
ODMG OQL
 User Manual

Release 5.0 - April 1998

Information in th is document is subject to change withou t
not ice and shou ld not be construed as a com mitment by
O2 Technology.

The software descr ibed in th is docum ent is delivered u nder a
license or nondisclosu re agreem ent.

The software can on ly be u sed or copied in accordance with the
term s of the agreement . It is against the law to copy th is
software to magnet ic tape, disk, or any other m ediu m for any
pu rpose other than the pu rchaser ’s own use.

Copyr igh t 1992-1998 O2 Technology.

All r ights reserved. No par t of th is publicat ion can be
reproduced, stored in a ret r ieval system or t ransmit ted in any
form or by any means, elect ronic, mechan ical, photocopy
withou t pr ior wr i t ten permission of O2 Technology.

O2, O2Engine API, O2C, O2DBAccess, O2Engine, O2Graph,
O2Kit , O2Look , O2Store, O2Tools, and O2Web are registered
tradem arks of O2 Technology.

SQL and AIX are registered t rademarks of In ternat ional
Bu siness Machines Corporat ion.

Sun , SunOS, and SOLARIS are registered t rademarks of Sun
Microsystems, Inc.

X Window System is a registered tradem ark of the
Massachuset ts Inst i tu te of Technology.

Un ix is a registered t radem ark of Unix System Laborator ies, Inc.

HPUX is a registered t rademark of Hewlet t -Packard Com pany.

BOSX is a registered t rademark of Bu l l S.A.

IRIX is a registered t rademark of Siemens Nixdorf, A.G.

NeXTStep is a registered t rademark of the NeXT Computer , Inc.

Pu r i fy, Qu ant i fy are registered trademarks of Pure Software Inc.

Windows is a registered t rademark of Microsoft Corporation .

All other company or product names quoted are t rademarks or
registered t rademarks of their respect ive t rademark holders.

Who should read this manual

OQL is an object -or iented SQL-like qu ery langu age, the ODMG
standard. Th is manual descr ibes how to u se OQL as an embedded
funct ion in a programming language (e.g. O2C, C, C++, or Java) or
interact ively as a query language. It assumes previou s knowledge of the
O2 system.

Other docum ents avai lable are ou t lined, cl ick below.

See O2 Documentation set .

TABLE OF CONTENTS
This manual is divided into the following chapters:

1 - In troduct ion

2 - Get t ing Star ted

3 - OQL Rat ionale

4 - OQL Reference
ODMG OQL User Manual 5

TABLE OF CONTENTS

12
12

15
15

.20
.20

.22
.24
..24
25
25

.29

.30
30
.31
.31
32
35
35

37
.37
1 Introduction 9

1.1 System Overview..10

OQL ...
Browser Interface...

1.2 Interactive and embedded query language14

Interactive OQL ...
Embedded OQL ...

1.3 Manual overview...16

2 Getting Started 17

2.1 Basic queries ..18

Database entry points ..
Simple queries...

2.2 Select ... from ... where ...22

Set..
Join ..
Path expressions...
Testing on nil ...
List or array ..

2.3 Constructing results ..27

Creating an object ...

2.4 Operators ..30

Count...
Define...
Element ...
Exists ...
Group by ..
Like ..
Order by ...

2.5 Set operators ..36

2.6 Conversions..37

List to set ..
Set to list..
6 ODMG OQL User Manual

TABLE OF CONTENTS

. 38

40

. 49
51
52
53
54
Flatten ...

2.7 Combining operators .. 38

2.8 Indexes ... 39

Display index...

2.9 Chapter Summary.. 41

3 OQL Rationale 43

3.1 The ODMG standard .. 44

3.2 The ODMG model... 44

3.3 OQL by example .. 49

Path expressions ...
Data manipulation ...
Method invoking ...
Polymorphism..
Operator composition ..

4 OQL Reference 57

4.1 Introduction.. 58

4.2 Principles.. 58

4.3 Language Definition .. 59

4.4 Syntactical Abbreviations.. 82

4.5 OQL BNF.. 85

INDEX 91
ODMG OQL User Manual 7

TABLE OF CONTENTS
8 ODMG OQL User Manual

1 Introduct ion1
Congratu lat ions! You are now a user of the object-or iented query
language OQL.

O2 is a revolu t ionary system that is par t icu lar ly wel l adapted for
developing large-scale cl ien t/ server applications in both fields of
business and techn ical software developm ent .

This chapter in t rodu ces the O2 system and the OQL qu ery language.

The chapter is divided in to the fol lowing sect ions :

• System Overview

• In teractive and embedded query language

• Manu al overview
ODMG OQL User Manual 9

Introduction1
1.1 System Overview

The system arch itectu re of O2 is il lu st rated in Figu re 1.1.

Fi gur e 1 .1 : O2 Syst em Ar ch i t ect u r e

The O2 system can be viewed as consist ing of three components. The
Database Engine provides al l the featu res of a Database system and an
object -or ien ted system. Th is engine is accessed with Development Tools,
such as var iou s programming languages, O2 development tools and any
standard development tool. Numerous External Interfaces are provided.
Al l encompassing, O2 is a versat ile, por table, dist r ibu ted, h igh-
per formance dynamic object -or ien ted database system.

Database Engine:

• O2Store The database management system provides low level
facil it ies, through O2Store API, to access and manage a
database: disk volu mes, fi les, records, indices and
t ransact ions.

• O2Engine The object database engine provides direct cont rol of
schemas, classes, objects and t ransact ions, through
O2Engine API. It provides fu ll text indexing and search
capabi li t ies with O2Search and spat ial indexing and
ret r ieval capabi li t ies with O2Spat ial . I t includes a
Not ificat ion m anager for inform ing other clients
connected to the same O2 server that an event has
occu rred, a Version m anager for handl ing mu lt iple
object versions and a Repl icat ion API for synchron izing
mu lt iple copies of an O2 system.

O2CC++ Java

O2 Dev. Tools

O2DB
Access

OQL

Standard
Dev. Tools

O2Web

O2Corba

Development Tools

C

Database Engine

O2Engine

O2Store

External
Interfaces

O2ODBC
10 ODMG OQL User Manual

System Overview :
Programming Languages:

O2 objects may be created and managed using the following
programming langu ages, u t i lizing all the featu res available with O2
(persistence, col lection management , t ransact ion management , OQL
qu er ies, etc.)

• C O2 funct ions can be invoked by C program s.

• C++ ODMG compliant C++ binding.

• Java ODMG compliant Java binding.

• O2C A powerfu l and elegant object-or iented fou r th
generat ion language special ized for easy development
of object database appl icat ions.

• OQL ODMG standard, easy-to-use SQL-l ike object qu ery
language with special featu res for deal ing with com plex
O2 objects and methods.

O2 Development Tools:

• O2Graph Create, modify and edit any type of object graph .

• O2Look Design and develop graphical user in ter faces, provides
in teractive manipu lation of complex and mu lt imedia
objects.

• O2Kit Library of predefined classes and methods for faster
developm ent of user applicat ions.

• O2Tools Complete graphical programming environm ent to
design and develop O2 database appl icat ions.

Standard Development Tools:

All standard programming languages can be used with standard
environments (e.g. Visual C++, Sun Sparcworks).

External Inter faces:

• O2Corba Create an O2/ Orbix server to access an O2 database
with CORBA.

• O2DBAccess Connect O2 applicat ions to relat ional databases on
remote hosts and invoke SQL statements.

• O2ODBC Connect remote ODBC cl ient appl icat ions to O2
databases.

• O2Web Create an O2 Wor ld Wide Web server to access an O2
database th rough the internet network.
ODMG OQL User Manual 11

Introduction1
OQL

OQL is an object-or iented SQL-l ike qu ery language. OQL is the qu ery
language of the ODMG-93 standard1. It can be used in two different
ways either as an embedded fu nct ion in a program ming language or as
an ad hoc qu ery language.

You can u se OQL as a fu nct ion cal led from O2C, C, C++, Smalltalk or
Java, in order to m anipu late complex valu es and methods. Each
const ru ct produces a resu lt wh ich can then be used direct ly in the
programming langu age. Methods can be t r iggered to modify the
database. You wi ll find that programming is easier because OQL can
fil ter values using complex predicates whose evaluat ions are opt imized
by the OQL opt imizer in O2.

OQL can also be used interact ively as an ad hoc query language
al lowing database qu er ies from both technical and non-techn ical u sers.
In teract ive featu res include fast and simple browsing of the database.

Browser Interface

The browser in ter face you see depends on the operat ing system you are
u sing.

• Unix

In Unix, the O2Look graph ical user inter face generator is u sed to
generate the graphical form of OQL query resu lts.

Figu re 1.2 shows a typical query resu lt in graph ical form, as generated
by O2Look .

1. The Object Database Standard: ODMG - 93. Atwood, Bar ry, Du hl, Eastman, Fer ran,
Jordan, Loom is and Wade. Edited by R.G.G. Cat tell. © 1996 Morgan Kau fman Pu blish-
ers.
12 ODMG OQL User Manual

System Overview : Browser Interface
Fi gur e 1 .2 : Typi ca l OQL quer y r esu l t i n gr a ph i ca l f or m , as gen er at ed i n Un i x

In addit ion to the usual Moti f bu t tons a graph ical qu ery resu lt has an
Eraser bu t ton. Click ing on the Eraser bu t ton removes the graphical
resu lt . Th is query resu lt consists of a number of objects. Each object
has its own pop-u p menu wh ich is displayed by cl ick ing the Object icon
u sing the r igh t m ouse bu t ton . This pop-up menu can be used to access
the pu blic methods of each object .

• Windows NT

In Windows NT, the query resu lt is displayed in a window in textual
form contain ing hyper text links. Each link represents a sub-object .

The label for a specific l ink may be obtained by applying the title
method to the su b-object represen ted by the l ink .

Cl ick ing on a hyper text link , with the r ight mouse bu t ton , replaces the
con ten ts of the window with a represen tat ion of the su b-object
associated with the link .

Figu re 1.3 shows a typical query resu lt in graph ical form, as generated
in Windows NT.

Object i con s

Er a ser bu t t on
ODMG OQL User Manual 13

Introduction1
Fi gur e 1 .3 : Typi ca l OQL qu er y r esu l t i n gr a ph i ca l f or m , a s gener at ed i n Wi n d ows NT

The browser shown in Figu re 1.3 has the following bu t tons:

Ba ck th is bu tton displays the previous object .

For wa r d th is bu tton displays the next sub-object. It is on ly valid if
the Back bu t ton has been act ivated at least once.

New Wi n d ow Th is bu tton displays the cu rrent object in a new window.
Each window is an independent browser.

Qui t Th is bu tton closes the act ive window.

The query resu lt is an object of the Person class, which has a name, an
age and a spouse. A spouse is also an object of the Person class, and
thus appears in as a hypertext l ink . Left cl ick ing displays the spou se
object .

Note Note Note Note Note Note Note Note
The rest of th is m anu al wil l on ly show graphical displays from the Unix
plat form.

1.2 Interactive and embedded query language

It is becau se OQL is so easy to use in teract ively that all k inds of users
inclu ding non-technical u sers can browse the database qu ick ly and
efficient ly to get the inform at ion they want . OQL can also be used as a
funct ion cal led from C, C++, Java, O2C and O2 Engine API.
14 ODMG OQL User Manual

Interactive and embedded query language :
Interactive OQL

The OQL in terpreter can be t r iggered by the query comm and of O2dba,
O2dsa or O2 shells. The comm and interpreter prom pts you with the
following message:

type your command and end with ^D

To run OQL, type:

query

^D

You must type ^D (Con t rol - D) on a separate l ine. You now see:

Query Interpreter

type your query and end with ^D

Type you r qu ery, ending it with ^D .

"this is a query"

^D

The answer is au tomat ical ly displayed and the system retu rns to the
OQL prompt :

type your query and end with ^D

To leave the qu ery session type:

^D (or quit)

You are now back in the command interpreter and you see the message:

type your command and end with ^D

You can also use OQL in the O2Tools program ming environment (Refer
to the O2Tools User Manu al).

Note Note Note Note Note Note Note Note
In a Windows environment ^Z (Cont rol - Z) is u sed instead of ^D
(Cont rol - D).

Embedded OQL

Any valid query can be passed from O2C code to OQL u sing the system
supplied function o2query . Th is is detai led in the O2C Reference
manual.

Simi lar ly, you can pass a qu ery to a C++, C, Smalltalk or Java program.
Refer to the respect ive manuals for details.
ODMG OQL User Manual 15

Introduction1
Finally an OQL funct ion exists in O2Engine and is descr ibed in the
O2Engine API Reference Manu al.

