
O2 ODBC
 User Manual

 Release 5.0 - April 1998

Information in th is document is subject to change withou t
not ice and shou ld not be construed as a com mitment by
O2 Technology.

The software descr ibed in th is docum ent is delivered u nder a
license or nondisclosu re agreem ent.

The software can on ly be u sed or copied in accordance with the
term s of the agreement . It is against the law to copy th is
software to magnet ic tape, disk, or any other m ediu m for any
pu rpose other than the pu rchaser ’s own use.

Copyr igh t 1992-1998 O2 Technology.

All r ights reserved. No par t of th is publicat ion can be
reproduced, stored in a ret r ieval system or t ransmit ted in any
form or by any means, elect ronic, mechan ical, photocopy
withou t pr ior wr i t ten permission of O2 Technology.

O2, O2Engine API, O2C, O2DBAccess, O2Engine, O2Graph,
O2Kit , O2Look , O2Store, O2Tools, and O2Web are registered
tradem arks of O2 Technology.

SQL and AIX are registered t rademarks of In ternat ional
Bu siness Machines Corporat ion.

Sun , SunOS, and SOLARIS are registered t rademarks of Sun
Microsystems, Inc.

X Window System is a registered tradem ark of the
Massachuset ts Inst i tu te of Technology.

Un ix is a registered t radem ark of Unix System Laborator ies, Inc.

HPUX is a registered t rademark of Hewlet t -Packard Com pany.

BOSX is a registered t rademark of Bu l l S.A.

IRIX is a registered t rademark of Siemens Nixdorf, A.G.

NeXTStep is a registered t rademark of the NeXT Computer , Inc.

Pu r i fy, Qu ant i fy are registered trademarks of Pure Software Inc.

Windows is a registered t rademark of Microsoft Corporation .

All other company or product names quoted are t rademarks or
registered t rademarks of their respect ive t rademark holders.

Who should read this manual

Th is manual presen ts O2Tools, a complete graph ical programming
environment for the design and development of O2 appl icat ions. It
descr ibes the browsers and editors avai lable, as wel l as how to
customize O2Tools screens.

Other docum ents avai lable are ou t lined, cl ick below.

See O2 Documentation set .

1 TABLE OF CONTENTS
Th i s m a n u a l i s d i v i d ed i n t o t h e f o l l ow i n g ch a p t er s :
• 1 - Int rodu ct ion

• 2 - O2ODBC Instal lat ion

• 3 - O2ODBC Overview

• 4 - O2SQL

• 5 - O2ODBC

• 6 - Programming an O2ODBC Server

• 7 - O2ODBC Reference
 O2ODBC User Manu al 5

TABLE OF CONTENTS

22
.22
22

7
27

.32
.32
1 Introduction 11

1.1 System overview ..12

1.2 ODBC...14

1.3 O2 and ODBC..15

1.4 Manual Overview..16

1.5 Background ..17

2 O2ODBC Installation 19

2.1 Hardware and Software Requirements20

2.2 O2 ODBC Distribution Package ..20

2.3 Setting up the O2 ODBC Driver...21

Installing the driver ..
Declaring the o2 open-dispatcher ...
Installing the tools ..

2.4 Adding, Modifying and Deleting O2 ODBC Data Sources23

3 O2 ODBC Overview 25

3.1 O2 ODBC Architecture...26

Outline of the O2 ODBC driver activity......................................2
Advantages of the O2 ODBC architecture...................................

3.2 O2 SQL ..28

3.3 O2 ODBC Server...29

4 O2 SQL 31

4.1 Schema Translation ...32

O2 Schema ..
Relational Schema...
6 O2ODBC User Manual

TABLE OF CONTENTS

33
. 33
4

36
36
37
37
38
38
39

42
44
45
45
45
46
. 46
. 48
48
49
. 50
52

. 52
52
52
53

. 54
. 54
. 59
. 59

60

1

Example...
Class translation..
Primary Key Definition ... 3
Attribute Translation ...
Atomic and Class Attributes..
Tuple Attributes...
Collection Attributes ...
Inherited Attributes..
Data Retrieval Methods...
Customized translation ..

4.2 Query Translation .. 42

Table creation command ...
View table creation command ...
Table deletion command ...
View deletion command..
Index creation command ...
Table modification command..
Table Types ..
Insert commands...
Insertion from an associated named collection extent.................
Insertion and foreign keys ...
Insertion and computed extents ..
Insertion with nested queries ...
Delete commands ...
Deletion from an associated named collection extent
Deletion and foreign keys..
Deletion from a class table with an associated computed extent
Update commands ..
Update and foreign keys...
O2C procedures ..
C++ procedures ..
Linking C++ functions with the “sql” library.............................. 60
Typing restrictions...

4.3 Development Tools.. 61

Modifying existing views .. 6
 O2ODBC User Manual 7

TABLE OF CONTENTS

62
63

. 63
64
65

. 94
95

. 99
00
02
03
04
05

106

108
The SQL catalog..
SQL commands ...
Transaction commands ...
View inspection commands...
View management commands...

5 O2 ODBC 67

5.1 Conformance Levels ... 68

5.2 O2 Data Sources .. 68

5.3 ODBC API Functions ... 70

5.4 O2 ODBC Tools .. 79

6 Programming an O2ODBC Server 83

6.1 Defining the O2 ODBC Server main function 84

6.2 Compiling your own O2 ODBC server 85

6.3 Running your own O2 ODBC server 87

7 O2 ODBC Reference 89

7.1 The o2_odbc Class .. 90

banner ...
begin ..
end ..
enroll .. 1
enroll_path ... 1
get_option .. 1
init.. 1
set... 1
usage ..

7.2 The O2 ODBC Commands .. 107

o2odbc_dump_base ...
8 O2ODBC User Manual

TABLE OF CONTENTS

109
111
13
15
o2odbc_server..
o2open_dispatcher ...
o2sql_export .. 1
o2sql_query ... 1

A Syntax for View Customization 117

B SQLGETINFO Return Values 119
 O2ODBC User Manual 9

TABLE OF CONTENTS
10 O2ODBC User Manu al

1 Introduct ion1
Congratu lat ions! You are now a user of O2ODBC - the standard
in ter face for accessing data in an heterogeneous environm ent of both
relat ional and object database system s.

The O2ODBC inter face handles cl ien t appl icat ion requ ests to a database
and retu rns the database server ’s response.

This in troductory chapter is divided as follows:

• System overview

• ODBC

• Manu al Overview
O2ODBC UserManu al 11

Introduction1
1.1 System overview

he system arch itectu re of O2 is i llustrated in Figu re 1.1.

Fi gur e 1 .1 : O2 Syst em Ar ch i t ect u r e

The O2 system can be viewed as consist ing of three components. The
Database Engine provides al l the featu res of a Database system and an
object -or ien ted system. Th is engine is accessed with Development Tools,
such as var iou s programming languages, O2 development tools and any
standard development tool. Numerous External Interfaces are provided.
Al l encompassing, O2 is a versat ile, por table, dist r ibu ted,
h igh-per formance dynamic object -or iented database system.

Database Engine:

• O2Store The database management system provides low level
facil it ies, through O2Store API, to access and manage a
database: disk volu mes, fi les, records, indices and
t ransact ions.

• O2Engine The object database engine provides direct cont rol of
schemas, classes, objects and t ransact ions, through
O2Engine API. It provides fu ll text indexing and search
capabi li t ies with O2Search and spat ial indexing and
ret r ieval capabi li t ies with O2Spat ial . I t includes a
Not ificat ion m anager for inform ing other clients
connected to the same O2 server that an event has
occu rred, a Version m anager for handl ing mu lt iple
object versions and a Repl icat ion API for synchron izing
mu lt iple copies of an O2 system.

O2CC++ Java

O2 Dev. Tools

O2DB
Access

OQL

Standard
Dev. Tools

O2Web

O2Corba

Development Tools

C

Database Engine

O2Engine

O2Store

External
Interfaces

O2ODBC
12 O2ODBC User Manual

System overview :
Programming Languages:

O2 objects may be created and managed using the following
programming langu ages, u t i lizing all the featu res available with O2
(persistence, col lection management , t ransact ion management , OQL
qu er ies, etc.)

• C O2 funct ions can be invoked by C program s.

• C++ ODMG compliant C++ binding.

• Java ODMG compliant Java binding.

• O2C A powerfu l and elegant object-or iented fou r th
generat ion language special ized for easy development
of object database appl icat ions.

• OQL ODMG standard, easy-to-use SQL-l ike object qu ery
language with special featu res for deal ing with com plex
O2 objects and methods.

O2 Development Tools:

• O2Graph Create, modify and edit any type of object graph .

• O2Look Design and develop graphical user in ter faces, provides
in teractive manipu lation of complex and mu lt imedia
objects.

• O2Kit Library of predefined classes and methods for faster
developm ent of user applicat ions.

• O2Tools Complete graphical programming environm ent to
design and develop O2 database appl icat ions.

Standard Development Tools:

All standard programming languages can be used with standard
environments (e.g. Visual C++, Sun Sparcworks).

External Inter faces:

• O2Corba Create an O2/ Orbix server to access an O2 database
with CORBA.

• O2DBAccess Connect O2 applicat ions to relat ional databases on
remote hosts and invoke SQL statements.

• O2ODBC Connect remote ODBC cl ient appl icat ions to O2
databases.

O2Web Create an O2 Wor ld Wide Web server to access an O2 database
th rou gh the internet network .
O2ODBC User Manual 13

Introduction1
1.2 ODBC

ODBC (Open Database Connect ivi ty) is a standard inter face for
accessing data in an heterogeneous environment of relat ional and
non-relat ional database m anagement systems. Many exist ing tools use
ODBC to access a database, e.g. Word, Excel, Delphi, etc.

An ODBC cl ien t appl icat ion uses the ODBC API to request and/ or send
data to a database server . The ODBC dr iver t ranslates clien t requests
and server answers into a format that the DBMS server and the ODBC
clien t can understand. The ODBC API defines a set of core fu nct ions,
that correspond to the funct ions in the X/ Open and SQL Access Group
Cal l Level In ter face specificat ion , together with two extended sets of
funct ional ity. ODBC defines a standard SQL gram mar, wh ich dr ivers
t ranslate to the native SQL grammars u sed by var ious DBMSs.
14 O2ODBC User Manual

O2 and ODBC :
1.3 O2 and ODBC

O2 ODBC is an ODBC dr iver bu i lt on top of O2. It allows exist ing ODBC
appl icat ions to run on top of an O2 database and new ODBC
appl icat ions to be defined on top of O2 through the ODBC API. O2
ODBC works on a relat ional view of an O2 base.

Star t ing from an exist ing O2 base, the ODBC appl icat ion can ret r ieve
information abou t the relat ional view der ived for that base: tables,
columns, pr imary and foreign keys, etc.

The relat ional view der ivat ion is per formed by a special tool and can be
customized by the u ser through a configu rat ion fi le. Many di fferent
views can be defined for a given O2 base. O2 ODBC im plements the
core ODBC API and some Level 1 and Level 2 extensions (e.g. ret r ieve
catalog and parameter in format ion). In addit ion , it supports the core
SQL gram mar and par t of the extended grammar level (e.g. procedure
cal ls and long data).

SQL quer ies (SELECT-FROM-WHERE) formu lated on the relat ional view,
and sen t through O2 ODBC are t ranslated in to the cor responding OQL
qu er ies. Data update SQL commands (INSERT-UPDATE-DELETE) are
interpreted by the O2 ODBC dr iver , wh ich per forms u pdates on the
cor responding O2 data th rou gh the O2 API in ter face.

SQL catalog commands (CREATE TABLE, for instance) are also
interpreted by the O2 ODBC dr iver , which u pdates the O2 database
schema accordingly. Tables and views can be therefore created from
scratch rather than being der ived from exist ing O2 classes. The two
k inds of tables (system-der ived and application -defined) can be
combined in an ODBC application .
O2ODBC User Manual 15

Introduction1
1.4 Manual Overview

Th is manual is divided in to the fol lowing chapters:

• Chapter 1

In t roduces O2 ODBC.

• Chapter 2

Descr ibes how to instal l O2 ODBC.

• Chapter 3

Gives an overview of O2 ODBC.

• Chapter 4

Descr ibes how O2 schemas and O2 data are t ranslated into equ ivalen t
SQL ent i t ies.

• Chapter 5

Descr ibes how to use the O2 ODBC dr iver , its featu res and l im itat ions.

• Chapter 6

Show how programm ers can u se the o2_Odbc class to bu i ld their own
O2 ODBC servers.

• Chapter 7

A reference gu ide for O2ODBC.

Two appendixes complete th is manual:

• Appendix A

Gives the complete syntax for wr it ing configu ration fi les used for view
customizing by the o2sql_export tool.

• Appendix B

Gives the valu es retu rned by the SQLGetInfo ODBC API funct ion for al l
possible fInfoType inpu t argument values.
16 O2ODBC User Manual

Background :
1.5 Background

We asum e the reader is familiar with ODBC and O2. The fol lowing
references provide essen tial in format ion:

• ODBC SDK 2.1 Programmer’s Reference, Microsoft Development
Library.

• O2 System version 5.x Admistration Manuals, O2Technology.

• Understanding the new SQL: a complete guide, J . Melton and A. R.
Simon , Morgan Kau famann, 1993.
O2ODBC User Manual 17

Introduction1
18 O2ODBC User Manual

2 O2ODBC Installation2
This chapter addresses the installat ion of an O2 ODBC dr iver and
detai ls the contents of the O2 ODBC dist r ibu t ion package.

The reader shou ld be familiar with the ODBC environment and related
concepts.
O2ODBC UserManu al 19

O2ODBC Installation2
2.1 Hardware and Software Requirements

The O2 ODBC dr iver requ ires the following hardware:

• IBM-com patible PC

• 8 MB RAM requ ired

• Hard Disk Space: 1.5 MB for the installat ion .

• The O2 ODBC dr iver requ ires the fol lowing software:

• O2 DBMS

In order to access data in an O2 database with the O2 ODBC dr iver , you
mu st have the O2 DBMS version 5.x. For information on software and
hardware requ irements for the O2 DBMS version 5.x, refer to the O2
System Administrat ion Manu als.

• Microsoft Windows 95 or Microsoft Windows NT

• Network software

A network is requ ired to connect the plat forms on which the O2 ODBC
clien t and O2 ODBC server reside. For information on the software and
hardware requ ired by you r network, see i ts docu mentat ion.

2.2 O2 ODBC Distribution Package

The O2 ODBC dist r ibu t ion package contains the following:

• The Dynamic Link Librar ies (DLL) lib o2dri.dll and lib o2com.dll .

• The setup.exe program .

• The o2open_dispatcher program .

• The o2odbc_dump_base program.

• The o2odbc_server program .
20 O2ODBC User Manual

Setting up the O2 ODBC Driver :
• The o2sql_export program.

• The o2sql_query program.

• The o2_Odbc.hxx inclu de files.

• The libsql.so and libo2odbc_svr.so l ibrar ies.

These librar ies are used by the different O2 ODBC related tools and are
necessary to bu i ld a user specific O2 ODBC server .

2.3 Setting up the O 2 ODBC Driver

The instal lat ion procedu re descr ibed below assumes that you have
dum ped the conten ts of the O2 ODBC dist r ibu t ion package to the disk
of the Windows 95 or Windows NT stat ion where the dr iver is to be
installed. The st ructu re of the O2 ODBC dist r ibu tion package is the
following:.

o2odbc
include

 o2_Odbc.hxx
install

 o2driver
 libo2com.dll
 libo2dri.dll
 odbc32
 setup.exe
 odbcad32.exe
 ...
 lib
 libsql.so
 libo2odbc_svr.so
 bin
 o2open_dispatcher
 o2odbc_dump_base
 o2odbc_server
 o2sql_export
 o2sql_query

doc
 o2odbc_manual.pdf
O2ODBC User Manual 21

O2ODBC Installation2
Installing the driver

Go to the sub-directory o2odbc/install/odbc32 and run the program
setup.exe . This program wil l prompt you for con firmat ion and then
install the O2 ODBC dr iver by copying al l the ODBC componen ts needed
to run the dr iver in the system director ies.

At the end of the instal lat ion process, the setup program prom pts you to
declare new data sou rces on instal led dr ivers. You can declare O2 data
sources at th is point or , if you prefer , you wi ll be able to manage your
data sou rces u sing the ODBC administ rator program odbcad32.exe
located in the same directory.

Declaring the o2 open-dispatcher
The declarat ion of the o2open_dispatcher is a two steps process:

• Declare in the O2OPEN_DISPATCHER var iable the name of the m ach ine on
which the dispatcher is runn ing.

On Windows NT, open the con trol panel program, choose the system
icon and select the “environment ” pane. You can then add the new
var iable.

On Windows 95, declare the var iable in your autoexec.bat fi le by
adding the following l ine: set O2OPEN_DISPATCHER=<machine name> .

• Declare in the services file the por t on wh ich the dispatcher is reachable.

On Windows NT, edit the file <WINDIR>/system32/drivers/etc/
services and add the fol lowing line: o2opendispatcher <port
number>/tcp .

On Windows 95, edit the fi le <WINDIR>/services and add the fol lowing
l ine: o2opendispatcher <port number>/tcp .

Installing the tools

Once the dr iver and dispatcher have been declared on the clien t side,
the O2 ODBC tools mu st be instal led on the server side, i .e. on the
mach ine where the O2 database system is installed. Assuming the
environment var iable O2HOME denotes the O2 instal lat ion directory, the
following com pletes the installat ion of O2 ODBC:
22 O2ODBC User Manual

Adding, Modifying and Deleting O2 ODBC Data
cp o2odbc/include/* $O2HOME/include;

cp o2odbc/bin/* $O2HOME/<platform>/bin;

cp o2odbc/lib/* $O2HOME/<platform>/lib;

2.4 Adding, Modifying and Deleting O 2 ODBC
Data Sources

On the cl ien t side, an O2 data source is added, modified and deleted
u sing the standard ODBC Admin ist rator tool. In the Data Sources
dialog box of th is tool, a new data sou rce can be added by click ing on
the Add bu t ton . Assuming the O2 ODBC dr iver has been already
installed, i t can be selected from the Installed ODBC Dr ivers list that is
displayed in the Add Data Sou rce dialog box. An O2 ODBC Setup dialog
box is displayed to al low the opt ion valu es to be set and the data source
defin i t ion to be completed on the cl ient side.

Modificat ion and delet ion of O2 data sources are car r ied ou t in an
analogous way, by fol lowing the appropr iate opt ions from the Data
Sources dialog box of the ODBC Administ rator tool.

