

REIXS Beamline User Manual

(Work in Progress)

Feizhou He

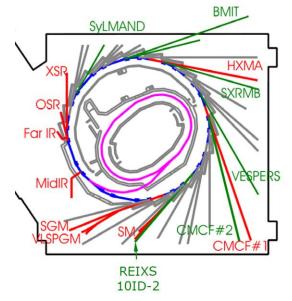

Updated: November 7, 2011

TABLE OF CONTENTS

1.0	Intro	luction1
2.0	Bean	nline User Controls1
	2.1	User Interface1
		2.1.1 Shutters, Valves and Vacuum Pressure2
		2.1.2 Beamline Parameters Monitoring
		2.1.3 Additional Controls5
	2.2	Setup Endstation Branch5
	2.3	Selecting Energy Range and Polarizations6
		2.3.1 Selecting M2 Coatings and Gratings7
		2.3.2 Selecting EPU Harmonics and Photon Polarization7
	2.4	Setup Chopper8
	2.5	Opening the Beamline to the Ring8
	2.6	Getting the Beam into the Endstation9
	2.7	Beamline Monitoring and Diagnostics10
	2.8	Other11
3.0	RSX	S Endstation12
	3.1	Instruments12
	3.2	Motion Control14
	3.3	Data Collection Software15
4.0	XES	Endstation15
	4.1	Instraments15
	4.2	Motion Control15
	4.3	Data Collection16

1.0 Introduction

The Resonant Elastic and Inelastic Soft X-ray Scattering (REIXS) Beamline is a soft X-ray beamline dedicated to soft X-ray scattering and soft X-ray spectroscopy experiments. The beamline is located at 10ID-2 port of Canadian Light Source.

Location of the REIXS Beamline on the experimental floor of CLS

This document describes the components and operations of REIXS Beamline.

2.0 Beamline User Controls

Two REIXS Operator Interface (OPI) computers (OPI1610-201 and OPI1610-202) are located inside the REIXS Cleanroom. The computer operating system is Scientific Linux. Users need to log in to access the beamline control.

2.1 User Interface

The REIXS Beamline User Interface can be accessed by typing

runREIXS beamline &

from a command line window (xterm), or by double click the desktop icon "REIXS Beamline". The interface is written in the EPICS display-manager package EDM. It provides user with essential beamline controls. Important error conditions are also displayed in this window.

Mark Apertures Gap Same Apertures Gap Gap St.St PU REXS EPU Apertures Gap Gap St.St State St.St State St.St State Scale <t< th=""><th>Orda Close C</th><th></th><th></th><th>Open Dist</th><th>XES</th></t<>	Orda Close C			Open Dist	XES
1 3 5 7 9 Speed 1.00 r/s -0.000 Hz Use 1st Harmonic for Energy < 1000eV Use 3rd Harmonic for Energy > 800eV Speed 1.00 r/s -0.000 Hz Inboard 14.811 Outboard -10.768 GCell 0.000 nA Sample 100.000 K Heater Output Use 3rd Harmonic for Energy > 800eV Move Rel 1.00 deg 77.220 deg Inboard 14.811 Outboard -10.768 GCell 0.000 nA Sample 100.000 K Heater Output	SM EPU REIXS EPU SISTEM Gap 37.2405 mm 51.5115 mm 51.5115 mm Gap 37.2405 mm 51.5010 mm Gap Q1 0.000 mm 97.498 mm 0.000 mm Q3 0.000 mm -37.498 mm 0.000 mm Q4 -17.287 mm 0.000 mm Polarization REIXS EPU Polarization UNEAR VERT - J 1 3 5 7 8 Use 1st Harmonic for Energy < 1000eV	VA Horizontal ● 4.000 @ 14.200 Set Point 4.000 @ 14.200 VA Vertical ● 3.999 @ -1.850 Set Point 4.000 @ -1.850 4 Jaw #1 H ● 20.000 @ -0.002 4 Jaw #2 H ○ 20.910 @ -1.005 4 Jaw #2 V ○ 21.843 @ -0.979 Chopper Stop Stop Stop	Energy Setpoint 950.000 eV Stop Feedback 949.999 eV M2 Mirror 1.698931 deg ø Difference Difference 0.000008 Translation Grating 3.587376 deg ø Difference Difference 0.000004 Translation Translation 139.5190 mm ø Exit Slit Gap 25.100 um	4-Jaw #1 Avg Upper 2.9854 uÅ Lower 3.8113 uÅ ESlit 0.004 uÅ M4 Au 0.435 nÅ M5 Au 0.004 uÅ GC Au 0.000 uÅ GC Au 0.000 uÅ GC CPD 0.038 uÅ GCell 0.000 nÅ Voltage 10.000 V	Scan Continuous Counting Time Stopped Normal \$5000.0 mSec REIXS SM Timing \$0.000 0.000 ChT 0.000 0.000 TEY 248388.000 0.000 MCP 194359.000 RSXS Sample Temperature Setpoint Stepoint 100 K Hagir (25 W) Heater Range Hagir (25 W) Heater Output

