
User Manual for NetworkDistances 1.0:
Calculating Network-wise Distances
Between Habitat Patches for Spatially
Restricted Species

M.H. Grinnell and J.M.R. Curtis

Fisheries and Oceans Canada

Science Branch, Pacific Region

Pacific Biological Station

3190 Hammond Bay Road

Nanaimo, BC

V9T 6N7

2011

Canadian Technical Report of
Fisheries and Aquatic Sciences 2960

Canadian Technical Report of Fisheries and Aquatic Sciences

Technical reports contain scientific and technical information that contributes to existing knowledge
but which is not normally appropriate for primary literature. Technical reports are directed primarily
toward a worldwide audience and have an international distribution. No restriction is placed on subject
matter and the series reflects the broad interests and policies of Fisheries and Oceans Canada, namely,
fisheries and aquatic sciences.

Technical reports may be cited as full publications. The correct citation appears above the abstract
of each report. Each report is abstracted in the data base Aquatic Sciences and Fisheries Abstracts.

Technical reports are produced regionally but are numbered nationally. Requests for individual
reports will be filled by the issuing establishment listed on the front cover and title page. Out-of-stock
reports will be supplied for a fee by commercial agents.

Numbers 1-456 in this series were issued as Technical Reports of the Fisheries Research Board
of Canada. Numbers 457-714 were issued as Department of the Environment, Fisheries and Marine
Service, Research and Development Directorate Technical Reports. Numbers 715-924 were issued
as Department of Fisheries and Environment, Fisheries and Marine Service Technical Reports. The
current series name was changed with report number 925.

Rapport technique canadien des sciences halieutiques et aquatiques

Les rapports techniques contiennent des renseignements scientifiques et techniques qui constituent
une contribution aux connaissances actuelles, mais qui ne sont pas normalement appropriés pour la
publication dans un journal scientifique. Les rapports techniques sont destinés essentiellement à un
public international et ils sont distribués à cet échelon. II n’y a aucune restriction quant au sujet;
de fait, la série reflète la vaste gamme des intérêts et des politiques de Pêches et Océans Canada,
c’est-à-dire les sciences halieutiques et aquatiques.

Les rapports techniques peuvent être cités comme des publications à part entière. Le titre exact
figure au-dessus du résumé de chaque rapport. Les rapports techniques sont résumés dans la base de
données Résumés des sciences aquatiques et halieutiques.

Les rapports techniques sont produits à l’échelon régional, mais numérotés à l’échelon national. Les
demandes de rapports seront satisfaites par l’établissement auteur dont le nom figure sur la couverture
et la page du titre. Les rapports épuisés seront fournis contre rétribution par les agents commerciaux.

Les numéros 1 à 456 de cette série ont été publiés à titre de Rapports techniques de l’Office des
recherches sur les pêcheries du Canada. Les numéros 457 à 714 sont parus à titre de Rapports techniques
de la Direction générale de la recherche et du développement, Service des pêches et de la mer, ministère
de l’Environnement. Les numéros 715 à 924 ont été publiés à titre de Rapports techniques du Service
des pêches et de la mer, ministère des Pêches et de l’Environnement. Le nom actuel de la série a été
établi lors de la parution du numéro 925.

Canadian Technical Report of
Fisheries and Aquatic Sciences 2960

2011

USER MANUAL FOR NetworkDistances 1.0: CALCULATING NETWORK-WISE
DISTANCES BETWEEN HABITAT PATCHES FOR SPATIALLY RESTRICTED

SPECIES

by

M.H. Grinnell1 and J.M.R. Curtis2

Fisheries and Oceans Canada
Science Branch, Pacific Region

Pacific Biological Station
3190 Hammond Bay Road

Nanaimo, BC
V9T 6N7

1E-mail: matt.grinnell@dfo-mpo.gc.ca | tel: (250) 756.7326
2E-mail: janelle.curtis@dfo-mpo.gc.ca | tel: (250) 756.7157

© Her Majesty the Queen in Right of Canada, 2011
Cat. No. Fs97-6/2960E ISSN 0706-6457
Cat. No. Fs97-6/2960E-PDF ISSN 1488-5379

Correct citation for this publication:

Grinnell, M.H. and Curtis, J.M.R. 2011. User manual for NetworkDistances 1.0: Calcu-
lating network-wise distances between habitat patches for spatially restricted species.
Can. Tech. Rep. Fish. Aquat. Sci. 2960: iv + 29 p.

ii

CONTENTS

ABSTRACT iv

RÉSUMÉ iv

1 MOTIVATION 1

2 BACKGROUND 2

3 RSD HABITAT AND NETWORK DATA 2

4 METHODOLOGY USING R 4
4.1 CHALLENGES AND SOLUTIONS TO MEMORY AND TIME RE-

QUIREMENTS . 5
4.2 OUTLINE OF THE NetworkDistances CODE 6

5 INCORPORATING NetworkDistances INTO GRIP2 10
5.1 DISTANCE UNITS AND CONVERSIONS 12

6 VERIFYING NetworkDistances AND EXTENSIONS 13

7 ACKNOWLEDGEMENTS 13

REFERENCES 14

APPENDIX 17

INDEX 29

iii

ABSTRACT

Grinnell, M.H. and Curtis, J.M.R. 2011. User manual for NetworkDistances 1.0: Calcu-
lating network-wise distances between habitat patches for spatially restricted species.
Can. Tech. Rep. Fish. Aquat. Sci. 2960: iv + 29 p.

We develop an approach to calculate distances along network lines between habitat
patches using NetworkDistances version 1.0. The NetworkDistances code is an
optional extension to the GRIP2 script for species that are restricted to moving along
defined networks (e.g., rivers). For these species, the Euclidean distance may under-
estimate the actual distance between patches, which may influence patch dynamics. To
more accurately reflect reality, we calculate the shortest ‘along the network’ distance
between connected patches using NetworkDistances, and apply our analysis to a
stream-dwelling minnow, the redside dace (Clinostomus elongatus).

RÉSUMÉ

Grinnell, M.H. and Curtis, J.M.R. 2011. User manual for NetworkDistances 1.0: Calcu-
lating network-wise distances between habitat patches for spatially restricted species.
Can. Tech. Rep. Fish. Aquat. Sci. 2960: iv + 29 p.

Nous avons élaboré une méthode de calcul des distances le long des lignes de réseaux
entre les parcelles d’habitat au moyen de la version 1.0 de NetworkDistances. Le
code de NetworkDistances est une extension optionnelle du script GRIP2, utilisé
pour les espèces dont les déplacements sont limités le long de réseaux définis (p. ex.
des rivières). Pour ces espèces, la distance euclidienne peut sous-estimer la distance
réelle entre les parcelles, ce qui peut influer sur la dynamique des parcelles. Pour
refléter la réalité avec plus de justesse, nous calculons la distance la plus courte � le
long du réseau � entre les parcelles reliées au moyen de NetworkDistances, puis nous
appliquons notre analyse à un méné fréquentant les cours d’eau du réseau, soit le méné
long (Clinostomus elongatus).

iv

1 MOTIVATION

A metapopulation consists of multiple spatially discrete populations that occasionally
exchange organisms, even though each population is in a discrete habitat patch. Or-
ganisms may move between patches when distances are less than the maximum dis-
persal distance, and dispersal success is typically inversely related to dispersal distance
(Wolfenbarger 1946; Kitching 1971). The exchange of organisms between patches can
affect patch dynamics and metapopulation persistence via patch recolonization and
extinction rates (Johst et al. 2002). Dispersal rates among patches are typically mod-
eled as a function of distance and cost(s) associated with moving through suboptimal
habitat within a landscape or seascape. For some species, the Euclidean (i.e., straight
line) distance may be appropriate for modeling the migration distance between patches.
However, landscape features may prevent other species from moving in a straight line be-
tween patches (Figure 1). For these spatially restricted species, the Euclidean distance
may under-estimate the effective distance between patches, as well as over-estimate
migration rates and dispersal success, leading to biases in predicted patch extinction
and recolonization rates.

network line
habitat patch

Figure 1. Hypothetical landscape for a lotic species that is restricted to moving along
network lines (e.g., rivers) that connect patches of suitable habitat (e.g., riffles). Note
that patch size is proportional to circle size.

2 BACKGROUND

We assume that readers contemplating use of the NetworkDistances code are famil-
iar with the suite of RAMAS software, specifically RAMAS GIS and Metapop
(Akçakaya 2005) as well as GRIP (Curtis and Naujokaitis-Lewis 2008a,b). Briefly, the
GRIP2 script, written in the programming language R (RDCT 2011), is designed for
use with RAMAS GIS 5.0 software to perform systematic global sensitivity analysis
of habitat and population parameters for spatially explicit population viability analy-
ses. The RAMAS GIS programme links spatial data (e.g., habitat suitability maps)
to stochastic metapopulation models, and allows users to evaluate the influence of land-
scape structure on metapopulation dynamics by manually varying habitat parameters.
The GRIP2 script automates this time-consuming process by generating a specified
number of random sets of spatial and non-spatial parameters, and running these it-
erations by submitting batch files to RAMAS. By default, GRIP2 and RAMAS
software calculate the Euclidean distance between patches.

