O, ODBC
User Manual

Release 5.0 - April 1998

Information in this document is subject to change without
notice and should not be construed as a commitment by
O, Technology.

The software described in this document is delivered under a
license or nondisclosure agreement.

The software can only be used or copied in accordance with the
terms of the agreement. It is against the law to copy this
software to magnetic tape, disk, or any other medium for any
purpose other than the purchaser’s own use.

Copyright 1992-1998 O, Technology.

All rights reserved. No part of this publication can be
reproduced, stored in a retrieval system or transmitted in any
form or by any means, electronic, mechanical, photocopy
without prior written permission of O Technology.

02, O2Engine API, O,C, O,DBAccess, OzEngine, O,Graph,
O2Kit, OoLook, O,Store, O>Tools, and OoWeb are registered
trademarks of O, Technology.

SQL and AIX are registered trademarks of International
Business Machines Corporation.

Sun, SunOS, and SOLARIS are registered trademarks of Sun
Microsystems, Inc.

X Window System is a registered trademark of the
Massachusetts Institute of Technology.

Unix is a registered trademark of Unix System Laboratories, Inc.
HPUX is a registered trademark of Hewlett-Packard Company.
BOSX is a registered trademark of Bull S.A.

IRIX is a registered trademark of Siemens Nixdorf, A.G.
NeXTStep is a registered trademark of the NeXT Computer, Inc.
Purify, Quantify are registered trademarks of Pure Software Inc.
Windows is a registered trademark of Microsoft Corporation.

All other company or product names quoted are trademarks or
registered trademarks of their respective trademark holders.

Who should read this manual

This manual presents O,Tools, a complete graphical programming
environment for the design and development of O, applications. It
describes the browsers and editors available, as well as how to
customize O,Tools screens.

Other documents available are outlined, click below.

See 02 Documentation set

TABLE OF CONTENTS

This manual is divided into the following chapters :
* 1 - Introduction

e 2 - 0,0DBC Installation

e 3 - 0-0DBC Overview

* 4 -0,SQL

* 5-0,0DBC

* 6 - Programming an O,ODBC Server
e 7 - 0,0DBC Reference

020DBC User Manual

Qﬁ TABLE OF CONTENTS

Introduction 11
1.1 SYSLEM OVEIVIEW ...ttt aee e e e e et 12
1.2 ODBC ... 14
1.3 02 and ODBC......uuiiiiiiiiiie et 15
1.4 ManUal OVEIVIEWuuueiriiieaaiee e eeee ettt a e e 16
1.5 BacCKgrOUNdcoooiiiiiiiiii et 17
0O20DBC Installation 19
2.1 Hardware and Software Requirementscooeeeeeeeeeeeennnnnns 20
2.2 02 ODBC Distribution Packageueuuvuiiiiiiieeeeieineeeiiiinenns 20
2.3 Setting up the O2 ODBC DIiVEI.....ccoiiiieiieiiiieiiiiiieee e 21
Installing the driver ... 22
Declaring the 02 open-dispatcher ..o, 22
INStalling the t00ISooiiiiiie e 22
2.4 Adding, Modifying and Deleting O2 ODBC Data Sources....23
02 ODBC Overview 25
3.1 O2 ODBC ArChiteCIUIeuvueiie e 26
Outline of the O2 ODBC driver aCtiVityccccceeeereririniniiienes 27
Advantages of the O2 ODBC architecture..........ccccccevvvvvvvnneinennn. 27
3.2 02 SOQL i ———————— 28
3.3 O2 ODBEC SEIVEuii i 29
02 SQL 31
4.1 Schema Translationccccceeoiiiiiiiiiii e 32
(@ 1S To] 1= 1 - LSRR 32
Relational Schema..........ccccooiviiiiiii e, 32

020DBC User Manual

TABLE OF CONTENTS

EXAMPIE ..o 33
Class tranSIatioN..........uveee i 33
Primary Key Definitioncoooiiiiiiiiiiiiieieee e 34
ALrIbULE TranSIatioNccovviiiieiee e 36
Atomic and Class AttHDULES..........eeiiiiiieeee e, 36
Tuple ATHDULES ... 37
Collection AHDULESeeiieiieeeeeeeee e 37
INNErited AtIIDULESeeiee e e 38
Data Retrieval MethOdS.........ouuiiieiiiiee e 38
Customized tranSIatioNueieee i 39
4.2 Query TranSlationooooiiiiiiiiiiiiiii e 42
Table creation COMMANGoviveiiiiiiee e 42
View table creation command............cccoeeevveiieiiiieceeeeeeeeee e, 44
Table deletion COmMmMAaNdoooveiieiiiiiieii e 45
View deletion command.........cooeeiiiniiieieii e 45
Index creation COMMANouuiiieiiiiee e e 45
Table modification command.............coooovieiiiiiiiiiii e 46
Table TYPES ..o 46
INSEIt COMMANDS.....uiieiiei e et e et e e e e e e e eaa e 48
Insertion from an associated named collection extent................. 48
Insertion and foreign KeYSooovviiiiiiiiiiciiee e 49
Insertion and computed eXIENEScovvvieiiiiiiirinir e 50
Insertion with Nested QUENES ..o 52
Delete COMMANAScovniieiie e e e e e 52
Deletion from an associated named collection extent................. 52
Deletion and foreign KeYS.........cccuvuvimiriiiiiiieieie e 52
Deletion from a class table with an associated computed extent 53
Update COMMANTSoeiiiiiiiiieee e 54
Update and foreign KeYSeueuiiieiiiiiiiiiiii e 54
O2C PrOCEAUIES ...ttt 59
CH+ PrOCEUUIES ...ttt 59
Linking C++ functions with the “sql” library..........cccccccoeinnnnn. 60
TYPING reStrCHONS ... 60
4.3 Development TOOIS........cooiiiiiiiiiei e 61
Modifying eXiStNG VIEWScccveveeeeieiiiiiieneseeeeeeeeeeeeeeeeaeennnnnnnns 61

0O20DBC User Manual 7

TABLE OF CONTENTS

The SQL CALAI0Geeiiiiiiiiieieeee et 62
SQL COMMANAS ...evieiiieeiie e ee e e e e e e e e e e e eeeeeeeenenes 63
Transaction COMMANAScccovviiiiieiiiere e e e e e e eenaenes 63
View iNnSPection COMMANAS.........uuiriiiiiiiirieie e 64
View management COMMAaNGS.........cccocouviiiiiiiiiiiiiiiiee e eeee e 65
02 ODBC 67
5.1 Conformance LEVEISouuuiiiiiiiiiiiiie e 68
5.2 O2 DAla SOUICESceieiieiieeeeieeii e ee e e et e e e eet e e e eeaera e eeeeees 68
5.3 ODBC API FUNCHONS ...ttt 70
5.4 O2 ODBC TOOIS ..ceeiiiiiiiiiiiiieee ettt e e e e 79
Programming an O20DBC Server 83
6.1 Defining the O2 ODBC Server main function........................ 84
6.2 Compiling your own O2 ODBC SErIVer.........cccueevvvvuninniaaneannn 85
6.3 Running your own O2 ODBC SEIVErceeeieiiieeeeeeeeeeeeeeeee. 87
02 ODBC Reference 89
7.1 The 02_0dbC ClaSsSccooiiiiiiiiiiiiiiei e 90
DANNET ... e 94
DEGIN . 95
=7 0 o PR 99
ENTOI L e 100
enroll_path ... 102
(o [=3 o] o] 1 o] o IO PP PP PP UPPPP PPN 103
] 104
1<) P OPPTRRRPI 105
(U572 1o [PPSR 106
7.2 The O2 ODBC CommaNndsccoeuveeiiuiimiiiiineeaneeee e eee e 107
020dbC_dUMP_DASE ...uuiieieeee e 108

020DBC User Manual

TABLE OF CONTENTS

(o)2deTo | o TogsT=] Y/ PSSR 109
020peN_dISPALCNETcceiiiiiii i 111
O2S0|_EXPON ettt 113
()20 | I [0 [] VPP PRPRPPPPPPRPN 115
Syntax for View Customization 117
SQLGETINFO Return Values 119
9

0O20DBC User Manual

TABLE OF CONTENTS

10

020DBC User Manual

Introduction
1

Congratulations! You are now a user of O,ODBC - the standard
interface for accessing data in an heterogeneous environment of both
relational and object database systems.

The O,0ODBC interface handles client application requests to a database
and returns the database server’s response.

This introductory chapter is divided as follows:

e System overview

* ODBC

e Manual Overview

O,0DBC UserManual 11

1 Introduction

1.1 System overview

he system architecture of O; is illustrated in Figure 1.1.

Development Tools

External
CEES

—
O, Dev. Tools gf‘f’ d%% /s
oQL
C C++ 0,C Java
O,Corba

Database Engine

0,DB
Access

O,Engine

O,Store Oz\Web

) il 1

Figure 1.1: Oy System Architecture

The O, system can be viewed as consisting of three components. The
Database Engine provides all the features of a Database system and an
object-oriented system. This engine is accessed with Development Tools,
such as various programming languages, O, development tools and any
standard development tool. Numerous External Interfaces are provided.
All encompassing, Oz is a versatile, portable, distributed,
high-performance dynamic object-oriented database system.

Database Engine:

e OsStore

* OzEngine

The database management system provides low level
facilities, through O,Store API, to access and manage a
database: disk volumes, files, records, indices and
transactions.

The object database engine provides direct control of
schemas, classes, objects and transactions, through
OzEngine API. It provides full text indexing and search
capabilities with O,Search and spatial indexing and
retrieval capabilities with OoSpatial. It includes a
Notification manager for informing other clients
connected to the same O» server that an event has
occurred, a Version manager for handling multiple
object versions and a Replication API for synchronizing
multiple copies of an O2 system.

12

O>,0ODBC User Manual

System overview :

Programming Languages:

O» objects may be created and managed using the following
programming languages, utilizing all the features available with O
(persistence, collection management, transaction management, OQL
queries, etc.)

e C O functions can be invoked by C programs.
e C++ ODMG compliant C++ binding.

e Java ODMG compliant Java binding.

* 0,C A powerful and elegant object-oriented fourth

generation language specialized for easy development
of object database applications.

e OQL ODMG standard, easy-to-use SQL-like object query
language with special features for dealing with com plex
O, objects and methods.

Oz Development Tools:

* OoGraph Create, modify and edit any type of object graph.

* OpLook Design and develop graphical user interfaces, provides
interactive manipulation of complex and multimedia
objects.

* OoKit Library of predefined classes and methods for faster

development of user applications.

* OsTools Complete graphical programming environment to
design and develop O, database applications.

Standard Development Tools:

All standard programming languages can be used with standard
environments (e.g. Visual C++, Sun Sparcworks).

External Interfaces:

e O»Corba Create an O2/ Orbix server to access an O database
with CORBA.

e OoDBAccess Connect Oy applications to relational databases on
remote hosts and invoke SQL statements.

* O,0DBC Connect remote ODBC client applications to O
databases.

O,Web Create an O, World Wide Web server to access an O, database

through the internet network.

0O,0DBC User Manual 13

Introduction

1.2 ODBC

ODBC (Open Database Connectivity) is a standard interface for
accessing data in an heterogeneous environment of relational and
non-relational database management systems. Many existing tools use
ODBC to access a database, e.g. Word, Excel, Delphi, etc.

An ODBC client application uses the ODBC API to request and/ or send
data to a database server. The ODBC driver translates client requests
and server answers into a format that the DBMS server and the ODBC
client can understand. The ODBC API defines a set of core functions,
that correspond to the functions in the X/ Open and SQL Access Group
Call Level Interface specification, together with two extended sets of
functionality. ODBC defines a standard SQL grammar, which drivers
translate to the native SQL grammars used by various DBMSs.

14

O>,0ODBC User Manual

02 and ODBC :

1.3

O, and ODBC

O, ODBC is an ODBC driver built on top of O. It allows existing ODBC
applications to run on top of an O, database and new ODBC
applications to be defined on top of O through the ODBC API. O»
ODBC works on a relational view of an O, base.

Starting from an existing O, base, the ODBC application can retrieve
information about the relational view derived for that base: tables,
columns, primary and foreign keys, etc.

The relational view derivation is performed by a special tool and can be
customized by the user through a configuration file. Many different
views can be defined for a given O, base. O, ODBC implements the
core ODBC API and some Level 1 and Level 2 extensions (e.g. retrieve
catalog and parameter information). In addition, it supports the core
SQL grammar and part of the extended grammar level (e.g. procedure
calls and long data).

SQL queries (SELECT-FROM-WHEREormulated on the relational view,
and sent through O, ODBC are translated into the corresponding OQL
queries. Data update SQL commands (INSERT-UPDATE-DELETH are
interpreted by the O, ODBC driver, which performs updates on the
corresponding O, data through the O, API interface.

SQL catalog commands (CREATE TABLE for instance) are also
interpreted by the O, ODBC driver, which updates the O, database
schema accordingly. Tables and views can be therefore created from
scratch rather than being derived from existing O, classes. The two
kinds of tables (system-derived and application-defined) can be
combined in an ODBC application.

0O,0DBC User Manual 15

Introduction

1.4

Manual Overview

This manual is divided into the following chapters:

Chapter 1

Introduces O> ODBC.

Chapter 2

Describes how to install O ODBC.

Chapter 3

Gives an overview of O, ODBC.

Chapter 4

Describes how O, schemas and O, data are translated into equivalent
SQL entities.

Chapter 5

Describes how to use the O, ODBC driver, its features and limitations.

Chapter 6

Show how programmers can use the 02_0Odbc class to build their own
O, ODBC servers.

Chapter 7

A reference guide for OoODBC.

Two appendixes complete this manual:

Appendix A

Gives the complete syntax for writing configuration files used for view
customizing by the 02sql_export tool.

Appendix B

Gives the values returned by the SQLGetinfo ODBC API function for all
possible finfoType input argument values.

16

O>,0ODBC User Manual

Background :

1.5 Background

We asume the reader is familiar with ODBC and O. The following
references provide essential information:

* ODBC SDK 2.1 Programmer’s Reference, Microsoft Development
Library.

* O, System version 5.x Admistration Manuals, O2Technology.

* Understanding the new SQL: a complete guide, J. Melton and A. R.
Simon, Morgan Kaufamann, 1993.

0O,0DBC User Manual

17

Introduction

18

O>,0ODBC User Manual

y O,0ODBC Installation

This chapter addresses the installation of an O, ODBC driver and
details the contents of the O, ODBC distribution package.

The reader should be familiar with the ODBC environment and related
concepts.

O,0DBC UserManual 19

O20DBC Installation

2.1

Hardware and Software Requirements

The O, ODBC driver requires the following hardware:
IBM-com patible PC

8 MB RAM required

Hard Disk Space: 1.5 MB for the installation.

The O, ODBC driver requires the following software:

O, DBMS
In order to access datain an O, database with the O, ODBC driver, you
must have the O, DBMS version 5.x. For information on software and

hardware requirements for the O, DBMS version 5.x, refer to the O,
System Administration Manuals.

Microsoft Windows 95 or Microsoft Windows NT

Network software
A network is required to connect the platforms on which the O, ODBC

client and O, ODBC server reside. For information on the software and
hardware required by your network, see its documentation.

O, ODBC Distribution Package

The O, ODBC distribution package contains the following:

The Dynamic Link Libraries (DLL) lib o2dri.dll and lib o2com.dll
The setup.exe program.

The o2open_dispatcher program.

The 02odbc_dump_base program.

The o2odbc_server program.

O>,0ODBC User Manual

Setting up the O2 ODBC Driver

2.3

The o2sql_export program.
The 02sql_query program.
The 02_0Odbc.hxx include files.

The libsql.so and libo2odbc_svr.so libraries.

These libraries are used by the different O, ODBC related tools and are
necessary to build a user specific O, ODBC server.

Setting up the O , ODBC Driver

The installation procedure described below assumes that you have
dumped the contents of the O, ODBC distribution package to the disk
of the Windows 95 or Windows NT station where the driver is to be
installed. The structure of the O, ODBC distribution package is the
following:.

o02odbc
include
02_0Odbc.hxx
install
o2driver
libo2com.dll
libo2dri.dll
odbc32
setup.exe
odbcad32.exe

lib
libsql.so
libo2odbc_svr.so

bin

o2open_dispatcher
o2odbc_dump_base
o2odbc_server
02sql_export
02sql_query
doc
o2odbc_manual.pdf

0O,0DBC User Manual 21

O20DBC Installation

Installing the driver

Go to the sub-directory o2odbc/install/odbc32 and run the program
setup.exe . This program will prompt you for confirmation and then
install the O, ODBC driver by copying all the ODBC components needed
torun thedriver in the system directories.