1.3 Manual overview

Th is manual is divided up into the fol lowing chapters:

• Chapter 1 - In t roduct ion

Th is chapter int rodu ces the O2 system and the OQL query langu age.

It ou t lines the concepts of the ad hoc query langu age that allows you to
browse the database qu ick ly and efficient ly to get the inform at ion you
want , and the embedded query langu age that you can call from inside
your program s.

• Chapter 2 - OQL - Get t ing star ted

Th is chapter int rodu ces the OQL language so you can star t to use OQL
in order to obtain the exact inform ation you wan t from your database.

It descr ibes and i llust rates basic and “select ..from..where” qu er ies,
details how to const ruct resu lts and descr ibes the use of operators and
indexes. To fu l ly understand th is chapter , you must know the ODMG
data m odel.

• Chapter 3 - OQL Rat ionale

Th is chapter int rodu ces the ODMG standard and descr ibes the ODMG
object model. I t also gives an example based presentat ion of OQL.

• Chapter 4 - OQL Reference

Th is chapter contains the ODMG reference manu al for OQL 1.2. It is the
same as the ODMG standard with added notes and explanat ions on how
to use OQL with O2.

For each featu re of the language, you get the syn tax, in in formal
semant ics, and an exam ple. Final ly, the form al syntax is given.
16 ODMG OQL User Manual

2 Gett ing Started

AN OBJECT-ORIENTED DATABASE
QUERY LANGUAGE

2

So that you can obtain the exact information you wan t from your
database, O2 has an object or iented database qu ery language OQL.

OQL is a powerfu l and easy-to-use SQL-l ike query language with special
featu res for deal ing with complex objects, values and methods.

This chapter in t rodu ces the OQL language and is divided up into the
following sect ions:

• Basic quer ies

• Select ... from ... where

• Constructing resu lts

• Operators

• Set operators

• Conversions

• Com bining operators

• Indexes

• Chapter Sum mary

To u nderstand th is chapter you need to know the ODMG data model1.
As an int rodu ct ion to the data model you can refer to chapter 3 of th is
manual or the O2C Beginner ’s Gu ide.

Exper ience of SQL, thou gh not a prerequ isite, wil l facil itate the OQL
learning process.

1. The Object Database Standard: ODMG - 93, release 1.2. Edited by R.G.G. Cat tell. ©
1996 Morgan Kau fman Publishers.
ODMG OQL User Manual 17

Getting Started2
2.1 Basic queries

All the examples shown below are based on the fol lowing O2 schema:

• In O2C

class o2_set_Employee public type

unique set (Employee)

end;

class o2_list_Client public type

list (Client)

end;

class Company public type

tuple (name: string,

employees: o2_set_Employee,

clients: o2_list_Client

)

method public title: string

end;

class Client public type

tuple (name: string,

order: list (tuple (what: string,

price: real))

)

end;

class Employee public type

tuple (name: string,

birthday: Date,

position: string,

salary: real)

method age: integer

end;
18 ODMG OQL User Manual

Basic queries
• In C++

Two persisten t roots are also defined: An object , Globe and a col lect ion
the_employees .

class Company {

public:

d_String name;

d_Set<d_Ref<Employee> > employees;

d_List<d_Ref<Client> > clients;

char* title() {return name;}

};

class item { d_String what; double price;};

class Client {

public:

d_String name;

d_Array<item> order;

};

class Employee {

public:

d_String name;

d_Date birthday;

d_String position;

float salary;

int age();

};

name Globe: Company;

constant name the_employees: o2_set_Employee;
ODMG OQL User Manual 19

Getting Started2
Database entry points

To query any database you need var iou s en t ry poin ts.

In O2 these are the nam ed objects and named values.

For example, Globe is an en tr y poin t.

The simplest OQL query calls an en tr y poin t :

Th is retu rns:

In an O2 database, named objects and values can either be valu es of
any type, or objects of any class. Consequ en tly, OQL al lows you to query
values or objects of any type or class.

Note Note Note Note Note Note Note Note
The query resu lts shown below are all given in the Un ix graphic form.

Simple queries

Simple quer ies can involve different types of valu es:

• Atomic values

With atomic values you can car ry ou t ar i thmet ic calcu lat ions, e.g.,

Th is is a query which retu rns the integer 4.

Globe

2 * 2
20 ODMG OQL User Manual

Basic queries : Simple queries
• Struct values

You can also consider the value of the object Globe of class Company as
a st ruct (or tuple) valu e with th ree at tr ibu tes.

The only operat ion you can car ry ou t on a st ruct is extracting a field,
e.g.,

Th is retu rns the name of the Globe Com pany.

• List or array values

A list is an ordered col lect ion that allows duplicates and you can
therefore ext ract any of its elements if you know their posit ion .

For example, you can ext ract the f i r st element of the l ist in clients as
follows.

In OQL, you coun t list elements from 0.

For OQL, an ar ray behaves the sam e way as a list .

Globe.name

Globe.clients[0]
ODMG OQL User Manual 21

Getting Started2
• Call of a method

To apply a method to an object is a base query, e.g.

Th is applies the method title to the object Globe and retu rns the
resu lt of the method title :

2.2 Select ... from ... where

The select from where clause enables you to ext ract those elements
meeting a specific condit ion from a col lect i on . O2 collect ions inclu de
set , bag (a m u lt i -set or set with duplicates), l i st (an inser table and
dynamic array) or ar ray.

The OQL query has the fol lowing structu re:

select : defines the st ru ctu re of the qu ery resu lt

from : in t rodu ces the col lect ions against which the qu ery runs.

where : in t rodu ces a predicate that fi lters the col lect ion.

Th is sect ion now descr ibes how to use th is clau se.

Set

A set is a non-ordered col lect ion .

The most frequ en t query on a set is a f i l t er . This consists of ext ract i n g
the elem ent s of a set which have cer tain character ist ics.

Globe.title
22 ODMG OQL User Manual

Select ... from ... where : Set
For example:

Th is qu ery retu rns those employees work ing at the In ternat ional Globe
with a salary over 200:

The select clau se defines the query resu lt as the employees and the
from clause gives the set on which to run the qu ery. The var iable e
r epresen ts each of its elements in tu rn. The where clause fi lters the
employees so that those earning more than 200 are ext racted.

Th is qu ery therefore bu i lds a collect ion of employees.

Th is col lect ion is in fact a bag as dupl icates are accepted. You can also
add the keyword distinct to elim inate any dupl icates from the
resu lt ing bag and then produce a t rue set .

Moreover, you can access from e any at tr ibu tes, e.g. salary and get a
set of real num bers. For exam ple:

Th is gives a set of the salar ies of the Reporters:

select e

from e in Globe.employees

where e.salary > 200.00

select distinct e.salary

from e in Globe.employees

where e.position = "Reporter"
ODMG OQL User Manual 23

Getting Started2
Join

You can also u se a query to select from more than one col lect ion :

Th is query retu rns the set of employees who have the same name as a
clien t . I f there is a cl ient cal led Kent and an employee cal led Kent , you
see the fol lowing window:

Path expressions

Objects are related to other objects, and in order to get to the data it
needs, a qu ery can fol low var ious paths that star t fr om any O2 object or
col lect ion . For example,

You obtain the set of what the cl ient (s) called Haddock bought :

select e

from e in Globe.employees,

c in Globe.clients

where e.name = c.name

select distinct ord.what

from cl in Globe.clients,

ord in cl.order

where cl.name = "Haddock"
24 ODMG OQL User Manual

Select ... from ... where : Testing on nil
Testing on nil

After your applicat ion has updated the database, you may find that
some objects are now equal to n i l. You can test for th is using OQL. For
exam ple, you can test that a cl ient exists and i f so, which clien t has
th ree orders:

To simpli fy programming, OQL sk ips ni l objects when they are
encou ntered. If a path expression con tains a nil object , a predicate is
always considered false . This means that the previou s expression can
be rewr it ten as fol lows:

List or array

A list or an array is an ordered col lect ion that can con tain duplicate
elements.

Since it is ordered, you may ext ract any of i ts elements if you know their
posit ion . For example:

Th is ext racts the th ird element of the list (the fi rst element is at posit ion
0).

As with sets you can fil ter a l ist .

select c.name

from c in Globe.clients

where c!=nil and count (c.order) = 3

select c.name

from c in Globe.clients

where count (c.order) = 3

Globe.clients[2]
ODMG OQL User Manual 25

Getting Started2
For example: what are the names of the cl ients who buy the
Internat ional Globe newspaper?

The resu lt of th is query is a bag of the name of Globe cl ien ts:

Note Note Note Note Note Note Note Note
The query retu rns a bag and not a l ist . To retu rn a list , you mu st define
an order . See “Order by” on page 35.

You can also add the keyword distinct to a selection to elim inate any
dupl icates from the resu lt ing set .

Note Note Note Note Note Note Note Note
You can man ipu late very complex st ructu res. A list can be made u p of
tuples which in tu rn can have a set at tr ibu te, etc. Consequ en t ly, you
have access to all the embedded components of an object .

For more detai ls, refer to Sect ion 2.3 for constructing qu ery resu lts and
Sect ion 2.7 for combin ing operators.

select e.name

from e in Globe.clients
26 ODMG OQL User Manual

Constructing results
2.3 Constructing results

The st ru ctu re of a query resu lt is very often implici t . For example, when
you ext ract the age field of an employee, which is of type in teger, you
obtain an integer. When you fi lter a set, bag or l ist , you obtain a set , bag
or l ist depending on what you select .

However , you can also construct a qu ery resu lt with an explici t
st ructu re using the struct , set , bag , list and array const ructors.

For example, using the struct const ructor :

or sim ply:

Th is qu ery gives the name, posit ion and salary of the employees at the
Internat ional Globe newspaper :

select struct (employee: e.name,

position: e.position,

salary: e.salary)

from e in Globe.employees

select e.name, e.position, e.salary

from e in Globe.employees
ODMG OQL User Manual 27

Getting Started2
You can use the special "*" operator to select al l at tr ibu tes of the
elements of a collect ion.

For example:

Note that in th is example you do not need to define a var iable with
from .

You can also bu ild up embedded structu res simply by combin ing
struct operators.

For example, to get the ident i t ies and salar ies of al l those employees
work ing as repor ters and older than 22.

select * from Globe.employees

select struct (employee: struct (name: e.name,

 age: e.age),

 salary: e.salary)

from e in Globe.employees

where e.position = "Reporter" and

e.age > 22
28 ODMG OQL User Manual

Constructing results : Creating an object
Th is qu ery gives a bag with one element :

Creating an object

You create values using struct , list , array , bag and set . In OQL,
you can also create objects using the class name and by in it ializing the
at t r ibu tes of you r choice. Any un-in i t ial ized at t r ibu tes are set to the
defau lt value. For example, to create an object of the class Client :

Th is creates a t em porary object with the name at tr ibu te in i t ial ized to
Trent .

You can then m ake the object persistent in the u sual way (refer to the
O2C, C++ and Java manuals). The resu lt of th is query is the new object .

An object collect ion can be created in the same way. For example, use
the fol lowing query to create an o2_l i st _Cl i en t collect ion.

Client (name: "Trent")

o2_list_Client (list(Client(name:"John"),

 (Client(name:"Jack")))
ODMG OQL User Manual 29

Getting Started2
2.4 Operators

Th is sect ion ou t lines the basic OQL operators you can use to query the
database.

Count

You can query the database using the count clau se.

For example, to find ou t how many employees there are at the
In ternat ional Globe newspaper:

Th is query retu rns an integer.

Other aggregate operators are min , max, sum and avg .

Define

You can name the resu lt of a query using the define clau se. For
example,

Th is names the resu lt of the query and not the query i tself.

The name MyEmployees can then be used in other quer ies. Named
qu er ies great ly improve the legibil ity of complex quer ies.

count (Globe.employees)

define MyEmployees as

select e

from e in Globe.employees

where e.name like "Sp*"
30 ODMG OQL User Manual

Operators : Element
Note Note Note Note Note Note Note Note
You can on ly reuse these nam ed qu er ies in the same query session ,
i .e., up to a com m i t or abor t poin t.

Element

When you have a set or a bag that contains a single element , you
ext ract the element direct ly using the element operator . For example,

Th is qu ery gives the resu lt:

Exists

You can add a new persisten t name to cover al l the differen t companies
that exist :

You can now carry ou t m ore complex quer ies, su ch as select ing which
com pany has at least one employee u nder the age of 23:

element (select e

from e in Globe.employees

where e.name = "Tintin")

name TheCompanies: list (Company);

select c.name

from c in TheCompanies

where exists e in c.employees: e.age < 23
ODMG OQL User Manual 31

Getting Started2
The answer is a bag of names:

Group by

Th is operator groups together objects of a collect ion with the same valu e
for par t icu lar att r ibu tes.

