
O2Web
 User Manual

C++

Release 5.0 - April 1998

Information in th is document is subject to change withou t
not ice and shou ld not be construed as a com mitment by
O2 Technology.

The software descr ibed in th is docum ent is delivered u nder a
license or nondisclosu re agreem ent.

The software can on ly be u sed or copied in accordance with the
term s of the agreement . It is against the law to copy th is
software on magnet ic tape, disk , or any other medium for any
pu rpose other than the pu rchaser ’s own use.

Copyr igh t 1992-1998 O2 Technology.

All r ights reserved. No par t of th is publicat ion can be
reproduced, stored in a ret r ieval system or t ransmit ted in any
form or by any means, elect ronic, mechan ical, photocopy
withou t pr ior wr i t ten permission of O2 Technology.

O2, O2API, O2C, O2DBAccess, O2Engine, O2Graph, O2Kit ,
O2Look , O2Store, O2Tools, and O2Web are registered
tradem arks of O2 Technology.

SQL and AIX are registered t rademarks of In ternat ional
Bu siness Machines Corporat ion.

Sun , SunOS, and SOLARIS are registered t rademarks of Sun
Microsystems, Inc.

X Window System is a registered tradem ark of the
Massachuset ts Inst i tu te of Technology.

Un ix is a registered t radem ark of Unix System Laborator ies, Inc.

HPUX is a registered t rademark of Hewlet t -Packard Com pany.

BOSX is a registered t rademark of Bu l l S.A.

IRIX is a registered t rademark of Siemens Nixdorf, A.G.

NeXTStep is a registered t rademark of the NeXT Computer , Inc.

Pu r i fy, Qu ant i fy are registered trademarks of Pure Software Inc.

Windows is a registered t rademark of Microsoft Corporation .

All other company or product names quoted are t rademarks or
registered t rademarks of their respect ive t rademark holders.

Who

See O
should read this manual

Th is manual descr ibes how to develop a Wor ld Wide Web server using
the O2 system. It descr ibes how to wr i te in HTML and program an
O2Web server . The manual con tains a comprehensive list of O2Web
methods and comm ands.

Other docum ents avai lable are ou t lined, cl ick below.

2 Documentation set .

Table of Contents
 O2Web User Manual v

TABLE OF CONTENTS

.20
.20

.21

.21

.21
22

6
.27
.27
1 Introduction 11

1.1 System overview ...12

1.2 The World Wide Web...14

1.3 Features and advantages ...15

1.4 Manual overview...16

2 O2Web Installation 17

2.1 Requirements ..18

2.2 O2Web distribution ...19

2.3 Installation ...20

Specifying a port number to access o2open_dispatcher
Retrieving the dispatcher host name ...

2.4 Launching O2Web...21

Running o2open_dispatcher..
Running o2server ..
Running o2web_server..
Running an HTTP server ...

3 A World Wide Web Tour 23

3.1 The World Wide Web...24

3.2 The HTML language ..25

3.3 Writing HTML documents...26

An HTML document..2
The header...
The body..

3.4 Special characters in HTML text ..43

3.5 Special characters in URLs and form submissions.............47

3.6 HTML tags summary ...48

4 O2Web Overview 51

4.1 Principles ...52

4.2 O2Web Architecture ..54

4.3 Building your O2Web server ..56
vi O2Web User Manual

TABLE OF CONTENTS

61
61
62
68
70

. 73
73
73
. 74
. 74
. 75
75

. 79
79
79
80
80
80

103
04
05
06
08

109
10
5 Programming an O2Web Server 57

5.1 Introduction ... 58

5.2 Summary ... 59

5.3 Generic mode.. 61

Simple Browsing ...
How does it work...
A Guided Example ..
O2Web server main ...
Building your O2Web Server ..

5.4 Global Personalizations ... 73

Adding a header to the top of each page
Adding a footer to the bottom of each page
Changing the default prolog and epilog
React to a connection..
React to a disconnection...
Make your own error messages..
A Guided Example ..

