Version

Sensor Web Interface
User Manual

Version 2 | Sensor Oupost X

« - Dversmntwo.cafse'1soroutpostf|we_demo/ ﬂ? —

Sensor Outpost Live Demo

Stittsville, ON, Canada Installation

A new photo is taken every 15 minutes.
Temperatures and voltages are taken every 5 minutes.

The current Outpost internal temperature is 26.91 °C
[The current ambient temperature is 26.94 °C.

The internal battery is reporting 27 29 V.

The solar panel is reporting 27.29 V. ke
4

www.versiontwo.ca

September 10, 2014

Sensor Web Interface - User Manual 2

© 2014 by Version 2.0 Inc

Version 2.0 Inc.

P.O. Box 504

1476 Stittsville Main Street
Ottawa, Ontario K2S 1A6
Canada

Tel: (613) 663-3004
Fax: (613) 836-5153

Email: info@versiontwo.ca

wWwWw.versiontwo.ca

Change Log

Author Date Changes

Alex Van Leyen 2014-05-02 Original Document.

Alex Van Leyen 2014-06-05 Minor Edits.

Alex Van Leyen 2014-08-13 Added in new Daemon class.

Alex Van Leyen 2014-09-10 Added Sample Page, and updated scripts to reflect recent

changes.

www.versiontwo.ca

Sensor Web Interface - User Manual 3

Table of Contents

L IEEOAUCTION. ...ttt ettt et s et e bt e e ab e e bt e s it e e bt e e bt e sabeeeeeaneee 5
2 PIOIEQUISIEES. .. uveeeteeutieeiieette ettt et te ettt et e ettt et ettt e bt e s ateesbeesaeeeabeeaseeeabe e seeeabeebeeeabeeseeenseenseeenbeeenbeeesnneeas 5
B INSTALIIIIE . ..ottt ettt ettt et e et e ab e e bt e e nbe e beeeabeebeeesbe e beeenbeenseensreentaeenneas 6
4 USING the PIUZ-IN. ettt ettt et sttt ettt e e e e e ebeeeane s 6
4.1 QUICK QN DALY ...eiuiiieiiieiiecieeieee ettt ettt e st e ebe e st e esseessbeenbaessbeesseessaeensaeeenssaeeennees 6
4.2 SAMPIE PAZE....c..eeueeiiiiiieteeee ettt ettt eearees 8
4.3 WITHINE @ SCTIPL...uviiieiiiieeiieeeiteesteeerteeerteeeetteeetteestteessteeesaseeensseeeasseessseeansseessssaeeessnssssaeaesesnnnseees 9
T B € 111 B T 1 . OO OO PUROUPPPORRUPPPPPPRIN 10

4.3. 1.1 RUN the SCIIPL..eeeiiiiiiiiiieiieeie ettt ettt ettt ettt e et etaeebeeesbeesseeeensseeeensseeeensseeennnns 10

4.3.1.2 Understand the SCIIPL.......coueiiiriiiiiiiirieeeeetee ettt 11

4.3.2 GIMAGE. ... eeeeeieeeiie ettt et s e e st e et e e etaeesntteeenseeeenseeeanbeeensbeeenseeenaeenns 12
4.3.2.1 RUN TRE SCIIPL. ittt sttt st st e e 12

4.3.2.2 Understanding the SCIIPL........ccuiiiieeiierieeieeeiie ettt ettt ereeseeesteesteeesbeessaeensaessneanseens 13

4.3.3 REPLACE. ... ettt ettt et h e ettt et e et e e e nbt e e eanbaeeeanbeeeean 13
4.3.3.1 RUN TRE SCIIPL...viiiiiiiiiiiieieeeie ettt et ettt ve et e ssaeetaeesbeesseeeensaeeeensseeennnns 13

4.3.3.2 Understanding the SCIIPL.......cc.eeiiriiiiiriiniiieeie ettt 14

S AULOMALEA UPAALES....eeiuiiieiiiieiiiieetie ettt e ettt e et e e st e e s beeesabeeesnbeeeenseeeanseeeeeennssanaeens 14
S.TEMDEAAEd PHP.......oooiiiee ettt et sttt e et e st et e ae e e e e 14
5.2 RUNNING @ DACTINON. ...c..uiiieiiiiiiiieeeiieeeite ettt ettt e sttt e st e e e teeesateeesnteeesseeesseesnsseesnssneeesannnes 16