For example,

Th is groups the employees by salary giving a bag of two-at t r ibu te
tuples:

select *

from e in Globe.employees

group by e.salary
32 ODMG OQL User Manual

Operators : Group by
The fir st at tr ibu te is the salary and is called salary as specified. The
second is the set of objects (em ployees) with the same salary and is
cal led partition .

Thus, the type of the resu lt of th is qu ery is:

bag (struct (salary: real,

 partition: bag (struct (e:Employee))))

You can work on a par t it ion value by comput ing statist ics on each
par t i t ion.

The following query retu rns a bag of two-att r ibu te tuples with the salary
and the number of employees earning each of these salar ies:

select salary, number: count (partition)

from e in Globe.employees

group by e.salary
ODMG OQL User Manual 33

Getting Started2
You get the fol lowing type of window:

Finally you can fi lter the resu lt of grou ping by applying predicates on
aggregat ive operat ions. You can select grou ps with condit ions on
average, cou nt , sum, m aximum and minimum values of par t i t ions. You
do th is u sing the having clause.

For example, if you wish to select only groups with m ore than one
salary:

The fol lowing screen is displayed.

select salary, number: count (partition)

from e in Globe.employees

group by e.salary

having count (partition) > 1
34 ODMG OQL User Manual

Operators
Like

The like operator al lows you to test par t of a character st r ing. The "* "
character stands for any st r ing inclu ding the empty st r ing.

The query:

retu rns the salar ies of all employees whose names begin with Sp:

Order by

You can obtain a sor ted list u sing the order by clau se. For example, to
sor t the employees by name and by age:

The resu lt of an order by operation is always a l i st , even though the
sou rce of the objects to sor t (the set employees , in th is case) m ay be a
set.

Th is qu ery retu rns a list of employees; their order is alphabet ical by
name, and then by age:

select distinct e.salary

from e in Globe.employees

where e.name like "Sp*"

select e from e in Globe.employees order by e.name, e.age
ODMG OQL User Manual 35

Getting Started2
2.5 Set operators

The standard set operat ions are defined on set and bag: union ,
intersect (in tersection) and except (difference).

You can also wr i te these operators as + (un ion), * (in tersection) and -
(difference).

You can define another query YourEmployees :

Now you can combine the quer ies by adding together two sets:

The simple addit ion (u nion) of the two sets of employees gives you a set
con tain ing the answer:

define YourEmployees as

select e

from e in Globe.employees

where e.name = "Tintin"

MyEmployees + YourEmployees
36 ODMG OQL User Manual

Conversions
The pick operator is defined on a set or a bag. It retu rns an element of
the collect ion, chosen arbit rar ily.

For example:

2.6 Conversions

List to set

To convert a list or ar ray to a set you use the listtoset operator .

Example:

Set to list

To convert a set or bag to a list you must order i t .

pick (MyEmployees)

listtoset (Globe.clients) intersect

listtoset (TheCompanies[2].clients)
ODMG OQL User Manual 37

Getting Started2
For example:

retu rns a list sor ted by salary.

You can also use "*" to bu ild a l ist . Th is avoids a real sor t algor ithm and
shou ld be u sed when the final order of the l ist is unimportan t .

r etu rns a list of all em ployees in random order .

Flatten

To conver t a col lection of col lect ions into a flat tened collect ion you use
the flatten operator .

For example:

retu rns a set of clien ts.

2.7 Combining operators

OQL is a complete fu nct ional language in that every operator can be
combined with any other operator .

You can u se com bine and bu i ld u p operators, un iversal and existent ial
qu ant i fiers, wi ld-card operators, standard set operators as wel l as list
concatenation , order ing and grou ping operators on sets, bags and l ists.

select e from e in the_employees order by e.salary

select e from e in the_employees order by *

flatten (select distinct c.clients
from c in TheCompanies)
38 ODMG OQL User Manual

Indexes : Flatten
For example:

Th is sor ts al l the cl ients, with more than two orders, by how mu ch they
have paid to the company:

2.8 Indexes

When OQL ext racts one or more elements from a col lection using a
specified predicate or order operat ion , i t mu st scan the whole collect ion
to find the requ ired elem ents.

You can improve per formance if the system is able to direct ly access the
match ing elements. Th is is done by establ ishing an index on a
col lection .

An index maps a key to one or more elements of a nam ed col lect ion .

Whenever a program searches for elements of the collect ion using the
key, the system uses the index to qu icken the search .

Th is en tire process is totally t ransparen t to you as the programmer. The
absence or presence of an index has no effect on program code, only on
system performance.

select cl.name, paid: sum (select p.price from p in

 cl.order)

from cl in Globe.clients

where count (cl.order) >2

order by sum (select p.price from p in cl.order)
ODMG OQL User Manual 39

Getting Started2

ue-
The benefi ts of indexes inclu de the fol lowing:

• Complete logical and physical independence

You do not have to change your qu ery to use indexing. Indexes are
created by administrat ion comm ands.

• High perform ance dur ing use and maintenance

Access from an index means constan t t ime access ir regardless of the
size of the collect ion.

Example:

• Defin ing an index for al l employees:

• The fol lowing qu ery wil l then be opt imized:

Display index
The "display index" query allows you to see how OQL will use existing indexes in q
ries you will make. To stop this feature, execute "display index" again.

Note Note Note Note Note Note Note Note
Please refer to the System Adm in ist rat ion Gu ide for detai ls on how to
create and m anage indexes.

create index the_employees on salary;

select e

from e in the_employees

where e.salary ≥ 1000 and e.salary ≤ 5000
40 ODMG OQL User Manual

Chapter Summary : Display index
2.9 Chapter Summary

Th is chapter has covered the fol lowing points:

• Basic queries

To query any database you need var iou s en t ry poin ts. In O2 these are
the nam ed i nst ances — i.e. named objects and nam ed values.

Simple quer ies inclu de: call ing an en tr y poin t , applying a method to a
named object , ext ract ing a field, etc.

• Select..from..where

The select ... from ... where clause enables you to ext ract those
elements meet ing a specific condit ion from a l ist or set .

• Constructing results

The st ru ctu re of a qu ery resu lt is very often implici t . However , you can
also const ruct a qu ery resu lt with an expl ici t st ructu re using the
struct , set and list const ructors.

• Operators

OQL operators include define , element , order by , count , exists ,
group by and like . They can be combined for complex quer ies.

• Indexes

When OQL ext racts one or more elements from a set or list it scans the
whole col lect ion to find the desired elements. You can improve
per formance i f you tell the system exact ly where to look .Th is is done by
establ ish ing an index on a col lect ion. An index maps a key to one or
more elements of a named col lect ion.
ODMG OQL User Manual 41

Getting Started2
42 ODMG OQL User Manual

3 OQL Rat ionale3
Most comm ercial object database systems now have a common data
model based on the OMG object model. This data model is defined in the
ODMG 93 report . Based on th is ODMG model, the query langu age OQL
was defined and adopted by the ODMG grou p.

This chapter is divided as fol lows:

• The ODMG standard

• The ODMG model

• OQL by example
ODMG OQL User Manual 43

OQL Rationale3
3.1 The ODMG standard

The ODMG standard covers the fol lowing poin ts:

1. an object model

2. an object defin i t ion language for th is model, with i ts own syntax, ODL
or i ts expression th rough C++ and Smalltalk syn tax

3. an object qu ery language for th is model, OQL

4. a C++ binding al lowing C++ program s to operate on a database
complian t to the object model

5. a Java binding al lowing Java programs to operate on a database
complian t to the object model

3.2 The ODMG model

The ODMG object model supports the not ion of classes, of objects with
at t r ibu tes and methods, of inher i tance and special izat ion. It offers the
classical types to deal with st r ing, date, t ime, t im e interval and
t imestamp. And finally, i t su pports the not ions of relat i onsh i ps and
col lect i ons.

ODMG-93 int rodu ces a set of predefined gener ic col lection classes:
Set<T> , Bag<T> (a mu lt i-set , i.e., a set with repeated elements),
Varray<T> (a var iable size array), List<T> (a var iable size and
inser table ar ray).

An object refers to another object through a Ref. A Ref behaves as a C++
pointer , bu t with more semantics: it is a persistent pointer bu t
referen tial in tegr i ty can be expressed in the schema and maintained by
the system. Th is is done by declar ing the relat ionship as symmetr ic.

Combining relat ionsh ips and col lect ions, an object can relate to m ore
than one object th rou gh a relat ionship. Therefore, 1-1 relat ionsh ips, 1-n
relat ionships and n -m relat ionsh ips can be suppor ted with the same
guarantee of referent ial integr ity.

ODMG-93 enables explici t names to be given to any object or col lect ion .
From a name, an applicat ion can directly ret r ieve the named object and
44 ODMG OQL User Manual

The ODMG model
then operate on i t or navigate to other objects fol lowing the relat ionsh ip
l inks.

Let us now present the model through a complete example. We u se here
C++ syntax for ou r object defin i t ion language, following the ODMG C++
ODL binding (i .e., the way of defin ing an ODMG schema using the
standard C++ language).
ODMG OQL User Manual 45

OQL Rationale3
class Person{

 d_String name;

 d_Date birthdate;

 d_Set < d_Ref<Person> > parents

 inverse children;

 d_List < d_Ref<Person> > children

 inverse parents;

 d_Ref<Apartment> lives_in

 inverse is_used_by;

Person();

int age();

void marriage(d_Ref<Person> spouse);

void birth(d_Ref<Person> child);

d_Set< d_Ref<Person> > ancestors;;

virtual d_Set<d_String> activities();

};

class Employee: Person{

float salary;

virtual d_Set<d_String> activities();

};

Methods

Const ru ctor : a new Person is born

Retu rns an atomic type

This person gets a spouse

Th is person gets a chi ld

Set of ancestors of th is Person

A redefinable method

A subclass of Person

Method

This method is redefined
46 ODMG OQL User Manual

The ODMG model
class Student: Person{

d_String grade;

virtual d_Set<d_String> activities();

};

A su bclass of Person

Method

The m ethod is redefined
ODMG OQL User Manual 47

OQL Rationale3
class Address{

int number;

d_String street;

};

class Building{

Address address;

d_List< <d_Ref<Apartment> > apartments

inverse building;

d_Ref<Apartment> less_expensive();

};

class Apartment{

int number;

d_Ref<Building> building;

d_Ref<Person> is_used_by

inverse lives_in;

};

d_Set< d_Ref<Person> > Persons;

d_Set< d_Ref<Apartment> > Apartments;

d_Set< d_Ref<Apartment> > Vacancy;

d_List< d_Ref<Apartment> > Directory;

};

A complex value Address embedded in th is object

Method

All persons and em ployees

The Apartem ent class exten t

The set of vacan t appartements

The l ist of appartements ordered by their number of rooms
48 ODMG OQL User Manual

OQL by example : Path expressions
3.3 OQL by example

Let us now tu rn to an example based presentat ion of OQL. We use the
database descr ibed in the previous sect ion, and instead of t rying to be
exhaust ive, we give an overview of the most relevan t featu res.

Path expressions

As explained above, one can en ter a database through a named object ,
bu t more general ly as soon as one gets an object (wh ich comes, for
instance, from a C++ expression), one needs a way to “navigate” from it
and reach the r igh t data one needs. To do th is in OQL, we use the “. ” (or
indi fferent ly “-> ”) notat ion wh ich enables us to go inside complex
objects, as well as to fol low simple relat ionsh ips. For instance, given a
Person p to know the name of the st reet where th is person lives, we use
the fol lowing OQL query:

Th is qu ery star ts from a Person , tr averses an Apartment , arr ives in a
Building and goes inside the complex at t r ibu te of type Address to get
the st reet name.

Th is example t reated 1-1 relat ionsh ip, let us now look at n-p
relat ionships. Assu me we wan t the names of the ch ildren of the person
p. We cannot wr ite: p.children.name because children is a List of
references, so the in terpretation of the resu lt of th is query wou ld be
u ndefined. Intu it ively, the resu lt shou ld be a col lect ion of names, bu t we
need an unambiguou s notation to t raverse su ch a mu lt iple relat ionsh ip
and we u se the select-from-where clause to handle col lect ions just as
in SQL.

The resu lt of th is qu ery is a valu e of type Bag<Str ing>. If we want to get
a Set , we simply drop duplicates, l ike in SQL by u sing the distinct
keyword.

p.lives_in.building.adddress.street

select c.name

from c in p.children

select distinct c.name

from c in p.children
ODMG OQL User Manual 49

OQL Rationale3
Now we have a m eans to navigate from any object to any other object
following any relat ionsh ip and enter ing any com plex subvalu es of an
object .

