in RP) write(soluse(i),", ")

More about Integer Programming 77 Mosel User Guide

writeln

setparam("XPRS_CUTSTRATEGY", defcut) ! Enable automatic cuts
setparam("XPRS_PRESOLVE", 1) ! Switch presolve on

end-procedure

The preceding procedure column_gen calls the following auxiliary function knapsack to solve
an integer knapsack problem of the form

maximize z =
∑

j∈WIDTHS

Ci · xj∑
j∈WIDTHS

Aj · xj ≤ B

∀j ∈ WIDTHS : xj integer

The function knapsack solves a second optimization problem that is independent of the main,
cutting stock problem since the two have no variables in common. We thus effectively work
with two problems in a single Mosel model.

For efficiency reasons we have defined the knapsack variables and constraints globally. The in-
tegrality condition on the knapsack variables remains unchanged between several calls to this
function, so we establish it when solving the first knapsack problem. On the other hand, the
knapsack constraint and the objective function have different coefficients at every execution,
so we need to replace them every time the function is called.

We reset the knapsack constraints to 0 at the end of this function so that they do not unnec-
essarily increase the size of the main problem. The same is true in the other sense: hiding the
demand constraints while solving the knapsack problem makes life easier for the optimizer,
but is not essential for getting the correct solution.

function knapsack(C:array(range) of real, A:array(range) of real, B:real,
xbest:array(range) of integer, pass: integer):real

! Hide the demand constraints
forall(j in WIDTHS) sethidden(Dem(j), true)

! Define the knapsack problem
KnapCtr := sum(j in WIDTHS) A(j)*x(j) <= B
KnapObj := sum(j in WIDTHS) C(j)*x(j)

! Integrality condition
if(pass=1) then
forall(j in WIDTHS) x(j) is_integer
end-if

maximize(KnapObj)
returned:=getobjval
forall(j in WIDTHS) xbest(j):=round(getsol(x(j)))

! Reset knapsack constraint and objective, unhide demand constraints
KnapCtr := 0
KnapObj := 0
forall(j in WIDTHS) sethidden(Dem(j), false)
end-function

To complete the model, we add the following procedure show_new_pat to print every new
pattern we find.

procedure show_new_pat(dj:real, vx: array(range) of integer)
declarations
dw: real
end-declarations

writeln("new pattern found with marginal cost ", dj)
write(" Widths distribution: ")

More about Integer Programming 78 Mosel User Guide

dw:=0
forall(i in WIDTHS) do
write(WIDTH(i), ":", vx(i), " ")
dw += WIDTH(i)*vx(i)

end-do
writeln("Total width: ", dw)
end-procedure

end-model

More about Integer Programming 79 Mosel User Guide

Chapter 12

Extensions to Linear Programming

The two examples (recursion and Goal Programming) in this chapter show how Mosel can be
used to implement extensions of Linear Programming.

12.1 Recursion

Recursion, more properly known as Successive Linear Programming, is a technique whereby
LP may be used to solve certain non-linear problems. Some coefficients in an LP problem are
defined to be functions of the optimal values of LP variables. When an LP problem has been
solved, the coefficients are re-evaluated and the LP re-solved. Under some assumptions this
process may converge to a local (though not necessarily a global) optimum.

12.1.1 Example problem

Consider the following financial planning problem: We wish to determine the yearly interest
rate x so that for a given set of payments we obtain the final balance of 0. Interest is paid
quarterly according to the following formula:

interestt = (92 / 365) · balancet · interestrate

The balance at time t (t = 1, . . . , T) results from the balance of the previous period t − 1 and
the net of payments and interest:

nett = Paymentst − interestt

balancet = balancet−1 − nett

12.1.2 Model formulation

This problem cannot be modeled just by LP because we have the T products

balancet · interestrate

which are non-linear. To express an approximation of the original problem by LP we replace
the interest rate variable x by a (constant) guess X of its value and a deviation variable dx

x = X + dx

The formula for the quarterly interest payment it therefore becomes

interestt = 92 / 365 · (balancet−1 · x)

= 92 / 365 · (balancet−1 · (X + dx))

= 92 / 365 · (balancet−1 · X + balancet−1 · dx)

80 Mosel User Guide

where balancet is the balance at the beginning of period t.

We now also replace the balance balancet−1 in the product with dx by a guess Bt−1 and a
deviation dbt−1

iinterestt = 92 / 365 · (balancet−1 · X + (Bt−1 + dbt−1) · dx)

= 92 / 365 · (balancet−1 · X + Bt−1 · dx + dbt−1 · dx)

which can be approximated by dropping the product of the deviation variables

interestt = 92 / 365 · (balancet−1 · X + Bt−1 · dx)

To ensure feasibility we add penalty variables eplust and eminust for positive and negative
deviations in the formulation of the constraint:

interestt = 92 / 365 · (balancet−1 · X + Bt−1 · dx + eplust − eminust)

The objective of the problem is to get feasible, that is to minimize the deviations:

minimize
∑

t∈QUARTERS

(eplust + eminust)

12.1.3 Implementation

The Mosel model (file recurse.mos) then looks as follows (note the balance variables balancet

as well as the deviation dx and the quarterly nets nett are defined as free variables, that is, they
may take any values between minus and plus infinity):

model Recurse
uses "mmxprs"

forward procedure solve_recurse

declarations
T=6 ! Time horizon
QUARTERS=1..T ! Range of time periods
P,R,V: array(QUARTERS) of real ! Payments
B: array(QUARTERS) of real ! Initial guess as to balances b(t)
X: real ! Initial guess as to interest rate x

interest: array(QUARTERS) of mpvar ! Interest
net: array(QUARTERS) of mpvar ! Net
balance: array(QUARTERS) of mpvar ! Balance
x: mpvar ! Interest rate
dx: mpvar ! Change to x
eplus, eminus: array(QUARTERS) of mpvar ! + and - deviations
end-declarations

X:= 0.00
B:: [1, 1, 1, 1, 1, 1]
P:: [-1000, 0, 0, 0, 0, 0]
R:: [206.6, 206.6, 206.6, 206.6, 206.6, 0]
V:: [-2.95, 0, 0, 0, 0, 0]

! net = payments - interest
forall(t in QUARTERS) net(t) = (P(t)+R(t)+V(t)) - interest(t)

! Money balance across periods
forall(t in QUARTERS) balance(t) = if(t>1, balance(t-1), 0) - net(t)

forall(t in 2..T) Interest(t):= ! Approximation of interest
-(365/92)*interest(t) + X*balance(t-1) + B(t-1)*dx + eplus(t) - eminus(t) = 0

Def:= X + dx = x ! Define the interest rate: x = X + dx

Feas:= sum(t in QUARTERS) (eplus(t)+eminus(t)) ! Objective: get feasible

Extensions to Linear Programming 81 Mosel User Guide

interest(1) = 0 ! Initial interest is zero
forall (t in QUARTERS) net(t) is_free
forall (t in 1..T-1) balance(t) is_free
balance(T) = 0 ! Final balance is zero
dx is_free

minimize(Feas) ! Solve the LP-problem

solve_recurse ! Recursion loop

! Print the solution
writeln("\nThe interest rate is ", getsol(x))
write(strfmt("t",5), strfmt(" ",4))
forall(t in QUARTERS) write(strfmt(t,5), strfmt(" ",3))
write("\nBalances ")
forall(t in QUARTERS) write(strfmt(getsol(balance(t)),8,2))
write("\nInterest ")
forall(t in QUARTERS) write(strfmt(getsol(interest(t)),8,2))

end-model

In the model above we have declared the procedure solve_recurse that executes the recur-
sion but it has not yet been defined. The recursion on x and the balancet (t = 1, . . . , T − 1) is
implemented by the following steps:

(a) The Bt−1 in constraints Interestt get the prior solution value of balancet−1

(b) The X in constraints Interestt get the prior solution value of x
(c) The X in constraint Def gets the prior solution value of x

We say we have converged when the change in dx (variation) is less than 0.000001 (TOLE-
RANCE). By setting Mosel’s comparison tolerance to this value the test variation > 0 checks
whether variation is greater than TOLERANCE.

procedure solve_recurse
declarations
TOLERANCE=0.000001 ! Convergence tolerance
variation: real ! Variation of x
BC: array(QUARTERS) of real
bas: basis ! LP basis
end-declarations

setparam("zerotol", TOLERANCE) ! Set Mosel comparison tolerance
variation:=1.0
ct:=0

while(variation>0) do
savebasis(bas) ! Save the current basis
ct+=1
forall(t in 2..T)
BC(t-1):= getsol(balance(t-1)) ! Get solution values for balance(t)’s

XC:= getsol(x) ! and x
write("Round ", ct, " x:", getsol(x), " (variation:", variation,"), ")
writeln("Simplex iterations: ", getparam("XPRS_SIMPLEXITER"))

forall(t in 2..T) do ! Update coefficients
Interest(t)+= (BC(t-1)-B(t-1))*dx
B(t-1):=BC(t-1)
Interest(t)+= (XC-X)*balance(t-1)

end-do
Def+= XC-X
X:=XC
oldxval:=XC ! Store solution value of x

loadprob(Feas) ! Reload the problem into the optimizer
loadbasis(bas) ! Reload previous basis
minimize(Feas) ! Re-solve the LP-problem

variation:= abs(getsol(x)-oldxval) ! Change in dx
end-do
end-procedure

Extensions to Linear Programming 82 Mosel User Guide

With the initial guesses 0 for X and 1 for all Bt the model converges to an interest rate of
5.94413% (x = 0.0594413).

12.2 Goal Programming

Goal Programming is an extension of Linear Programming in which targets are specified for
a set of constraints. In Goal Programming there are two basic models: the pre-emptive (lex-
icographic) model and the Archimedian model. In the pre-emptive model, goals are ordered
according to priorities. The goals at a certain priority level are considered to be infinitely more
important than the goals at the next level. With the Archimedian model weights or penal-
ties for not achieving targets must be specified, and we attempt to minimize the sum of the
weighted infeasibilities.

If constraints are used to construct the goals, then the goals are to minimize the violation of
the constraints. The goals are met when the constraints are satisfied.

The example in this section demonstrates how Mosel can be used for implementing pre-emptive
Goal Programming with constraints. We try to meet as many goals as possible, taking them in
priority order.

12.2.1 Example problem

The objective is to solve a problem with two variables x and y (x, y ≥ 0), the constraint

100 · x + 60 · y ≤ 600

and the three goal constraints

Goal1: 7 · x + 3 · y ≥ 40

Goal2: 10 · x + 5 · y = 60

Goal3: 5 · x + 4 · y ≥ 35

where the order given corresponds to their priorities.

12.2.2 Implementation

To increase readability, the implementation of the Mosel model (file goalctr.mos) is orga-
nized into three blocks: the problem is stated in the main part, procedure preemptive im-
plements the solution strategy via preemptive Goal Programming, and procedure print_sol
produces a nice solution printout.

model GoalCtr
uses "mmxprs"

forward procedure preemptive
forward procedure print_sol(i:integer)

declarations
NGOALS=3 ! Number of goals
x,y: mpvar ! Decision variables
dev: array(1..2*NGOALS) of mpvar ! Deviation from goals
MinDev: linctr ! Objective function
Goal: array(1..NGOALS) of linctr ! Goal constraints
end-declarations

100*x + 60*y <= 600 ! Define a constraint

! Define the goal constraints
Goal(1):= 7*x + 3*y >= 40
Goal(2):= 10*x + 5*y = 60
Goal(3):= 5*x + 4*y >= 35

preemptive ! Pre-emptive Goal Programming

Extensions to Linear Programming 83 Mosel User Guide

At the end of the main part, we call procedure preemptive to solve this problem by pre-
emptive Goal Programming. In this procedure, the goals are at first entirely removed from the
problem (‘hidden’). We then add them successively to the problem and re-solve it until the
problem becomes infeasible, that is, the deviation variables forming the objective function are
not all 0. Depending on the constraint type (obtained with gettype) of the goals, we need
one (for inequalities) or two (for equalities) deviation variables.

Let us have a closer look at the first goal (Goal1), a ≥ constraint: the left hand side (all terms
with decision variables) must be at least 40 to satisfy the constraint. To ensure this, we add
a dev2. The goal constraint becomes 7 · x + 3 · y + dev2 ≥ 40 and the objective function is to
minimize dev2. If this is feasible (0-valued objective), then we remove the deviation variable
from the goal, thus turning it into a hard constraint. It is not required to remove it from the
objective since minimization will always force this variable to take the value 0.

We then continue with Goal2: since this is an equation, we need variables for positive and
negative deviations, dev3 and dev4. We add dev4 − dev3 to the constraint, turning it into
10 · x + 5 · y + dev4 − dev3 = 60 and the objective now is to minimize the absolute deviation
dev4 + dev3. And so on.

procedure preemptive

! Remove (=hide) goal constraint from the problem
forall(i in 1..NGOALS) sethidden(Goal(i), true)

i:=0
while (i<NGOALS) do
i+=1
sethidden(Goal(i), false) ! Add (=unhide) the next goal

case gettype(Goal(i)) of ! Add deviation variable(s)
CT_GEQ: do

Deviation:= dev(2*i)
MinDev += Deviation
end-do

CT_LEQ: do
Deviation:= -dev(2*i-1)
MinDev += dev(2*i-1)
end-do

CT_EQ : do
Deviation:= dev(2*i) - dev(2*i-1)
MinDev += dev(2*i) + dev(2*i-1)
end-do

else writeln("Wrong constraint type")
break

end-case
Goal(i)+= Deviation

minimize(MinDev) ! Solve the LP-problem
writeln(" Solution(", i,"): x: ", getsol(x), ", y: ", getsol(y))

if getobjval>0 then
writeln("Cannot satisfy goal ",i)
break
end-if
Goal(i)-= Deviation ! Remove deviation variable(s) from goal

end-do

print_sol(i) ! Solution printout
end-procedure

The procedure sethidden(c:linctr, b:boolean) has already been used in the previous
chapter (Section 11.2) without giving any further explanation. With this procedure, constraints
can be removed (‘hidden’) from the problem solved by the optimizer without deleting them
in the problem definition. So effectively, the optimizer solves a subproblem of the problem
originally stated in Mosel.

To complete the model, below is the procedure print_sol for printing the results.

Extensions to Linear Programming 84 Mosel User Guide

procedure print_sol(i:integer)
declarations
STypes={CT_GEQ, CT_LEQ, CT_EQ}
ATypes: array(STypes) of string
end-declarations

ATypes::([CT_GEQ, CT_LEQ, CT_EQ])[">=", "<=", "="]

writeln(" Goal", strfmt("Target",11), strfmt("Value",7))
forall(g in 1..i)
writeln(strfmt(g,4), strfmt(ATypes(gettype(Goal(g))),4),
strfmt(-getcoeff(Goal(g)),6),
strfmt(getact(Goal(g))-getsol(dev(2*g))+getsol(dev(2*g-1)) ,8))

forall(g in 1..NGOALS)
if (getsol(dev(2*g))>0) then
writeln(" Goal(",g,") deviation from target: -", getsol(dev(2*g)))
elif (getsol(dev(2*g-1))>0) then
writeln(" Goal(",g,") deviation from target: +", getsol(dev(2*g-1)))
end-if

end-procedure

end-model

When running the program, one finds that the first two goals can be satisfied, but not the
third.

Extensions to Linear Programming 85 Mosel User Guide

III. Working with the Mosel libraries

Overview

Whilst the two previous parts have shown how to work with the Mosel Language, this part
introduces the programming language interface of Mosel in the form of the Mosel C libraries.
The C interface is provided in the form of two libraries; it may especially be of interest to users
who

• want to integrate models and/or solution algorithms written with Mosel into some larger
system

• want to (re)use already existing parts of algorithms written in C

• want to interface Mosel with other software, for instance for graphically displaying re-
sults.

Other programming language interfaces available for Mosel are its Java and Visual Basic inter-
faces. They will be introduced with the help of small examples in Chapter 14.

All these programming language interfaces only enable the user to access models, but not to
modify them. The latter is only possible with the Mosel Native Interface. Even more impor-
tantly, the Native Interface makes it possible to add new constants, types, and subroutines to
the Mosel Language. For more detail the reader is referred to the Native Interface user guide
that is provided as a separate document. The Mosel Native Interface requires an additional
licence.

87 Mosel User Guide

Chapter 13

C interface

This chapter gives an introduction to the C interface of Mosel. It shows how to execute models
from C and how to access modeling objects from C. It is not possible to make changes to Mosel
modeling objects from C using this interface, but the data and parameters used by a model
may be modified via files or run time parameters.