At the end of the installation process, the setup program prompts you to
declare new data sources on installed drivers. You can declare O, data
sources at this point or, if you prefer, you will be able to manage your
data sources using the ODBC administrator program odbcad32.exe
located in the same directory.

Declaring the 02 open-dispatcher

The declaration of the o2open_dispatcher is a two steps process:

Declare in the O20PEN_DISPATCHERariable the name of the machine on
which the dispatcher is running.

On Windows NT, open the control panel program, choose the system
icon and select the “environment ” pane. You can then add the new
variable.

On Windows 95, declare the variable in your autoexec.bat file by
adding the following line: set O20PEN_DISPATCHER=<machine name> .

Declare in the services file the port on which the dispatcher is reachable.

On Windows NT, edit the file <WINDIR>/system32/drivers/etc/
services and add the following line: o2opendispatcher <port
number>/tcp

On Windows 95, edit the file <WINDIR>/services = and add the following
line: o2opendispatcher <port number>/tcp

Installing the tools

Once the driver and dispatcher have been declared on the client side,
the O, ODBC tools must be installed on the server side, i.e. on the
machine where the O, database system is installed. Assuming the
environment variable O2HOMHE enotes the O, installation directory, the
following completes the installation of O, ODBC:

22

O>,0ODBC User Manual

Adding, Modifying and Deleting O2 ODBC Data

2.4

cp o2odbc/include/* $O02HOME/include;
cp o2odbc/bin/* $02HOME/<platform>/bin;

cp o2odbc/lib/* $O2HOME/<platform>/lib;

Adding, Modifying and Deleting O , ODBC
Data Sources

On theclient side, an O data source is added, modified and deleted
using the standard ODBC Administrator tool. In the Data Sources
dialog box of this tool, a new data source can be added by clicking on
the Add button. Assuming the O, ODBC driver has been already
installed, it can be selected from the Installed ODBC Drivers list that is
displayed in the Add Data Source dialog box. An O, ODBC Setup dialog
box is displayed to allow the option values to be set and the data source
definition to be completed on the client side.

Modification and deletion of O» data sources are carried out in an
analogous way, by following the appropriate options from the Data
Sources dialog box of the ODBC Administrator tool.

On the O, ODBC server side, a data source corresponds to an O, base
on which a view schema generated with the 02sqgl_export tool from the
schema of the base has been generated. For more details on data
sources, see Section 5.2.

0O,0DBC User Manual 23

O20DBC Installation

24

O>,0ODBC User Manual

3 O, ODBC Overview

This chapter is an introduction to the main O, ODBC concepts. It gives
an overview of the driver architecture and describes its main
components.

This chapter provides an overview of the O, ODBC driver architecture
and the way it works.

We assume the reader is familiar with the ODBC environment and
related concepts and with Oy general architecture and related
concepts.

O,0DBC UserManual 25

3 02 ODBC Overview

3.1 O, ODBC Architecture

The architecture of the O, ODBC product is depicted in the Figure
below:

“ Client NT Client Windows 95

—
query
SQL ¢ o2open ? query
dispatcher result
server server
O, ODBC ¢ O, ODBC
server
/ 0, ODBC
server O, server O ,

We identify the following main elements in this architecture:

e an Oy server

This is the standard o2server program.

e an O, ODBC server

This is the 02odbc_server program which is connected to an O»
server.

e an Oj OpenDispatcher dispatcher

This is the standard o2open_dispatcher program.

26 O>,0ODBC User Manual

O2 ODBC Architecture : Outline of the O2 ODBC

Outline of the O , ODBC driver activity

An O, ODBC driver works in the following way:

1.
2.

An ODBC client requests a connection to an O, ODBC data source.

The O ODBC client library connects (through SQLConnect or SQLD-
riverConnect ODBC API functions) to an OoOpenAccess dispatcher
running on the local area network.

. The O2 OpenAccess dispatcher tells the ODBC client which O, ODBC

server to connect to.

. The ODBC client connects to the appropriate O, ODBC server.
. Once the connection has been established, the ODBC client will use

the ODBC API appropriate functions (e.g. SQLExecute) to access
data in the data source to which it is connected.

. The O, ODBC server processes the client requests. It is connected to

an O server and performs query translation and execution.

. The O, ODBC server returns dataquery result data to the client on

demand (e.g. SQLBind, SQLFetch , SQLGetData).

Advantages of the O , ODBC architecture

The architecture of the O, ODBC driver provides numerous features
that enhance the applications performance:

* Multi-threading

O, ODBC allows an application to use multiple threads in order to
concurrently perform different treatments. The module provides
some synchronization functions that allow client application develop-
ers to use multiple threads in the client part while protecting the
application from forbidden resources access violation.

* Load-balancing

The dispatcher module is an independent module used to route con-
nections from an ODBC client to an ODBC server and to preserve an
efficient load-balancing (static and dynamic load-balancing) among
the network. Its role is to manage a pool of ODBC servers available
throughout the network to answer clients requests.

* Flexible deployment

O, ODBC allows to distribute the application among multiple
machine if necessary, thus offering an easy way to support scalabil-
ity. Multiple ODBC servers can be run on different machines, the
user load being distributed among these machines according to crite-
ria like current load, machine characteristics, etc. This location-inde-
pendent model makes it easy to change deployment schemes as the

0O,0DBC User Manual 27

02 ODBC Overview

3.2

application grows. As demand grows, other O, ODBC servers can be
added on other machines, and the demand can be distributed among
those servers without any code changes.

In the remaining of this chapter, we give an overview of the two main

components of the O, ODBC driver architecture, namely the O2 SQL
component and the O, ODBC server.

0, SQL

We denote by Os SQL the module of the O, ODBC architecture
implementing the schema and query translation capabilities of the
driver. This module is basically composed of the O, SQL library
libsqgl.so together with two development tools 02sql_export and
02sql_query that can be used independently of the O, ODBC driver.

The O2 SQL library isused by the O, ODBC driver server component. It
implements the schema and query translation services necessary to
allow O, data to be accessed through SQL. O SQL is built on top of
OQL and the Oz Engine.

The 02sql_export tool is used to derive relational views from O»
schemas. Such a view must be derived prior to any access to Oz with
ODBC. The activation of a relational view on an O»> base allows such
base to be seen as a relational database. Objects stored in Oy are
perceived as tuples in relational tables (an object can spawn more than
onetuplein more than one table). It should be noted that such tables
exist only virtually in the virtual database resulting from a view
activation on an Oy base.

The o2sql_query tool is an interactive shell allowing SQL commands to
be executed on a virtual database. This can be a useful tool for quickly

inspecting view schemas and databases and tunning SQL applications

running on Oy .

Given the separation between the O, SQL and the O, ODBC driver
implementation, it is possible to see and query O, data as relational
data through SQL without using an ODBC interface. An API function
02_sgl , analogous to the standard Oz API function 02_oql can be
used to execute SQL queries from a given Oz Engine API program.

O, SQL is detailed in Chapter 4.

28

O>,0ODBC User Manual

O2 ODBC Server : Advantages of the O2 ODBC

3.3

O, ODBC Server

The O, ODBC server is built on top of O SQL.

The server processes client requests. These requests are issued through
the ODBC API. SQL queries sent by a client to be executed on a O»
data source are translated by the server into an equivalent OQL query
and executed on the O2 base to which the client is connected.

A server can handle requests of different clients working on different
data sources. Before processing the request of a given client, the server
activates the client’s data source, i.e. it activates the appropriate view
on the O, base to which the client is connected.

A server uses the query translation services implemented in the O, SQL
library. It performs, in addition, all the ODBC specific processing (data
conversions, cursor management, catalog data retrieval, etc) necessary
to respond to ODBC clients requests.

The O, ODBC server is detailed in Chapter 5.

0O,0DBC User Manual 29

02 ODBC Overview

30

O>,0ODBC User Manual

4 0, SQL

The O, SQL library and related tools are defined as a separate product
and used by the O, ODBC server.

O, SQL provides two main services for applications wanting to access
O, databases through SQL: a schema and a query translator.

This chapter presents how to define sophisticated SQL views of O, data
instead of using the default view derivation rules, so as to adapt the
relational structure to the needs of a particular application.

To customize the way a relational view of an Oy schema is derived,
Section 4.1 and, in particular, Section “View customization” provide
useful information.

To formulate complex queries and updates operations on O, data
through the SQL interface, Section 4.2 gives some hints on how to
perform and optimize such operations. In particular, Section "Schema
Update Commands" should be read by those wanting to populate an O
schema through SQL (with table creation commands), whereas Section
"Data Update Commands" provides useful information for those
wanting to create and update O, data through SQL.

All users wishing to access O, data through SQL should read Section
4.3.

We assume the reader is familiar with the O> and relational data
models, as well as with SQL related concepts in general.

O,0DBC UserManual 31

02 SQL

4.1

41.1

Schema Translation

An object model captures semantics of application domains in a more
elaborate way and it promotes adherence to normal forms. Relational
schemas derived from a richer object model tend to be in third normal
form. The database designer can thus benefits from the expressiveness
and extensibility, among others, of an object model and still implements
such a model in terms of well normalized relational tables.

The structure of data stored in an O base is defined in the schema of
that base. The schema contains class and type definitions, as well as
data entry points (names that play the role of roots of persistence).

As SQL queries can beformulated on relational data only, it is necessary
to provide a relational view of O, data to be able to query such data
with SQL.

A relational view schema is derived from an O> schema with the
02sql_export tool. We say that the Oz schema is exported to SQL.
When a view is derived, its definition is kept by the O, system in an
internal structure called the SQL catalog (see “View creation tool
02sql_export” on page 61). Many different view schemas can be derived
for a given O, schema. All views derived for a given O schema can be
activated on every base instance of that schema.

SQL View Schema

We recall below the main features of the O> and relational schemas,
before considering the translation of an instance of the former into one
of the latter.

O, Schema

An Oy schema is composed of a set of class definitions. A class can
inherit from a number of classes. To each class a type is associated.
Valid type constructors include set, list and tuple constructors, that can
be applied recursively to define arbitrarily complex types from class
types (each class defines a type) and atomic types (integer, real, char,
string, boolean). Methods can be defined in a class to be applied on its
instances.

Relational Schema

A relational schema is composed of a set of table definitions. Each table
is composed of a set of columns, each of a given atomic type. A subset of
the columns of a table can be declared as a primary key serving to

32

O>,0ODBC User Manual

Schema Translation : Example

uniquely identify rows in the table. Foreign keys can point to primary
keys, allowing references to be established among rows in tables.

Since data are not stored on therelational database, performance is not
an issue and we do not pay attention to table fragmentation (vertical
partitioning). Nevertheless, we try to reduce the number of collection
tables in order to simplify query formulation. In that sense, we decided
to unnest tuple attributes instead of generating collection tables
corresponding to weak entities in the relational schema.

Example

Let us consider an example of schema translation before considering
the different aspects of the schema translation process in turn.

The O, schema document given in Figure 4.1 models information about
articles, their authors and respective affiliations. The relational schema
obtained from the O, schema in Figure 4.1 is given in Figure 4.2.

Each class is mapped to an homonymous table. For table Article
attribute titte is a primary key and date_title is a foreign key
pointing to table Date . Attributes of the nested tuple attribute address
in class Author areunnested in the corresponding table. Set and list
attributes are mapped to the so called collection tables

Article_authors and Article_sections . Such tables associate to
each instance of Article the corresponding set of authors and list of
sections respectively. For the list attribute, an additional attribute pos
represents the position of elements in the list.

An SQL client knowing the relational schema above can formulate
queries on it. Such queries are translated into OQL queries that are
evaluated on an O, base instance of the original schema.

Class translation

Each Oy classis mapped into a so called class table. A column title of
default type LONGVARCHAR defined by default in the corresponding
table and declared as a primary key, unless a different logical key is
declared for the class in the configuration file.

A class must have an associated homonymous named set defined in the
schema and modeling its extent in the O, base. If, however, such a
named set is not explicitly defined in the O, schema, a virtual extent
(i.e. an OQL query giving a set of object of the class as a result) must be
provided in a configuration file used to derive the view schema, as it will
be described later.

0O,0DBC User Manual 33

4 02 SQL

schema document;

class Article type tuple(
title:string,
authors:set(Author),
sections:list(Section),
date:Date)

end;

class Author type tuple(
name:string,
address:tuple(institute:Institute,email:string))
end;

class Institute type tuple(
name:string,
country:string)

end;

class Section type tuple(
title:string,
contents:string)

end;

class Date type tuple(
day:integer,
month:integer,
year:integer)

end;

name Articles:set(Article);
Figure 4.1: O, schema document

Primary Key Definition

When mapping object structures to relational tuples, we must define
primary keys so as to be able to uniquely identify objects when they are
queried through SQL in their tuple form. In O» , object identifiers are
not available to the user. They are used internally by the system at the
object store level and are not externalized.

In Oy , each class defines a method title , inherited from class Object ,
which by default gives the name of the class of the object. This method
can beredefined in a subclass as a method or an attribute that gives a
different value for each object of the class, therefore playing the role of
logical identifier of the object.

34

O>,0ODBC User Manual

Schema Translation : Primary Key Definition

CREATE SCHEMA document

CREATE TABLE Article(tite LONGVARCHAR
date_title LONGVARCHAR PRIMARY KEY (title)
FOREIGN KEY (date_title) REFERENCES Date)

CREATE TABLE Author(titte LONGVARCHAR name LONGVARCHAR
address_institute_title LONGVARCHAR
address_email LONGVARCHAR
PRIMARY KEY (title)
FOREIGN KEY (address_institute_title)
REFERENCES Institute)

CREATE TABLE Date(
title LONGVARCHAR day INTEGER month INTEGER
year INTEGER PRIMARY KEY (title))

CREATE TABLE Section(
titte LONGVARCHAR title LONGVARCHAR ~
contents LONGVARCHAR PRIMARY KEY (title))

CREATE TABLE Institute(
title LONGVARCHAR name LONGVARCHAR
country LONGVARCHAR PRIMARY KEY (title))

CREATE TABLE Article_authors(
Article_title LONGVARCHAR
authors_title LONGVARCHAR
FOREIGN KEY (Article_title)
REFERENCES Atrticle
FOREIGN KEY (authors_title)
REFERENCES Author)

CREATE TABLE Article_sections(
Article_title LONGVARCHAR
pos INTEGER
sections_title LONGVARCHAR
PRIMARY KEY (Article_title, pos)
FOREIGN KEY (Article_title)
REFERENCES Article
FOREIGN KEY (sections_title)
REFERENCES Section)

Figure 4.2: Relational schema document

The title method or attribute is thus translated by default as a
primary key in the corresponding table but a different attribute or
method can be declared to be used as a key in the configuration file.

0O,0DBC User Manual 35

02 SQL

Remark 1: It isup to the object schema designer to guarantee that the
value returned by such a method or attribute remains constant, at least
during an SQL section on the object database. Such identifier should be
completely independent on changes to the object value and on physical
location. In practice, werequire the value of a logical identifier to depend
on constant attributes, i.e. attributes that are not likely to change after
object creation, and, in our framework, attributes that are not likely to
be updated by an SQL statement.

Remark 2: The choice between an attribute or a method key is an
important one, as SQL queries matching rows based on their primary
key columns will be mapped into OQL queries retrieving objects based
on the corresponding key attributes or methods. If attributes are used
instead of methods to identify objects in O, , then indexes on such
attributes can be defined to optimize the query evaluation.

Remark 3: The method title , or any other method declared as a
logical key in the configuration file, can return the external identifier of
the object on which it is applied. This identifier can be provided by O
Engine on user’s request.

Attribute Translation

Attributes in a tuple-typed class represent relationship among objects
and values. These can be one-to-one, one-to-many or many-to-many
relationships. The simpler case, that of atomic and object attributes,
correspond to one-to-one relationships and are directly translated as
columns in the corresponding derived table. We consider them first
before looking at complex attributes (tuple and collection attributes).