On the O2 ODBC server side, a data sou rce corresponds to an O2 base
on which a view schema generated with the o2sql_export tool from the
schema of the base has been generated. For more detai ls on data
sou rces, see Section 5.2.
O2ODBC User Manual 23

O2ODBC Installation2
24 O2ODBC User Manual

3 O2 ODBC Overview3
This chapter is an int roduction to the main O2 ODBC concepts. It gives
an overview of the dr iver arch itectu re and descr ibes its main
componen ts.

This chapter provides an overview of the O2 ODBC dr iver architectu re
and the way i t works.

We assu me the reader is familiar with the ODBC environment and
related concepts and with O2 general architectu re and related
concepts.
O2ODBC UserManu al 25

O2 ODBC Overview3
3.1 O2 ODBC Architecture

The architectu re of the O2 ODBC product is depicted in the Figu re
below:

We iden ti fy the fol lowing main elements in th is arch itectu re:

• an O2 server

Th is is the standard o2server program.

• an O2 ODBC server

Th is is the o2odbc_server program wh ich is connected to an O2
server .

• an O2 OpenDispatcher dispatcher

Th is is the standard o2open_dispatcher program.

Client NT Client Windows 95

server

O2 ODBC

o2open
dispatcher

server

O2 ODBC

server

O2 ODBC

query
SQL query

result

server O 2 server O 2
26 O2ODBC User Manual

O2 ODBC Architecture : Outline of the O2 ODBC
Outline of the O 2 ODBC driver activity

An O2 ODBC dr iver works in the fol lowing way:

1. An ODBC clien t requests a connect ion to an O2 ODBC data source.

2. The O2 ODBC cl ien t library connects (through SQLConnect or SQLD-
r iverConnect ODBC API funct ions) to an O2OpenAccess dispatcher
runn ing on the local area network .

3. The O2 OpenAccess dispatcher tel ls the ODBC cl ient wh ich O2 ODBC
server to connect to.

4. The ODBC clien t connects to the appropr iate O2 ODBC server .

5. Once the connect ion has been establ ished, the ODBC cl ient wil l use
the ODBC API appropr iate functions (e.g. SQLExecute) to access
data in the data sou rce to which i t is connected.

6. The O2 ODBC server processes the clien t requ ests. I t is connected to
an O2 server and per forms qu ery t ranslation and execu t ion.

7. The O2 ODBC server retu rns dataquery resu lt data to the clien t on
demand (e.g. SQLBind , SQLFetch , SQLGetData).

Advantages of the O 2 ODBC architecture

The architectu re of the O2 ODBC dr iver provides numerous featu res
that enhance the applicat ions per formance:

• Mult i-threading

 O2 ODBC allows an appl icat ion to use mu lt iple th reads in order to
concu rren tly per form different t reatments. The modu le provides
some synchronizat ion fu nct ions that al low clien t application develop-
ers to use mu lt iple th reads in the clien t par t wh ile protect ing the
appl icat ion from forbidden resou rces access violat ion.

• Load-balancing

The dispatcher modu le is an independen t modu le used to rou te con-
nect ions from an ODBC cl ient to an ODBC server and to preserve an
efficient load-balancing (stat ic and dynamic load-balancing) among
the network . Its role is to manage a pool of ODBC servers avai lable
th rou ghou t the network to answer cl ients requ ests.

• Flexible deployment

 O2 ODBC allows to dist r ibu te the applicat ion among mu lt iple
mach ine if necessary, thus offer ing an easy way to su pport scalabi l-
i ty. Mu lt iple ODBC servers can be run on di fferent machines, the
u ser load being dist r ibu ted among these machines according to cr i te-
r ia l ike cu rren t load, machine character ist ics, etc. This locat ion-inde-
pendent m odel makes it easy to change deployment schemes as the
O2ODBC User Manual 27

O2 ODBC Overview3
applicat ion grows. As demand grows, other O2 ODBC servers can be
added on other mach ines, and the demand can be dist r ibu ted among
those servers withou t any code changes.

In the rem ain ing of th is chapter , we give an overview of the two main
components of the O2 ODBC dr iver arch itectu re, namely the O2 SQL
component and the O2 ODBC server .

3.2 O2 SQL

We denote by O2 SQL the modu le of the O2 ODBC architectu re
implement ing the schem a and query t ranslat ion capabi li t ies of the
dr iver . This modu le is basical ly composed of the O2 SQL library
libsql.so together with two development tools o2sql_export and
o2sql_query that can be u sed independen tly of the O2 ODBC dr iver .

The O2 SQL library is used by the O2 ODBC dr iver server component . It
implements the schema and qu ery t ranslat ion services necessary to
al low O2 data to be accessed th rough SQL. O2 SQL is bu il t on top of
OQL and the O2 Engine.

The o2sql_export tool is u sed to der ive relat ional views from O2
schemas. Such a view must be der ived pr ior to any access to O2 with

ODBC. The act ivat ion of a relat ional view on an O2 base al lows such
base to be seen as a relat ional database. Objects stored in O2 are
perceived as tu ples in relat ional tables (an object can spawn more than
one tuple in more than one table). It shou ld be noted that such tables
exist only vir tual ly in the vir tual database resu lt ing from a view
act ivat ion on an O2 base.

The o2sql_query tool is an in teractive shell al lowing SQL comm ands to
be execu ted on a vir tual database. Th is can be a usefu l tool for qu ick ly
inspect ing view schemas and databases and tunn ing SQL applicat ions
runn ing on O2 .

Given the separat ion between the O2 SQL and the O2 ODBC dr iver
implementat ion, it is possible to see and query O2 data as relat ional
data th rou gh SQL withou t u sing an ODBC in ter face. An API funct ion
o2_sql , analogou s to the standard O2 API funct ion o2_oql can be
u sed to execu te SQL quer ies from a given O2 Engine API program.

 O2 SQL is detailed in Chapter 4.
28 O2ODBC User Manual

O2 ODBC Server : Advantages of the O2 ODBC
3.3 O2 ODBC Server

The O2 ODBC server is bu i lt on top of O2 SQL.

The server processes cl ient requests. These requ ests are issued through
the ODBC API. SQL qu er ies sen t by a clien t to be execu ted on a O2
data source are translated by the server in to an equ ivalent OQL query

and execu ted on the O2 base to wh ich the clien t is connected.

A server can handle requests of different cl ients work ing on differen t
data sources. Before processing the request of a given clien t , the server
act ivates the clien t ’s data source, i.e. it act ivates the appropr iate view
on the O2 base to wh ich the clien t is connected.

A server u ses the qu ery t ranslat ion services implemented in the O2 SQL
l ibrary. It per forms, in addit ion, al l the ODBC specific processing (data
conversions, cu rsor management , catalog data ret r ieval, etc) necessary
to respond to ODBC clients requests.

The O2 ODBC server is detai led in Chapter 5.
O2ODBC User Manual 29

O2 ODBC Overview3
30 O2ODBC User Manual

4 O2 SQL4
The O2 SQL library and related tools are defined as a separate product
and used by the O2 ODBC server .

O2 SQL provides two main services for appl icat ions want ing to access
O2 databases through SQL: a schema and a query t ranslator .

This chapter presents how to define sophist icated SQL views of O2 data
instead of u sing the defau lt view der ivat ion ru les, so as to adapt the
relat ional st ru ctu re to the needs of a par t icu lar appl icat ion.

To customize the way a relat ional view of an O2 schema is der ived,
Sect ion 4.1 and, in par t icu lar , Sect ion “View customization ” provide
usefu l in format ion.

To formu late complex quer ies and u pdates operat ions on O2 data
through the SQL in ter face, Sect ion 4.2 gives some h ints on how to
per form and opt im ize such operat ions. In par t icu lar , Sect ion "Schema
Update Comm ands" shou ld be read by those want ing to popu late an O2
schema th rough SQL (with table creat ion commands), whereas Sect ion

"Data Update Commands" provides u sefu l inform at ion for those
want ing to create and u pdate O2 data th rou gh SQL.

Al l users wish ing to access O2 data th rou gh SQL shou ld read Sect ion
4.3.

We assu me the reader is familiar with the O2 and relat ional data
models, as well as with SQL related concepts in general.
O2ODBC UserManu al 31

O2 SQL4
4.1 Schema Translation

An object m odel captu res semant ics of application domains in a more
elaborate way and i t promotes adherence to normal forms. Relat ional
schemas der ived from a r icher object model tend to be in th ird normal
form. The database designer can thus benefits from the expressiveness
and extensibi li ty, among others, of an object model and st i ll implements
such a model in terms of wel l normalized relat ional tables.

The st ru ctu re of data stored in an O2 base is defined in the schema of
that base. The schem a con tains class and type defin i t ions, as wel l as
data en tr y poin ts (names that play the role of roots of persistence).

As SQL qu er ies can be formu lated on relat ional data only, i t is necessary
to provide a relational view of O2 data to be able to query such data
with SQL.

A relat ional view schema is der ived from an O2 schema with the
o2sql_export tool. We say that the O2 schema is expor ted to SQL.
When a view is der ived, its defin it ion is kept by the O2 system in an
internal st ru ctu re cal led the SQL catalog (see “View creat ion tool
o2sql_export ” on page 61). Many differen t view schemas can be der ived
for a given O2 schema. Al l views der ived for a given O2 schema can be
act ivated on every base instance of that schem a.

4.1.1 SQL View Schema

We recall below the main featu res of the O2 and relat ional schem as,
before consider ing the t ranslat ion of an instance of the former into one
of the lat ter .

O2 Schema

An O2 schem a is com posed of a set of class defin it ions. A class can
inher it from a number of classes. To each class a type is associated.
Valid type const ructors include set, list and tuple const ructors, that can
be applied recu rsively to define arbi trar i ly complex types from class
types (each class defines a type) and atomic types (integer, real, char,
string, boolean). Methods can be defined in a class to be appl ied on its
instances.

Relational Schema

A relat ional schema is composed of a set of table defin it ions. Each table
is composed of a set of columns, each of a given atom ic type. A su bset of
the columns of a table can be declared as a pr imary key serving to
32 O2ODBC User Manual

Schema Translation : Example
u niquely iden ti fy rows in the table. Foreign keys can poin t to pr imary
keys, allowing references to be establ ished among rows in tables.

Since data are not stored on the relat ional database, per formance is not
an issue and we do not pay at ten t ion to table fragmentation (ver t ical
par t i t ioning). Never theless, we t r y to reduce the nu mber of collect ion
tables in order to simpli fy qu ery formu lat ion . In that sense, we decided
to unnest tu ple at t r ibu tes instead of generat ing collect ion tables
cor responding to w eak entities in the relat ional schem a.

Example

Let us consider an example of schema t ranslat ion before consider ing
the di fferen t aspects of the schema t ranslat ion process in tu rn.

The O2 schema document given in Figu re 4.1 models information abou t
ar t icles, their au thors and respect ive affi l iat ions. The relat ional schema
obtained from the O2 schema in Figu re 4.1 is given in Figu re 4.2.

Each class is m apped to an hom onymou s table. For table Article ,
at t r ibu te title is a pr imary key and date_title is a foreign key
point ing to table Date . At t r ibu tes of the nested tuple at t r ibu te address
in class Author are u nnested in the corresponding table. Set and list
at t r ibu tes are mapped to the so called col lect ion tables
Article_authors and Article_sections . Su ch tables associate to
each instance of Article the corresponding set of au thors and list of
sect ions respect ively. For the l ist at t r ibu te, an addit ional att r ibu te pos
r epresen ts the posit ion of elements in the l ist .

An SQL cl ient knowing the relat ional schema above can formu late
qu er ies on i t . Such qu er ies are t ranslated into OQL quer ies that are
evalu ated on an O2 base instance of the or iginal schema.

Class translation

Each O2 class is mapped in to a so cal led class table. A colum n title of
defau lt type LONGVARCHAR is defined by defau lt in the corresponding
table and declared as a pr imary key, unless a differen t logical key is
declared for the class in the con figu rat ion file.

A class must have an associated homonymous named set defined in the
schema and model ing i ts exten t in the O2 base. If, however , such a
named set is not explici t ly defined in the O2 schema, a vir tual extent
(i.e. an OQL query giving a set of object of the class as a resu lt) mu st be
provided in a con figu rat ion fi le used to der ive the view schema, as it wi ll
be descr ibed later .
O2ODBC User Manual 33

O2 SQL4
.

Fi gur e 4 .1 : O2 sch ema document

Primary Key Definition

When mapping object structu res to relat ional tuples, we must define
pr imary keys so as to be able to un iqu ely iden t ify objects when they are
qu er ied through SQL in their tuple form . In O2 , object iden t ifiers are
not avai lable to the u ser . They are used in ternal ly by the system at the
object store level and are not external ized.

In O2 , each class defines a method title , inher i ted from class Object ,
which by defau lt gives the name of the class of the object . This method
can be redefined in a subclass as a method or an at t r ibu te that gives a
di fferent value for each object of the class, therefore playing the role of
logical identifier of the object .

schema document;
class Article type tuple(

title:string,
authors:set(Author),
sections:list(Section),
date:Date)

end;

class Author type tuple(
name:string,
address:tuple(institute:Institute,email:string))

end;

class Institute type tuple(
name:string,
country:string)

end;

class Section type tuple(
title:string,
contents:string)

end;

class Date type tuple(
day:integer,
month:integer,
year:integer)

end;

name Articles:set(Article);
34 O2ODBC User Manual

Schema Translation : Primary Key Definition
.

Fi gur e 4 .2 : Rel a t i on a l sch ema document

The title method or att r ibu te is thus t ranslated by defau lt as a
pr imary key in the cor responding table bu t a di fferen t at t r ibu te or
method can be declared to be used as a key in the configu rat ion fi le.

CREATE SCHEMA document

CREATE TABLE Article(title LONGVARCHAR
date_title LONGVARCHAR PRIMARY KEY (title)
FOREIGN KEY (date_title) REFERENCES Date)

CREATE TABLE Author(title LONGVARCHAR name LONGVARCHAR
address_institute_title LONGVARCHAR
address_email LONGVARCHAR
PRIMARY KEY (title)
FOREIGN KEY (address_institute_title)
REFERENCES Institute)

CREATE TABLE Date(
title LONGVARCHAR day INTEGER month INTEGER
year INTEGER PRIMARY KEY (title))

CREATE TABLE Section(
title LONGVARCHAR title LONGVARCHAR ~
contents LONGVARCHAR PRIMARY KEY (title))

CREATE TABLE Institute(
title LONGVARCHAR name LONGVARCHAR
country LONGVARCHAR PRIMARY KEY (title))

CREATE TABLE Article_authors(
Article_title LONGVARCHAR
authors_title LONGVARCHAR
FOREIGN KEY (Article_title)
REFERENCES Article
FOREIGN KEY (authors_title)
REFERENCES Author)

CREATE TABLE Article_sections(
Article_title LONGVARCHAR
pos INTEGER
sections_title LONGVARCHAR
PRIMARY KEY (Article_title, pos)
FOREIGN KEY (Article_title)
REFERENCES Article
FOREIGN KEY (sections_title)
REFERENCES Section)
O2ODBC User Manual 35

O2 SQL4
Rem ark 1 : I t is u p to the object schema designer to gu aran tee that the
value retu rned by such a method or at t r ibu te remains constan t , at least
du r ing an SQL section on the object database. Su ch ident ifier shou ld be
completely independent on changes to the object value and on physical
locat ion . In pract ice, we requ ire the value of a logical iden t ifier to depend
on constan t at t r ibu tes, i.e. at t r ibu tes that are not l ikely to change after
object creat ion, and, in ou r fram ework , at t r ibu tes that are not l ikely to
be updated by an SQL statement .

Rem ark 2 : The choice between an at t r ibu te or a method key is an
importan t one, as SQL qu er ies matching rows based on their pr im ary
key columns wi ll be mapped in to OQL qu er ies ret r ieving objects based
on the corresponding key at t r ibu tes or methods. If at tr ibu tes are u sed
instead of methods to iden t ify objects in O2 , then indexes on su ch
at t r ibu tes can be defined to opt im ize the qu ery evalu at ion.
Rem ark 3 : The method title , or any other method declared as a
logical key in the con figu rat ion file, can retu rn the external identifier of
the object on wh ich it is applied. This iden t ifier can be provided by O2
Engine on user ’s request .

Attribute Translation

Att r ibu tes in a tu ple-typed class represen t relat ionsh ip am ong objects
and valu es. These can be one-to-one, one-to-many or many-to-many
relat ionships. The simpler case, that of atomic and object at t r ibu tes,
correspond to one-to-one relat ionships and are direct ly translated as
columns in the cor responding der ived table. We consider them fi rst
before look ing at complex att r ibu tes (tuple and col lection at t r ibu tes).

Atomic and Class Attributes

Each at t r ibu te having an atomic or class type in the O2 class becomes a
column in the corresponding table with a type given by the type
mapping defined below.

The colu mn takes i ts name from the at t r ibu te name, un less a renam ing
is defined in the configu rat ion fi le.

OQL type t TSQL(t)
integer INTEGER
real REAL
char CHARACTER
string LONGVARCHAR
bytes LONGVARBINARY
boolean CHARACTER
class LONGVARCHAR
36 O2ODBC User Manual

Schema Translation : Tuple Attributes
An at t r ibu te point ing to another object (at t r ibu te of class type) becomes
a foreign key referencing the table corresponding to the class of the
pointed object .

For at t r ibu tes having a complex type we consider two possibil it ies:
col lection and tuple at t r ibu tes.

Tuple Attributes

Tuple types are unnested and have their att r ibu tes incorporated to the
table corresponding to the type st ru ctu re where the tuple type occu rs.
Tuple at t r ibu tes are renamed before being merged, i .e. the ou ter tu ple
at t r ibu te nam e is prefixed to each at t r ibu te name of the nested tuple to
avoid naming confl icts. Such at tr ibu tes can also be renamed by the
u ser th rough the con figu rat ion file.

Merging at t r ibu te tu ples with their point ing objects leads to relat ional
qu er ies that are easier to formu late. In addit ion, tuple att r ibu tes are
values and, opposite to object at t r ibu tes, cannot be shared, and placing
them in an external au xi liary table wou ld be poin t less in that sense.

Collection Attributes

A collect ion type at t r ibu te is t ranslated in to a so-called collect ion table.
The type of the elements of the col lect ion are t ranslated recursively as
columns in the collect ion table (or other collect ion tables, for collect ions
nested in col lect ions).

A set at t r ibu te models a one-to-many or a many-to-many relat ionsh ip. A
one-to-many relat ionsh ip can be merged with a par t icipat ing object (al l
objects in the set can poin t to the composite object). Al thou gh the
choice on how to map collect ion at t r ibu tes cou ld have been let to the
u ser , we decided to model al l such aggregations as dist inct tables, for
expediency of implementation of the qu ery translator .