13.1 Basic tasks

To work with a Mosel model, in the C language or with the command line interpreter, it always
needs to be compiled, then loaded into Mosel and executed. In this section we show how to
perform these basic tasks in C.

13.1.1 Compiling a model in C

The following example program shows how Mosel is initialized in C, and how a model file
(extension .mos) is compiled into a binary model (BIM) file (extension .bim). To use the Mosel
Model Compiler Library, we need to include the header file xprm_mc.h at the start of the C
program.

For the sake of readability, in this program (file ugcomp.c), as for all others in this chapter, we
only implement a rudimentary testing for errors.

#include <stdlib.h>
#include "xprm_mc.h"

int main()
{
if(XPRMinit()) /* Initialize Mosel */
return 1;

if(XPRMcompmod(NULL, "burglar2.mos", NULL, "Knapsack example"))
return 2; /* Compile the model burglar2.mos,

output the file burglar2.bim */
return 0;
}

The model burglar2.mos used here is the same as model burglari.mos in Section 2.1.3, but
reading the data from file.

With version 1.4 of Mosel it becomes possible to redirect the BIM file that is generated by the
compilation. Instead of writing it out to a physical file it may, for instance, be kept in memory
or be written out in compressed format. The interested reader is refered to the whitepaper
Generalized file handling in Mosel.

13.1.2 Executing a model in C

The example in this section shows how a Mosel binary model file (BIM) can be executed in

88 Mosel User Guide

C. The BIM file can of course be generated within the same program where it is executed,
but here we leave out this step. A BIM file is an executable version of a model, but it does not
include any data that is read in by the model from external files. It is portable, that is, it may be
executed on a different type of architecture than the one it has been generated on. A BIM file
produced by the Mosel compiler first needs to be loaded into Mosel (function XPRMloadmod)
and can then be run by a call to function XPRMrunmod. To use these functions, we need to
include the header file xprm_rt.h at the beginning of our program (named ugrun.c).

#include <stdio.h>
#include "xprm_rt.h"

int main()
{
XPRMmodel mod;
int result;

if(XPRMinit()) /* Initialize Mosel */
return 1;

if((mod=XPRMloadmod("burglar2.bim", NULL))==NULL) /* Load a BIM file */
return 2;

if(XPRMrunmod(mod,&result,NULL)) /* Run the model */
return 3;

return 0;
}

The compile/load/run sequence may also be performed with a single function call to XPRMexec-
mod (in this case we need to include the header file xprm_mc.h):

#include <stdio.h>
#include "xprm_mc.h"

int main()
{
int result;

if(XPRMinit()) /* Initialize Mosel */
return 1;

/* Execute = compile/load/run a model */
if(XPRMexecmod(NULL, "burglar2.mos", NULL, &result, NULL))
return 2;

return 0;
}

13.2 Parameters

In Part I the concept of parameters in Mosel has been introduced: when a Mosel model is
executed from the command line, it is possible to pass new values for its parameters into the
model. The same is possible with a model run in C. If, for instance, we want to run model
‘Prime’ from Section 8.2 to obtain all prime numbers up to 500 (instead of the default value
100 set for the parameter LIMIT in the model), we may start a program with the following
lines:

XPRMmodel mod;
int result;

if(XPRMinit()) /* Initialize Mosel */
return 1;

if((mod=XPRMloadmod("prime.bim",NULL))==NULL) /* Load a BIM file */
return 2;

if(XPRMrunmod(mod,&result,"LIMIT=500")) /* Run the model */

C interface 89 Mosel User Guide

return 3;

To use function XPRMexecmod instead of the compile/load/run sequence we have:

int result;

if(XPRMinit()) /* Initialize Mosel */
return 1;

/* Execute with new parameter settings */
if(XPRMexecmod(NULL,"prime.mos","LIMIT=500",&result,NULL))
return 2;

13.3 Accessing modeling objects and solution values

Using the Mosel libraries, it is not only possible to compile and run models, but also to access
information on the different modeling objects.

13.3.1 Accessing sets

A complete version of a program (file ugparam1.c) for running the model ‘Prime’ mentioned
in the previous section may look as follows (we work with a model prime2 that corresponds
to the one printed in Section 8.2 but with all output printing removed because we are doing
this in C):

#include <stdio.h>
#include "xprm_mc.h"

int main()
{
XPRMmodel mod;
XPRMalltypes rvalue, setitem;
XPRMset set;
int result, type, i, size, first, last;

if(XPRMinit()) /* Initialize Mosel */
return 1;

if(XPRMexecmod(NULL, "prime2.mos", "LIMIT=500", &result, &mod))
return 2; /* Execute the model */

type=XPRMfindident(mod, "SPrime", &rvalue); /* Get the object ’SPrime’ */
if((XPRM_TYP(type)!=XPRM_TYP_INT)|| /* Check the type: */

(XPRM_STR(type)!=XPRM_STR_SET)) /* it must be a set of integers */
return 3;
set = rvalue.set;

size = XPRMgetsetsize(set); /* Get the size of the set */
if(size>0)
{
first = XPRMgetfirstsetndx(set); /* Get number of the first index */
last = XPRMgetlastsetndx(set); /* Get number of the last index */
printf("Prime numbers from 2 to %d:\n", LIM);
for(i=first;i<=last;i++) /* Print all set elements */
printf(" %d,", XPRMgetelsetval(set,i,&setitem)->integer);
printf("\n");
}

return 0;
}

To print the contents of set SPrime that contains the desired result (prime numbers between 2
and 500), we first retrieve the Mosel reference to this object using function XPRMfindident.
We are then able to enumerate the elements of the set (using functions XPRMgetfirstsetndx
and XPRMgetlastsetndx) and obtain their respective values with XPRMgetelsetval.

C interface 90 Mosel User Guide

13.3.2 Retrieving solution values

The following program ugsol1.c executes the model ‘Burglar3’ (the same as model ‘Burglar2’
from Chapter 2 but with all output printing removed) and prints out its solution.

#include <stdio.h>
#include "xprm_rt.h"</p>

int main()
{
XPRMmodel mod;
XPRMalltypes rvalue, itemname;
XPRMarray varr, darr;
XPRMmpvar x;
XPRMset set;
int indices[1], result, type;
double val;

if(XPRMinit()) /* Initialize Mosel */
return 1;

if((mod=XPRMloadmod("burglar3.bim", NULL))==NULL) /* Load a BIM file */
return 2;

if(XPRMrunmod(mod, &result, NULL)) /* Run the model (includes
optimization) */

return 3;

if((XPRMgetprobstat(mod)&XPRM_PBRES)!=XPRM_PBOPT)
return 4; /* Test whether a solution is found */

printf("Objective value: %g\n", XPRMgetobjval(mod));
/* Print the obj. function value */

type=XPRMfindident(mod,"take",&rvalue); /* Get the model object ’take’ */
if((XPRM_TYP(type)!=XPRM_TYP_MPVAR)|| /* Check the type: */

(XPRM_STR(type)!=XPRM_STR_ARR)) /* it must be an ‘mpvar’ array */
return 5;
varr = rvalue.array;

type=XPRMfindident(mod,"VALUE",&rvalue); /* Get the model object ’VALUE’ */
if((XPRM_TYP(type)!=XPRM_TYP_REAL)|| /* Check the type: */

(XPRM_STR(type)!=XPRM_STR_ARR)) /* it must be an array of reals */
return 6;
darr = rvalue.array;

type=XPRMfindident(mod,"ITEMS",&rvalue); /* Get the model object ’ITEMS’ */
if((XPRM_TYP(type)!=XPRM_TYP_STRING)|| /* Check the type: */

(XPRM_STR(type)!=XPRM_STR_SET)) /* it must be a set of strings */
return 7;
set = rvalue.set;

XPRMgetfirstarrentry(varr, indices); /* Get the first entry of array varr
(we know that the array is dense
and has a single dimension) */

do
{
XPRMgetarrval(varr, indices, &x); /* Get a variable from varr */
XPRMgetarrval(darr, indices, &val); /* Get the corresponding value */
printf("take(%s): %g\t (item value: %g)\n", XPRMgetelsetval(set, indices[0],

&itemname)->string, XPRMgetvsol(mod,x), val);
/* Print the solution value */

} while(!XPRMgetnextarrentry(varr, indices)); /* Get the next index tuple */

return 0;
}

The array of variables varr is enumerated using the array functions XPRMgetfirstarrentry
and XPRMgetnextarrentry. These functions may be applied to arrays of any type and dimen-
sion (for higher numbers of dimensions, merely the size of the array indices that is used to
store the index-tuples has to be adapted). With these functions we run systematically through

C interface 91 Mosel User Guide

all possible combinations of index tuples, hence the hint at dense arrays in the example. In
the case of sparse arrays it is preferrable to use different enumeration functions that only
enumerate those entries that are defined (see next section).

13.3.3 Sparse arrays

In Chapter 3 the problem ‘Transport’ has been introduced. The objective of this problem is to
calculate the flows flowpr from a set of plants to a set of sales regions that satisfy all demand
and supply constraints and minimize the total cost. Not all plants may deliver goods to all
regions. The flow variables flowpr are therefore defined as a sparse array. The following
example (file ugarray1.c) prints out all existing entries of the array of variables.

#include <stdio.h>
#include "xprm_rt.h"

int main()
{
XPRMmodel mod;
XPRMalltypes rvalue;
XPRMarray varr;
XPRMset *sets;
int *indices, dim, result, type, i;

if(XPRMinit()) /* Initialize Mosel */
return 1;

if((mod=XPRMloadmod("transport.bim", NULL))==NULL) /* Load a BIM file */
return 2;

if(XPRMrunmod(mod, &result, NULL)) /* Run the model */
return 3;

type=XPRMfindident(mod,"flow",&rvalue); /* Get the model object named ’flow’ */
if((XPRM_TYP(type)!=XPRM_TYP_MPVAR)|| /* Check the type: */

(XPRM_STR(type)!=XPRM_STR_ARR)) /* it must be an array of unknowns */
return 4;
varr=rvalue.array;

dim = XPRMgetarrdim(varr); /* Get the number of dimensions of
the array */

indices = (int *)malloc(dim*sizeof(int));
sets = (XPRMset *)malloc(dim*sizeof(XPRMset));

XPRMgetarrsets(varr,sets); /* Get the indexing sets */
XPRMgetfirstarrtruentry(varr,indices); /* Get the first true index tuple */
do
{
printf("flow(");
for(i=0;i<dim-1;i++)
printf("%s,",XPRMgetelsetval(sets[i],indices[i],&rvalue)->string);
printf("%s), ",XPRMgetelsetval(sets[dim-1],indices[dim-1],&rvalue)->string);
} while(!XPRMgetnextarrtruentry(varr,indices)); /* Get next true index tuple*/
printf("\n");

free(sets);
free(indices);
XPRMresetmod(mod);

return 0;
}

In this example, we first get the number of indices (dimensions) of the array of variables varr
(using function XPRMgetarrdim). We use this information to allocate space for the arrays
sets and indices that will be used to store the indexing sets and single index tuples for this
array respectively. We then read the indexing sets of the array (function XPRMgetarrsets) to
be able to produce a nice printout.

The enumeration starts with the first defined index tuple, obtained with function XPRMget-
firstarrtruentry, and continues with a series of calls to XPRMgetnextarrtruentry until

C interface 92 Mosel User Guide

all defined entries have been enumerated.

13.3.4 Termination

At the end of the previous program example we have reset the model (using function XPRMresetmod),
thus freeing some resources allocated to it, in particular deleting temporary files that may have
been created during its execution.

All program examples in this manual only serve to execute Mosel models. The corresponding
model and Mosel itself are terminated (unloaded from memory) with the end of the C pro-
gram. However, for embedding the execution of a Mosel model into some larger application
it may be desirable to free the space used by the model or the execution of Mosel before the
end of the application program. To this aim Mosel provides the two functions XPRMunloadmod
and XPRMfinish.

13.4 Exchanging data between an application and a model

In the previous sections we have seen how to obtain solution information and other data from
a Mosel model after its execution. For the integration of a model into an application a flow of
information in the opposite sense, that is, from the host application to the model, will often
also be required, in particular if data are generated by the application that serve as input to
the model. It is possible to write out this data to a (text) file or a database and read this
file in from the model, but it is clearly more efficient to communicate such data in memory
directly from the application to the model. In this section we show two versions of our Burglar
example where all input data is loaded from the application into the model, using dense and
sparse data format respectively. The same communication mechanism, namely a combination
of the two IO drivers (see Section 17.1 for further detail) raw and mem, is also used to write
back the solution from the model to the calling application.

13.4.1 Dense arrays

In the first instance we are going to consider a version of the ‘Burglar’ model that corresponds
to the very first version we have seen in Section 2.1 where all arrays are indexed by the range
set ITEMS = 1..8. In our C program ugiodense.c below, this corresponds to storing data in
standard C arrays that are communicated to the Mosel model at the start of its execution.

#include <stdio.h>
#include "xprm_mc.h"

double vdata[8]={15,100,90,60,40,15,10, 1}; /* Input data: VALUE */
double wdata[8]={ 2, 20,20,30,40,30,60,10}; /* Input data: WEIGHT */
double solution[8]; /* Array for solution values */

int main()
{
XPRMmodel mod;
int i,result;
char vdata_name[40]; /* File name of input data ’vdata’ */
char wdata_name[40]; /* File name of input data ’wdata’ */
char solution_name[40]; /* File name of solution values */
char params[96]; /* Parameter string for model execution */

if(XPRMinit()) /* Initialize Mosel */
return 1;

/* Prepare file names for ’initializations’ using the ’raw’ driver */
sprintf(vdata_name, "noindex,mem:%#lx/%u", (unsigned long)vdata,

sizeof(vdata));
sprintf(wdata_name, "noindex,mem:%#lx/%u", (unsigned long)wdata,

sizeof(wdata));
sprintf(solution_name, "noindex,mem:%#lx/%u", (unsigned long)solution,

sizeof(solution));
/* Pass file names as execution param.s */

C interface 93 Mosel User Guide

sprintf(params, "VDATA=’%s’,WDATA=’%s’,SOL=’%s’", vdata_name, wdata_name,
solution_name);

if(XPRMexecmod(NULL, "burglar6.mos", params, &result, &mod))
return 2; /* Execute a model file */

if((XPRMgetprobstat(mod)&XPRM_PBRES)!=XPRM_PBOPT)
return 3; /* Test whether a solution is found */

/* Display solution values obtained from the model */
printf("Objective value: %g\n", XPRMgetobjval(mod));
for(i=0;i<8;i++)
printf(" take(%d): %g\n", i+1, solution[i]);

XPRMresetmod(mod); /* Reset the model */

return 0;
}

In this example we use the raw IO driver for communication between the application and the
model it executes. Employing this driver means that data is saved in binary format. File names
used with the raw driver have the form rawoption[,...],filename. The option noindex
for this driver indicates that data is to be stored in dense format, that is, just the data entries
without any information about the indices—this format supposes that the index set(s) is known
in the Mosel model before data is read in. The filename uses the mem driver, this means that
data is stored in memory. The actual location of the data is specified by giving the address of
the corresponding memory block and its size.

The program above works with the following version of the ‘Burglar’ model where the loca-
tions of input and output data are specified by the calling application through model param-
eters. Instead of printing out the solution in the model, we copy the solution values of the
decision variables take into the array of reals soltake that is written to memory and will be
processed by the host application.

model Burglar6
uses "mmxprs"

parameters
VDATA = ’’; WDATA = ’’ ! Locations of input data
SOL = ’’ ! Location for solution data output
WTMAX = 102 ! Maximum weight allowed
end-parameters

declarations
ITEMS = 1..8 ! Index range for items

VALUE: array(ITEMS) of real ! Value of items
WEIGHT: array(ITEMS) of real ! Weight of items

take: array(ITEMS) of mpvar ! 1 if we take item i; 0 otherwise
soltake: array(ITEMS) of real ! Solution values
end-declarations

initializations from ’raw:’
VALUE as VDATA WEIGHT as WDATA
end-initializations

! Objective: maximize total value
MaxVal:= sum(i in ITEMS) VALUE(i)*take(i)

! Weight restriction
sum(i in ITEMS) WEIGHT(i)*take(i) <= WTMAX

! All variables are 0/1
forall(i in ITEMS) take(i) is_binary

maximize(MaxVal) ! Solve the MIP-problem

! Output solution to calling application
forall(i in ITEMS) soltake(i):= getsol(take(i))

C interface 94 Mosel User Guide

initializations to ’raw:’
soltake as SOL
end-initializations

end-model

13.4.2 Sparse arrays

Let us now take a look at the case where we use a set of strings instead of a simple range set to
index the various arrays in our model. Storing the indices with the data values makes necessary
slightly more complicated structures in our C program for the input and solution data. In the
C program below (file ugiosparse.c), every input data entry defines both, the value and the
weight coefficient for the corresponding index.