Atomic and Class Attributes

Each attribute having an atomic or class typein the O, class becomes a
column in the corresponding table with a type given by the type
mapping defined below.

OQL typet Tsou(t)

Integer INTEGER

real REAL

char CHARACTER
string LONGVARCHAR
bytes LONGVARBINARY
boolean CHARACTER
class | ONGVARCHAR

The column takes its name from the attribute name, unless a renaming
is defined in the configuration file.

36

O>,0ODBC User Manual

Schema Translation : Tuple Attributes

An attribute pointing to another object (attribute of class type) becomes
a foreign key referencing the table corresponding to the class of the
pointed object.

For attributes having a complex type we consider two possibilities:
collection and tuple attributes.

Tuple Attributes

Tuple types are unnested and have their attributes incorporated to the
table corresponding to the type structure where the tuple type occurs.
Tuple attributes are renamed before being merged, i.e. the outer tuple
attribute name is prefixed to each attribute name of the nested tuple to
avoid naming conflicts. Such attributes can also be renamed by the
user through the configuration file.

Merging attribute tuples with their pointing objects leads to relational
gueries that are easier to formulate. In addition, tuple attributes are
values and, opposite to object attributes, cannot be shared, and placing
them in an external auxiliary table would be pointless in that sense.

Collection Attributes

A collection type attribute is translated into a so-called collection table.
The type of the elements of the collection are translated recursively as
columns in the collection table (or other collection tables, for collections
nested in collections).

A set attribute models a one-to-many or a many-to-many relationship. A
one-to-many relationship can be merged with a participating object (all
objects in the set can point to the composite object). Although the
choice on how to map collection attributes could have been let to the
user, we decided to model all such aggregations as distinct tables, for
expediency of implementation of the query translator.

The collection table corresponding to a set attribute is named according
to the name of the class where the attribute is defined and the name of
the attribute itself, unless it is explicitly renamed in the configuration
file. A column class_name + _titleis defined to hold the logical identifier
of the composite object (the object holding the set). The other columns
of the collection table are derived based on the type of elements of the
set. For a set s of atomic values, a column s with the corresponding
element typeis defined to hold elements of the set. For a set s of objects,
an attribute s_title is defined to hold the logical identifiers of
elements. For a set s of tuples, each attribute a; of the tuple is treated
recursively and merged to the collection table as column s_aij, as for
ordinary tuple attributes. For nested collections, an extra collection
table is derived recursively. Default key attribute names for the key
columns generated in the collection tables can be renamed through the
configuration file as usual.

0O,0DBC User Manual 37

02 SQL

4.1.2

List attributes are also mapped to collection tables, as for set attributes,
but an additional column pos of type INTEGER is defined to hold the
position of each element in the list.

Remark: In the ODMG C++ binding, collections are imported as O
classes having a collection type. In order to allow C++ applications to
use the O, / SQL binding, such classes will be treated by the query
translator as special classes to allow a direct access to the encapsulated
collections. For instance, a class K which encapsulates an O list will be
mapped into two tables: TABLE K and TABLE K_List. TABLE K holds the
object itself, while TABLE K_List holds its value.

Inherited Attributes

What about inheritance? We consider two alternatives: (1) merging
inherited attributes with attributes defined locally in the subclass to
derive the corresponding relation; (2) deriving a relation with only locally
defined attributes plus a foreign key pointing to the corresponding tuple
in the table derived for each superclass. Again, our choice is dictated by
the specificities of the problem in hand: since derived tables are not (at
least in principle) used to store data, but exist only virtually, we decided
to collapse inherited attributes in the table derived from a given
subclass. The resulting tables are not normalized but are far easier to

query.

Data Retrieval Methods

In addition to the columns derived to hold the values of attributes
defined in the tuple type of a class, columns can be derived to hold
values returned by data retrieval methods. The choice of which such
methods to import is left to the user, as they must be explicitly declared
in the configuration file.

As far as visibility is concerned, only read and public attributes (and
methods) should be derived as columns in the corresponding table, in
order to preserve data encapsulation and rules out unauthorized access
through the relational interface.

View Customization

Therelational schema in Figure 4.2 results from a so-called default
mode translation.

In the default mode, tables and columns are named from their
corresponding class and attribute names and the existence of a default
logical title method or attribute is assumed for every class. In

38

O>,0ODBC User Manual

Schema Translation : Customized translation

addition, for query translation purposes, for each class C, the system
assumes the existence of an homonymous named set C modelling the
extent of the class.

Customized translation

In a customized mode, the schema translator takes into account some
user-supplied information used for the generation of the view schema
(and consequently for the translation of SQL queries into OQL).

View customization includes the following possibilities:

hiding of classes

By default, every class defined in the O, schema is derived as a table
in the view schema, unless it is hidden in the configuration file used
to derive the view.

hiding of attributes

By default, every attribute of a tuple typed class is derived as column
(or possibly as a collection table if it is a collection attribute) in the
view schema, unless it is hidden in the configuration file.

renaming of classes

If a class renaming is not specified in the configuration file, a table
takes the same name as the class from which it is derived.

renaming of columns
If an attribute renaming is not specified in the configuration file, a
column takes the same name as the attribute from which it is
derived.

virtual class extents

If a named set is not explicitly defined in the O, schema, a virtual
extent (i.e. an OQL query giving a set of object of the class as a result)
can be provided in the configuration file. This is not mandatory,
unless the tableis to be used in the FROMlause of a given SQL

query.

export of data retrieval methods as columns

Data retrieval methods are methods without input parameter and
with an output parameter. Such methods can be translated into
table columns as if they were attributes.

definition of alternative logical keys

0O,0DBC User Manual 39

02 SQL

By default, the title method or attribute is exported as a primary
key, but an alternative attribute and/ or method can be declared as a
logical key for a given class in the configuration file.

e data update authorization

The configuration file can also be used to authorize data updates on
tables generated from O, classes. By default, such updates (i.e.
insertion, updates and deletions) are not authorized.

stored procedures

O C and C++ functions can be declared as stored procedures in the
configuration file to be called through the SQL interface.

redefinition of collection tables

The default naming rules used in the derivation of collection tables
from collection attributes can be redefined to allow different table
and column names to be used.

A view schema can be customized through a configuration file provided
to the schema export tool at view creation or update. Appendix A gives
the complete syntax used to specify configuration files.

Remark: Hiding and renaming of classes and attributes together with
the selective importing of methods allow the entire object structure to be
customized to meet the needs of a given SQL application. Many different
views of the same schema can be defined, allowing different virtual
databases to be derived from a given O, base.

Example 4.2.1 The configuration file shown in Figure 4.3 is specified
using the syntax given in Appendix A.

Attributes that are not hidden nor redefined are exported using the
default translation rules. Methods declared in a method clause are
exported as virtual attributes (e.g. method year in class Article is
exported as annee in the corresponding table). The name of exported
methods is redefined through the redefine clause. The resulting view
schema is given in Figure 4.4 below.

40

O>,0ODBC User Manual

Schema Translation : Customized translation

view schema french_document from document;
hide Section, Date, Institute;
stored procedure articles_from_author;

export class Article
hide
sections, date;
redefine
title as titre,
year as annee;
method
year;
extent
"Articles";
with insert,update,delete;
end;

export class Author as Auteur
hide address.institute;
redefine
name as nom,
address_email as adresse_eletronique;
extent
"select x
from Articles a,
a->authors x";
end;

export collection Article.authors as Auteurs
redefine
authors_title as auteur,
Article.Article_title as article;
end;

Figure 4.3: Configuration file for schema translation

0O,0DBC User Manual

41

4 02 SQL

CREATE SCHEMA french_document

CREATE TABLE Atrticle(
titre LONGVARCHAR
annee INTEGER
PRIMARY KEY (title))

CREATE TABLE Auteur(
titte LONGVARCHAR nom LONGVARCHAR
adresse_eletronigue LONGVARCHAR
PRIMARY KEY (title))

CREATE TABLE Auteurs(
article LONGVARCHAR auteur LONGVARCHAR

FOREIGN KEY (article) REFERENCES Atrticle
FOREIGN KEY (auteur) REFERENCES Auteur)

Figure 4.4: Relational schema french_document

4.2 Query Translation

4.2.1 Schema Update Commands

In this section, we consider the translation of schema update SQL
commands into O, schema update commands.

Schema update SQL commands are commands for table, view and index
creation, deletion and modification. The translation of such commands
corresponds to an update of the underlying O, schema.

Table creation command

Currently, a simple translation mechanism is used for generating, for
each newly created table, a corresponding class in the O, schema with
the same attributes and using a default type mapping. Simple reference
attributes, i.e. one-to-one relationships, are generated in the the O,
class by taking primary and foreign key definitions into account, as the
information provided in the table creation command is not enough for
allowing the system to infer one-to-many or many-to-many
relationships.

42

O>,0ODBC User Manual

Query Translation : Table creation command

Example 4.3.1 Let us consider the creation of tables Proceedings
Proceedings_articles

in schema document :

CREATE TABLE Proceedings(

title LONGVARCHAR,
editor LONGVARCHAR,
date LONGVARCHAR
PRIMARY KEY (title),
FOREIGN KEY (date)
REFERENCES Date)

CREATE TABLE Proceedings_articles(

proceedings LONGVARCHAR,

pos INTEGER NOT NULL,

article LONGVARCHAR

PRIMARY KEY (proceedings, pos),
FOREIGN KEY (proceedings
REFERENCES Proceedings,
FOREIGN KEY (article)
REFERENCES Atrticle)

The two table creation commands above are translated into the
following class and name creation commands in the O, schema:

class SQL_Proceedings type tuple(
title:string,
editor:string,
date:Date)

end;

class SQL_Proceedings_articles type tuple(
proceedings:SQL_Proceedings,
pos:integer,
article:Article);

name SQL_Proceedings:unique set(SQL_Proceedings);

name SQL_Proceedings_articles:set(

SQL_Proceedings_articles);

The name of the O, class generated is defined as follows: the prefix

and

SQL_is added to the table name. Also, for each created table, a name
(the same identifier as for the class name is used) is created to model
thetable extent. Each time an insertion is performed in such atable, an

object of the corresponding class is created and inserted into the

corresponding named collection.

0O,0DBC User Manual

43

02 SQL

Definitions prefixed with SQL_in an Oz schema should not be modified
through Oz but only through the SQL interface. Changes to class
SQL_Proceedings , for instance, should be performed only indirectly
through the ALTER TABLE command. Modifications to such classes and
names can be nevertheless performed (i.e. the O, system does not
prevent them) at the risk of making the SQL catalog inconsistent.

References to a class (in a hide or export clause) whose name is prefixed
by SQL_ are not taken into account in the configuration file. In other
words, the configuration file cannot be used to customize classes
generated via a CREATE TABLEcommand, as these classes are not
exported in the same way as O, classes are exported.

Constraints associated to column definitions (e.g. NOT NULLX DEFAULT,
CHECKetc) are automatically checked at insertions and updates.

Remark: NULLvalues are not supported. All class and collection tables
have the NOT NULL constraint added systematically to all columns. In
addition, the null predicate (IS NULL) always evaluates to false
(respectively, IS NOT NULL always evaluates to true).

View table creation command

SQL view table definitions are recorded in the SQL catalog. At query
translation time references to a view table are replaced by the query
used in the view table definition.

Example 4.3.2 Let us consider the following view table defined in
schema document :

CREATE VIEW Recent_Articles(
titte LONGVARCHAR, year INTEGER) AS

SELECT art.title, dat.year
FROM Atrticle art
Date dat
WHERE art.date_title = dat.title
AND dat.year > 90

Now let us consider the following query on this view and its
corresponding OQL query:

O>,0ODBC User Manual

Query Translation : Table deletion command

SQL query: OQL query:

SELECT art.title select struct(title:art.title)
FROM Recent_Article art from

WHERE art.year = 95 (select tuple(title:art.title,

year:a.date.year)
from Articles art
where art.date.year > 90) art
where art.year = 95

An optimized version of the OQL query above that eliminates the nested
selection will be generated by the OQL query interpreter at runtime.

Table deletion command

When a table is dropped through the DROP TABLEcommand, the
corresponding class and name are both deleted from the O, schema.

A table cannot be dropped if there are indexes defined on it or if other
tables reference it through a foreign key.

View deletion command

When a view table is dropped through the DROP VIEWcommand, the
corresponding view definition is removed from the SQL catalog.

Remark: The options CASCADEand RESTRICT in the DROP TABLEand
DROP VIEWcommands are not supported.

Index creation command

An SQL index is translated into an equivalent O, index or set of
indexes.

Example 4.3.3 Let us consider the following index created on table
Proceedings defined above:

CREATE INDEX i1 ON Proceedings(title);

The index creation command above is translated into the following O»
index creation command in the O, base:

0O,0DBC User Manual 45

02 SQL

index SQL_Proceedings on title;

Table modification command

The ALTER TABLE command can be used to add columns to an existing
table.

Example 4.3.4 Let us consider the following modification of table
Proceedings defined above:

ALTER TABLE Proceedings ADD code INTEGER;

The command above is translated into the following O» class update
command in the O» schema:

attribute code:integer in class SQL_Proceedings;

Table Types

We distinguish four different types of tables in a view schema:

User Tables
These are defined through the SQL CREATE TABLEcommand.

View Tables
These are defined through the SQL CREATE VIEW command.

Class Tables

These are generated by the export of an existing O, class through
the 02sql_export tool.

Collection Tables

These are generated by the export of an O, collection attribute
through the o2sql_export tool.

We assume that user tables belong to the SQL application and therefore
all operations on them are allowed (deletion, index creation,
modification), whereas class tables belong to O, , so that modifications
to them are allowed only through the configuration file. The complete
list of restrictions associated to each type of table is given below.

SQL command DROP TABLE

Only user and view tables can be dropped via the DROP TABLE com-
mand. Class and collection tables can be dropped indirectly via the
hide command in the configuration file.

46

O>,0ODBC User Manual

Query Translation : Table Types

e SQL command ALTER TABLE

Only user tables can be modified with the ALTER TABLE command.
Although the syntax defined for the core level ODBC SQL does not
allow constraints to be associated to a column added via ALTER
TABLE, the constraints NOT NULL and DEFAULTare automatically
associated to newly added columns. The default value is the corre-
sponding O, default value for the attribute generated for the col-
umn. For instance, numeric columns have a zero default value,
whereas character columns have the empty string as default value.

Class and collection tables can be modified indirectly by modyfying
the corresponding O, data typesin the O, schema. For instance,
adding an attribute to an exported O, class entails the addition of a
new column to the corresponding table, unless the new attribute is
hidden in the configuration file and one reruns 02sqgl_export to
update the view scheme definition.

* SQL command CREATE INDEXand DROP INDEX

Indexes can be created on user tables only. This is translated as the
creation of an index on the corresponding system generated named
collection. Indexes on collections used as class table extents
(declared in the configuration file through the clause extent) can be
defined directly in O2 . Only indexes created through the SQL com-
mand CREATE INDEXcan be dropped via DROP INDEX

4.2.2 Data Update Commands

There are three types of update operations: row insertion, row deletion
and row modification. With SQL, an update operation is issued on a
table and is performed on a set of tuples (rows) which are selected
through a query.

OQL does not dispose of a set of update commands analogous to those
of SQL. In O, , updates to objects can be performed through application
programs or by calling methods or functions from an OQL query.

In the current version, updates to user tables are performed by the SQL
enginein a generic way, so that no extra O, C functions or methods
need to be defined. User tables can thus be freely updated.

Class tables can be updated only if an update clause is declared for the
corresponding class in the configuration file and a number of conditions
hold. For instance, if a column in a tableis derived from a method, then
this column cannot be updated. Also, the ability to insert or remove
rows in/ from a table will depend on the nature of the corresponding
table extent declared in the configuration file. If it is a named collection,
insertions/ deletions can be straightforwardly mapped into
corresponding O, insertion/ deletion operations, but if a class extent is

0O,0DBC User Manual 47

02 SQL

given by a selection query, for instance, then insertions can be
performed only through stored procedures, these procedures
corresponding to user-defined O, C or C++ imported functions (see
Section 4.2.5).

View tables cannot be updated and collection tables can be updated
only indirectly through stored procedures defined to that end.