5. 2.1 USING G0Nttt ettt ettt ettt ettt sb ettt s bt et eatesbeebe et e sbee bt eanesbeenbeenneeens 16

5.2.2 Using the Daemon INterface Class..........ccveviieiiieriieiiieiiieiieeie ettt e e eeeeeeaaee e 16

6 Web Interface Function Reference Sheet...........c.oouiiiiiiiiiiiiiiieeeeee e 17
6.1 V2 _Sensor Web INterface.......c.ceevuiiiiiiiiiiieciiiecie ettt e st eesveee e e e e 17
6.2 V2 Sensor Web_Interface DaemOn...........cocueriiiiiiiiiiiiiiniinieicetcecieeteseee e 20
0.3 V2 SWI TOOIS. ... tiieiiiieeiie ettt ettt ettt e et e e st e e enateeeabaeessseeesnseeenseeensssaaeseennnnnes 24

www.versiontwo.ca

Sensor Web Interface - User Manual 4

Figure Index

Figure 1: HOw it all fIoOWS tOZETNET......coueiiiiiiieiieee e 5
Figure 2: Getting the PHP VETSION........cotiiiiiiiiiiiiiteeeeeeete ettt st 5
FIGUIE 3: URL ...ttt ettt et e s bttt e s bt e et e e st eeeaabaeesneneas 6

www.versiontwo.ca

Sensor Web Interface - User Manual 5

1 Introduction

S01
'@ — —
502 l
- Sensor Outpost Your Web Server
Server
S03

Figure 1: How it all flows together.

The Sensor Web Interface is a small "drop-and-play" software package, designed to provide your web
server with a simple interface for publishing the data collected from your Sensor Outposts. This manual
assumes you have some technical experience with managing a web server.

2 Prerequisites

Before installing the plug-in package on your web server, you will need to check the following:

1. Which version of PHP are you running?

This package requires PHP 5.3.3 or higher. You can check which version your server is running
by creating a simple PHP script that calls phpinfo():

<?php

phpinfo();

77>

Upload this script onto your web server, then point your browser to the location that it's stored
at. When the page loads in your browser, the version will be at the top, like so:

Figure 2: Getting the PHP Version

www.versiontwo.ca

Sensor Web Interface - User Manual 6

2. Have you made your data publicly available to the web? This Plug-in package will not work
unless you have granted the Public Web User read access.

3 Installing

Installing the plug-in into your web server is as easy as 1-2-3:
1. Extract the files from the Plug-in's zip file.
2. Upload the files onto your web server.
3. Done!

Keep track of where you uploaded the Plug-in's files, are you'll need to reference this location in your
own scripts.

4 Using the Plug-in

In this section, we'll explain what you can do with your Plug-in kit, and how to do it. We'll start off
with the easy stuff, then work our way up to the more advanced topics near the end.

4.1 Quick and Dirty

Before writing any code, you should check if your data is publicly accessible over the web. Open your
preferred web browser (IE, Chrome, Firefox, etc) and type the following into your address bar:

http://<server>/sensor-data/(@<sensor number>

Example:

hitp://users.shangalulu.com/sensor-data/@

Figure 3: URL

Replace the <values> with the values that matches your setup:

* <server> is the host name/IP address of the server. In the example above, <server> has been
replaced with Version 2's users.shangalulu.com server.

* <sensor number> is the number assigned to your Sensor Outpost. This value is provided in the
Sensor Administrative Client. In the above example, we're attempting to pull data from Sensor
Outpost 2.

www.versiontwo.ca

Sensor Web Interface - User Manual 7

When you press enter, one of two things can happen: You will get a page filled with text (which is
good!), or you get a pair of empty square brackets "[]" (which is not good). If you get a pair of empty
brackets, check the following issues, then try again:

1. Did you grant the read permission to the Public Web User?
2. Is the Sensor Number correct?

3. Has the Sensor Outpost sent any data to the server yet?

If the answers to the above questions are all "Yes", and you are still experience technical difficulties,
we recommend you contact your vendor, or request a support ticket from Version 2.