#include <stdio.h>
#include "xprm_mc.h"

const struct
{ /* Initial values for array ’data’: */
const char *ind; /* index name */
double val,wght; /* value and weight data entries */
} data[]={{"camera",15,2}, {"necklace",100,20}, {"vase",90,20},

{"picture",60,30}, {"tv",40,40}, {"video",15,30},
{"chest",10,60}, {"brick",1,10}};

const struct
{ /* Array to receive solution values: */
const char *ind; /* index name */
double val; /* solution value */
} solution[8];

int main()
{
XPRMmodel mod;
int i,result;
char data_name[40]; /* File name of input data ’data’ */
char solution_name[40]; /* File name of solution values */
char params[96]; /* Parameter string for model execution */

if(XPRMinit()) /* Initialize Mosel */
return 1;

/* Prepare file names for ’initializations’ using the ’raw’ driver */
sprintf(data_name, "slength=0,mem:%#lx/%u", (unsigned long)data,

sizeof(data));
sprintf(solution_name, "slength=0,mem:%#lx/%u", (unsigned long)solution,

sizeof(solution));
/* Pass file names as execution param.s */

sprintf(params, "DATA=’%s’,SOL=’%s’", data_name, solution_name);

if(XPRMexecmod(NULL, "burglar7.mos", params, &result, &mod))
return 2; /* Execute a model file */

if((XPRMgetprobstat(mod)&XPRM_PBRES)!=XPRM_PBOPT)
return 3; /* Test whether a solution is found */

/* Display solution values obtained from the model */
printf("Objective value: %g\n", XPRMgetobjval(mod));
for(i=0;i<8;i++)
printf(" take(%s): %g\n", solution[i].ind, solution[i].val);

XPRMresetmod(mod);

return 0;
}

The use of the two IO drivers is quite similar to what we have seen before. We now pass on
data in sparse format, this means that every data entry is saved together with its index (tuple).
Option slength=0 of the raw driver indicates that strings are represented by pointers to null

C interface 95 Mosel User Guide

terminated arrays of characters (C-string) instead of fixed size arrays.

Similarly to the model of the previous section, the model burglar7.mos executed by the C
program above reads and writes data from/to memory using the raw driver and the locations
are specified by the calling application through the model parameters. Since the contents
of the index set ITEMS is not defined in the model we have moved the declaration of the
decision variables after the data input where the contents of the set is known, thus avoiding
the creation of the array of decision variables as a dynamic array.

model Burglar7
uses "mmxprs"

parameters
DATA = ’’ ! Location of input data
SOL = ’’ ! Location for solution data output
WTMAX = 102 ! Maximum weight allowed
end-parameters

declarations
ITEMS: set of string ! Index set for items
VALUE: array(ITEMS) of real ! Value of items
WEIGHT: array(ITEMS) of real ! Weight of items
end-declarations

initializations from ’raw:’
[VALUE,WEIGHT] as DATA
end-initializations

declarations
take: array(ITEMS) of mpvar ! 1 if we take item i; 0 otherwise
end-declarations

! Objective: maximize total value
MaxVal:= sum(i in ITEMS) VALUE(i)*take(i)

! Weight restriction
sum(i in ITEMS) WEIGHT(i)*take(i) <= WTMAX

! All variables are 0/1
forall(i in ITEMS) take(i) is_binary

maximize(MaxVal) ! Solve the MIP-problem

! Output solution to calling application
forall(i in ITEMS) soltake(i):= getsol(take(i))

initializations to ’raw:’
soltake as SOL
end-initializations

end-model

13.5 Redirecting the Mosel output

When integrating a Mosel model into an application it may be desirable to be able to redirect
any output produced by the model to the application. This can be done by the means of
a callback function. This function takes a predefined signature as shown in the following C
program. If it is called from outside of the execution of any Mosel model, its parameter model
will be NULL. In our example the callback function prefixes the printout of every line of Mosel
output with Mosel:.

#include <stdio.h>
#include "xprm_mc.h"

/**** Callback function to handle output ****/
long XPRM_RTC cbmsg(XPRMmodel model, void *info, char *buf, unsigned long size)
{
printf("Mosel: %.*s", (int)size, buf);

C interface 96 Mosel User Guide

return 0;
}

int main()
{
int result;
char outfile_name[40]; /* File name of output stream */

if(XPRMinit()) /* Initialize Mosel */
return 1;

/* Prepare file name for output stream */
/* using ’cb’ driver */

sprintf(outfile_name, "cb:%#lx", (unsigned long)cbmsg);

/* Set default output stream to callback */
XPRMsetdefstream(NULL, XPRM_F_WRITE, outfile_name);

/* Execute = compile/load/run a model */
if(XPRMexecmod(NULL, "burglar2.mos", NULL, &result, NULL))
return 2;

return 0;
}

The same procedure that has been presented here for redirecting the Mosel output can also
be applied to redirect any error messages produced by Mosel—the only required modifica-
tion consists in replacing the constant XPRM_F_WRITE by XPRM_F_ERROR in the argument of
function XPRMsetdefstream.

13.6 Problem solving in C with Xpress-Optimizer

In certain cases, for instance if the user wants to re-use parts of algorithms that he has written
in C for the Xpress-Optimizer, it may be necessary to pass from a problem formulation with
Mosel to solving the problem in C by direct calls to the Xpress-Optimizer. The following exam-
ple shows how this may be done for the Burglar problem. We use a slightly modified version
of the original Mosel model:

model Burglar4
uses "mmxprs"

declarations
WTMAX=102 ! Maximum weight allowed
ITEMS={"camera", "necklace", "vase", "picture", "tv", "video",

"chest", "brick"} ! Index set for items

VALUE: array(ITEMS) of real ! Value of items
WEIGHT: array(ITEMS) of real ! Weight of items

take: array(ITEMS) of mpvar ! 1 if we take item i; 0 otherwise
end-declarations

initializations from ’burglar.dat’
VALUE WEIGHT
end-initializations

! Objective: maximize total value
MaxVal:= sum(i in ITEMS) VALUE(i)*take(i)

! Weight restriction
sum(i in ITEMS) WEIGHT(i)*take(i) <= WTMAX

! All variables are 0/1
forall(i in ITEMS) take(i) is_binary

setparam("XPRS_LOADNAMES", true) ! Enable loading of object names
loadprob(MaxVal) ! Load problem into the optimizer

end-model

C interface 97 Mosel User Guide

The procedure maximize to solve the problem has been replaced by loadprob. This procedure
loads the problem into the optimizer without solving it. We also enable the loading of names
from Mosel into the optimizer so that we may obtain an easily readable output.

The following C program ugxprs1.c reads in the Mosel model and solves the problem by
direct calls to Xpress-Optimizer. To be able to address the problem loaded into the optimizer,
we need to retrieve the optimizer problem pointer from Mosel. Since this information is a
parameter (XPRS_PROBLEM) that is provided by module mmxprs, we first need to obtain the
reference of this library (by using function XPRMfinddso).

#include <stdio.h>
#include "xprm_rt.h"
#include "xprs.h"

int main()
{
XPRMmodel mod;
XPRMdsolib dso;
XPRMalltypes rvalue;
XPRSprob prob;
int result, ncol, len, i;
double *sol, val;
char *names;

if(XPRMinit()) /* Initialize Mosel */
return 1;

if((mod=XPRMloadmod("burglar4.bim", NULL))==NULL) /* Load a BIM file */
return 2;

if(XPRMrunmod(mod, &result, NULL)) /* Run the model (no optimization) */
return 3;

/* Retrieve the pointer to the problem loaded in the Xpress-Optimizer */
if((dso=XPRMfinddso("mmxprs"))==NULL)
return 4;
if(XPRMgetdsoparam(mod, dso, "xprs_problem", &result, &rvalue))
return 5;
if(XPRM_TYP(result)==XPRM_TYP_STRING)
prob=(XPRSprob)strtol(rvalue.ref,NULL,0);
else
prob=rvalue.ref;

if(XPRSmaxim(prob, "g")) /* Solve the problem */
return 6;

if(XPRSgetintattrib(prob, XPRS_MIPSTATUS, &result))
return 7;

/* Test whether a solution is found */
if((result==XPRS_MIP_SOLUTION) || (result==XPRS_MIP_OPTIMAL))
{
if(XPRSgetdblattrib(prob, XPRS_MIPOBJVAL, &val))
return 8;
printf("Objective value: %g\n", val); /* Print the objective function value */

if(XPRSgetintattrib(prob, XPRS_COLS, &ncol))
return 9;
if((sol = (double *)malloc(ncol * sizeof(double)))==NULL)
return 10;
if(XPRSgetmipsol(prob, sol, NULL))
return 11; /* Get the primal solution values */

if(XPRSgetintattrib(prob, XPRS_NAMELENGTH, &len))
return 11; /* Get the maximum name length */
if((names = (char *)malloc((len*8+1)*ncol*sizeof(char)))==NULL)
return 12;
if(XPRSgetnames(prob, 2, names, 0, ncol-1))
return 13; /* Get the variable names */

for(i=0; i<ncol; i++) /* Print out the solution */
printf("%s: %g\n", names+((len*8+1)*i), sol[i]);

free(names);
free(sol);

C interface 98 Mosel User Guide

}
return 0;
}

Since the Mosel language provides ample programming facilities, in most applications there
will be no need to switch from the Mosel language to problem solving in C. If nevertheless
this type of implementation is chosen, it should be noted that it is not possible to get back
to Mosel, once the Xpress-Optimizer has been called directly from C: the solution information
and any possible changes made to the problem directly in the optimizer are not communicated
to Mosel.

C interface 99 Mosel User Guide

Chapter 14

Other programming language interfaces

In this chapter we show how the examples from Chapter 13 may be written with other pro-
gramming languages, namely Java and Visual Basic.

14.1 Java

To use the Mosel Java classes the line import com.dashoptimization.*; must be added at
the beginning of the program.

14.1.1 Compiling and executing a model in Java

With Java Mosel is initialized by creating a new instance of class XPRM. To execute a Mosel
model in Java we call the three Mosel functions performing the standard compile/load/run
sequence as shown in the following example (file ugcomp.java).

import com.dashoptimization.*;

public class ugcomp
{
public static void main(String[] args) throws Exception
{
XPRM mosel;
XPRMModel mod;

mosel = new XPRM(); // Initialize Mosel

System.out.println("Compiling ‘burglar2’");
mosel.compile("burglar2.mos");

System.out.println("Loading ‘burglar2’");
mod = mosel.loadModel("burglar2.bim");

System.out.println("Executing ‘burglar2’");
mod.run();

System.out.println("‘burglar2’ returned: " + mod.getResult());
}
}

If the model execution is embedded in a larger appplication it may be useful to reset the model
after its execution to free some resources allocated to it:

mod.reset(); // Reset the model

This will release all intermediate objects created during the execution without deleting the
model itself.

100 Mosel User Guide

14.1.2 Parameters

When executing a Mosel model in Java, it is possible to pass new values for its parameters
into the model. If, for instance, we want to run model ‘Prime’ from Section 8.2 to obtain all
prime numbers up to 500 (instead of the default value 100 set for the parameter LIMIT in the
model), we may write the following program:

import com.dashoptimization.*;

public class ugparam
{
public static void main(String[] args) throws Exception
{
XPRM mosel;
XPRMModel mod;
int LIM=500;

mosel = new XPRM(); // Initialize Mosel

System.out.println("Compiling ‘prime’");
mosel.compile("prime.mos");

System.out.println("Loading ‘prime’");
mod = mosel.loadModel("prime.bim");

System.out.println("Executing ‘prime’");
mod.execParams = "LIMIT=" + LIM;
mod.run();

System.out.println("‘prime’ returned: " + mod.getResult());
}
}

Using the Mosel Java interface, it is not only possible to compile and run models, but also to
access information on the different modeling objects as is shown in the following sections.

14.1.3 Accessing sets

A complete version of a program (file ugparam.java) for running the model ‘Prime’ may look
as follows (we work with a model prime2 that corresponds to the one printed in Section 8.2
but with all output printing removed because we are doing this in Java):

import com.dashoptimization.*;

public class ugparam
{
public static void main(String[] args) throws Exception
{
XPRM mosel;
XPRMModel mod;
XPRMSet set;
int LIM=500, first, last;

mosel = new XPRM(); // Initialize Mosel

System.out.println("Compiling ‘prime’");
mosel.compile("prime.mos");

System.out.println("Loading ‘prime’");
mod = mosel.loadModel("prime.bim");

System.out.println("Executing ‘prime’");
mod.execParams = "LIMIT=" + LIM;
mod.run();

System.out.println("‘prime’ returned: " + mod.getResult());

set=(XPRMSet)mod.findIdentifier("SPrime"); // Get the object ’SPrime’
// it must be a set

Other programming language interfaces 101 Mosel User Guide

if(!set.isEmpty())
{
first = set.getFirstIndex(); // Get the number of the first index
last = set.getLastIndex(); // Get the number of the last index
System.out.println("Prime numbers from 2 to " + LIM);
for(int i=first;i<=last;i++) // Print all set elements
System.out.print(" " + set.getAsInteger(i) + ",");
System.out.println();
}
}
}

To print the contents of set SPrime that contains the desired result (prime numbers between
2 and 500), we retrieve the Mosel object of this name using method findIdentifier. If this
set is not empty, then we enumerate the elements of the set (using methods getFirstIndex
and getLastIndex to obtain the index range).

14.1.4 Retrieving solution values

The following program ugsol.java executes the model ‘Burglar3’ (the same as model ‘Bur-
glar2’ from Chapter 2 but with all output printing removed) and prints out its solution.

import com.dashoptimization.*;

public class ugsol
{
public static void main(String[] args) throws Exception
{
XPRM mosel;
XPRMModel mod;
XPRMArray varr, darr;
XPRMMPVar x;
XPRMSet set;
int[] indices;
double val;

mosel = new XPRM(); // Initialize Mosel

mosel.compile("burglar3.mos"); // Compile, load & run the model
mod = mosel.loadModel("burglar3.bim");
mod.run();

if(mod.getProblemStatus()!=mod.PB_OPTIMAL)
System.exit(1); // Stop if no solution found

System.out.println("Objective value: " + mod.getObjectiveValue());
// Print the objective function value

varr=(XPRMArray)mod.findIdentifier("take"); // Get model object ’take’,
// it must be an array

darr=(XPRMArray)mod.findIdentifier("VALUE"); // Get model object ’VALUE’,
// it must be an array

set=(XPRMSet)mod.findIdentifier("ITEMS"); // Get model object ’ITEMS’,
// it must be a set

indices = varr.getFirstIndex(); // Get the first entry of array varr
// (we know that the array is dense)

do
{
x = varr.get(indices).asMPVar(); // Get a variable from varr
val = darr.getAsReal(indices); // Get the corresponding value
System.out.println("take(" + set.get(indices[0]) + "): " +

x.getSolution() + "\t (item value: " + val + ")");
// Print the solution value

} while(varr.nextIndex(indices)); // Get the next index

mod.reset(); // Reset the model
}
}

Other programming language interfaces 102 Mosel User Guide

The array of variables varr is enumerated using the array functions getFirstIndex and
nextIndex. These methods may be applied to arrays of any type and dimension. With these
functions we run systematically through all possible combinations of index tuples, hence the
hint at dense arrays in the example. In the case of sparse arrays it is preferrable to use different
enumeration functions that only enumerate those entries that are defined (see next section).