The collect ion table cor responding to a set at t r ibu te is named according
to the name of the class where the at t r ibu te is defined and the name of
the at tr ibu te i tself, u nless it is explici t ly renamed in the con figu rat ion
file. A colu mn class_name + _title is defined to hold the logical iden t ifier
of the composite object (the object holding the set). The other columns
of the collect ion table are der ived based on the type of elements of the
set. For a set s of atomic valu es, a colu mn s with the cor responding
element type is defined to hold elements of the set . For a set s of objects,
an at t r ibu te s_title is defined to hold the logical ident i fiers of
elements. For a set s of tu ples, each at t r ibu te ai of the tu ple is t reated
recursively and merged to the col lection table as column s_a i , as for
ordinary tuple att r ibu tes. For nested col lect ions, an ext ra col lect ion
table is der ived recu rsively. Defau lt key at t r ibu te names for the key
columns generated in the col lect ion tables can be renamed th rough the
con figu rat ion file as usual.
O2ODBC User Manual 37

O2 SQL4
List at t r ibu tes are also mapped to col lection tables, as for set at tr ibu tes,
bu t an addit ional colu mn pos of type INTEGER is defined to hold the
posit ion of each element in the l ist .

Rem ark : In the ODMG C++ binding, collect ions are impor ted as O2
classes having a col lection type. In order to allow C++ applicat ions to

u se the O2 / SQL binding, su ch classes wil l be t reated by the query
t ranslator as special classes to al low a direct access to the encapsu lated
col lect ions. For instance, a class K which encapsu lates an O2 list wil l be
mapped in to two tables: TABLE K and TABLE K_List . TABLE K holds the
object i tself, whi le TABLE K_List holds its valu e.

Inherited Attributes

What abou t inher i tance? We consider two al ternat ives: (1) merging
inher ited at t r ibu tes with at tr ibu tes defined local ly in the subclass to
der ive the cor responding relat ion; (2) der iving a relat ion with only local ly
defined att r ibu tes plus a foreign key poin t ing to the corresponding tuple
in the table der ived for each superclass. Again, ou r choice is dictated by
the specifici t ies of the problem in hand: since der ived tables are not (at
least in pr inciple) u sed to store data, bu t exist on ly vir tual ly, we decided
to collapse inher ited at t r ibu tes in the table der ived from a given
subclass. The resu lt ing tables are not normal ized bu t are far easier to
qu ery.

Data Retrieval Methods

In addit ion to the colum ns der ived to hold the valu es of at t r ibu tes
defined in the tu ple type of a class, colum ns can be der ived to hold
values retu rned by data retrieval methods. The choice of wh ich su ch
methods to import is left to the user , as they mu st be expl ici t ly declared
in the configu rat ion fi le.

As far as visibil ity is concerned, only read and pu bl ic at t r ibu tes (and
methods) shou ld be der ived as columns in the corresponding table, in
order to preserve data encapsu lat ion and ru les ou t u nau thor ized access
th rough the relat ional in ter face.

4.1.2 View Customization

The relat ional schema in Figu re 4.2 resu lts from a so-called default
mode t ranslat ion.

In the defau lt m ode, tables and colum ns are named from their
corresponding class and at t r ibu te names and the existence of a defau lt
logical title method or at t r ibu te is assumed for every class. In
38 O2ODBC User Manual

Schema Translation : Customized translation
addit ion , for query t ranslat ion pu rposes, for each class C , the system
assumes the existence of an homonymous named set C model ling the
extent of the class.

Customized translation

In a customized mode, the schema translator takes in to accou nt some
u ser-supplied information used for the generat ion of the view schema
(and consequent ly for the t ranslat ion of SQL quer ies in to OQL).

View customizat ion includes the fol lowing possibil it ies:

• hiding of classes

By defau lt , every class defined in the O2 schema is der ived as a table
in the view schem a, un less it is h idden in the con figu rat ion fi le u sed
to der ive the view.

• hiding of at t r ibu tes

By defau lt , every att r ibu te of a tuple typed class is der ived as colum n
(or possibly as a col lect ion table if it is a col lection at t r ibu te) in the
view schem a, u nless it is h idden in the configu rat ion fi le.

• renaming of classes

If a class renaming is not specified in the con figu ration fi le, a table
takes the same name as the class from wh ich it is der ived.

• renaming of columns

If an at t r ibu te renaming is not specified in the con figu rat ion file, a
column takes the same nam e as the at t r ibu te from wh ich it is
der ived.

• vir tual class extents

If a named set is not explicit ly defined in the O2 schem a, a vir tu al
extent (i.e. an OQL qu ery giving a set of object of the class as a resu lt)
can be provided in the configu rat ion file. Th is is not m andatory,
u nless the table is to be u sed in the FROM clau se of a given SQL
qu ery.

• export of data retr ieval m ethods as colu mns

Data ret r ieval methods are methods withou t inpu t parameter and
with an ou tpu t parameter . Such methods can be t ranslated into
table colum ns as i f they were at tr ibu tes.

• defin i t ion of alternative logical keys
O2ODBC User Manual 39

O2 SQL4
By defau lt, the title method or at t r ibu te is exported as a pr imary
key, bu t an al ternat ive at t r ibu te and/ or method can be declared as a
logical key for a given class in the con figu rat ion file.

• data update au thor izat ion

The con figu rat ion file can also be u sed to au thor ize data updates on
tables generated from O2 classes. By defau lt, such u pdates (i.e.
inser t ion , updates and deletions) are not au thor ized.

• stored procedures

O2 C and C++ funct ions can be declared as stored procedu res in the
con figu rat ion file to be called th rou gh the SQL inter face.

• redefin i t ion of col lection tables

The defau lt naming ru les used in the der ivat ion of collect ion tables
from collect ion att r ibu tes can be redefined to al low different table
and colu mn nam es to be u sed.

A view schema can be customized through a con figu rat ion file provided
to the schem a export tool at view creation or update. Appendix A gives
the com plete syntax used to specify con figu rat ion files.

Rem ark : Hiding and renaming of classes and at t r ibu tes together with
the select ive import ing of methods al low the ent ire object structu re to be
customized to meet the needs of a given SQL applicat ion . Many different
views of the same schema can be defined, al lowing differen t vir tu al
databases to be der ived from a given O2 base.

Exam ple 4 .2.1 The con figu rat ion file shown in Figu re 4.3 is specified
u sing the syn tax given in Appendix A.

Att r ibu tes that are not h idden nor redefined are expor ted u sing the
defau lt t ranslat ion ru les. Methods declared in a method clau se are
expor ted as vir tual at t r ibu tes (e.g. method year in class Article is
expor ted as annee in the cor responding table). The nam e of exported
methods is redefined th rou gh the redefine clause. The resu lt ing view
schema is given in Figu re 4.4 below.
40 O2ODBC User Manual

Schema Translation : Customized translation
.

Fi gur e 4 .3 : Conf i gur a t i on f i l e f or sch em a t r a nsl a t i on

view schema french_document from document;

hide Section, Date, Institute;

stored procedure articles_from_author;

export class Article
hide

sections, date;
redefine

title as titre,
year as annee;

method
year;

extent
"Articles";

with insert,update,delete;
end;

export class Author as Auteur
hide address.institute;
redefine

name as nom,
address_email as adresse_eletronique;

extent
"select x
from Articles a,
a->authors x";

end;

export collection Article.authors as Auteurs
redefine

authors_title as auteur,
Article.Article_title as article;

end;
O2ODBC User Manual 41

O2 SQL4
Fi gur e 4 .4 : Rel a t i on al sch em a french_document

4.2 Query Translation

4.2.1 Schema Update Commands

In th is sect ion, we consider the t ranslat ion of schema update SQL
commands in to O2 schem a update commands.

Schem a update SQL commands are commands for table, view and index
creat ion, delet ion and modificat ion. The t ranslat ion of su ch commands
corresponds to an update of the u nder lying O2 schema.

Table creation command

Cur rent ly, a simple translat ion mechan ism is used for generat ing, for
each newly created table, a corresponding class in the O2 schema with
the same at t r ibu tes and u sing a defau lt type mapping. Simple reference
at t r ibu tes, i.e. one-to-one relat ionships, are generated in the the O2
class by tak ing pr im ary and foreign key defin i t ions in to accoun t , as the

informat ion provided in the table creat ion comm and is not enou gh for
al lowing the system to infer one-to-many or many-to-many
relat ionships.

CREATE SCHEMA french_document

CREATE TABLE Article(
titre LONGVARCHAR
annee INTEGER
PRIMARY KEY (title))

CREATE TABLE Auteur(
title LONGVARCHAR nom LONGVARCHAR
adresse_eletronique LONGVARCHAR
PRIMARY KEY (title))

CREATE TABLE Auteurs(
article LONGVARCHAR auteur LONGVARCHAR
FOREIGN KEY (article) REFERENCES Article
FOREIGN KEY (auteur) REFERENCES Auteur)
42 O2ODBC User Manual

Query Translation : Table creation command
Exam ple 4.3 .1 Let u s consider the creation of tables Proceedings and
Proceedings_articles in schema document :

The two table creation commands above are t ranslated in to the
following class and name creat ion comm ands in the O2 schema:

The name of the O2 class generated is defined as fol lows: the prefix
SQL_ is added to the table nam e. Also, for each created table, a name
(the same iden ti fier as for the class name is used) is created to model
the table exten t. Each t ime an inser t ion is per formed in su ch a table, an
object of the corresponding class is created and inser ted in to the
cor responding named col lect ion .

CREATE TABLE Proceedings(
title LONGVARCHAR,
editor LONGVARCHAR,
date LONGVARCHAR
PRIMARY KEY (title),
FOREIGN KEY (date)
REFERENCES Date)

CREATE TABLE Proceedings_articles(
proceedings LONGVARCHAR,
pos INTEGER NOT NULL,
article LONGVARCHAR
PRIMARY KEY (proceedings, pos),
FOREIGN KEY (proceedings
REFERENCES Proceedings,
FOREIGN KEY (article)
REFERENCES Article)

class SQL_Proceedings type tuple(
 title:string,
 editor:string,
 date:Date)
end;

class SQL_Proceedings_articles type tuple(
 proceedings:SQL_Proceedings,
 pos:integer,
 article:Article);

name SQL_Proceedings:unique set(SQL_Proceedings);

name SQL_Proceedings_articles:set(
SQL_Proceedings_articles);
O2ODBC User Manual 43

O2 SQL4
Defin i t ions prefixed with SQL_ in an O2 schema shou ld not be modified
th rough O2 bu t only through the SQL in ter face. Changes to class
SQL_Proceedings , for instance, shou ld be per formed on ly indirect ly
th rough the ALTER TABLE command. Modificat ions to such classes and
names can be nevertheless per formed (i.e. the O2 system does not
preven t them) at the r isk of mak ing the SQL catalog inconsistent .

References to a class (in a h ide or export clause) whose name is prefixed
by SQL_ are not taken into accoun t in the con figu rat ion file. In other
words, the configu rat ion fi le cannot be used to customize classes
generated via a CREATE TABLE command, as these classes are not
expor ted in the same way as O2 classes are exported.

Const rain ts associated to colu mn defin it ions (e.g. NOT NULLX, DEFAULT,
CHECK, etc) are au tomat ical ly checked at inser t ions and updates.

Rem ark : NULL values are not supported. Al l class and col lect ion tables
have the NOT NULL const raint added system at ically to al l colum ns. In
addit ion , the nu l l predicate (IS NULL) always evalu ates to false
(respect ively, IS NOT NULL always evalu ates to t rue).

View table creation command

SQL view table defin it ions are recorded in the SQL catalog. At query
t ranslat ion t ime references to a view table are replaced by the qu ery
u sed in the view table defin i t ion .

Exam ple 4 .3.2 Let us consider the following view table defined in
schema document :

Now let u s consider the fol lowing query on th is view and its
corresponding OQL qu ery:

CREATE VIEW Recent_Articles(
title LONGVARCHAR, year INTEGER) AS

 SELECT art.title, dat.year

 FROM Article art

 Date dat

 WHERE art.date_title = dat.title

 AND dat.year > 90
44 O2ODBC User Manual

Query Translation : Table deletion command
An optimized version of the OQL qu ery above that elim inates the nested
select ion wi ll be generated by the OQL qu ery in terpreter at run t ime.

Table deletion command

When a table is dropped th rou gh the DROP TABLE com mand, the
cor responding class and name are both deleted from the O2 schema.

A table cannot be dropped i f there are indexes defined on i t or if other
tables reference i t through a foreign key.

View deletion command

When a view table is dropped through the DROP VIEW command, the
cor responding view defin it ion is removed from the SQL catalog.

Rem ark : The options CASCADE and RESTRICT in the DROP TABLE and
DROP VIEW commands are not su pported.

Index creation command

An SQL index is t ranslated in to an equ ivalent O2 index or set of
indexes.

Exam ple 4 .3.3 Let us consider the fol lowing index created on table
Proceedings defined above:

CREATE INDEX i1 ON Proceedings(title);

The index creation command above is t ranslated into the following O2
index creation command in the O2 base:

SQL query: OQL query:

SELECT art.title select struct(title:art.title)

FROM Recent_Article art from

WHERE art.year = 95 (select tuple(title:art.title,

year:a.date.year)

from Articles art

 where art.date.year > 90) art

 where art.year = 95
O2ODBC User Manual 45

O2 SQL4
index SQL_Proceedings on title;

Table modification command

The ALTER TABLE command can be used to add columns to an exist ing
table.

Exam ple 4 .3.4 Let us consider the following modificat ion of table
Proceedings defined above:

ALTER TABLE Proceedings ADD code INTEGER;

The com mand above is t ranslated in to the fol lowing O2 class u pdate
command in the O2 schema:

attribute code:integer in class SQL_Proceedings;

Table Types

We dist ingu ish fou r di fferent types of tables in a view schema:

• User Tables

These are defined through the SQL CREATE TABLE command.

• Vi ew Tabl es

These are defined through the SQL CREATE VIEW command.

• Cl ass Tabl es

These are generated by the export of an exist ing O2 class th rou gh
the o2sql_export tool .

• Col l ect i on Tables

These are generated by the export of an O2 collect ion att r ibu te
th rough the o2sql_export tool.

We assu me that user tables belong to the SQL appl icat ion and therefore
al l operat ions on them are al lowed (delet ion, index creation ,
modification), whereas class tables belong to O2 , so that m odificat ions
to them are allowed only th rou gh the con figu rat ion file. The complete
l ist of restr ict ions associated to each type of table is given below.

• SQL command DROP TABLE

Only u ser and view tables can be dropped via the DROP TABLE com-
mand. Class and col lection tables can be dropped indirect ly via the
hide com mand in the con figu rat ion fi le.
46 O2ODBC User Manual

Query Translation : Table Types
• SQL command ALTER TABLE

Only u ser tables can be modified with the ALTER TABLE command.
Although the syntax defined for the core level ODBC SQL does not
al low const raints to be associated to a colu mn added via ALTER
TABLE, the const rain ts NOT NULL and DEFAULT are au tomat ical ly
associated to newly added columns. The defau lt valu e is the cor re-
sponding O2 defau lt value for the at t r ibu te generated for the col-
u mn. For instance, num er ic columns have a zero defau lt value,
whereas character colum ns have the empty str ing as defau lt value.

Class and col lection tables can be modified indirectly by m odyfying
the corresponding O2 data types in the O2 schema. For instance,
adding an att r ibu te to an exported O2 class en tails the addit ion of a
new column to the corresponding table, unless the new att r ibu te is
h idden in the configu ration fi le and one reru ns o2sql_export to
u pdate the view scheme defin it ion.

• SQL command CREATE INDEX and DROP INDEX

Indexes can be created on u ser tables only. This is t ranslated as the
creat ion of an index on the corresponding system generated named
col lection . Indexes on collect ions used as class table extents
(declared in the configu ration file th rou gh the clause extent) can be
defined direct ly in O2 . Only indexes created th rough the SQL com-
mand CREATE INDEX can be dropped via DROP INDEX.

4.2.2 Data Update Commands

There are three types of update operat ions: row inser t ion , row deletion
and row modificat ion. With SQL, an u pdate operat ion is issu ed on a
table and is per formed on a set of tu ples (rows) wh ich are selected
th rou gh a query.

OQL does not dispose of a set of update commands analogous to those
of SQL. In O2 , updates to objects can be per formed through applicat ion
programs or by cal ling methods or funct ions from an OQL query.

In the cu rrent version, updates to user tables are per formed by the SQL
engine in a gener ic way, so that no extra O2 C funct ions or methods
need to be defined. User tables can thus be freely updated.

Class tables can be u pdated on ly i f an update clause is declared for the
cor responding class in the con figu rat ion file and a nu mber of condit ions
hold. For instance, if a colu mn in a table is der ived from a method, then
th is column cannot be updated. Also, the abil ity to inser t or remove
rows in/ from a table wi ll depend on the natu re of the cor responding
table extent declared in the con figu rat ion file. If i t is a named collect ion,
inser t ions/ delet ions can be straight forwardly mapped in to
cor responding O2 inser t ion / delet ion operations, bu t i f a class extent is
O2ODBC User Manual 47

O2 SQL4
given by a selection query, for instance, then inser t ions can be
per formed on ly through stored procedures, these procedures
corresponding to user -defined O2 C or C++ impor ted funct ions (see
Sect ion 4.2.5).

View tables cannot be u pdated and collect ion tables can be updated
only indirect ly th rou gh stored procedu res defined to that end.

Insert commands

The inser t ion of tu ples in to tables is t ranslated as the creat ion and
in i t ial izat ion of the corresponding O2 objects and the at tachment of
such objects to the root of persistence m odel ing the table extent in the
O2 base.

No rest r ict ion is imposed on the inser t ion of rows into user tables.

To be able to inser t rows into a given class table th rou gh the INSERT
command, however, an insert clause mu st be declared in the
con figu rat ion file for the corresponding class.

Insertion from an associated named collection extent

The extent of class Article declared in the con figu rat ion file
corresponds to a named col lect ion defined in the or iginal O2 schema.
The SQL inser t ion is au tomat ical ly t ranslated as an inser t ion of the
newly created object in to the cor responding O2 class extent . The
following inser t clause m ust be declared in the con figu ration fi le to tel l
the system that inser t ions are al lowed on table ARTICLE: .