We developed NetworkDistances version 1.0, an optional GRIP2 extension, to be
used when organism movement and dispersal is restricted to defined spatial networks
(Figure 2). For example, the movement of lotic fish is restricted to river networks,
while other species may be restricted to moving along hedgerows, coastlines, trails, or
corridors. Specifically, we developed NetworkDistances to automate the calculation
of distances between pairs of patches for redside dace (RSD; Clinostomus elongatus),
an Endangered stream-dwelling minnow found inter alia in four watersheds in the
Greater Toronto Area that discharge into Lake Ontario, Canada (COSEWIC 2007). We
provide some background information on RSD and refer to features of our RSD model
in this manual to illustrate concepts, limitations, and opportunities where appropriate.
Most code within NetworkDistances is generic and could be applied to any spatially-
constrained species to calculate pairwise distances. We attempt to highlight sections of
code that may require some customization for application with other species.

The NetworkDistances code (NetworkDistances.R) has extensive comments and
should be referenced when reading this document. Please contact the authors if you
have questions, comments, suggestions or concerns regarding the manual, or the code.
We are attempting to keep track of this code’s use; please cite this manual and contact
the authors if you use NetworkDistances. Note that NetworkDistances comes with
absolutely no warranty.

3 RSD HABITAT AND NETWORK DATA

River data were acquired from Natural Resources Canada as a vector line shapefile
(scale = 1: 50 000; NRC 2011). Georeferenced shapefiles for RSD habitat patches and
rivers were projected in Universal Transverse Mercator (UTM, zone 17), in metres (m)
using the North American 1983 datum. Data preparation for RAMAS input files (e.g.,
habitat mask, habitat suitability grid) was done using the geographic information sys-
tem programme ArcMap 9.2 (ESRI 2006). Although spatial files for RAMAS input

2

Create replicate habitat map

Run RAMAS GIS Patch

Source NetworkDistances code

Run RAMAS GIS Metapop

Vary metapopulation parameters

Gather results from each iteration

Create NetworkDistances plots

End of file GRIP2

Start: set user-specified inputs
and source GRIP2 script

last iteration?

y←y+1

yes

no

Convert network(s) to graph object(s)

Locate patches on graph object(s)

Calculate network-wise distances
among connected patches

Convert patch maps to UTM

Combine distances as pairDists

Inputs: RAMAS output files (.ptc and .asc), and
NetworkDistances input parameters (maxD,
doSnow, cType, nCores, coreName, nZone,
doSpatPlots, and networks)

Output: matrix of network-wise distances,
pairDists; brought into GRIP2 as
Pairwise_Distance

(a) (b)

Figure 2. Simplified flow diagram of the GRIP2 script (a), and the optional Net-
workDistances code (b). The NetworkDistances algorithm is expanded in Subsec-
tion 4.2, and inputs are described in Section 5.

(e.g., *.asc) must have, inter alia, consistent precision and spatial extent (Akçakaya
2005), networks may extend beyond the grid’s perimeter. However, larger networks
may increase memory and processing time, as discussed in Subsection 4.1.

In our case study, we modeled the metapopulation dynamics of RSD within a small
study area, which contains two watersheds (Figure 3). Two RSD characteristics enabled
us to simplify our analysis, and thus our code. First, genetic analyses indicate that RSD
do not move between watersheds (M. Poos, unpublished data), which allowed us to
divide the study area into two independent watersheds, which we refer to as networks.
We defined individual networks by their Strahler stream order number, a measure of
branching complexity (Strahler 1957). Second, mark-recapture studies indicate that
RSD dispersal is independent of stream direction (Poos and Jackson, in press), which
allowed us to create undirected graph objects. The benefits of these two simplifications
are explained in later sections.

3

630 640 650 660

4850

4855

4860

4865

4870

4875

2HC09

2HC10
2HC11

2HC12

Study area

UTM easting (km)

U
T

M
 n

or
th

in
g

(k
m

)

N

Lake Ontario

Figure 3. Two of the four watersheds (e.g., 2HC11) run through the redside dace
study area, and discharge into Lake Ontario (NRC 2011). Geographic coordinates are
projected in Universal Transverse Mercator (UTM, zone 17), in kilometres (km). Note
that networks are different colours to aid with differentiation.

4 METHODOLOGY USING R

We assume the user has at least a working ability with the R statistical and graphing
programme (RDCT 2011), and is familiar with spatial data. In addition to the R pack-
ages required for GRIP2 [sp (Pebesma and Bivand 2005; Bivand et al. 2008), rgdal
(Keitt et al. 2010), spatial (Venables and Ripley 2002), spatstat (Baddeley and
Turner 2005), adehabitat (Calenge 2006), maptools (Lewin-Koh and Bivand 2011),
ade4 (Dray and Dufour 2007), and gpclib (Peng 2010)], NetworkDistances requires
at least five additional packages: PBSmapping (Schnute et al. 2010) to handle georef-
erenced data; graph (Gentleman et al. 2010), RBGL (Carey et al. 2010), and igraph

(Csárdi and Nepusz 2006) to handle graph objects; as well as gtools (Warnes 2010)
to sort strings with embedded numbers. One or two other packages are optional: snow
(Tierney et al. 2008) to use multiple processors; and (also optionally) Rmpi (Yu 2010)
to use “MPI” type clusters on non-Windows machines. Non-Windows machines require
additional code to ensure that files are compatible with both dos and unix, as well as
the WineHQ programme (WPD 2010) to run RAMAS if NetworkDistances is
used along with GRIP2.

4

4.1 CHALLENGES AND SOLUTIONS TO MEMORY AND TIME
REQUIREMENTS

The main challenge to NetworkDistances is that large, complex networks with many
patches and high resolution maps may be costly in terms of required memory and pro-
cessing time. However, memory and time requirements can be reduced significantly us-
ing four strategies: (1) splitting large networks into independent sub-networks; (2) load-
ing saved RData objects from the first iteration; (3) parallel processing; and (4) reducing
map resolution.

First, large networks will require less memory and processing time if they can be split
into independent sub-networks in a biologically meaningful way. Splitting a large net-
work (within which some patches are not connected) into multiple sub-networks (within
which all patches are connected) reduces the number of pairwise distance calculations.
For example, because RSD do not migrate between watersheds, we split the large river
network in our study area into two small independent networks by watershed bound-
aries (Figure 3). More generally, consider a hypothetical scenario with three patches on
one network (e.g., patches a, b, c), and three patches on a second, independent network
(e.g., d, e, f). Treated as one large network, there are 15 pairwise distances to calculate
for the upper triangle of the required 6 × 6 matrix:

a b c d e f
a 0 1 2 NA NA NA
b 1 0 3 NA NA NA
c 2 3 0 NA NA NA
d NA NA NA 0 4 5
e NA NA NA 4 0 6
f NA NA NA 5 6 0

(1)

where “NA” indicates that the distance cannot be calculated because the two patches
are unconnected (i.e., due to migration barriers between patches).3 Note that the
lower triangle is the transpose of the upper triangle because dispersal is assumed to
be independent of direction. Alternately, treating the two sub-networks independently
reduces the number of pairwise distance calculations from 15 to 6, all of which can be
calculated:

a b c
a 0 1 2
b 1 0 3
c 2 3 0

and

d e f
d 0 4 5
e 4 0 6
f 5 6 0

(2)

To further reduce network sizes, we then removed sections outside the study area bound-
ary.

3The algorithm requires more time and memory to attempt to calculate distances between uncon-
nected patches than connected patches, and eventually sets these distances to NA.

5

Second, as a sensitivity analysis programme, GRIP2 typically runs multiple itera-
tions, and network lines remain constant from one iteration to another. Thus, networks
can be saved to disk as RData objects on the first iteration, and loaded from disk on
subsequent iterations. This strategy reduces processing time considerably for large net-
works. However, due to changing patch locations associated with random changes in
landscape structure each iteration, pairwise distances must be calculated iteratively.

Third, calculating pairwise distances can be computationally demanding, and takes
considerable time when networks are large, or when there are many patches. In these
cases, calculating pairwise distances requires more processing time than creating net-
works, and multiple processors can be used to reduce processing time. In this case,
the NetworkDistances code starts multiple instances of R, and divides pairwise dis-
tance calculations among processors on the cluster. With sufficient memory, parallel
processing may even reduce processing time on computers with only one processor.

Finally, time and memory requirements increase in proportion to increasing network
size, branching complexity, number of pairwise distance calculations, and size of input
maps. Processing time and memory requirements were considerable because the RSD
study area was modeled at a fine spatial resolution: our input maps have approximately
443 000 15 m×15 m grid cells. For example, between 1.0 and 1.5 hours were required to
run 50 GRIP2 iterations of the RSD study area on two different machines. Of the total
required time, between 2.8 and 5.2% was used to run the NetworkDistances code.
Our analysis required fine spatial resolution because RSD are typically distributed in
headwater streams that are closely spaced, but networks for other species may not
require such fine spatial resolution.

4.2 OUTLINE OF THE NetworkDistances CODE

Our analysis relies on well-developed methods from graph theory to measure distances
between patches along networks. Although graph theory has been around for many
years, using graphs to model node (e.g., patch) connectivity is relatively new to the
field of conservation biology (Urban et al. 2009). We developed the NetworkDistances
code in the programming language R to facilitate implementation with GRIP2, and
to cope with changing patch locations each iteration.

The NetworkDistances code is typically sourced via the GRIP2 script for spa-
tially restricted species, and we assume that the user is familiar with GRIP2. Al-
ternately, NetworkDistances can be run independently if all the required inputs
are specified appropriately (e.g., arguments for the function GridToUTM(ptc, asc)

and Section 5). The following algorithm outlines the NetworkDistances procedure
and explains the code’s major functions; we recommend that users follow along in the
NetworkDistances.R code (Listing 1, Appendix).