14.1.5 Sparse arrays

We now again work with the problem ‘Transport’ that has been introduced in Chapter 3 the.
The objective of this problem is to calculate the flows flowpr from a set of plants to a set of
sales regions that satisfy all demand and supply constraints and minimize the total cost. Not
all plants may deliver goods to all regions. The flow variables flowpr are therefore defined as a
sparse array. The following example ugarray.java prints out all existing entries of the array
of variables.

import com.dashoptimization.*;

public class ugarray
{
public static void main(String[] args) throws Exception
{
XPRM mosel;
XPRMModel mod;
XPRMArray varr;
XPRMSet[] sets;
int[] indices;
int dim;

mosel = new XPRM(); // Initialize Mosel

mosel.compile("transport.mos"); // Compile, load & run the model
mod = mosel.loadModel("transport.bim");
mod.run();

varr=(XPRMArray)mod.findIdentifier("flow"); // Get model object ’flow’
// it must be an array

dim = varr.getDimension(); // Get the number of dimensions
// of the array

sets = varr.getIndexSets(); // Get the indexing sets

indices = varr.getFirstTEIndex(); // Get the first true entry index
do
{
System.out.print("flow(");
for(int i=0;i<dim-1;i++)
System.out.print(sets[i].get(indices[i]) + ",");
System.out.print(sets[dim-1].get(indices[dim-1]) + "), ");
} while(varr.nextTEIndex(indices)); // Get next true entry index tuple
System.out.println();

mod.reset(); // Reset the model
}
}

In this example, we first get the number of indices (dimensions) of the array of variables varr
(using method getDimension). We use this information to enumerate the entries of every
index tuple for generating a nicely formatted output. The array sets holds all the index sets
of varr and the array indices corresponds to a single index tuple.

The enumeration starts with the first defined index tuple, obtained with method getFirst-
TEIndex, and continues with a series of calls to nextTEIndex until all defined entries have
been enumerated.

14.1.6 Exchanging data between an application and a model

In the previous examples we have seen how to retrieve information about the model objects

Other programming language interfaces 103 Mosel User Guide

from a Mosel model after its execution. In all cases the input data is defined in the model itself
or read in from an external (text) file. However, when embedding a model into an application
frequently the input data for the model will be stored (or generated by) the application itself.
In such a case the user will certainly wish a more immediate means of communication to the
model than having to write the input data to an external text file or database. In the following
two subsections we therefore show how to pass data in memory from an application to a Mosel
model, and with the same mechanism (namely, using the jraw IO driver) from the model back
to the calling application.

14.1.6.1 Dense arrays

As a first example we shall look at the case of dense arrays holding the input and solution data.
In the underlying Mosel model this corresponds to arrays indexed by range sets that are known
in the model before the data are read in. In this example, we shall work with a version of the
‘Burglar model based on the very first version we have seen in Section 2.1 where all arrays are
indexed by the range set ITEMS = 1..8.

The following Java program ugiodense.java compiles, loads, and runs a Mosel model and
then prints out the solution values. The input data (arrays vdata and wdata) and the array
solution that is to receive the solution values are passed on to the model through model
parameters. Communication of the data between the application and the Mosel model is
achieved through the jraw IO driver. File names for this driver have the form
jrawoption[,...],filename, where filename is an object reference. Since we are work-
ing with dense, one-dimensional arrays we use the option noindex, indicating that only the
data and not the index tuples are to be exchanged.

import com.dashoptimization.*;

public class ugiodense
{ // Input data
static final double[] vdata={15,100,90,60,40,15,10, 1}; // VALUE
static final double[] wdata={ 2, 20,20,30,40,30,60,10}; // WEIGHT

// Array to receive solution values
static double[] solution = new double[8];

public static void main(String[] args) throws Exception
{
XPRM mosel;
XPRMModel mod;

mosel = new XPRM(); // Initialize Mosel

mosel.compile("burglar8.mos"); // Compile & load the model
mod = mosel.loadModel("burglar8.bim");

// Associate the Java objects with names in Mosel
mosel.bind("vdat", vdata);
mosel.bind("wdat", wdata);
mosel.bind("sol", solution);

// File names are passed through execution parameters
mod.execParams =
"VDATA=’noindex,vdat’,WDATA=’noindex,wdat’,SOL=’noindex,sol’";

mod.run(); // Run the model

if(mod.getProblemStatus()!=mod.PB_OPTIMAL)
System.exit(1); // Stop if no solution found

// Display solution values obtained from the model
System.out.println("Objective value: " + mod.getObjectiveValue());
for(int i=0;i<8;i++)
System.out.println(" take(" + (i+1) + "): " + solution[i]);

mod.reset(); // Reset the model
}
}

Other programming language interfaces 104 Mosel User Guide

The model file burglar8.mos is the same as model burglar6.mos from Section 13.4.1 with
the only difference that the name of the IO driver in the initializations blocks now is
jraw instead of raw, such as:

initializations from ’jraw:’
VALUE as VDATA WEIGHT as WDATA
end-initializations

14.1.6.2 Sparse arrays

Let us now study the probably more frequent case of data stored in sparse format. In the
Mosel model (burglar9.mos) we use a set of strings instead of a simple range set to index the
various arrays and in the Java program (ugiosparse.java) we need to define slightly more
complicated structures to hold the indices and the data entries. To save us writing out the
indices twice, we have grouped the two input data arrays into a single class. When passing the
data arrays to the Mosel model we now do not use any option, meaning that data is transferred
in sparse format. Instead, we now need to indicate which fields of the Java objects are to be
selected (in brackets after the object reference).

import com.dashoptimization.*;

public class ugiosparse
{

// Class to store initial values for array ’data’
public static class MyData
{
public String ind; // index name
public double val,wght; // value and weight data entries
MyData(String i, double v, double w)
{ ind=i; val=v; wght=w; }
}

// Class to receive solution values
public static class MySol
{
public String ind; // index name
public double val; // solution value
}

public static void main(String[] args) throws Exception
{
XPRM mosel;
XPRMModel mod;
MyData data[]={new MyData("camera",15,2), new MyData("necklace",100,20),

new MyData("vase",90,20), new MyData("picture",60,30),
new MyData("tv",40,40), new MyData("video",15,30),

new MyData("chest",10,60), new MyData("brick",1,10)};
MySol[] solution=new MySol[8];

for(int i=0;i<8;i++) solution[i] = new MySol();

mosel = new XPRM(); // Initialize Mosel

mosel.compile("burglar9.mos"); // Compile & load the model
mod = mosel.loadModel("burglar9.bim");

// Associate the Java objects with names in Mosel
mosel.bind("dt", data);
mosel.bind("sol", solution);

// File names are passed through execution parameters
mod.execParams = "DATA=’dt(ind,val,wght)’,SOL=’sol(ind,val)’";

mod.run(); // Run the model

if(mod.getProblemStatus()!=mod.PB_OPTIMAL)
System.exit(1); // Stop if no solution found

// Display solution values obtained from the model
System.out.println("Objective value: " + mod.getObjectiveValue());
for(int i=0;i<8;i++)

Other programming language interfaces 105 Mosel User Guide

System.out.println(" take(" + solution[i].ind + "): " + solution[i].val);

mod.reset(); // Reset the model
}
}

The model burglar9.mos run by this program is the same as the model burglar7.mos dis-
played in Section 13.4.2, but using the IO driver jraw instead of raw.

14.1.7 Redirecting the Mosel output

When executing a Mosel model from a Java application it may be desirable to be able to
process the output produced by Mosel directly in the application. The following Java program
ugcb.java shows a callback-style functionality that redirects the Mosel standard output to
an OutputStream object which is used to prefix every line of Mosel output with the string
Mosel: before printing it.

To redirect Mosel streams to a Java object (Java streams or ByteBuffer) we need to use the
java IO driver. The same mechanism that is used here for redirecting the output stream of
Mosel (indicated by XPRM.F_OUTPUT, with the additional option XPRM.F_LINBUF to enable
line buffering) can equally be used to redirect, for instance, the error stream (denoted by the
constant XPRM.F_ERROR).

import java.io.*;
import com.dashoptimization.*;

public class ugcb
{

// OutputStream class to handle default output
public static class MyOut extends OutputStream
{
public void flush()
{ System.out.flush(); }
public void write(byte[] b)
{
System.out.print("Mosel: ");
System.out.write(b,0,b.length);
}
// These methods are not used by Mosel:
public void write(byte[] b,int off,int len) {}
public void write(int b) {}
public void close() {}
}

public static void main(String[] args) throws Exception
{
XPRM mosel;
XPRMModel mod;
MyOut cbmsg = new MyOut(); // Define output stream as "MyOut"

mosel = new XPRM(); // Initialize Mosel

mosel.bind("mycb", cbmsg); // Associate Java object with a name in Mosel
// Set default output stream to cbmsg

mosel.setDefaultStream(XPRM.F_OUTPUT|XPRM.F_LINBUF, "java:mycb");

mosel.compile("burglar2.mos"); // Compile, load & run the model
mod = mosel.loadModel("burglar2.bim");
mod.run();
}
}

14.2 Visual Basic

In Visual Basic, a Mosel model needs to be embedded into a project. In this section we shall
only show the parts relevant to the Mosel functions, assuming that the execution of a model is

Other programming language interfaces 106 Mosel User Guide

trigged by the action of clicking on some object.

14.2.1 Compiling and executing a model in Visual Basic

As with the other programming languages, to execute a Mosel model in Visual Basic we need
to perform the standard compile/load/run sequence as shown in the following example (con-
tained in the file ugvb.frm). We use a slightly modified version burglar5.mos of the burglar
problem where we have redirected the output printing to the file burglar_out.txt.

Private Sub burglar_Click()
Dim model As Long
Dim ret As Long
Dim result As Long

’Initialize Mosel
ret = XPRMinit
If ret <> 0 Then
MsgBox "Initialization error (" & ret & ")"
Exit Sub

End If

’Compile burglar5.mos
ret = XPRMcompmod(vbNullString, "burglar5.mos", vbNullString, "Knapsack")
If ret <> 0 Then
MsgBox "Compile error (" & ret & ")"
Exit Sub

End If

’Load burglar5.bim
model = XPRMloadmod("burglar5.bim", vbNullString)
If model = 0 Then
MsgBox "Error loading model"
Exit Sub

End If

’Run the model
ret = XPRMrunmod(model, result, vbNullString)
If ret <> 0 Then
MsgBox "Execution error (" & ret & ")"
Exit Sub

End If
End Sub

14.2.2 Parameters

When executing a Mosel model in Visual Basic, it is possible to pass new values for its param-
eters into the model. The following program (also contained in the file ugvb.frm) extract
shows how we may run model ‘Prime’ from Section 8.2 to obtain all prime numbers up to 500
(instead of the default value 100 set for the parameter LIMIT in the model). We use a slightly
modified version prime4.mos of the model where we have redirected the output printing to
the file prime_out.txt.

Private Sub prime_Click()
Dim model As Long
Dim ret As Long
Dim result As Long

’Initialize Mosel
ret = XPRMinit
If ret <> 0 Then
MsgBox "Initialization error (" & ret & ")"
Exit Sub

End If

’Compile prime4.mos
ret = XPRMcompmod(vbNullString, "prime4.mos", vbNullString, "Prime numbers")
If ret <> 0 Then
MsgBox "Compile error (" & ret & ")"

Other programming language interfaces 107 Mosel User Guide

Exit Sub
End If

’Load prime4.bim
model = XPRMloadmod("prime4.bim", vbNullString)
If model = 0 Then
MsgBox "Error loading model"
Exit Sub

End If

’Run model with new parameter settings
ret = XPRMrunmod(model, result, "LIMIT=500")
If ret <> 0 Then
MsgBox "Execution error (" & ret & ")"
Exit Sub

End If
End Sub

14.2.3 Redirecting the Mosel output

In the previous example we have hardcorded the redirection of the output directly in the
model. With Mosel’s VB interface the user may also redirect all output produced by Mosel to
files, that is, redirect the output stream.

To redirect all output of a model to the file myout.txt add the following function call before
the execution of the Mosel model:

’ Redirect all output to the file "myout.txt"
XPRMsetdefstream vbNull, XPRM_F_OUTPUT, "myout.txt"

Similarly, any possible error messages produced by Mosel can be recovered by replacing in the
line above XPRM_F_OUTPUT by XPRM_F_ERROR.This will redirect the error stream to the file
myout.txt.

The following VB program extract (file ugcb.bas) shows how to use a callback in VB to receive
all output from a Mosel model (standard output and errors). The output will be printed in the
debug pane of the VB editor and in a window of the VB application, prefixing every line of
Mosel output with the string Mosel:.

Public Sub example()
Dim nReturn As Long
Dim result As Long

’ Initialize Mosel. Must be called first
nReturn = XPRMinit
If nReturn <> 0 Then
PrintLn ("Failed to initialize Mosel")
Exit Sub
End If

’ Redirect the output and error streams to the callback
nReturn = _
XPRMsetdefstream(0, XPRM_F_WRITE, XPRM_IO_CB(AddressOf OutputCB))
nReturn = _
XPRMsetdefstream(0, XPRM_F_ERROR, XPRM_IO_CB(AddressOf OutputCB))

’ Run the model
nReturn = XPRMexecmod(0, App.path & "\" & "burglar10.mos", _

"FULLPATH=’" & App.path() & "’", result)
If nReturn <> 0 Then
PrintLn ("Failed to execute model")
Exit Sub
End If

XPRMfree
End Sub

Other programming language interfaces 108 Mosel User Guide

Public Sub OutputCB(ByVal model As Long, ByVal theref As Long, _
ByVal msg As String, ByVal size As Long)

’ Output to the debug pane of the editor and our form
Call PrintLn(msg)

End Sub

Public Sub PrintLn(ByVal text As String)
’ Output to the debug pane of the editor and our form
Debug.Print "Mosel: " & Mid(text, 1, Len(text) - 1)
FormUGcb.messagepane.text = _
FormUGcb.messagepane.text & "Mosel: " & text & vbCrLf

End Sub

Other programming language interfaces 109 Mosel User Guide

IV. Extensions and tools

Overview

Beyond what one might call the ‘standard use’ of Mosel, the Mosel environment has an increas-
ing number of advanced features, some of which you might find helpful for the development
or deployment of larger applications.

The first chapter of this part (Chapter 15) introduces the Mosel Debugger and Profiler, two
tools that are particularly helpful for the development and analysis of large-scale Mosel mod-
els. We give some hints how you might improve the efficiency of your models.

The next chapter (Chapter 16) introduces the notion of packages and shows several examples of
their use. It also discusses the differences between packages and modules and their respective
uses.

The last chapter gives an overview of other advanced functionality, including generalized file
handling, concurrency in modeling, graphing, and other solver types. In depth introductions
to these topics are given in separate manuals or whitepapers to avoid overloading this user
guide.

111 Mosel User Guide

Chapter 15

Debugger and Profiler

15.1 The Mosel Debugger

In Chapter 6 we have seen how the Mosel Parser helps detect syntax errors during compilation.
Other types of errors that are in general more difficult to analyze are mistakes in the data or
logical errors in the formulation of Mosel models. The Mosel Debugger may help tracing these.

15.1.1 Using the Mosel Debugger

In this section we shall be working with the model prime2.mos. This is the same model for
calculating prime numbers as the example we have seen in Section 8.2, but with a LIMIT value
set to 20,000.

Mosel models that are to be run in the debugger need to be compiled with the option G. After
compiling and loading the model, the debugger is started with the command debug:

mosel
cl -G prime.mos
debug

and terminated by typing quit (type quit a second time to terminate Mosel). Just as for
the run command the user may specify new settings for the model parameters immediately
following the debug command:

mosel
cl -G prime2.mos
debug ’LIMIT=50’

Once the debugger is started, type in the following sequence of commands (Mosel’s output is
highlighted in bold face):

112 Mosel User Guide

dbg>break 30
Breakpoint 1 set at prime2.mos:30
dbg>bcond 1 getsize(SNumbers) <10
dbg>cont
Prime numbers between 2 and 50:
Breakpoint 1.
30 repeat
dbg>print n
13
dbg>display SNumbers
1: SNumbers = [17 19 23 29 31 37 41 43 47]
dbg>display SPrime
2: SPrime = [2 3 5 7 11 13]
dbg>cont
Breakpoint 1.
30 repeat
1: SNumbers = [19 23 29 31 37 41 43 47]
2: SPrime = [2 3 5 7 11 13 17]
dbg>cont
Breakpoint 1.
30 repeat
1: SNumbers = [23 29 31 37 41 43 47]
2: SPrime = [2 3 5 7 11 13 17 19]
dbg>cont
Breakpoint 1.
30 repeat
1: SNumbers = [29 31 37 41 43 47]
2: SPrime = [2 3 5 7 11 13 17 19 23]
dbg>quit
>quit
Exiting.