For instance, we want the set of addresses of the children of each
Person of the database. We know the col lection named Persons
con tains all the persons of the database. We have now to t raverse two
col lect ions: Persons and Person::children . Like in SQL, the select-
from operator allows u s to qu ery more than one col lection . These
col lect ions then appear in the from par t . In OQL, a collect ion in the
from par t can be der ived from a previous one by fol lowing a path which
star ts from i t , and the answer is:

Th is query inspects all chi ldren of al l persons. Its resu lt is of the type
Bag<Address>.

• Predicate

Of course, the where clause can be used to define any predicate which
then serves to select the data matching the predicate. For instance, to
rest r ict the previous resu lt to the people living on Main St reet , and
having at least 2 ch ildren who do not l ive in the same apar tm en t as their
paren ts, the qu ery is:

• Join

In the from clau se, col lect ions wh ich are not direct ly related can also be
declared. As in SQL, th is al lows u s to compute “joins” between these
col lect ions. For instance, to find the people l iving in a st reet and having
the same name as th is st reet , we do the following: the Building exten t
is not defined in the schema, so we have to compute it from the
Apartments extent . To compu te th is intermediate resu lt , we need a
select-from operator again. So the join is done as fol lows:

select c.lives_in.building.address

from p in Persons,

 c in p.children

select c.lives_in.building.address

from p in Persons,

 c in p.children

where

p.lives_in.building.address.street

= "Main Street" and

count(p.children) >= 2 and

c.lives_in != p.lives_in
50 ODMG OQL User Manual

OQL by example : Data manipulation

Th is qu ery h ighl ights the need for an opt imizer . In th is case, the inner
select su bquery must be computed once and not for each person !

Data manipulation

A major difference between OQL and SQL is that an object query
language must man ipu late complex values. OQL can therefore create
any complex value as a final resu lt , or inside the qu ery as in termediate
compu tation .

To bu ild a complex value, OQL u ses the const ructors struct , set , bag ,
list and array . For example, to obtain the addresses of the ch ildren of
each person , along with the address of th is person, we use the fol lowing
qu ery:

select p

from p in Persons,

 b in (select distinct a.building

 from a in Apartments)

where p.name = b.address.street

select struct(me: p.name,

my_address:

p.lives_in.building.address,

my_children:

(select struct(

 name: c.name,

address:

c.lives_in.building.address)

from c in p.children))

from p in Persons
ODMG OQL User Manual 51

OQL Rationale3
Th is gives, for each person, the name, the address, and the name and
address of each child. The type of the resu lt is a bag of the fol lowing
st ruct :

OQL can also create complex objects. For th is pu rpose, i t u ses the nam e
of a class as a const ru ctor . At t r ibu tes of the object of th is class can be
in i t ial ized explici t ly by any valid expression.

For instance, to create a new bu ilding with 2 apartments, if there is a
type name in the schema, called List_apart , defined by:

tydedef List<<Ref<Apartment> > List_apart;

the query is:

Method invoking

OQL al lows method cal ls with or withou t parameters anywhere the
resu lt type of the method matches the expected type in the query. In
case the method has no parameter , the syn tax for method cal l is the
same as for accessing an at t r ibu te or t raversing a relat ionship. If the
method has parameters, these are given between parenthesis. This
flexible syntax frees the u ser from knowing whether the proper ty is

struct{

 String me;

 Address my_address;

 Bag<struct{String name;

 Address address}> my_children;

}

Building(

address:

 Address (number: 10,

 street: "Main street"),

apartments:

 List_apart(list(Apartment(number: 1),

 Apartment(number: 2))))
52 ODMG OQL User Manual

OQL by example : Polymorphism
stored (an at t r ibu te) or computed (a method). For instance, to get the
age of the oldest chi ld of “Paul” , we wr i te the following qu ery:

Of cou rse, a m ethod can retu rn a complex object or a collect ion and
then i ts cal l can be embedded in a com plex path expression. For
instance, inside a bu ilding b, to know who inhabits those least
expensive apar tmen t, we use the fol lowing path expression:

Although less_expensive is a method we “t raverse” i t as i f i t were a
relat ionship.

Polymorphism

A major cont r ibu t ion of object technology is the possibil ity of
manipu lat ing polymorphic collect ions, and thanks to the “late binding”
mechan ism, to carry ou t gener ic act ions on the elements of these
col lections. For instance, the set Persons contains objects of class
Person , Employee and Student . So far , al l the quer ies against the
Persons exten t dealt with the three possible classes of objects of the
col lection . A qu ery is an expression whose operators operate on typed
operands. It is correct i f the type of operands matches those requ ired by
the operators. In th is sense, OQL is a typed qu ery language. Th is is a
necessary condit ion for an efficient qu ery optimizer . When a
polym orph ic col lect ion is fil tered (for instance Persons), its elements
are stat ically known to be of that class (for instance Person). This
means that a property of a subclass (att r ibu te or method) cannot be
appl ied to su ch an element , except in two impor tant cases: late binding
to a method, or explicit class indicat ion.

• Late binding

To list the act ivit ies of each person , we use the following qu ery:

select max(select c.age

 from c in p.children)

from p in Persons,

where p.name = "Paul"

b.less_expensive.is_used_by.name

select p.activities

from p in Persons
ODMG OQL User Manual 53

OQL Rationale3
activities is a m ethod wh ich has 3 incarnat ions, one for Student ,
one for Employee and one for gener ic Person . Depending on the k ind of
person of the cu rren t p, the r igh t incarnation is cal led.

• Class indicator

To go down the class hierarchy, a user may expl icit ly declare the class of
an object that cannot be in ferred stat ical ly. The in terpreter then has to
check at ru nt ime, that th is object actually belongs to the indicated class
(or one of i ts su bclasses).

For example, assu ming we know that on ly “stu den ts” spend their t ime
in following a cou rse of study, we can select those persons and get their
grade. We expl icit ly indicate in the query that these persons are
studen ts:

Operator composition

OQL is a pu rely funct ional language: al l operators can be composed
freely as long as the type system is respected. Th is is why the language
is so simple and i ts manu al so short . Th is phi losophy is di fferent from
SQL, wh ich is an ad-hoc language whose composit ion ru les are not
or thogonal to the type system. Adopt ing a complete or thogonali ty,
makes the language easier to learn withou t losing the SQL style for
simple quer ies. Among the operators offered by OQL bu t not yet
int rodu ced, we can ment ion the set operators (union , intersect ,
except), the un iversal (forall) and existen t ial quant i fiers (exists), the
order by and group by operators and the aggregat ive operators
(count , sum, min , max and avg).

To il lust rate th is free composit ion of operators, let us wr ite a rather
elaborate query. We wan t to know the name of the street where the set
of employees l iving on that st reet and have the smal lest average salary,
compared to the sets of employees living in other st reets. We proceed
step by step and use the define OQL instruction to evaluate temporary
resu lts.

select ((Student)p). grade

from p in Persons

where "course of study" in p.activities
54 ODMG OQL User Manual

OQL by example : Operator composition
1. Bu ild the exten t of class Employee (not suppor ted direct ly by the
schema)

2. Grou p the employees by st reet and compute the average salary in
each st reet

The group by operator spl its the employees in to par t i t ions,
according to the cr iter ion (the name of the st reet where th is person
l ives). The select clause compu tes, in each par t it ion, the average of
the salar ies of the em ployees belonging to th is par t i t ion .

The resu lt of the query is of type:

3. Sort th is set by salary

define Employees as

select (Employee) p

from p in Persons

where "has a job" in p.activities

define salary_map as

select street,

 average_salary: avg (select p.e.salary
 from partition p)

from e in Employees

group by e.lives_in.building.address.street

Bag<struct{String street;

 float average_salary;}>

define sorted_salary_map as

 select s from s in salary_map

 order by s.average_salary
ODMG OQL User Manual 55

OQL Rationale3
The resu lt is of type:

4. Now get the smallest salary (the fir st in the list) and take the
cor responding st reet name. This is the final resu lt .

In a single qu ery, we cou ld have wr i t ten :

List<struct{String street;

 float average_salary;}>

sorted_salary_map[0].street

(select street,

 average_salary: avg (select p.e.salary
 from partition p)
from e in (select (Employee) p

 from p in Persons

 where "has a job" in p.activities)

group by e.lives_in.building.address.street

order by avg (select p.e.salary from partition p))

[0]. street
56 ODMG OQL User Manual

4
4 OQL Reference
This chapter gives the fu l l r eferencial in format ion of the object qu ery
language OQL.

The chapter is divided in to the fol lowing sect ions:

• In t rodu ct ion

• Principles

• Langu age Defin it ion

• Syntact ical Abbreviations

• OQL BNF

The information given below is the same as that of the ODMG standard1
with notes added on how to use th is language with O2.

1. The Object Database Standard: ODMG - 93. Atwood, Du hl, Ferran, Loomis and Wade.
Edited by R.G.G. Cattell. © 1996 Morgan Kaufman Publishers.
ODMG OQL User Manual 57

4

4.1 Introduction

In th is chapter , a formal and complete defin it ion of the langu age is
given . For each featu re of the language, we give the syntax, i ts
semant ics, and an exam ple. Alternate syn tax for some featu res are
descr ibed in Sect ion 4.4, wh ich completes OQL in order to accept any
syn tact ical form of SQL.

The chapter ends with the formal syntax wh ich is given in Sect ion 4.5

4.2 Principles

Our design is based on the fol lowing pr inciples and assu mpt ions:

• OQL rel ies on the ODMG object model.

• OQL is a su perset of the standard SQL part wh ich al lows you to qu ery
a database. Thus, any select SQL sentence wh ich runs on relat ional
tables, works with the sam e syntax and semant ics on collect ions of
ODMG objects. Extensions concern Object Or ien ted not ions, like
com plex objects, object iden t ity, path expression, polymorphism,
operat ion invocat ion, late binding etc...

• OQL provides high -level pr imit ives to deal with sets of objects bu t
does not rest r ict i ts at ten tion to th is col lection const ru ct . Thu s, it
also provides pr imit ives to deal with structu res, l ists, ar rays, and
t reats al l su ch const ru cts with the same efficiency.

• OQL is a funct ional langu age where operators can freely be composed,
as soon as the operands respect the type system. This is a
consequ ence of the fact that the resu lt of any query has a type wh ich
belongs to the ODMG type model, and thu s can be qu er ied again .

• OQL is not computat ional ly complete. I t is an easy to use query
language which provides easy access to an object database.

• Based on the same type system, OQL can be invoked direct ly from
with in programming langu ages for which an ODMG binding is
defined, e.g., C++. Conversely, OQL can invoke operat ions
programmed in these languages.

• OQL does not provide explici t u pdate operators bu t rather can invoke
operat ions defined on objects for that pu rpose, and thus does not
breach the semant ics of an Object Database which , by defin i t ion , is
m anaged by the "m ethods" defined on the objects.

• OQL provides declarat ive access to objects. Thu s OQL quer ies can be
easily opt imized by vir tue of th is declarat ive natu re.

• The formal semant ics of OQL can easily be defined.
58 ODMG OQL User Manual

Language Definition : Query Program
4.3 Language Definition

OQL is an "expression" langu age. A query expression is bu i lt fr om typed
operands composed recu rsively by operators. We wil l use the term
expression to designate a val id query in th is sect ion .

4.3.1 Query Program

A query program consists of a (possibly empty) set of query defin it ion
expressions fol lowed by an expression , wh ich is evaluated as the query
i tself. The set of query defin i t ion expressions is non recursive (al though
a query may cal l an operation which issues a qu ery recursively).

For example:

Th is defines the set jones of students named Jones, and evalu ates the
set of their student_ids .

O2 note
With the O2 query in terpreter you use CTRL-D (on Unix) or CTRL-Z (On
Windows) between two qu er ies rather that ";".

4.3.2 Named Query Definition
I f q is an ident ifier and e is a qu ery expression , then define q as e is
a query defin it ion expression wh ich defines the qu ery with name q.

Example:

define jones as select distinct x from Students x

 where x.name = "Jones";

select distinct student_id from jones

define Does as select x from Student x

where x.name ="Doe"
ODMG OQL User Manual 59

4

Th is statement defines Does as a query retu rning a bag con tain ing al l the
studen ts whose name is Doe.

Th is statement defines Doe as a qu ery wh ich retu rns the student whose
name is Doe (if there is only one, otherwise an except ion is raised).

