
1

BioBloomTools v2.0.6: User Manual

June, 2014

Developed by Justin Chu
Contact: cjustin@bcgsc.ca

On behalf of: Inanc Birol

Canada’s Michael Smith Genome Sciences Centre, BC Cancer Agency
Vancouver BC Canada V5Z 4S6

Department of Bioinformatics, University of British Columbia
Vancouver BC V6T 1Z4

Table of Contents
1. Compiling and Installing BioBloomTools

a. Dependencies
b. How to Install

2. Generating Bloom Filters from Reference Sequence with Biobloommaker
3. Classifying and Analyzing Sequences with Biobloomcategorizer
4. Program Outputs

a. Biobloommaker
i. Bloom Filter File (filterID.bf)
ii. Bloom Filter Info File (filterID.txt)

b. Biobloomcategorizer
i. Summary File (summary.tsv)
ii. Categorized Sequence FastA/FastQ Files

5. Program Options
a. Biobloommaker
b. Biobloomcategorizer

6. Understanding BioBloomTools
a. About Bloom Filters
b. How false positive rates correlates to memory usage
c. How many hash functions should be used?
d. K-mer Tiling and Reduction of the effect of false positive k-mers
e. What is inside the Bloom Filter Info File?

i. Obtaining the number of unique k-mers in the reference
ii. Obtaining the number of redundant k-mers in the reference

7. Advanced options and Best Practices
a. How can I reduce my memory usage?
b. How can I make my results more sensitive?
c. How can I make my results more specific?
d. How can I make the program faster?

mailto:cjustin@bcgsc.ca

2

1. Compiling and Installing BioBloomTools
A. Dependencies

The following dependencies are needed to compile and run BBT:

 Unix operating system (Tested using CentOS 6.5)

 A compatible C++ compiler (Tested using GCC 4.4.7-4)

 Boost C++ Libraries (Tested using 1.51.0)

B. Compilation

1. Compiling BioBloomTools should be as easy as

./configure && make

2. To install BBT in a specified directory

./configure --prefix=/opt/BBT && sudo make install

3. If your boost library headers are not in your PATH you can specify its location

./configure –-with-boost=/boost/path --prefix=/opt/BBT && make

sudo make install

2. Generating Bloom Filters from Reference Sequences with Biobloommaker
To create bloom filters from a FastA file, the FastA file must by indexed. Indexing can
be done by programs like Samtools (faidx) or FastaHack.

After you have your FastA file and index, a .bf file with corresponding information text
file can be created by running the command:

./biobloommaker –p input input1.fasta input2.fasta

-p is the prefix for the files being created, it also acts as an ID for the filter.

The options above are the bare minimum options you must use to run the program, but
it is possible to customize many aspects of your filter that can drastically change
performance depending on your needs. See section 5 for advanced options. You can

also using the -h command for a listing on the options.

The optimal size of the filter will be calculated based on the maximum false positive rate
(default is 0.075) and the number of hash functions (can be set but is optimized based
on FPR).

2 files will be generated binary Bloom filter file (.bf) and an information file in INI format
(.txt). The information file must be kept with the .bf file to provide all the needed
information to run the categorization.

3

3. Classifying and Analyzing Sequences with Biobloomcategorizer
Once you have filters created, you can use them with Biobloomcategorizer to categorize
sequences. The file formats that can be used are the following: SAM, BAM, FastQ,
FastA and qseq. Gzip and Bz2 compression is also handled if your system has gzip and
bunzip2 installed.

Before starting make sure the listed .bf file is in the same directory as its corresponding
information .txt file.

A summary.tsv file, readStatus.tsv summary file, and FastA files containing categorized
reads can be generated with the following command:

./biobloomcategorizer –-fa –p /output/prefix –f ”filter1.bf filter2.bf

filter3.bf” inputReads1.bam.bz2 inputreads2_qseq.txt

-p is the output directory for the output files.
-f is the filter(s) you used to categorize the sequences. You can specify as many as
you need.

There are some advanced options open can use outlined in section 5. Notable option
one can use is the paired end mode (-e):

./biobloomcategorizer -e –p /output/prefix –f ”filter1.bf filter2.bf

filter3.bf” inputReads1_1.fq inputreads1_2.fq

-e will require that both reads match when making the call about what reference they
belong in.