5.5 Local Personalizations ... 79

Adding a header to the top of a page..
Adding a footer to the bottom of a page......................................
Changing the prolog and epilog...
Building the body of a report...
Optimizing the query generation ...
A guided example..

5.6 Updating the database with O2Web...................................... 97

5.7 Summary ... 99

6 O2Web Reference 101

6.1 O2WebInteractor ... 102

connect...
disconnect .. 1
epilog ... 1
error ... 1
footer.. 1
header...
prolog... 1
 O2Web User Manual vii

TABLE OF CONTENTS

12
14
15
16

18
19
21

25
26
27
28
29
30
31
33
34
35
36
37
38
39
40

42
43
44
45
47
48
49
150
151
53
54
55
56
57
58
6.2 User-Defined member functions..111

get_query..1
html_epilog ..1
html_footer...1
html_header..1
html_prolog..1
html_report...1
html_title ..1

6.3 The o2webassistant library ..122

get_http_prolog ..1
get_http_variable..1
make_anchor ..1
make_index ..1
make_inline_image ..1
make_report..1
make_url...1
get_all_values...1
get_keywords ...1
get_nb_values...1
get_nth_value ...1
get_raw_data ..1
get_unique_keywords ..1
get_values...1
is_decoded..1
get_file..1
get_name ..1
get_type..1
get_value ..1
set_align ...1
set_border...1
set_clickable...1
set_hspace ..
set_vspace ..
set_format...1
set_height ...1
set_key..1
set_label..1
set_query ..1
get_report ...1
viii O2Web User Manual

TABLE OF CONTENTS

59
161
162
63
64
65

166
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86

187
88

189
90
91

94
197
98
99
00
03
set_width.. 1
append..
caseCompare..
char* .. 1
compareTo... 1
contains.. 1
data...
first... 1
index .. 1
insert .. 1
isAscii .. 1
isNull ... 1
last.. 1
length ... 1
mblength .. 1
o2_WebStream .. 1
operator=.. 1
operator+= ... 1
operator[] ... 1
operator+.. 1
operator== ... 1
operator!= .. 1
operator<.. 1
operator<= ... 1
operator>.. 1
operator>= ... 1
operator<< ... 1
prepend ..
remove ... 1
replace..
toLower.. 1
toUpper .. 1

6.4 o2_Web .. 192

begin .. 1
end ...
init.. 1
loop .. 1
enroll.. 2
enroll_path... 2
 O2Web User Manual ix

TABLE OF CONTENTS

04
05

07
08
get_option...2
set... ..2

6.5 O2Web Commands..206

o2open_dispatcher..2
o2web_gateway..2

Index 209
x O2Web User Manual

1 Introduct ion

GENERAL OVERVIEW OF O2WEB

1

Congratulations! You are now a user of O2Web. You will find that building
your WWW service on top of the O2 database system has several key
benefits.

This chapter introduces O2Web and is divided into the following
sections:

• System overview

• The World Wide Web

• Features and advantages

• Manual overview
 O2Web User Manual 11

Introduction1
1.1 System overview

O2’s system architecture is illustrated in the following figure.

O2 System Architecture

The O2 system consists of the database engine, development tools, and
external interfaces.The database engine provides all the capabilities of a
database and an object-oriented system. This engine is accessible by
using programming languages, O2 development tools, and other
standard development tools. Numerous external interfaces are also
provided.

The database engine consists of the following:

• O2Store The database management system (DBMS) provides
low-level facilities, through O2Store API, to access and
manage databases: disk volumes, files, records,
indexes, and transactions.

• O2Engine The object database engine provides direct control of
schemas, classes, objects, and transactions through
O2Engine API. It provides full text indexing and search
capabilities with O2Search and spatial indexing and retrieval
capabilities with O2Spatial. It includes a Notification manager
for informing other clients connected to the same O2 server
that an event has occurred, a Version manager for handling
multiple object versions and a Replication API for
synchronizing multiple copies of an O2 system.