If your Sensor Outpost has a camera installed on it, you can retrieve the most recent photo using the
same method above:

http://<server>/sensor/(@<sensor number>,<variable name>

Replace <variable name> with the name of the variable the Sensor Outpost records the photo with. For
example, consider the following ASL script:

var image my_image = camera.get image()
send(my_image)

Every time this script is run, ASL loads the image acquired from the camera into a variable called
"my _image". In this case, <variable name> should be replaced with my_image.

www.versiontwo.ca

Sensor Web Interface - User Manual

4.2 Sample Page

The following is a sample web page. It will attempt to pull the most recent image and temperature
recorded by the Sensor Outpost near our office.

<?php
include("Library Sensor Web Interface PHP/V2 Sensor Web Interface.php");

// Initialize an instance of the Sensor Web Interface object.
$swi=new V2_Sensor Web_Interface();

// The source server is where we will be pulling the image and temperature from.
$source server = "users.shangalulu.com";

// The sensor number must match your Sensor Outpost's assigned ID. To get the ID,
// please refer to the ServerAdmin client.
$sensor_number = 5;

// The image variable name must match the name used in the asl script.
$image variable name = "imgl"

// The image destination is where the image will be deposited after it is pulled from the server.
$image destination = "images/stittsville.jpg";

//l GET THE IMAGE.
$swi->getlmage($source_server, $sensor number, $image variable name, $image destination);

// Setting time to 0 will make the server retrieve the most recent temperature reading.
$time = 0;

// The unique token will be used as an identifier for the result cache. More on this below.
$unique_token = "stittsville";

// The variable list will tell the server which variables to retrieve. This list can be of any length.
// The results returned from the server will match the order they are inserted in the variable list.
$variable_list = array("so_temp");

// The server will send the data back in a jsonified string. You must decode the string before you may use it.
$encoded data = $swi->getData($source_server, $sensor number, $time, $unique token, $variable list);
$decoded data = json decode($encoded_string);

// Default value

$temperature = "unknown";

if ($decoded data !== null)

{
/I The temperature returned will be in Kelvins. In this example, we will convert it back to Celsius.
// The temperature is still considered of type String. The function doubleval() will tell PHP to treat
// the value as a double instead.
$temperature = doubleval($decoded data[0]->value) - 273.15;

7>

www.versiontwo.ca

Sensor Web Interface - User Manual 9

<htmI>
<head>

<title>Version 2 | Sensor Outpost Demo</title>
</head>

<body>
<div id="demo">
<h1>Sensor Outpost Live Demo</h1>

<center><img src="<?php echo $image destination; ?>"> </center>

<p>The current temperature is <?php echo (is_numeric($Stemperature))? @number format($temperature,2) :
$temperature; 7> °C.</p>

</div>
</body>
</html>

4.3 Writing a Script

Now that you can verify that you can publicly pull the data from your Sensor Outpost, you can start
putting a script together. Inside the Interface's kit is a folder called "demo", which holds a small
collection of command line PHP scripts. These scripts have been created to assist you in making your
own scripts, and should not be used in production environments. The following table will briefly
explain what each of these files are:

File Name Purpose

ClearCache.php Clears the Plug-in's internal cache. Execute this script when you
want to force the web server to pull in fresh information.

GetData.php Gets the most recent data from the Sensor Server.

Getlmage.php Gets the most recent photo from the Sensor Server.

Replace.php Replaces %variable tokens% with their respective values.

files/

files/demo.php An example of how to write a web page with inline PHP code.

files/template.html An example of how to write a template document to pass through
Replace.php

www.versiontwo.ca

Sensor Web Interface - User Manual 10

4.3.1 GetData

// Include the Web Interface library.
include once(dirname(dirname(_ FILE))."/V2_ Sensor Web_Interface.php");

/I Get the arguments

$Source Server = (empty($argv[1])? "" : Sargv[1]);
$Sensor_Id = intval((empty($argv[2])? 0 : $argv[2]));
$Time = intval(empty($argv[3])? 0 : Sargv[3]));
$Variables = array_slice($argy, 4);

// Create an instance of the Web Interface.
$swi =new V2_Sensor Web_Interface();

/I Get the data.
$unique name = "demo";
$data = $swi->getData($Source Server, $Time, Sunique name, $Variables);

if ($data === null)
{

// On error, print out the error message.
echo $swi->getError();

}

else

{

// print out the data.
echo $data;

}

The code listed above is from GetData.php. This script is designed to gather the most recent sensor data
from the Source Server, and print it all to the console.