This small example uses many of the standard debugging commands (for a complete list, in-
cluding commands for navigating in the Mosel stack that are not shown here, please see the
Section ’Running Mosel – Command line interpreter: debugger’ of the introduction chapter of
the Mosel Language Reference Manual):

break Set a breakpoint in the given line. A breakpoint is deleted with delete fol-
lowed by the breakpoint number. The command breakpoints lists all currently
defined breakpoints.

bcond Set a condition on a breakpoint (using the number of the breakpoint returned
by the break command). Conditions are logical expressions formed according
to the standard rules in Mosel (use of brackets, connectors and and or). They
may contain any of the functions listed below.

cont Continue the execution up to the next breakpoint (or to the end of the pro-
gram). A line-wise evaluation is possible by using next or step (the former
jumps over loops and subroutines, the latter steps into them).

display Show the current value of a model object or an expression at every step of the
debugger. A display is removed by calling undisplay followed by the number
of the display.

print Show (once) the current value of a model object.

The following simple Mosel functions may be used with debugger commands (in conditions or
with print / display):

• Arithmetic functions: abs, ceil, floor, round

• Accessing solution values: getsol, getdual, getrcost, getactivity, getslack

• Other: getparam, getsize

Debugger and Profiler 113 Mosel User Guide

15.1.2 Debugger in IVE

With Xpress-IVE the debugger is started by selecting Debug � Start debugger or by clicking on

the button . IVE will automatically recompile the model with the required debugging flag.
Navigating in the debugger is possible using the entries of the debug menu or by clicking on
the corresponding buttons:

Set/delete breakpoint at the cursor.

Start/stop the debugger.

Step over an expression.

Step into an expression.

Run up to the cursor.

Show the debugger options dialog.

15.2 Efficient modeling through the Mosel Profiler

The efficiency of a model may be measured through its execution speed and also its memory
consumption. The execution times can be analyzed in detail with the help of the Mosel Profiler.
Other commands of the Mosel command line interpreter that are also discussed in this section
provide the user with further information, such as memory consumption.

15.2.1 Using the Mosel Profiler

Once a model you are developing is running correctly, you will certainly start testing it with
larger data sets. Doing so, you may find that model execution times become increasingly
larger. This may be due to the solution algorithms, but a more or less significant part of the
time will be spent simply in defining the model itself. The Mosel Profiler lets you analyze the
model behavior line-by-line. Solution algorithms, such as LP or MIP optimization with Xpress-
Optimizer, may be improved by tuning solver parameters (please refer to the corresponding
software manuals). Here we shall be solely concerned with improvements that may be made
directly to the Mosel model. Even for large scale models, model execution times can often be
reduced to just a few seconds by carefully (re)formulating the model.

Just as for the debugger, Mosel models that are to be run in the profiler need to be compiled
with the option G. After compiling and loading the model, the profiler is started with the
command profile:

mosel
cl -G prime2.mos
profile
quit

or, as a single line:

mosel -c "cl -G prime2.mos; profile"

The profiler generates a file filename.prof with the profiling statistics. For the test model
prime2.mos this file has the following contents (leaving out the header lines and comments):

model Prime

parameters
1 0.00 0.00 LIMIT=20000

end-parameters

Debugger and Profiler 114 Mosel User Guide

declarations
1 0.00 0.00 SNumbers: set of integer
1 0.00 0.00 SPrime: set of integer

end-declarations

1 0.01 0.00 SNumbers:={2..LIMIT}

1 0.00 0.01 writeln("Prime numbers between 2 and ", LIMIT, ":")

1 0.00 0.01 n:=2
1 0.00 0.01 repeat

2262 0.04 3.44 while (not(n in SNumbers)) n+=1
2262 0.00 3.44 SPrime += {n}
2262 0.00 3.44 i:=n
2262 0.04 3.44 while (i<=LIMIT) do
50126 3.31 3.44 SNumbers-= {i}
50126 0.04 3.44 i+=n

end-do
2262 0.00 3.44 until SNumbers={}

1 0.00 3.44 writeln(SPrime)
1 0.00 3.45 writeln(" (", getsize(SPrime), " prime numbers.)")

1 0.00 3.45 end-model

The first column lists the number of times a statment is executed, the second column the total
time spent in a statement, and the third column the time of the last execution; then follows
the corresponding model statement. In our example, we see that most of the model execution
time is spent in a single line, namely the deletion of elements from the set SNumbers. This
line is executed more than 50,000 times, but so is the following statement (i+=n) and it only
takes a fraction of a second. Indeed, operations on large (>1000 entries) sets may be relatively
expensive in terms of running time. If our prime number algorithm were to be used in a large,
time-critical application we should give preference to a more suitable data structure that is
addressed more easily, that is, an array. For instance, by modifying the model as follows the
total execution time for this model version becomes 0.19 seconds:

model "Prime (array)"

parameters
LIMIT=20000 ! Search for prime numbers in 2..LIMIT
end-parameters

declarations
INumbers = 2..LIMIT ! Set of numbers to be checked
SNumbers: array(INumbers) of boolean
SPrime: set of integer ! Set of prime numbers
end-declarations

writeln("Prime numbers between 2 and ", LIMIT, ":")

n:=2
repeat
SPrime += {n} ! n is a prime number
i:=n
while (i<=LIMIT) do ! Remove n and all its multiples
SNumbers(i):= true
i+=n

end-do
while (n <= LIMIT and SNumbers(n)) n+=1

until (n>LIMIT)

writeln(SPrime)
writeln(" (", getsize(SPrime), " prime numbers.)")

end-model

Xpress-IVE users may select the menu Debug � Profile or click on the button to obtain
profiling information on screen, in IVE’s output window (at the right side of the IVE working
area).

Debugger and Profiler 115 Mosel User Guide

15.2.2 Other commands for model analysis

The Mosel command line provides a few other commands that may be helpful with quickly
obtaining information about models that have been executed in Mosel (these commands do
not require any specific compilation flag).

Consider, for example, the following model flow.mos.

model "Dynamic arrays"
declarations
Suppliers = 1..150
Customers = 1..10000
COST: dynamic array(Suppliers,Customers) of real
flow: dynamic array(Suppliers,Customers) of mpvar
end-declarations

initializations from "flow.dat"
COST
end-initializations

forall(s in Suppliers, c in Customers | COST(s,c)>0) create(flow(s,c))

end-model

Now execute the following sequence of commands at the Mosel command line (as before,
Mosel output is printed in bold face).

>exec flow.mos
Returned value: 0
>list

* name: Dynamic arrays number: 1 size: 45264
Sys. com.: ‘flow.mos’
User com.:
>info COST
‘COST’ is an array (dim: 2, size: 750) of reals

The command list displays information about all models loaded in Mosel, and in particular
their size (= memory usage in bytes). With the command info followed by a symbol name
we obtain detailed information about the definition of this symbol (without giving a symbol
this command will display release and license information for Mosel). Alternatively, it is also
possible to print the complete list of symbols (with type information and sizes) defined by the
current model by using the command symbols.

If we now remove the keyword dynamic from the declaration of the two arrays, COST and
flow, and re-run the same command sequence as before, we obtain the following output:

>list

* name: Dynamic arrays number: 1 size: 30011536
Sys. com.: ‘flow.mos’
User com.:
>info COST
‘COST’ is an array (dim: 2, size: 1500000) of reals

It is easily seen that in this model the use of the keyword dynamic makes a huge difference
in terms of memory usage. A model defining several arrays of comparable sizes is likely to run
out of memory (or at the least, it may not leave enough memory for an optimization algorithm
to be executed).

Note: If COST is defined as a dynamic array, the condition on the forall loop should really be
exists(COST(s,c)) for speedier execution of this loop.

15.2.3 Some recommendations for efficient modeling

The following list summarizes some crucial points to be taken into account, especially when

Debugger and Profiler 116 Mosel User Guide

writing large-scale models. For more details and examples please see Appendix A.

• Use dynamic arrays to

– size data tables automatically when the data is read in,

– initialize the index values automatically when the data is read in,

– conserve memory when storing sparse data,

– eliminate index combinations without using conditions each time.

• Don’t use dynamic arrays

– when you can use ordinary (static) arrays instead,

– when storing dense data (if at least 50% of its entries are defined an array should
clearly be considered as dense), and you can size the data table and initialize the
indices in some other way, such as by reading in the size first.

• General procedure for declaring and initializing data:

1. declare all index sets and the minimal collection of data arrays required to initialize
the sets,

2. initialize the data arrays (which also initializes all index sets),

3. finalize the index sets,

4. declare and initialize all other arrays.

• Efficient use of dynamic arrays:

– use the keyword exists for enumeration (in sums or loops),

– access the elements in ascending order of the indices,

– use ranges, rather than sets, for the index sets.

• Efficient use of exists:

– use named index sets in the declarations,

– use the same index sets in the loops,

– use the index sets in the same order,

– use the dynamic qualifier if some index sets are constant or finalized,

– make sure exists is the first condition,

– always use exists, even if no condition or an alternative condition is logically cor-
rect,

– conditions with or cannot be handled as efficiently as conditions with and.

• Loops (sum, forall, etc.):

– where possible, use conditional loops—loop index set followed by a vertical bar and
the condition(s)—instead of a logical test with if within the loop,

– make sure exists is the first condition,

– always use exists, even if no condition or an alternative condition is logically cor-
rect,

– enumerate the index sets in the same order as they occur in the arrays within the
loop,

– broken up, conditional loops are handled less efficiently.

• Do not use any debugging flag for compiling the final deployment version of your mod-
els.

Debugger and Profiler 117 Mosel User Guide

Chapter 16

Packages

A package is a library written in the Mosel language (this feature is introduced by Mosel 2.0).
Its structure is similar to models, replacing the keyword model by package. Packages are
included into models with the uses statement, in the same way as this is the case for modules.
Unlike Mosel code that is included into a model with the include statement, packages are
compiled separately, that is, their contents are not visible to the user.

Typical uses of packages include

• development of your personal ‘tool box’

• model parts (e.g., reformulations) or algorithms written in Mosel that you wish to dis-
tribute without disclosing their contents

• add-ons to modules that are more easily written in the Mosel language

Packages may define new constants, subroutines, and types for the Mosel language as shown
in the following examples (the first two examples correspond to the first two module examples
of the Mosel Native Interface User Guide).

16.1 Definition of constants

The following package myconstants defines one integer, one real, one string, and two boolean
constants.

package myconstants

public declarations
MYCST_BIGM = 10000 ! A large integer value
MYCST_TOL = 0.00001 ! A tolerance value
MYCST_LINE = ! String constant

"--"
MYCST_FLAG = true ! Constant with value true
MYCST_NOFLAG = false ! Constant with value false
end-declarations

end-package

The structure of a package is similar to the structure of Mosel models, with the difference that
we use the keyword package instead of model to mark its beginning and end.

After compiling our package with the standard Mosel command (assuming the package is
saved in file myconstants.mos)

mosel -c "comp myconstants"

it can be used in a Mosel model (file myconst_test.mos):

118 Mosel User Guide

model "Test myconstants package"
uses "myconstants"

writeln(MYCST_LINE)
writeln("BigM value: ", MYCST_BIGM, ", tolerance value: ", MYCST_TOL)
writeln("Boolean flags: ", MYCST_FLAG, " ", MYCST_NOFLAG)
writeln(MYCST_LINE)

end-model

Please note the following:

1. Package name: compiling a package will result in a file packagename.bim. This package
is invoked in a Mosel model by the statement

uses "packagename"
The name of the Mosel package source file (.mos file) may be different from the name
given to the BIM file.

2. Internal package name: the name given in the Mosel file after the keyword package is
the internal name of the package. It must be a valid Mosel identifier (and not a string).
This name may be different from the name given to the BIM file, but it seems convenient
to use the same name for both.

3. Package location: for locating packages Mosel applies the same rules as for locating
modules; it first searches in the directory dso of the Xpress-MP installation, that is, in
XPRESSDIR/dso, and then in the directories pointed to by the environment variable
MOSEL_DSO. The contents of the latter can be set freely by the user.
To try out the package examples in this chapter, you may simply include the current work-
ing directory (’.’) in the locations pointed to by MOSEL_DSO, so that packages in the
current working directory will be found, for example:

Windows: set MOSEL_DSO=.
Unix/Linux, C shell: setenv MOSEL_DSO .
Unix/Linux, Bourne shell: export MOSEL_DSO; MOSEL_DSO=.

In general, and in particular for the deployment of an application, it is recommended to
work with absolute paths in the definition of environment variables.

Having made sure that Mosel is able to find our package myconstants.bim, executing the
test model above will produce the following output:

--
BigM value: 10000, tolerance value: 1e-05
Boolean flags: true false
--

When comparing with the C implementation of the module example myconstants in the
Mosel Native Interface User Guide we can easily see that the package version is much shorter.

16.2 Definition of subroutines

We now show a package (file solarray.mos) that defines several versions of a subroutine,
solarray, which copies the solution values of an array of decision variables of type mpvar
into an array of real of the same size. For each desired number (1–3) and type (integer or
string) of array indices we need to define a new version of this subroutine.

package solarraypkg

! **** Integer indices (including ranges) ****
public procedure solarray(x:array(R:set of integer) of mpvar,

s:array(set of integer) of real)
forall(i in R) s(i):=getsol(x(i))
end-procedure

Packages 119 Mosel User Guide

public procedure solarray(x:array(R1:set of integer,
R2:set of integer) of mpvar,

s:array(set of integer,
set of integer) of real)

forall(i in R1, j in R2) s(i,j):=getsol(x(i,j))
end-procedure

public procedure solarray(x:array(R1:set of integer,
R2:set of integer,
R3:set of integer) of mpvar,

s:array(set of integer,
set of integer,
set of integer) of real)

forall(i in R1, j in R2, k in R3) s(i,j,k):=getsol(x(i,j,k))
end-procedure

! ****String indices ****
public procedure solarray(x:array(R:set of string) of mpvar,

s:array(set of string) of real)
forall(i in R) s(i):=getsol(x(i))
end-procedure

public procedure solarray(x:array(R1:set of string,
R2:set of string) of mpvar,

s:array(set of string,
set of string) of real)

forall(i in R1, j in R2) s(i,j):=getsol(x(i,j))
end-procedure

public procedure solarray(x:array(R1:set of string,
R2:set of string,
R3:set of string) of mpvar,

s:array(set of string,
set of string,
set of string) of real)

forall(i in R1, j in R2, k in R3) s(i,j,k):=getsol(x(i,j,k))
end-procedure
end-package

Using the package in a Mosel model (file solarr_test.mos):

model "Test solarray package"
uses "solarray", "mmxprs"

declarations
R1=1..2
R2={6,7,9}
R3={5,-1}
x: array(R1,R2,R3) of mpvar
sol: array(R1,R2,R3) of real
end-declarations

! Define and solve a small problem
sum(i in R1, j in R2, k in R3) (i+j+2*k) * x(i,j,k) <= 20
forall(i in R1, j in R2, k in R3) x(i,j,k)<=1
maximize(sum(i in R1, j in R2, k in R3) (i+2*j+k) * x(i,j,k))

! Get the solution array
solarray(x,sol)

! Print the solution
forall(i in R1, j in R2, k in R3)
writeln(" (", i, ",", j, ",", k, ") ", sol(i,j,k), " ", getsol(x(i,j,k)))
writeln(sol)

end-model

Output produced by this model:

(1,6,-1) 1 1
(1,6,5) 0 0

Packages 120 Mosel User Guide

(1,7,-1) 1 1
(1,7,5) 0 0
(1,9,-1) 1 1
(1,9,5) 0 0
(2,6,-1) 0.166667 0.166667
(2,6,5) 0 0
(2,7,-1) 0 0
(2,7,5) 0 0
(2,9,-1) 0 0
(2,9,5) 0 0
[1,0,1,0,1,0,0.166667,0,0,0,0,0]

This example may be classified as a ‘utility function’ that eases tasks occurring in a similar way
in several of your models. Another example of such a utility function could be a printing
function that simply outputs the solution value of a decision variable with some fixed format
(if you apply write/writeln to a decision variable of type mpvar you obtain the pointer of
the variable, and not its solution value).

If we again make the comparison with the implementation as a module we see that both ways
have their positive and negative points: the implementation as a module is clearly more techni-
cal, requiring a considerable amount of C code not immediately related to the implementation
of the function itself. However, at the C level we simply check that the two arguments have
the same index sets, without having to provide a separate implementation for every case, thus
making the definition more general.

16.3 Definition of types

In Section 8.5.2 we have seen the example arcs.mos that defines a record to represent arcs of
a network. If we wish to use this data structure in different models we may move its definition
into a package ’arc’ to avoid having to repeat it in every model.