Insert commands

The insertion of tuples into tables is translated as the creation and
initialization of the corresponding O, objects and the attachment of
such objects to the root of persistence modeling the table extent in the
O, base.

No restriction is imposed on the insertion of rows into user tables.

To be able to insert rows into a given class table through the INSERT
command, however, an insert clause must be declared in the
configuration file for the corresponding class.

Insertion from an associated named collection extent

The extent of class Article declared in the configuration file
corresponds to a named collection defined in the original O, schema.
The SQL insertion is automatically translated as an insertion of the
newly created object into the corresponding O, class extent. The
following insert clause must be declared in the configuration file to tell
the system that insertions are allowed on table ARTICLE: .

export class Article

extent "Articles";
with insert;
end;

Let us consider the following INSERT SQL command:

INSERT INTO Atrticle (title,date_title)
VALUES ('New Article’,’12/10/1995’)

When the SQL command above is issued, the SQL engine inserts a
newly created object into the corresponding user defined class extent
after initializing the corresponding attributes. Object attributes are
initialized with the column values given in the insertion command.

48

O>,0ODBC User Manual

Query Translation : Insertion and foreign keys

Insertion and foreign keys

When one inserts a row containing a foreign key value into a table, the
corresponding row must exist in the referenced table, otherwise a
referential integrity constraint is violated and the insertion is refused. If
insertions are allowed in the referenced table, then the referred row
must be inserted before the referring row is inserted. Finally, if direct
insertions into the referenced table are not allowed, then insertions can
be achieved indirectly, through a user-defined stored procedure.

In the example above, the inserted row contains the foreign key
date_title , that points to an entry in table Date . If the corresponding
date already exists in the Date table, the insertion of the article will be
performed and the newly created Article object will point to the
corresponding Date object. If the referenced date does not exist, the
insertion will be refused by the update engine.

If, however, the user wants a new date with the corresponding key to be
inserted whenever it does not already exist, the following O, C function
can be defined and declared as a stored procedure in the configuration
file to be called through the SQL interface. .

function body
Insert_Article(title:string,date_title:string):integer
{
02 Article obj = new Article;
02 Date obj_date;
obj->sql_update_title(title);
obj_date = select_Date(date _title);
if (obj_date==nil) {
obj_date= new Date(0,0,0);
obj_date->to_date(tuple(mode:'a’,
s_date:date_title));
}
obj->sqgl_update_date(obj_date);
Articles += set(obj);
return(0);

h

In the example above, we assume that the following method computes
the logical key of an instance of class Date :

method body title:string in class Date {
return(self->to_string(tuple(mode:’a’)));

h

0O,0DBC User Manual 49

02 SQL

Assuming that the function Insert_Article is declared as a stored
procedure, insertions into table Article can be performed through the
SQL interface with the following SQL command:

CALL Insert_Article('A1’,'12/10/1995")

Insertion and computed extents

For class tables with an associated computed extent, the complex
semantics of an insertion into such a table can be encapsulated into a
user-defined function to be called by the user as a stored procedure.

In our example, an author depends, as a date, on an article to exist in
the database, as it becomes persistent through the path leading from
the root Articles to the attribute authors . But, contrary to a date,
however, an author is not directly pointed to by an article. Instead, it is
related to more articles through the collection table Article_authors

An entry in such table can be inserted only if the article and the author
being related already exist, as they are pointed to by its foreign keys.

Remark: Class and collection tables can be updated through a stored
procedure call even if an update clause is not declared for them in the
configuration file.

Let us consider another example. The extent of table Author is given by
a complex OQL query rather than by a named collection and insertions
can therefore not be performed directly by the update engine into this
table. Instead, in order to allow new authors to be inserted in the
database, a function performing the insertion must be declared as a
stored procedure in the configuration file.

When arow is inserted into table Author , the corresponding new object
created must be attached to the attribute authors of a given Article
This implies that an article must be provided if one wants to insert a
new author in the database.

Given the considerations above, the following function can be defined to
be called as a stored procedure and perform the insertion of a row into
table Author :

50

O>,0ODBC User Manual

Query Translation : Insertion and computed extents

function body Insert_Author_of_Article(

(name:string,
address_institute_title:string,
address_email:string,
Article_title:string):integer {
02 Author obj = new Author;
02 Article a;
obj->set_name(name);
obj->set_address_institute(select_Institute(
address_institute_title));
obj->set_address_email(address_email);
a = select_Atrticle(Article_title);
if (al=nil) {
a->authors += set(obj);
return 1;
}
return O;
3
method body set_name(name:string) in class Author {
self->name = name;
3
method body
set_address_institute(address_institute:Institute)
in class Author {
self->address.institute = address_institute;
3
method body set_address_email(email:string) in class
Author {

In the example, the Insert_Author_of_Atrticle procedure performs

the insertion of a new row into Author and of a new row into
Article_Author that relates the article identified by Article_title
to the newly inserted author.

Given the above, the insertion of a new author can be performed
through the following SQL command:

CALL Insert_Author_of_Article("John Smith",
"ICS","smith@ics.fr","A1");

Many different stored procedures can be declared by the user for the

different paths leading from a root of persistence to the instances of a

given class.

0O,0DBC User Manual

51

02 SQL

Insertion with nested queries

If a query is specified in the body of an INSERT command, this query is
translated to its equivalent OQL query, which must in turn return a set
of tuples of atomic attributes corresponding to the attributes specified in
the column-identifier list. The update engine iterates on theresult of
this nested queries to perform the insertion of the corresponding rows.

Delete commands

The deletion of tuples from a table must be translated as the
disconnection of the corresponding O, objects from the root(s) of
persistence to which they are attached in the O, base.

No restriction is imposed on the deletion of rows from user tables.

To be able to delete rows from a given class table through the DELETE

command, however, a delete clause must be declared in the
configuration file for the corresponding class.

Deletion from an associated named collection extent
The SQL deletion from table ARTICLE can be automatically translated as
the removal of the corresponding object from the named collection

extent. The following delete clause must be declared in the configuration
file to tell the system that deletions from table ARTICLE are allowed:.

export class Article
extent "Articles";

with delete;
end;

Let us consider the following DELETE command:
DELETE FROM Article WHERE title = ‘Old Article’

The SQL engine will first select all objects corresponding to the rows to
be deleted and then delete them from the class extent.

Deletion and foreign keys

Cascading deletions can be implemented through stored procedures, as
for insertions.

In the example above, the deleted row contains the foreign key
date_title , that points to an entry in table Date . Suppose that one

52

O>,0ODBC User Manual

Query Translation : Deletion from a class table with

wants the pointed date to be deleted from the corresponding table
whenever a pointing article is deleted. As arow in table Date exists only
as long as at least onerow in table Article points to it, then the
removal of the last pointing article from the database would
automatically entail the removal of the pointed date. If however, the
pointed objects can be reached through another path from a given
persistence root, then the cascading deletion can be performed through
stored procedures.

In addition, if the class associated to the pointed table has no extent
clause associated to it, or if the associate extent expression is computed
rather than given by a named collection, then the cascading deletion is
performed by default.

Supposing that a named set Dates is defined in the O, schema and
declared as the extent of class Date , then the deletion of an article
would not entail the deletion of the pointed date. The cascading removal
could be achieved by explicitly performing the removal of the pointed
date from the named collection Dates in the function implementing a
stored procedure used to remove articles from the database.

Deletion from a class table with an associated computed
extent

Let us now consider the deletion of a row from the table AUTHORSuch
deletions cannot be automatically performed by the system and a delete
clause should not be associated to the class Author . Instead, the
following stored procedure can be used: .

function body
Delete_Author_of_Article(author_title:string,
Article_title:string):integer {
select_Article(Article_title)->authors -=
set(select_Author(author_title));
return O;

h

The Delete_Author_of_Article procedure performs the deletion of
the AUTHORow corresponding to the key passed as parameter and of
the corresponding entry in table Article_Author that relates the
article identified by article_title to the deleted author.

The deletion of a given author can be performed through the following
SQL command:

CALL Delete_Author_of_Article("John Smith","Al1");

0O,0DBC User Manual 53

02 SQL

As for insertion, many different stored procedures can be declared by
the user for the different paths leading from a root of persistence to the
instances of a given class.

Update commands

Theupdate of tuples in a class table must be translated as the update of
the corresponding O» objects in the O, base.

No restriction is imposed on the updateof rows from user tables.

To be able to update rows in a given class table, an update clause must
be declared in the configuration file for the corresponding class, as
illustrated below:.

export class Article

extent "Articles";
with update;
end;

Let us consider the following UPDATECOmmand:

UPDATE Articles SET title = ‘New Article’ WHERE title =
‘Old Article’

The SQL engine will first select all objects corresponding to the rows to
be updated and then update their attributes with the new
corresponding column values.

Update and foreign keys

Theupdate of foreign key columns is similar to the insertion of new rows
with foreign key columns. When one updates a foreign key row column,
the corresponding row must exist in the referenced table, otherwise a
referential integrity constraint is violated and the update is refused. If
insertions are allowed in the referenced table, then the referred row
must have been inserted before the referring row is updated. If however,
it is not possible to explicitly insert a row into the referenced table, then
an insertion into this table can be achieved through a cascading update
of the referencing table implemented by a stored procedure.

To conclude this section, we recall that the use of stored procedures can
be generalized to overcome the limitations on update operations on
class and collection tables.

54

O>,0ODBC User Manual

Query Translation : Update and foreign keys

4.2.3

Data Retrieval Commands

Data retrieval commands correspond to the SELECT-FROM-WHEREQL
queries.

The query translator builds up on the implementation of the OQL query
interpreter. Starting from the OQL version 1.2 interpreter, the original
OQL query parser was replaced by an SQL parser building an OQL
query tree. The construction of an OQL syntax tree from a given SQL
query is based on information collected by the schema translation and
kept in the SQL catalog. The generated OQL treeis further optimized by
applying standard optimization techniques.

Query translation is thus integrated to current OQL interpretation and
is performed in two main steps:

1. Thetext of an SQL query is parsed and the abstract syntax tree of
the equivalent OQL query is constructed, based on information col-
lected by the schema translator.

1. Therewritten query (i.e. its corresponding syntax tree) is passed to
the next phases of OQL query interpretation: query graph construc-
tion, optimization and evaluation.

As the syntax of the OQL language version 1.2 is very close to that of
SQL, the OQL tree construction is straightforward. This first step
produces the syntax tree of an OQL query that is already semantically
equivalent to the original SQL query, i.e. this tree can be used by the
OQL interpreter as itisin the subsequent phases of the standard OQL
guery processing, namely graph construction, optimization and
evaluation, to produce the expected result without no further
intervention of the query translator. In other words, the first step
captures the semantics of the SQL query into an equivalent OQL query
already and the second step is standard OQL engine activity.

During the construction of the tree, the translator searches well defined
access patterns to perform query rewriting. When a given pattern is
matched, an action on the corresponding subtree is performed. This
action entails the replacement of one or more subtrees by other
equivalent subtrees as well as the inclusion of new variables in the
corresponding from clause. The intuition is that the new subtrees are
semantically equivalent to the ones they replace, but the corresponding
subqueries can be evaluated in a more efficient way.

The derivation of a query graph from the syntax treeis performed as for
ordinary OQL queries. In particular, standard optimization techniques
are applied as for ordinary OQL query graphs.

Remark: Only the percent character (matching zero or more of any
character) is supported in pattern values used in the LIKE predicate
and in parameters to some API functions (e.g. szTableName parameter

0O,0DBC User Manual 55

4 02 SQL

of SQLTables). The underscore character (matching one character) is
not supported.

Below, we give some examples of query translation to illustrate the
process. The examples are based on the view schema given in Figure
4.2.

Example 4.3.5 Retrieve the name of all articles:

SQL query: OQL query:
SELECT title select struct(title:x0.title)
FROM Article from Articles x0

Example 4.3.6 Retrieve the name of all articles using a column alias:

SQL query: OQL query:

SELECT title AS article_name select
struct(article_name:x0.title)

FROM Article from Articles x0

Example 4.3.7 Retrieve all columns of all rows of table Article:

SQL query: OQL query:

SELECT * select
struct(title:x0.title,date_title:x0.date.title)

FROM Article from Articles x0

Example 4.3.8 Retrieve the names of all authors:

SQL query: OQL query:
SELECT name select struct(name:x1.name)
FROM Author from Articles x0,x0.authors x1

56

O>,0ODBC User Manual

Query Translation : Update and foreign keys

Example 4.3.9 Retrieve the names of all authors of an article whose

title is “The Article”:

SQL query: OQL query:

SELECT name select struct(name:x1.name)
FROM Author from Articles x0,x0.authors x1
WHERE title IN where x0.title == "The Article"

(SELECT Author_title

FROM Article_authors

WHERE Article_title IN
(SELECT title
FROM Article
WHERE title = "The Article"))

Example 4.3.10 Retrieve the name of all authors of article "Article

1":
SQL query: OQL query:
SELECT y.name select struct(hame:x1.name)
FROM Article x,Authory, from Articles x0,
Article_authors z x0.authors x1
WHERE x.title = "Article 1" where x0.title == "Article 1" and

AND x.title = z.Article_title x1 in x0.authors
AND vy.title = z.authors_title

Example 4.3.11 Retrieve the electronic addresses of all authors:

SQL query: OQL query:

SELECT address_email select
struct(address_email:x0.address.email)

FROM Author from Articles x0,x0.authors x1

0O,0DBC User Manual

57

4 02 SQL

Example 4.3.12 Retrieve the institute_title of author "Author 1"

SQL query: OQL query:

SELECT address_institute_title ASi select
struct(i:a.address.institute.title)

FROM Author from Articles x0,
x0.authors x1
WHERE name = "Author 1" where x1.name == "Author 1"

Example 4.3.13 Retrieve the name of all authors having written at least
two different articles:

SQL query: OQL query:

SELECT name select struct(name:x1.name)

FROM Author, from Articles x0,
Article_authors x0.authors x1

WHERE title = Authors_title AND group by name

GROUP BY name having count(partition) > 1

HAVING COUNT(*) > 1

4.2.4 Granting privileges

Privileges are defined through the GRANTand REVOKEcommands. A
privilege definition is, together with table and view definition commands,
a basic relational schema element.

When a grant command is passed as an ordinary SQL statement
through the SQL interface, the system records information about
granted update privileges. In the current version, however, update
privileges are not checked by the system.

Remark: The keyword USER represents the constant string " USER
instead of the name of the current user.

58

O>,0ODBC User Manual

Query Translation : O2C procedures

4.2.5 Stored Procedures

Stored procedures are declared in the configuration file, as illustrated
below:

stored procedure Insert_Article
"This will insert a tuple into table Article and a tuple
into table Date if the referenced date does not exist.",
C++:Process_Complex_Update
"This will perform something by calling a C++ imported
function.";

For each procedure, a text may be associated to it, in addition to the
procedure name. This allows a brief description of the semantics of the
procedure to be stored in the SQL catalog and to be retrieved when the
stored procedures are inspected through the o2sqgl_query tool or
through the ODBC API function SQLStoredProcedure

O2C procedures

By default, stored procedures correspond to an O, C function with the
same name defined in the O» schema.

The following is a call to the procedure Insert_Article declared above:
CALL Insert_Article('A1’,'12/10/1995")
Such call is straightforwardly translated into the following OQL query:

Insert_Article('A1’,’12/10/1995’)

C++ procedures

If the prefix “C++. " is added to the procedure name, then the procedure
will correspond to an imported C++ member function of the imported
class SQLStoredProcedureHandler

C++ procedures allow functions defined by a C++ appplication to be
called through the SQL interface instead of using O, C functions.

To be able to call C++ functions, the application must perform the
following steps:

* toimport a C++ class named SQLStoredProcedureHandler into the O»
schema. This class should be defined by the user to group all functions
that are to be called as stored procedures through the SQL interface.

0O,0DBC User Manual 59

02 SQL

* todefinetheroot of persistence SQLStoredProcedureHandler in the O
schema with type SQLStoredProcedureHandler

* to create an instance of class SQLStoredProcedureHandler and attach
it to the root of persistence SQLStoredProcedureHandler

Let us consider a call to the procedure Process_Complex_Update (we
assume that this procedure takes no parameter):

CALL Process_Complex_Update()
Such call is translated into the following OQL query:
SQLStoredProcedureHandler->Process_Complex_Update()

The standard o2odbc_server program (see command “o2odbc_server”,
page 7-109) is able to automatically execute O,C functions declared as
stored procedures.