These are general use cases you can use to run the program, but it is possible to
customize many aspects of your filter that can drastically change performance

depending on your needs. See section 5 for advanced options. You can also using the -

h command for a listing on the options.

4. Program Output

A. Biobloommaker
i. Bloom Filter File (filterID.bf)

Simply a bit array representing the bloom filter dumped as a file. It is simple,
so that it can be used in almost any system format. It is useless without its
paired info file however.

ii. Bloom Filter Info File (filterID.txt)
This is the information file of the bloom filter, containing the information like
false positive rate and hash functions used. It is in human readable INI
format. It is intended to be read by Biobloomcategorizer in tandem with its
paired .bf file to perform categorization.

4

B. Biobloomcategorizer
i. Summary File (summary.tsv)

 Tab separated file. Contains proportion information about reads mapping
to each filter. Give a good overview of your results

ii. Categorized Sequence FastA/FastQ Files

 In the output directory there will be files for every filter used in addition to
“multiMatch” and “noMatch” files. The reads will be categorized in these
locations based on the threshold (-m and -t) values used.

 Reads outputted will have a value (e.g. “/1”) appended to the end of each
ID to denote pair information about the read.

5

5. Program options
A. Biobloommaker

Command line option Option description
-p

--file_prefix=N

Filter prefix and filter ID. This is a required option to run
biobloommaker. This gives the filter a name, which can be seen
in the filename and information txt file.

-o

--output_dir=N

Output location of the filter (.bf) and filter info (.txt) files.

-h

--help

Displays help dialog.

-v

--version

Displays program version information.

-f

--fal_pos_rate=N

This is the maximum false positive rate to use in filter. Default is
0.02, meaning a 0.02 false positive rate per evaluated k-mer.

-g

--hash_num=N

Set number of hash functions to use in filter. By default an
optimal number is used calculated from the false positive rate
(see section 6c). This maybe important if one uses filters with
different hash functions in biobloomcategorizer and runtime is
slower than expected.

-k

--kmer_size=N

K-mer size to use to create filter. The default is 25 bp. Do not go
below 21 bp and this can adversely affect your specificity. Going
to high can make it harder to correctly categorize shorter
sequences (i.e. decrease sensitivity).

-s

--subtract=N

Path to another filter to prevent k-mers to being added.
Experimental method intended to allow the subtraction of k-
mers from one filter (i.e. take logical subtraction of).

-n

--num_ele=N

Set the expected number of elements instead of deriving it from
your input file.

B. biobloomcategorzier

Command line option Option description
-p

--prefix=N

Output prefix to use in naming output file. Prefix can include
a full file path so long as the path exists, otherwise will
output to current directory.

-f

--filter_files=N

List of filter files to use make sure the corresponding text is
within the same path as the file. Required option. eg.
"/pathof/filter1.bf /pathof/filter2.bf"

-e

--paired_mode=N

Take into account both paired-end reads to categorize
sequences. For BAM or SAM files, if they are poorly
ordered, memory usage will be much larger than normal.
Sorting by read name may be needed.

-s

--score=N

Sets the score threshold used to categorize a read. Defaults
at 0.15. Increasing it will increase specificity and higher
values are recommended for shorter reads.

-g

--gz_output

Outputs all of the largest output files compressed in gzip
format.

6

--fa Output categorized reads in Fasta format. Otherwise no files
will be outputted. Cannot be used with –fq option.

--fq Output categorized reads in Fastq format. Otherwise no files
will be outputted. Cannot be used with –fa option.

--chasity Discard and do not evaluate unchaste reads.
--no-chastity Do not discard unchaste reads. This is on by default.
-v

--version

Displays program version information.

-h

--help

Displays program help dialog.

-m

--min_hit=N

Minimum Hit Threshold Value. The absolute hit number
needed for a hit to be considered a match used a
prescreening method for speed. Default is 0 as it can reduce
sensitivity significantly.

-r

--streak=N

Used to modulate a heuristic to skip tiles when encountering
a k-mer miss to improve speed. Small values will decrease
runtime and sensitivity. Default is 3.