REIXS Beamline Main User Interface

2.1.1 Shutters, Valves and Vacuum Pressure

The upper half of the user interface includes the shutter/valve control, and shows the vacuum pressure along the beamline. The horizontal straight line represents the beam, from the frontend on the left side to the endstations on the right side.

The black letters below the beamline are the acronyms of each vacuum component:

PSH2	Photon Shutter 2
SSH	Safety Shutter
FM3	Fixed Mask 3
VA	Variable Aperture
M1A/B	M1A and M1B Mirrors
PSH3	Photon Shutter 3
4J1	4-Jaw #1
MONO	Monochromator
4J2	4-Jaw #2
CHP/ES	Chopper and Exit Slit
M3/M4	M3 and M4 mirrors
PSH4	Photon Shutter 4
M5	M5 Mirror
GC	Gas Cell
XES	X-Ray Emission Endstation (UofS)
RSXS	Resonant Soft X-Ray Scattering Endstation (UBC)

Shutters are shown as rectangles in or out of the beam, and the valves are double triangles. Click the [Open] or [Close] buttons above each shutter/valve to open or close corresponding shutter or valve. When closed, the shutter or valve is in red color. Open state is in green.

The numbers below the name of each vacuum section are the vacuum pressure, in Torr. The number is green when the pressure is less than 10×10^{-10} Torr, and yellow when the pressure is higher than 1×10^{-9} but less than 5×10^{-8} Torr. The number is red for pressure higher than 5×10^{-8} Torr. The vacuum pressure in any section shall be kept below 1×10^{-8} Torr. If vacuum pressure is too high, try using a smaller aperture size on Variable Aperture, or closing the Photon Shutter 3 until the pressure recovers.

2.1.2 Beamline Parameters Monitoring

The lower half of the user interface shows the status of the beamline components. The parameters are grouped into several panels.

EPU in 10ID

10ID									
SM EPU • REIXS EPU • Gap 49.3410 mm 65.2570 mm									
Gap 49.3410 mm 65.2570 mm 65.2990 mm									
Q1 0.000 mm • 0.000 mm •									
Q2	Q2 0.000 mm 0.001 mm								
Q3	0.000	mm		0.00	4 mm				
Q4	0.000	mm		-0.00	1 mm				
Polarization									
REIXS EPU Harmonic									
1 3 5 7 9									
Use 1st Harmonic for Energy < 1000eV Use 3rd Harmonic for Energy > 1000eV									

The 10ID panel shows the gap and phase information of both REIXS EPU and SM EPU. The polarization of REIXS EPU can be changed using the drop down menu button. The options include: Circular Left, Circular Right, Linear Horizontal, Linear Vertical -, Linear Vertical +, and Linear Inclined.

The small circles indicate the status of the respective motors, green means "Move Done", yellow means "Moving".

The EPU Harmonics selection button can be used to select which harmonics shall be used for the energy range.

Apertures

Apertures	Gap(mm)	Ce	nter(mm)
VA Horizontal 😋	4.000	@	14.200
Set Point	4.000	@	14.200
VA Vertical 🛛 😋	3.999	@	-1.850
Set Point	4.000	@	-1.850
4-Jaw #1 H 🛛 🖸	20.000	@	-0.002
4-Jaw #1 V 🛛 🖸	9.998	@	-0.999
4-Jaw #2 H 🛛 🔿	20.910	@	-1.005
4-Jaw #2 V 🛛 🔿	21.843	@	-0.979

The Aperture panel shows the gap and position of each aperture. H - horizontal, V - vertical.