Linking C++ functions with the “sql” library

Stored procedures implemented by C++ functions cannot be execute
through the 02sql_query shell nor through the o02odbc_server
program. This is so because the library containing the implementation
of such functions is not linked to 02sgl_query nor tothe
o2odbc_server

A C++ application wishing to call C++ functions as stored procedures
through the SQL interface must then belinked at least with the sqgl , the
ogl and the o2cppruntime libraries (as well as other O, and general
purpose libraries necessary to build the application). This is detailed in
Chapter 6.

Typing restrictions

The following conditions must hold on the O, C and C++ imported
functions declared as stored procedures:

* input arguments, if any, must have an atomic type;

* theresult type, if the function returns a result, must be of one of the fol-
lowing:

* an atomic type;
The procedure has an output parameter and must be called with the
syntax ? = call proc-name(argl,..,argn) , i.e. the result can be
retrieved as an output parameter.

O>,0ODBC User Manual

Development Tools : Modifying existing views

* acollection of tuples of atomic type attributes;
The procedure returns a result set as a select-from-where query.

* aclass whose type is a collection of tuples of atomic type attributes;
The procedure returns a result set, as in the previous case.

The conditions above are checked by the 02sql_export tool when the

configuration file is loaded and an error is reported and the view
generation abort if they do not hold on all declared procedures.

4.3 Development Tools

4.3.1 View creation tool 02sql_export

The 02sqgl_export tool allows view schemas to be created and
modified. It takes two mandatory arguments: a schema name and a
view name, through arguments -schema and -view respectively.

An optional configuration file can be provided through the argument
-config . All classes in the input schema, if any, are exported into the
view associated to this schema as relational tables, unless they are
hidden in the configuration file.

If no configuration file is given, a default translation is performed (no
hiding nor renaming of classes and/ or attributes take place).

The complete usage of 02sql_export is given in Chapter 7.

A view schema generated with 02sql_export can be inspected at any
time with the tool o2sql_query or through the ODBC API, by calling the
appropriate catalog functions (e.g. SQLTables , SQLColumns, etc).

Remark: A view can be created on an empty O, schema. This schema
can be further populated through CREATE TABLEcommands.

Modifying existing view s

Views generated with the 02sgl_export tool can be further deleted and
updated. Update is performed through the o2sqgl_export tool, i.e.
running o2sgl_export on an existing view allows the view to be
modified. This will be usually performed to associate a new
configuration file to an existing view (changing hidings, redefinitions,

0O,0DBC User Manual 61

02 SQL

stored procedure declarations, etc). The tool prompts the user for
confirmation of the view update.

The deletion of a view schema can be performed through the
02sql_query tool, as it will be described in the sequel.

The SQL catalog

4.3.2

O»> keeps an SQL catalog as part of its system catalog. An entry in this
SQL catalog is associated to each view schema created with the
02sql_export tool.

SQL user definitions such as view tables and integrity constraints
associated to user tables are kept in internal structures of the SQL
catalog. The information provided in the configuration file is also stored
in the SQL catalog.

The SQL catalog is thus accessed when a view schema is created,
updated or deleted and it is automatically updated when SQL
operations updating the view schema (e.g. CREATE TABLE CREATE
INDEX) are performed on the database.

The SQL catalog can be inspected through a number of display
functions, which are detailed below.

Each O, schema keeps a list of SQL catalog structures, one per view
schema created on it. Entries in the SQL catalog are removed when the
corresponding view schemas or the O» schema are deleted.

SQL shell tool 02sql_query

This tool allows views to be activated, deleted and inspected. It is an
interactive shell allowing SQL commands and some special
maintenance commands to be executed on an activated view.

Thereis no mandatory argument, but if a base and a view are provided
as arguments, the view is activated on that base when the shell is
launched. Otherwise, a view can be activated once the shell has been
launched with the command set view schema that will be described
below.

The main uses of the 02sql_query tool are:

To quickly test some queries on the database before writing an O» /
ODBC complete application. It actually uses the 02_sqgl function in
order to evaluate the SQL queries submitted by the user through the
standard input.

62

O>,0ODBC User Manual

Development Tools : SQL commands

The deletion of existing view schemas through the delete view schema
command.

The inspection of the SQL catalog through a number of display com-
mands: display config file , display view schema , display

tables , etc. This can be particularly useful for tunning up configuration
files and the resulting view schemas so as to adapt them to the needs of
a given application.

The complete usage of 02sgl_query is given in Chapter 7.

If an output file is specified through argument -output then the result
of SQL selection queries and of general view inspection commands is
dumped into this file.

Once the shell is launched, the following prompt is displayed:

TYPE YOUR QUERY ENDED BY ’;":

Different kinds of commands can be submitted to the shell. These are
considered in turn.

SQL commands

Standard SQL commands using the syntax defined for the core ODBC
SQL level in the appendix C of the ODBC SDK Programmer’s Reference;

These are standard SQL commands which include “Data Retrieval
Commands” on page 55, “Data Update Commands” on page 47,
“Schema Update Commands” on page 42 and “Stored Procedures” on
page 59.

Remark: SQL commands with input and/ or output parameters cannot
be submitted to the 02sql_query shell.

Transaction commands

As far as transactions are concerned, the default behavior of the
02sql_query tool is similar to that of the o2shell tool. In other words,
when the shell is launched, a transaction is implicitly started. At any
moment the following transaction commands can be executed:

commit work

This will commit all updates to data and to the currently active view
schema by performing a commit on Oy .

rollback work

0O,0DBC User Manual 63

02 SQL

This will perform an abort on Oz and rollback all modification to
data and to the currently active schema.

If the user quits the tool (by typing “; ") without commiting or aborting,
then a commit is implicitly performed.

Alternatively, the user can run the shell in an auto-commit mode (option
auto_commit). In this case, a commit is automatically performed after
each command is executed. When running in auto-commit mode, the
transaction commands described above are not allowed.

View inspection commands

The following view inspection commands are available:

» display view schemas;

This will list the names of the different views defined on the currently
active base.

» display view schema;

This will display all the definitions (tables, indexes and procedures)
in the currently active view schema.

» display tables;

This will display all tables in the currently active view schema. These
are the user, class, collection and view tables.

» display table <table-name>;

This will display the definition of the table <table-name> in the cur-
rently active view schema.

» display procedures;

This will list the names of all stored procedures declared in the con-
figuration file for the currently active view schema.

» display procedure <proc-name>;

This will display the definition of the stored procedure <proc-name>
in the currently active view schema.

» display indexes;
This will list the names of all indexes created through the SQL

CREATE INDEXcommand.

* display index <index-name>;

64

O>,0ODBC User Manual

Development Tools : View management commands

This will display the definition of the index <index-name> in the cur-
rently active view schema.

» display config file;
This will display the contents of the config file used to derive the cur-
rently active view through the o2sql_export tool, if any. The config-
uration fileused to derive a view is needed only at view creation time.
If a change to the view needs to be performed by editing an existing
configuration file, the contents of the file used to derive the view can
be retrieved through the display config file command and
dumped to a file to be edited. This releases users from keeping back-
ups of configuration files on their disk.

View management commands

e view activation command;
set view schema (<base-name>,<view-name>);

This will activate the view schema <view-name> on base
<base-name> .

* view deletion command;
delete view schema (<schema-name>,<view-name>);

This will delete the view schema <view-name> on defined on schema
<schema-name> . The view must not be the currently active view.

0O,0DBC User Manual 65

02 SQL

66

O>,0ODBC User Manual

This chapter describes how to use the O, ODBC driver and write or use
ODBC application that access O, data sources.

Section 5.2 describes various data sources and details how an ODBC

client application can connect to an O, data source. Section 5.3 gives
information on the ODBC API functions implemented by the O, ODBC
driver.

In order to read this chapter, it is assumed you are familiar with the
ODBC environment and related concepts.

O,0DBC UserManual 67

02 ODBC

5.1

5.2

Conformance Levels

The O, ODBC driver has the following conformance levels:
APl Conformance Level: Level 1

SQL Conformance Level: Core

Note: The O, ODBC driver also supports some of the functions in the
level 2 API conformance level and part of the grammar in the extended
SQL conformance level.

O, Data Sources

An O, data sourceis defined by:

an Oy system

an O, database

optionally, an ODMG C++ application to which the client must connect
aquery kind mode (currently only SQL is supported)

an SQL view for SQL kind connections,

5.2.1 Connection to Data Sources

Connection to a data source is performed by SQLConnect or
SQLDriverConnect calls.

When the function SQLConnect is used, information in the ODBC.ini
file (or registry information) is used to perform the connection, whereas
with SQLDriverConnect , a connection string (or prompted information)
isused.

68

O>,0ODBC User Manual

02 Data Sources

5.2.2 Configuring Data Sources with ODBC.ini

An O, data source specification section in the ODBC.ini file will
introduce 4specific keywords : System , Database , Application , and
View . Its format is given below: .

[data-source-name]
Driver=driver-DLL-path
System=system-name
Database=database-name
[Application=application-name]
View=SQL-view-name

5.2.3 Connection String

A connection string used by SQLDriverConnect and by the
o02odbc_dump_base tool (Section 5.4.4) has the following syntax:

connection-string : := empty-string [*; "] | list-of-
attributes ["; "]

list-of-attributes : := attribute | attribute " ; "
list-of-attributes

attribute : := DRIVER " ={" attribute-value "}" |
attribute-keyword " =" attribute-value | specific-
attribute

attribute-keyword : := DSN | UID | PWD

specific-attribute: := SYSTEM " =" attribute-value
| DATABASE " =" attribute-value | APPLICATION " =
" attribute-value | VIEW " =" attribute-value

attribute-value : := character-string

The DSN keyword is the only keyword necessary to connect to a data
source from a Windows 95/ NT client, as information about the O»
system, base and view are part of the data source definition.

When using the O, ODBC client library to connect to an O ODBC
server without passing through an ODBC Driver Manager, however, the
connection string for the O, ODBC driver must use the keywords:

0O,0DBC User Manual 69

02 ODBC

).

Keyword Description

SYSTEM The name of the § system.

BASE The name of the £base

APPLICATION | The name of a C++ application (optiona
VIEW The name of the SQL view

5.3 ODBC API Functions

All Core and Level 1 API ODBC functions are supported. Some functions
in level 2 are also supported. The list of all functions implemented by
the O, ODBC Driver can be retrieved with the SQLGetFunction ODB
API function.

The main restrictions in the APl concern the extended cursors (scrolls,
updates), and positioned update or delete statements, which are not
supported.

The Level 2 functions implemented by the O, ODBC driver are:

SQLNumParams

SQLNativeSq|

SQLExtendedFetch

SQLForeignKeys

SQLPrimaryKeys

SQLProcedures

The functions implemented by the O, ODBC driver are grouped by type
of task in the sequel. Specificities of the O, ODBC driver regarding some
of these functions are given whenever necessary.

70

O>,0ODBC User Manual

ODBC API Functions :

5.3.1 Connecting to a data source

* SQLAllocConnect
* SQLAllocEnv
* SQLConnect

e SQLDriverConnect

5.3.2 Obtaining information about a driver and a data
source

* SQLGetInfo

Appendix B gives the values returned by the SQLGetinfo ODBC API
function for all possible fInfoType input argument values.

* SQLGetTypelnfo

5.3.3 Setting and retrieving driver options

* SQLSetConnectOption

This function sets a connection statement option. No specific driver
options have been defined. The connection options that can be set with
this function are:

—SQL_AUTOCOMMIT

This option defines the transaction mode. To set this option value,
the connection must not be opened, otherwise the driver returns
SQL_ERROR

The two possible values for this option are:

—SQL_AUTOCOMMIT_ON
If the valueis set to SQL_AUTOCOMMIT_ORauto-commit mode), the
driver commits each statement immediately after it has been exe-
cuted. This is the default value (accordingly, an o2odbc_server is
launched by default in auto-commit mode).

0O,0DBC User Manual 71

02 ODBC

—SQL_AUTOCOMMIT_OFF

If the value is set to SQL_AUTOCOMMIT_OFRmanual-commit mode), it
isup to the application to explicitly commit or roll back transactions
with SQLTransact .

Remark: An O, ODBC server running on manual mode must be
declared to the dispatcher to allow the connection to the data source
to be performed when option SQL_AUTOCOMMIE set to
SQL_AUTOCOMMIT_OFF

—SQL_ACCESS_MODE
This option defines the access mode:

—SQL_MODE_READ _WRITE
This is the default mode.

—SQL_MODE_READ_ONLY
This valueis supported but not used in this current driver version.

—SQL_TXN_ISOLATION

Sets the transaction isolation level. If a transaction is open, the driver
returns SQL_ERROR

SQL_TXN_SERIALIZABLE (serializable transactions plus locking) is
the default and the only valid option value in the current O, ODBC
driver version.

—SQL_ODBC_CURSORS

This is relative to SQLExtendedFetch calls. To set this option value,
the connection must not be opened, otherwise the driver returns
SQL_ERROR

The value SQL_CUR_USE_ODB@eans that the driver manager will
use the Microsoft ODBC cursor library for cursor scrolling. Cur-
rently, this is the only valid option value. The application must set
this option to SQL_CUR_USE_ODBI€it wants to use SQLExtended-
Fetch .

The following options are not supported:
—SQL_PACKET_SIZE
—SQL_QUIET_MODE
—SQL_CURRENT_QUALIFIER

—SQL_OPT_TRACE

72

O>,0ODBC User Manual

ODBC API Functions :

—SQL_OPT_TRACEFILE
* SQLGetConnectOption

—SQLSetStmtOption

Sets a statement option value. The statement options that can be set
with this function are:

—SQL_ASYNC_ENABLE

The two possible values are:

—SQL_ASYNC_ENABLE_ON

The following functions can be executed asynchronously :
SQLGetTypelnfo , SQLPutData , SQLParamData , SQLExecDirect
SQLPrepare , SQLExecute , SQLFetch , SQLGetData ,
SQLNumResultCols , SQLDescribeCol , SQLColAttributes and all
catalog functions.

—SQL_ASYNC_ENABLE_OFF
Disable asynchronous function executions.

Changing this option value is allowed at any time, because no
asynchronous functions can be still executing for this statement. This
induces immediate effect for subsequent calls. The default valueis
SQL_ASYNC_ENABLE_OFF

—SQL_NOSCAN

Scanning or not SQL string for escape clauses. Escape clauses are
allowed only in SQL statement strings for extended ODBC procedure
calls. The two possible values are:

—SQL_NOSCAN_OFF
The driver will scan SQL strings for escape clause.

—SQL_NOSCAN_ON

Thedriver does not scan and sends directly the statement to the data
source.

Changing this value will takes effect for the next calls to SQLExecDi-
rect or SQLPrepare . The default value is SQL_NOSCAN_OFF

—SQL_MAX_LENGTH

This gives the maximum amount of data returned by the driver for a
character or binary column. If the value is O, the driver attempts to
return all available data. For any other value greater than 254 bytes,

0O,0DBC User Manual 73

02 ODBC

if the length of available data is greater than SQL_MAX_LENGTHata
retrieved with SQLFetch or SQLGetData are truncated without error
or warning messages.

In the current version, the only valid value is the default one, i.e. O,
meaning all available data is retrieved whenever possible.

—SQL_QUERY_TIMEOUT

Number of seconds to wait for an SQL statement to execute before
returning to the application. If the value is 0, the time-out is disabled
(no time out). If the value exceeds the maximum time-out in the data
source, 600 seconds, or is smaller than the minimum, 60 seconds,
thedriver substitutes that value by this maximum or minimum value
and returns SQL_SUCCESS_WITH_INFO

Changing the value is allowed any time and is taken into account for
subsequent executions. The default value is O (no time out).

—SQL_ROWSET_SIZE

Defines the number of rows returned by an SQLExtendedFetch . Any
valueis supported. Changing this value is allowed even if cursors are
opened, specially between two SQLExtendedFetch . The value will
take effect for the next SQLExtendedFetch calls. The default valueis
1.

—SQL_MAX_ROWS

This defines the maximum number of rows to return to the applica-
tion for a SELECT statement. If the value is O, the driver returns all
rows. Any another valueis allowed. The default value is 0 meaning all
rows.