O2CC++ Java

O2 Dev. Tools

O2DB
Access

OQL

Standard
Dev. Tools

O2Web

O2Corba

Development Tools

C

Database Engine

O2Engine

O2Store

External
Interfaces

O2ODBC
12 O2Web User Manual

System overview
Programming Languages:

You can create and manage O2 objects by using the following
programming languages:

• C O2 functions can be invoked by C programs.

• C++ ODMG-compliant C++ binding.

• Java ODMG-compliant Java binding.

• O2C An object-oriented fourth-generation language
specifically for developing object database applications.

• OQL ODMG-standard, SQL-like object query language
capable of handling complex O2 objects and methods.

O2 Development Tools:

• O2Graph Creates, modifies, and edits any type of object graph.

• O2Look Designs and develops graphical user interfaces,
provides interactive manipulation of complex and
multimedia objects.

• O2Kit Library of predefined classes and methods for fast
development of user applications.

• O2Tools Complete graphical programming environment for
designing and developing O2 database applications.

Standard Development Tools:

You can use any standard programming language system, such as
Visual C++ and Sun Sparcworks and any supported operating system.

External Interfaces:

• O2Corba Creates O2-Orbix servers for accessing O2 databases
with CORBA.

• O2DBAccess Connects O2 applications to relational databases on
remote hosts; invokes SQL statements.

• O2ODBC Connects remote ODBC client applications to O2
databases.

• O2Web Creates O2 World Wide Web servers for accessing O2
databases through the internet network.
 O2Web User Manual 13

Introduction1
1.2 The World Wide Web

The World Wide Web (WWW or Web) is a protocol for exchanging and
distributing hypermedia* information across the Internet network.

Since its creation at CERN in 1992, the Web has experienced a
tremendous but unexpected success. Currently, more than one million
Web users visit more than 10000 Web sites throughout the world.

Web servers provide interactive access to large amounts of complex
multimedia, and distributed data including structured text, graphics,
sound, and video.

*hypertext — linking elements, such as words and pictures in electronic
documents to elements in other documents. When a user clicks on an
linked element, the file linked to it displays.

hypermedia — an extension of hypertext that includes audio, video, and
graphics.
14 O2Web User Manual

Features and advantages
1.3 Features and advantages

As an object database system, O2 efficiently stores and manages large
amounts of complex and multimedia data, including larg binary files.

O2Web provides the benefits of database technology and object
technology, in addition to a set of tools enabling rapid development and
deployment of Web servers based on the O2 system.

O2Web provides clients with the ability to browse through hypermedia
information stored in any O2 database. The information presented to a
Web client is a view of the objects in the database.

O2 enables a client to address an unlimited number of objects. O2 also
implements management techniques such as buffering, indexing,
clustering, and query optimization.

Based on O2, your Web server benefits from the following additional
capabilities:

• Information stored in O2 can be physically reorganized without any
application modification. This physical/logical independence is
ensured by the use of an associative query language, such as OQL.

• Data can be shared by several users connected through the Web or
through other means [such as ?] (a standard O2 application).

• O2 enables fast recovery from any kind of software or hardware
failure. [can we make such a claim without getting sued?]

• O2’s development tools enable you to create, modify, and reuse
classes and methods.

• O2 supports turnkey components to manage audio, video, and text
data types and can interpret data from other sources.
 O2Web User Manual 15

Introduction1
1.4 Manual overview

This manual is divided into the following chapters:

• Chapter 1 - Introduction

Introduces O2Web and outlines some of its advantages.

• Chapter 2 - O2Web Installation

Describes how to install O2Web.

• Chapter 3 - A World Wide Web Tour

Gives an overview of the World Wide Web.

• Chapter 4 - O2Web Overview

Focuses on the differences between using the Web with file systems and
using the Web with the O2 system.

• Chapter 5 - Programming an O2Web server

Describes how to program an O2Web server using exemples.