The setpoints for the Variable Apertures can be changed from this panel. The setpoints are in purple color, and the feedback values are black numbers above each input boxes.

The small circles indicate the status of the respective motors, green means "Move Done", yellow means "Moving".

Chopper

Chopper Setpoint O Stop								
3.00	r/s -0	.000 Hz						
1.00	deg <mark>13</mark> 4	4.730 deg						
	3.00							

The speed and position of the chopper can be set in the Chopper panel. Use ONLY positive numbers for the "Speed" and "Move Relative" input. One revolution per second equals to 12 Hz switching. The blue numbers shows the current speed and position of the chopper.

Click [Stop] button will stop the chopper rotation. Once chopper is stopped, use "Move Relative" to adjust chopper position.

Monochromator

Monochromator							
Energy Setpoint 950.000 eV							
Stop Feed	lback	949.999	eV				
M2 Mirror 1.698931 deg •							
Difference	0.	800000					
Translation	9	96.0310 mr	n o				
Grating	Grating 3.587376 deg o						
Difference	0.0	000004					
Translation	13	89.5190 mr	n o				

The status of the monochromator is displayed here. The energy setpoint can be changed. The angles and translation positions of the mirror / grating are displayed, as well as the error (difference) between the real angles and the setpoints. The error is usually limited to the last two digits of the black numbers. The [Stop] button will stop the monochromator and EPU motions immediately.

Clicking the [Monochromater] button will bring up the "REIXS Monochromator" control interface.

Meters

Meters							
4-Jaw #	1 Avg						
Upper	2.9854 uA						
Lower	3.8113 uA						
ESlit	0.004 uA <mark>5</mark>						
M4 Au	0.435 nA <mark>45</mark>						
M5 Au	0.004 nA <mark>8</mark>						
M5 PD	0.000 uA <mark>5</mark>						
GC Au	0.000 uA <mark>8</mark>						
GC PD	0.038 uA <mark>8</mark>						
GCell	0.000 nA <mark>5</mark>						
Voltage	10.000 V OFF						
EM 1	.771e-12 A 45						

The Meters panel shows the readings from meters along the beamline.

The realtime readings from each meter are in black color. The numbers on the right side shows the number of samples for averaging. When the number is green, the averaging is on. The number is red if averaging is off.

PD means Photodiode, Au means Gold Mesh. EM is the Keithley Electrometer connected to the Photodiode in the RSXS Endstation.

Clicking the [Meters] button will bring up the "REIXS Meters Setup" interface.

Scaler and RSXS Cryostat

Scaler Scan Stopped	Continuous	Counting Time 5000.0 mSec		
	REIXS	SM		
Timing	50.000	0.000 MHz		
ChT	0.000	0.000 0.000		
TEY a	248388.000			
MCP ⁻	194359.000			
RSXS Sa	mple Tem	perature		
Setpoint	100 K	Heater Range		
		High (25 W) 🗆		
	00.000 K	Heater Output		
Cryostat	13.067 K	56 %		

The Scaler panel shows the status of the SIS3820 scaler. The counting time can be set here, in milli-second. [Scan] button is used to trigger a single counting, while [Continuous] button will trigger continuous counting with the interval set in the Counting Time box.

The lower panel shows the results of last counting. The Timing value represents the actual counting time, 10MHz per second. The REIXS column and SM column show the counting results for the beam from REIXS EPU and SM EPU respectively, in the REIXS 2-in-1 operation mode.

ChT means Channeltron, TEY means Total Electron Yield, and MCP mean microchannel plate.

The RSXS Sample temperature panel is used to display temperature in the RSXS chamber. The status of the cryostat and

and change the sample temperature in the RSXS chamber. The status of the cryostat and the heater is also shown.

2.1.3 Additional Controls

The buttons at the bottom of the user interface will call up additional control panels. Some of them will be explained in the following sections.

2.2 Setup Endstation Branch

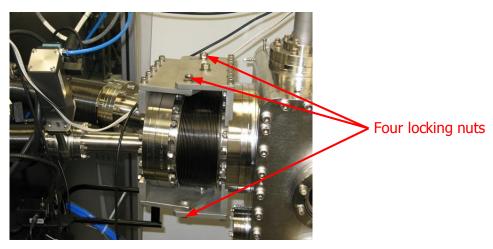
The REIXS beamline has two endstations: XES and RSXS. At one time the beamline is setup for one of the endstation. Please ask beamline staff if you need to switch endstations.