—SQL_BIND_TYPE

Two types of value define the bind type to be used by SQLExtended-
Fetch . The default and only possible value is SQL_BIND_BY_COLUMN

—SQL_RETRIEVE_DATA
Two values for retrieving data in SQLExtendedFetch calls:

—SQL_RD_ON
In SQLExtendedFetch calls, data are retrieved.

—SQL_RD_OFF
SQLExtendedFetch positions the cursor to the specified location but
data are not retrieved. For example, this option value allows an appli-
cation to call SQLExtendedFetch only to verify existence of rows and
check global errors.

Changing this value is allowed even if cursors are opened, especially
between two calls to SQLExtendedFetch . The new value takes effect

O>,0ODBC User Manual

ODBC API Functions :

for the next SQLExtendedFetch calls. The default value is
SQL_RD_ON

—SQL_CONCURRENCY

Specifies the cursor concurrency. To set this value, the cursor must
not be opened and the statement not prepared. The default and only
value supported by the O, ODBC driver is SQL_CONCUR_READ_ONLY
meaning that the cursor is read-only and no updates are allowed. If
another value is specified, the driver substitutes this value by the
default one and returns SQL_SUCCESS_WITH_INFO

—SQL_CURSOR_TYPE

Specifies the cursor type. To set this value the cursor must not be
opened and the statement not prepared. The default and only value
supported by the O ODBC driver is SQL_CURSOR_FORWARD_ONLY
meaning that the cursor only scrolls forward. If an other value is
specified, the driver substitutes this value by the default one and
returns SQL_SUCCESS_WITH_INFO

The following options are not supported:
—SQL_KEYSET_SIZE
—SQL_SIMULATE_CURSOR
—SQL_USE_BOOKMARKS.

* SQLGetStmtOption

Besides the options used with SQLSetStmtOption , for which the driver
returns the current setting, another option can be retrieved:

—SQL_ROW_NUMBER
This allows the number of the current row in the result set to be
retrieved. If the current row cannot be determined or if thereis no

current row, the driver returns 0. To get this option value, a cursor
must be opened and not positioned before or after the result set.

5.3.4 Preparing SQL requests

* SQLAllocStmt

« SQLNativeSq

0O,0DBC User Manual 75

5 02 ODBC

* SQLPrepare
* SQLBindParameter

* SQLGetCursorName

Cursor names are used by positioned update or delete statements. Even
if those statements are not supported by the O, ODBC driver, the
functions SQLSetCursorName and SQLGetCursorName are
implemented.

* SQLSetCursorName

5.3.5 Submitting requests

* SQLExecute

* SQLExecDirect
* SQLNumParams
* SQLParamData

* SQLPutData

5.3.6 Retrieving results and information about results

* SQLRowCount

* SQLNumResultCols
* SQLDescribeCol

e SQLColAttributes

e SQLBindCol

e SQLFetch

O>,0ODBC User Manual

ODBC API Functions :

* SQLExtendedFetch

* SQLGetData

5.3.7 Catalog functions

The following restrictions apply to catalog functions:
* result sets are not ordered (e.g. by table name for SQLTable);

* only the percent character (matching zero or more of any character) is
supported in search patters;

* table qualifiers and owners are not supported.
* SQLColumns
* SQLForeignKeys
* SQLPrimaryKeys

* SQLProcedures

Returns the list of procedure names and characteristics for a specific
data source. These are the procedures declared in the configuration file
used to derive the view associated to the data source.

* SQLSpecialColumns

e SQLStatistics

Only statistics giving the number of rows of a table will be performed.
For indexes information, no data will be returned in the result set.

If the argument fAccuracy is SQL_ENSUREthe number of rows in the
table is unconditionally retrieved which means that a COUNTrequest is
performed on the table in the O2 data source. If fAccuracy is
SQL_QUICK this number is only retrieved if it is readily available from
the server.

* SQLTables

0O,0DBC User Manual 77

02 ODBC

If the argument szTableType is %and the argument szTableName is
an empty string, the result set contains the list of valid table types for
the data source (all others columns contain NULL). Valid table types are:
02 CLASS TABLE, O2 COLLECTION TABLE, USER TABLE, VIEW TABLE.
For more details on the different types of tables, see Chapter 4, “Schema
Update Commands” on page 42.

If a qualifier or owner is specified, SQL_ERRORSs returned.

5.3.8 Terminating a statement

* SQLFreeStmt
e SQLCancel

» SQLTransact

If the connection is in auto-commit mode, an O, transaction is started
each time an SQL statement that can be contained within a transaction
is executed against the current data source. The driver validates this
transaction after each execution.

Executing a SELECTstatement will imply, for the O, data source,
starting an O, transaction, processing, opening a scan on the result
and validating the transaction. For the O, ODBC client, a cursor is
opened.

An SQLFreeStmt with SQL_CLOSEoption value will close, for the O»
data source, the scan and delete pending results, and, for the O, ODBC
client, close the cursor and delete pending results.

In manual-commit mode, each time an SQL statement that can be
contained within a transaction is submitted to the O, data source an O»
transaction is started only if no transaction is already open. All
statements associated to a connection share the same transaction
space. In order to commit or rollback a transaction, the application
must call SQLTransact with the appropriate parameter.

Executing a SELECTstatement will imply, for the O, data source,
processing and opening a scan on the result, and, for the O, ODBC
client, opening a cursor. An SQLFreeStmt with SQL_CLOSEoption value
will, for the O, data source, close the scan and delete pending results,
and, for the O, ODBC client, close the cursor and delete pending
results.

O>,0ODBC User Manual

O2 ODBC Tools

5.3.9

When SQLTransact is called, with the only valid option
SQL_CB_DELETEIt commits or rollbacks all the previously submitted
requests within the transaction. For the O, data source, all opened
scans are closed, all pending results and all access plans (i.e. Oz
handles) are deleted. For the O, ODBC client, cursors and pending
results are deleted for all the associated statements.

Terminating a connection

e SQLDisconnect

* SQLFreeConnect

* SQLFreeEnv

5.3.10 General information

* SQLError

* SQLGetFunctions

5.4

The argument fFunction is SQL_API_ALL_FUNCTIONSor a defined
value identifying the ODBC function of interest. The output argument
pfExists is an array of 100 elements or a single UWORDValues are set
to TRUE if the function is supported, FALSE otherwise.

SQLGetFunctions will return FALSEfor the following level 2 functions
only: SQLBrowseConnect , SQLParamOptions , SQLSetPos ,
SQLSetScrollOptions , SQLDescribeParam , SQLMoreResults
SQLProcedureColumns , SQLColumnPriviliges and
SQLTablePrivileges

O, ODBC Tools

A number of tools is available for O, ODBC developers. These are
programs that should be found in the bin/<platform> subdirectory of
the O, installation directory.

0O,0DBC User Manual 79

02 ODBC

5.4.1

5.4.2

5.4.3

02sql_export

As described in Section 5.3, an O, data source corresponds to an O»
base on which a view has been activated. To be able to connect to a
data source, an O2 base must exist and a view on the schema of that
base must have been previously created.

The 02sql_export tool is the view creation tool. Its features and
complete usage are described in Section 4.3.1 and Section 5.4.1
respectively.

02sql_query

The o2sql_query is an auxilairy tool used for view schema
management. It can be very useful for virtual schema designers as it
allows quick inspection of virtual schemas and databases. In particular,
it can be used to delete view schemas from the SQL catalog and to
retrieve the contents of a configuration file used to derive a given view
into a file. This file can be thus modified and the view re-generated.

Its features and complete usage are described in Section 4.3.2 and
command “02sql_query”, page 7-115.

o2odbc_server

An O, ODBC servers process O, ODBC client requests.

When started, o2odbc_server establishes a connection with an O»
OpenDispatcher (02open_dispatcher) which must already be running
and establishes also a connection with a named O, database system
through an o2server , which must also already be running.

An O, ODBC server loads view information from the SQL catalog stored
in an Oy system for a given data source so as to be able to perform
query translations. It also updates the SQL catalog whenever schema
update commands (table, view and index creation, modification and
destruction) are executed on the data source. Finally, it performs all the
ODBC specific activity (data conversions, cursor management, etc)
involved in the processing of clients requests.

An O, ODBC server can run in two modes, namely the auto-commit and
manual modes. In the auto-commit mode, an implicit commit is
performed after the execution of each SQL statement. In manual, mode,

80

O>,0ODBC User Manual

O2 ODBC Tools

5.4.4

5.4.5

commits and/ or rollbacks must be explicitly performed by the
application through the ODBC API function SQLTransact .

The complete usage of the o2odbc_server program is given in
command “o02odbc_server”, page 7-109.

o2odbc_dump_base

The whole contents of an O, data source, i.e. of the virtual relational
database corresponding to the application of a view on an O, base, can
be logically dumped into an ASCII file with the o2odbc_dump_base
program. The logical dump of a virtual database consists of all table
creation and row insertion SQL commands. The generated ASCII file can
be given as input to a program that sends each command to execution
on a given database. This allows the contents of a dumped database to
be loaded elsewhere.

In particular, the generated output file can be given as input to the
02sql_query tool to duplicate the contents of a virtual database into
another base. This allows an O, base (or the part of an O» basethat is
exported as a virtual database) to be materialized as a relational
database.

The complete usage of the 02odbc_dump_base program is given in
command “o02odbc_dump_base”, page 7-108.

o2open_dispatcher

An O, OpenDispatcher registers all Op ODBC servers running on a LAN
and is queried to get the address of a server able to answer to an O»
ODBC client requests.

A server is chosen by the dispatcher according to a heuristics and based
on connection options set by the client. A score is computed for each
server running and the server with the best scoreis returned to the
client.

The complete usage of the o2open_dispatcher program, including
more details on the heuristics used by the dispatcher to choose a server
for a given client, is given in command “o2open_dispatcher”, page 7-
111.

0O,0DBC User Manual 81

02 ODBC

82

O>,0ODBC User Manual

6 Programming an
O,ODBC Server

Programmers can use the 02_0Odbc class to build their own O, ODBC
servers.

This chapter describes how to integrate your C++ application with an
O,0ODBC server so as to be able to access instances of the imported C++
classes stored in an O, database as relational data and, in particular, to
execute C++ functions as stored procedures through the ODBC
interface.

We assume the reader is familiar with the ODMG C++ Binding and with
the concept of stored procedure in SQL and ODBC.

To implement your own O, ODBC server you build an ODMG C++
application using the following:

e user classes

e ODMG C++ libraries

e O, ODBC libraries

The following sections detail the different steps involved in the
construction of an O, ODBC server.

O,0DBC UserManual 83

6 Programming an O20DBC Server

6.1 Defining the O , ODBC Server main function

You must build an O> ODBC server executable from a main function
and application files. The main function uses the 02_0Odbc class.

The general structure of a main function used in the construction of an
O, ODBC server is the following:

e Creates an 02_0Odbc class object.

e Sets the the server options and parameters.

* Initializes the OoODBC server (begin).

e Starts the server loop (loop).

* Finishes (end).

An example of a main function is given below. .

int main(int argc, char** argv)
{
short error=0;
02_0Odbc *02odbcServer = new 02_0dbc();
o2odbcServer->set_sysdir(getenv("O2HOME"));
o2odbcServer->set_conffile(".o2rc");
o2odbcServer->set_confvar("O20PTIONS");
o2odbcServer->set_enroll(enroll_func);
o2odbcServer->set_check(check_func);
error = o2odbcServer->begin(argc, argv);
if (error) {
return(l);
}
error = o2odbcServer->init();
if (error) {
return(l);
}
o2odbcServer->loop();
o2odbcServer->end();
delete o2odbcServer;
return (0);

Once the server is started, it connects to an O, server first (function
begin) and then to an O, OpenDispatcher (function init). It then waits

84 O>,0ODBC User Manual

Compiling your own O2 ODBC server

6.2

for requests sent by O, ODBC clients (function loop). Functions begin ,
init , loop and end of class 02_0Odbc are defined in the o2odbc_svr
library.

For a given application, a specific configuration can be defined in the
main function by applying the appropriate set functions totheinstance
of 02_Odbc.

The full referential information on the 02_Odbc class is given in Section
7.1.

Compiling your own O , ODBC server

An O, ODBC server is built as an ODMG C++ application with the help
of the 02makegen tool. A configuration file is used to build the makefile
used in the construction of an O, ODBC server. The example below
illustrates such a configuration file..

O2Home= $O2HOME
02System= $O2SYSTEM
O2Server= $02SERVER
0O2Schema= o02odbc_cpp

+UseOq|
+UseConfirmClasses

ImpFiles= Person.hxx SQLStoredProcedureHandler.hxx

[Person.hxx]ImpClasses= Person

[SQLStoredProcedureHandler.hxx]ImpClasses=

SQLStoredProcedureHandler

+[SQLStoredProcedureHandler.hxx]
[SQLStoredProcedureHandler]

ImpAllPublicMemberFunc

ImpSet= Person

ProgramLibDir= $02HOME/lib

ProgramLib= o02odbc_svr sql ogl o2cppruntime o2runtime

o2api o2util

02store o2common

Sources=Person.cc SQLStoredProcedureHandler.cc main.cc
ProgramObjs= main.o Person.o
SQLStoredProcedureHandler.o $O02HOME/obj/o2o0dbc_load.o
ProgramName= my_o2odbc_server

0O,0DBC User Manual 85

Programming an O20DBC Server

In the example aboce, Person is an application class defined in file
Person.hxx . Its member functions are defined in file Person.cc. Class
SQLStoredProcedureHandler groups all C++ functions that are
declared as stored procedures in the configuration file used by the
02sql_export tool to create the relational view of the O, schema. The
implementation of such functions is provided in file
SQLStoredProcedureHandler.cc . The main.cc file contains the
definition of the main function, as illustrated above.

The executable my_o2odbc_server (clause ProgramName) is generated
by importing the Perso n and SQLStoredProcedureHandler classes
into Oz , compiling the corresponding source files and linking the
respective object files with the libraries declared in the ProgramLib
clause.

0,0DBC
libraries

ODMG C++
libraries

create schema S;

users classes create base B;

users o2import

imported classes

main.cc

—
name N: ...

~

0O,0DBC server
executable

Figure 4.2: Components of an O,ODBC application

For more details, refer tothe ODMG C++ and o2makegen user and
reference manuals.

86

O>,0ODBC User Manual

Running your own O2 ODBC server

6.3

Running your own O , ODBC server

Given a C++ application, the following steps should be performed to run
an O, ODBC server that can access instances of C++ application classes
through SQL and launch C++ functions as stored procedures:

* Initialize an O, system and run the Oy server.

This is achieved through the appropriate o2dba_init and o2server
programs. For more information refer to the O» System Administra-
tion Manuals.

* Create an O, schema.

This can be achieved through the appropriate administration tools
(e.g. o2dsa). Refer to the O System Administration Manuals.

* Import the C++ classes into Oy .

After schema creation, you must import the classes and member
functions of your application. This is achieved through the appropri-
ate tools (e.g. 02makegen). Refer to the ODMG C++ Binding Reference
Manual and User’s Guide.

* Import the class SQLStoredProcedureHandler

This class is the entry point allowing C++ functions to be called as
stored procedures through the SQL interface.

e Create persistent roots.

Persistent roots must be defined to store instance of the C++ applica-
tion classes. Such roots can be used as an entry point in the data-
base by the SQL engine, if they are declared as extents in the
configuration file used by the 02sqgl_export tool.

e Createthe O, ODBC server.

As detailed above, the creation of an O ODBC server involves the
definition of a main function that, together with the application files,
isused to build an executable that is linked to the appropriate librar-
ies.

* Populate the database.

An application must load data in the database before queryingit. The
database can be populated by the C++ application or through the
SQL interface, with the appropriate row insertion SQL command or
by calling user defined C++ functions declared as stored procedures.

e Run the server.

0O,0DBC User Manual 87

Programming an O20DBC Server

A user-defined O, ODBC server works as a standard O, ODBC
server, but as it is linked to some user-defined classes, it is able to
run C++ functions defined in class SQLStoredProcedureHandler

and declared in a view generation configuration file as stored proce-
dures.

88

O>,0ODBC User Manual

7 O, ODBC Reference

This chapter details the 02_0Odbc class and all O, ODBC commands. It
is divided into the following sections:

The 02_odbc Class.

This class is used by an application to start an O,ODBC server and
begin the server loop.