4.3.1.1 Run the Script

If you have console access on your web server (such as an SSH connection through PuTTY), you can
execute this script by typing the following at the command line:

$> php <Path/To/Interface>/demo/GetData.php "<Source Server>" <Sensor Number>

Replace the <variables> with their respective values:
* <Path/To/Interface> is the path where you installed the interface files.
* <Source Server> is the host name / IP address of your source server

* <Sensor Number> is the number assigned to your Sensor Outpost.

If GetData is successful, you will get an output that may look like the following:

www.versiontwo.ca

Sensor Web Interface - User Manual 11

[{"variable name":"V2 UNIQUE DEVICE NUMBER","value":0},
{"variable name":"V2 DEVICE UNIX TIME","value":"1378998001"},
{"variable name":"A2 solar panel voltage","value":27.176703296703},

{"variable name":"B1 iob_input voltage","value":1},

{"variable name":"C2 outside temperature","value":295.16465201465},

{"variable name":"D2_inside temperature","value":299.50164835165},

{"variable name":"V2 CHECKSUM32","value":"2244211671"},

{"variable name":"V2 DATA SET END RANDOM NUMBER","value":"1765165387"}]

The above is a collection of the most recent data from all of the variables the Sensor Outpost has
transmitted. This sting is currently encoded in JSON, a popular data-interchange format. You will need
to decode this string before you can use it in your own scripts.

4.3.1.2 Understand the Script

We're now going to step through the script above, and explain what's going on at each part. We'll begin
with the inclusion:

// Include the Web Interface library.
include once(dirname(dirname(_ FILE))."../V2 Sensor Web_ Interface.php");

When you write your own script, the first thing you will need to do is include the
V2 Sensor Web Interface.php library. When you include your script, you should give the full path to
where you installed it, like so:

include once("path/to/your/plug-in/kit/V2 Sensor Web_Interface.php");

After including the V2 Sensor Web_Interface, you will need to create a new instance of the
V2 Sensor Web_Interface object:

/I Create an instance of the Web Interface.
$swi=new V2 Sensor Web Interface();

This this object, you can use it to call the getData() function:

$data = $swi->getData($Source_Server, $Time, Sunique _name, $Variables);

This function will attempt to contact the Source Server, and request for the most recent data from it.
See Section 6.1 for more information about getData's arguments.

Finally, we check if the $data returned is a string, or if its NULL:
if ($data === null)

// On error, print out the error message.

www.versiontwo.ca

Sensor Web Interface - User Manual 12

echo $swi->getError();

}

else

{

// print out the data.
echo $data;

}

If $data is NULL, an error has occurred. The function getError() will provide more information about
what the cause of failure was.

4.3.2 Getlmage

include once(dirname(dirname(FILE))."/V2 Sensor Web Interface.php");

// Get the arguments

$Source Server = (empty($argv[1])? "" : $argv[1]);
$Sensor_Id = intval((empty($argv[2])? O : Sargv[2]));
$Variable Name = (empty($argv[3])? "" : Sargv[3]);
$Local File Path = (empty(Sargv[4])? "" : Sargv[4]);

$Time = intval((empty($argv[5])? 0 : Sargv[5]));
$swi=new V2 _Sensor Web_Interface();

// Get the image
if (! $swi->getlmage($Source_Server, $Sensor_Id, $Variable Name, $Local File Path, $Time))

{

echo $swi->getError();

}

The code listed above is from Getlmage.php. This script is designed to acquire the most recent photo
taken from your Sensor Outpost. On success, this script will store the photo locally at the local file path
you provided.

4.3.2.1 Run The Script

If you have console access on your web server (such as an SSH connection through PuTTY), you can
execute this script by typing the following at the command line:

$> php <Path/To/Plug-in>/demo/GetImage.php "<Source Server>" <Sensor Number> "<Variable Name>"" ""<Local
File Path>

Replace the <variables> with their respective values:
* <Path/To/Plug-in> is the path where you installed the plug-in files.

* <Source Server> is the host name / IP address of your source server

www.versiontwo.ca

Sensor Web Interface - User Manual 13

* <Sensor Number> is the number assigned to your Sensor Outpost.
* <Variable Name> is the name of the variable the photo was transmitted with.