Switching endstation involves two steps:

Move M3 mirror in or out of the beam

Translate XES endstation in or out of the beam

To use RSXS Endstation:


M3 in the beam: lift M3 tank until the encoder reach 0.8660mm.

XES out of the beam: Loosen the locking nuts on the switch yard on M5 tank. Move XES Endstation backward to limit switch. Hand tighten the locking nuts.

To use XES Endstation:

M3 out of the beam: lower the M3 tank until the encoder reach -0.XXXXmm.

XES in the beam: Loosen the locking nuts on the switch yard on M5 tank. Move XES Endstation forward until encoder reads 0.XXXXmm. Hand tighten the locking nuts.

M5 switch yard

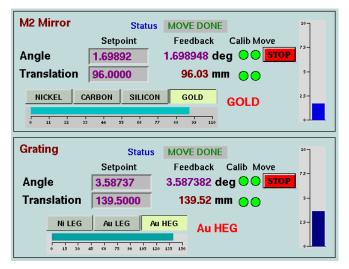
2.3 Selecting Energy Range and Polarizations

The "REIXS Monochromator" window is used to setup monochromator and REIXS EPU.

🗙 REIXS Mono						
REIXS Monoc	hromat	or 📕	STOP	Mono Calib		
Energy Setpoint	950.000	eV	line Status	READY		
Feedback	949.99 949.990	- 17	ono Status	READY		
M2 Mirror	Status	MOVE DONE		10]		
	tpoint	Feedback	Calib Mov	75-		
		.698948 de	-			
Translation 96.0	000	96.03 m	n 🔵 🔿	5-		
NICKEL CARBON	SILICON	GOLD	GOLD	25-		
0 11 22 33 44	55 66 77	** 39 110				
Grating Status MOVE DONE "7						
	tpoint	Feedback	Calib Move			
Angle 3.5	B737	3.587382 d	eg 💛 🧧	TOP		
Translation 139	.5000	139.52 m	m 🔵 🔵	5-		
Ni LEG Au	LEG Au H	EG Au HI	-	25-		
0 15 30 45 60	75 90 105 120 1		EG			
0 15 30 45 60	75 90 105 120 1	35 150				
REIXS EPU	EPU Status	READY	^			
Access ENABLED	Harmonic	1 3	5	7 9		
Energy Setpoint Offse	Gap t Setpo		back	Gap		
51.510 0.000	51.51	00 51.51	15 mm !	MOVE DONE		
		51.50	10 mm			
Polarization LINEAR V		near Inclined	Angle 0.00)0 deg		
	600 mm 🔵	Q1 37.498 r	nm 🔵	Girders		

polarization of the photons from the EPU.

In this window, you will be able to set the photon energy and select the mirror coatings and gratings.


The [STOP] button on top will stop REIXS EPU and Monochromator immediately.

The "Mono Calib" button is used to fine tune the energy calibration. Please refers to Section **Error! Reference** ource not found. for details.

The REIXS EPU panel allows you to select the harmonic of the EPU output, and the

2.3.1 Selecting M2 Coatings and Gratings

The REIXS monochromator has three gratings, and there are four coatings on the M2 mirror.

In the "M2 Mirror" and "Grating" panel, user can select which grating and coating are used. The setpoint and feedback values are also displayed.

The table below lists the maximum usable range for each combination of the M2 Coating / Grating. For best flux and good higher order harmonics suppression, the optimized range shall be used.

Grating	M2 coating	Overall Range (eV)	Optimized Range (eV)
Ni-LEG	Si (SiO ₂)	167-525	230-525
INI-LEG	Ni	167-800	380-800
	Graphite	80-260	80-260
Au-LEG	Au	80-1000	
Au-HEG	Au	400-2000	800-2000

2.3.2 Selecting EPU Harmonics and Photon Polarization

Depending on the desired photon energy range, appropriate EPU harmonics shall be selected for optimum flux.