The O2 ODBC Commands.

This section provides the OoODBC system commands.

O,0DBC User Manual 89

02 ODBC Reference

7.1

The 02_odbc Class

This section presents the 02_Odbc class

and describes the following member functions:

banner
begin

end

enroll
enroll_path
get_option
init

set...
usage

90

O,0DBC User Manual

The 02_odbc Class :

class 02_0Odbc {
public:
enum OptionType {
NoValue, OptionalValue, MandatoryValue };
enum OptionMode{
Append=0,
/I string value are appended to old ones
Replace=1,
/I string value replace old one
Add=2
/I string value are added in the list found
3
02_0dbc();
~02_0dbc();

static void interruptFunc(int signal);
int begin(int argc, register char *argv[]);
int begin(int argc, register char *argv([],

const char *sysdir, const char
*systemname, const char *servername,
const char *dispatchername, int verbose);

int begin(int argc, register char *argv([],
const char *sysdir, const char *systemname,
const char *servername, const char
*dispatchername, const char *conf_file,
const char *conf_var, void (*enroll_func)(),
void (*check_func)(), int verbose);

int begin(int argc, register char *argv([],
const char *sysdir, const char *systemname,
const char *servername, const char
*dispatchername, const char *conf_file,
const char *conf_var, void (*enroll_func)(),
void (*check_func)(), const char *swapdir,
char * const *libpath, char * const *libname,
int commitfrequency, const char * commitmode,
const char *application, int verbose);

O,0DBC User Manual

02 ODBC Reference

int init();
int end();
int loop();

void set_systemname(const char *systemname);
void set_servername(const char *servername);
void set_sysdir(const char *sysdir);
void set_swapdir(const char *swapdir);
void set_dispatchername(const char *dispatchername);
voidset_commitFrequency(constchar*commitfrequency);
void set_commitFrequency(int commitfrequency);
void set_commitMode(const char *commitmode);
void set_verbose(int verbose);
void set_libpath(char * const *libpath);
void set_libname(char * const *libname);
void set_application(const char *appli);
void set_conffile(const char *conf_file);
void set_confvar(const char *conf_var);
void set_enroll(void (*enroll_function)());
void set_check(void (*check_function)());
void set_default_env();
static void default_enroll_func();
static void default_check_func();
static int usage();
static int banner();
static int enroll(const char * const name,
const char * const confname,
const char * const optname,
char *dflt,
const OptionType t,
const char * const desc,
const OptionMode mode=Replace);

92

O,0DBC User Manual

The 02_odbc Class :

static int enroll(const char * const name,
const char * const confname,
const char * const optname,
long dflt,
const OptionType t,
const char * const desc,
const OptionMode mode=Replace);

static int enroll(const char * const name,
const char * const confname,
const char * const optname,
char dflt,
const OptionType t,
const char * const desc,
const OptionMode mode=Replace);

static int enroll(const char * const name,
const char * const confname,
const char * const optname,
double dflt,
const OptionType t,
const char * const desc,
const OptionMode mode=Replace);

static int enroll_path(const char *path);
static int get_option(const char *name,
char *&value,
intind = -1);
static int get_option(const char *name,
long &value,
intind = -1);
static int get_option(const char *name,
double &value,
intind = -1);
static int get_option(const char *name,
char &value,
intind = -1);

O,0DBC User Manual

93

02 ODBC Reference

banner
Summary Displays the version number of O».
Syntax static int 02_odbc::banner();
Arguments None.
Descri ption Displays the version number of O, on the standard output.
Returns 0 if successful.

-1 if there was an internal error.

94

O,0DBC User Manual

The 02_odbc Class : begin

begin

Summary Starts up a connection to an O, database.

Syntax int begin (
int begin (

int begin (

int begin (

Arguments argc
argv

systemname

int argc, register char * argv(]);

int argc, register char * argv[],
const char *systemname,
const char *servername,
const char *sysdir,
int verbose);

int argc, register char * argv[],
const char *conf_file,
const char *conf_var,
void (*enroll_func) (),
void (*check_func) (),
const char *systemname,
const char *servername,
const char *sysdir,
int verbose);

int argc, register char * argv]],
const char *conf_file,
const char *conf_var,
void (*enroll_func) (),
void (*check_func) (),
const char *systemname,
const char *servername,
const char *sysdir,
const char *swapdir,
const * const *libpath,
const * const *libname,
int verbose);

Number of arquments of the C++ executable.
List of arguments of the C++ executable.

Name of database system. This information is
mandatory. It can be given as a parameter or by calling

02_odbc::set_systemname before beginning the
session.
It can also be set by 02_odbc::set_default_env ,in

which case it is found in the parameter -system of your
executable, in the O20PTIONSenvironment variable (see
the conf_var argument), or in the O option file .02rc
(see the conf_file argument). See the O, System
Administration Guide for further details.

O,0DBC User Manual 95

02 ODBC Reference

servername

sysdir

swapdir

libpath

libname

conf_file

conf_var

enroll_func

check_func

verbose

Name of machine on which the Oz server is running. It
can be given as a parameter or by calling

02_odbc::set_servername before beginning the
session.
It can also be set by 02_odbc::set_default_env ,in

which case it is found in the parameter -server of your
executable, in the O20PTIONSenvironment variable (see
the conf_var argument), or in the O, option file .02rc
(see the conf_file argument). See the O,
Administration Guide for further details.

Path to the directory where O» is installed. This
information is mandatory. It not given, the value found
in the environment variable O2HOME is used.

Path to a directory where a swap file can be created if O,
needs it. It can be NULL, in which case the swap
directory in the O directory is used (See the O, System
Administration Guide).

A NULL-terminated array of character strings, where
each string gives a directory path. O, searches these
directories for libraries named in libname if dynamic
linking is needed. It may be NULL.

A NULL-terminated array of character strings, each
specifying a library name to use when linking and
loading functions dynamically. It may be NULL.

Name of the file where the O, options manager can find
the value for the enrolled options (see the enroll and
enroll_path functions). If 0, conf_file takes the
default value .02rc

Name of the environment variable where the O, options
manager can find the value for the enrolled options (see
theenroll and enroll_path functions). If 0, conf_file
takes the default value O20PTIONS

Pointer to a C function of type
static void (*func) () . This function must contain
code for registering options.

Pointer to a C function of type
static void (*func) () . This function must contain
code for retrieving and verifying option values.

An integer specifying the session as a verbose session.

96

O,0DBC User Manual

The 02_odbc Class : begin

Description

Starts up the connection to the database after analyzing the options.

This member function allows you to use the same powerful option
mechanism that is used by all the tools of the O, environment. This
option mechanism is explained in detail in the O, System
Administration Guide,

The Oz options mechanism allows you to define options from the
following sources:

* Configuration file.

* Environment variables.

* Command line.

For a given option, a value retrieved from a configuration file can be

overloaded by a value defined as an environment variable, which in
turn can be overloaded by a value defined at the command line.

Using the Oz options mechanism has the following advantages:

* Simple management of runtime options.

* A coherent set of options for all O, applications and tools.

Using the Oy options mechanism is not mandatory. The most simple

way to use the O, options mechanism is to use the member function
02_odbc::set_default_env before calling 02_odbc::beqin.

void 02_odbc::set_default_env()

This function allows your C++ program to use the standard O»
configuration file (.02rc), the standard O» environment variable
options (O20PTIONS, and the standard O, command options:
-system, which defines the O, system name,
-server, which defines the name of the O, server host,
-help, which displays the help text for the program, and
-verbose, which enables the verbose mode.

Customizing the options

You can add your own options. For example, you can retrieve O2C
parameters using new options. To do this, you must use the

02_odbc::enroll and 02_odbc::get_option member functions.
The 02_odbc::enroll function allows you to register the options,
and the 02_odbc::get_option function allows you to retrieve the

value of the options.

You must write the following two functions:

O,0DBC User Manual

97

02 ODBC Reference

Returns

* Aregister function that contains a call to 02_odbc::enroll
functions, which register each of your options.

* A check function that contains a call to 02_odbc::get_option
functions, which retrieve the value of the registered options.

These two functions can be registered using the 02_odbc:begin
member function (enroll_function and check_function
parameters) or explicitly, before calling 02_odbc::begin , usingthe
following member functions:

void 02_odbc::set_enroll(void (*enroll_function) ())
void 02_odbc::set_check(void (*check_function) ())

The options for the system name and the server name are mandatory.
These two options are registered by the following code, which you
must add to your register function:

session->enroll("system_name", "system", "system"
(char *)NULL,

MandatoryValue,
"02 system name to connect to",
Replace);

session->enroll("system_name", "server",
(char *)NULL,

MandatoryValue,

server"

"machine on which 02 server is running",

Replace);

After registering these mandatory options, you can register your own
options.

0 if the connection was carried out successfully. If not, an error code is

given.

98

O,0DBC User Manual

The 02_odbc Class : end

end
Summary Ends an O» session.
Syntax int 02_odbc::end();
Arguments None.
Description Ends an O» session and the connection to the O server. A commit is
carried out automatically.
Returns Zero if successful, a non-zero value otherwise.

O,0DBC User Manual

99

02 ODBC Reference

enroll

Summary

Syntax

Arguments

Registers an option to be recognized by the O, options manager.

static int 02_odbc::enroll (const char * const name,

const char * const confname,

const char * const optname,

char *dflt,

const OptionType t,

const char * const desc,

const OptionMode mode=Replace);

static int 02_odbc::enroll (const char * const name,

const char * const confname,

const char * const optname,

long dfit,

const OptionType t,

const char * const desc,

const OptionMode mode=Replace);

static int 02_odbc::enroll (const char * const name,

const char * const confname,

const char * const optname,

char dflt,

const OptionType t,

const char * const desc,

const OptionMode mode=Replace);

static int 02_odbc::enroll (const char * const name,

name

confname

optname

dfit

const char * const confname,

const char * const optname,

double dflt,

const OptionType t,

const char * const desc,

const OptionMode mode=Replace);

A string that indicates the name of the option. This name
is used for retrieving the value of the option.

A string that indicates under which name the value of
this option can be given in a configuration file.

A string that indicates under which name the value of
this option can be given in the environment variable or
at the command line.

The default value of the option. This value is retrieved if
the end user does not give a value is given to the option.

100

O,0DBC User Manual

The 02_odbc Class : enroll

Description

Returns

desc

mode

A value taken from the OptionType enumeration:

NoValue .

The option represents a boolean

value. If there are values there will be
an error during parsing of the

options.
The option can have an associated

OptionalValue

value.
MandatoryValue

The option represents a value. If this

value is not indicated there will be an
error during parsing of the options.

A string describing the option. This string is displayed
when the usage function is called or when a parsing

error is detected.

A value taken from the OptionMode enumeration.

Add

Replace

Append

Each time a value for the
option is found, the new
value is added to the
array of values. Values
can be retrieved by the
get function
using the index
argument.

Each time a value for the
option is found the old
value is replaced with a
new value. Only one value
can be retrieved.

Each time a value for the
option is found, this value
is appended to the
current value. Only one
value can be retrieved.

These member function allow you to register new options on the O3
options manager.

These function are registered by the begin member function.

Each of these functions allow you to enroll one option. There is one
function for each type of option.

1 if successful.

0 if the option could not be enrolled.
-1 if there was an internal error in the option manager.

O,0DBC User Manual

101

4 02 ODBC Reference

enroll_path
Summary Allows you to register hierarchical options.
Syntax static int 02_odbc::enroll_path (const char * path);
Descri ption This member function allows you to register hierarchical options.

Hierarchical options are described as a path, i.e., an ordered list of
options such as:

system.base.loadname

The hierarchical options only work in a configuration file such as
.02rc

Returns 0 if successful.
-1 if there was an internal error.

102 O,0DBC User Manual

The 02_odbc Class : get_option

get_option

Summary Retrieves the value of an option.

Syntax static int 02_odbc::get_option (const char *name,
char *&value,
int ind = -1);

static int 02_odbc::get_option (const char *name,

long &value,
intind = -1);

static int 02_odbc::get_option (const char *name,
double &value,

int ind = -1);
static int 02_odbc::get_option (const char *name,

char &value,

intind = -1);

Arguments name A string that indicates the internal name of the option as
defined in the corresponding 02_odbc::enroll member
function.

value This argument points to the returned value.
ind An index that is used if the user enters an option several

times. If you have registered the option with the replace
or append mode, you should set this argument to -1. If
theindex is -1, the last value entered by the end-user is
returned. If the index is >= 0, the index-th value is
returned. If the index is too large, the returned value is
NULL.

Description This member function allows you to retrieve the value of the registered
options. This function should only be called for options that are
registered.

This function isintended to be used in the check function, which can
be registered by the 02_odbc::begin member function.

Returns 0 if successful.
-1 if the option cannot be retrieved (i.e., the option is not registered).

O,0DBC User Manual 103

02 ODBC Reference

init
Summary Starts up a connection to an o2open_dispatcher
Syntax int 02_odbc::init();
Arguments None.
Descri ption This function connects the server to the dispatcher.
Returns Zero if the operation was successful. Else a non-zero value.

104

O,0DBC User Manual

The 02_odbc Class : set...

set...

Summary Sets the various session parameters.

Syntax void 02_odbc::set_default_env();
void 02_odbc::set_enroll();
void 02_odbc::set_libname(char **);
void 02_odbc::set_libpath(char **);
void 02_odbc::set_servername(char *);
void 02_odbc::set_swapdir(char *);
void 02_odbc::set_sysdir(char *);
void 02_odbc::set_systemname(char *);

Description Explicitly set various session parameters before beginning the session
with 02_odbc::begin(argc, argv, mode);
set_default_env(); allows your C++ program to use the standard O
configuration file (.02rc), the standard Oz environment variable options
(O20PTIONS, and the standard O command options:
-system, which defines the O, system name,
-server, which defines the name of the Oz server host,
-help, which displays the help text for the program, and
-verbose, which enables the verbose mode.

Returns Nothing.

Note

Refer to 02_odbc::begin() for additional information.

O,0DBC User Manual 105

02 ODBC Reference

usage

Summary Displays a description of the registered options.

Syntax static void 02_odbc::usage ();

Descri ption This member function displays a usage description of the registered
options. All valid options are displayed with the contents of the desc
argument of the 02_odbc::enroll member function.

Returns 0 if successful.

-1 if there was an internal error.

106

O,0DBC User Manual

The O2 ODBC Commands : usage

7.2

The O, ODBC Commands

The commands outlined in this section should be found in the
bin/ <platform> subdirectory of the O, installation directory. These
commands are:

o02odbc_dump_base
o2odbc_server
o02open_dispatcher
02sql_export

02sql_query

O,0DBC User Manual

107

4 02 ODBC Reference

o2odbc_dump_base

Summary Generates a logical dump of an O, data source in a given ASCII file.
Syntax o2odbc_dump_base

connection_string

output_file

Mandator y arguments

e connection_string

This argument must be defined as specified in Section 5.2.3. It is used

by the o02odbc_dump_base program to connect to a given OoODBC data
source.

e output_file This is the name of the file where the SQL commands are
dumped into.

Optional ar guments

None.

Descri ption The logical dump of a virtual database consists of all table creation and
row insertion SQL commands. Commands are terminated by ;"

The generated ASCII file can be given as input to a program that sends
each command to execution on a given database. This allows the
contents of a dumped database to be loaded elsewhere.

A dispatcher and a server must be running, as the o2odbc_dump_base

tool is an O,ODBC client. In addition, the ODBC server used by the
o2odbc_dump_base tool must be running in manual mode.

Environment variables

None.

Files An output file is generated. If a file with the same name already exists, it
is overwritten.

See also o2odbc_server , o2open_dispatcher

108

O,0DBC User Manual

The O2 ODBC Commands : o2odbc_server

o2odbc_server

Summary Starts an O2ODBC server.

Syntax o2odbc_server

[-system system_name]
[-server server_host]
[-dispatcher dispatcher_host]
[-commit_mode commit_mode]
[-verbose]

Mandator y arguments

None.

Optional ar guments
Default arguments (like -system or -server arguments) are accepted

according the general option mechanism of Ox(see the System
Administration Reference Manual).

¢ -system system_name

Specifies the O, system name.

* -server server_host

Specifies the O, server host name. This must be the name of a machine
on the network.