O2 note

• def i ne operat ion is avai lable only with the in teract ive qu ery
interpreter . It has no meaning for OQL embedded in programming
languages (C++, Smalltalk , O2C) becau se standard programm ing
language var iables can be u sed for that pu rpose.

• A defined nam e is valid up to the next commit or abort

• You can get the l ist of cu rren t defined quer ies by typing the qu ery:
d i spl ay quer i es

4.3.3 Elementary Expressions

4.3.3.1 Atomic Literals

If l is an atom ic l iteral, then l is an expression whose value is the l iteral
i tself.

Li terals have the usual syn tax:

• Object Literal : n il

• Boolean Li teral: false, true

• Integer Li teral: sequence of digi ts, e.g, 27

• Float Literal : mant issa/ exponen t . The exponent is opt ional, e.g., 3.14
or 314.16e-2

• Character Li teral: character between sim ple quotes, e.g., ’z’

• Str ing Literal : character st r ing between double quote, e.g.,"a st r ing"

4.3.3.2 Named Ob jects

If e is a named object , then e is an expression. It defines the ent ity
at tached to the name.

define Doe as element(select x from Student x

where x.name="Doe")
60 ODMG OQL User Manual

Language Definition : Construction Expressions
Example:

Th is qu ery defines the set of students. We have assum ed here that the
name Students exists which cor responds to the exten t of objects of the
class Student .

4.3.3.3 Iterator Variable

I f x is a var iable declared in a from part of a select -from -where..., then x
is an expression whose valu e is the cu r rent element of the i terat ion over
the corresponding collect ion.

4.3.3.4 Named Query

I f define q as e is a qu ery defin i t ion expression , then q is an
expression .

Example:

Th is qu ery retu rns the student with name Doe. It refers to the qu ery
defin i t ion expression declared in Sect ion 4.3.2.

4.3.4 Construction Expressions

4.3.4.1 Constructing Objects

I f t is a type name, p1, p 2, ...,p n are propert ies of t , and e 1, e 2,
...,e n are expressions, then t (p 1: e 1..., p n: e n) is an expression .

Th is defines a new object of type t whose propert ies p 1, p 2, ...,p n
are in it ial ized with the expressions e1, e 2, ...,e n. The type of ei must
be compat ible with the type of pi .

I f t is a type name of a col lection and e is a col lect ion l iteral , then t(e)
is a col lection object . The type of e mu st be compat ible with t .

Examples:

Th is creates a mutable Employee object .

Students

Doe

Employee (name: "Peter", boss: Chairman)
ODMG OQL User Manual 61

4

Th is creates a mu table set object (assum ing that vect i n t is the name of
a class whose type is Bag<in t>).

4.3.4.2 Constructing Structures

If p1, p 2, ...,p n are property names, and e1, e 2, ..., e n are
expressions, then

struct (p 1: e 1, p 2: e 2, ..., p n: e n)

is an expression . It defines the st ru ctu re tak ing values e1, e 2, ..., e n
on proper t ies p1, p 2, ...,p n.

Note that th is dynam ically creates an instance of the type struct(p 1:
t 1, p 2: t 2, ..., p n: t n) i f t i is the type of ei .

Example:

Th is retu rns a st ru ctu re with two at t r ibu tes name and age tak ing
respect ive valu es Peter and 25 .

See also abbreviated syn tax in some contexts, in Sect ion 4.4.1.

4.3.4.3 Constructing Sets

If e1, e 2, ..., e n are expressions, then set(e 1, e 2, ..., e n) is an
expression . It defines the set con tain ing the elements e1, e 2, ..., e n.
It creates a set instance.

Example:

Th is retu rns a set consist ing of the three elements 1, 2, and 3.

4.3.4.4 Constructing Lists

If e 1, e 2, ..., en are expressions, then

 list(e 1, e 2, ..., e n) or simply (e 1, e 2, ..., e n)

are expressions. They define the l ist having elements e1, e 2, ..., e n.
They create a l ist instance.

If m in , m ax are two expressions of integer or character types, such that
min < max, then

vectint (set(1,3,10))

struct(name: "Peter", age: 25);

set(1,2,3)
62 ODMG OQL User Manual

Language Definition : Construction Expressions
 list(min .. max) or simply (min .. max)

are expressions whose valu e is: list (min , min+1, ... m ax-1, max)

Example:

Th is retu rns a list of fou r elements.

Example:

Th is retu rns the l ist (3,4,5)

O2 note
In O2 the keyword l i st is mandatory.

4.3.4.5 Constructing Bags

I f e1, e 2, ..., e n are expressions, then bag(e 1, e 2, ..., e n) is an
expression . I t defines the bag having elements e1, e 2, ..., e n. It
creates a bag instance.

Example:

Th is retu rns a bag of five elements.

4.3.4.6 Constructing Arrays

I f e1, e 2, ..., e n are expressions, then array(e 1, e 2, ..., e n) is
an expression. It defines an array having elements e1, e 2, ..., e n. It
creates an array instance.

Example:

Th is retu rns an array of five elements.

list(1,2,2,3)

list(3 .. 5)

bag(1,1,2,3,3)

array(3,4,2,1,1)
ODMG OQL User Manual 63

4

4.3.5 Atomic Types Expressions

4.3.5.1 Unary Expressions

If e is an expression and <op> is a unary operat ion val id for the type of
e, then <op> e is an expression . It defines the resu lt of applying <op> to
e.

Ar ithmet ic unary operators are: +, -, abs

Boolean unary operator is: not.

Example:

Th is retu rns false .

4.3.5.2 Binar y Expressions

If e1 and e2 are expressions and <op> is a binary operat ion, then
e1<op>e 2 is an expression. It defines the resu lt of applying <op> to e1
and e2.

Ar ithmet ic in teger binary operators are: +, -, *, / , mod (modu lo)

Float ing poin t binary operators are: +, -, *, /

Relat ional binary operators are: =, !=. <. <=, >, >=

These operators are defined on all atom ic types.

Boolean binary operators are: and, or

Example:

Th is retu rns the di fference between the number of studen ts and the
number of TAs.

4.3.5.3 Strin g Expressions

If s1 and s2 are expressions of type st r ing, then

 s1 || s 2, and s1 + s 2

are equ ivalen t expressions of type st r ing whose valu e is the
concatenation of the two st r ings.

not true

count(Students) - count(TA)
64 ODMG OQL User Manual

Language Definition : Atomic Types Expressions
O2 note
In O2 the operator | | is not accepted. To concatenate 2 st r ings use "+".

If c is an expression of type character , and s an expression of type
st r ing, then

 c in s

is an expression of type boolean whose valu e is t ru e if the character
belongs to the st r ing, else false.

If s is an expression of type st r ing, and i is an expression of type
integer, then

 s[i]

is an expression of type character whose valu e is the i+1th character of
the st r ing.

If s is an expression of type st r ing, and low and up are expressions of
type integer, then

 s[low:up]

is an expression of type st r ing whose valu e is the subst r ing of s fr om the
low+1 th character up to the u p+1 th character .

If s is an expression of type st r ing, and pattern a st r ing li teral which
may include the wildcard characters: "?" or "_", meaning any character ,
and "* " or "%", m ean ing any subst r ing including an empty su bst r ing,
then

 s like pattern

is an expression of type boolean whose valu e is t ru e if s matches the
pat tern, else false.

 Example:

 is t ru e.

’a nice string’ like ’%nice%str_ng’
ODMG OQL User Manual 65

4

O2 note
In O2 the on ly suppor ted wildcard is "*".

4.3.6 Object Expressions

4.3.6.1 Comparison of Mutable Ob jects

If e1 and e2 are expressions wh ich denote mutable objects (objects with
iden ti ty) of the same type, then

 e1 = e 2 and e1 != e 2

are expressions which retu rn a boolean . The second expression is
equ ivalent to not(e 1 = e 2) .

e1 = e 2 is t rue i f they designate the same object .

Example:

is true.

4.3.6.2 Comparison of Immutable Ob jects

If e1 and e2 are expressions wh ich denote im mutable objects (li terals) of
the same type, then

 e 1 = e 2 and e1 != e 2

are expressions which retu rn a boolean . the second expression is
equ ivalent to

not(e 1 = e 2).

e1 = e 2 is t rue i f the value e1 is equal to the valu e e2.

4.3.6.3 Extractin g an Attribute or Traversin g a Relationship from an Ob ject

If e is an expression , i f p is a property name, then e->p and e.p are
expressions. These are al ternate syntax to extract the property p of an
object e .

If e happens to designate a deleted or a non exist ing object , i.e. nil , an
at tempt to access the at t r ibu te or to t raverse the relat ionship raises an
except ion. However, a query may test expl icit ly i f an object is different
from nil before accessing a property.

Doe = element(select s from Students s

where s.name = "Doe")
66 ODMG OQL User Manual

Language Definition : Object Expressions
Example:

Th is retu rns Doe.

Example:

Th is retu rns true , if Doe has a spou se whose name is Carol, or else
false .

O2 note
According to a recent evolu t ion of the ODMG standard, OQL does not
now raise an except ion when i t t raverses a path which con tains a nil .
Instead of th is, a predicate involving such a path is always false . This
means that OQL now sk ips su ch elements and thus the expl ici t test to
nil is not yet mandatory.

4.3.6.4 Applying an Operation to an Object

I f e is an expression, if f is an operat ion name, then

 e->f and e.f

are expressions. These are alternate syntax to apply on operat ion on an
object . The value of the expression is the one retu rned by the operation
or else the object nil , i f the operat ion retu rns nothing.

Example:

Th is applies the operat ion number_of_students to jones .

4.3.6.5 Applying an Operation with Parameters to an Object

I f e is an expression , if e1, e 2 , ..., en are expressions, if f is an
operation name, then

e->f(e 1, e 2, ..., e n) and e.f(e 1, e 2, ..., e n)

are expressions that apply operat ion f with parameters e1, e 2, ...,
en to object e. The valu e of the expression is the one retu rned by the
operation or else the object n il , i f the operat ion retu rns noth ing.

In both cases, i f e happens to designate a deleted or a non exist ing object ,
i .e. nil , an at tempt to apply an operat ion to i t raises an except ion.

Doe.name

Doe->spouse != nil and Doe->spouse->name = "Carol"

jones->number_of_students
ODMG OQL User Manual 67

4

However , a query may test expl icit ly i f an object is different from nil
before applying an operat ion .

Example:

Th is query cal ls the operation apply_course on class Studen t for the
object Doe. It passes two parameters, a st r ing and an object of class
Professor . The operat ion retu rns an object of type Cou rse and the query
retu rns the number of th is cou rse.

4.3.6.6 Dereferencing an Object

If e is an expression which denotes an object with ident i ty (a mu table
object), then *e is an expression wh ich delivers the valu e of the object (a
l iteral).

Example:

Given two var iables of type Person, p1 and p2 , the predicate

 p1 = p2

is true i f both var iables refer to the same object , whi le

 *p1 =*p2

is t rue i f the objects have the same values, even i f they are not the same
objects.

4.3.7 Collections Expressions

4.3.7.1 Universal Quantification

If x is a var iable name, e1 and e2 are expressions, e1 denotes a collect ion
and e2 a predicate, then

for all x in e 1: e 2

is an expression . It retu rns true if all the elements of collect ion e1 sat isfy
e2 and false otherwise.

Example:

Th is retu rns true if al l the objects in the Students set have a posit ive
value for their student_id att r ibu te. Otherwise it retu rns false .

 Doe->apply_course("Maths", Turing)->number

for all x in Students: x.student_id > 0
68 ODMG OQL User Manual

Language Definition : Collections Expressions
4.3.7.2 Existential Quantification

I f x is a var iable name, if e1 and e2 are expressions, e1 denotes a
col lection and e2 a predicate, then

exists x in e 1: e 2

is an expression. It r etu rns true if there is at least one element of
col lection e1 that sat isfies e2 and false otherwise.

Example:

Th is retu rns true i f at least one course Doe takes is tau gh t by someone
named Tur ing.

I f e is a col lect ion expression , then

 exists(e) and unique(e)

are expressions wh ich retu rn a boolean valu e. The fi rst one retu rns t ru e
i f there exists at least one element in the collect ion, whi le the second one
retu rns t ru e, i f there exists only one element in the col lect ion .

Not ice that these operators allow the acceptance of the SQL syntax for
nested quer ies such as:

select ... from col where exists (select ... from col 1
where predicate)

The nested qu ery retu rns a bag to wh ich the operator exists is appl ied.
Th is is of course the task of an opt im izer to recognize that it is u seless to
compu te effect ively the intermediate bag resu lt .

O2 note
In O2 these two last operat ions are not suppor ted. Only the form "ex i st s
x i n e1: e2" is valid.