REIXS EPU EPU Status READY								
Access EN	<mark>IABLED</mark> H	armonic 1	3	5	7	9		
Energy Setpoint	Offset	Gap Setpoint	Feedba	ck	e	ap		
64.057	1.200	65.2566 65.2570 mm		MOVE DONE				
	65.2990 mm							
Polarization	Polarization LINEAR HORIZ J Linear Inclined Angle 0.000 deg							
Girders	Q2 0.001	mm 🔵 Q1	0.000 mm	n 🔵	Gi	ders		
Girdera	Q3 0.004	mm 🔵 Q4	-0.001 mr	n 🔵	MOV	E DONE		

For circular polarization, only the first harmonics can be used. The energy range is from 100 eV to 1000 eV.

For linear polarization, use the first harmonics for energy between 80 eV and 1000 eV. Use the third harmonics for energy between 800 eV to 2500 eV. Use the fifth harmonics for energy above 1500 eV.

When the EPU control is established, the "Access" field shows "ENABLED"

The "Polarization" selection button can be used to select photon polarization. Available options are:

- Circular Left
- Circular Right
- Linear Horizontal
- Linear Vartical -
- Linear Vartical +
- Linear Inclined

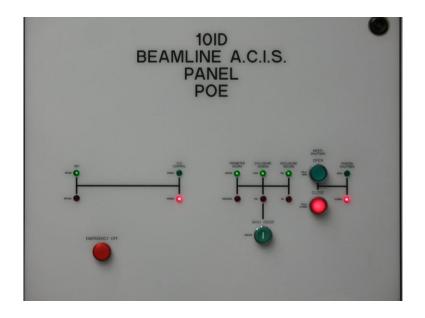
For "Linear Inclined" polarization, the "Inclined Angle" must be set. The angle range is from -90° to $+90^{\circ}$.

2.4 Setup Chopper

Chopper must rotate in the positive direction for correct operation. If the chopper has moved in negative direction, it must rotate in positive direction for one revolution, so that the encoder can pass the home position reference mark and establish the correct angle readout.

LED indicators on the Chopper Controller in the NIM Crate show the status of the chopper system.

Once chopper is stopped, use "Move Relative" to adjust chopper position.


2.5 Opening the Beamline to the Ring

Once the setup of EPU and monochromator is done, follow steps below to open the beamline to the ring:

Open all vacuum valves

Go to 10ID POE ACIS panel. After injection, all five lights to the left shall be green. If any of the middle three lights is red, follow the "10ID POE Lockup Procedure" in Appendix.

Open the "Safety Shutter" by pushing the big green [Safety Shutters] button. The green light will be on.

From the REIXS user interface, open photon Shutter 2 (PSH2)

Open Photon Shutter 3 (PSH3)

Open Photon Shutter 4 (PSH4)

If any photon shutter cannot be opened, there could be some errors that trigger the interlock system.

Possible causes are: vacuum, cooling water, etc.

2.6 Getting the Beam into the Endstation

Verify apertures and slits along the beamline. Using the numbers below as a reference.

Variable Aperture:

Normal Mode:	Horizontal Center 14.2 mm, Vertical Center -1.80 mm
	Horizontal Gap 0 \sim 5 mm, Vertical Gap 0 \sim 5 mm
2-in-1 Mode:	Horizontal Center 11.2 mm, Vertical Center -1.80 mm
	Horizontal Gap 0 \sim 11.6 mm, Vertical Gap 0 \sim 5 mm
	SM side Variable Aperture needs to be moved out, with Horizontal Center -12.0 mm, Horizontal Gap 0.0 mm

4-Jaw #1:

Horizontal Center 0 mm, Vertical Center -1.15 mm

Horizontal Gap 20 mm, Vertical Gap 10 mm

4-Jaw #2:

Horizontal Center 0 mm, Vertical Center 0 mm Horizontal Gap 20 mm, Vertical Gap 20 mm

Exit Slit:

Vertical Gap: usually 10 µm or 25 µm, range is 0 ~ 500 µm

Horizontal Center 0 mm, Horizontal Gap 20 mm

If the vertical gap of the exit slit needs to be changed, always approach the target value when closing the gap (gap decreasing).

2.7 Beamline Monitoring and Diagnostics

Several video cameras are installed along the beamline. The video can be accessed from any computer within the CLS intranet.

To access the camera inside 10ID POE Hutch, use the address below in a web browser:

http://ccd1610-101.cs.clsi.ca/

To access the cameras along the beamline, use:

http://v2e1610-101.cs.clsi.ca/

To access the video of endstations, use

http://v2e1610-401.cs.clsi.ca/

There are multiple Beam Diagnostics Assemblies (BD1 to BD5) along the beamline to assist the beam alignment and to diagnose of the problem.