Let us consider the following INSERT SQL command:

INSERT INTO Article (title,date_title)
VALUES (’New Article’,’12/10/1995’)

When the SQL command above is issued, the SQL engine inser ts a
newly created object in to the cor responding user defined class extent
after in it ializing the corresponding at t r ibu tes. Object at tr ibu tes are
in i t ial ized with the colu mn values given in the inser t ion command.

export class Article
...
extent "Articles";
with insert;
end;
48 O2ODBC User Manual

Query Translation : Insertion and foreign keys
Insertion and foreign keys

When one inser ts a row con tain ing a foreign key value into a table, the
cor responding row must exist in the referenced table, otherwise a
referen t ial integr i ty const raint is violated and the inser t ion is refused. If
inser t ions are allowed in the referenced table, then the refer red row
mu st be inser ted before the refer r ing row is inser ted. Final ly, i f direct
insert ions into the referenced table are not al lowed, then insert ions can
be achieved indirect ly, th rou gh a u ser-defined stored procedu re.

In the example above, the inser ted row con tains the foreign key
date_title , that points to an en t ry in table Date . If the corresponding
date already exists in the Date table, the inser t ion of the ar t icle wil l be
per formed and the newly created Article object wi ll point to the
cor responding Date object . If the referenced date does not exist , the
inser t ion wil l be refused by the update engine.

If, however, the user wants a new date with the corresponding key to be
inser ted whenever i t does not already exist , the following O2 C funct ion
can be defined and declared as a stored procedu re in the con figu rat ion
file to be called th rou gh the SQL inter face. .

In the example above, we assu me that the fol lowing method compu tes
the logical key of an instance of class Date :

function body
Insert_Article(title:string,date_title:string):integer
{
 o2 Article obj = new Article;
 o2 Date obj_date;
 obj->sql_update_title(title);
 obj_date = select_Date(date_title);
 if (obj_date==nil) {

obj_date= new Date(0,0,0);
obj_date->to_date(tuple(mode:’a’,

s_date:date_title));
 }
 obj->sql_update_date(obj_date);
 Articles += set(obj);
 return(0);
};

method body title:string in class Date {
 return(self->to_string(tuple(mode:’a’)));
};
O2ODBC User Manual 49

O2 SQL4
Assuming that the fu nct ion Insert_Article is declared as a stored
procedure, inser t ions into table Article can be per formed th rough the
SQL inter face with the following SQL com mand:

CALL Insert_Article(’A1’,’12/10/1995’)

Insertion and computed extents

For class tables with an associated computed exten t , the complex
semant ics of an inser t ion into su ch a table can be encapsu lated into a
u ser-defined funct ion to be called by the u ser as a stored procedure.

In ou r example, an au thor depends, as a date, on an ar t icle to exist in
the database, as it becomes persisten t through the path leading from
the root Articles to the at tr ibu te authors . Bu t , con t rary to a date,
however , an au thor is not directly poin ted to by an ar t icle. Instead, i t is
related to more ar t icles th rou gh the col lect ion table Article_authors .
An ent ry in such table can be inser ted on ly if the ar t icle and the au thor
being related already exist , as they are pointed to by its foreign keys.

Rem ark : Class and collect ion tables can be updated th rough a stored
procedure cal l even i f an u pdate clause is not declared for them in the
con figu rat ion file.

Let us consider another exam ple. The exten t of table Author is given by
a complex OQL query rather than by a named collect ion and inser t ions
can therefore not be per formed direct ly by the u pdate engine in to th is
table. Instead, in order to allow new au thors to be inser ted in the
database, a funct ion per forming the inser t ion must be declared as a
stored procedure in the configu ration fi le.

When a row is inser ted in to table Author , the cor responding new object
created must be at tached to the att r ibu te authors of a given Article .
Th is im pl ies that an ar t icle must be provided if one wan ts to inser t a
new au thor in the database.

Given the considerat ions above, the following funct ion can be defined to
be called as a stored procedure and per form the inser t ion of a row in to
table Author :
50 O2ODBC User Manual

Query Translation : Insertion and computed extents
.

In the example, the Insert_Author_of_Article procedu re per forms
the inser t ion of a new row in to Author and of a new row in to
Article_Author that relates the ar t icle iden t ified by Article_title
to the newly inser ted au thor .

Given the above, the inser t ion of a new au thor can be per formed
th rou gh the following SQL command:

CALL Insert_Author_of_Article("John Smith",
"ICS","smith@ics.fr","A1");

Many different stored procedures can be declared by the u ser for the
di fferent paths leading from a root of persistence to the instances of a
given class.

function body Insert_Author_of_Article(

(name:string,
address_institute_title:string,
address_email:string,
Article_title:string):integer {

 o2 Author obj = new Author;
 o2 Article a;
 obj->set_name(name);

obj->set_address_institute(select_Institute(
address_institute_title));

 obj->set_address_email(address_email);
 a = select_Article(Article_title);
 if (a!=nil) {
 a->authors += set(obj);
 return 1;
 }
 return 0;
};
method body set_name(name:string) in class Author {
 self->name = name;
};
method body
set_address_institute(address_institute:Institute)
 in class Author {
 self->address.institute = address_institute;
};
method body set_address_email(email:string) in class
Author {
O2ODBC User Manual 51

O2 SQL4
Insertion w ith nested queries

If a query is specified in the body of an INSERT command, th is query is
t ranslated to its equ ivalent OQL query, which must in tu rn retu rn a set
of tuples of atom ic at t r ibu tes corresponding to the att r ibu tes specified in
the column-identifier l ist . The update engine iterates on the resu lt of
th is nested quer ies to per form the inser t ion of the cor responding rows.

Delete commands

The delet ion of tu ples from a table must be t ranslated as the
disconnect ion of the corresponding O2 objects from the root (s) of
persistence to wh ich they are at tached in the O2 base.

No rest r ict ion is imposed on the delet ion of rows from user tables.

To be able to delete rows from a given class table through the DELETE
command, however, a delete clause mu st be declared in the
con figu rat ion file for the corresponding class.

Deletion from an associated named collection extent

The SQL delet ion from table ARTICLE can be au tom at ically t ranslated as
the rem oval of the corresponding object from the nam ed col lect ion
extent . The fol lowing delete clause must be declared in the configu rat ion
file to tel l the system that delet ions from table ARTICLE are allowed:.

Let us consider the following DELETE com mand:

DELETE FROM Article WHERE title = ‘Old Article’

The SQL engine wil l fir st select all objects corresponding to the rows to
be deleted and then delete them from the class extent .

Deletion and foreign keys

Cascading delet ions can be implem ented th rough stored procedu res, as
for inser t ions.

In the example above, the deleted row con tains the foreign key
date_title , that points to an en t ry in table Date . Su ppose that one

export class Article
 ...
 extent "Articles";
 with delete;
end;
52 O2ODBC User Manual

Query Translation : Deletion from a class table with
wants the poin ted date to be deleted from the cor responding table
whenever a point ing ar t icle is deleted. As a row in table Date exists on ly
as long as at least one row in table Article points to it , then the
removal of the last point ing ar t icle from the database wou ld
au tomat ical ly entai l the removal of the pointed date. If however , the
pointed objects can be reached th rou gh another path from a given
persistence root , then the cascading deletion can be per form ed through
stored procedures.

In addit ion , i f the class associated to the pointed table has no exten t
clause associated to i t , or i f the associate exten t expression is com pu ted
rather than given by a named collect ion , then the cascading delet ion is
per formed by defau lt .

Supposing that a named set Dates is defined in the O2 schema and
declared as the exten t of class Date , then the delet ion of an ar t icle
wou ld not entai l the delet ion of the poin ted date. The cascading removal
cou ld be achieved by expl ici t ly per form ing the removal of the pointed
date from the named col lect ion Dates in the fu nct ion implement ing a
stored procedure u sed to remove ar t icles from the database.

Deletion from a class table w ith an associated computed
extent

Let us now consider the delet ion of a row from the table AUTHOR. Such
delet ions cannot be au tomat ical ly per formed by the system and a delete
clause shou ld not be associated to the class Author . Instead, the
following stored procedure can be used: .

The Delete_Author_of_Article procedure per forms the delet ion of
the AUTHOR row cor responding to the key passed as parameter and of
the corresponding en t ry in table Article_Author that relates the
ar t icle iden t ified by article_title to the deleted au thor .

The delet ion of a given au thor can be per formed through the following
SQL com mand:

CALL Delete_Author_of_Article("John Smith","A1");

function body
Delete_Author_of_Article(author_title:string,

Article_title:string):integer {
 select_Article(Article_title)->authors -=

set(select_Author(author_title));
 return 0;
};
O2ODBC User Manual 53

O2 SQL4
As for inser t ion , many differen t stored procedures can be declared by
the u ser for the di fferent paths leading from a root of persistence to the
instances of a given class.

Update commands

The update of tuples in a class table mu st be t ranslated as the update of
the cor responding O2 objects in the O2 base.

No rest r ict ion is imposed on the u pdateof rows from u ser tables.

To be able to u pdate rows in a given class table, an update clause must
be declared in the con figu rat ion file for the cor responding class, as
i llustrated below:.

Let us consider the following UPDATE command:

UPDATE Articles SET title = ‘New Article’ WHERE title =
‘Old Article’

The SQL engine wil l fir st select all objects corresponding to the rows to
be updated and then u pdate their at t r ibu tes with the new
corresponding column valu es.

Update and foreign keys

The u pdate of foreign key columns is simi lar to the inser t ion of new rows
with foreign key colum ns. When one u pdates a foreign key row column,
the cor responding row mu st exist in the referenced table, otherwise a
referen tial in tegr i ty const rain t is violated and the u pdate is refused. If
inser t ions are allowed in the referenced table, then the refer red row
mu st have been inser ted before the refer r ing row is u pdated. If however,
i t is not possible to explicit ly inser t a row in to the referenced table, then
an inser t ion in to th is table can be achieved through a cascading update
of the referencing table implemented by a stored procedure.

To conclude th is sect ion, we recal l that the use of stored procedures can
be generalized to overcome the l im itat ions on u pdate operat ions on
class and collect ion tables.

 export class Article
 ...
 extent "Articles";
 with update;
end;
54 O2ODBC User Manual

Query Translation : Update and foreign keys
4.2.3 Data Retrieval Commands

Data ret r ieval commands correspond to the SELECT-FROM-WHERE SQL
qu er ies.

The query t ranslator bu ilds up on the implementat ion of the OQL query
interpreter . Star t ing from the OQL version 1.2 in terpreter , the or iginal
OQL qu ery parser was replaced by an SQL parser bu i lding an OQL
qu ery tree. The const ru ct ion of an OQL syntax t ree from a given SQL
qu ery is based on in format ion col lected by the schema t ranslat ion and
kept in the SQL catalog. The generated OQL tree is fu r ther optimized by
applying standard optimizat ion techniques.

Query t ranslat ion is thus integrated to cu rren t OQL in terpretat ion and
is per formed in two main steps:

1. The text of an SQL query is parsed and the abst ract syn tax t ree of
the equ ivalen t OQL query is constructed, based on information col-
lected by the schema t ranslator .

1. The rewr i t ten query (i.e. its corresponding syn tax tree) is passed to
the next phases of OQL query interpretat ion : query graph construc-
t ion, opt imizat ion and evaluat ion.

As the syn tax of the OQL language version 1.2 is very close to that of
SQL, the OQL t ree const ruct ion is straight forward. Th is fir st step
produces the syntax t ree of an OQL query that is already semant ical ly
equ ivalent to the or iginal SQL query, i.e. th is tree can be used by the
OQL interpreter as it is in the subsequ en t phases of the standard OQL
qu ery processing, nam ely graph const ru ct ion , opt imizat ion and
evalu at ion , to produ ce the expected resu lt w ithout no further
intervention of the query translator. In other words, the first step
captu res the semant ics of the SQL query into an equ ivalen t OQL query
already and the second step is standard OQL engine act ivi ty.

Dur ing the const ru ct ion of the t ree, the t ranslator searches wel l defined
access pat terns to per form query rewr it ing. When a given pat tern is
matched, an action on the cor responding su bt ree is per form ed. Th is
act ion en tails the replacement of one or more su bt rees by other
equ ivalent su bt rees as wel l as the inclusion of new var iables in the
cor responding from clause. The intu i t ion is that the new su btrees are
semant ically equ ivalen t to the ones they replace, bu t the cor responding
subqu er ies can be evaluated in a more efficien t way.

The der ivat ion of a query graph from the syntax t ree is per formed as for
ordinary OQL quer ies. In par t icu lar , standard opt imizat ion techniques
are applied as for ordinary OQL query graphs.

Rem ark : On ly the percent character (match ing zero or more of any
character) is supported in pat tern values used in the LIKE predicate
and in parameters to some API funct ions (e.g. szTableName parameter
O2ODBC User Manual 55

O2 SQL4
of SQLTables). The u nderscore character (matching one character) is
not supported.

Below, we give some examples of query t ranslat ion to i llust rate the
process. The exam ples are based on the view schema given in Figu re
4.2.

Exam ple 4 .3.5 Retr ieve the name of all ar t icles:

Exam ple 4 .3.6 Retr ieve the name of all ar t icles using a colu mn alias:

Exam ple 4 .3.7 Retr ieve all columns of all rows of table Ar t icle:

Exam ple 4 .3.8 Retr ieve the names of al l au thors:

SQL query: OQL query:

SELECT title select struct(title:x0.title)

FROM Article from Articles x0

SQL query: OQL query:

SELECT title AS article_name select
struct(article_name:x0.title)

FROM Article from Articles x0

SQL query: OQL query:

SELECT * select
struct(title:x0.title,date_title:x0.date.title)

FROM Article from Articles x0

SQL query: OQL query:

SELECT name select struct(name:x1.name)

FROM Author from Articles x0,x0.authors x1
56 O2ODBC User Manual

Query Translation : Update and foreign keys
Exam ple 4 .3.9 Retr ieve the names of all au thors of an ar t icle whose
t i t le is “The Art icle”:

Exam ple 4 .3.10 Retr ieve the name of al l au thors of ar t icle "Article
1" :

Exam ple 4 .3.11 Retr ieve the elect ron ic addresses of al l au thors:

SQL query: OQL query:

SELECT name select struct(name:x1.name)

FROM Author from Articles x0,x0.authors x1

WHERE title IN where x0.title == "The Article"

(SELECT Author_title

FROM Article_authors

WHERE Article_title IN

(SELECT title

FROM Article

WHERE title = "The Article"))

SQL query: OQL query:

SELECT y.name select struct(name:x1.name)

FROM Article x,Author y, from Articles x0,

 Article_authors z x0.authors x1

WHERE x.title = "Article 1" where x0.title == "Article 1" and

AND x.title = z.Article_title x1 in x0.authors

AND y.title = z.authors_title

SQL query: OQL query:

SELECT address_email select
struct(address_email:x0.address.email)

FROM Author from Articles x0,x0.authors x1
O2ODBC User Manual 57

O2 SQL4
Exam ple 4 .3.12 Retr ieve the institute_title of au thor "Author 1" :

Exam ple 4 .3.13 Retr ieve the name of al l au thors having wr it ten at least
two different ar t icles:

4.2.4 Granting privileges

Privi leges are defined th rou gh the GRANT and REVOKE commands. A
pr ivi lege defin it ion is, together with table and view defin it ion comm ands,
a basic relat ional schema elem ent .

When a grant command is passed as an ordinary SQL statement
th rough the SQL inter face, the system records in form at ion abou t
gran ted u pdate pr ivi leges. In the cu rren t version, however , u pdate
pr ivi leges are not checked by the system.

Rem ark : The keyword USER represen ts the constan t st r ing " USER"
instead of the name of the cu rren t user .

SQL query: OQL query:

SELECT address_institute_title AS i select
struct(i:a.address.institute.title)

FROM Author from Articles x0,
x0.authors x1

WHERE name = "Author 1" where x1.name == "Author 1"

SQL query: OQL query:

SELECT name select struct(name:x1.name)

FROM Author, from Articles x0,

 Article_authors x0.authors x1

WHERE title = Authors_title AND group by name

GROUP BY name having count(partition) > 1

HAVING COUNT(*) > 1
58 O2ODBC User Manual

Query Translation : O2C procedures
4.2.5 Stored Procedures

Stored procedures are declared in the configu ration fi le, as il lu st rated
below:

For each procedure, a text may be associated to i t , in addit ion to the
procedure name. Th is allows a br ief descr ipt ion of the semant ics of the
procedure to be stored in the SQL catalog and to be ret r ieved when the
stored procedures are inspected through the o2sql_query tool or
th rou gh the ODBC API funct ion SQLStoredProcedure .

O2C procedures

By defau lt , stored procedures correspond to an O2 C funct ion with the
same name defined in the O2 schema.

The following is a cal l to the procedu re Insert_Article declared above:

CALL Insert_Article(’A1’,’12/10/1995’)

Such cal l is st raigh tforwardly translated into the following OQL qu ery:

Insert_Article(’A1’,’12/10/1995’)

C++ procedures

If the prefix “C++: ” is added to the procedure name, then the procedure
wil l correspond to an imported C++ mem ber funct ion of the imported
class SQLStoredProcedureHandler .

C++ procedures al low funct ions defined by a C++ appplicat ion to be
cal led through the SQL in ter face instead of u sing O2 C funct ions.

To be able to cal l C++ functions, the appl icat ion mu st per form the
following steps:

• to im port a C++ class named SQLStoredProcedureHandler in to the O2
schema. This class shou ld be defined by the u ser to grou p all funct ions
that are to be called as stored procedu res th rou gh the SQL inter face.

stored procedure Insert_Article
 "This will insert a tuple into table Article and a tuple
 into table Date if the referenced date does not exist.",

C++:Process_Complex_Update
"This will perform something by calling a C++ imported

function.";
O2ODBC User Manual 59

O2 SQL4
• to define the root of persistence SQLStoredProcedureHandler in the O2
schema with type SQLStoredProcedureHandler .

• to create an instance of class SQLStoredProcedureHandler and at tach
i t to the root of persistence SQLStoredProcedureHandler .

Let us consider a cal l to the procedure Process_Complex_Update (we
assume that th is procedure takes no parameter):

CALL Process_Complex_Update()

Such cal l is t ranslated in to the fol lowing OQL query:

SQLStoredProcedureHandler->Process_Complex_Update()

The standard o2odbc_server program (see command “o2odbc_server ”,
page 7-109) is able to au tom at ically execu te O2C funct ions declared as
stored procedures.

Linking C++ functions w ith the “sql” library

Stored procedures implem ented by C++ fu nct ions cannot be execu te
th rough the o2sql_query shel l nor through the o2odbc_server
program. Th is is so becau se the library contain ing the implementat ion
of such funct ions is not linked to o2sql_query nor to the
o2odbc_server .

A C++ application wishing to cal l C++ funct ions as stored procedu res
th rough the SQL inter face m ust then be l inked at least with the sql , the
oql and the o2cppruntime l ibrar ies (as wel l as other O2 and general
pu rpose l ibrar ies necessary to bu ild the appl icat ion). This is detailed in
Chapter 6.