• Chapter 6 - O2Web Reference

Gives the full referential information for O2Web.
16 O2Web User Manual

2 O2Web Installation2
This chapter describes how to install O2Web and is divided into the
following sections:

• Requirements

• O2Web distribution

• Installation

• Launching O2Web
O2Web User Manual 17

O2Web Installation2
2.1 Requirements

In order to use O2Web, you need a fully featured HTTP server.

O2Web can be used with commercial servers (Netscape Communication
Server, Netscape Commerce Server, Microsoft Information Server, etc.)
and public domain servers (CERN httpd, NCSA httpd, etc.).
18 O2Web User Manual

O2Web distribution
2.2 O2Web distribution

The O2Web distribution contains the following:

• The o2web_gateway program. This is a CGI script that is called by
the httpd server when an O2 query is received.

• The o2open_dispatcher program. This program manages O2Web
activity. It knows every o2web_server running on your Local Area
Network (LAN) and supplies each o2web_gateway with the address
of the o2web_server best suited to answer a query.

• A library (libo2webserver.a) that is used by C++ programmers to
build an O2Web server.

• The o2webassistant library. This is provided as a C++ library
located in $O2HOME/lib/libo2webassistant.a . The file
o2web_CC.hxx , which is located in $O2HOME/include , contains the
public interface of the library.

• A four step tutorial. This tutorial is installed in
$O2HOME/samples/o2web/cplusplus . A README file in this
directory explains how to use the examples. This tutorial is described
in Chapter 5.
O2Web User Manual 19

O2Web Installation2
2.3 Installation

This section describes the different steps required to install O2Web.

Specifying a port number to access o2open_dispatcher

In order to be reachable by o2web_server and o2web_gateway , a
port number must be associated to the o2open_dispatcher service. This
is done by adding an entry to the operating system file that contains the
available services on the network.

The service name associated with o2open_dispatcher is
o2opendispatcher . The port number can be any number that is not
used by another service. Depending on the operating system (UNIX or
Windows NT), the new entry must be inserted into one of the following
files:

• /etc/services - for UNIX.

• $WINDIR\system32\drivers\etc\services - for Windows NT.

The new entry in the file is as follows:

Retrieving the dispatcher host name

To access the o2open_dispatcher , o2web_gateway and
o2web_server must retrieve the machine on which
o2open_dispatcher is running. This can be achieved using the
following three techniques:

1. Looking for a command-line argument. This technique is only used by
o2web_server and overrides any other means of retrieving the dispatcher
host name.

2. Looking for the O2OPEN_DISPATCHER environment variable. This
technique is used by o2web_server if the dispatcher host has not been
retrieved by the command line. It can also be used by o2web_gateway if it
is able to retrieve this variable. Certain HTTP servers only pass CGI
variables to a CGI script. Thus, this technique cannot be used with these
types of HTTP server.

3. Looking for the content of the file /etc/o2openaccess (UNIX) or
$WINDIR\system32\drivers\etc\o2openaccess (Windows
NT). This technique can be used by both o2web_server and
o2web_gateway if the dispatcher host name has not been retrieved by
any other means. This file must contain the dispatcher host name.

o2opendispatcher 7999/tcp
20 O2Web User Manual

Launching O2Web
2.4 Launching O2Web

Running o2open_dispatcher

In order to start-up successfully, o2open_dispatcher needs the port
number and the protocol used by the other programs to connect to it.
This information is retrieved using the techniques described in the
subsection Specifying a port number to access o2open_dispatcher.

This program has only one option (-v). This forces o2open_dispatcher to
run in verbose mode.

It does not use any environment variables.

It must be running before o2web_server is launched.

Running o2server

Before running o2web_server , an o2server must be running. Consult
the O2 System Administration Guide for further details concerning
o2server .

Running o2web_server

In order to start-up successfully, o2web_server needs the following
information:

• The O2 installation directory. This is given by the O2HOMEenvironment
variable (mandatory).

• The O2 system to connect to. This is given by a directive in the .o2rc
configuration file or by specifying a system name in the command line.