Each assembly may have several detectors attached, including photodiode for measuring the flux, gold mesh for measuring the drain current, and YAG Crystal: for visualizing the beam. The Beam Diagnostics can be inserted into or withdrawn from the beam by motorized linear feed-through.

K REIXS Meters					
REIXS Meters S	etup				
Exit Slit PicoAm 鱼	M4 PicoAm 🔍	M5 PicoAm1 🔍	M5 PicoAm2 🔍		
Exit Slit	Diagnostic After M4	M5 Gold Mesh	M5 Photodiode		
3.68656e-09 A	4.34017e-10 A	3.80940e-12 A	1.89928e-11 A		
Power Cycles 5.00	Power Cycles 5.00	Power Cycles 5.00	Power Cycles 5.00		
Frequency (Hz) 8.824	Frequency (Hz) 8.824	Frequency (Hz) 8.824	Frequency (Hz) 8.824		
Auto Zero OFF ON	Auto Zero OFF ON	Auto Zero OFF ON	Auto Zero OFF ON		
Zero Check OFF ON	Zero Check OFF ON	Zero Check OFF ON	Zero Check OFF ON		
Auto Range OFF ON	Auto Range OFF ON	Auto Range OFF ON	Auto Range OFF ON		
Range 0 - 20 uA 💷	Range 0 - 20 nA 💷	Range 0 - 2 nA 💷	Range 0 - 20 uA 💷		
Digital Filter OFF ON	Digital Filter OFF ON	Digital Filter OFF ON	Digital Filter OFF ON		
Samples 5	Samples 45	Samples 8	Samples 5		
Type MOVING	Type MOVING 🗆	Type MOVING 🗆	Type Moving 🗆		
PicoAm1 🔍	PicoAm2 •	PicoAm / VS 🔹	RSXS PD •		
Gas Cell Gold Mesh	Gas Cell Photodiode	Gas Cell Voltage Source	RSXS Photodiode		
9.32587e-15 A	3.78649e-08 A	4.05009e-14 A	1.65925e-12 A		
Power Cycles 5.00	Power Cycles 5.00	Power Cycles 5.00	Power Cycles 5.00		
Frequency (Hz) 8.824	Frequency (Hz) 8.824	Frequency (Hz) 8.824	Frequency (Hz) 8.824		
Auto Zero OFF ON	Auto Zero OFF ON	Auto Zero OFF ON	Auto Zero OFF ON		
Zero Check OFF ON	Zero Check OFF ON	Zero Check OFF ON	Zero Check		
Auto Range OFF ON	Auto Range OFF ON	Auto Range OFF ON	Auto Range OFF ON		
Range 0 - 2 nA 💷	Range 🛛 - 20 uA 💷	Range 0 - 2 nA 💷	Range 2.000e-11		
Digital Filter OFF ON	Digital Filter OFF ON	Digital Filter OFF ON	Digital Filter OFF ON		
Samples 8	Samples 8	Samples 5	Samples 45		
Type MOVING	Type MOVING 🗆	Type MOVING 🗆	Type MOVING 🗆		
		Voltage OFF ON			
		Range 10.000 V			

To setup meters in the beamline, click the [Meters] button in the main user interface. The REIXS Meters Setup panel can be used to change most often used parameters for each meter.

2.8 Other

3.0 RSXS Endstation

3.1 Instruments

Please refer to the RSXS Endstation User Manual for details.

The picture below shows the instruments inside the rack for RSXS endstation.

The Ion Gauge controllers on top display the vacuum pressure in the scattering chamber and the load lock.

The NIM crate houses the electronics for pulse counting.

The SIS3820 Scaler is in the VME crate.

Verify the NIM crate and VME crate are working correctly.

Below the VME crate is the IOC1610-403 computer.

There are several Detectors in the RSXS chamber. To use each detector, following devices are necessary:

Chennaltron

High Voltage unit *NHQ203M* Preamp Power Output unit *ORTEC 4003* Discriminator unit *ORTEC 584* Log/Lin Ratemeter *ORTEC 449-2* Scaler *SIS3820*

Micro Channelplate

Micro Channelplate is 3300 Series from Quantar Technology

High Voltage unit *NHQ203M* Position Analyzer *Model 2502A* including Preamp / Processer Module and Rack Module NIM-TTL-NIM Adapter *CAEN N89* or 4-8 Logic Fan-in Fan-out *CAEN N454* Scaler *SIS3820*

TEY

Total Electron Yield is by measuring sample current.