Typing restrictions

The fol lowing condit ions must hold on the O2 C and C++ imported
funct ions declared as stored procedures:

• inpu t arguments, if any, m ust have an atomic type;

• the resu lt type, if the funct ion retu rns a resu lt , must be of one of the fol-
lowing:

• an atomic type;

The procedure has an ou tpu t parameter and must be called with the
syn tax ? = call proc-name(arg1,..,argn) , i.e. the resu lt can be
ret r ieved as an ou tpu t parameter .
60 O2ODBC User Manual

Development Tools : Modifying existing views
• a col lect ion of tuples of atomic type at t r ibu tes;

The procedu re retu rns a resu lt set as a select-from-where qu ery.

• a class whose type is a col lect ion of tuples of atomic type at t r ibu tes;

The procedu re retu rns a resu lt set , as in the previous case.

The condit ions above are checked by the o2sql_export tool when the
con figu rat ion file is loaded and an error is repor ted and the view
generat ion abort i f they do not hold on al l declared procedu res.

4.3 Development Tools

4.3.1 View creation tool o2sql_export

The o2sql_export tool al lows view schemas to be created and
modified. It takes two mandatory arguments: a schem a name and a
view name, through arguments -schema and -view respect ively.

An optional configu rat ion fi le can be provided through the argument
-config . Al l classes in the inpu t schema, i f any, are exported in to the
view associated to th is schem a as relat ional tables, un less they are
h idden in the configu ration fi le.

If no con figu rat ion file is given , a defau lt t ranslat ion is per formed (no
h iding nor renaming of classes and/ or at tr ibu tes take place).

The complete usage of o2sql_export is given in Chapter 7.

A view schema generated with o2sql_export can be inspected at any
t ime with the tool o2sql_query or th rough the ODBC API, by cal ling the
appropr iate catalog functions (e.g. SQLTables , SQLColumns, etc).

Rem ark : A view can be created on an empty O2 schema. Th is schema
can be fu r ther popu lated through CREATE TABLE commands.

Modify ing existing view s

Views generated with the o2sql_export tool can be fu r ther deleted and
u pdated. Update is per formed through the o2sql_export tool , i .e.
runn ing o2sql_export on an exist ing view allows the view to be
modified. This wi ll be usual ly per formed to associate a new
con figu rat ion file to an exist ing view (changing h idings, redefin i t ions,
O2ODBC User Manual 61

O2 SQL4
stored procedure declarations, etc). The tool prom pts the u ser for
con firmat ion of the view u pdate.

The delet ion of a view schema can be per formed through the
o2sql_query tool, as it wil l be descr ibed in the sequel.

The SQL catalog

O2 keeps an SQL catalog as par t of its system catalog. An en t ry in th is
SQL catalog is associated to each view schema created with the
o2sql_export tool.

SQL u ser defin i t ions such as view tables and in tegr i ty const rain ts
associated to u ser tables are kept in in ternal st ructu res of the SQL
catalog. The in format ion provided in the con figu rat ion fi le is also stored
in the SQL catalog.

The SQL catalog is thus accessed when a view schema is created,
u pdated or deleted and it is au tomat ical ly updated when SQL
operat ions updat ing the view schema (e.g. CREATE TABLE, CREATE
INDEX) are per formed on the database.

The SQL catalog can be inspected through a nu mber of display
funct ions, which are detai led below.

Each O2 schema keeps a list of SQL catalog st ructu res, one per view
schema created on it . Ent r ies in the SQL catalog are removed when the
corresponding view schem as or the O2 schema are deleted.

4.3.2 SQL shell tool o2sql_query

Th is tool al lows views to be activated, deleted and inspected. I t is an
interact ive shell al lowing SQL commands and some special
maintenance commands to be execu ted on an act ivated view.

There is no mandatory argum ent , bu t i f a base and a view are provided
as argu ments, the view is act ivated on that base when the shell is
launched. Otherwise, a view can be act ivated once the shel l has been
launched with the com mand set view schema that wil l be descr ibed
below.

The m ain uses of the o2sql_query tool are:

• To qu ick ly test some qu er ies on the database before wr it ing an O2 /
ODBC complete application . It actu ally uses the o2_sql funct ion in
order to evaluate the SQL qu er ies submit ted by the user through the
standard inpu t .
62 O2ODBC User Manual

Development Tools : SQL commands
• The delet ion of exist ing view schemas th rough the delete view schema
command.

• The inspect ion of the SQL catalog through a number of display com -
mands: display config file , display view schema , display
tables , etc. Th is can be par t icu lar ly usefu l for tu nn ing up configu rat ion
files and the resu lt ing view schem as so as to adapt them to the needs of
a given applicat ion .

The complete usage of o2sql_query is given in Chapter 7.

If an ou tpu t fi le is specified th rough argum ent -output then the resu lt
of SQL selection quer ies and of general view inspect ion commands is
dum ped into th is file.

Once the shell is lau nched, the fol lowing prom pt is displayed:

TYPE YOUR QUERY ENDED BY ’;’:

Differen t k inds of commands can be su bmit ted to the shel l. These are
considered in tu rn .

SQL commands

Standard SQL commands using the syntax defined for the core ODBC
SQL level in the appendix C of the ODBC SDK Programmer’s Reference;

These are standard SQL commands wh ich include “Data Retr ieval
Com mands” on page 55, “Data Update Com mands” on page 47,
“Schema Update Commands” on page 42 and “Stored Procedures” on
page 59.

Rem ark : SQL commands with inpu t and/ or ou tpu t param eters cannot
be submitted to the o2sql_query shell .

Transaction commands

As far as t ransact ions are concerned, the defau lt behavior of the
o2sql_query tool is simi lar to that of the o2shell tool. In other words,
when the shell is lau nched, a t ransact ion is implici t ly star ted. At any
moment the fol lowing t ransact ion com mands can be execu ted:

• commit work

Th is wil l com mit al l updates to data and to the cu rrent ly act ive view
schema by per forming a comm it on O2 .

• rollback work
O2ODBC User Manual 63

O2 SQL4
Th is wi ll per form an abort on O2 and rol lback al l modificat ion to
data and to the cu rren t ly act ive schema.

If the u ser qu its the tool (by typing “; ”) withou t commit ing or abort ing,
then a com mit is impl icit ly per formed.

Alternat ively, the user can ru n the shel l in an au to-comm it mode (option
auto_commit). In th is case, a commit is au tomatically per formed after
each com mand is execu ted. When running in au to-com mit m ode, the
t ransact ion commands descr ibed above are not al lowed.

View inspection commands

The fol lowing view inspect ion commands are available:

• display view schemas;

Th is wi ll l ist the names of the di fferen t views defined on the cu r rent ly
act ive base.

• display view schema;

Th is wi ll display all the defin i t ions (tables, indexes and procedu res)
in the cu rren tly active view schema.

• display tables;

Th is wil l display all tables in the cu rren t ly act ive view schema. These
are the user , class, collect ion and view tables.

• display table <table-name>;

Th is wi ll display the defin it ion of the table <table-name> in the cu r-
ren tly active view schema.

• display procedures;

Th is wi ll l ist the names of all stored procedures declared in the con-
figu rat ion fi le for the cu rrent ly act ive view schem a.

• display procedure <proc-name>;

Th is wi ll display the defin it ion of the stored procedu re <proc-name>
in the cu rren tly active view schema.

• display indexes;

Th is wi ll l ist the names of all indexes created through the SQL
CREATE INDEX comm and.

• display index <index-name>;
64 O2ODBC User Manual

Development Tools : View management commands
Th is wi ll display the defin it ion of the index <index-name> in the cu r-
ren t ly act ive view schema.

• display config file;

Th is wi ll display the contents of the config file u sed to der ive the cu r-
ren t ly act ive view th rou gh the o2sql_export tool, if any. The con fig-
u rat ion fi le u sed to der ive a view is needed only at view creat ion t ime.
If a change to the view needs to be per formed by edit ing an exist ing
con figu rat ion file, the con tents of the file used to der ive the view can
be ret r ieved through the display config file command and
dum ped to a file to be edited. This releases users from keeping back -
u ps of con figu rat ion files on their disk.

View management commands

• view act ivat ion command;

set view schema (<base-name>,<view-name>);

This will activate the view schema <view-name> on base
<base-name> .

• view delet ion com mand;

delete view schema (<schema-name>,<view-name>);

Th is wil l delete the view schema <view-name> on defined on schema
<schema-name> . The view must not be the cu rren t ly act ive view.
O2ODBC User Manual 65

O2 SQL4
66 O2ODBC User Manual

5 O2 ODBC5
This chapter descr ibes how to use the O2 ODBC dr iver and wr ite or use
ODBC appl icat ion that access O2 data sources.

Sect ion 5.2 descr ibes var iou s data sources and detai ls how an ODBC
clien t applicat ion can connect to an O2 data sou rce. Section 5.3 gives
in format ion on the ODBC API funct ions implemented by the O2 ODBC
dr iver .

In order to read th is chapter , it is assu med you are familiar with the
ODBC environment and related concepts.
O2ODBC UserManu al 67

O2 ODBC5
5.1 Conformance Levels

The O2 ODBC dr iver has the following con formance levels:

• API Con formance Level: Level 1

• SQL Conformance Level: Core

Not e: The O2 ODBC dr iver also suppor ts som e of the functions in the
level 2 API con formance level and par t of the grammar in the extended
SQL con formance level.

5.2 O2 Data Sources

An O2 data sou rce is defined by:

• an O2 system

• an O2 database

• opt ionally, an ODMG C++ applicat ion to which the cl ient m ust connect

• a qu ery k ind mode (cu rren t ly on ly SQL is su pported)

• an SQL view for SQL k ind connect ions,

•

5.2.1 Connection to Data Sources

Connection to a data sou rce is per formed by SQLConnect or
SQLDriverConnect cal ls.

When the funct ion SQLConnect is u sed, inform at ion in the ODBC.ini
fi le (or registr y in form at ion) is u sed to per form the connect ion, whereas
with SQLDriverConnect , a connect ion st r ing (or prompted inform ation)
is used.
68 O2ODBC User Manual

O2 Data Sources :
5.2.2 Configuring Data Sources with ODBC.ini

An O2 data sou rce specification sect ion in the ODBC.ini fi le wil l
in t roduce 4specific keywords : System , Database , Application , and
View . Its format is given below: .

5.2.3 Connection String

A connect ion st r ing u sed by SQLDriverConnect and by the
o2odbc_dump_base tool (Sect ion 5.4.4) has the following syntax:

The DSN keyword is the on ly keyword necessary to connect to a data
sou rce from a Windows 95/ NT cl ient , as informat ion abou t the O2
system, base and view are par t of the data sou rce defin i t ion .

When u sing the O2 ODBC client l ibrary to connect to an O2 ODBC
server withou t passing th rou gh an ODBC Dr iver Manager, however , the
connection st r ing for the O2 ODBC dr iver must use the keywords:

[data-source-name]
Driver=driver-DLL-path
System=system-name
Database=database-name
[Application=application-name]
View=SQL-view-name

connection-string : := empty-string [" ; "] | list-of-
attributes [" ; "]

list-of-attributes : := attribute | attribute " ; "
list-of-attributes

attribute : := DRIVER " = { " attribute-value " } " |
attribute-keyword " = " attribute-value | specific-
attribute

attribute-keyword : := DSN | UID | PWD

specific-attribute: := SYSTEM " = " attribute-value
| DATABASE " = " attribute-value | APPLICATION " =
" attribute-value | VIEW " = " attribute-value

attribute-value : := character-string
O2ODBC User Manual 69

O2 ODBC5
5.3 ODBC API Functions

All Core and Level 1 API ODBC funct ions are suppor ted. Som e functions
in level 2 are also suppor ted. The list of all fu nct ions im plemented by
the O2 ODBC Dr iver can be ret r ieved with the SQLGetFunction ODB
API function .

The m ain rest r ict ions in the API concern the extended cu rsors (scrol ls,
u pdates), and posit ioned update or delete statements, which are not
supported.

The Level 2 funct ions implemented by the O2 ODBC dr iver are:

• SQLNumParams

• SQLNativeSql

• SQLExtendedFetch

• SQLForeignKeys

• SQLPrimaryKeys

• SQLProcedures

The funct ions implemented by the O2 ODBC dr iver are grou ped by type
of task in the sequel. Specificit ies of the O2 ODBC dr iver regarding some
of these functions are given whenever necessary.

Keyword Description
SYSTEM The name of the O2 system.
BASE The name of the O2 base.

APPLICATION The name of a C++ application (optional).
VIEW The name of the SQL view.
70 O2ODBC User Manual

ODBC API Functions :
5.3.1 Connecting to a data source

• SQLAllocConnect

• SQLAllocEnv

• SQLConnect

• SQLDriverConnect

5.3.2 Obtaining information about a driver and a data
source

• SQLGetInfo

Appendix B gives the values retu rned by the SQLGetInfo ODBC API
funct ion for al l possible fInfoType inpu t argument values.

• SQLGetTypeInfo

5.3.3 Setting and retrieving driver options

• SQLSetConnectOption

Th is fu nct ion sets a connect ion statement opt ion . No specific dr iver
opt ions have been defined. The connect ion opt ions that can be set with
th is fu nct ion are:

—SQL_AUTOCOMMIT

Th is opt ion defines the t ransact ion mode. To set th is option valu e,
the connect ion mu st not be opened, otherwise the dr iver retu rns
SQL_ERROR.

The two possible values for th is opt ion are:

—SQL_AUTOCOMMIT_ON

I f the value is set to SQL_AUTOCOMMIT_ON (au to-commit mode), the
dr iver commits each statement immediately after it has been exe-
cu ted. Th is is the defau lt value (accordingly, an o2odbc_server is
launched by defau lt in au to-commit mode).
O2ODBC User Manual 71

O2 ODBC5
—SQL_AUTOCOMMIT_OFF

If the value is set to SQL_AUTOCOMMIT_OFF (manual-comm it mode), i t
is u p to the application to explicit ly commit or rol l back t ransact ions
with SQLTransact .

Remark : An O2 ODBC server running on manual mode m ust be
declared to the dispatcher to allow the connect ion to the data source
to be per formed when opt ion SQL_AUTOCOMMIT is set to
SQL_AUTOCOMMIT_OFF.

—SQL_ACCESS_MODE

Th is opt ion defines the access mode:

—SQL_MODE_READ_WRITE

Th is is the defau lt mode.

—SQL_MODE_READ_ONLY

Th is valu e is supported bu t not u sed in th is cu rren t dr iver version.

—SQL_TXN_ISOLATION

Sets the t ransact ion isolation level. If a t ransact ion is open, the dr iver
retu rns SQL_ERROR.

SQL_TXN_SERIALIZABLE (ser ializable t ransact ions plus lock ing) is
the defau lt and the only val id opt ion valu e in the cu r rent O2 ODBC
dr iver version.

—SQL_ODBC_CURSORS

Th is is relat ive to SQLExtendedFetch cal ls. To set th is option valu e,
the connect ion mu st not be opened, otherwise the dr iver retu rns
SQL_ERROR.

The value SQL_CUR_USE_ODBC means that the dr iver manager wi ll
u se the Microsoft ODBC cu rsor library for cu rsor scrol ling. Cur -
ren tly, th is is the only valid opt ion value. The appl icat ion must set
th is opt ion to SQL_CUR_USE_ODBC i f i t wants to u se SQLExtended-
Fetch .

The fol lowing opt ions are not suppor ted:

—SQL_PACKET_SIZE

—SQL_QUIET_MODE

—SQL_CURRENT_QUALIFIER

—SQL_OPT_TRACE
72 O2ODBC User Manual

ODBC API Functions :
—SQL_OPT_TRACEFILE

• SQLGetConnectOption

—SQLSetStmtOption

Sets a statement opt ion value. The statement opt ions that can be set
with th is function are:

—SQL_ASYNC_ENABLE

The two possible values are:

—SQL_ASYNC_ENABLE_ON

The fol lowing fu nctions can be execu ted asynchronously :
SQLGetTypeInfo , SQLPutData , SQLParamData , SQLExecDirect ,
SQLPrepare , SQLExecute , SQLFetch , SQLGetData ,
SQLNumResultCols , SQLDescribeCol , SQLColAttributes and all
catalog functions.

—SQL_ASYNC_ENABLE_OFF

Disable asynchronous fu nct ion execu t ions.

Changing th is opt ion valu e is al lowed at any t ime, because no
asynchronous fu nct ions can be st il l execu t ing for th is statement . This
induces imm ediate effect for su bsequent cal ls. The defau lt value is
SQL_ASYNC_ENABLE_OFF.

—SQL_NOSCAN

Scann ing or not SQL st r ing for escape clauses. Escape clauses are
al lowed on ly in SQL statement st r ings for extended ODBC procedure
cal ls. The two possible valu es are:

—SQL_NOSCAN_OFF

The dr iver wil l scan SQL str ings for escape clause.

—SQL_NOSCAN_ON

The dr iver does not scan and sends direct ly the statement to the data
sou rce.

Changing th is valu e wi ll takes effect for the next calls to SQLExecDi-
rect or SQLPrepare . The defau lt value is SQL_NOSCAN_OFF.

—SQL_MAX_LENGTH

Th is gives the maxim um am ount of data retu rned by the dr iver for a
character or binary colu mn. If the valu e is 0, the dr iver at tempts to
retu rn all avai lable data. For any other value greater than 254 bytes,
O2ODBC User Manual 73

O2 ODBC5
i f the length of avai lable data is greater than SQL_MAX_LENGTH, data
ret r ieved with SQLFetch or SQLGetData are t runcated withou t error
or warn ing m essages.

In the cu r rent version , the on ly valid valu e is the defau lt one, i .e. 0,
mean ing all available data is ret r ieved whenever possible.

—SQL_QUERY_TIMEOUT

Number of seconds to wait for an SQL statem ent to execu te before
retu rning to the appl icat ion. I f the value is 0, the t ime-ou t is disabled
(no t im e ou t). If the value exceeds the maximu m t ime-ou t in the data
source, 600 seconds, or is smaller than the min im um, 60 seconds,
the dr iver su bst i tu tes that value by th is maximu m or minimum value
and retu rns SQL_SUCCESS_WITH_INFO.

Changing the value is allowed any t ime and is taken into accoun t for
subsequ en t execu t ions. The defau lt value is 0 (no t im e ou t).

—SQL_ROWSET_SIZE

Defines the number of rows retu rned by an SQLExtendedFetch . Any
value is supported. Changing th is value is allowed even i f cu rsors are
opened, special ly between two SQLExtendedFetch . The value wil l
take effect for the next SQLExtendedFetch calls. The defau lt valu e is
1.