This algorithm is run for each y replicate iteration in newNreps as follows:

1. Convert RAMAS spatial output for patches from grid locations to UTM (m).

GridToUTM(ptc, asc) Retrieve spatial data for each patch from RA-

6

MAS output files: ptcfile (i.e., ptc y.ptc); and OrigPatchmap (i.e.,
spp PA.asc), where spp is typically the species name. The ptcfile file
indicates patch centers relative to the upper-left corner of the grid (in km),
while OrigPatchmap georeferences the lower-left corner of the grid (m).4

Patch locations are converted to UTM (m) using the geographic information
in the OrigPatchmap file header. The arguments ptc and asc reference the
ptcfile and OrigPatchmap files, respectively. The function returns a list
with two elements: the location of patches in UTM (m), patchesUTM, as an
EventData object; and the grid outer extent in UTM (m), gridExtent.

2. Step 2 is done once if there is only one network, or iteratively if there are multiple
sub-networks. First, import the network shapefiles in UTM (m) as a PolySet

object, netVect, which indicates node locations (X, Y), and node connectivity.
Set patchesUTM to patches; this is required because patches will be subset
during the following calculations to include only the patches within the current
network. Each time the loop is iterated, patchesUTM is re-set to patches, which
ensures that all of the patches are considered.

(a) If available, load the saved netVect.RData object, and skip to Step 2b.
Otherwise, proceed as follows:

CreateUniqueID(dat) Create a unique ID number for each unique node
(X, Y) to ensure the graph object is continuous. By default, shape-
files have a different ID for each node, which can cause problems for
nodes that are common to two lines that merge into a single stem (e.g.,
river confluence). These two nodes, which have identical (X, Y) loca-
tion, must have identical IDs for the graph object to consider them
attached. The argument dat is the network object, and the function
returns the updated network object, netVect with new columns (espe-
cially, UniqueID).

GetToFromDist(dat) Create a matrix indicating the unique ID for each
segment’s start (e.g., from) and end (e.g., to) nodes, as well as the Eu-
clidean distance along each edge. For these short edges, the Euclidean
distance sufficiently approximates reality if maps have a fine spatial res-
olution. Nodes correspond to network vertices, and edges correspond to
lines between vertices. Note that the words to and from simply indi-
cate endpoints because the graph object is undirected, meaning that the

4Pairwise distances among patches can be calculated from one edge to the other, from the edge of
one patch to the center of the other, or from center to center. The center-to-center distance may be
very different from the edge-to-edge distance when patches are large (i.e., patch edges extend away
from the patch center along network lines). For simplicity, we assume that the distance between patch
centers best describes pairwise distances. Thus, network-wise distances are calculated from center-to-
center; set distance <- ‘‘Default: Center to center’’ in GRIP2 prior to running iterations
to ensure that the ptfile file refers to patch centers.

7

distance from Pop 1 to Pop 2 is equal to the distance from Pop 2 to
Pop 1. Species that require a directed graph (i.e., dispersal depends on
direction) will require the user to modify this function. The argument
dat is the network object, and the function returns toFromDist (later
renamed tfTable), a matrix of node IDs, node locations, and distances
between nodes (i.e., edge weights).

Save the output (e.g., network object, netVect, and to-from matrix,
tfTable) as a netVect.RData object to be used in subsequent iterations.

(b) Load the saved netVect.RData object, then:

EnsureUniqueSites(dat) Ensure that each patch has a unique ID so
that pairwise distances are calculated for each patch. Duplicate names
are made unique by appending letters (e.g., “a”) to the second duplicate,
and so on.5 The argument dat is the patches, and the function updates
the column Site with new IDs if duplicates exist.

SnapToNodes(pops) Snap each patch to the nearest network node. Basi-
cally, identify the closest node to the patch center, and change the node
ID to the patch ID (Figure 4). Thus, patch locations are shifted, but are
likely within tolerance considering that RAMAS uses a grid to define
patches. The search radius is controlled by the parameter maxD, which
restricts candidate nodes to those within maxD units of the patch. It is
important to note that patches that are more than maxD from all nodes
are omitted from the analysis. Although a habitat mask will ensure that
patches are located near network lines, distances between patch centers
and network nodes can be large when network lines are straight (i.e.,
fewer nodes), or when patches are large. An iterative search reduces
processing time: first search for nodes within maxD

4
units of the patch; if

there are no nodes, search again within maxD units. The argument pops
is set to the patch. The function returns minDists, which indicates
the distance from each patch to the nearest node (or NA if there are no
nodes), and the function updates the node ID in tfTable (for both to
and from nodes).

ftM2graphNEL(ft, edgemode, W) This function is from the graph pack-
age, and creates an object of class graph to represent the network.
Prior to calling this function, duplicate rows must be omitted from
the tfTable object. The argument ft is the to-from table, tfTable,
edgemode indicates that the graph is not directed, and W indicates the
edge weights. The function returns the graph object, netGraph.

CalcDistMatrix(dat) Calculate the shortest (e.g., least-cost) network-
wise distances (m) between each pair of patches in the network using Di-
jkstra’s (1959) algorithm, implemented by the function sp.between().

5Although patches will have unique IDs if NetworkDistances is sourced via GRIP2, there may
be duplicate patch IDs if NetworkDistances is run independently.

8

This function can use parallel processing to decrease processing time, if
doSnow is TRUE (Section 5). Note that the distance from the patch
to the network, minDists, is not included in the pairwise distance
calculation because the patch is technically on the network, even if
the patch’s center is shifted slightly. The argument dat is the graph

object, and the function returns distMat, a matrix of pairwise dis-
tances with row and column names corresponding to patch names. The
distMat object is saved as a distMat.netVect.RData object in the
folder RDataOutTemp/ so that distances between points in independent
sub-networks can be brought together as one large distance matrix using
CombineDistances(dat) in Step 3.

3. Combine the pairwise distance matrices from each independent sub-network into
one large matrix.

RemoveDupPatches(mat) Ensure that each patch is only in one network, and
ignore networks that do not contain any patches. This function ensures
that each patch is snapped to the network with the single closest node. For
example, large maxD values can cause patches to be inadvertently snapped to
two networks if patches are located within maxD of nodes on both networks.
The argument mat is the matrix of minDists, named minDistMat, which has
a column for each network, and a row for each patch. The function returns
patchNetwork, with a column for each network that contains patches, and a
row for each patch that has been snapped to a network (patches are assumed
to belong in the network with the nearest node).

CombineDistances(dat) Combine distance matrices from each sub-network
into one large pairwise distance matrix. The argument dat is the set of
network name(s) that contain patches, and the function returns the ma-
trix of pairwise distances for the entire group of networks, pairDists. The
distance between points in different independent sub-networks (i.e., uncon-
nected patches) is NA.

FillPairDists(mat) Ensure that pairDists has one column and one row for
each patch, even if the patch was omitted from the analysis. The argument
mat is pairDists, and the function returns an updated pairDists.

The pairDists matrix is ordered by row and column names for compatibility
with GRIP2 requirements. The matrix is saved as pairDists.y.RData in the
folder RDataOutDist/ to be retrieved by GRIP2 for further analysis.

4. Step 4 is done after GRIP2 has run to completion, and generates figures of
networks and patches. These plots can take considerable time to create when
there are many large networks and many iterations; skip this step to speed up
the analysis (Section 5).

9

PlotNetworkPatches() Plot georeferenced network(s) and patches in UTM
(m). There are no arguments, and the function does not return anything;
instead, the function creates a portable document format (PDF) file in the
folder RDataOutDist/ named plot.pdf, with one page for each iteration
(Figure 5). Patch names in green have been snapped to network lines; patch
names in red have been omitted from the analysis (i.e., patches more than
maxD units from all network nodes).

5 INCORPORATING NetworkDistances INTO GRIP2

In addition to the usual controls and parameters required for GRIP2 and RAMAS,
NetworkDistances requires several additional user-specified inputs which must be
specified in GRIP2 or at the start of the NetworkDistances code:

calc network dist Set to TRUE to calculate distances along networks; set to FALSE to
calculate Euclidean distances. Value: logical.

maxD Maximum distance (m) from each patch to search for candidate network nodes
in SnapToNodes(pops). Value: number.

doSnow Set to TRUE to use parallel processing in CalcDistMatrix(dat); set to FALSE

for no parallel processing. Value: logical.

(a) (b)

network

habitat
patch

node

maxD

habitat patch
moved to
nearest nodesearch

radius

Figure 4. Hypothetical network and habitat patch (a). The network is composed of
nodes connected by segments. Three nodes are within maxD units of the patch’s center;
the SnapToNodes(pops) function shifts the patch’s location to the nearest node (b).

10

660000 662000 664000 666000 668000

48
54

00
0

48
56

00
0

48
58

00
0

48
60

00
0

48
62

00
0

newNreps = 4

UTM easting (m)

U
T

M
 n

or
th

in
g

(m
)

2HC11_C5

2HC12_C5

●

●

●

●

●

●

●

●

Pop 1

Pop 2

Pop 3
Pop 4

Pop 5

Pop 6

Pop 7

Pop 8

Figure 5. Plot created by the function PlotNetworkPatches() showing the eight
habitat patches and two networks on the fourth iteration of the redside dace study
area. Note that patches Pop 4, Pop 6, and Pop 8 are all connected, and are on network
2HC12 C5; these patches are not connected to the patches on network 2HC11 C5 (e.g.,
Pop 1). Note also that patch names are shown in black for printing purposes, but would
normally be shown in green (i.e., they have all been snapped to network lines).

cType Cluster type (if doSnow). Use ‘‘SOCK’’ for Windows machines, or either
‘‘SOCK’’ or ‘‘MPI’’ for non-Windows machines. Value: character.

nCores Number of cores for parallel processing (if doSnow). For example, in Windows,
this indicates the number of instances of Rscript.exe that are initialized and
used in CalcDistMatrix(dat). Note that nCores controls a trade-off between
the number of cores, and the memory available to each core. Value: integer.