Current Preamplifier *SRS SR570* Voltage to Frequency Converter *NOVA N101VTF* NIM-TTL-NIM Adapter *CAEN N89* (optional) Scaler *SIS3820*

Photodiode

The photodiode in the scattering chamber is AXUV100EUT Photodiode from IRD. It can be used for reflectivity measurements, scattering measurements and fluorescence measurements. It is also very sensitive to visible light so the chamber has to be covered carefully when using photodiode. The HCG and RGA must be off as well.

Electrometer Keithley 6514

Sample Temperature Control

When the cryostat is on, the range of sample temperature in RSXS chamber is from 18K to 400K.

ARS Cryostat Temperature Controller *Lakeshore 325*

Pumps

Scattering Chamber: turbo pump, cryopump, ion pump and rough pump

Loadlock: Turbo pump and rough pump

3.2 Motion Control

The diffractometer in the Scattering Chamber is driven by nine UHV stepper motors from AML. The motors are controlled by *spec* software.

The "RSXS Motors" panel can be used to setup and adjust parameters for all the motors in the Scattering Chamber.

RSXS Motors									
RSXS Moto	rs								
	Two Theta tth	Theta th	Chi chi	Phi phi	× ×	Y y	Z z	Detector Z detz	Slit Whee slit
		•	•			<u> </u>			•
	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop
MoveAbs (deg)	117.044	29.556	90.000	0.999	-0.310	-0.550	-0.300	0.000	252.000
Feedback (deg)	117.044	29.556	90.000	0.999	-0.310	-0.550	-0.300	0.000	252.000
MoveRel (deg)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
HiLim (deg)	205.342	186.537	95.897	4.500	8.000	8.000	6.500	50.000	400.000
LoLim (deg)	-24.658	-23.463	85.897	-4.000	-8.000	-8.000	-7.250	-45.000	-400.001
	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF
Motor		ON	ON	ON	ON	ON	ON	ON	ON
Power	TO HARDWI	TO HARDW/	TO HARDWI	TO HARDWI	TO HARDWI	TO HARDWI	TO HARDWI	TO HARDWI	TO HARDW
	10 301 107	TO SOFTWA	10 301 144	TO SOFTW/	10 301 1 47	10 301 147	10 307 1 44	10 301 104	10 3011
MaxSpd (deg/s)	3.000	2.000	0.895	0.382	7.500	7.500	7.500	7.500	30.000
Speed (deg/s)	2.000	1.000	0.358	0.286	5.000	5.000	5.000	5.000	30.000
BaseSpd (deg/s)	0.000	0.000	0.269	0.286	1.500	1.500	1.500	1.500	9.000
Accel. (sec)	2.000	2.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Steps/Rev	1600	1600	200	200	200	200	200	200	200
EGU/Rev	0.200	0.200	8.952e-1	9.549e-1	0.500	0.500	0.500	0.500	3.000
Encoder (deg)	1.250e-I	1.250e-I	4.476e-1	4.775e-1	2.500e-1	2.500e-1	2.500e-1	0.002	0.015
Readback (deg)	1.250e-I	1.250e-I	4.476e-1	4.775e-1	2.500e-1	2.500e-1	2.500e-1	0.002	0.015
Deadband (deg)	0.001	0.001	0.001	0.001	0.005	0.005	0.005	0.005	0.015
Backlash							NO 🗌	NO 🗌	FAVORED
Direction	DECREASE	DECREASE							INCREASE
Backlash (step)	400	400	100	100	100	100	0	0	200

3.3 Data Collection Software

The data acquisition is through the *spec* software from *Certified Scientific Software*. Please refers to *spec* manual and "*SPEC Macros for REIXS RSXS Endstation"* for more details.

4.0 XES Endstation

4.1 Instraments

Channeltron MCP 2400

4.2 Motion Control

Sample X, Y, Z Detector Rotation Detector Tilt Detector Translation Spectrometer Rotation Hex-Pot

4.3 Data Collection

Custom software