4.3.7.3 Membership Testing

I f e1 and e2 are expressions, e 2 is a collect ion, e1 has the type of its
elements, then

 e1 in e2

is an expression. It retu rns true if element e1 belongs to col lect ion e2.

Example:

Th is retu rns true .

exists x in Doe.takes: x.taught_by.name = "Turing"

Doe in Does
ODMG OQL User Manual 69

4

4.3.7.4 Aggregate Operators

If e is an expression which denotes a col lection , i f <op> is an operator
from {min, max, count, sum, avg} , then <op>(e) is an expression .

Example:

Th is retu rns the maximu m salary of the Professors.

4.3.8 Select From Where
If e 1, e 2, ..., en are expressions which denote col lect ions, and x1, x 2,
..., x n are var iable names, if e’ is an expression of type boolean , and
i f projection is an expression or the character *, then

select projection from e 1 as x 1, e 2 as x 2 .., e n as x n where e’

and

select distinct projection from e 1 as x 1, e 2 as x 2 ..., e n as
xn where e

are expressions.

The resu lt of the query is a set for a select distinct or a bag for a
select.

If you assu me e1, e 2, ..., e n are al l set and bag expressions, then
the resu lt is obtained as follows: take the car tesian product1 of the sets
e1, e 2, ..., e n; fil ter that product by expression e’ (i.e., el im inate from
the resu lt all objects that do not sat isfy boolean expression e’); apply
the projection to each one of the elements of th is fi ltered set and get the
resu lt. When the resu lt is a set (dist inct case) duplicates are
au tomat ical ly elim inated.

The si tu at ion where one or more of the col lect ions e1, e 2, ..., e n is
an indexed collect ion is a l it t le more complex. The select operator fi rst
converts al l these col lect ions in to sets and applies the previous
operat ion . The resu lt is a set (dist inct case) or else a bag. So, in th is case,
we sim ply t ransform each of the ei ’s into a set and apply the previous
defin it ion .

4.3.8.1 Projection

Before the project ion , the resu lt of the i terat ion over the from var iables is
of type

1. The car tesian produ ct between a set and a bag is defined by fir st convert ing the set in to
a bag, and then get t ing the resu lt ing bag which is the cartesian produ ct of the two bags.

max (select salary from Professors)
70 ODMG OQL User Manual

Language Definition : Select From Where
bag< struct(x 1: type_of(e 1 elements), ... x n: type_of(e n
elements)) >

The project ion is const ructed by an expression which can then refer
implici t ly to the "cu rrent" element of th is bag, using the var iables x i . If
for ei neither expl icit nor impl icit var iable is declared, then x i is given an
internal system name (wh ich is not accessible by the qu ery anyway).

By convent ion, i f the project ion is simply "*", then the resu lt of the
select ion is the sam e as the resu lt of the iterat ion.

If the project ion is "dist inct *", the resu lt of the select is th is bag
converted into a set .

In al l other cases, the project ion is expl ici t ly computed by the given
expression .

Example:

Th is retu rns a bag of objects of type couple giving stu den t nam es and
the names of the fu ll professors from which they take classes.

Example:

Th is retu rns a bag of st ructu res, giving for each student "object ", the
sect ion object followed by the studen t and the fu ll professor "object "
teaching in th is sect ion:

bag< struct(x: Student, y: Section, z: Professor) >

4.3.8.2 Iterator Variables

A var iable, x i , declared in the from part ranges over the collect ion ei and
thus has the type of the elements of th is col lect ion. Such a var iable can
be used in any other par t of the qu ery to evalu ate any other expressions
(see the Scope Ru les in Section 4.3.15). Syn tactical var iat ions are

select couple(student: x.name, professor: z.name)

from Students as x,

 x.takes as y,

 y.taught_by as z

where z.rank = "full professor"

select *

from Students as x,

x.takes as y,

y.taught_by as z

where z.rank = "full professor"select *
ODMG OQL User Manual 71

4

accepted for declar ing these var iables, exact ly as with SQL. The as
keyword m ay be omit ted. Moreover , the var iable itsel f can be omit ted,
and in th is case, the name of the col lect ion itself serves as a var iable
name to range over i t .

Example:

O2 note
In O2 an addit ional syn tax is al lowed to declare a var iable x:

"... f r om x i n col lect ion ...".

This syntax wil l also be inclu ded in the next release of the ODMG
standard.

4.3.8.3 Predicate

In a select -from -where qu ery, the w here clau se can be omit ted, with the
mean ing of a t rue predicate.

4.3.9 Group-by Operator
If select_query is a select -from -where qu ery, partition_attributes is a
st ructu re expression and predicate a boolean expression , then

 select_query group by part ition_attributes

is an expression and

 select_query group by partition_attributes having predicate

is an expression.

The car tesian product visi ted by the select operator is spli t in to
par t i t ions. For each element of the car tesian product, the par t it ion
at t r ibu tes are evaluated. All elements wh ich match the sam e values
according to the given par t it ion at tr ibu tes, belong to the same par t i t ion.
Thus the par t i t ioned set , after the grou ping operat ion is a set of
st ructu res: each st ru ctu re has the valu ed propert ies for th is par t i t ion
(the valu ed partition_attributes), completed by a property which is

select couple(student: Students.name, professor: z.name)

from Students,

Students.takes y,

y.taught_by z

where z.rank = "full professor"
72 ODMG OQL User Manual

Language Definition : Group-by Operator
conven tionally cal led partition and wh ich is the bag of al l objects
match ing th is par t icu lar valu ed par t it ion.

If the par t it ion att r ibu tes are:

att 1: e 1, att 2: e 2, ... , att n: e n ,

then the resu lt of the grou ping is of type

set< struct(att 1: type_of(e 1), att 2: type_of(e 2),...,
 att n: type_of(e n),
 partition: bag< type_of(grouped elements) >)

The type of grouped elements is defined as follows.

If the from clau se declares the var iables v1 on col lect ion col 1, v 2 on
col 2, ..., v n on col n, the grouped elements form a st ructu re with one
at t r ibu te "vk" for each col lect ion having the type of the elements of the
cor responding col lect ion .

partition: bag< struct(v 1: type_of(col 1 elements), ... ,
 v n: type_of(col n elements))>.

I f a col lection col k has no var iable declared the cor responding att r ibu te
has an in ternal system name.

Th is par t i t ioned set may then be fi ltered by the predicate of a having
clause. Finally, the resu lt is compu ted by evaluat ing the select clause for
th is par t i t ioned and fil tered set .

The having clau se can thus apply aggregate fu nct ions on partit ion,
l ikewise the select clause can refer to partition to compute the final
resu lt . Both clau ses can refer also to the par t i t ion at t r ibu tes.

Example:

Th is gives a set of th ree elem ents, each of which has a property called
partition wh ich con tains the bag of employees that en ter in th is
category. So the type of the resu lt is:

set<struct(low: boolean, medium: boolean, high: boolean,

 partition: bag<struct(e: Employee)>)>

The second form enhances the fi rst one with a having clau se which
enables you to fil ter the resu lt using aggregat ive fu nct ions wh ich operate
on each par t it ion.

select *

 from Employees e

group by low: e.salary < 1000,

 medium: e.salary >= 1000 and salary < 10000,

 high: e.salary >= 10000
ODMG OQL User Manual 73

4

Example:

Th is gives a set of cou ples: department and average of the salar ies of the
employees work ing in th is department , when th is average is more than
30000. So the type of the resu lt is:

bag<struct(department: integer, avg_salary: float)>

O2 note
In O2 the syn tax of partition_attributes does not accept the keyword
st ruct and thus is always given as a l ist of cr i ter ia separated by
commas. See Sect ion 4.4.1.

4.3.10 Order-by Operator
If select_query is a select -from -where or a select -from-where-grou p_by
qu ery, and if e1, e 2, ..., e n are expressions, then

 select_query order by e 1, e 2, ..., e n

is an expression. It retu rns a l ist of the selected elements sor ted by the
funct ion e1, and inside each subset yielding the same e1, sorted by e 2,
... , and the final subsub...set , sor ted by en.

Example:

Th is sor ts the set of persons on their age, then on their name and pu ts
the sor ted objects into the resu lt as a l ist .

Each sor t expression cr iter ion can be followed by the keyword asc or
desc, specifying respect ively an ascending or descending order . The
defau lt order is that of the previous declarat ion. For the first expression ,
the defau lt is ascending.

select department,

 avg_salary: avg(select p.e.salary from partition p)

from Employees e

group by department: e.deptno

having avg(select p.e.salary from partition p) > 30000

select p from Persons p order by p.age, p.name
74 ODMG OQL User Manual

Language Definition : Indexed Collection
Example:

4.3.11 Indexed Collection Expressions

4.3.11.1 Getting the i-th Element of an Indexed Collection

I f e1 and e2 are expressions, e1 is a list or an array, e2 is an integer, then
e1[e 2] is an expression. This ext racts the e2+1 th element of the
indexed collect ion e1. Not ice that the first element has the rank 0.

Example:

Th is retu rns b.

Example:

Th is retu rns the th ird prerequ isi te of Math 101.

4.3.11.2 Extracting a Subcollection of an Indexed Collection.

I f e1, e 2, and e3 are expressions, e1 is a l ist or an array, e2 and e3 are
integers, then e1[e 2:e 3] is an expression. This ext racts the
subcol lect ion of e1 star t ing at posit ion e2 and ending at posit ion e3.

Example:

Th is retu rns list (b,c,d) .

select * from p in Persons
order by p.age desc, p.name asc, p.department

list (a,b,c,d) [1]

element (select x

 from Courses x

 where x.name = "math" and

 x.number ="101").requires[2]

list (a,b,c,d) [1:3]
ODMG OQL User Manual 75

4

Example:

Th is retu rns the l ist consist ing of the fi rst three prerequ isites of Math
101.

4.3.11.3 Getting the First and Last Elements of an Indexed Collection

If e is an expression, if <op> is an operator from {first, last} , e is a
l ist or an ar ray, then <op>(e) is an expression . Th is extracts the fi rst and
last elem ent of a col lection .

Example:

Th is retu rns the first prerequ isite of Math 101.

4.3.11.4 Concatenating Two Indexed Collections

If e1 and e2 are expressions, i f e1 and e2 are both lists or both ar rays,
then e1+e2 is an expression. This computes the concatenat ion of e1 and
e2.

Example:

Th is query generates list (1,2,2,3) .

element (select x

 from Courses x

 where x.name="math" and

 x.number="101").requires[0:2]

first(element(select x

 from Courses x

 where x.name="math" and

 x.number="101").requires)

list (1,2) + list(2,3)
76 ODMG OQL User Manual

Language Definition : Binary Set Expressions
4.3.12 Binary Set Expressions

4.3.12.1 Union, Intersection, Difference

I f e1 and e2 are expressions, if <op> is an operator from {union,
except, intersect}, if e1 and e2 are sets or bags, then e1 <op> e 2
is an expression. This computes set theoret ic operations, un ion,
di fference, and intersect ion on e1 and e2, as defined in Chapter 2.

When the col lection k inds of the operands are different (bag and set), the
set is converted in to a bag beforehand and the resu lt is a bag.

Examples:

Th is retu rns the set of stu den ts who are not Teaching Assistants.

Th is bag expression retu rns bag(2,2,3,3,3,2,3,3,3)

The in tersect ion of 2 bags yields a bag that con tains the minimum for
each of the mu lt iply values. So the resu lt is: bag(2,3,3)

Th is bag expression retu rns bag(2)

4.3.12.2 Inclusion

I f e1 and e2 are expressions which denote sets or bags, i f <op> is an
operator from {<, <=, >, >=}, then e1 <op> e2 is an expression whose
value is a boolean.

When the operands are di fferen t k inds of col lect ions (bag and set), the
set is first converted in to a bag.

Student except Ta

bag(2,2,3,3,3) union bag(2,3,3,3)

bag(2,2,3,3) intersect bag(2,3,3,3)

bag(2,2,3,3,3) except bag(2,3,3,3)
ODMG OQL User Manual 77

4

e1 < e 2 is t rue i f e1 is inclu ded into e2 bu t not equal to e2

e1 <= e 2 is t rue i f e1 is inclu ded into e2

Example:

 is t rue.

4.3.13 Conversion Expressions

4.3.13.1 Extractin g the Element of a Sin gleton

If e is a col lect ion -valu ed expression, element(e) is an expression . Th is
takes the singleton e and retu rns i ts element . If e is not a singleton th is
raises an exception .

Example:

Th is retu rns the professor whose nam e is Turing (i f there is on ly one).