11

coreName Processor name (if doSnow). Value: character (e.g., ‘‘localhost’’).

nZone UTM zone, required to align patches and network lines. Value: integer.

doSpatPlots Set to TRUE to call PlotNetworkPatches() and generate figures showing
patches and networks for each iteration; set to FALSE to skip this step. Value:
logical.

networks Shapefile network name(s), not including extension(s). If there are mul-
tiple shapefiles (i.e., the network is broken up into independent sub-networks),
networks is a concatenation of each sub-network name; if there is only one net-
work, networks is the network name. Input shapefiles (in UTM, m) must be
in the folder NetworkShapefiles/. Value: character vector (e.g., c(‘‘2HC09’’,
‘‘2HC10’’) for multiple sub-networks; character (e.g., ‘‘2All’’) for one net-
work).

The NetworkDistances code should be in the same folder as GRIP2, the work-
ing directory. Create two folders in the working directory: NetworkShapefiles/, and
SavedNetworkObjects/. The folder NetworkShapefiles/ contains the shapefiles for
the network(s). The folder SavedNetworkObjects/ may contain saved netVect.RData

objects from previous iterations to speed up computations, if they are available (Sub-
section 4.2, Step 2a).

Two additional folders are created during the simulation: RDataOutTemp/, and
RDataOutDist/. The folder RDataOutTemp/ holds temporary R output each itera-
tion. The folder RDataOutDist/ contains pairwise distance matrices for each iteration
and network. Pairwise distance objects are named pairDists.y.RData in order to
be retrieved later by GRIP2 to calculate various statistics. Two other objects are
saved in the folder RDataOutDist/ under the names patchNetworkDist.y.RData (con-
tains minDistMat and patchNetwork), and patches.y.RData (contains patches and
patchesUTM). This folder may also contain the figure of patches and network lines,
plot.pdf.

5.1 DISTANCE UNITS AND CONVERSIONS

Distance units may vary between the RAMAS programme, the GRIP2 script, and
the NetworkDistances code. For consistency, the NetworkDistances code uses me-
tres (converting kilometres to metres when necessary). For the RSD analysis, network
shapefiles are in metres, and RAMAS output files are in metres (e.g., Patchmap) and
kilometres (e.g., ptcfile). NetworkDistances calculations and inputs (e.g., maxD)
are in metres. However, because RAMAS input files require distances in kilome-
tres, pairDists is converted from metres to kilometres just prior to being returned to
GRIP2 as a matrix of pairwise distances, Pairwise Distance. It is critical that users
ensure that distances have expected units in RAMAS, GRIP2, and NetworkDis-
tances input and output files.

12

6 VERIFYING NetworkDistances AND EXTENSIONS

Distances calculated using the NetworkDistances code should sufficiently approximate
reality if network shapefiles are accurate and of sufficient spatial resolution. However,
we recommend that users confirm the accuracy of the NetworkDistances output by
checking various statistics, the distance matrix pairDists, and the figure generated
by the function PlotNetworkPatches(). Additionally, ensure that RAMAS output
files (i.e., spp.asc) line up with networks by plotting patches and network lines, as well
as verifying the patch map grid location (Subsection 4.2, Step 1). Ensure that maxD

is sufficiently large to locate candidate nodes in SnapToNodes(pops). Investigate
the matrices in patchNetworkDist.y.RData to ensure that patches are assigned to
the correct network. These matrices will also indicate whether maxD is too small (e.g.,
patches are omitted), or too large (e.g., snapped distances are much shorter than maxD).
Also, ensure that RAMAS files, grids, and network lines have identical projections and
correct units.

As previously mentioned, one extension is to use directed graphs; for example, mi-
gration distance may depend on direction for fish that inhabit fast-flowing rivers (Step
2a). A second use of directed graphs is to model the effects of patch size (e.g., area)
and population on migration; for example, large patches may have more immigrants,
while large populations may have more emigrants. Another extension is to incorporate
a changing spatial network over time. For example, a previously continuous river net-
work could become fragmented by dams. This type of temporal change would increase
processing time because year-specific network objects would have to be calculated each
year.

7 ACKNOWLEDGEMENTS

The authors thank K. Kinnersley for facilitating our use of the high performance com-
puting facility at the Institute of Ocean Sciences, I. Naujokaitis-Lewis for technical
support, and M. Poos for comments which improved the document. Funding support
was provided by Fisheries and Oceans Canada’s National Species at Risk Programme.

13

REFERENCES

Akçakaya, H. R. 2005. RAMAS GIS: Linking spatial data with population viability
analysis. Applied Biomathematics. URL www.ramas.com/ramas.htm#gis. User
manual for version 5

Baddeley, A. and Turner, R. 2005. Spatstat: An R package for analyzing spatial point
patterns. Journal of Statistical Software 12(6): 1–42. URL www.jstatsoft.org. R
package version 1.21-6

Bivand, R. S., Pebesma, E. J. and Gómez-Rubio, V. 2008. Applied spatial data analysis
with R. Springer, NY. URL http://www.asdar-book.org/. R package version 0.9-
80

Calenge, C. 2006. The package “adehabitat” for the R software: A tool for the analysis
of space and habitat use by animals. Ecological Modelling 197: 516–519. doi:10.
1016/j.ecolmodel.2006.03.017. R package version 1.8-4

Carey, V., Long, L. and Gentleman, R. 2010. RBGL: An interface to the BOOST graph
library. URL http://CRAN.R-project.org/package=RBGL. R package version 1.26.0

COSEWIC (Committee on the Status of Endangered Wildlife in Canada). 2007.
COSEWIC assessment and update status report on the redside dace Clinosomus
elongatus in Canada. Technical Report, Canadian Wildlife Service and Environment
Canada. URL www.sararegistry.gc.ca/status

Csárdi, G. and Nepusz, T. 2006. The igraph software package for complex network
research. InterJournal Complex Systems: 1695. URL http://igraph.sf.net. R
package version 0.5.5-2

Curtis, J. M. R. and Naujokaitis-Lewis, I. R. 2008a. Sensitivity of population viability
analysis to spatial and nonspatial parameters using GRIP. Ecological Applications
18(4): 1002–1013. doi:10.1111/j.1523-1739.2008.01066.x

Curtis, J. M. R. and Naujokaitis-Lewis, I. R. 2008b. Source code for the program
GRIP 1.0 (Generation of Random Input Parameters). URL http://esapubs.org/

archive/appl/A018/033/suppl-1.htm. Ecological Archives: A018-033-S1 (Supple-
ment)

Dijkstra, E. W. 1959. A note on two problems in connexion with graphs. Numerische
Mathematik 1(1): 269–271. doi:10.1007/BF01386390

Dray, S. and Dufour, A. B. 2007. The ade4 package: Implementing the duality diagram
for ecologists. Journal of Statistical Software 22(4): 1–20. URL http://CRAN.

R-project.org/package=ade4. R package version 1.4-17

14

ESRI (Environmental Systems Research Institute). 2006. ArcMap for ArcGIS Desktop.
URL http://www.esri.com. Version 9.2, Build 1324, ArcView License

Gentleman, R., Whalen, E., Huber, W. and Falcon, S. 2010. graph: A package to
handle graph data structures. URL http://CRAN.R-project.org/package=graph.
R package version 1.28.0

Johst, K., Brandl, R. and Eber, S. 2002. Metapopulation persistence in dynamic
landscapes: The role of dispersal distance. Oikos 98(2): 263–270. doi:10.1034/j.
1600-0706.2002.980208.x

Keitt, T. H., Bivand, R., Pebesma, E. and Rowlingson, B. 2010. rgdal: Bindings for the
geospatial data abstraction library. URL http://CRAN.R-project.org/package=

rgdal. R package version 0.6-33

Kitching, R. 1971. A simple simulation model of dispersal of animals among units of
discrete habitats. Oecologia 7(2): 95–116. doi:10.1007/BF00346353

Lewin-Koh, N. J. and Bivand, R. 2011. maptools: Tools for reading and handling
spatial objects. URL http://CRAN.R-project.org/package=maptools. With con-
tributions from E. J. Pebesma, E. Archer, A. Baddeley, H.-J. Bibiko, S. Dray, D.
Forrest, M. Friendly, P. Giraudoux, D. Golicher, V. G. Rubio, P. Hausmann, K. O.
Hufthammer, T. Jagger, S. P. Luque, D. MacQueen, A. Niccolai, T. Short, B. Stabler
and R. Turner. R package version 0.8-6

NRC (Natural Resources Canada). 2011. GeoGratis: Geospatial data available online
at no cost and without restrictions. URL http://geogratis.gc.ca. Retrieved 5
January 2011

Pebesma, E. J. and Bivand, R. S. 2005. Classes and methods for spatial data in R.
R News 5(2): 9–13. URL http://cran.r-project.org/doc/Rnews/. R package
version 0.9-80

Peng, R. D. 2010. gpclib: General polygon clipping library for R. URL http://

CRAN.R-project.org/package=gpclib. With contributions from D. Murdoch and
B. Rowlingson; GPC library by A. Murta. R package version 1.5-1

Poos, M. S. and Jackson, D. A. (in press). Incorporating species specific data into
patch occupancy models: Impact of dispersal on estimates of viability of stream
metapopulations. Landscape Ecology doi:10.1007/s10980-011-9683-2

RDCT (R Development Core Team). 2011. R: A language and environment for statisti-
cal computing. URL www.R-project.org. R Foundation for Statistical Computing.
Vienna, Austria. R version 2.13.0

15

Schnute, J. T., Boers, N., Haigh, R. and Couture-Beil, A. 2010. PBSmapping: Map-
ping fisheries data and spatial analysis tools. URL http://CRAN.R-project.org/

package=PBSmapping. R package version 2.61.9

Strahler, A. N. 1957. Quantitative analysis of watershed geomorphology. Transactions
of the American Geophysical Union 8(6): 913–920

Tierney, L., Rossini, A. J., Li, N. and Sevcikova, H. 2008. snow: Simple network of
workstations. URL http://CRAN.R-project.org/package=snow. R package version
0.3-3

Urban, D. L., Minor, E. S., Treml, E. A. and Schick, R. S. 2009. Graph models of habitat
mosaics. Ecology Letters 12(3): 260–273. doi:10.1111/j.1461-0248.2008.01271.x

Venables, W. N. and Ripley, B. D. 2002. Modern applied statistics with S. Springer,
New York, fourth ed. URL http://www.stats.ox.ac.uk/pub/MASS4. ISBN 0-387-
95457-0. R package version 7.3.3

Warnes, G. R. 2010. gtools: Various R programming tools. URL http://CRAN.