Such a package may look as follows (file arc.mos):

package arcPkg

public declarations
arc = public record ! Arcs:
Source,Sink: string ! Source and sink of arc
Cost: real ! Cost coefficient
end-record
end-declarations

end-package

which is used thus from the model file:

model "Arcs2"
uses "arc"

declarations
NODES: set of string ! Set of nodes
ARC: array(ARCSET:range) of arc ! Arcs
end-declarations

initializations from ’arcs.dat’
ARC
end-initializations

! Calculate the set of nodes
NODES:=union(a in ARCSET) {ARC(a).Source, ARC(a).Sink}
writeln(NODES)

writeln("Average arc cost: ", sum(a in ARCSET) ARC(a).Cost / getsize(ARCSET))

end-model

Packages 121 Mosel User Guide

At this place, the use of the keyword public may call for some explanation. Here and also in
the example ‘myconstants’ the whole declarations block is preceded by the public marker,
indicating that all objects declared in the block are public (i.e., usable outside of the package
definition file). If only some declarations are public and others in the same block are private
to the package, the public marker needs to preceed the name of every object within the
declarations that is to become public instead of marking the entire block as public.

The second occurrence of the public marker in the definition of package ‘arc’ is immediately
in front of the keyword record, meaning that all fields of the record are public. Again, it
is possible to select which fields are accessible from external files (for example, you may wish
to reserve some fields for special flags or calculations within your package) by moving the
keyword public from the record definition in front of every field name that is to be marked
as public.

A definition of package ‘arc’ equivalent to the one printed above therefore is the following.

package arcPkg2

declarations
public arc = record ! Arcs:
public Source,Sink: string ! Source and sink of arc
public Cost: real ! Cost coefficient
end-record
end-declarations

end-package

16.4 Packages vs. modules

The possibility of writing packages introduces a second form of libraries for Mosel, the first
being modules (see the ‘Mosel Native Interface User Guide’ for further detail). The following
list summarizes the main differences between packages and modules.

• Definition

– Package

∗ library written in the Mosel language

– Module

∗ dynamic library written in C that obeys the conventions of the Mosel Native
Interface

• Functionality

– Package

∗ define

· symbols
· subroutines
· types

– Module

∗ extend the Mosel language with

· constant symbols
· subroutines
· operators
· types
· control parameters
· IO drivers

Packages 122 Mosel User Guide

• Efficiency

– Package

∗ like standard Mosel models

– Module

∗ faster execution speed
∗ higher development effort

• Use

– Package

∗ making parts of Mosel models re-usable
∗ deployment of Mosel code whilst protecting your intellectual property

– Module

∗ connection to external software
∗ time-critical tasks
∗ definition of new I/O drivers and operators for the Mosel language

As can be seen from the list above, the choice between packages and modules depends largely
on the contents and intended use of the library you wish to write.

Packages 123 Mosel User Guide

Chapter 17

Language extensions

It has been said before that the functionality of the Mosel language can be extended by means
of modules, that is, dynamic libraries written in C/C++. All through this manual we have used
the module mmxprs to access Xpress-Optimizer. Other modules we have used are mmodbc (ac-
cess to spreadsheets and databases, see Section 2.2.5) and mmsystem (Sections 5.1 and 11.1).

The full distribution of Mosel includes other functionality (modules and IO drivers) that has not
yet been mentioned in this document. In the following sections we give an overview with links
where to find additional information.

17.1 Generalized file handling

The notion of (data) file encountered repeatedly in this user guide seems to imply a physical
file. However, Mosel language statements (such as initializations from / to, fopen, and
fclose) and the Mosel library functions (e.g., XPRMcompmod, XPRMloadmod, or XPRMrunmod)
actually work with a much more general definition of a file, including (but not limited to)

• a physical file (text or binary)

• a block of memory

• a file descriptor provided by the operating system

• a function (callback)

• a database

The type of the file is indicated by adding to its name the name of the IO driver that is to be
used to access it. In Section 2.2.5 we have used mmodbc.odbc:blend.xls to access an MS
Excel spreadsheet via the ODBC driver provided by the module mmodbc. If we want to work
with a file held in memory we may write, for instance, mem:filename. The default driver (no
driver prefix) is the standard Mosel file handling.

The standard distribution of Mosel defines the following IO drivers (tee and null are docu-
mented in the ’Mosel Language Reference Manual’, all others in the ‘Mosel Libraries Reference
Manual’):

tee Output into up to 6 files simultaneously (e.g., to display a log on screen and
write it to a file at the same time).
Example: adding the line

fopen("tee:result.txt&", F_OUTPUT)

in a Mosel model will redirect all subsequent model output to the file result.txt
and at the same time display the output on the default output (screen), the lat-
ter is denoted by the & sign at the end of the filename string. The output to
both locations is terminated by the statement

124 Mosel User Guide

fclose(F_OUTPUT)

after which output will again only go to default output.

null Disable a stream (ignore output/read from an empty file).
Example: adding the line

fopen("null:", F_OUTPUT)

in a Mosel model will disable all subsequent output by this model (until the
output stream is closed or a new output stream is opened).

sysfd Working with operating system file descriptors (for instance, file descriptors re-
turned by the C function open).
Example: in a C program, the line

XPRMsetdefstream(NULL, XPRM_F_ERROR, "sysfd:1");

will redirect the Mosel error stream to the default output stream.

mem Use memory instead of physical files for reading or writing data (e.g., for ex-
changing data between a model and the calling application as shown in Section
13.4 or for compiling/loading a model to/from memory when working with the
Mosel libraries).
Example: the following lines will compile the Mosel model burglar2.mos to
memory and then load it from memory (full example in file ugcompmem.c).

XPRMmodel mod;
char bimfile[2000]; /* Buffer to store BIM file */
char bimfile_name[64]; /* File name of BIM file */

XPRMinit()) /* Initialize Mosel */

/* Prepare file name for compilation using ’mem’ driver: */
/* "mem:base_address/size[/actual_size_of_pointer]" */
sprintf(bimfile_name, "mem:%#lx/%u",

(unsigned long)bimfile, sizeof(bimfile));

/* Compile model file to memory */
XPRMcompmod(NULL, "burglar2.mos", bimfile_name, "Knapsack example"))

/* Load a BIM file from memory */
mod = XPRMloadmod(bimfile_name, NULL);

cb Use a (callback) function as a file (e.g., in combination with sysfd to write your
own output or error handling functions when working with the Mosel libraries,
see Section 13.5 for an example).

raw Implementation of the initializations block in binary mode, typically used
in combination with mem (see Section 13.4) or shmem (see Section 17.2.3).

Some modules, listed below in alphabetical order, define additional IO drivers. All these drivers
are documented with the corresponding module in the ‘Mosel Language Reference Manual’:

• mmetc

diskdata Access data in text files in diskdata format (see Sections 3.4.3 and 10.2.3).

• mmjava

java Use a Java stream or a ByteBuffer in place of a file in Mosel (e.g. for redi-
recting default Mosel streams to Java objects, see the example in Section
14.1.7).
Example 1: in a Java program, the line

Language extensions 125 Mosel User Guide

mosel.setDefaultStream(XPRM.F_ERROR, "java:java.lang.System.out");

(where mosel is an object of class XPRM) will redirect the Mosel error stream
to the default output stream of Java.
Example 2: the following lines will compile the Mosel model burglar2.mos
to memory and then load it from memory (full example in the file
ugcompmem.java).

XPRM mosel;
XPRMModel mod;
ByteBuffer bimfile; // Buffer to store BIM file

mosel = new XPRM(); // Initialize Mosel

// Prepare file names for compilation:
bimfile=ByteBuffer.allocateDirect(2048); // Create 2K byte buffer
mosel.bind("mybim", bimfile); // Associate Java obj. with a

// Mosel name

// Compile model to memory
mosel.compile("", "burglar2.mos", "java:mybim", "");

bimfile.limit(bimfile.position()); // Mark end of data in buffer
bimfile.rewind(); // Back to the beginning

mod=mosel.loadModel("java:mybim"); // Load BIM file from memory
mosel.unbind("mybim"); // Release memory
bimfile=null;

jraw Exchange of data between a Mosel model and the Java application running
the model; Java version of raw. See Section 14.1.6 for examples.

• mmjobs

shmem Use shared memory instead of physical files for reading or writing data
(e.g., for exchanging data between several models executed concurrently—
one model writing, several models reading—as shown in Section 17.2.3,
or for compiling/loading a model to/from memory from within another
model, see Section 17.2.2).

mempipe Use memory pipes for reading or writing data (e.g., for exchanging data
between several models executed concurrently—one model reading, sev-
eral models writing; see Section ’Dantzig-Wolfe decomposition’ of the
whitepaper ’Multiple models and parallel solving with Mosel’ for an ex-
ample).

• mmodbc

odbc Access data in external data sources via an ODBC connection (see Section
2.2.5 for an example).

excel Access data in MS Excel spreadsheets directly (see the example in Section
2.2.5.3).

• mmsystem

pipe Open a pipe and start an external program which is used as input or output
stream for a Mosel model.

The reader is referred to the whitepaper Generalized file handling in Mosel that is provided
as a part of the Xpress-MP documentation in the standard distribution and also on the Dash
website under ‘Whitepapers’ for further explanation of this topic and a documented set of
examples, including some user-written IO drivers (e.g. for file compression).

Language extensions 126 Mosel User Guide

http://www.dashoptimization.com/home/services/publications/support_papers.html
http://www.dashoptimization.com
http://www.dashoptimization.com

17.2 Multiple models and parallel solving with mmjobs

The module mmjobs makes it possible to exchange information between models running con-
currently. Its functionality includes facilities for model management (e.g. compiling, running,
or interrupting a model from within a second model), synchronization of concurrent models
based on event queues, and a shared memory IO driver for an efficient exchange of data be-
tween models that are executed concurrently.

Several complete examples (including examples of Benders decomposition and Dantzig-Wolfe
decomposition) of the use of module mmjobs are described in the whitepaper Multiple models
and parallel solving with Mosel that is provided as a part of the Xpress-MP documentation
and also on the ’Whitepapers’ page of the Dash website. We show here how to use the basic
functionality for executing a model from a second model.

17.2.1 Running a model from another model

As a test case, we shall once more work with model prime.mos from Section 8.2. In the first in-
stance, we now show how to compile and run this model from a second model, runprime.mos:

model "Run model prime"
uses "mmjobs"

declarations
modPrime: Model
event: Event
end-declarations

! Compile ’prime.mos’
if compile("prime.mos")<>0 then exit(1); end-if

load(modPrime, "prime.bim") ! Load bim file

run(modPrime, "LIMIT=50000") ! Start execution and
wait(2) ! wait 2 seconds for an event

if isqueueempty then ! No event has been sent...
writeln("Model too slow: stopping it!")
stop(modPrime) ! ... stop the model,
wait ! ... and wait for the termination event
end-if

! An event is available: model finished
event:=getnextevent
writeln("Exit status: ", getvalue(event))
writeln("Exit code : ", getexitcode(modPrime))

unload(modPrime) ! Unload the submodel
end-model

The compile command generates the BIM file for the given submodel; the command load
loads the binary file into Mosel; and finally we start the model with the command run. The
run command is not used in its basic version (single argument with the model reference): here
its second argument sets a new value for the parameter LIMIT of the submodel.

In addition to the standard compile–load–run sequence, the model above shows some basic
features of interaction with the submodel: if the submodel has not terminated after 2 seconds
(that is, if it has not sent a termination message) it is stopped by the master model. After
termination of the submodel (either by finishing its calculations within less than 2 seconds or
stopped by the master model) its termination status and the exit value are retrieved (functions
getvalue and getexitcode). Unloading a submodel explicitly as shown here is only really
necessary in larger applications that continue after the termination of the submodel, so as to
free the memory used by it.

Note: our example model shows an important property of submodels—they are running in
parallel to the master model and also to any other submodels that may have been started from
the master model. It is therefore essential to insert wait at appropriate places to coordinate

Language extensions 127 Mosel User Guide

http://www.dashoptimization.com/home/services/publications/support_papers.html
http://www.dashoptimization.com/home/services/publications/support_papers.html
http://www.dashoptimization.com

the execution of the different models.

17.2.2 Compiling to memory

The model shown in the previous section compiles and runs a submodel. The default compi-
lation of a Mosel file filename.mos generates a binary model file filename.bim. To avoid
the generation of physical BIM files for submodels we may compile the submodel to memory,
making use of the concept of I/O drivers introduced in Section 17.1.

Compiling a submodel to memory is done by replacing the standard compile and load com-
mands by the following lines (model runprime2.mos):

if compile("","prime.mos","shmem:bim")<>0 then
exit(1)
end-if

load(modPrime,"shmem:bim") ! Load bim file from memory...
fdelete("shmem:bim") ! ... and release the memory block

The full version of compile takes three arguments: the compilation flags (e.g., use "g" for
debugging), the model file name, and the output file name (here a label prefixed by the name
of the shared memory driver). Having loaded the model we may free the memory used by the
compiled model with a call to fdelete (this subroutine is provided by the module mmsystem).

17.2.3 Exchanging data between models

When working with submodels we are usually not just interested in executing the submodels,
we also wish to retrieve their results in the master model. This is done most efficiently by
exchanging data in (shared) memory as shown in the model runprimeio.mos below. Besides
the retrieval and printout of the solution we have replaced the call to stop by sending the
event STOPMOD to the submodel: instead of simply terminating the submodel this event will
make it interrupt its calculations and write out the current solution. Once the submodel has
terminated (after sending the STOPMOD event we wait for the model’s termination message)
we may read its solution from memory, using the initializations block with the drivers
raw (binary format) and shmem (read from shared memory).

model "Run model primeio"
uses "mmjobs"

declarations
modPrime: Model
NumP: integer ! Number of prime numbers found
SetP: set of integer ! Set of prime numbers
STOPMOD = 2
end-declarations

! Compile ’prime.mos’
if compile("primeio.mos")<>0 then exit(1); end-if

load(modPrime, "primeio.bim") ! Load bim file

! Disable model output
setdefstream(modPrime,"","null:","null:")
run(modPrime, "LIMIT=35000") ! Start execution and
wait(2) ! wait 2 seconds for an event

if isqueueempty then ! No event has been sent...
writeln("Model too slow: stopping it!")
send(modPrime, STOPMOD, 0) ! ... stop the model, then wait
wait
end-if

initializations from "raw:"
NumP as "shmem:NumP" SetP as "shmem:SPrime"
end-initializations

Language extensions 128 Mosel User Guide

writeln(SetP) ! Output the result
writeln(" (", NumP, " prime numbers.)")

unload(modPrime)
end-model

We now have to modify the submodel (file primeio.mos) correspondingly: it needs to inter-
cept the ‘STOPMOD’ event interrupting the calculations (via an additional test isqueueempty
for the repeat-until loop) and write out the solution to memory in the end:

model "Prime IO"
uses "mmjobs"

parameters
LIMIT=100 ! Search for prime numbers in 2..LIMIT
end-parameters

declarations
SNumbers: set of integer ! Set of numbers to be checked
SPrime: set of integer ! Set of prime numbers
STOPMOD = 2
end-declarations

SNumbers:={2..LIMIT}

writeln("Prime numbers between 2 and ", LIMIT, ":")

n:=2
repeat
while (not(n in SNumbers)) n+=1
SPrime += {n} ! n is a prime number
i:=n
while (i<=LIMIT) do ! Remove n and all its multiples
SNumbers-= {i}
i+=n

end-do
until (SNumbers={} or not isqueueempty)

NumP:= getsize(SPrime)

initializations to "raw:"
NumP as "shmem:NumP" SPrime as "shmem:SPrime"
end-initializations

end-model

Note: since the condition isqueueempty is tested only once per iteration of the repeat-until
loop, the termination of the submodel is not immediate for large values of LIMIT. If you wish
to run this model with very large values, please see Section 15.2 for an improved implementa-
tion of the prime number algorithm that considerably reduces its execution time.

17.3 Graphics with mmive and mmxad

Windows users may enrich their Mosel models with graphical output within Xpress-IVE (us-
ing the module mmive) or implement complete, interactive graphical applications (module
mmxad).

The functionality of module mmive is documented in the Mosel reference manual. The built-in
set of models in the Xpress-IVE model wizard (menu Wizards � 12. Complete models or button

) gives several examples of its use. The Xpress-Application Developer (XAD) comes with its
own set of documentation and examples (follow the product link on the Dash website).