• The machine on which an o2server is running. This is given by a
directive in the .o2rc configuration file or by specifying a server
hostname in the command line.

• The machine on which an o2open_dispatcher is running. As
explained in the subsection Retrieving the dispatcher host name, this
information is retrieved by the o2web_server in a system-dependent
file. It can be overridden by a directive in the .o2rc configuration file or
by specifying a dispatcher hostname in the command line.

• The port number and the protocol used to connect to
o2open_dispatcher . As explained in the subsection Specifying a
port number to access o2open_dispatcher, this information is retrieved by
the standard operating system mechanisms.
 O2Web User Manual 21

O2Web Installation2
o2web_server can run on any machine on your LAN.

An O2 server running on the same system must be active before
o2web_server can be run. The o2open_dispatcher program must
also be running before o2web_server can be run.

Running an HTTP server

To test your O2Web service, you need an HTTP server. Any HTTP server
can be used (commercial or public domain). Your server must be configured to
call the o2web_gateway CGI script when a URL leading to O2 is received.
This installation is specific to each HTTP server and cannot be explained here.
Refer to your HTTP server documentation for details about mapping URLs to
CGI scripts.

After configuration, the HTTP server will run an o2web_gateway
process each time a URL leading to O2 is received.

To run successfully, o2web_gateway needs the following information:

• The machine on which the o2open_dispatcher is running. As
explained in the subsection Retrieving the dispatcher host name, this
information is retrieved by o2web_gateway in a system-dependent
file and can overridden by the O2OPEN_DISPATCHER environment
variable when running HTTP servers that transfer their own
environment to CGI scripts.

• The port number and protocol used to connect to o2open_dispatcher.
This information is retrieved by standard operating system
mechanisms, as explained in the subsection Specifying a port number to
access o2open_dispatcher.
22 O2Web User Manual

3 A World Wide Web
Tour3
This chapter gives an overview of the World Wide Web.

It contains the following sections:

• The World Wide Web

• The HTML language

• Writing HTML documents

• Special characters in HTML text

• Special characters in URLs and form submissions

• HTML tags summary
O2Web User Manual 23

A World Wide Web Tour3
3.1 The World Wide Web

The World Wide Web (or Web or WWW) is a wide area client-server
architecture for retrieving hypermedia information across the Internet.
The Web has three main components:

• Universal naming scheme for documents. The Universal Resource
Location (URL) syntax specifies documents in terms of the protocol to
be used in order to retrieve them, their Internet host and path name.

• Use of available protocols for retrieving documents over the network,
including FTP, NNTP, WAIS, Gopher, and HTTP. The latter is designed
specifically for use with the WWW, and combines efficiency with an
ability to flexibly exchange information between clients and servers.

• A document format (HTML) supporting hypertext links based on URLs
which can specify documents anywhere on the Internet. HTML is
designed for rendering on a wide variety of different display types and
platforms.
24 O2Web User Manual

The HTML language
3.2 The HTML language

The Hypertext Markup Language (HTML) is the language used to write
documents for the Web. Applications designed for the Web (usually
called Web browsers) can read HTML documents and format them with
text, graphics, tables and links to other HTML documents.

HTML is a markup language - in fact it is a specific implementation of the
Standard Generalized Markup Language (SGML) - and is concerned
with the structure of documents rather than their appearance. This
feature gives HTML documents portability across different platforms or
media. It is up to the browser reading an HTML document to map the
structure into a physical format.

An HTML document is made of structure commands and plain text. The
structure commands are called tags. A tag begins with a < and ends with
a >. HTML tags can be either separator tags or container tags. A
container tag is made of two parts: the beginning tag <X> and the ending
tag </X> . The command specified is then applied to the text between
the two tags. A separator tag is a "one shot" command; for instance the
<hr> tag, which inserts an horizontal rule line, is a separator tag
whereas the tag, which makes the text contained between the
tag and the tag bold, is a container tag.
 O2Web User Manual 25

A World Wide Web Tour3
3.3 Writing HTML documents

This section introduces the HTML language and the tags most
commonly used for writing standard documents. It is not a complete
HTML manual and is intended to help readers unfamiliar with the Web to
understand the O2Web basics.