R-project.org/package=gtools. Includes R source code and/or documentation
contributed by B. Bolker and T. Lumley. R package version 2.6.2.

Wolfenbarger, D. O. 1946. Dispersion of small organisms: Distance dispersion rates of
bacteria, spores, seeds, pollen, and insects; Incidence rates of diseases and injuries.
American Midland Naturalist 35(1): 1–152

WPD (Wine Project Developers). 2010. WineHQ: Wine is not an emulator. URL
www.winehq.org. Version 1.2.2

Yu, H. 2010. Rmpi: Interface (wrapper) to MPI (Message-Passing Interface). URL
http://CRAN.R-project.org/package=Rmpi. R package version 0.5-9

16

APPENDIX

Electronic copies of the modified GRIP2 script for use with NetworkDistances,
the NetworkDistances.R code (Listing 1), and the RSD study area data (e.g., river
networks, RSD habitat map) are available free from the authors.

Listing 1. The NetworkDistances code (NetworkDistances.R version 1.0) is written
in the programming language R (RDCT 2011).

1 # ##

#

3 # Author: Matthew H. Grinnell

Affiliation : Pacific Biological Station , Fisheries and Oceans Canada

5 # Research group: Conservation Biology Section (Janelle M. R. Curtis)

Contact: e-mail: matt.grinnell@dfo -mpo.gc.ca | tel: (250)756.7326

7 # e-mail: janelle.curtis@dfo -mpo.gc.ca | tel: (250)756.7157

Project: GRIP2 extension for movement between patches within networks

9 # Code name: NetworkDistances .R

Code version: 1.0

11 # Date started: 2010 -11 -30

Date modified: 2011 -11 -16

13 #

Goal: Convert spatial lines (i.e., networks) and points (i.e., patches) to a

15 # graph object , and calculate network -wise distances between each pair of

habitat patches. Output a matrix of pairwise distances , pairDists , which

17 # is also saved as a .RData object in the folder RDataOutDist . These objects

are indexed by iteration number y in newNreps (e.g., pairDists .1. RData).

19 #

Requirements : This code is designed for use with GRIP [1], and RAMAS GIS

21 # 5.0[2]; however , the code could be modified for stand -alone use. Regardless

of whether NetworkDistances is used alone or with GRIP2 , read the

23 # NetworkDistances user manual [3] for additional details.

#

25 # Notes: Please contact the authors if you have suggestions , comments , or

concerns. Additionally , we are attempting to keep track of this code 's use;

27 # please contact the authors if the code was useful for research. We recommend

that users verify their output by checking various statistics and graphs. We

29 # assume that the user has a working ability with R[4], and is familiar with

spatial data. It is crucial that users verify that distances are in the

31 # correct units throughout this script! This code comes with absolutely no

warranty.

33 #

References :

35 # [1] Curtis , J. M. R. and Naujokaitis -Lewis , I. R. 2008. Source code for the

program GRIP 1.0 (Generation of Random Input Parameters).

37 # URL http://esapubs.org/archive/appl/A018/033/suppl -1. htm. Ecological

Archives: A018 -033 -S1 (Supplement)

39 # [2] Akcakaya , H. R. 2005. RAMAS GIS: Linking spatial data with population

viability analysis. Applied Biomathematics . URL www.ramas.com. User

41 # manual for version 5

[3] Grinnell , M. H. and Curtis , J. M. R. 2011. User manual for

43 # NetworkDistances 1.0: Calculating network -wise distances between habitat

patches for spatially restricted species. Can. Tech. Rep. Fish. Aquat.

45 # Sci. 2960: iv + 29 p.

[4] RDCT (R Development Core Team). 2011. R: A language and environment for

47 # statistical computing . URL www.R-project.org. R foundation for

Statistical Computing . Vienna , Austria. R version 2.13.0

49 #

##

51
##

53 ##### Start file 'NetworkDistances .R' #####

##

17

55
Ensure that all the required user - specified inputs are present. Note: if

57 # NetworkDistances is not called from GRIP2 , these parameter values need to be

initialized prior to here. Also , ensure the proper file structure has been

59 # created , the required habitat patch information is available (i.e., the ptc

and asc arguments to the function GridToUTM), and define y.

61 if(!all(exists(x=c("maxD", "doSnow", "cType", "nCores", "coreName", "nZone",

"doSpatPlots", "networks")))) {

63 # Stop everything

stop("Missing required user -specified inputs for 'NetworkDistances.R'")

65 } # End ensure user -inputs

67 # Create a temporary directory to hold output each iteration

if("RDataOutTemp" %in% list.files()) {

69 # Delete the old directory

unlink(x="RDataOutTemp", recursive=TRUE)

71 # Create a new directory

dir.create(path="RDataOutTemp")

73 # End if directory exists , otherwise

} else {

75 # Make a new directory

dir.create(path="RDataOutTemp")

77 } # End if the directory does not exist

79 # Get habitat patch locations (referenced via the grid) from the .ptc file , and

grid georeference info from the .asc file (to georeference the patches).

81 # Convert to UTM and return habitat patches: patchesUTM . Note that users *must*

verify that this function specifies distance units correctly : as is , this

83 # function expects distances in m (asc) and km (ptc), and converts to m.

GridToUTM <- function(ptc , asc) {

85 # Get the first item from the first nmax lines in the ptc file

firstItemPTC <- scan(file=ptc , skip=0, sep=",", what="character",

87 quiet=TRUE , flush=TRUE , blank.lines.skip=FALSE , nmax =200)

Get line info for the habitat patch data (usually line 58)

89 linePatchPTC <- grep(pattern=paste(Npops , "populations", sep=" "),

x=firstItemPTC , perl=TRUE)[1]

91 # If linePatchPTC is NA (possibly due to not enough lines), search again

if(is.na(linePatchPTC)) {

93 # Get the first item from all the lines in the ptc file: this can take

a long time

95 firstItemPTC <- scan(file=ptc , skip=0, sep=",", what="character",

quiet=TRUE , flush=TRUE , blank.lines.skip=FALSE)

97 # Get line info for the habitat patch data

linePatchPTC <- grep(pattern=paste(Npops , "populations", sep=" "),

99 x=firstItemPTC , perl=TRUE)[1]

Print a warning

101 warning("Increase 'nmax ' in firstItemPTC () to avoid scanning whole file")

} # End if linePatchPTC is NA

103 # If linePatchPTC is *still* NA , error

if(is.na(linePatchPTC)) {

105 # Error message

stop("Check file '", ptc , " ': unable to find patch info")

107 } # End if linePatchPTC is *still* NA

Scan to get patch info into a list: Site , X, and Y (in km , referenced via

109 # the grid)

patchData <- scan(file=ptc , skip=linePatchPTC , nlines=Npops , sep=",",

111 what=list(Site="", X=0, Y=0), quiet=TRUE , flush=TRUE)

Get the first item from the first nmax lines in the (sometimes large) .asc

113 # file. This *should* contain the required lines , since they are usually at

the top of the .asc file (as a header).

115 firstItemASC <- scan(file=asc , skip=0, sep="\t", what="character",

quiet=TRUE , flush=TRUE , blank.lines.skip=FALSE , nmax =10)

117 # Get the line info for the X location

lineXASC <- grep(pattern="xllcorner", x=firstItemASC , perl=TRUE)[1]

119 # If lineXASC is NA (possibly due to not enough lines), search again

18

if(is.na(lineXASC)) {

121 # Get the first item from all lines in the asc file -- this can take

much longer!