—SQL_MAX_ROWS

Th is defines the maximum nu mber of rows to retu rn to the appl ica-
t ion for a SELECT statem ent . If the value is 0, the dr iver retu rns all
r ows. Any another valu e is allowed. The defau lt valu e is 0 meaning all
r ows.

—SQL_BIND_TYPE

Two types of valu e define the bind type to be used by SQLExtended-
Fetch . The defau lt and on ly possible valu e is SQL_BIND_BY_COLUMN.

—SQL_RETRIEVE_DATA

Two valu es for ret r ieving data in SQLExtendedFetch calls:

—SQL_RD_ON

In SQLExtendedFetch cal ls, data are ret r ieved.

—SQL_RD_OFF

SQLExtendedFetch posit ions the cu rsor to the specified locat ion bu t
data are not ret r ieved. For example, th is opt ion valu e allows an appl i-
cat ion to call SQLExtendedFetch on ly to ver ify existence of rows and
check global errors.

Changing th is value is al lowed even if cu rsors are opened, especially
between two calls to SQLExtendedFetch . The new valu e takes effect
74 O2ODBC User Manual

ODBC API Functions :
for the next SQLExtendedFetch cal ls. The defau lt valu e is
SQL_RD_ON.

—SQL_CONCURRENCY

Specifies the cu rsor concu rrency. To set th is value, the cu rsor must
not be opened and the statement not prepared. The defau lt and on ly
value supported by the O2 ODBC dr iver is SQL_CONCUR_READ_ONLY,
mean ing that the cu rsor is read-only and no updates are allowed. If
another valu e is specified, the dr iver substi tu tes th is value by the
defau lt one and retu rns SQL_SUCCESS_WITH_INFO.

—SQL_CURSOR_TYPE

Specifies the cu rsor type. To set th is value the cu rsor mu st not be
opened and the statement not prepared. The defau lt and only value
suppor ted by the O2 ODBC dr iver is SQL_CURSOR_FORWARD_ONLY,
mean ing that the cu rsor only scrol ls forward. If an other value is
specified, the dr iver subst itu tes th is value by the defau lt one and
retu rns SQL_SUCCESS_WITH_INFO.

The fol lowing opt ions are not su ppor ted:

—SQL_KEYSET_SIZE

—SQL_SIMULATE_CURSOR

—SQL_USE_BOOKMARKS.

• SQLGetStmtOption

Besides the opt ions used with SQLSetStmtOption , for which the dr iver
retu rns the cu rrent set t ing, another opt ion can be ret r ieved:

—SQL_ROW_NUMBER

Th is al lows the number of the cu rrent row in the resu lt set to be
ret r ieved. If the cu r rent row cannot be determined or i f there is no
cu r rent row, the dr iver retu rns 0. To get th is opt ion value, a cu rsor
mu st be opened and not posit ioned before or after the resu lt set .

5.3.4 Preparing SQL requests

• SQLAllocStmt

• SQLNativeSql
O2ODBC User Manual 75

O2 ODBC5
• SQLPrepare

• SQLBindParameter

• SQLGetCursorName

Cursor nam es are used by posit ioned update or delete statements. Even
i f those statements are not suppor ted by the O2 ODBC dr iver , the
funct ions SQLSetCursorName and SQLGetCursorName are
implemented.

• SQLSetCursorName

5.3.5 Submitting requests

• SQLExecute

• SQLExecDirect

• SQLNumParams

• SQLParamData

• SQLPutData

5.3.6 Retrieving results and information about results

• SQLRowCount

• SQLNumResultCols

• SQLDescribeCol

• SQLColAttributes

• SQLBindCol

• SQLFetch
76 O2ODBC User Manual

ODBC API Functions :
• SQLExtendedFetch

• SQLGetData

5.3.7 Catalog functions

The fol lowing rest r ict ions apply to catalog fu nct ions:

• resu lt sets are not ordered (e.g. by table name for SQLTable);

• on ly the percen t character (matching zero or more of any character) is
su pported in search pat ters;

• table quali fiers and owners are not su pported.

• SQLColumns

• SQLForeignKeys

• SQLPrimaryKeys

• SQLProcedures

Retu rns the l ist of procedure names and character ist ics for a specific
data sou rce. These are the procedures declared in the con figu rat ion fi le
u sed to der ive the view associated to the data source.

• SQLSpecialColumns

• SQLStatistics

Only stat ist ics giving the nu mber of rows of a table wi ll be per formed.
For indexes information , no data wi ll be retu rned in the resu lt set .

I f the argu ment fAccuracy is SQL_ENSURE, the num ber of rows in the
table is uncondit ionally ret r ieved which m eans that a COUNT r equ est is
per formed on the table in the O2 data source. If fAccuracy is
SQL_QUICK, th is num ber is only ret r ieved i f i t is readi ly avai lable from
the server .

• SQLTables
O2ODBC User Manual 77

O2 ODBC5
If the argu ment szTableType is % and the argument szTableName is
an empty st r ing, the resu lt set contains the l ist of valid table types for
the data sou rce (al l others colum ns contain NULL). Valid table types are:
O2 CLASS TABLE, O2 COLLECTION TABLE, USER TABLE, VIEW TABLE.
For more details on the differen t types of tables, see Chapter 4, “Schema
Update Com mands” on page 42.

If a qual ifier or owner is specified, SQL_ERROR is retu rned.

5.3.8 Terminating a statement

• SQLFreeStmt

• SQLCancel

• SQLTransact

If the connection is in au to-commit mode, an O2 t ransact ion is star ted
each t ime an SQL statement that can be con tained with in a t ransact ion
is execu ted against the cu rren t data source. The dr iver val idates th is
t ransact ion after each execu t ion .

Execu t ing a SELECT statement wil l imply, for the O2 data source,
star t ing an O2 t ransaction , processing, open ing a scan on the resu lt
and validat ing the transact ion. For the O2 ODBC cl ient , a cu rsor is
opened.

An SQLFreeStmt with SQL_CLOSE opt ion valu e wi ll close, for the O2
data source, the scan and delete pending resu lts, and, for the O2 ODBC

clien t , close the cu rsor and delete pending resu lts.

In manual-commit m ode, each t ime an SQL statement that can be
con tained with in a t ransact ion is su bmit ted to the O2 data source an O2
t ransact ion is star ted on ly i f no t ransaction is already open. Al l
statements associated to a connect ion share the same transact ion
space. In order to commit or rollback a t ransact ion, the applicat ion
mu st cal l SQLTransact with the appropr iate parameter .

Execu t ing a SELECT statement wil l imply, for the O2 data source,
processing and opening a scan on the resu lt, and, for the O2 ODBC
clien t , open ing a cu rsor . An SQLFreeStmt with SQL_CLOSE opt ion value
wil l, for the O2 data sou rce, close the scan and delete pending resu lts,
and, for the O2 ODBC cl ien t, close the cu rsor and delete pending
resu lts.
78 O2ODBC User Manual

O2 ODBC Tools :
When SQLTransact is cal led, with the only val id option
SQL_CB_DELETE, it com mits or rollbacks al l the previously submit ted
requ ests with in the t ransact ion. For the O2 data source, al l opened
scans are closed, al l pending resu lts and al l access plans (i.e. O2
handles) are deleted. For the O2 ODBC cl ient , cu rsors and pending

resu lts are deleted for all the associated statements.

5.3.9 Terminating a connection

• SQLDisconnect

• SQLFreeConnect

• SQLFreeEnv

5.3.10 General information

• SQLError

• SQLGetFunctions

The argument fFunction is SQL_API_ALL_FUNCTIONS or a defined
value ident i fying the ODBC funct ion of interest. The ou tpu t argument
pfExists is an array of 100 elements or a single UWORD. Values are set
to TRUE if the funct ion is supported, FALSE otherwise.

SQLGetFunctions wil l retu rn FALSE for the following level 2 funct ions
only: SQLBrowseConnect , SQLParamOptions , SQLSetPos ,
SQLSetScrollOptions , SQLDescribeParam , SQLMoreResults ,
SQLProcedureColumns , SQLColumnPriviliges and
SQLTablePrivileges .

5.4 O2 ODBC Tools

A nu mber of tools is avai lable for O2 ODBC developers. These are
programs that shou ld be fou nd in the bin/<platform> subdirectory of
the O2 installat ion directory.
O2ODBC User Manual 79

O2 ODBC5
5.4.1 o2sql_export

As descr ibed in Sect ion 5.3, an O2 data source corresponds to an O2
base on which a view has been activated. To be able to connect to a

data sou rce, an O2 base mu st exist and a view on the schema of that
base must have been previously created.

The o2sql_export tool is the view creat ion tool. Its featu res and
complete usage are descr ibed in Sect ion 4.3.1 and Sect ion 5.4.1
respect ively.

5.4.2 o2sql_query

The o2sql_query is an auxilair y tool used for view schema
management. It can be very u sefu l for vir tual schema designers as it
al lows qu ick inspection of vir tu al schemas and databases. In par t icu lar ,
i t can be u sed to delete view schemas from the SQL catalog and to
ret r ieve the con ten ts of a con figu ration fi le u sed to der ive a given view
into a fi le. This file can be thus modified and the view re-generated.

Its featu res and complete usage are descr ibed in Sect ion 4.3.2 and
command “o2sql_qu ery”, page 7-115.

5.4.3 o2odbc_server

An O2 ODBC servers process O2 ODBC cl ien t requests.

When star ted, o2odbc_server establ ishes a connect ion with an O2
OpenDispatcher (o2open_dispatcher) which mu st already be running
and establ ishes also a connection with a named O2 database system
th rough an o2server , which mu st also already be running.

An O2 ODBC server loads view in format ion from the SQL catalog stored
in an O2 system for a given data source so as to be able to per form
qu ery t ranslations. It also u pdates the SQL catalog whenever schema
u pdate commands (table, view and index creat ion, modificat ion and
dest ru ct ion) are execu ted on the data source. Final ly, i t per forms al l the
ODBC specific act ivity (data conversions, cu rsor management , etc)
involved in the processing of cl ients requ ests.

An O2 ODBC server can ru n in two modes, namely the au to-com mit and
manual modes. In the au to-commit mode, an impl icit comm it is
per formed after the execu t ion of each SQL statem ent . In manu al, mode,
80 O2ODBC User Manual

O2 ODBC Tools :
comm its and/ or rollbacks m ust be expl icit ly per formed by the
appl icat ion th rou gh the ODBC API funct ion SQLTransact .

The complete usage of the o2odbc_server program is given in
comm and “o2odbc_server”, page 7-109.

5.4.4 o2odbc_dump_base

The whole con ten ts of an O2 data sou rce, i .e. of the vir tual relat ional
database corresponding to the application of a view on an O2 base, can
be logically du mped into an ASCII fi le with the o2odbc_dump_base
program. The logical dum p of a vir tu al database consists of all table
creat ion and row inser t ion SQL commands. The generated ASCII file can
be given as inpu t to a program that sends each command to execu t ion
on a given database. This allows the contents of a du mped database to
be loaded elsewhere.

In par t icu lar , the generated ou tpu t fi le can be given as inpu t to the
o2sql_query tool to dupl icate the con ten ts of a vir tual database in to
another base. Th is allows an O2 base (or the par t of an O2 base that is
expor ted as a vir tu al database) to be mater ialized as a relat ional
database.

The complete usage of the o2odbc_dump_base program is given in
comm and “o2odbc_du mp_base”, page 7-108.

5.4.5 o2open_dispatcher

An O2 OpenDispatcher registers all O2 ODBC servers ru nn ing on a LAN
and is quer ied to get the address of a server able to answer to an O2
ODBC clien t requests.

A server is chosen by the dispatcher according to a heur ist ics and based
on connect ion opt ions set by the cl ien t. A score is computed for each
server ru nn ing and the server with the best score is retu rned to the
client .

The complete usage of the o2open_dispatcher program, including
more detai ls on the heu r ist ics used by the dispatcher to choose a server
for a given client , is given in com mand “o2open_dispatcher”, page 7-
111.
O2ODBC User Manual 81

O2 ODBC5
82 O2ODBC User Manual

6 Programming an
O2ODBC Server6
Programm ers can u se the o2_Odbc class to bu ild their own O2 ODBC
servers.

This chapter descr ibes how to integrate your C++ applicat ion with an
O2ODBC server so as to be able to access instances of the impor ted C++
classes stored in an O2 database as relat ional data and, in par t icu lar , to
execu te C++ funct ions as stored procedures th rou gh the ODBC
in ter face.

We assu me the reader is famil iar with the ODMG C++ Binding and with
the concept of stored procedu re in SQL and ODBC.

To implement you r own O2 ODBC server you bu ild an ODMG C++
applicat ion using the following:

• user classes

• ODMG C++ l ibrar ies

• O2 ODBC l ibrar ies

The following sect ions detail the di fferen t steps involved in the
const ruct ion of an O2 ODBC server .
O2ODBC UserManu al 83

Programming an O2ODBC Server6
6.1 Defining the O 2 ODBC Server main function

You must bu i ld an O2 ODBC server execu table from a main funct ion
and application fi les. The main funct ion u ses the o2_Odbc class.

The general st ructu re of a main fu nct ion u sed in the const ruct ion of an
O2 ODBC server is the fol lowing:

• Creates an o2_Odbc class object .

• Sets the the server opt ions and param eters.

• In it ial izes the O2ODBC server (begin).

• Star ts the server loop (loop).

• Finishes (end).

An exam ple of a main funct ion is given below. .

Once the server is star ted, it connects to an O2 server first (function
begin) and then to an O2 OpenDispatcher (fu nct ion init). It then waits

int main(int argc, char** argv)
{
 short error=0;
 o2_Odbc *o2odbcServer = new o2_Odbc();
 o2odbcServer->set_sysdir(getenv("O2HOME"));
 o2odbcServer->set_conffile(".o2rc");
 o2odbcServer->set_confvar("O2OPTIONS");
 o2odbcServer->set_enroll(enroll_func);
 o2odbcServer->set_check(check_func);
 error = o2odbcServer->begin(argc, argv);
 if (error) {
 return(1);
 }
 error = o2odbcServer->init();
 if (error) {
 return(1);
 }
 o2odbcServer->loop();
 o2odbcServer->end();
 delete o2odbcServer;
 return (0);
}
84 O2ODBC User Manual

Compiling your own O2 ODBC server :
for requ ests sent by O2 ODBC clien ts (function loop). Fu nct ions begin ,
init , loop and end of class o2_Odbc are defined in the o2odbc_svr
l ibrary.

For a given appl icat ion, a specific con figu rat ion can be defined in the
main fu nction by applying the appropr iate set funct ions to the instance
of o2_Odbc .

The fu ll referent ial in format ion on the o2_Odbc class is given in Sect ion
7.1.

6.2 Compiling your own O 2 ODBC server

An O2 ODBC server is bu il t as an ODMG C++ appl icat ion with the help
of the o2makegen tool . A con figu ration fi le is used to bu i ld the makefile
u sed in the const ruct ion of an O2 ODBC server . The example below
i llust rates su ch a con figu rat ion file..

O2Home= $O2HOME
O2System= $O2SYSTEM
O2Server= $O2SERVER
O2Schema= o2odbc_cpp

+UseOql
+UseConfirmClasses

ImpFiles= Person.hxx SQLStoredProcedureHandler.hxx
[Person.hxx]ImpClasses= Person
[SQLStoredProcedureHandler.hxx]ImpClasses=
SQLStoredProcedureHandler
+[SQLStoredProcedureHandler.hxx]

[SQLStoredProcedureHandler]
ImpAllPublicMemberFunc
ImpSet= Person
ProgramLibDir= $O2HOME/lib
ProgramLib= o2odbc_svr sql oql o2cppruntime o2runtime
o2api o2util
o2store o2common

Sources= Person.cc SQLStoredProcedureHandler.cc main.cc
ProgramObjs= main.o Person.o
SQLStoredProcedureHandler.o $O2HOME/obj/o2odbc_load.o
ProgramName= my_o2odbc_server
O2ODBC User Manual 85

Programming an O2ODBC Server6
In the example aboce, Person is an appl icat ion class defined in file
Person.hxx . Its member funct ions are defined in fi le Person.cc. Class
SQLStoredProcedureHandler grou ps all C++ fu nct ions that are
declared as stored procedures in the configu rat ion file used by the
o2sql_export tool to create the relat ional view of the O2 schema. The
implementat ion of such fu nct ions is provided in fi le
SQLStoredProcedureHandler.cc . The main.cc fi le con tains the
defin it ion of the main funct ion, as i llustrated above.

The execu table my_o2odbc_server (clau se ProgramName) is generated
by import ing the Perso n and SQLStoredProcedureHandler classes
into O2 , compil ing the corresponding source fi les and link ing the
respect ive object fi les with the librar ies declared in the ProgramLib
clause.

.

Fi gu r e 4 .2 : Com ponen t s of a n O2ODBC appl i ca t i on

For more detai ls, refer to the ODMG C++ and o2makegen u ser and
reference manuals.

u sers classes

ODMG C++
 librar ies

O2ODBC
librar ies

 users
im ported classes

create base B;

create schema S;

name N: ...

O2

main.cc

O2ODBC server
 execu table

o2import
86 O2ODBC User Manual

Running your own O2 ODBC server :
6.3 Running your own O 2 ODBC server

Given a C++ appl icat ion, the fol lowing steps shou ld be per formed to run
an O2 ODBC server that can access instances of C++ applicat ion classes
th rou gh SQL and lau nch C++ fu nctions as stored procedu res:

• In it ialize an O2 system and run the O2 server .

Th is is ach ieved th rou gh the appropr iate o2dba_ini t and o2server
programs. For more in format ion refer to the O2 System Administ ra-
t ion Manuals.

• Create an O2 schema.

Th is can be ach ieved th rou gh the appropr iate administrat ion tools
(e.g. o2dsa). Refer to the O2 System Adm in ist rat ion Manu als.

• Impor t the C++ classes in to O2 .

After schema creat ion, you mu st impor t the classes and member
funct ions of your application . Th is is ach ieved th rou gh the appropr i-
ate tools (e.g. o2makegen). Refer to the ODMG C++ Binding Reference
Manu al and User ’s Gu ide.

• Impor t the class SQLStoredProcedureHandler .

Th is class is the en t ry point al lowing C++ fu nct ions to be cal led as
stored procedures through the SQL inter face.

• Create persistent roots.

Persisten t roots m ust be defined to store instance of the C++ appl ica-
t ion classes. Such roots can be used as an en t ry poin t in the data-
base by the SQL engine, if they are declared as extents in the
con figu rat ion file used by the o2sql_export tool .

• Create the O2 ODBC server .