4.3.13.2 Turnin g a List into a Set

If e is a l ist expression, listtoset(e) is an expression. This conver ts
the l ist into a set, by forming the set con tain ing all the elements of the
l ist .

Example:

Th is retu rns the set contain ing 1, 2, and 3.

O2 note
To carry ou t the reverse operat ion (set to list) you use the order by
operator . I f you are not interested in a given order you can use "*" as
shown in the fol lowing query:

select e from e in aSet order by *

set(1,2,3) < set(3,4,2,1)

element(select x from Professors x

where x.name ="Turing")

listtoset (list(1,2,3,2))
78 ODMG OQL User Manual

Language Definition : Conversion Expressions
4.3.13.3 Removing Duplicates

I f e is an expression whose value is a col lect ion , then

 distinct(e)

is an expression whose value is the same collect ion after removing the
dupl icated elements. If e is a bag, distinct(e) is a set . If e is an ordered
col lection , the relat ive order ing of the remaining elements is preserved.

4.3.13.4 Flattening Collection of Collections

I f e is a col lect ion -valued expression, flatten(e) is an expression . This
converts a collect ion of col lect ions of t in to a col lect ion of t . So th is
flat tening operates at the first level only.

Assuming the type of e to be col 1<col 2<t>>,

the resu lt of flatten(e) is:

• If col 2 is a set (resp. a bag), the un ion of al l col 2<t> is done and the
resu lt is a set<t> (resp. bag<t>)

• If col 2 is a list (resp. an ar ray) and col 1 is a l ist (resp. an array) as
well , the concatenat ion of all col 2<t> is done following the order in
col 1 and the resu lt is col 2<t> , wh ich is thu s a l ist (resp. an array).
Of course duplicates, i f any, are maintained by th is operation .

• If col 2 is a list or an array and col 1 is a set or a bag, the lists or
arrays are converted in to sets, the un ion of al l these sets is done and
the resu lt is a set<t> , therefore withou t duplicates.

Examples:

Th is retu rns the set contain ing 1,2,3,4,5,6,7.

Th is retu rns list(1,2,1,2,3).

flatten(list(set(1,2,3), set(3,4,5,6), set(7)))

flatten(list(list(1,2), list(1,2,3)))

flatten(set(list(1,2), list(1,2,3)))
ODMG OQL User Manual 79

4

Th is retu rns the set contain ing 1,2,3.

4.3.13.5 Typing an Expression

If e is an expression, if c is a type name, then (c)e is an expression . Th is
asser ts that e is an object of class type c.

If i t tu rns ou t that it is not t ru e, an except ion is raised at run t ime. Th is
is usefu l to access a property of an object which is stat ical ly known to be
of a su perclass of the specified class.

Example:

Th is retu rns the set of salar ies of all stu den ts who are teaching
assistants, assuming that Students and Sections are the exten ts of the
classes Student and Section .

4.3.14 Function Call
If f is a funct ion name, if e1 , e2 , ..., e n are expressions, then

 f() and f(e1, e2, ... , en)

are expressions whose value is the value retu rned by the funct ion, or the
object nil , when the funct ion does not retu rn any value. The fir st form
al lows you to call a funct ion withou t a parameter , whi le the second one
cal ls a funct ion with the parameters e1, e 2, ..., e n.

OQL does not define in wh ich language the body of such a funct ion is
wr it ten. This featu re al lows you to smooth ly extend the funct ionali ty of
OQL withou t changing the langu age.

4.3.15 Scope Rules
The from part of a select -from -where query int rodu ces explici t or implici t
var iables to range over the fi ltered col lections. An exam ple of an expl icit
var iable is:

select ... from Persons p ...

while an implicit declarat ion wou ld be:

select ... from Persons ...

The scope of these var iables reaches al l par ts of the select -from-where
expression including nested sub-expressions.

select ((Employee) s).salary

from Students s

where s in (select sec.assistant from Sections sec)
80 ODMG OQL User Manual

Language Definition : Scope Rules
The group by par t of a select-from-where-grou p_by qu ery in t roduces the
name partit ion along with possible explici t at t r ibu te names which
character ize the par t i t ion . These names are visible in the corresponding
having and select par ts, including nested sub-expressions with in these
par ts.

Inside a scope, you use these var iable names to const ru ct path
expressions and reach proper t ies (at t r ibu tes and operat ions) when these
var iables denote complex objects. For instance, in the scope of the fi rst
from clause above, you access the age of a person by p.age .

When the var iable is implici t , as in the second from clause, you use the
name of the col lection direct ly, Persons.age .

 However, when there is no ambigu ity, you can use the proper ty name
direct ly as a shor tcu t , withou t using the var iable name to open the scope
(th is is made implicit ly), wr it ing simply: age . There is no ambigu ity when
a property nam e is defined for one and only one object denoted by a
visible var iable.

To su mmar ize, a nam e appear ing in a (nested) query is looked up in the
following order :

• a var iable in the cu rren t scope, or

• a named query int rodu ced by the define clause, or

• a named object , i .e., an en t ry poin t in the database, or

• an at tr ibu te name or an operat ion name of a var iable in the cu rrent
scope, when there is no ambigu ity, i .e., th is property name belongs to
only one var iable in the scope.

Example:

Assuming that in the cu rren t schema the nam es Persons and Cit ies are
defined.

In scope1, we see the names: Persons, c, Cit ies, all property names of
class Person and class City as soon as they are not presen t in both
classes, and they are not called "Persons", "c", nor "Cit ies".

select scope1

from Persons,

 Cities c

 where exists(select scope2 from children as child)

 or count (select scope3 , (select scope4 from

 partition)

 from children p,

 scope5 v

 group by age: scope6

)
ODMG OQL User Manual 81

4

In scope2, we see the names: chi ld, Persons, c, Cit ies, the property
names of the class City wh ich are not property of the class Person . No
at t r ibu te of the class Person can be accessed direct ly since they are
ambigu ous between "chi ld" and "Persons".

In scope3, we see the names: age, par t it ion , and the same names from
scope1, except "age" and "par t i t ion ", i f they exist.

In scope4, we see the names: age, par t it ion , p, v, and the same names
from scope1, except "age", "par t i t ion ", "p" and "v", if they exist .

In scope5, we see the names: p, and the same nam es from scope1, except
"p", i f i t exists.

In scope6, we see the names: p, v, Persons, c, Cit ies, the property names
of the class City wh ich are not property of the class Person . No att r ibu te
of the class Person can be accessed directly since they are am bigu ous
between "chi ld" and "Persons".

O2 note
Implici t at t r ibu te scope is not available with O2. You must always access
an at t r ibu te with the dot notation : v.att .

4.4 Syntactical Abbreviations

OQL defines an or thogonal expression langu age, in the sense that al l
operators can be composed with each others as soon as the types of the
operands are cor rect . To achieve th is property, we have defined a
funct ional language with sim ple (l ike +) or composite operators (l ike
select from where group_by order_by) wh ich always del iver a resu lt in the
same type system and wh ich thus can be recursively operated with other
operat ions in the same qu ery.

In order to accept the whole DML query par t of SQL, as a valid syntax for
OQL, OQL is added som e ad-hoc const ruct ions each t ime SQL in t rodu ces
a syntax wh ich cannot enter in the category of t ru e operators. This
sect ion gives the l ist of these const ruct ions that we call "abbreviat ions",
since they are completely equ ivalen t to a functional OQL expression
which is also given. Doing that , we thus give at the sam e t ime the
semant ics of these const ruct ions, since all operators used for th is
descr ipt ion have already been defined.
82 ODMG OQL User Manual

Syntactical Abbreviations : Structure Construction
4.4.1 Structure Construction
The st ructu re const ructor was int roduced in Sect ion 4.3.4.2. Alternate
syn tax are al lowed in two con texts: select clause and group-by clause.

In both con texts, the SQL syn tax is accepted, along with the one already
defined.

 select projection {, projection} ...

 select ... group by projection {, projection}

where projection is in one of the following forms:

• (i) expression as iden t ifier

• (i i) ident i fier : expression

• (i ii) expression
Th is is an alternate syntax for :

 st ruct (iden t ifier : expression {, iden t ifier : expression})

If there is only one projection and the syntax (i ii) is used in a select clau se,
then i t is not interpreted as a st ructu re const ruction bu t rather the
expression stands as i t is. Fu r thermore, a (i ii) expression is only val id i f
i t is possible to infer the name of the corresponding at t r ibu te (the
iden t ifier). This requ ires that the expression denotes a path expression
(possibly of length one) ending in a property whose name is then chosen
as the ident i fier .

Example:

Th is qu ery retu rns a bag of st ru ctu res:

bag<struct(name: string, salary: float, student_id:
integer)>

O2 note
O2 accepts the 3 alternatives of the projection syntax in the select par t ,
as wel l as the struct syntax. In the group by par t , O2 accepts the 3
al ternat ives bu t does not accept the struct syntax.

 select p.name, salary, student_id

 from Professors p, p.teaches
ODMG OQL User Manual 83

4

4.4.2 Aggregate Operators
These operators were in t rodu ced in Sect ion 4.3.7.4. SQL adopts a
notat ion which is not functionnal for them . So OQL accepts th is syntax
too.

If we define aggregate as one of m i n , m ax, coun t , sum and avg,

select count(*) from ...

is equ ivalen t to: count(select * from ...)

select aggregate(query) from ...

is equ ivalen t to: aggregate(select query from ...)

select aggregate(distinct query) from ...

is equ ivalen t to: aggregate(distinct(select query from ...)

O2 note
O2 does not support Aggregate Operator abbreviat ions.

4.4.3 Composite Predicates
If e1 and e2 are expressions, e2 is a collect ion, e1 has the type of i ts
elements, i f relation

is a relat ional operator (=, !=, <, <=, > , >=), then

 e1 relation some e2 and e1 relat ion any e 2 and e1 relation all e 2

are expressions whose valu e is a boolean .

The two fir st predicates are equ ivalent to:

 exists x in e 2: e 1 relation x

The last predicate is equ ivalent to:

 for all x in e 2: e 1 relation x

Example:

 is t rue

10 < some (8,15, 7, 22)
84 ODMG OQL User Manual

OQL BNF : String Literal
O2 note
In O2 Composite Predicate abbreviat ions are not su pported.

4.4.4 String Literal
OQL accepts simple quotes as wel l to del im it a st r ing (see Sect ion
4.3.3.1), as SQL does. Th is in t roduces an am bigu ity for a st r ing with one
character wh ich then has the same syntax as a character li teral. This
am bigu ity is solved by context .

O2 note
In O2 a st r ing mu st be delim ited by double qu otes.

4.5 OQL BNF

The OQL grammar is given u sing a BNF-l ike notat ion.

• { symbol } means a sequ ence of 0 or m ore sym bol(s).

• [symbol] means an opt ional sym bol. Do not confuse with the
separators []

• keyword is a terminal of the grammar. Keywords are not case
sensit ive.

• xxx_name has the syn tax of an iden t ifier

• xxx_l iteral is sel f explanatory, e.g., "a st r ing" is a st r ing_l iteral

• bind_argum ent stands for a parameter when embedded in a
programming language, e.g., $3i.

The non terminal query stands for a valid query expression. The
gramm ar is presented as recursive ru les produ cing valid qu er ies. This
explains why most of the t ime th is non terminal appears on the left side
of ::=. Of cou rse, al l operators expect their "qu ery" operands to be of the
r ight type. Type const raints were discu ssed in the previous sect ions.

These ru les mu st be completed by the pr ior ity of OQL operators which is
given after the gramm ar. Some syntact ical ambigu it ies are solved
semant ically from the types of the operands.
ODMG OQL User Manual 85

4

4.5.1 Grammar

4.5.1.1 Axiom (see Sections 4.3.1, 4.3.2)

query_program ::={define_query;} query

define_query ::= define identifier as query

4.5.1.2 Basic (see Section 4.3.3)

query ::= nil

query ::= true

query ::= false

query ::= integer_literal

query ::= float_literal

query ::= character_literal

query ::= string_literal

query ::= entry_name

query ::= query_name

query ::= bind_argument 1

query ::= from_variable_name

query ::= (query)

4.5.1.3 Simple Expression (see Section 4.3.5)

query ::= query + query 2

query ::= query - query

query ::= query * query

query ::= query / query

query ::= - query

query ::= query mod query

query ::= abs (query)

query ::= query || query

4.5.1.4 Comparison (see Section 4.3.5)

query ::= query comparison_operator query

query ::= query like string_literal

comparison_operator ::= =

comparison_operator ::= !=

comparison_operator ::= >

comparison_operator ::= <

comparison_operator ::= >=

1. A bind argu ment allows to bind expressions from a programming langu age to a qu ery
when embedded in to th is language (see Chapters on langu age bindings).