123 firstItemASC <- scan(file=asc , skip=0, sep="\t", what="character",

quiet=TRUE , flush=TRUE , blank.lines.skip=FALSE)

125 # Get the line info for the X location

lineXASC <- grep(pattern="xllcorner", x=firstItemASC , perl=TRUE)[1]

127 # Print a warning

warning("Increase 'nmax ' in firstItemASC () to avoid scanning whole file")

129 } # End if lineXASC is NA

If lineXASC is *still* NA , error

131 if(is.na(lineXASC)) {

Error message

133 stop("Check file '", asc , " ': unable to georeference the grid")

} # End if lineXASC is *still* NA

135 # Georeference the grid 's location: get the left side 'X' location (UTM , m)

ASCgridLLX <- as.numeric(scan(file=asc , skip=lineXASC - 1, sep="\t",

137 what=list(NULL , "numeric"), quiet=TRUE , flush=TRUE , nlines =1)[[2]])

Get the line info for the Y location

139 lineYASC <- grep(pattern="yllcorner", x=firstItemASC , perl=TRUE)[1]

Georeference the grid 's location: get the lower 'Y' location (UTM , m)

141 ASCgridLLY <- as.numeric(scan(file=asc , skip=lineYASC - 1, sep="\t",

what=list(NULL , "numeric"), quiet=TRUE , flush=TRUE , nlines =1)[[2]])

143 # Get the line info for the cell size

lineCellASC <- grep(pattern="cellsize", x=firstItemASC , perl=TRUE)[1]

145 # Get the grid cell size (m)

ASCgridSize <- as.numeric(scan(file=asc , skip=lineCellASC - 1, sep="\t",

147 what=list(NULL , "numeric"), quiet=TRUE , flush=TRUE , nlines =1)[[2]])

Get the line info for the number of rows

149 lineRowsASC <- grep(pattern="nrows", x=firstItemASC , perl=TRUE)[1]

Get the number of rows

151 ASCgridRows <- as.numeric(scan(file=asc , skip=lineRowsASC - 1, sep="\t",

what=list(NULL , "numeric"), quiet=TRUE , flush=TRUE , nlines =1)[[2]])

153 # Get the line info for the number of columns

lineColsASC <- grep(pattern="ncols", x=firstItemASC , perl=TRUE)[1]

155 # Get the number of columns (grid X dimension)

ASCgridCols <- as.numeric(scan(file=asc , skip=lineColsASC - 1, sep="\t",

157 what=list(NULL , "numeric"), quiet=TRUE , flush=TRUE , nlines =1)[[2]])

If any of lineYASC , lineCellASC , lineRowsASC , or lineColsASC is NA , error

159 if(is.na(lineYASC) | is.na(lineCellASC) | is.na(lineRowsASC) |

is.na(lineColsASC)) {

161 # Error message

stop("Check file '", asc , " ': unable to georeference the grid (2)")

163 } # End if any of lineYASC , lineCellASC , lineRowsASC , or lineRowsASC is NA

Put scanned data into a dataframe with columns EID , X (convert km to m),

165 # Y (convert km to m), and Site. Note that users *must* verify that this

function specifies distance units correctly

167 patchDF <- data.frame(EID=1:Npops , X=patchData$X*1000, Y=patchData$Y*1000,

Site=patchData$Site)

169 # Find the top of the grid (UTM , m)

gridTop <- ASCgridLLY + (ASCgridRows * ASCgridSize)

171 # Find the right side of the grid (UTM , m)

gridRight <- ASCgridLLX + (ASCgridCols * ASCgridSize)

173 # Convert patch (X, Y) locations from grid to UTM (m; currently , (X, Y)

indicates the number of grid cells from the upper -left corner of the grid)

175 patchDF$X <- ASCgridLLX + patchDF$X

patchDF$Y <- gridTop - patchDF$Y

177 # Convert to EventData (georeferenced in UTM , m for PBSmapping)

patchEvent <- as.EventData(x=patchDF , projection="UTM", zone=nZone)

179 # Set up a list to return

res <- list(patchEvent=patchEvent ,

181 extent=list(top=gridTop , bottom=ASCgridLLY , left=ASCgridLLX ,

right=gridRight))

183 # Return the list (habitat patches (as EventData) and grid extent)

return(res)

19

185 } # End GridtoUTM function

187 # Run the GridToUTM function to get the patches and grid extent

getGridToUTM <- GridToUTM(ptc=ptcfile , asc=OrigPatchmap)

189
Get the patches

191 patchesUTM <- getGridToUTM$patchEvent

193 # Get the grid extent (for the plot below)

gridExtent <- getGridToUTM$extent

195
Loop over the number of networks

197 for(i in 1: length(networks)) {

199 # Get the river network (via watershed name). Note that users *must* verify

that this function specifies distance units correctly: as is , this function

201 # expects distances in m.

netVect <- importShapefile(readDBF=TRUE , projection="UTM", zone=nZone ,

203 fn=paste("NetworkShapefiles/", networks[i], ".shp", sep=""))

205 # Select only the required columns (to reduce object size)

netVect <- subset(netVect , select=c(PID , SID , POS , X, Y))

207
Get the original river points

209 patches <- patchesUTM

211 # If the saved data object from a previous simulation is NOT available in the

working directory , run the entire analysis (this may take some time) and

213 # save the required object for the next simulation

if(!paste(networks[i], ".RData", sep="") %in%

215 list.files("SavedNetworkObjects")) {

Create a column to indicate the unique ID for each unique node. Note that

217 # some nodes are repeated (i.e., the bottom coordinates of two streams that

merge (i.e., become one large stream) will be the same as the top

219 # coordinates of the stream that they merge into). These nodes need to have

the same ID numbers for the graph object to consider them the same (which

221 # they are).

CreateUniqueID <- function(dat) {

223 # Select the columns of XY data from the data.frame and load as a matrix

mat <- matrix(cbind(datX, datY), nrow=nrow(dat), ncol=2)

225 # Initialize a vector to hold unique IDs

vec <- 0

227 # Fill vec with consecutive numbers for non - duplicated rows

vec[!duplicated(mat)] <- 1:nrow(mat[!duplicated(mat),])

229 # Get unique duplicated rows

dups <- unique(mat[duplicated(mat),])

231 # Loop over unique duplicated rows

for(i in 1:nrow(dups)) {

233 # Determine the indices in mat that match the ith duplicated row

iInd <- mat[,1] == dups[i, 1] & mat[,2] == dups[i, 2]

235 # Set duplicate rows to the first number (the ID)

vec[iInd] <- vec[iInd][1]

237 } # End loop over unique dups

Add the data to dat , and initialize columns for site name and distance

239 dat$UniqueID <- vec

dat$SiteName <- NA

241 dat$dist <- NA

Return the site locations

243 return(dat)

} # End CreateUniqueID function

245 netVect <- CreateUniqueID(dat=netVect)

Collect garbage

247 gc()

Get locations "to" and "from", as well as distances between location

249 # pairs

20

GetToFromDist <- function(dat) {

251 mat <- matrix(NA, nrow=nrow(dat), ncol=7)

colnames(mat) <- c("frID", "toID", "frX", "frY", "toX", "toY",

253 "dist")

count <- 0 # Initialize counter (for rows)

255 # Pull required columns into a matrix

dat <- as.matrix(dat[, 1:6], ncol=6, byrow=TRUE)

257 # Loop over PIDs

for(i in 1: length(unique(dat[, "PID"]))) {

259 datPID <- subset(dat , dat[, "PID"] == unique(dat[, "PID"])[i])

Loop over SIDs within PIDs

261 for(j in 1: length(unique(datPID[, "SID"]))) {

datSID <- subset(datPID ,

263 datPID[, "SID"] == unique(datPID[,"SID"])[j])

Loop over rows within SIDs within PIDs

265 for(k in 1:(nrow(datSID)-1)) {

Update the counter for new row

267 count <- count + 1

Get coordinates

269 mat[count , "frX"] <- datSID[k, "X"]

mat[count , "frY"] <- datSID[k, "Y"]

271 mat[count , "toX"] <- datSID [(k+1), "X"]

mat[count , "toY"] <- datSID [(k+1), "Y"]

273 # Get the UniqueID (i.e., the river node numbers)

mat[count , "frID"] <- datSID[k, "UniqueID"]

275 mat[count , "toID"] <- datSID [(k+1), "UniqueID"]

Calculate the distance

277 mat[count , "dist"] <- sqrt((datSID[k, "X"] - datSID [(k+1), "X"])^2

+ (datSID[k, "Y"] - datSID [(k+1), "Y"])^2)

279 } # End loop over rows within SID within PID

} # End loop over SID within PID

281 } # End loop over PID

Remove rows that are NA (these are due to repeated points)

283 return(na.omit(mat))

} # End GetToFromDist function

285 toFromDist <- GetToFromDist(dat=netVect)

Collect garbage

287 gc()

Change the class of the toFromDist to a data.frame to allow factors for

289 # node names (population sampling points)

tfTable <- data.frame(frID=toFromDist[, "frID"],

291 toID=toFromDist[, "toID"], frX=toFromDist[, "frX"],

frY=toFromDist[, "frY"], toX=toFromDist[,"toX"],

293 toY=toFromDist[, "toY"], dist=toFromDist[, "dist"])

Remove toFromDist to save memory (this can be a large object)

295 rm(toFromDist)

Save the required objects for the next simulation

297 save(list=c("netVect", "tfTable"),

file=paste("SavedNetworkObjects/", networks[i], ".RData", sep=""))

299 } # End if the saved object is not present in the working directory

301 # If the saved data object from a previous simulation IS available , load the

saved object to reduce computation time if desired

303 if(paste(networks[i], ".RData", sep="") %in%

list.files("SavedNetworkObjects")) {

305 # Load the object

load(file=paste("SavedNetworkObjects/", networks[i], ".RData", sep=""))

307 # Ensure that site names and distances from the last iteration are NA

netVect$SiteName <- NA

309 netVect$DistToSite <- NA

} # End if using saved object

311
Ensure that all sampling points have unique IDs

313 EnsureUniqueSites <- function(dat) {

Letter index for first site

21

315 iLet <- 0

Get the original site names

317 sites <- as.character(dat$Site)

Print a warning that site(s) have been renamed

319 warning("Duplicate site name(s) were renamed (", networks[i],")")

Iterative rename function

321 RenameRename <- function(siteNames) {

Index the duplicated sites

323 ind <- duplicated(siteNames)

Rename the sites

325 siteNames[ind] <- paste(siteNames[ind], letters[iLet], sep="")

return(siteNames)

327 } # End RenameRename function

Send the site names to the RenameRename function while there are

329 # duplicates

while(TRUE %in% duplicated(sites)) {

331 # Update the counter for new letters

iLet <- iLet + 1

333 # Rename sites

sites <- RenameRename(siteNames=sites)

335 } # End while loop

Return the new site names as factors

337 return(as.factor(sites))

} # End CreateUniqueID function

339
If there are duplicate site names , rename them

341 if(TRUE %in% duplicated(patches$Site)){

patches$Site <- EnsureUniqueSites(dat=patches)

343 } # End if duplicate rows

345 # Collect garbage

gc()

347
Add the sampling points to the to -from matrix at the nearest node , within

349 # maxD units. Outputs the minimum distances for each population , and updates

the nodes that are now population points. If no nodes are within maxD units

351 # of the point , the output is NA , and the point is ignored.