An HTML document

Every HTML document has a common structure.

It declares itself as an HTML document with the <html> tag and ends
with the </html> tag.

It comprises two main parts: the header and the body.

An HTML document has the following structure:

<html>
<head>
.....
</head>

<body>
.....
</body>
26 O2Web User Manual

Writing HTML documents
The header

The header content is not usually displayed by the browser in the
document window. It contains information that can be either displayed in
a separate window or when document information is requested. The
most important command that must always be present in the header is
the <title> command. This label is used, for example, when you store
a reference to a document in your browser's "hotlist". Other information,
such as the creator of the document, the creation date, etc., can also be
written in the header.

The body

The body of an HTML document contains both the structure and the
content of the document.

Heading Levels

Heading tags are used to organize your document into a hierarchical
structure. Different heading levels exist from level 1 to level 6. Each
heading level puts text inside it with a particular font size, font attributes,
etc.

Usually, the level 1 header (<h1>) is used for writing the title of your
document, the level 2 header (<h2>) for the title of the document
sections, the level 3 (<h3>) for the subsections, etc.

This kind of document structure is not forced by HTML, for which a
header tag indicates only that the text between the header beginning tag
and the header ending tag must have a particular style, but it is
considered good practice to organize an HTML document in this way.

<html>
<head>
<title> This is the title of my document </title>
</head>

<body>
.....
</body>
</html>
 O2Web User Manual 27

A World Wide Web Tour3
<html>
<head>
<title> This is the title of my document </title>
</head>

<body>
<h1> This is the title of my document </h1>

<h2> First Section </h2>

<h3> First SubSection </h3>

......
<h3> Second SubSection </h3>
......
<h2> Second Section </h2>
......
</body>
</html>
28 O2Web User Manual

Writing HTML documents
Paragraphs

The paragraph tag (<p>) is a separator tag. It cuts a piece of text into
two different paragraphs. Most browsers when finding a paragraph tag,
insert a blank line to separate the paragraphs. If you just want to break
the current line, you can use the
 tag.

Enumeration Lists

The list tags are very useful when the document must integrate
enumeration of items. There are two kinds of lists: ordered lists and
unordered lists.

When using ordered lists, each item appears preceded by its rank in the
list; when using an unordered list, each item appears preceded by a
marker (usually a bullet).

The tag corresponding to an ordered list is and the tag
corresponding to an unordered list is . A separator tag () is
used to indicate a new item in a list.

Enumeration list can be nested. In this case, visual outline effects are
usually provided by most browsers.

<html>
<head>
<title> This is the title of my document </title>
</head>

<body>
<h1> This is the title of my document </h1>

<h2> First Section </h2>

This is the text of my first paragraph.
<p>
This is my second paragraph. It is cut here

and continued on the next line.

......

</body>
</html>
 O2Web User Manual 29

A World Wide Web Tour3
Definition Lists

A definition list is quite useful for expanding items in a list. The tag for
defining a definition list is the <dl> tag. Each item in a definition list has:

a definition term (<dt>)

and definition data (<dd>) expanding or explaining the term

Definition lists are a very commonly used structure in HTML documents.

<html>
<head>
<title> This is the title of my document </title>
</head>

<body>
<h1> This is the title of my document </h1>

<h2> First Section </h2>

......

<h3> First SubSection </h3>

 My first item
 My second item

 My first sub item
 My second sub item

 My third item

......

</body>
</html>
30 O2Web User Manual

Writing HTML documents
Hypertext Links

Hypertext links are a key feature of HTML and are what makes the Web
so exciting for many people. They are not only a way of pointing to
another document stored on a disk but a way of pointing to another
document located anywhere else on the internet network.