2. The operator + is also u sed for l ist and ar ray concatenat ion.
86 ODMG OQL User Manual

OQL BNF : Grammar
comparison_operator ::= <=

4.5.1.5 Boolean Expression (see Section 4.3.5)

query ::= not query

query ::= query and query

query ::= query or query

4.5.1.6 Constructor (see Section 4.3.4)

query ::= type_name ([query])
query ::= type_name (identifier :query {, identifier : query})

query ::= struct (identifier: query {, identifier: query})

query ::= set ([query {, query}])
query ::= bag ([query {,query}])
query ::= list ([query {,query}])
query ::= (query, query {, query})

query ::= [list](query .. query)

query ::= array ([query {,query}])

4.5.1.7 Accessor (see Sections 4.3.6, 4.3.11, 4.3.14, 4.3.15)

query ::= query dot attribute_name

query ::= query dot relationship_name

query ::= query dot operation_name

query ::= query dot operation_name(query {,query})

dot ::= . | ->

query ::= * query

query ::= query [query]

query ::= query [query:query]

query ::= first (query)

query ::= last (query)

query ::= function_name([query {,query}])

4.5.1.8 Collection Expression (see Sections 4.3.7, 4.4.3)

query ::= for all identifier in query: query

query ::= exists identifier in query: query

query ::= exists (query)

query ::= unique (query)

query ::= query in query

query ::= query comparison_operator quantifier query

quantifier ::= some

quantifier ::= any

quantifier ::= all

query ::= count (query)
ODMG OQL User Manual 87

4

query ::= count (*)

query ::= sum (query)

query ::= min (query)

query ::= max (query)

query ::= avg (query)

4.5.1.9 Select Ex pression (see Sections 4.3.8, 4.3.9, 4.3.10)

query ::= select [distinct] projection_attributes

 from variable_declaration {, variable_declaration}

 [where query]
 [group by partition_attributes]
 [having query]
 [order by sort_criterion {, sort_criterion}]
projection_attributes ::= projection {, projection}

projection_attributes ::= *

projection ::= query

projection ::= identifier: query

projection ::= query as identifier

variable_declaration ::= query [[as] identifier]
partition_attributes ::= projection {, projection}

sort_criterion ::= query [ordering]
ordering ::= asc

ordering ::= desc

4.5.1.10 Set Expression (see Section 4.3.12)

query ::= query intersect query

query ::= query union query

query ::= query except query

4.5.1.11 Conversion (see Section 4.3.13)

query ::= listtoset (query)

query ::= element (query)

query ::= distinct (e)

query ::= flatten (query)

query ::= (class_name) query

4.5.2 Operator Priorities
The fol lowing operators are sor ted by decreasing pr ior i ty. Operators on
the same l ine have the same pr ior ity and group left -to-r igh t .

() [] . ->
88 ODMG OQL User Manual

OQL BNF : Operator Priorities
n ot - (u nary) + (unary)

i n

* / m od i n t ersect

+ - un i on except | |

< > <= >= < som e < any < al l (etc ... for all compar ison
operators)

= != l i k e

an d ex i st s for all

or

.. :

,

(ident i fier) th is is the cast operator

order

having

group by

where

from

select
ODMG OQL User Manual 89

4

90 ODMG OQL User Manual

INDEX
 ODMG OQL User Manual 91

INDEX

92
Symbol s

+ 36

A

Accessor 87

Addit ion of sets 36

Aggregat ive operators 54

Architectu re
O2 10

Arithmetic 86

Array 21, 22, 25
Const ructing 63
Set conversion 37

array 27, 29, 51

Array value 21

Atomic value 20

Att r ibu te 66

avg 30, 54, 70

B

Bag 22, 29
Const ructing 63

bag 27, 29, 51

Boolean 87

Browser In ter face 12
Unix 12
Windows NT 13

by 35
 ODMG OQ
C

C 11

C++
In ter face 11

C++ binding 44, 45

Class indicator 54

Collection 22, 44, 49, 79
indexed expression 75
Named 39

Collection expression 87

Combining operators 28, 38

Compar ison 86

concatenation 76

Const ruction
Ar ray 51
Bag 51
List 51
Set 51
Struct 51

Const ructor 27, 51, 87

Conversion 37, 78, 88

count 30, 54, 70

Creat ing objects 29

D

Data man ipu lat ion 51

Database ent r y point 20

define 30, 36, 54

difference 77

distinct 23, 49
L User Manual

INDEX
E

element 31, 78

except 36, 54, 77

Existen t ial quant ificat ion 38, 54, 69

exists 31, 54

F

first 76

flatten 38

Flattening 79

forall ... in 54

from 50

G

group ... by 32, 54, 55, 72

H

Hypertext links 13
 ODMG OQ
I

intersect 36, 54, 77

in tersect ion 77

J

Java 11

Java binding 44

Join 50

Join query 24

L

last 76

Late binding 53

like 35

List 21, 22, 25
Const ru ct ing 62
Set conversion 37
Values 21

list 27, 51, 78

listtoset 37

M

max 30, 54, 70

Membership 69
L User Manual 93

INDEX

94
Method call 22, 52

Method invok ing 52

min 30, 54, 70

Mot if 13

N

name 31

Named
Collection 39
Objects 20
Qu ery 30
Values 20

O

O2
Arch itectu re 10

O2C 11

O2Corba 11

O2DBAccess 11

O2Engine 10

O2Graph 11

O2Kit 11

O2Look 11, 12

O2ODBC 11

O2Store 10

O2Tools 11

O2Web 11

Object
Creat ion 29
Named 20

Objects 61

ODMG model 44

ODMG standard 44, 57
 ODMG OQ
Operat ion 67

Operator 30, 54
- 36
* 36
+ 36
Aggregat ive 54
avg 30, 54, 70
Combining 28, 38
Composit ion 54
count 30, 54, 70
define 30, 54
element 31
except 36, 54
exists 31, 54
flatten 38
forall...in 54
group...by 32, 54, 55, 72
intersect 36, 54
like 35
max 30, 54, 70
min 30, 54, 70
order by 35, 74
Set 36, 38, 54
sum 30, 54, 70
union 36, 54
Wild-card 38

OQL 11, 12, 17
Operators 30
Rat ional 43
Resu lt 27

order by 35, 54, 74

P

partition 33

Path expressions 24, 49

Polymorphism 53

Predicate 50
L User Manual

INDEX
Q

Query
Basic 18, 86
Named 30
Resu lt 27, 30

R

Ref 44

Relationsh ip 44, 49, 66

S

select 55

Select from where 70

select from where 22, 49

Set 22, 22
Const ructing 62
List conversion 37
Operators 36, 54

set 27, 29, 51, 77, 78

Set expression 88

struct 27, 29, 29, 51

Struct valu e 21

st ructu re 62

Subcollect ion 75, 75

sum 30, 54, 70

System
Arch itectu re 10
 ODMG OQ
T

Test ing on n il 25

Typing 80

U

union 36, 54, 77

Universal quant ificat ion 38, 54, 68

Unix 12

V

Value
Ar ray 21
Atomic 20
List 21
Named 20
Struct 21

W

where 50

Windows NT 13
L User Manual 95

	MAIN MENU TO O2 DOCUMENTATION
	ODMG OQL User Manual
	Who should read this manual
	TABLE OF CONTENTS
	1 Introduction 9
	2 Getting Started 17
	3 OQL Rationale 43
	4 OQL Reference 57
	INDEX 91

	1 Introduction
	1.1 System Overview
	Figure 1.1: O2 System Architecture
	OQL
	Browser Interface
	Figure 1.2: Typical OQL query result in graphical form, as generated in Unix
	Figure 1.3: Typical OQL query result in graphical form, as generated in Windows NT

	1.2 Interactive and embedded query language
	Interactive OQL
	Embedded OQL

	1.3 Manual overview

	2 Getting Started
	2.1 Basic queries
	Database entry points
	Simple queries

	2.2 Select ... from ... where
	Set
	Join
	Path expressions
	Testing on nil
	List or array

	2.3 Constructing results
	Creating an object

	2.4 Operators
	Count
	Define
	Element
	Exists
	Group by
	Like
	Order by

	2.5 Set operators
	2.6 Conversions
	List to set
	Set to list
	Flatten

	2.7 Combining operators
	2.8 Indexes
	Display index

	2.9 Chapter Summary
	3.1 The ODMG standard
	3.2 The ODMG model
	3.3 OQL by example
	Path expressions
	Data manipulation
	Method invoking
	Polymorphism
	Operator composition

	3 OQL Rationale
	4 OQL Reference
	4.1 Introduction
	4.2 Principles
	4.3 Language Definition
	4.4 Syntactical Abbreviations
	4.5 OQL BNF

	INDEX
	Symbols
	+�36

	A
	Accessor�87
	Addition of sets�36
	Aggregative operators�54
	Architecture
	O2�10

	Arithmetic�86
	Array�21, 22, 25
	Constructing�63
	Set conversion�37

	array�27, 29, 51
	Array value�21
	Atomic value�20
	Attribute�66
	avg�30, 54, 70

	B
	Bag�22, 29
	Constructing�63

	bag�27, 29, 51
	Boolean�87
	Browser Interface�12
	Unix�12
	Windows NT�13

	by�35

	C
	C�11
	C++
	Interface�11

	C++ binding�44, 45
	Class indicator�54
	Collection�22, 44, 49, 79
	indexed expression�75
	Named�39

	Collection expression�87
	Combining operators�28, 38
	Comparison�86
	concatenation�76
	Construction
	Array�51
	Bag�51
	List�51
	Set�51
	Struct�51

	Constructor�27, 51, 87
	Conversion�37, 78, 88
	count�30, 54, 70
	Creating objects�29

	D
	Data manipulation�51
	Database entry point�20
	define�30, 36, 54
	difference�77
	distinct�23, 49

	E
	element�31, 78
	except�36, 54, 77
	Existential quantification�38, 54, 69
	exists�31, 54

	F
	first�76
	flatten�38
	Flattening�79
	forall ... in�54
	from�50

	G
	group ... by�32, 54, 55, 72

	H
	Hypertext links�13

	I
	intersect�36, 54, 77
	intersection�77

	J
	Java�11
	Java binding�44
	Join�50
	Join query�24

	L
	last�76
	Late binding�53
	like�35
	List�21, 22, 25
	Constructing�62
	Set conversion�37
	Values�21

	list�27, 51, 78
	listtoset�37

	M
	max�30, 54, 70
	Membership�69
	Method call�22, 52
	Method invoking�52
	min�30, 54, 70
	Motif�13

	N
	name�31
	Named
	Collection�39
	Objects�20
	Query�30
	Values�20

	O
	O2
	Architecture�10

	O2C�11
	O2Corba�11
	O2DBAccess�11
	O2Engine�10
	O2Graph�11
	O2Kit�11
	O2Look�11, 12
	O2ODBC�11
	O2Store�10
	O2Tools�11
	O2Web�11
	Object
	Creation�29
	Named�20

	Objects�61
	ODMG model�44
	ODMG standard�44, 57
	Operation�67
	Operator�30, 54
	-�36
	*�36
	+�36
	Aggregative�54
	avg�30, 54, 70
	Combining�28, 38
	Composition�54
	count�30, 54, 70
	define�30, 54
	element�31
	except�36, 54
	exists�31, 54
	flatten�38
	forall...in�54
	group...by�32, 54, 55, 72
	intersect�36, 54
	like�35
	max�30, 54, 70
	min�30, 54, 70
	order by�35, 74
	Set�36, 38, 54
	sum�30, 54, 70
	union�36, 54
	Wild-card�38

	OQL�11, 12, 17
	Operators�30
	Rational�43
	Result�27

	order by�35, 54, 74

	P
	partition�33
	Path expressions�24, 49
	Polymorphism�53
	Predicate�50

	Q
	Query
	Basic�18, 86
	Named�30
	Result�27, 30

	R
	Ref�44
	Relationship�44, 49, 66

	S
	select�55
	Select from where�70
	select from where�22, 49
	Set�22, 22
	Constructing�62
	List conversion�37
	Operators�36, 54

	set�27, 29, 51, 77, 78
	Set expression�88
	struct�27, 29, 29, 51
	Struct value�21
	structure�62
	Subcollection�75, 75
	sum�30, 54, 70
	System
	Architecture�10

	T
	Testing on nil�25
	Typing�80

	U
	union�36, 54, 77
	Universal quantification�38, 54, 68
	Unix�12

	V
	Value
	Array�21
	Atomic�20
	List�21
	Named�20
	Struct�21

	W
	where�50
	Windows NT�13