SnapToNodes <- function(pops) {

353 # Coordinates

pt <- c(as.numeric(pops["X"]), as.numeric(pops["Y"]))

355 # Function to get the set of nodes within some proportion of maxD units

from pt. Returns a subset of netVect that is within the specified

357 # distance (up to a maximum of maxD).

GetPoints <- function(srchD) {

359 # Get outer range in X

xs <- c(pt[1] - srchD , pt[1] + srchD)

361 # Get outer range in Y

ys <- c(pt[2] - srchD , pt[2] + srchD)

363 # Select the river nodes within the outer range to limit the search

subRiv <- netVect[netVect$X>xs[1] & netVect$X<xs[2] & netVect$Y>ys[1] &

365 netVect$Y<ys[2],]

Return the subset of netVect

367 return(subRiv)

} # End GetPoints function

369 # Run the GetPoints function with maxD/4

iNodes <- GetPoints(srchD=maxD/4)

371 # If there are no nodes , run GetPoints again with maxD

if(dim(iNodes)[1] == 0) iNodes <- GetPoints(srchD=maxD)

373 # Set up a temporary vector to hold distances

dVec <- 0.

375 # Continue only if there are elements to iNodes

if(dim(iNodes)[1] >= 1) {

377 # Loop over nodes and calculate Euclidian distance

for(i in 1:nrow(iNodes)) {

379 dVec[i] <- sqrt((pt[1] - iNodes$X[i])^2 + (pt[2] - iNodes$Y[i])^2)

22

} # End loop over rows in nodes

381 # Ensure that the minimum distance is <= maxD (note that this might not

be true because dVec 's are for points within the box , but we need to

383 # ensure that the radius is <= maxD

if(min(dVec) <= maxD) {

385 # Determine the position of the closest (select only one if a tie)

iRow <- which(min(dVec) == dVec)[1]

387 # Get its unique ID

iID <- iNodes$UniqueID[iRow]

389 # Determine whether the node is already a site. This can occur if two

sampling locations are close together , and snap to the same node.

391 # Note that iID is a single number , but may reference multiple nodes;

for example , the node is a junction (i.e., location at which two

393 # streams merge)

If the node is not already a site:

395 if(is.na(netVect$SiteName[netVect$UniqueID == iID])[1]) {

Update the node to reflect that it 's a sampling location (from)

397 tfTable$frID[tfTable$frID == iID] <<- pops["Site"]

Update the node to reflect that it 's a sampling location (to)

399 tfTable$toID[tfTable$toID == iID] <<- pops["Site"]

Also , update netVect to indicate population site and distance to

401 # node

netVect$SiteName[netVect$UniqueID == iID] <<- pops["Site"]

403 netVect$DistToSite[netVect$UniqueID == iID] <<- min(dVec)

} # End if the node is not already a site

405 # If the node is already a site:

else {

407 # Get the old site name

oldName <- netVect$SiteName[netVect$UniqueID == iID][1]

409 oldXY <- c(netVect$X[netVect$UniqueID == iID][1],

netVect$Y[netVect$UniqueID == iID][1])

411 # Make a new row to add to the dataframe , with the distance between

the new and old sites equal to zero (i.e., same node/location)

413 newRow <- tfTable[1,]

newRow$frID <- pops["Site"]

415 newRow$toID <- oldName

newRow$frX <- oldXY [1]

417 newRow$frY <- oldXY [2]

newRow$toX <- oldXY [1]

419 newRow$toY <- oldXY [2]

newRow$dist <- 0.

421 # Finally , append the new rows to the to -from matrix

tfTable <<- rbind(tfTable , newRow)

423 # Also , update netVect to indicate that the node has two population

sites and the max of the distances

425 netVect$SiteName[netVect$UniqueID == iID] <<-

paste(netVect$SiteName[netVect$UniqueID == iID][1], pops["Site"],

427 sep=".")

netVect$DistToSite[netVect$UniqueID == iID] <<-

429 max(min(dVec), netVect$DistToSite[netVect$UniqueID == iID][1])

Print a warning to indicate the node is already a site

431 warning("Sites '", pops["Site"], "' and '", oldName ,

"' are on the same node (", networks[i], ")")

433 } # End if the node is already a site

} # End if min(dVec) <= maxD

435 # Otherwise , min(dVec) is > maxD

else dVec <- NA

437 } # End if there are rows in iNodes

If there are no nodes , dist is NA , and print a warning

439 if(dim(iNodes)[1] == 0) dVec <- NA

Return the distance between the population point and the node

441 return(min(dVec))

} # End SnapToNodes function

443
Add patche to network

23

445 minDists <- apply(X=patches , MARGIN=1, FUN=SnapToNodes)

447 # Append minDists to minDistMat . This will allow the identification of

patches that occur in multiple networks (i.e., when maxD is too large),

449 # and assign the patch to the network that is closest. If it 's the first

iteration

451 if(i==1) {

Set up the empty matrix

453 minDistMat <- matrix(NA, nrow=nrow(patches), ncol=length(networks))

Name columns as networks

455 colnames(minDistMat) <- networks

Name rows as patches

457 rownames(minDistMat) <- patches$Site

Add minDists to the 1st column

459 minDistMat[, 1] <- minDists

End if the 1st iteration

461 } else {

Add minDists to the ith column

463 minDistMat[, i] <- minDists

} # End if iteration is 2nd or more

465
Collect garbage

467 gc()

469 # Make the graph object. Take in the toFromDist data.frame , and output the

graph object indicating paths between vertices (some of which are

471 # population sampling points) and distances (calculated as weights in the

graph object). First , check for and remove edges that are specified

473 # multiple times. To save time , only do this if the network has patches.

if(any(patches$Site %in% tfTable$frID) |

475 any(patches$Site %in% tfTable$toID)) {

Make a graph will all the nodes

477 netGraphAll <- graph.data.frame(tfTable[,1:2], directed=FALSE)

Remove nodes that are duplicated

479 tfTable <- tfTable[!is.multiple(graph=netGraphAll),]

Make a graph with unique nodes

481 netGraph <- ftM2graphNEL(ft=cbind(tfTable$toID , tfTable$frID),

edgemode="undirected", W=tfTable$dist)

483 } # End if the network has patches

485 # Collect garbage

gc()

487
Calculate distance matrix between pairs of sampling points. If a pair of

489 # points are not connected (i.e., not joined by lines), the distance is NA.

The diagonal is zero (i.e., distance between and point and itself , and the

491 # distance "to" equals the distance "from" (i.e., direction is irrelevant).

CalcDistMatrix <- function(dat) {

493 # Get character vector of unique site names from the graph object. This is

important because the distance function will work hard to calculate

495 # distances for unconnected patches , which takes a very long time. So ,

only include patches that are actually on the graph

497 patchSites <- patches$Site[which(patches$Site %in% nodes(netGraph))]

patchSites <- as.character(patchSites)

499 # Set up the empty distance matrix , with site names for rows and cols

dMat <- matrix(NA , nrow=length(patchSites), ncol=length(patchSites))

501 colnames(dMat) <- patchSites

rownames(dMat) <- patchSites

503 # First , generate a table of indices for the upper triangle of dMat

num <- length(patchSites)

505 idx <- expand.grid(i=1:num , j=1:num)[upper.tri(diag(num),

diag=FALSE),]

507 # Function to get the distance: apply over rows of idx to fill in the upper

triangle of the distance matrix

509 GetDistance <- function(dat , patchSites=patchSites , netGraph=netGraph) {

24

Load the required library

511 require(RBGL)

Get the pair of point names

513 ptPair <- c(patchSites[dat[1]], patchSites[dat [2]])

Determine the shortest route and distance between the pair of points

515 pairDist <- sp.between(g=netGraph , start=ptPair [1], finish=ptPair [2],

detail=FALSE)

517 # Pull out the distance between the pair

return(pairDist [[1]]$length)

519 } # End GetDistance function

If using only one core (and idx has some data)

521 if(!doSnow & dim(idx)[1] > 0) {

Apply the indices to the function and output distances

523 dists <- apply(X=idx , MARGIN=1, FUN=GetDistance ,

patchSites=patchSites , netGraph=netGraph)

525 } # End if only one core

If using multiple cores (and idx has some data)

527 if(doSnow & dim(idx)[1] > 0) {

Apply the indices to the function and output distances

529 dists <- parApply(cl=snowClust , X=idx , MARGIN=1, FUN=GetDistance ,

patchSites=patchSites , netGraph=netGraph)

531 } # End if using more than one core

If idx does not have any data

533 if(dim(idx)[1] == 0) dists <- NA

Place distances into the upper triangle

535 dMat[upper.tri(dMat , diag=FALSE)] <- dists

And the lower triangle

537 dMat[lower.tri(dMat)] <- t(dMat)[lower.tri(dMat)]

Update the diagonal

539 diag(dMat) <- 0.