* -dispatcher dispatcher_host

Specifies the O,0penAccess dispatcher host. This must be the name of
a machine on the network.

e -commit_mode commit_mode
Specifies the commit mode on which the server will run. Possible values

are auto (for auto-commit mode) and manual (for manual mode). If not
specified, the auto-commit mode is set by default.

e -verbose

Displays additional information about the o2odbc_server activity, i.e.
sets the verbose mode on.

O,0DBC User Manual 109

02 ODBC Reference

Descri ption

This command starts a new O>ODBC server on a machine. An O,ODBC
server processes OoODBC client requests.

When started, o2odbc_server establishes a connection with an
Oo0penDispatcher (02open_dispatcher) which must already be
running and establishes also a connection with a named O, database
system through an o2server , which must also already be running.

Environment variables

Files

See also

O2HOME

Specifies the installation directory of O,. This variable is mandatory.

The file /etc/services (Unix) or
$WINDIR\system32\drivers\etc\services (Windows NT) contains
the dispatcher host name and port number.

o2open_dispatcher |, o2server

110

O,0DBC User Manual

The O2 ODBC Commands : 020 pen_dis patcher

o2open_dispatcher

Summary

Syntax

Starts an O20penAccess dispatcher.

o2open_dispatcher

[-verbose]

Mandator y arguments

None.

Optional ar guments

Descri ption

-verbose

Displays additional information about the 02open_dispatcher
activity, i.e. sets the verbose mode on.

This command starts a new O>OpenAccess dispatcher on a machine.
An OsOpenDispatcher registers all OoODBC servers running on a LAN
and is queried to get the address of a server able to answer to an
O>0DBC client requests.

A server is chosen by the dispatcher according to a heuristics and based
on connection options set by the client. A score is computed for each
server running and the server with the best scoreis returned to the
client.

The following elements enter in the computation of the score:
* aserverisrunning on the same host as the client

* aserver is already connected to the database to which the client
wants to connect

* thecurrent load of each server (the number of connected clients)

* thevalue of the SQL_AUTOCOMMIdonnection option (specified by
the client with the SQLSetConnectOption or the default value
SQL_AUTOCOMMIT_QN

O,0DBC User Manual 111

4 02 ODBC Reference

Environment variables

None.

Files
The file /etc/services (Unix) or
$WINDIR\system32\drivers\etc\services (Windows NT) contains
the dispatcher host name and port number.

See also

o2odbc_server , o2server , o2odbc_dump_base

112 O,0DBC User Manual

The O2 ODBC Commands : 02sql_export

02sql_export

Summary

View schema generation program.

Syntax
02sql_export

[-system system_name]
[-server server_host]
-schema schema_name
-view view_name
[-config config_file]
[-output output_file]
[-verbose]

Mandator y arguments

* -schema schema_name
This is the name of a schema for which the view view_name s to be
derived.

* -view view_name

This is the name of the view to be derived for schema schema_name,
Many different views can be derived for the same schema.

Optional ar guments

Default arguments (like -system or -server arguments) are accepted
according the general option mechanism of Ox(see the System
Administration Reference Manual).

¢ -system system_name

Specifies the Oy system name.

* -server server_host

O,0DBC User Manual 113

02 ODBC Reference

Descri ption

Specifies the O, server host name. This must be the name of a machine
on the network.

-config config_file

Specifies a configuration to be used when exporting the O, schema as a
relational schema.

-output output_file

If an output file is specified through argument -output then the
generated view schema definition is dumped into this file.

-verbose

Displays additional information about the 02sql_export activity, i.e.
sets the verbose mode on.

The 02sql_export tool allows view schemas to be created and modified.
When started, it establishes a connection with a named O, database
system through an o2server , which must already be running.

Environment variables

Files

See also

O2HOME

Specifies the installation directory of O,. This variable is mandatory.

An output file is generated if the option -output is specified. If a file
with the same name already exists, it is overwritten.

An input configuration file is used if the option -config is specified. If
the file cannot be opened, an error is reported and the program aborts.

o2server , 02sql_query , o2odbc_server

114

O,0DBC User Manual

The O2 ODBC Commands :o02sql_query

02sql_query

SQL interactive shell.

02sql_query

[-system system_name]
[-server server_host]
-base base_name
-view view_name
[-output output_file]
[-auto_commit]
[-verbose]

Mandator y arguments

None.

Optional ar guments

Default arguments (like -system or -server arguments) are accepted
according the general option mechanism of Ox(see the System
Administration Reference Manual).

-system system_name
Specifies the O, system name.
-server server_host

Specifies the O, server host name. This must be the name of a machine
on the network.

-base base_name
The name of a base on which the view view_name s to be activated.
-view view_name

The name of the view to be activated on base base_name . The view
must have been previously derived with the 02sql_export tool for the
schema from which the base base_name is an instance.

-output output_file

O,0DBC User Manual 115

4 02 ODBC Reference

If an output file is specified through argument -output then the
generated view schema definition is dumped into this file.

e -auto_commit

Specifies that the shell must run in auto-commit mode, i.e. a commit
will be automatically performed after the execution of each SQL
statement. The default mode is the manual mode, whereby commits
and/ or rollbacks must be explicitly executed with the appropriate shell
commands (commit work and rollback work).

e -verbose

Displays additional information about the 02sql_query activity, i.e.
sets the verbose mode on.

Descri ption

The 02sql_query tool allows view schemas to be activated on a given
database. Once a view is activated on an O base, SQL commands can
be executed on theresulting virtual database. The view schema can also
be inspected through specific shell commands (see Section [Ref:
02sglquery]) for more details).

When started, 02sql_query establishes a connection with a named
O» database system through an o2server , which must already be
running.

Environment variables

* O2HOME
Specifies the installation directory of O,. This variable is mandatory.

Files An output file is generated if the option -output is specified. If a file
with the same name already exists, it is overwritten.

See also o2server , 02sql_export

116 O,0DBC User Manual

A Syntax for View
Customization

The syntax for view customization through a configuration file is given
below in EBNF format. Reserved words are “quoted’ and non terminal
symbols are given in italics. The symbol | represents a choice (a
disjunction), brackets ({and }) represent zero or many occurrences and
square brackets ([and]) represent zero or one occurrence.

The non-terminal query_expression corresponds to a valid quoted OQL
expression, whereas schema_name, class_name, proc_name,
table_name, collection_name, column_name, method_name and
attribute_name correspond to valid O, identifiers.

The non-terminal proc_description corresponds to a quoted string and is
intended to allow a short text describing the semantics of the procedure
to be attached to the procedure declaration in the SQL catalog.

O,0DBC UserManual 117

A Syntax for View Customization

schema:= “view schema ”schema_naméfrom ” schema_namé; ”
[hide_command proc_commanp export_lis}
hide_command= “hide " class_name_list';”
proc_command:.= “stored procedure " proc_list*;”
export_list::= export_commang* ; "export_command
export_command= export_class_command
| export_collection_command
export_class_command:= “export class " class_namd“as” table_namé
[“define key " attribute_namg“; ”
[“hide " attribute_name_lis}*; ”
[“redefine " virtual_attribute_list]*; ”
[*method ” method_name_ligt; ”
[“extent " query_expressioli;”
[“with " data_update_clause_ligt; ”

“end’
export_collection_command:= “export collection " collection_name"in class " class_name
[*as” table_namég
[“redefine " virtual_attribute_list]
“end’

class_name_list=class_namég ", " class_name
proc_list::=proc{"“, " proc }
proc ::=proc_lang proc_namgproc_descriptioh
proc_lang::=“C++:” | “O2C:” \mid
virtual_attribute_list::=virtual_attribute{ “, ” virtual_attribute }
virtual_attribute::= path“as” column_name
attribute_name_list.= attribute_nam¢g “, " attribute_name}
method_name_list=virtual_method “, " virtual_method}
virtual_method:= method_nameéas” column_name
data_update_clause_list data_update_clausg”, " data_update_clausé
data_update_clause= “insert "

| “update "

| “delete "
collection_name:=class_namé¢ “. " path }
path::= attribute_namd “. " attribute_name}

118 O>,0ODBC User Manual

B SQLGETINFO Return
Values

We list below the C language #define ’s for the fInfoType argument

and the corresponding values returned by the ODBC API function
SQLGetInfo .

O,0DBC UserManual 119

2]

SQLGETINFO Return Values

finfoType

Returned Value

SQL_ACTIVE_CONNECTIONS

64

SQL_ACTIVE_STATEMENTS

64

SQL_DATA_SOURCE_NAME

a long pointer to DSN

SQL_DRIVER_HDBC

Handled by the driver manager

SQL_DRIVER_HENV

Handled by the driver manager

SQL_DRIVER_HSTMT

Handled by the driver manager

SQL_DRIVER_NAME

a long pointer to "O2 Technology Driver"

SQL_DRIVER_VER

a long pointer to "02.01.0000"

SQL_FETCH_DIRECTION

SQL_FD_FETCH_NEXT

SOL_ODBC_API_CONFORMANE

SOL_OAC_LEVELL

SOL_ODBC_VER

a long pointer to "02.10"

SQL_ROW_UPDATES

a long pointer to "N"

SOL_ODBC_SAG_CLI_CONFORMAN

CBQL_OSCC_COMPLIANT

SQL_SERVER_NAME

a long pointer to ™"

SQL_SEARCH_PATTERN_ESCAPE

a long pointer to

SOL_ODBC_SQL_CONFORMANCE

SQL_OSC_CORE

SOL_DBMS_NAME

a long pointer to "O2 Technology

SQL_DBMS_VER

a long pointer to "05.00.0000"

SQL_ACCESSIBLE_TABLES

a long pointer to "Y"

SQL_ACCESSIBLE_PROCEDURES

a long pointer to "Y"

SQL_PROCEDURES

a long pointer to "Y"

SQL_CONCAT_NULL_BEHAVIOR

0

SQL_CURSOR_COMMIT_BEHAVIOR

SQOL_CB_DELETE

SQL_CURSOR_ROLLBACK_BEHAVI(

DBQL_CB_DELETE

SQL_DATA_SOURCE_READ_ONLY

a long pointer to "N"

SQL_DEFAULT_TXN_ISOLATION

SQL_TXN_SERIALIZABLE

SQL_EXPRESSIONS_IN_ORDERBY

a long pointer to "N"

SQL_IDENTIFIER_CASE

SOL_IC_SENSITIVE

SQL_IDENTIFIER_QUOTE_CHAR

a long pointer to "\"{"'}

SQL_MAX_COLUMN_NAME_LEN 0
SQL_MAX_CURSOR_NAME_LEN 18
SQL_MAX_OWNER_NAME_LEN 0
SQL_MAX_PROCEDURE_NAME_LEN 0
SQL_MAX_QUALIFIER_NAME_LEN | O
SQL_MAX_TABLE_NAME_LEN 0

SOL_MULT_RESULT_SETS

a long pointer to "N"

SQL_MULTIPLE_ACTIVE_TXN

a long pointer to "Y"

SQL_OUTER_JOINS

a long pointer to "N"

SQL_OWNER_TERM

a long pointer to ™

SQL_PROCEDURE_TERM

a long pointer to "stored procedure”

SQL_QUALIFIER_NAME_SEPARATO

Ra long pointer to ™

120

O>,0ODBC User Manual

finfoType

Returned Value

SOL_QUALIFIER_TERM

a long pointer to "database”

SOL_SCROLL_CONCURRENCY

SOL_SCCO_READ_ONLY

SOL_SCROLL_OPTIONS

SOL_SO_FORWARD_ONLY

SQL_TABLE_TERM

a long pointer to "O2 name"

SQL_TXN_CAPABLE SQL_TC_ALL
SQL_USER_NAME a long pointer to ™
SQL_CONVERT_FUNCTIONS 0

SQL_NUMERIC_FUNCTIONS

SQL_FN_NUM_ABS | SQL_FN_NUM_MOD

SQL_STRING_FUNCTIONS

SQL_FN_STR_CONCAT | SQL_FN_STR_LENGT

SQL_SYSTEM_FUNCTIONS

SQL_TIMEDATE_FUNCTIONS

SQL_CONVERT_BIGINT

SQL_CONVERT_BINARY

SQL_CONVERT_BIT

SOL_CONVERT_CHAR

SOL_CONVERT DATE

SQL_CONVERT_DECIMAL

SQL_CONVERT_DOUBLE

SOL_CONVERT_FLOAT

SQL_CONVERT_INTEGER

SQL_CONVERT_LONGVARCHAR

SQL_CONVERT_NUMERIC

SOL_CONVERT_REAL

SQL_CONVERT_SMALLINT

SOL_CONVERT_TIME

SQL_CONVERT_TIMESTAMP

SQL_CONVERT_TINYINT

SQL_CONVERT_VARBINARY

SQL_CONVERT_VARCHAR

SQL_CONVERT_LONGVARBINARY

Ol O O O O O] O O] O O O O] O] O] O] O] O] O] O] O O

SQL_TXN_ISOLATION_OPTION

SQL_TXN_SERIALIZABLE

SQL_ODBC_SQL_OPT_IEF

a long pointer to "N"

0O,0DBC User Manual

121

B SQLGETINFO Return Values

122 O>,0ODBC User Manual

	MAIN MENU TO O2 DOCUMENTATION
	O2 ODBC User Manual
	Who should read this manual
	TABLE OF CONTENTS
	1 Introduction 11
	2 O2ODBC Installation 19
	3 O2 ODBC Overview 25
	4 O2 SQL 31
	5 O2 ODBC 67
	6 Programming an O2ODBC Server 83
	7 O2 ODBC Reference 89
	A Syntax for View Customization 117
	B SQLGETINFO Return Values 119

	1 Introduction
	1.1 System overview
	Figure 1.1: O2 System Architecture

	1.2 ODBC
	1.3 O2 and ODBC
	1.4 Manual Overview
	1.5 Background

	2 O2ODBC Installation
	2.1 Hardware and Software Requirements
	2.2 O2 ODBC Distribution Package
	2.3 Setting up the O2 ODBC Driver
	Installing the driver
	Declaring the o2 open-dispatcher
	Installing the tools

	2.4 Adding, Modifying and Deleting O2 ODBC Data Sources

	3 O2 ODBC Overview
	3.1 O2 ODBC Architecture
	Outline of the O2 ODBC driver activity
	Advantages of the O2 ODBC architecture

	3.2 O2 SQL
	3.3 O2 ODBC Server

	4 O2 SQL
	4.1 Schema Translation
	O2 Schema
	Relational Schema
	Example
	Class translation
	Figure 4.1: O2 schema document

	Primary Key Definition
	Figure 4.2: Relational schema document

	Attribute Translation
	Atomic and Class Attributes
	Tuple Attributes
	Collection Attributes
	Inherited Attributes
	Data Retrieval Methods
	Customized translation
	Figure 4.3: Configuration file for schema translation
	Figure 4.4: Relational schema french_document

	4.2 Query Translation
	Table creation command
	View table creation command
	Table deletion command
	View deletion command
	Index creation command
	Table modification command
	Table Types
	Insert commands
	Insertion from an associated named collection extent
	Insertion and foreign keys
	Insertion and computed extents
	Insertion with nested queries
	Delete commands
	Deletion from an associated named collection extent
	Deletion and foreign keys
	Deletion from a class table with an associated computed extent
	Update commands
	Update and foreign keys
	O2C procedures
	C++ procedures
	Linking C++ functions with the “sql” library
	Typing restrictions

	4.3 Development Tools
	Modifying existing views
	The SQL catalog
	SQL commands
	Transaction commands
	View inspection commands
	View management commands

	5 O2 ODBC
	5.1 Conformance Levels
	5.2 O2 Data Sources
	5.3 ODBC API Functions
	5.4 O2 ODBC Tools

	6 Programming an O2ODBC Server
	6.1 Defining the O2 ODBC Server main function
	6.2 Compiling your own O2 ODBC server
	Figure 4.2: Components of an O2ODBC application

	6.3 Running your own O2 ODBC server

	7 O2 ODBC Reference
	7.1 The o2_odbc Class
	banner
	begin
	end
	enroll
	enroll_path
	get_option
	init
	set...
	usage

	7.2 The O2 ODBC Commands
	o2odbc_dump_base
	o2odbc_server
	o2open_dispatcher
	o2sql_export
	o2sql_query

	A Syntax for View Customization
	B SQLGETINFO Return Values