17.3.1 Drawing user graphs with mmive

The graphic in Figure 17.1 is an example of using mmive to produce a graphical representation

Language extensions 129 Mosel User Guide

http://www.dashoptimization.com/home/secure/documentation
http://www.dashoptimization.com

of the solution to the transport problem from Section 3.2.

Figure 17.1: User graph in Xpress-IVE

It was obtained by calling the following procedure draw_solution at the end of the model
file (that is, after the call to minimize).

procedure draw_solution
declarations
YP: array(PLANT) of integer ! y-coordinates of plants
YR: array(REGION) of integer ! y-coordinates of sales regions
end-declarations

! Set the size of the displayed graph
IVEzoom(0,0,3,getsize(REGION)+1)

! Determine y-coordinates for plants and regions
ct:= 1+floor((getsize(REGION)-getsize(PLANT))/2)
forall(p in PLANT) do
YP(p):= ct
ct+=1
end-do

ct:=1
forall(r in REGION) do
YR(r):= ct
ct+=1
end-do

! Draw the plants
PlantGraph:= IVEaddplot("Plants", IVE_BLUE)
forall(p in PLANT) IVEdrawlabel(PlantGraph, 0.8, YP(p)-0.1, p)

! Draw the sales regions
RegGraph:= IVEaddplot("Regions", IVE_CYAN)
forall(r in REGION) IVEdrawlabel(RegGraph, 2.25, YR(r)-0.1, r)

! Draw all transport routes
RouteGraph:= IVEaddplot("Routes", IVE_WHITE)
forall(p in PLANT, r in REGION | exists(TRANSCAP(p,r)))
IVEdrawline(RouteGraph, 1, YP(p), 2, YR(r))

Language extensions 130 Mosel User Guide

! Draw the routes used by the solution
SolGraph:= IVEaddplot("Solution", IVE_RED)
forall(p in PLANT, r in REGION | exists(flow(p,r)) and getsol(flow(p,r)) > 0)
IVEdrawarrow(SolGraph, 1, YP(p), 2, YR(r))

end-procedure

17.3.2 Application development with mmxad

As an alternative to the graphical solution output within IVE we might write a complete ap-
plication with XAD like the example shown in Figure 17.2 that lets the end-user modify the
demand data and then resolve the problem.

Figure 17.2: XAD application window

To be able to replace the demand constraints, we need to name them in the model, for exam-
ple,

forall(r in REGION)
Demand(r):= sum(p in PLANT) flow(p,r) = DEMAND(r)

We also remove the call to optimization and replace it with the start of the application (that
will call the optimization when requested by the user):

declarations
ID_WINDOW=1 ! Identifiers for XAD objects
ID_BUT_SOL=2
ID_BUT_EXIT=3
ID_CANVAS=4
ID_TEXT=5
ID_DEMAND=500

YP: array(PLANT) of integer ! y-coordinates of plants
YR: array(REGION) of integer ! y-coordinates of sales regions
end-declarations

! Determine y-coordinates for plants and regions
ct:= round((getsize(REGION)-getsize(PLANT))/2)
forall(p in PLANT) do
YP(p):= ct*25
ct+=1
end-do

ct:=1
forall(r in REGION) do
YR(r):= ct*25
ct+=1
end-do

start_xad ! Start the XAD application

The procedure start_xad defines the layout of the application: it consists of a single window

Language extensions 131 Mosel User Guide

with some text, an input field for every demand data item, a canvas for the graphical display
of the solutions, and two buttons labeled ‘Solve’ and ‘Exit’ respectively. In procedure start_-
xad we also set an event handler callback, that is, a subroutine that will be called whenever
an action (mouse click etc.) occurs in the application window. This callback is implemented by
the following procedure process_event. The events captured by our function are ‘window
opened’ and ‘button pressed’ (for each of the two buttons in the application window). When
the window is opened the possible transport routes are displayed on the canvas. Button ‘Solve’
triggers re-solving of the optimization problem with the demand data currently entered in the
input fields of the application, and button ‘Exit’ terminates the application by closing the
window.

procedure start_xad
! Create the application window
XADcreatewindow(ID_WINDOW, 50, 50, 550, 300, "Transport problem")

! Create the demand data input
XADcreatetext(ID_WINDOW, ID_TEXT, 24, 4, 100, 15, "Demands by regions:")
forall(r in REGION) do
XADcreatetext(ID_WINDOW, ID_TEXT+YR(r), 35, YR(r), 45, 15, r)
XADcreateinput(ID_WINDOW, ID_DEMAND+YR(r), 100, YR(r), 50, 22,

string(DEMAND(r)))
end-do

! Create the canvas for solution drawing
XADcreatecanvas(ID_WINDOW, ID_CANVAS, 200,20,300,200)

! Create ’Solve’ and ’Exit’ buttons
XADcreatebutton(ID_WINDOW, ID_BUT_SOL, 50,180,80,24, "Solve")
XADcreatebutton(ID_WINDOW, ID_BUT_EXIT, 50,220,80,24, "Exit")

! Set the event handler callback
XADseteventcallback("process_event")

! Display the application window
XADwindowopen(ID_WINDOW)
end-procedure

!***
procedure process_event(id:integer, event:integer)
case id of
ID_WINDOW: if event=XAD_EVENT_WINDOW_OPENED then

draw_routes ! Show initial display on canvas
end-if

ID_BUT_SOL: if event=XAD_EVENT_PRESSED then
forall(r in REGION) do ! Update demand data+constraints

DEMAND(r):= integer(XADinputgettext(ID_DEMAND+YR(r)))
Demand(r):= sum(p in PLANT) flow(p,r) = DEMAND(r)

end-do
minimize(MinCost) ! (Re)solve the problem
update_solution ! Show the solution on canvas
end-if

ID_BUT_EXIT: if event=XAD_EVENT_PRESSED then
XADwindowclose(ID_WINDOW) ! Terminate the application
end-if

end-case
end-procedure

On its turn, the event handler subroutine process_event calls two other procedures (draw_-
routes and update_solution) for the graphical display of input data and solutions on the
canvas.

procedure draw_routes
XADcanvaserase(ID_CANVAS, XAD_WHITE) ! Empty the canvas

! Draw the plants
forall(p in PLANT) XADcanvasdrawtext(ID_CANVAS, 50, YP(p), p, XAD_BLUE)

! Draw the sales regions
forall(r in REGION) XADcanvasdrawtext(ID_CANVAS, 250, YR(r), r, XAD_CYAN)

Language extensions 132 Mosel User Guide

! Draw all transport routes
forall(p in PLANT, r in REGION | exists(TRANSCAP(p,r)))
XADcanvasdrawline(ID_CANVAS, 80, YP(p), 220, YR(r), XAD_BLACK)

XADcanvasrefresh(ID_CANVAS) ! Display the graphics
end-procedure

!***
procedure update_solution
! Re-draw all transport routes
forall(p in PLANT, r in REGION | exists(TRANSCAP(p,r)))
XADcanvasdrawline(ID_CANVAS, 80, YP(p), 220, YR(r), XAD_BLACK)

! Draw the routes used by the solution
forall(p in PLANT, r in REGION | exists(flow(p,r)) and getsol(flow(p,r))>0)
XADcanvasdrawline(ID_CANVAS, 80, YP(p), 220, YR(r), XAD_RED)

XADcanvasrefresh(ID_CANVAS) ! Update the canvas
end-procedure

17.4 Solvers

In this user guide we have explained the basics of working with Mosel, focussing on the for-
mulation of Linear and Mixed Integer Programming problems and related solution techniques.
However, the Mosel language is not limited to certain types of Mathematical Programming
problems.

An extension to standard LP and MIP is the possibility to work with quadratic objective func-
tions (commonly referred to as Quadratic Programming and Mixed Integer Quadratic Program-
ming). This functionality is provided by the module mmquad and documented in the Mosel
reference manual.

All other solvers of the Xpress-MP suite (e.g., Xpress-SLP for solving non-linear problems and
Xpress-Kalis for Constraint Programming) are provided with separate manuals and their own
sets of examples. Please see the Dash website for an overview of the available products.

With Mosel it is possible to combine several solvers to formulate hybrid solution approaches
for solving difficult application problems. The whitepaper Hybrid MIP/CP solving with Xpress-
Optimizer and Xpress-Kalis, available for download from the Dash website, gives several ex-
amples of hybrid solving with LP/MIP and Constraint Programming.

Language extensions 133 Mosel User Guide

http://www.dashoptimization.com/home/secure/documentation
http://www.dashoptimization.com/home/secure/documentation
http://www.dashoptimization.com
http://www.dashoptimization.com/home/services/publications/support_papers.html
http://www.dashoptimization.com/home/services/publications/support_papers.html

Appendix

Appendix A

Good modeling practice with Mosel

The following recommendations for writing Mosel models establish some guidelines as to how
to write “good” models with Mosel. By “good” we mean re-usability, readability, and perhaps
most importantly, efficiency: when observing these guidelines you can expect to obtain the
best possible performance of Mosel for the compilation and execution of your models.

A.1 Using constants and parameters

Many mathematical models start with a set of definitions like the following:

NT:= 3
Months:= {’Jan’, ’Feb’, ’Mar’}
MAXP:= 8.4
Filename= "mydata.dat"

If these values do not change later in the model, they should be defined as constants, allowing
Mosel to handle them more efficiently:

declarations
NT = 3
Months = {’Jan’, ’Feb’, ’Mar’}
MAXP = 8.4
Filename= "mydata.dat"
end-declarations

If such constants may change with the model instance that is solved, their definition should
be moved into the parameters block (notice that this possibility only applies to simple types,
excluding sets or arrays):

parameters
NT = 3
MAXP = 8.4
Filename = "mydata.dat"
end-parameters

Mosel interprets these parameters as constants, but their value may be changed at every exe-
cution of a model, e.g.

mosel -c "exec mymodel ’NT=5,MAXP=7.5,Filename=mynewdata.dat’"

A.2 Naming sets

It is customary in mathematical models to write index sets as 1, . . . , N or the like. Instead of
translating this directly into Mosel code like the following:

135 Mosel User Guide

declarations
x: array(1..N) of mpvar
end-declarations

sum(i in 1..N) x(i) >= 10

it is recommended to name index sets:

declarations
RI = 1..N
x: array(RI) of mpvar
end-declarations

sum(i in RI) x(i) >= 10

The same remark holds if several loops or operators use the same intermediate set(s). Instead
of

forall(i in RI | isodd(i)) x(i) is_integer
forall(i in RI | isodd(i)) x(i) <= 5
sum(i in RI | isodd(i)) x(i) >= 10

which calculates the same intermediate set of odd numbers three times, it is more efficient to
define this set explicitly and calculate it only once:

ODD:= union(i in RI | isodd(i)) {i}

forall(i in ODD) x(i) is_integer
forall(i in ODD) x(i) <= 5
sum(i in ODD) x(i) >= 10

Alternatively, loops of the same type and with the same index set(s) may be regrouped to
reduce the number of times that the sets are calculated:

forall(i in RI | isodd(i)) do
x(i) is_integer
x(i) <= 5
end-do
sum(i in RI | isodd(i)) x(i) >= 10

A.3 Finalizing sets and dynamic arrays

In Mosel, an array is dynamic if it is indexed by a dynamic set. If an array is used to represent
dense data one should avoid defining it as a dynamic array as that uses more memory and is
slower than the corresponding static array.

As an additional advantage, set finalization allows Mosel to check for ‘out of range’ errors that
cannot be detected if the sets are dynamic.

So, code like the following example

declarations
S: set of string
A,B: array(S) of real
x: array(S) of mpvar
end-declarations

initializations from "mydata.dat"
A
end-initializations

forall(s in S) create(x(s))

where all arrays are declared as dynamic arrays (their size is not known at their declaration)

Good modeling practice with Mosel 136 Mosel User Guide

but only A that is initialized using a data file really needs to be dynamic, should preferably be
replaced by

declarations
S: set of string
A: array(S) of real
end-declarations

initializations from "mydata.dat"
A
end-initializations

finalize(S)

declarations
B: array(S) of real
x: array(S) of mpvar
end-declarations

where B and x are created as static arrays, making the access to the array entries more efficient.

As a general rule, the following sequence of actions gives better results (in terms of memory
consumption and efficiency):

1. Declare data arrays and sets that are to be initialized from external sources.

2. Perform initializations of data.

3. Finalize all related sets.

4. Declare any other arrays indexed by these sets (including decision variable arrays).

A.4 Ordering indices

Especially when working with sparse arrays, the sequence of their indices in loops should cor-
respond as far as possible to the sequence given in their declaration. For example an array of
variables declared by:

declarations
A,B,C: range
x: array(A,B,C) of mpvar
end-initializations

that is mostly used in expressions like sum(b in B, c in C, a in A) x(a,b,c) should
preferrably be declared as

declarations
A,B,C: range
x: array(B,C,A) of mpvar
end-declarations

or alternatively the indices of the loops adapted to the order of indices of the variables.

A.5 Use of exists

The Mosel compiler is able to identify sparse loops and optimizes them automatically, such as
in the following example:

declarations
I=1..1000
J=1..500
A:dynamic array(I,J) of real

Good modeling practice with Mosel 137 Mosel User Guide

x: array(I,J) of mpvar
end-declarations

initializations from "mydata.dat"
A
end-initializations

C:= sum(i in I,j in J | exists(A(i,j))) A(i,j)*x(i,j) = 0

Notice that we obtain the same definition for the constraint C with the following variant of
the code, but no loop optimization takes place:

C:= sum(i in I,j in J) A(i,j)*x(i,j) = 0

Here all index tuples are enumerated and the corresponding entries of A are set to 0. Similarly,
if not all entries of x are defined, the missing entries are interpreted as 0 by the sum operator
(however, as distinct to all other types, the entries of decision variable arrays are not created
implicitly when they get addressed).

The following rules have to be observed for efficient use of the function exists, :

1. The arrays have to be indexed by named sets (here I and J):

A: dynamic array(I,J) of real ! can be optimized
B: dynamic array(1..1000,1..500) of real ! cannot be optimized

2. The same sets have to be used in the loops:

forall(i in I,j in J | exists(A(i,j))) ! fast
K:=I; forall(i in K,j in 1..500 | exists(A(i,j))) ! slow

3. The order of the sets has to be respected:

forall(i in I,j in J | exists(A(i,j))) ! fast
forall(j in J,i in I | exists(A(i,j))) ! slow

4. The exists function calls have to be at the beginning of the condition:

forall(i in I,j in I | exists(A(i,j)) and i+j<>10) ! fast
forall(i in J,j in J | i+j<>10 and exists(A(i,j))) ! slow

5. The optimization does not apply to or conditions:

forall(i in I,j in J | exists(A(i,j)) and i+j<>10) ! fast
forall(i in I,j in J | exists(A(i,j)) or i+j<>10) ! slow

A.6 Structuring a model

Procedures and functions may be introduced to structure a model. For easy readability, the
length of a subroutine should not exceed the length of one page (screen).

Large model files could even be split into several files (and combined using the include state-
ment).

A.7 Transforming subroutines into user modules

The definitions of subroutines that are expensive in terms of execution time and are called very
often (e.g. at every node of the Branch-and-Bound search) may be moved to a user module. Via
the Mosel Native Interface it is possible to access and change all information in a Mosel model
during its execution. See the Mosel Native Interface User Guide for a detailed description of
how to define user modules.

Good modeling practice with Mosel 138 Mosel User Guide

A.8 Debugging options, IVE

Models compiled in the graphical development environment IVE have by default the debug-
ging option (-g) enabled. Once the model development is terminated, remember to re-
compile without this option to generate a production version of your model.

Notice further that since IVE intercepts information from Xpress-Optimizer and produces graph-
ical output, models always execute faster, often much faster, when Mosel is used in stand-alone
mode or when they are run through the Mosel libraries.

A.9 Algorithm choice and parameter settings

The performance of the underlying solution algorithm has, strictly speaking, nothing to do
with the efficiency of Mosel. But for completeness’ sake the reader may be reminded that the
subroutines getparam and setparam can be used to access and modify the current settings of
parameters of Mosel and also those provided by modules, such as solvers.