Return the matrix

541 return(dMat)

} # End CalcDistMatrix function

543
To save time , calculate distances only if the network has habitat patches

545 if(any(patches$Site %in% tfTable$frID) |

any(patches$Site %in% tfTable$toID)) {

547 distMat <- CalcDistMatrix(dat=netGraph)

} # End if there are patches

549
If there aren 't any patches , distMat is "empty"

551 if(!any(patches$Site %in% tfTable$frID) &

!any(patches$Site %in% tfTable$toID)) {

553 distMat <- matrix(NA , nrow=0, ncol=0)

} # End if there are no patches

555
Collect garbage

557 gc()

559 # Save the distance matrix as an .RData object

save(distMat ,

561 file=paste("RDataOutTemp/distMat.", networks[i], ".RData", sep=""))

563 } # End i loop over the number of networks

565 # Subset minDistMat to only have patches that are in a network , and to only

have networks that have patches. Also , each patch should only be in one

567 # network , which is the network that had the nearest node. This is to ensure

that there are no duplicates in pairDists (output from CombineDistances ,

569 # below)

RemoveDupPatches <- function(mat) {

571 # Determine which rows are ALL NA (i.e., patches that were not snapped

to a node in any networks -- these patches are omitted from the analysis)

573 naRows <- apply(X=mat , MARGIN=1, FUN=function(x) all(is.na(x)))

Take the inverse

25

575 naRows2 <- naRows == FALSE

Select the rows with (patches) that were snapped to node(s)

577 mat2 <- subset(mat , subset=naRows2)

Loop over rows in mat , and make sure that each patch only "belongs" to

579 # one node (network); if there are two , set the further one to NA to ensure

that the patch is only in one network

581 for(k in 1:nrow(mat2)) {

Get the elements in row k that are not NA

583 dat <- mat2[k, is.na(mat2[k,]) == FALSE]

If there are more than one , pick the smallest one. Otherwise , ignore

585 if(length(dat) >= 2) {

Get the min

587 minDat <- min(dat)

Set the other(s) in the row to NA

589 mat2[k, which(mat2[k,] != minDat)] <- NA

} # End if more than 2 networks

591 } # End loop over k rows in mat

Determine which columns are ALL NA (i.e., networks with no patches)

593 naCols <- apply(X=mat2 , MARGIN=2, FUN=function(x) all(is.na(x)))

Select the cols (networks) that contain patches

595 mat3 <- subset(mat2 , select=which(naCols ==FALSE))

Return mat: all patches are in one (and only one) network , and all

597 # networks have (at least) one node

return(mat3)

599 } # End RemoveDupPatches function

601 # If minDistMat is not all NA

if(!all(is.na(minDistMat))) {

603 # Get the subset of patches and networks with patches

patchNetwork <- RemoveDupPatches(mat=minDistMat)

605 } # End if is not all NA

607 # If minDistMat is all NA , set patchNetwork to a 0x0 matrix

if(all(is.na(minDistMat))) patchNetwork <- matrix(NA, nrow=0, ncol=0)

609
Finally , combine the distance matrices from each subset

611 CombineDistances <- function(dat) {

Initialize the big matrix to hold all the pairwise distances

613 mat <- matrix(NA, nrow=nrow(patchesUTM), ncol=nrow(patchesUTM))

Set up row and columns indices for the top left corner of the big matrix

615 iRC <- 1

Initialize a vector to hold point names

617 ptNames <- vector()

Loop over data subsets

619 for(i in 1: length(dat)) {

Load the distance matrix

621 load(file=paste("RDataOutTemp/distMat.", dat[i], ".RData", sep=""))

Get the right column (network) from patchNetwork

623 iCol <- which(colnames(patchNetwork) == dat[i])

Get the rows that indicate the network 's patches

625 iRows <- which(is.na(patchNetwork[, iCol]) == FALSE)

Get the names of patches from patchNetwork (these are the only ones that

627 # should be in distMat

pnPatches <- rownames(patchNetwork)[iRows]

629 # Check that distMat doesn 't have patches that aren 't supposed to be in

a different (i.e., closer) network

631 if(all(colnames(distMat) %in% pnPatches) == FALSE) {

Determine which patches should be included

633 inclPatch <- which(colnames(distMat) %in% pnPatches)

Subset distMat to include only patches that should be in the network

635 distMat <- distMat[inclPatch , inclPatch]

If distMat is now empty (i.e., there is only one patch) ensure that

637 # it 's a matrix with 1 row and 1 column with correct names and

distance =0

639 if(all(distMat == 0)) {

26

Make the matrix

641 distMat <- matrix(0, nrow=1, ncol=1)

Give it column and row names

643 rownames(distMat) <- pnPatches

colnames(distMat) <- pnPatches

645 } # End if distMat is zero

} # End if there are extra patches in distMat

647 # If there is data in distMat , append the distances and names

if(!is.null(dim(distMat))) {

649 # Get the number of rows

nr <- nrow(distMat)

651 # If there are rows , get data

if(nr >= 1) {

653 # Append the names to the vector

ptNames[iRC:(iRC+nr -1)] <- rownames(distMat)

655 # Append distMat to the big matrix

mat[(iRC:(iRC+nr -1)), (iRC:(iRC+nr -1))] <- distMat

657 # Update index for rows and columns

iRC <- iRC + nr

659 } # End if thre are rows

} # End if distMat had data

661 } # End loop over subsets

Remove empty rows

663 mat <- matrix(mat [(1: length(ptNames)), (1: length(ptNames))],

nrow=length(ptNames))

665 # If there are rows and columns

if(!is.null(dim(mat))) {

667 # Add row and column names

rownames(mat) <- ptNames

669 colnames(mat) <- ptNames

} # End if there are rows and columns

671 # Return the distance matrix

return(mat)

673 } # End CombineDistances function

675 # Run this function if there is at least one row in patchNetwork (i.e., there

is at least one point in the area). This only needs to be done for networks

677 # that have patches (i.e., columns in the object patchNetwork)

if(dim(patchNetwork)[1] >= 1) {

679 pairDists <- CombineDistances(dat=colnames(patchNetwork))

} # End if there are points

681
If there are zero points , the pairDists matrix is 0x0.

683 if(dim(patchNetwork)[1] == 0) pairDists <- matrix(NA, nrow=0, ncol=0)

685 # Collect garbage

gc()

687
Fill in the pairDists matrix with NA if any patches were omitted

689 FillPairDists <- function(mat) {

Get indices for the missing sites

691 indMissing <- which(!patches$Site %in% colnames(mat))

Get missing site names

693 noPatch <- patches$Site[indMissing]

Set up a matrix for columns

695 colMat <- matrix(NA, nrow=nrow(mat), ncol=length(noPatch))

Give it names

697 colnames(colMat) <- noPatch

Append cols

699 mat <- cbind(mat , colMat)

Set up a matrix for rows

701 rowMat <- matrix(NA, nrow=length(noPatch), ncol=ncol(mat))

Give it names

703 rownames(rowMat) <- noPatch

Append rows

27

705 mat <- rbind(mat , rowMat)

Return the new table

707 return(mat)

} # End FillPairDists function

709
Check if all the sites are in pairDists

711 if(!all(patches$Site %in% colnames(pairDists))) {

If not , run the function

713 pairDists <- FillPairDists(mat=pairDists)

} # End if there are missing sites

715
Order pairDists so that patches are in the original order

717 pairDists <- pairDists[mixedsort(colnames(pairDists)),

mixedsort(colnames(pairDists))]

719
Convert distances from m to km (to conform with GRIP2 and RAMAS); it is

721 # *crucial* that users verify that distances are in the correct units!

pairDists <- pairDists / 1000

723
Set the diagonal (i.e., from the patch to itself) from 0.0 to NA (to

725 # conform with GRIP2 and RAMAS)

diag(pairDists) <- NA

727
Save the habitat patches

729 save(patches , patchesUTM ,

file=paste("RDataOutDist/patches.", y, ".RData", sep=""))

731
Save the pairwise distances with index y in newNreps

733 save(pairDists , file=paste("RDataOutDist/pairDists.", y, ".RData", sep=""))

735 # Save the matrices indicating patches , networks , and distances snapped

save(minDistMat , patchNetwork ,

737 file=paste("RDataOutDist/patchNetworkDist.", y, ".RData", sep=""))

739 # ###

End of file 'NetworkDistances .R'

741 # ###

28

INDEX

calc network dist, 10
CalcDistMatrix(dat), 8
CombineDistances(dat), 9
coreName, 12
CreateUniqueID(dat), 7
cType, 11

doSnow, 10
doSpatPlots, 12

EnsureUniqueSites(dat), 8

FillPairDists(mat), 9
ftM2graphNEL(ft, edgemode, W), 8

GetToFromDist(dat), 7
GridToUTM(ptc, asc), 6

maxD, 10

nCores, 11
networks, 12
NetworkShapefiles/, 12
nZone, 12

PlotNetworkPatches(), 10

RDataOutDist/, 12
RDataOutTemp/, 12
RemoveDupPatches(mat), 9

SavedNetworkObjects/, 12
SnapToNodes(pops), 8

29