-o

--min_hit_only

Use only the fast hit threshold screening in categorization,
requires that m is at least 1. Very fast but also not as specific
and sensitive as default algorithm.

6. Understanding BioBloomTools

A. About Bloom Filters
The whole idea of using bloom filter centers on getting the time complexity of a hash
(i.e. a O(1) time complexity for look-ups) with a lower space requirement. This is
resolved in a bloom filter by not storing the entry, but rather storing the entry’s bit
signature (determined via hashing) in a bit array. However, this means there is no
collision detection and all bloom filters will have some sort of false positive rate
associated with them. The false positive rate must be carefully considered as it
determines the expected size of the filter used. Too small of a false positive rate can
mean a large bloom filter, but too large of a false positive rate could introduce too
much error for the filter to be practical.

7

B. How false positive rates correlates to memory usage

 This table shows the relationship (assuming optimal number of hash functions

have been used) between false positive rate and the space cost per entry. To
use this chart divide your amount of space in bits you have to work with to the
number base pairs you have in your reference.

o For example, say I want the human genome (~ 3.4×109) filter to fit into
~3GB of memory. (8×3×230)/4×109 = ~8bits per entry, meaning a filter
with 2% FPR at maximum should be used.

C. How many hash functions should be used?

The number of hash functions refers to the number of hash functions used. In
practice the approximate optimal number of hash functions will be calculated
automatically by our program. The relationship can be seen below.

8

We give users the ability to change the number of hash functions because very
low false positive rates will have an optimal number of associated hash functions
that may be very large and may slow down classification.

D. K-mer Tiling
We use a sliding window across each read of size k to categorize sequences.
Single base overlaps that both hit a filter are unlikely to be false positives. This
information is used to reduce the effect of any false positives. This concept is
also used to further improve speed, we also employ a jumping k-mer (rather than
sliding) heuristic that skips k k-mers when a miss is detected after a long series
of adjacent hits.

E. What is inside the Bloom Filter Info File?
i. Obtaining the number of unique k-mers in the reference:

Within the information txt file for each bloom filter there is a “num_entries”
entry that lets you know how many unique k-mers have been added to the
filter. It is a lower bound estimate due to possible false positives.

ii. Obtaining the number of redundant k-mers in the reference:
Within the information txt file for each bloom filter there is a
“redundant_sequences” entry that lets you know how many redundant k-mers
have been added to the filter. It is an upper bound estimate due to possible
false positives. The “redundant_fpr” represents the probability that one any
random redundant k-mer is actually unique. Thus, to get the approximate
number of unique k-mers take the “redundant_fpr” value and multiply it with
the “redundant_sequences” sequences and add that to the “num_entries”.

9

7. Advanced options and Best Practices

A. How can I reduce my memory usage?
Memory usage is directly dependent on the filter size, which is in turn a function
of the false positive rate. In biobloommaker reduce memory increase the false
positive rate (-f) until the memory usage is acceptable. You may need to increase
score threshold (-s) in biobloomcategorizer to keep the specificity high.

B. How can I make my results more sensitive?

In biobloomcategorizer try to decrease the score threshold (-s). If that still does
not work, in biobloommaker try reducing the k-mer (-k) size to allow more tiles
can help with sensitivity.

C. How can I make my results more specific?
In biobloomcategorizer you can increase score threshold (-s).

In biobloommaker decreasing the false positive rate (-f) and increasing the k-mer
(-k) size to allow more tiles can help with specificity. Decreasing the filter false
positive rate will increase memory usage.

D. How can I make the program faster?

In biobloomcategorizer use a min hit threshold (-m) of 1. This will use a faster
prescreening categorization algorithm that uses jumping k-mer tiles to prescreen
reads. This will decrease sensitivity but will increase speed. Large values will
further decrease sensitivity.

Using the min hit threshold only (-o) option will use only this screening method
and not use the standard sliding tiles algorithm at all. This will greatly increase
speed at the expense of sensitivity and specificity. This may be appropriate if
your reads are long (>150bp), paired and have minimal read errors. If this
method is used, it is recommended that you use an -m of at least 2 or 3.