The list of parameters defined by a module can be obtained with the Mosel command

exam -p module_name

With Xpress-Optimizer (module mmxprs) you may try re-setting the following control parame-
ters for the algorithm choice:

• LP: XPRS_PRESOLVE

• MIP: XPRS_MIPPRESOLVE, XPRS_CUTSTRATEGY, XPRS_HEURSTRATEGY, XPRS_-
NODESELECTION, XPRS_BACKTRACK

• Other useful parameters are the criteria for stopping the MIP search: XPRS_MAXNODE,
XPRS_MAXMIPSOL, XPRS_MAXTIME, the cutoff value (XPRS_MIPADDCUTOFF, XPRS_MIP-
ABSCUTOFF), and various tolerance settings (e.g. XPRS_MIPTOL).

Refer to the Optimizer Reference Manual for more detail.

You may also add priorities or preferred branching directions with the procedure setmipdir
(documented in the chapter on mmxprs in the Mosel Reference Manual).

Good modeling practice with Mosel 139 Mosel User Guide

Index

Symbols
*, 7, 48
+, 14, 48, 51
+=, 49, 51
,, 14
-, 14, 48, 51
-=, 49, 51
=, 7
>=, 7
<=, 7

A
abs, 62
addcuts, 73
and, 34
application

access model, 90
compile model, 88
data exchange, 93, 103
execute model, 88
model parameters, 89
solution access, 90

array, 11, 46
declaration, 11
dense, 92, 94, 103, 104, 136
dynamic, 23, 24, 70, 77, 117
finalize, 136
initialization, 12, 16
input data format, 23
multi-dimensional, 11, 12, 23
sparse, 92, 95, 103, 105
static, 25, 117, 136

array, 34, 46
as, 34

B
BIM file, 88
binary model file, 128
binary variable, 28
blending constraint, 15
boolean, 34, 46
bounded variable, 15
break, 34, 45

C
C interface, 88
callback, 74
case, 34
cb, 125
ceil, 75
column, see variable
column generation, 75
combining solvers, 133
comment, 7

multiple lines, 7
comparison

list, 51
set, 49

comparison tolerance, 73
compile, 8, 88

to memory, 128
compile, 127
condition, 23, 41, 138
conditional generation, 23
conditional loop, 44
constant, 11
constant list, 50
constant set, 46
constraint

hide, 84
MVLB, 71
named, 13
non-negativity, 6, 7
type, 84

Constraint Programming, 133
continuation line, 14
create, 24
cross-recursion, 60
cut generation, 69
cut manager, 73
cut manager entry callback, 74
cut pool, 73
cutting plane method, 69
cutting stock problem, 75

D
data

communication, 93, 103
declaration, 117
dense, 117
exchange with application, 93, 103
initialization, 117
input from database, 17
input from file, 16, 23, 25
multi-dimensional array, 23, 25
output, 66
sparse, 117
sparse format, 25

data file, 124
format, 16, 23

data format
dense, 94, 104
sparse, 95, 105

database, 17
date, 34
debug, 112
debugger, 112
debugging, 36

140 Mosel User Guide

decision variable, see variable, 5
array, 12

declaration
array, 11
public, 122
subroutine, 61

declarations, 7, 34, 59
decomposition, 127
dense, 92, 103
dense data, 117
dense data format, 94
dense format, 104
deviation variable, 84
difference, 48, 49
diskdata, 26, 27, 67, 125
div, 34
do, 34
dynamic, 34, 116
dynamic array, 23, 24, 70, 117
dynamic list, 50
dynamic set, 46

E
efficiency, 114
elif, 34
else, 34
embedding

data exchange, 93, 103
model access, 90

end, 34
end-declarations, 7
end-do, 43
end-function, 58
end-initializations, 16
end-model, 7
end-procedure, 58
enumeration

dense array, 91, 103
inverse order, 51
set, 90, 102
sparse array, 92, 103

error
data, 36
logical, 36
redirection, 96, 106, 108
run time, 37
syntax, 36

error stream, 108
ETC_OUT, 66
ETC_SPARSE, 66, 67
event handler callback, 132
exam, 33
excel, 126
Excel spreadsheet, 19
execution speed, 114
exists, 23, 117, 138
exportprob, 24

F
F_APPEND, 66
F_OUTPUT, 66
false, 34
fclose, 66, 124
fdelete, 128

feasibility tolerance, 73
field, 46

access, 54
file

generalized, 124
file handling, 124
file output, 66
finalize, 47
finalized, 25
findIdentifier, 102
finish, 93
fixed set, 47
flow control, 41
fopen, 66, 124
forall, 13, 23, 34, 43–45
forall-do, 43
format

real number output, 68
text output, 64

forward, 34, 60, 61, 73
free variable, 81
from, 34
function, 58, 138
function, 34, 58

G
generalized file, 124
getFirstTEIndex, 103
getcoeff, 62
getDimension, 103
getexitcode, 127
getFirstIndex, 102, 103
getLastIndex, 102
getobjval, 8
getreverse, 51
getsize, 49
getsol, 8, 32, 62
gettype, 84
getvalue, 127
Goal Programming, 83

Archimedian, 83
lexicographic, 83
pre-emptive, 83

graphics, 129

H
head, 51
hide

constraint, 84
hybrid solution approaches, 133

I
if, 34, 44
if-then, 41
if-then-else, 44
import, 34
in, 34, 49
include, 34, 118, 138
index

multiple, 43
index set, 11, 14
info, 116
initialisations, 34
initialization

Index 141 Mosel User Guide

array, 12, 16
list, 50
set, 46

initializations, 16, 25, 34, 66, 105, 124, 128
initializations from, 16
integer, 34, 46
integer knapsack problem, 78
Integer Programming, 32
integer variable, 28
inter, 34
interrupt

loop, 45
intersection, 48
IO driver, 67, 124
IP, see Integer Programming
is_binary, 28, 34
is_continuous, 34
is_free, 34
is_integer, 28, 34
is_partint, 28, 34
is_semcont, 29, 34
is_semint, 29, 34
is_sos1, 29, 32, 34
is_sos2, 29, 34
isqueueempty, 129
IVE, 9, see XPRESS-IVE

J
java, 106, 125
jraw, 104, 105, 126

K
knapsack problem, 10

integer, 78

L
largest common divisor, 44
limit, see bound
linctr, 35, 46
line break, 14
Linear Programming, 4, 32
Linear Programming problem, 6
list, 46

comparison, 51
concatenation, 51
constant, 50
dynamic, 50
enumeration, 51
initialization, 50
merging, 52
operators, 51

list, 35, 46, 116
load, 8, 88
load, 127
loadprob, 98
loop, 13, 41, 42

conditional, 44, 117
interrupting, 45
nested, 45
sparse, 137

LP, see Linear Programming

M
Mathematical Programming, 4

max, 35
maximize, 98
maximum, 42
mem, 94, 125
memory consumption, 114
mempipe, 126
min, 35
minimum, 42
MIP, see Mixed Integer Programming
Mixed Integer Programming, 4, 28, 69
mmetc, 26, 34, 67, 125
mmive, 129
mmjava, 125
mmjobs, 126, 127
mmodbc, 17, 34, 126
mmsystem, 34, 126
mmxad, 129
mmxprs, 8, 33, 37, 98
mod, 35
model, 6

access from application, 90
compile, 88
coordination, 127
data from application, 93, 103
execute, 8, 88
parameters, 89
reset, 93, 100
run, 8
unload, 93

model, 7, 35, 118
model file, 88
model structure, 138
model wizard, 129
modeling

efficiency, 114
module, 33, 124

IO driver, 125
MOSEL_DSO, 119
MP, see Mathematical Programming
mpvar, 7, 12, 23, 35, 46
multiple indices, 43
multiple models, 127
multiple problems, 78
MVLB constraint, 71

N
name

constraint, 13
nbread, 26
negation, 49
nested loops, 45
next, 35
nextTEIndex, 103
nextIndex, 103
noindex, 94
Non-linear Programming, 133
non-negative variable, 6, 7
non-negativity constraint, 6, 7
not, 35, 49
null, 125
number output format, 68

O
objective function, 6, 7

Index 142 Mosel User Guide

ODBC, 17
odbc, 126
of, 35
open, 125
operator

set, 49
optimization, 8
options, 35
or, 35, 138
output, 8

disable, 125
file, 66
formatted, 83
formatting, 64
redirection, 96, 106, 108, 124
splitting, 124

output file, 108
overloading, 62

P
package, 118

internal name, 119
location, 119
name, 119

package, 35, 118, 119
parallel solving, 127
parameter, 16

comparison tolerance, 73
global, 59
local, 59
number output format, 68
subroutine, 59

parameters, 89, 94, 104
parameters, 17, 35, 135
parser, 36
partial integer variable, 28
perfect number, 43
pipe, 126
prime number, 49, 90, 101
problem

decomposition, 127
multiple, 78
solving, 8

procedure, 58, 138
procedure, 35, 58
prod, 35
profile, 114
profiler, 114
project planning problem, 30
public, 35, 75, 122

Q
Quadratic Programming, 4, 133
quick sort, 61
quit, 112

R
range, 35, 43
range set, 11
raw, 96, 125
read, 26
readln, 26
real

output format, 68

real, 35, 46
REALFMT, 68
record, 46
record, 35, 46, 54
recursion, 60, 80
redirecting output, 124
reference row entries, 29
repeat, 35
repeat-until, 43, 45
requirements, 35
reset

model, 93, 100
returned, 58
reverse, 51
row, see constraint
run, 8, 88
run, 127

S
selection statements, 41
semi-continuous integer variable, 29
semi-continuous variable, 29
set, 46, 90, 101

comparison, 49
constant, 25, 46
dynamic, 46
finalize, 136
finalized, 25
fixed, 47
initialization, 46
maximum, 42
minimum, 42
string indices, 14
type, 46

set, 35, 46
set of strings, 14
set operation, 48
set operator, 49
sethidden, 78, 84
shell sort, 45
shmem, 126
silent option, 9
solution value, 91, 102
solvers

combining, 133
solving, 8
sorting algorithm, 34, 45, 61
sparse, 23, 25, 67

loop, 137
sparse data, 117
sparse format, 92, 95, 103, 105
sparsity, 21
Special Ordered Set of type one, 29, 32
Special Ordered Set of type two, 29
spreadsheet, 17
static array, 117
stop, 128
strfmt, 64
string, 35, 46
submodel, 127

coordination, 127
interaction, 127
status, 127

subproblem, 84

Index 143 Mosel User Guide

subroutine, 58, 138
declaration, 61
definition, 61
overloading, 62
parameter, 59

subscript, 11
subset, 49
Successive Linear Programming, 80
sum, 35, 51
summation, 12
superset, 49
symbols, 116
syntax error, 36
system call, 34

T
table, see array
tail, 51
tee, 124
termination, 93
then, 35
time measurement, 34
to, 35
tolerance

comparison, 73
feasibility, 73
real number output, 68

transport problem, 21, 92, 103
true, 35
type

array, 46
basic, 46
constant, 11
constraint, 84
elementary, 46
external, 46
list, 46
MP, 46
record, 46
set, 46
structured, 46
user, 56

U
unbounded variable, 81
union, 48
union, 35
unload

model, 93
until, 35
uses, 18, 35

V
variable, 5

binary, 13, 28
bounds, 15
conditional creation, 24
free, 81
integer, 13, 28
lower bound, 7
non-negative, 6, 7
partial integer, 28
semi-continuous, 29
semi-continuous integer, 29

unbounded, 81
version, 35

W
wait, 127
warning, 37
while, 35, 43–45, 49
while-do, 43, 44
write, 8, 64, 66
writeln, 8, 25, 64, 66

X
XAD, 129
Xpress-IVE, 129
Xpress-Kalis, 133
Xpress-Optimizer, 97
Xpress-SLP, 133
XPRM, 100
XPRM_F_ERROR, 108
XPRM_F_OUTPUT, 108
XPRMcompmod, 124
XPRMexecmod, 89
XPRMexecmod, 90
XPRMfinddso, 98
XPRMfindident, 90
XPRMfinish, 93
XPRMgetfirstarrtruentry, 92
XPRMgetnextarrtruentry, 92
XPRMgetarrdim, 92
XPRMgetarrsets, 92
XPRMgetelsetval, 90
XPRMgetfirstarrentry, 91
XPRMgetfirstsetndx, 90
XPRMgetlastsetndx, 90
XPRMgetnextarrentry, 91
XPRMloadmod, 89, 124
XPRMresetmod, 93
XPRMrunmod, 89, 124
XPRMsetdefstream, 97
XPRMunloadmod, 93
XPRS_LOADNAMES, 37
XPRS_PROBLEM, 98
XPRS_SOLUTIONFILE, 75
XPRS_VERBOSE, 37

Z
ZEROTOL, 73

Index 144 Mosel User Guide

	I Using the Mosel language
	Introduction
	Why you need Mosel
	What you need to know before using Mosel
	Symbols and conventions
	The structure of this guide

	Getting started with Mosel
	Entering a model
	The chess set problem: description
	A first formulation

	Solving the chess set problem
	Building the model
	Obtaining a solution using Mosel
	Running Mosel from a command line
	Using Xpress-IVE

	Some illustrative examples
	The burglar problem
	Model formulation
	Implementation
	The burglar problem revisited

	A blending example
	The model background
	Model formulation
	Implementation
	Re-running the model with new data
	Reading data from spreadsheets and databases
	Spreadsheet example
	Database example
	Excel spreadsheets

	More advanced modeling features
	Overview
	A transport example
	Model formulation
	Implementation

	Conditional generation --- the | operator
	Conditional variable creation and create

	Reading sparse data
	Data input with initializations from
	Data input with readln
	Data input with diskdata

	Integer Programming
	Integer Programming entities in Mosel
	A project planning model
	Model formulation
	Implementation

	The project planning model using Special Ordered Sets

	Overview of subroutines and reserved words
	Modules
	Reserved words

	Correcting errors in Mosel models
	Correcting syntax errors in Mosel
	Correcting run time errors in Mosel

	II Advanced language features
	Overview
	Flow control constructs
	Selections
	Loops
	forall
	Multiple indices
	Conditional looping

	while
	repeat until

	Sets, lists, and records
	Initializing sets
	Constant sets
	Set initialization from file, finalized and fixed sets

	Working with sets
	Set operators

	Initializing lists
	Constant list
	List initialization from file

	Working with lists
	Enumeration
	List operators
	List handling functions

	Records
	Defining records
	Initialization of records from file

	User types

	Functions and procedures
	Subroutine definition
	Parameters
	Recursion
	forward
	Overloading of subroutines

	Output
	Producing formatted output
	File output
	Data input with initializations to
	Data output with writeln
	Data output with diskdata

	Real number format

	More about Integer Programming
	Cut generation
	Example problem
	Model formulation
	Implementation
	Cut-and-Branch
	Comparison tolerance
	Branch-and-Cut

	Column generation
	Example problem
	Model formulation
	Implementation

	Extensions to Linear Programming
	Recursion
	Example problem
	Model formulation
	Implementation

	Goal Programming
	Example problem
	Implementation

	III Working with the Mosel libraries
	Overview
	C interface
	Basic tasks
	Compiling a model in C
	Executing a model in C

	Parameters
	Accessing modeling objects and solution values
	Accessing sets
	Retrieving solution values
	Sparse arrays
	Termination

	Exchanging data between an application and a model
	Dense arrays
	Sparse arrays

	Redirecting the Mosel output
	Problem solving in C with Xpress-Optimizer

	Other programming language interfaces
	Java
	Compiling and executing a model in Java
	Parameters
	Accessing sets
	Retrieving solution values
	Sparse arrays
	Exchanging data between an application and a model
	Dense arrays
	Sparse arrays

	Redirecting the Mosel output

	Visual Basic
	Compiling and executing a model in Visual Basic
	Parameters
	Redirecting the Mosel output

	IV Extensions and tools
	Overview
	Debugger and Profiler
	The Mosel Debugger
	Using the Mosel Debugger
	Debugger in IVE

	Efficient modeling through the Mosel Profiler
	Using the Mosel Profiler
	Other commands for model analysis
	Some recommendations for efficient modeling

	Packages
	Definition of constants
	Definition of subroutines
	Definition of types
	Packages vs. modules

	Language extensions
	Generalized file handling
	Multiple models and parallel solving with mmjobs
	Running a model from another model
	Compiling to memory
	Exchanging data between models

	Graphics with mmive and mmxad
	Drawing user graphs with mmive
	Application development with mmxad

	Solvers

	Appendix
	Good modeling practice with Mosel
	Using constants and parameters
	Naming sets
	Finalizing sets and dynamic arrays
	Ordering indices
	Use of exists
	Structuring a model
	Transforming subroutines into user modules
	Debugging options, IVE
	Algorithm choice and parameter settings

	Index