At this point, it is important to explain how a document located
somewhere on the internet is retrieved by your favorite Web browser.
The World Wide Web is based on a communication protocol, the
HyperText Transfer Protocol (HTTP) and documents are referenced

<html>
<head>
<title> This is the title of my document </title>
</head>

<body>
<h1> This is the title of my document </h1>

...

<h3> Second SubSection </h3>

<dl>

<dt> first item title
<dd> first item development or explanation

<dt> second item title
<dd> second item development. Note that the
definition data (such as any html tag
content) can be as complex as you want and
contains any HTML construction. <p>
Here we just add a new paragraph.

</dl>

......

</body>
</html>
 O2Web User Manual 31

A World Wide Web Tour3
using something called a Uniform Resource Locator (URL). A simple
URL might have the following format:

where:

• the protocol is usually HTTP but can also be another
communication protocol such as FTP, NNTP, WAIS, Gopher, etc. In
such cases, the URL is not used to retrieve an HTML document but for
other purposes that do not enter into the scope of this manual,

• the machine internet address is an internet host on which an
HTTP server is running,

• the optional port is the TCP port number on which the HTTP server is
accessible. The standard HTTP port number is 80. This means that
when accessing an HTTP server running on port 80, it is unnecessary
to specify the port number in the URL,

• the path is something that will be mapped by the HTTP server
(according to some configuration rules) into a physical path in its file
system,

• the document is a reference to a file containing an HTML document.

To insert a link to another document in an HTML document you use the
anchor tag (<a>). The anchor beginning tag contains an attribute
specifying the URL of the linked document. The text between the anchor
beginning tag and the anchor ending tag will be highlighted by the
browser (usually underlined). The appropriate document will be retrieved
when the user clicks on this text.

protocol://<machine internet
address>[:port]/path/document
32 O2Web User Manual

Writing HTML documents
Inline Images

Another exciting feature of the Web is its multimedia orientation.
Although documents integrate images, sound or video, only images and
bitmaps can be put inline in HTML documents. The only image format
that can be displayed by all browsers is the GIF format. It is therefore
recommended that you use GIF images in your HTML documents.
However, another format (JPEG) is becoming increasingly popular and
can be put inline by many recent browsers.

An image is inserted in an HTML document by means of the tag.
This tag contains an attribute (src) specifying the URL of the image file.

The following optional attributes can be used with the tag:

• the align attribute specifies the position of the image relative to the
text. The possible values for this attribute are top , middle or
bottom . Some browsers recognize other values but these are
nonstandard.

• the alt attribute specifies a text label to be displayed instead of the
image when a browser can not display images or when a browser is
configured to only show images on demand.

• the ismap attribute specifies the image as a clickable image. This
attribute is discussed in more detail in the section "clickable images".

<html>
<head>
<title> This is the title of my document </title>
</head>

<body>
<h1> This is the title of my document </h1>

...

<h2> Second Section </h2>

The second section of the document is not here.
It can be retrieved here.

</body>
</html>
 O2Web User Manual 33

A World Wide Web Tour3
Do not forget that inline images, although greatly improving the look of
your documents, considerably slow down the retrieval of such
documents. Keep this in mind when designing documents.

<html>
<head>
<title> This is the title of my document </title>
</head>

<body>
<h1> This is the title of my document </h1>

...

<h2> Second Section </h2>

The second section of the document is not here but
can be retrieved
here.

What about using an

image separation line.

</body>
</html>
34 O2Web User Manual

Writing HTML documents
The complete document built so far has the following form:

<html>
<head>
<title> This is the title of my document </title>
</head>

<body>
<h1> This is the title of my document </h1>

<h2> First Section </h2>

This is the text of my first paragraph.
<p>
This is my second paragraph. It is cut here

and continued on the next line.

<h3> First SubSection </h3>

 My first item
 My second item

 My first sub item
 My second sub item

 My third item

<h3> Second SubSection </h3>

<dl>

<dt> first item title
<dd> first item development or explanation

<dt> second item title
<dd> second item development. Note that the
definition data (such as any html tag content)
can be as complex as you want and contains any
HTML construction. <p>
Here we just add a new paragraph.