As detai led above, the creat ion of an O2 ODBC server involves the
defin i t ion of a m ain funct ion that , together with the applicat ion files,
is used to bu i ld an execu table that is linked to the appropr iate librar-
ies.

• Popu late the database.

An appl icat ion mu st load data in the database before qu erying it . The
database can be popu lated by the C++ application or through the
SQL inter face, with the appropr iate row inser t ion SQL comm and or
by call ing user defined C++ funct ions declared as stored procedures.

• Run the server .
O2ODBC User Manual 87

Programming an O2ODBC Server6
A user -defined O2 ODBC server works as a standard O2 ODBC
server , bu t as it is linked to some u ser-defined classes, i t is able to
run C++ functions defined in class SQLStoredProcedureHandler
and declared in a view generat ion con figu rat ion file as stored proce-
dures.
88 O2ODBC User Manual

7 O2 ODBC Reference7
This chapter detai ls the o2_Odbc class and all O2 ODBC commands. It
is divided into the following sect ions:

• The o2_odbc Class.

This class is used by an appl icat ion to star t an O2ODBC server and
begin the server loop.

• The O2 ODBC Commands.

This section provides the O2ODBC system commands.
 O2ODBC User Manu al 89

O2 ODBC Reference7
7.1 The o2_odbc Class

Th is sect ion presents the o2_Odbc class

and descr ibes the following mem ber funct ions:

• banner

• begin

• end

• enroll

• enroll_path

• get_option

• init

• set...

• usage
90 O2ODBC User Manu al

The o2_odbc Class :
.

class o2_Odbc {
public:
 enum OptionType {
 NoValue, OptionalValue, MandatoryValue };
 enum OptionMode{
 Append=0,

// string value are appended to old ones
 Replace=1,

// string value replace old one
 Add=2

// string value are added in the list found
 };
 o2_Odbc();
 ~o2_Odbc();

 static void interruptFunc(int signal);
 int begin(int argc, register char *argv[]);
int begin(int argc, register char *argv[],

const char *sysdir, const char
*systemname, const char *servername,
const char *dispatchername, int verbose);

 int begin(int argc, register char *argv[],
const char *sysdir, const char *systemname,
const char *servername, const char
*dispatchername, const char *conf_file,
const char *conf_var, void (*enroll_func)(),
void (*check_func)(), int verbose);

 int begin(int argc, register char *argv[],
const char *sysdir, const char *systemname,
const char *servername, const char
*dispatchername, const char *conf_file,
const char *conf_var, void (*enroll_func)(),
void (*check_func)(), const char *swapdir,
char * const *libpath, char * const *libname,
int commitfrequency, const char * commitmode,
const char *application, int verbose);
 O2ODBC User Manual 91

O2 ODBC Reference7
.

 int init();
 int end();
 int loop();

 void set_systemname(const char *systemname);
 void set_servername(const char *servername);
 void set_sysdir(const char *sysdir);
 void set_swapdir(const char *swapdir);
 void set_dispatchername(const char *dispatchername);
 void set_commitFrequency(const char *commitfrequency);
 void set_commitFrequency(int commitfrequency);
 void set_commitMode(const char *commitmode);
 void set_verbose(int verbose);
 void set_libpath(char * const *libpath);
 void set_libname(char * const *libname);
 void set_application(const char *appli);
 void set_conffile(const char *conf_file);
 void set_confvar(const char *conf_var);
 void set_enroll(void (*enroll_function)());
 void set_check(void (*check_function)());
 void set_default_env();
 static void default_enroll_func();
 static void default_check_func();
 static int usage();
 static int banner();
 static int enroll(const char * const name,
 const char * const confname,
 const char * const optname,
 char *dflt,
 const OptionType t,
 const char * const desc,
 const OptionMode mode=Replace);
92 O2ODBC User Manu al

The o2_odbc Class :
.

 static int enroll(const char * const name,
 const char * const confname,
 const char * const optname,
 long dflt,
 const OptionType t,
 const char * const desc,
 const OptionMode mode=Replace);

 static int enroll(const char * const name,
 const char * const confname,
 const char * const optname,
 char dflt,
 const OptionType t,
 const char * const desc,
 const OptionMode mode=Replace);

 static int enroll(const char * const name,
 const char * const confname,
 const char * const optname,
 double dflt,
 const OptionType t,
 const char * const desc,
 const OptionMode mode=Replace);

 static int enroll_path(const char *path);
 static int get_option(const char *name,
 char *&value,
 int ind = -1);
 static int get_option(const char *name,
 long &value,
 int ind = -1);
 static int get_option(const char *name,
 double &value,
 int ind = -1);
 static int get_option(const char *name,
 char &value,
 int ind = -1);
};
 O2ODBC User Manual 93

O2 ODBC Reference7
banner

Summar y Displays the version number of O2.

Syntax static int o2_odbc::banner();

Arguments None.

Descri ption Displays the version number of O2 on the standard ou tpu t .

Returns 0 if successfu l.
-1 if there was an internal error .
94 O2ODBC User Manu al

The o2_odbc Class : begin
begin

Summary Star ts u p a connect ion to an O2 database.

Syntax int begin (int argc, register char * argv[]);

int begin (int argc, register char * argv[],
const char *systemname,
const char *servername,
const char *sysdir,
int verbose);

int begin (int argc, register char * argv[],
const char *conf_file,
const char *conf_var,
void (*enroll_func) (),
void (*check_func) (),
const char *systemname,
const char *servername,
const char *sysdir,
int verbose);

int begin (int argc, register char * argv[],
const char *conf_file,
const char *conf_var,
void (*enroll_func) (),
void (*check_func) (),
const char *systemname,
const char *servername,
const char *sysdir,
const char *swapdir,
const * const *libpath,
const * const *libname,
int verbose);

Arguments argc Nu mber of arguments of the C++ execu table.

argv List of arguments of the C++ execu table.

systemname Nam e of database system . This in format ion is
m andatory. It can be given as a parameter or by cal ling
o2_odbc::set_systemname before beginning the
session.

It can also be set by o2_odbc::set_default_env , in
which case it is found in the parameter -system of you r
execu table, in the O2OPTIONS environment var iable (see
the conf_var argument), or in the O2 option fi le .o2rc
(see the conf_file argument). See the O2 System
Administration Guide for fu r ther details.
 O2ODBC User Manual 95

O2 ODBC Reference7
servername Name of m ach ine on wh ich the O2 server is running. It
can be given as a parameter or by cal ling
o2_odbc::set_servername before beginn ing the
session.

It can also be set by o2_odbc::set_default_env , in
which case i t is found in the param eter -server of your
execu table, in the O2OPTIONS environment var iable (see
the conf_var argument), or in the O2 opt ion fi le .o2rc
(see the conf_file argument). See the O2
Administration Guide for fu r ther details.

sysdir Path to the directory where O2 is instal led. Th is
information is m andatory. It not given , the value found
in the environment var iable O2HOME is used.

swapdir Path to a directory where a swap fi le can be created if O2
needs it . It can be NULL, in wh ich case the swap
directory in the O2 directory is used (See the O2 System
Administration Guide).

libpath A NULL-terminated array of character st r ings, where
each st r ing gives a directory path. O2 searches these
director ies for l ibrar ies nam ed in libname if dynamic
l ink ing is needed. It may be NULL.

libname A NULL-terminated array of character st r ings, each
specifying a library name to u se when link ing and
loading functions dynamical ly. It m ay be NULL.

conf_file Name of the file where the O2 options manager can find
the value for the en rol led opt ions (see the enroll and
enroll_path funct ions). If 0, conf_file takes the
defau lt valu e .o2rc .

conf_var Name of the environment var iable where the O2 opt ions
manager can find the value for the en rol led opt ions (see
the enroll and enroll_path fu nct ions). If 0, conf_file
takes the defau lt value O2OPTIONS.

enroll_func Pointer to a C funct ion of type
static void (*func) () . Th is funct ion must contain
code for register ing options.

check_func Pointer to a C funct ion of type
static void (*func) () . Th is funct ion must contain
code for ret r ieving and ver i fying option valu es.

verbose An integer specifying the session as a verbose session .
96 O2ODBC User Manu al

The o2_odbc Class : begin
Description Star ts u p the connection to the database after analyzing the opt ions.

Th is member funct ion allows you to u se the sam e powerfu l opt ion
mechan ism that is used by al l the tools of the O2 environment . Th is
opt ion mechan ism is explained in detail in the O2 System
Administration Guide.

The O2 opt ions mechan ism allows you to define opt ions from the
following sources:

• Configu rat ion fi le.

• Environm ent var iables.

• Command line.

For a given opt ion , a valu e retr ieved from a con figu rat ion file can be
over loaded by a valu e defined as an environment var iable, wh ich in
tu rn can be over loaded by a value defined at the com mand line.

Using the O2 opt ions mechan ism has the following advan tages:

• Simple management of run t ime opt ions.

• A coheren t set of options for al l O2 applicat ions and tools.

Using the O2 opt ions mechan ism is not mandatory. The m ost simple
way to use the O2 opt ions mechanism is to u se the member function
o2_odbc::set_defau lt_env before cal ling o2_odbc::begin.

Th is fu nct ion allows your C++ program to use the standard O2
con figu rat ion file (.o2rc), the standard O2 environment var iable
opt ions (O2OPTIONS), and the standard O2 command opt ions:

-system, which defines the O2 system name,
-server , which defines the name of the O2 server host ,
-help, wh ich displays the help text for the program , and
-verbose, which enables the verbose mode.

Customizing the options

You can add your own opt ions. For exam ple, you can ret r ieve O2C
parameters u sing new opt ions. To do th is, you mu st u se the
o2_odbc::enroll and o2_odbc::get_option member funct ions.

The o2_odbc::enroll function al lows you to register the opt ions,
and the o2_odbc::get_option funct ion allows you to retr ieve the
value of the opt ions.

You must wr i te the fol lowing two functions:

void o2_odbc::set_default_env()
 O2ODBC User Manual 97

O2 ODBC Reference7
• A register fu nct ion that contains a call to o2_odbc::enroll
funct ions, wh ich register each of you r options.

• A check function that contains a cal l to o2_odbc::get_option
funct ions, wh ich retr ieve the value of the registered opt ions.

These two functions can be registered u sing the o2_odbc:begin
member funct ion (enroll_function and check_function
parameters) or explici t ly, before cal ling o2_odbc::begin , using the
following m ember funct ions:

The opt ions for the system name and the server name are m andatory.
These two opt ions are registered by the fol lowing code, wh ich you
mu st add to your register funct ion :

After register ing these mandatory opt ions, you can register your own
opt ions.

Returns 0 if the connection was car r ied ou t successfu l ly. If not , an error code is
given .

void o2_odbc::set_enroll(void (*enroll_function) ())

void o2_odbc::set_check(void (*check_function) ())

session->enroll("system_name", "system", "system"
(char *)NULL,

MandatoryValue,

"o2 system name to connect to",

Replace);

session->enroll("system_name", "server", "server"
(char *)NULL,

MandatoryValue,

"machine on which o2 server is running",

Replace);
98 O2ODBC User Manu al

The o2_odbc Class : end
end

Summary Ends an O2 session.

Syntax int o2_odbc::end();

Arguments None.

Description Ends an O2 session and the connect ion to the O2 server . A commit is
carr ied ou t au tomat ically.

Returns Zero i f successfu l, a non-zero value otherwise.
 O2ODBC User Manual 99

O2 ODBC Reference7
enroll

Summar y Registers an opt ion to be recogn ized by the O2 opt ions manager .

Syntax static int o2_odbc::enroll (const char * const name,
const char * const confname,
const char * const optname,
char *dflt,
const OptionType t,
const char * const desc,
const OptionMode mode=Replace);

static int o2_odbc::enroll (const char * const name,
const char * const confname,
const char * const optname,
long dflt,
const OptionType t,
const char * const desc,
const OptionMode mode=Replace);

static int o2_odbc::enroll (const char * const name,
const char * const confname,
const char * const optname,
char dflt,
const OptionType t,
const char * const desc,
const OptionMode mode=Replace);

static int o2_odbc::enroll (const char * const name,
const char * const confname,
const char * const optname,
double dflt,
const OptionType t,
const char * const desc,
const OptionMode mode=Replace);

Arguments name A st r ing that indicates the name of the option . This name
is used for ret r ieving the valu e of the opt ion.

confname A str ing that indicates under wh ich name the value of
th is opt ion can be given in a configu ration fi le.

optname A str ing that indicates under wh ich name the value of
th is opt ion can be given in the environment var iable or
at the command line.

dflt The defau lt value of the option . Th is valu e is ret r ieved if
the end user does not give a valu e is given to the opt ion.
100 O2ODBC User Manu al

The o2_odbc Class : enroll
t A valu e taken from the Opt ionType enu merat ion :
NoValue . The opt ion represen ts a boolean

value. If there are values there wil l be
an error du r ing parsing of the
opt ions.

OptionalValue The opt ion can have an associated
value.

MandatoryValue The opt ion represen ts a valu e. If th is
value is not indicated there wil l be an
error du r ing parsing of the opt ions.

desc A st r ing descr ibing the opt ion. This str ing is displayed
when the usage funct ion is called or when a parsing
error is detected.

mode A valu e taken from the Opt ionMode enumerat ion.
Add Each t im e a valu e for the

opt ion is fou nd, the new
value is added to the
array of values. Values
can be ret r ieved by the
get function
using the index
argument .

Replace Each t im e a valu e for the
opt ion is fou nd the old
value is replaced with a
new value. On ly one value
can be ret r ieved.

Append Each t im e a valu e for the
opt ion is found, th is value
is appended to the
cu rrent value. Only one
value can be retr ieved.

Description These m ember funct ion allow you to register new opt ions on the O2
opt ions manager.

These fu nct ion are registered by the begin member fu nct ion.

Each of these funct ions allow you to en rol l one option . There is one
funct ion for each type of opt ion .

Returns 1 i f successfu l .
0 i f the opt ion cou ld not be enrol led.
-1 i f there was an internal error in the opt ion manager.
 O2ODBC User Manual 101

O2 ODBC Reference7
enroll_path

Summar y Allows you to register h ierarchical opt ions.

Syntax static int o2_odbc::enroll_path (const char * path);

Descri ption This member funct ion allows you to register h ierarchical opt ions.
Hierarch ical opt ions are descr ibed as a path , i .e., an ordered list of
opt ions such as:

system.base.loadname

The h ierarchical opt ions only work in a configu rat ion file such as
.o2rc .

Returns 0 if successfu l.
-1 if there was an internal error .
102 O2ODBC User Manu al

The o2_odbc Class : get_option
get_option

Summary Retr ieves the value of an opt ion.

Syntax static int o2_odbc::get_option (const char *name,
char *&value,
int ind = -1);

static int o2_odbc::get_option (const char *name,
long &value,
int ind = -1);

static int o2_odbc::get_option (const char *name,
double &value,
int ind = -1);

static int o2_odbc::get_option (const char *name,
char &value,
int ind = -1);

Arguments name A st r ing that indicates the internal name of the opt ion as
defined in the corresponding o2_odbc::enroll member
funct ion.

value Th is argu ment points to the retu rned value.

ind An index that is used i f the u ser enters an opt ion several
t imes. If you have registered the opt ion with the replace
or append mode, you shou ld set th is argu ment to -1. If
the index is -1, the last valu e en tered by the end-user is
retu rned. If the index is >= 0, the index-th value is
retu rned. If the index is too large, the retu rned value is
NULL.

Description This mem ber function al lows you to ret r ieve the valu e of the registered
opt ions. This funct ion shou ld only be cal led for opt ions that are
registered.

Th is funct ion is intended to be used in the check fu nct ion, which can
be registered by the o2_odbc::begin m ember funct ion.

Returns 0 i f successfu l .
-1 i f the opt ion cannot be ret r ieved (i .e., the opt ion is not registered).
 O2ODBC User Manual 103

O2 ODBC Reference7
init

Summar y Star ts u p a connection to an o2open_dispatcher .

Syntax int o2_odbc::init();

Arguments None.

Descri ption This funct ion connects the server to the dispatcher.

Returns Zero i f the operat ion was su ccessfu l. Else a non-zero valu e.
104 O2ODBC User Manu al

The o2_odbc Class : set...
set...

Summary Sets the var ious session parameters.

Syntax void o2_odbc::set_default_env();

void o2_odbc::set_enroll();

void o2_odbc::set_libname(char **);

void o2_odbc::set_libpath(char **);

void o2_odbc::set_servername(char *);

void o2_odbc::set_swapdir(char *);

void o2_odbc::set_sysdir(char *);

void o2_odbc::set_systemname(char *);

Description Expl icit ly set var ious session parameters before beginning the session
with o2_odbc::begin(argc, argv, mode); .

set_default_env(); allows your C++ program to u se the standard O2
con figu rat ion fi le (.o2rc), the standard O2 environment var iable opt ions
(O2OPTIONS), and the standard O2 command opt ions:
-system, which defines the O2 system nam e,
-server , wh ich defines the name of the O2 server host ,
-help, which displays the help text for the program, and
-verbose, wh ich enables the verbose mode.

Returns Nothing.

Note Note Note Note Note Note Note Note
Refer to o2_odbc::begin() for addit ional information .
 O2ODBC User Manual 105

O2 ODBC Reference7
usage

Summar y Displays a descr ipt ion of the registered opt ions.

Syntax static void o2_odbc::usage ();

Descri ption This member funct ion displays a u sage descr ipt ion of the registered
opt ions. Al l val id opt ions are displayed with the contents of the desc
argum ent of the o2_odbc::enroll member funct ion.

Returns 0 if successfu l.
-1 if there was an internal error .
106 O2ODBC User Manu al

The O2 ODBC Commands : usa ge
7.2 The O2 ODBC Commands

The commands ou t lined in th is sect ion shou ld be fou nd in the
bin/ <platform > su bdirectory of the O2 instal lat ion directory. These
comm ands are:

• o2odbc_dump_base

• o2odbc_server

• o2open_dispatcher

• o2sql_export

• o2sql_query
 O2ODBC User Manual 107

O2 ODBC Reference7
o2odbc_dump_base

Summar y Generates a logical dump of an O2 data source in a given ASCII fi le.

Syntax o2odbc_dump_base

connection_string

output_file

Mandator y arguments

• connection_string

Th is argument must be defined as specified in Section 5.2.3. It is used
by the o2odbc_dump_base program to connect to a given O2ODBC data
source.

• output_file This is the name of the fi le where the SQL commands are
du mped into.

Optional ar guments

None.

Descri ption The logical du mp of a vir tual database consists of all table creat ion and
row inser t ion SQL com mands. Commands are terminated by ";".