* <Local File Path> is the local location where the photo will be stored.

4.3.2.2 Understanding the Script

This script operates in the same way as GetData, only now you're now calling getlmage() instead of
getData(). Refer to section 6.1 for more information on getlmage().

4.3.3 Replace
$PATH = dirname(dirname(_ FILE));

include _once($PATH . "/V2_ Sensor Web Interface.php");
include_once($PATH . "/V2_SWI Tools.php™);

/I Get the arguments

$Source Server = (empty($argv[1])? "" : Sargv[1]);
$Sensor Number = intval(empty($argv([2])? 0 : Sargv[2]);
$Source Path = (empty($argv[3])? "" : $argv[3]);
$Destination Path = (empty($argv[4])? "" : Sargv[4]);

$swi =new V2_Sensor Web_Interface();

/I Get the Data

$data = $swi->getData($Source Server, $Sensor Number);
if ($data === NULL)

{

echo $swi->getError();
return;

}

// Replace the contents of the template file with the Data collected above
$tool =new V2_SWI Tools();
if (!$tool->HTMLReplace($data, $Source Path, $Destination_Path))

{

echo $tool->getError();
return false;

}

4.3.3.1 Run The Script

If you have console access on your web server (such as an SSH connection through PuTTY), you can
execute this script by typing the following at the command line:

$> php <Path/To/Plug-in>/demo/Replace.php "<Source Server>" <Sensor Number> "<Path/To/TemplateFile>"
"<Path/To/OutputFile>"

Replace the <variables> with their respective values:

www.versiontwo.ca

Sensor Web Interface - User Manual 14

* <Path/To/Plug-in> is the path where you installed the plug-in files.

* <Source Server> is the host name / IP address of your source server

* <Sensor Number> is the number assigned to your Sensor Outpost.

* <Path/To/TemplateFile> is the path and file name of the template file Replace will work with.
* <Path/To/OutputFile> is the path and file name of the file Replace will store its output into.

4.3.3.2 Understanding the Script

Replace.php will search for %variable-names%, and replace them with their respective values. For
example: Say you wanted to include the most recent temperature recorded by your Sensor Outpost, and
the Sensor Outpost records the data with the variable name of "temperature". Your Template File
should look like the following:

Current Temperature: %temperature%

The trick to this script is the HTMLReplace() function, found in the V2 SWI Tools class. See section
6.3 for more information on the HTMLReplace() function.

5 Automated Updates

Now that you've seen how the Library works in action, you'll probably want to start writing scripts to
automatically update your public information. For the sake of this document, there are two ways you
can approach this. The first method is to embed some PHP code into your HTML document. The
second method is to create your own Replace.php script, and attach it to a daemon.

5.1 Embedded PHP

You can embed PHP code into your public web page so that every visit to that page will make an
attempt to update the data presented. To do so, try the following:

1. Create a new file. Call it "helloworld.php".

2. On the first line, include the V2 _Sensor Web Interface.php file.

3. On the next line, create a new instance of V2_Sensor Web Interface.
4

. On the next line, define an array of strings. Populate it with the names of the variables you want
to use.

N

Call getlmage(). Tell it to save the image as "foo.jpg".
6. Call getData(). Store the result inside a variable called "encoded_string".

7. Pass encoded string through json_decode. Store the result in "decoded object".

www.versiontwo.ca

Sensor Web Interface - User Manual 15

8. At the locations where you want your variables printed, simply print out the values stored inside
the decoded object. Keep in mind that the variables are stored in an array of objects; and follow
the same order that you requested for them in step 4.

9. Save the script.

10. Run the script.
For reference, your script should look like the following:
<?php

/[Include the Interface.
include("PATH/TO/INTERFACE/V2 Sensor Web_Interface.php");

// Create an instance of the interface object.
// Minimum time permitted between requests is 60 seconds. (default)
$swi=new V2 _Sensor Web_Interface();

$source server = "users.shangalulu.com";
$sensor number =2;
$variable name = "imgl";

$image destination = "images/foo.jpg";

/I Get the image.
$swi->getImage($source_server, $sensor number, $variable name, $image destination);

$time =0;
$unique_token = "foo"
$list of variables = array("A2 solar panel voltage", "C2 outside temperature");

// Get the data. The unique token "demo" enables the Interface to optimize its requests.
$encoded string = $swi->getData($source server, $sensor number, $time,
$unique name, S$list of variables);

// Decode the data. The @ symbol tells PHP to muffle warnings from the function next to it.
$decoded data = @json_decode($encoded_string);

// Default values.