The generated ASCII fi le can be given as inpu t to a program that sends
each com mand to execu tion on a given database. This allows the
con ten ts of a dumped database to be loaded elsewhere.

A dispatcher and a server must be ru nn ing, as the o2odbc_dump_base
tool is an O2ODBC cl ient . In addit ion, the ODBC server u sed by the
o2odbc_dump_base tool must be running in m anu al m ode.

Environment variables

None.

Files An ou tpu t fi le is generated. If a file with the same name already exists, it
is overwr i t ten.

See also o2odbc_server , o2open_dispatcher
108 O2ODBC User Manu al

The O2 ODBC Commands : o2odbc_server
o2odbc_server

Summar y Star ts an O2ODBC server .

Syntax o2odbc_server

 [-system system_name]
 [-server server_host]
 [-dispatcher dispatcher_host]
 [-commit_mode commit_mode]
 [-verbose]

Mandator y arguments

None.

Optional ar guments

Defau lt arguments (like -system or -server arguments) are accepted
according the general opt ion mechanism of O2(see the System
Administration Reference Manual).

• -system system_name

Specifies the O2 system name.

• -server server_host

Specifies the O2 server host name. Th is must be the name of a mach ine
on the network .

• -dispatcher dispatcher_host

Specifies the O2OpenAccess dispatcher host . Th is mu st be the name of
a machine on the network .

• -commit_mode commit_mode

Specifies the commit mode on which the server wil l r un. Possible values
are auto (for au to-commit m ode) and manual (for manual mode). If not
specified, the au to-commit mode is set by defau lt.

• -verbose

Displays addit ional informat ion abou t the o2odbc_server activity, i.e.
sets the verbose mode on.
 O2ODBC User Manual 109

O2 ODBC Reference7
Descri ption This command star ts a new O2ODBC server on a m ach ine. An O2ODBC
server processes O2ODBC cl ient requests.

When star ted, o2odbc_server establ ishes a connect ion with an
O2OpenDispatcher (o2open_dispatcher) which mu st already be
runn ing and establishes also a connect ion with a named O2 database
system through an o2server , which must also already be running.

Environment variables

• O2HOME

Specifies the installat ion directory of O2. This var iable is m andatory.

Files

The file /etc/services (Unix) or
$WINDIR\system32\drivers\etc\services (Windows NT) contains
the dispatcher host name and por t number.

See also

o2open_dispatcher , o2server
110 O2ODBC User Manu al

The O2 ODBC Commands : o2o pen_dis patcher
o2open_dispatcher

Summar y Star ts an O2OpenAccess dispatcher .

Syntax o2open_dispatcher

 [-verbose]

Mandator y arguments

None.

Optional ar guments

• -verbose

Displays addit ional informat ion abou t the o2open_dispatcher
act ivi ty, i.e. sets the verbose mode on .

Descri ption

Th is command star ts a new O2OpenAccess dispatcher on a m ach ine.
An O2OpenDispatcher registers all O2ODBC servers ru nn ing on a LAN
and is quer ied to get the address of a server able to answer to an
O2ODBC clien t requests.

A server is chosen by the dispatcher according to a heur ist ics and based
on connect ion opt ions set by the cl ien t. A score is computed for each
server ru nn ing and the server with the best score is retu rned to the
client .

The fol lowing elements en ter in the computat ion of the score:

• a server is runn ing on the same host as the clien t

• a server is already connected to the database to which the cl ient
wan ts to connect

• the cu rren t load of each server (the num ber of connected cl ients)

• the valu e of the SQL_AUTOCOMMIT connect ion opt ion (specified by
the clien t with the SQLSetConnectOption or the defau lt valu e
SQL_AUTOCOMMIT_ON)
 O2ODBC User Manual 111

O2 ODBC Reference7
Environment variables

None.

Files

The file /etc/services (Unix) or
$WINDIR\system32\drivers\etc\services (Windows NT) contains
the dispatcher host name and por t number.

See also

o2odbc_server , o2server , o2odbc_dump_base
112 O2ODBC User Manu al

The O2 ODBC Commands : o2s ql_export
o2sql_export

Summar y

View schema generat ion program.

Syntax

o2sql_export

 [-system system_name]

 [-server server_host]

 -schema schema_name

 -view view_name

 [-config config_file]

 [-output output_file]

 [-verbose]

Mandator y arguments

• -schema schema_name

Th is is the name of a schema for which the view view_name is to be
der ived.

• -view view_name

Th is is the name of the view to be der ived for schema schema_name.
Many different views can be der ived for the same schema.

Optional ar guments

Defau lt arguments (like -system or -server arguments) are accepted
according the general opt ion mechanism of O2(see the System
Administration Reference Manual).

• -system system_name

Specifies the O2 system name.

• -server server_host
 O2ODBC User Manual 113

O2 ODBC Reference7
Specifies the O2 server host name. This m ust be the name of a machine
on the network .

• -config config_file

Specifies a configu rat ion to be used when export ing the O2 schema as a
relat ional schem a.

• -output output_file

If an ou tpu t fi le is specified th rou gh argument -output then the
generated view schema defin i t ion is du mped into th is file.

• -verbose

Displays addit ional in format ion abou t the o2sql_export act ivi ty, i.e.
sets the verbose mode on.

Descri ption

The o2sql_export tool allows view schemas to be created and modified.
When star ted, i t establishes a connect ion with a nam ed O2 database
system through an o2server , wh ich must already be ru nn ing.

Environment variables

• O2HOME

Specifies the installat ion directory of O2. This var iable is m andatory.

Files

An ou tpu t fi le is generated i f the opt ion -output is specified. If a file
with the same name already exists, i t is overwr i t ten .

An inpu t configu rat ion file is u sed i f the opt ion -config is specified. If
the file cannot be opened, an error is reported and the program abor ts.

See also

o2server , o2sql_query , o2odbc_server
114 O2ODBC User Manu al

The O2 ODBC Commands : o2s ql_query
o2sql_query

Summar y SQL in teractive shel l.

Syntax o2sql_query

 [-system system_name]

 [-server server_host]

 -base base_name

 -view view_name

 [-output output_file]

 [-auto_commit]

 [-verbose]

Mandator y arguments

None.

Optional ar guments

Defau lt arguments (like -system or -server arguments) are accepted
according the general opt ion mechanism of O2(see the System
Administration Reference Manual).

• -system system_name

Specifies the O2 system name.

• -server server_host

Specifies the O2 server host name. Th is must be the name of a mach ine
on the network .

• -base base_name

The name of a base on wh ich the view view_name is to be act ivated.

• -view view_name

The name of the view to be act ivated on base base_name . The view
mu st have been previously der ived with the o2sql_export tool for the
schema from wh ich the base base_name is an instance.

• -output output_file
 O2ODBC User Manual 115

O2 ODBC Reference7
If an ou tpu t fi le is specified th rou gh argument -output then the
generated view schema defin i t ion is du mped into th is file.

• -auto_commit

Specifies that the shel l must ru n in au to-commit mode, i.e. a commit
wil l be au tomat ical ly per formed after the execu t ion of each SQL
statement. The defau lt mode is the manual m ode, whereby comm its
and/ or rol lbacks must be explici t ly execu ted with the appropr iate shell
commands (commit work and rollback work).

• -verbose

Displays addit ional in format ion abou t the o2sql_query act ivi ty, i.e.
sets the verbose mode on.

Descri ption

The o2sql_query tool al lows view schemas to be act ivated on a given
database. Once a view is act ivated on an O2 base, SQL com mands can
be execu ted on the resu lt ing vir tu al database. The view schema can also
be inspected th rou gh specific shell commands (see Sect ion [Ref:
o2sqlqu ery]) for more details).

When star ted, o2sql_query establ ishes a connect ion with a named
O2 database system through an o2server , wh ich must already be
runn ing.

Environment variables

• O2HOME

Specifies the installat ion directory of O2. This var iable is m andatory.

Files An ou tpu t file is generated if the opt ion -output is specified. If a fi le
with the same name already exists, i t is overwr it ten.

See also o2server , o2sql_export
116 O2ODBC User Manu al

A Syntax for View
Customizat ionA
The syn tax for view customizat ion th rou gh a con figu rat ion file is given
below in EBNF format . Reserved words are “quoted” and non terminal
symbols are given in italics. The symbol | represen ts a choice (a
disju nct ion), brackets ({ and }) represen t zero or m any occurrences and
square brackets ([and]) represen t zero or one occur rence.

The non-terminal query_expression cor responds to a valid quoted OQL
expression, whereas schema_name, class_name, proc_name,
table_name, collection_name, column_name, method_name and
attribute_name correspond to valid O2 ident i fiers.

The non-terminal proc_descript ion corresponds to a qu oted st r ing and is
in tended to allow a shor t text descr ibing the semant ics of the procedure
to be at tached to the procedu re declarat ion in the SQL catalog.
O2ODBC UserManu al 117

Syntax for View CustomizationA
schema ::= “view schema ” schema_name“ from ” schema_name“ ; ”

[hide_command] [proc_command] [export_list]

hide_command ::= “hide ” class_name_list “ ;”

proc_command ::= “stored procedure ” proc_list“ ;”

export_list ::= export_command{ “ ; ”export_command}

export_command ::= export_class_command

 | export_collection_command

export_class_command ::= “export class ” class_name [“as ” table_name]

 [“ define key ” attribute_name]“ ; ”

 [“ hide ” attribute_name_list]“ ; ”

 [“ redefine ” virtual_attribute_list]“ ; ”

 [“ method ” method_name_list]“ ; ”

 [“ extent ” query_expression]“ ; ”

 [“ with ” data_update_clause_list]“ ; ”

“end”

export_collection_command ::= “export collection ” collection_name “ in class ” class_name

 [“ as ” table_name]

 [“ redefine ” virtual_attribute_list]

“end”

class_name_list ::= class_name{ “ , ” class_name}

proc_list ::= proc { “ , ” proc }

proc ::= proc_lang proc_name[proc_description]

proc_lang ::= “C++: ” | “O2C:” \mid

virtual_attribute_list ::= virtual_attribute{ “ , ” virtual_attribute }

virtual_attribute ::= path“as ” column_name

attribute_name_list ::= attribute_name{ “ , ” attribute_name}

method_name_list ::= virtual_method{ “ , ” virtual_method}

virtual_method ::= method_name“as ” column_name

data_update_clause_list ::= data_update_clause{ “ , ” data_update_clause}

data_update_clause ::= “insert ”

 | “update ”

 | “delete ”

collection_name ::= class_name{ “ . ” path }

path ::= attribute_name{ “ . ” attribute_name}
118 O2ODBC User Manual

B SQLGETINFO Return
ValuesB
We list below the C language #define ’s for the fInfoType argument
and the corresponding valu es retu rned by the ODBC API funct ion
SQLGetInfo .
O2ODBC UserManu al 119

SQLGETINFO Return ValuesB
fInfoType Returned Value
SQL_ACTIVE_CONNECTIONS 64
SQL_ACTIVE_STATEMENTS 64
SQL_DATA_SOURCE_NAME a long pointer to DSN
SQL_DRIVER_HDBC Handled by the driver manager
SQL_DRIVER_HENV Handled by the driver manager
SQL_DRIVER_HSTMT Handled by the driver manager
SQL_DRIVER_NAME a long pointer to "O2 Technology Driver"
SQL_DRIVER_VER a long pointer to "02.01.0000"
SQL_FETCH_DIRECTION SQL_FD_FETCH_NEXT
SQL_ODBC_API_CONFORMANE SQL_OAC_LEVEL1
SQL_ODBC_VER a long pointer to "02.10"
SQL_ROW_UPDATES a long pointer to "N"
SQL_ODBC_SAG_CLI_CONFORMANCE SQL_OSCC_COMPLIANT
SQL_SERVER_NAME a long pointer to ""
SQL_SEARCH_PATTERN_ESCAPE a long pointer to ""
SQL_ODBC_SQL_CONFORMANCE SQL_OSC_CORE
SQL_DBMS_NAME a long pointer to "O2 Technology"
SQL_DBMS_VER a long pointer to "05.00.0000"
SQL_ACCESSIBLE_TABLES a long pointer to "Y"
SQL_ACCESSIBLE_PROCEDURES a long pointer to "Y"
SQL_PROCEDURES a long pointer to "Y"
SQL_CONCAT_NULL_BEHAVIOR 0
SQL_CURSOR_COMMIT_BEHAVIOR SQL_CB_DELETE
SQL_CURSOR_ROLLBACK_BEHAVIORSQL_CB_DELETE
SQL_DATA_SOURCE_READ_ONLY a long pointer to "N"
SQL_DEFAULT_TXN_ISOLATION SQL_TXN_SERIALIZABLE
SQL_EXPRESSIONS_IN_ORDERBY a long pointer to "N"
SQL_IDENTIFIER_CASE SQL_IC_SENSITIVE
SQL_IDENTIFIER_QUOTE_CHAR a long pointer to "\"{"}
SQL_MAX_COLUMN_NAME_LEN 0
SQL_MAX_CURSOR_NAME_LEN 18
SQL_MAX_OWNER_NAME_LEN 0
SQL_MAX_PROCEDURE_NAME_LEN 0
SQL_MAX_QUALIFIER_NAME_LEN 0
SQL_MAX_TABLE_NAME_LEN 0
SQL_MULT_RESULT_SETS a long pointer to "N"
SQL_MULTIPLE_ACTIVE_TXN a long pointer to "Y"
SQL_OUTER_JOINS a long pointer to "N"
SQL_OWNER_TERM a long pointer to ""
SQL_PROCEDURE_TERM a long pointer to "stored procedure"
SQL_QUALIFIER_NAME_SEPARATORa long pointer to ""
120 O2ODBC User Manual

SQL_QUALIFIER_TERM a long pointer to "database"
SQL_SCROLL_CONCURRENCY SQL_SCCO_READ_ONLY
SQL_SCROLL_OPTIONS SQL_SO_FORWARD_ONLY
SQL_TABLE_TERM a long pointer to "O2 name"
SQL_TXN_CAPABLE SQL_TC_ALL
SQL_USER_NAME a long pointer to ""
SQL_CONVERT_FUNCTIONS 0
SQL_NUMERIC_FUNCTIONS SQL_FN_NUM_ABS | SQL_FN_NUM_MOD
SQL_STRING_FUNCTIONS SQL_FN_STR_CONCAT | SQL_FN_STR_LENGTH
 SQL_SYSTEM_FUNCTIONS 0
SQL_TIMEDATE_FUNCTIONS 0
SQL_CONVERT_BIGINT 0
SQL_CONVERT_BINARY 0
SQL_CONVERT_BIT 0
SQL_CONVERT_CHAR 0
SQL_CONVERT_DATE 0
SQL_CONVERT_DECIMAL 0
SQL_CONVERT_DOUBLE 0
SQL_CONVERT_FLOAT 0
SQL_CONVERT_INTEGER 0
SQL_CONVERT_LONGVARCHAR 0
SQL_CONVERT_NUMERIC 0
SQL_CONVERT_REAL 0
SQL_CONVERT_SMALLINT 0
SQL_CONVERT_TIME 0
SQL_CONVERT_TIMESTAMP 0
SQL_CONVERT_TINYINT 0
SQL_CONVERT_VARBINARY 0
SQL_CONVERT_VARCHAR 0
SQL_CONVERT_LONGVARBINARY 0
SQL_TXN_ISOLATION_OPTION SQL_TXN_SERIALIZABLE
SQL_ODBC_SQL_OPT_IEF a long pointer to "N"

fInfoType Returned Value
O2ODBC User Manual 121

SQLGETINFO Return ValuesB
122 O2ODBC User Manual

	MAIN MENU TO O2 DOCUMENTATION
	O2 ODBC User Manual
	Who should read this manual
	TABLE OF CONTENTS
	1 Introduction 11
	2 O2ODBC Installation 19
	3 O2 ODBC Overview 25
	4 O2 SQL 31
	5 O2 ODBC 67
	6 Programming an O2ODBC Server 83
	7 O2 ODBC Reference 89
	A Syntax for View Customization 117
	B SQLGETINFO Return Values 119

	1 Introduction
	1.1 System overview
	Figure 1.1: O2 System Architecture

	1.2 ODBC
	1.3 O2 and ODBC
	1.4 Manual Overview
	1.5 Background

	2 O2ODBC Installation
	2.1 Hardware and Software Requirements
	2.2 O2 ODBC Distribution Package
	2.3 Setting up the O2 ODBC Driver
	Installing the driver
	Declaring the o2 open-dispatcher
	Installing the tools

	2.4 Adding, Modifying and Deleting O2 ODBC Data Sources

	3 O2 ODBC Overview
	3.1 O2 ODBC Architecture
	Outline of the O2 ODBC driver activity
	Advantages of the O2 ODBC architecture

	3.2 O2 SQL
	3.3 O2 ODBC Server

	4 O2 SQL
	4.1 Schema Translation
	O2 Schema
	Relational Schema
	Example
	Class translation
	Figure 4.1: O2 schema document

	Primary Key Definition
	Figure 4.2: Relational schema document

	Attribute Translation
	Atomic and Class Attributes
	Tuple Attributes
	Collection Attributes
	Inherited Attributes
	Data Retrieval Methods
	Customized translation
	Figure 4.3: Configuration file for schema translation
	Figure 4.4: Relational schema french_document

	4.2 Query Translation
	Table creation command
	View table creation command
	Table deletion command
	View deletion command
	Index creation command
	Table modification command
	Table Types
	Insert commands
	Insertion from an associated named collection extent
	Insertion and foreign keys
	Insertion and computed extents
	Insertion with nested queries
	Delete commands
	Deletion from an associated named collection extent
	Deletion and foreign keys
	Deletion from a class table with an associated computed extent
	Update commands
	Update and foreign keys
	O2C procedures
	C++ procedures
	Linking C++ functions with the “sql” library
	Typing restrictions

	4.3 Development Tools
	Modifying existing views
	The SQL catalog
	SQL commands
	Transaction commands
	View inspection commands
	View management commands

	5 O2 ODBC
	5.1 Conformance Levels
	5.2 O2 Data Sources
	5.3 ODBC API Functions
	5.4 O2 ODBC Tools

	6 Programming an O2ODBC Server
	6.1 Defining the O2 ODBC Server main function
	6.2 Compiling your own O2 ODBC server
	Figure 4.2: Components of an O2ODBC application

	6.3 Running your own O2 ODBC server

	7 O2 ODBC Reference
	7.1 The o2_odbc Class
	banner
	begin
	end
	enroll
	enroll_path
	get_option
	init
	set...
	usage

	7.2 The O2 ODBC Commands
	o2odbc_dump_base
	o2odbc_server
	o2open_dispatcher
	o2sql_export
	o2sql_query

	A Syntax for View Customization
	B SQLGETINFO Return Values