$A2 solar panel voltage = "unknown";

$C2 outside temperature = "unknown";

if ($decoded_data !== null)

{
$A2 solar _panel voltage = doubleval($decoded data[0]->value);
$C2_outside_temperature = doubleval($decoded data[1]->value) - 273.15;

}

7>

<html>
<head>
<title>Demo Page</title>
</head>
<body>

www.versiontwo.ca

Sensor Web Interface - User Manual 16

<l--
This is a dirt simple HTML page.
->
<img src="<?php echo $image destination; ?>"
<p>
The current temperature outside is <?php echo $C2_outside temperature; ?> Celsius.

The Solar Panel voltage is <?php echo $A2_solar_panel voltage; ?> volts.

</p>
</body>
</html>

5.2 Running a Daemon

5.2.1 Using Cron

If you have access to the crontab command on your server, you can create a daemon to automatically
update the data on your page. If you type crontab -e at the command line, you will open up your cron
editor. Add the following lines to your crontab:

*/1 * * * * php "path/to/demo/Getlmage.php" "<server>" 2 "<variable name>" "/path/to/my_image.jpg"
*/1 * * * * php "/path/to/demo/Replace.php" "<server>" 2 "path/to//template.html" "path/to/output.html"

Update the fields as necessary to fit your environment. The end result should have output.html being
updated once every minute.

5.2.2 Using the Daemon Interface Class

If you don't have access to cron, the Sensor Web Interface package includes an alternate interface class
named V2 Sensor Web Interface Daemon. This class is identical to its non daemon counterpart, with
the exception that it will asynchronously request for data. This approach will greatly enhance the page
load speed, which means less time waiting for the page to load.

To use the Daemon Interface class, take the example from section 5.1, and make the following changes:
<7php

// Include the Interface.
include("PATH/TO/INTERFACE/V2 Sensor Web Interface_Daemon.php");

/I Create an instance of the interface object.

// Minimum time permitted between requests is 60 seconds. (default)
$swi =new V2_Sensor Web_Interface Daemon();

Once you've made these changes, save the document, and give it a try. If the images/data fail to load,
refresh the page a few times.

www.versiontwo.ca

Sensor Web Interface - User Manual 17

6 Web Interface Function Reference Sheet

6.1 V2_Sensor_Web Interface

string getError(void)

Gets the error message from the last action this object performed.

Parameters:
none

Returns:
This function returns the error message as a string.

Example:
<7php
include("PATH/TO/INTERFACE/V2 Sensor Web Interface.php");

$swi =new V2_Sensor Web_Interface("users.shangalulu.com");
if(!$swi->getlmage(1))
{

echo $swi->getError();

}

// This will print getlmage's error message "Variable name must be present." to the screen.
7>

bool getlmage(string Source Server, int Sensor Number, string Variable Name, string Local File
Path, int Time=0)

Retrieve the most recent photo tied to Variable Name from the Sensor Outpost.

Parameters:
Source Server The address to the Source server.
Sensor Number The ID of the Sensor Outpost you are pulling data from.
Variable Name The variable name assigned to the photos taken from the Sensor Outpost's
camera.
Local File The local file path and name to give to the photo collected from the server.

Path This does not have to be in the same location as your script.
Time A filter. If set to a non-zero value, getlmage() will attempt to get the last

image taken at or before Time. If set to zero (0), this getlmage() will get the
most recent photo taken. Default value is 0.

www.versiontwo.ca

Sensor Web Interface - User Manual 18

Returns:
This function returns a Boolean value. True on success, false on failure. Refer to getError() for more
information on the cause of the error.

Example:
<7php
include("PATH/TO/INTERFACE/V2 Sensor Web Interface.php");

$swi =new V2_Sensor Web_Interface();
$source server = "users.shangalulu.com";
$sensor_number = 1;

$variable name = "imgl";

$local file path="my image.jpg";

if(!$swi->getImage($source server, $sensor number, $variable name, $local file path))

{

echo $swi->getError();

}

7>

The above example should create a file called my image.jpg at the same location where this script
was executed. Be sure to change the parameters in getlmage to match your set up!

string getData(string Source Server, int Sensor Number, int Time=0, string Unique Name="",
string|] Variables=[])

Retrieves the most recent data collected from the Sensor Outpost.

Parameters:
Source Server The address to the Source server.
Sensor Number The ID of the Sensor Outpost you are pulling data from.
Time A filter. If set to a non-zero value, getlmage() will attempt to get the last
image taken at or before Time. If set to zero (0), this getlmage() will get the
most recent photo taken. Default value is 0.

Unique Name Optimization. If a name is given, getData will cache the data collected from
the Sensor Outpost into a file with the provided name. Giving a request a
name may increase its performance.

Variables An array of variable names. If not provided, getData() will retrieve the most

recent data from all of the variables the Sensor Outpost has recorded. If set,
getData() will only get the most recent data recorded for the variables listed.

www.versiontwo.ca

Sensor Web Interface - User Manual 19

Returns:
This function returns the data collected as a json encoded string. You can decode the string using a
json decoder. In PHP, the function is called json_decode().

If an error occurs, this function will return NULL.

Example:

<7php
include("PATH/TO/INTERFACE/V2 Sensor Web Interface.php");

$swi =new V2_Sensor Web_Interface();

$source server = "users.shangalulu.com";
$sensor_number = 1;

$time = 0;

$unique_name = "demo";

$variable names = array("varl", "var2", "var3");

$encoded data = $swi->getData($source server, $sensor number, $time, $unique name, $variable names))
if ($encoded data === NULL)
{

echo $swi->getError();

return;

$decoded data = json decode($encoded data);

print_r($decoded data);
7>

www.versiontwo.ca

Sensor Web Interface - User Manual 20

6.2 V2_Sensor_Web_Interface_Daemon

string getError(void)

Gets the error message from the last action this object performed.

Parameters:
none

Returns:
This function returns the error message as a string.

Example:
<?php
include("PATH/TO/INTERFACE/V2 Sensor Web Interface Daemon.php");

$swi =new V2_Sensor Web_Interface Daemon("users.shangalulu.com");

if(!$swi->getlmage(1))
{

echo $swi->getError();

}

// This will print getlmage's error message "Variable name must be present." to the screen.
>

bool getlmage(string Source Server, int Sensor Number, string Variable Name, string Local File
Path, int Time=0)

Retrieve the most recent photo tied to Variable Name from the Sensor Outpost.

Parameters:
Source Server The address to the Source server.
Sensor Number The ID of the Sensor Outpost you are pulling data from.
Variable Name The variable name assigned to the photos taken from the Sensor Outpost's
camera.
Local File The local file path and name to give to the photo collected from the server.

Path This does not have to be in the same location as your script.
Time A filter. If set to a non-zero value, getlmage() will attempt to get the last

image taken at or before Time. If set to zero (0), this getimage() will get the

www.versiontwo.ca

Sensor Web Interface - User Manual 21

most recent photo taken. Default value is 0.

Returns:
This function returns a Boolean value. True on success, false on failure. Refer to getError() for more
information on the cause of the error.

Example:

<7php
include("PATH/TO/INTERFACE/V2_ Sensor Web_Interface Daemon.php");

$swi =new V2_Sensor Web_Interface Daemon();

u = "users. ulu. ;
$source server = "users.shangalulu.com";
$sensor number = 1;

$variable name = "img1";

$local file path ="my image.jpg";

if(!$swi->getlmage($source server, $sensor_number, $variable name, $local file path))

{

echo $swi->getError();

}

7>

The above example should create a file called my image.jpg at the same location where this script
was executed. Be sure to change the parameters in getlmage to match your set up!

string getData(string Source Server, int Sensor Number, int Time=0, string Unique Name="",
string|] Variables=[])

Retrieves the most recent data collected from the Sensor Outpost.

Parameters:
Source Server The address to the Source server.
Sensor Number The ID of the Sensor Outpost you are pulling data from.
Time A filter. If set to a non-zero value, getlmage() will attempt to get the last
image taken at or before Time. If set to zero (0), this getimage() will get the
most recent photo taken. Default value is 0.

Unique Name Optimization. If a name is given, getData will cache the data collected from
the Sensor Outpost into a file with the provided name. Giving a request a
name may increase its performance.

Variables An array of variable names. If not provided, getData() will retrieve the most

recent data from all of the variables the Sensor Outpost has recorded. If set,
getData() will only get the most recent data recorded for the variables listed.

www.versiontwo.ca

Sensor Web Interface - User Manual 22

Returns:
This function returns the data collected as a json encoded string. You can decode the string using a
json decoder. In PHP, the function is called json_decode().

If an error occurs, this function will return NULL.

Example:
<7php
include("PATH/TO/INTERFACE/V2 Sensor Web Interface Daemon.php");

$swi =new V2_Sensor Web_Interface Daemon();

$source server = "users.shangalulu.com";
$sensor_number = 1;

$time = 0;

$unique_name = "demo";

$variable names = array("varl", "var2", "var3");

$encoded data = $swi->getData($source server, $sensor number, $time, $unique name, $variable names))
if ($encoded data === NULL)
{

echo $swi->getError();

return;

$decoded data = json decode($encoded data);
print_r($decoded data);
>

bool imageNeedRefresh(string Local File Path)

Checks if the page may need to be refreshed to ensure that it gets the latest image.

Parameters:
Local File The local file path and name to give to the photo collected from the server.
Path This does not have to be in the same location as your script.
Returns:

This function will return true if calling getlmage will result in the host making a request to the
sensor server. If an update is not required, it will return false.

Example:
<?php
include("PATH/TO/INTERFACE/V2 Sensor Web Interface Daemon.php");

$swi =new V2_Sensor Web_Interface Daemon();

www.versiontwo.ca

Sensor Web Interface - User Manual

$local file path="my image.jpg";

if($swi->imageNeedRefresh($local file path))
{

echo "A refresh is required!";

}

7>

www.versiontwo.ca

23

Sensor Web Interface - User Manual 24

6.3 V2_SWI_Tools

string getError(void)

Gets the error message from the last action this object performed.

Parameters:
none

Returns:
This function returns the error message as a string.

Example:

<7php

$tool = new V2_SWI Tools();
if (! $tool->HTMLReplace())

echo $tool->getError();

}

// This will print HTMLReplace's error message "Parameter Mismatch" to the screen.
>

bool HTMLReplace(string encoded data, string source path, string destination path)

Replaces the variables in HTML source path with their respective values from encoded data, and

outputs the resulting page into HTML _destination_path. All variable names must match the names

given from the Sensor Outpost, and they must be surrounded by %'s. This function does not change
the source file.

Parameters:
encoded_data This is the data returned fromV2 Sensor Web Interface::getData()
source_path The source file to modify.
destination_path The destination file to output the changes to.
Returns:

This function returns a Boolean value. On success, this function will return true. On failure, this
function will return false. Failure is commonly attributed to either a misspelling of the source file's
name, or a lack of permission to create the destination file. Refer to the output of getError() for
more information on the error.

Example:

www.versiontwo.ca

Sensor Web Interface - User Manual

<7php
$source server = "users.shangalulu.com";
$sensor_number = 1;

$swi=new V2 Sensor Web Interface();
$encoded data = $swi->getData($source server , $sensor number);

$tool = new V2 _SWI Tools();
if ($tool->HTMLReplace($encoded data, "/path/to/my/source file.html",
"/path/to/my/destination_file.html") === false)

{

echo $tool->getError();
I

7>

www.versiontwo.ca

25

	1 Introduction
	2 Prerequisites
	3 Installing
	4 Using the Plug-in
	4.1 Quick and Dirty
	4.2 Sample Page
	4.3 Writing a Script
	4.3.1 GetData
	4.3.1.1 Run the Script
	4.3.1.2 Understand the Script

	4.3.2 GetImage
	4.3.2.1 Run The Script
	4.3.2.2 Understanding the Script

	4.3.3 Replace
	4.3.3.1 Run The Script
	4.3.3.2 Understanding the Script

	5 Automated Updates
	5.1 Embedded PHP
	5.2 Running a Daemon
	5.2.1 Using Cron
	5.2.2 Using the Daemon Interface Class

	6 Web Interface Function Reference Sheet
	6.1 V2_Sensor_Web_Interface
	6.2 V2_Sensor_Web_Interface_Daemon
	6.3 V2_SWI_Tools