</dl>
 O2Web User Manual 35

A World Wide Web Tour3
This document will have the following appearance when viewed using a
typical Web browser:

Figure 3.1: A simple HTML page

<h2> Second Section </h2>

The second section of the document is not here but
can be retrieved here.

What about using an

image separation line.

</body>
</html>
36 O2Web User Manual

Writing HTML documents
Clickable images

A clickable image (or imagemap) is an inline image in which sensitive
zones are defined. A URL is associated with each of these zones. The
appropriate URL will be resolved when the user clicks on one of these
zones. An imagemap is declared by the ismap attribute of the
tag.

Zones of an image are described in a file called a map file. Such a file
contains, on each line, the specification of a region and its corresponding
URL. The syntax of a map file is as follows:

• point URL x,y specifies a clickable point on the image. This is
useful if a user clicks on an undefined area because the closest
defined point is used.

• circle URL x,y x,y specifies a circle by the coordinates of both
its center and any point on its circumference.

• rect URL x,y x,y specifies a rectangle by its upper left and lower
right corners.

• poly URL x,y x,y ... specifies a polygon of up to 100 sides.
Each (x,y) pair is a point where two sides of the polygon meet. The
last point is always connected to the first one.

• default URL defines the default URL to be used if a user clicks on a
point outside a defined region. When a point region is defined in the
image, the default is never used.

Forms

HTML forms are a way of getting information from a user connected to
your Web server. Forms can be used to insert buttons, input text fields,
menus, etc. A form is something included inside the <form> and
</form> tags. Two main attributes can be given to the <form> tag:

• action is the URL of a program to which the form content will be
submitted. If this attribute is missing, the current document URL will be
used. Forms usually use a special kind of URL that contains a path to
a program instead of a path to a file. Such a program is called a CGI
(Common Gateway Interface) script; this is a program that
understands a very simple protocol allowing it to get information from
the HTTP server. Writing a CGI script is out of the scope of this
manual. To know more about writing CGI scripts, you should consult
one of the many courses available on the internet. A good starting
point is the Web Consortium server (http://www.w3.org).

• method is the HTTP method used to submit the fill-out form to a
query server. The method attribute values can be get or post . When
using the get method, the fill-out form content is appended to the
O2Web User Manual 37

A World Wide Web Tour3
URL; if the post method is used, the fill-out form contents are sent to
the server in a data block. It is highly recommended to use post
methods when writing forms as this technique does not have the
limitations get methods can have when the fill-out form contents are
large.

The form content is built using several tags:

• The input tag is used to specify a simple element inside a form. There
is no corresponding ending tag. The possible attributes of the input tag
are as follows:

- type must be one of:

text : a text entry field (default)

password : a text entry field where typed characters are repre-
sented as asterisks.

checkbox : a single toggle button; on or off.

radio : a single radio button; on or off. Other radio buttons with
the same name are grouped into "one of many" behavior.

submit : a push-button that computes the fill-out form contents,
formats it and resolves the URL in the action attribute of the
form, appending the form contents to the URL (get method) or
posting the form contents (post method).

reset : a push-button that resets the different fields in the form
to their default values.

hidden : a hidden text field in the created HTML form. It is useful
for contextual information.

- name is the symbolic name for this input field. This is a mandatory
attribute except for input tags of the type submit or reset. The name
is used when building the formatted fill-out form contents
transmitted to the server.

- value can be used to specify the default value of a field (for a text
or password input field). It can also be used to specify (for a
checkbox or a radio button field) the value of a button when it is
checked; the default value for a checkbox or radio button is "on". It
can also be used to specify the label of a push-button.

- checked specifies that a checkbox or a radio button is checked
when displayed.

- size is the size, expressed in characters, of text fields and
password fields.

- maxlength is the maximum number of characters accepted as
input in text and password fields.

• The select tag is used to insert an options menu or scrollable lists into
a form. It is used as follows:
38 O2Web User Manual

Writing HTML documents
The possible attributes of the select tag are:

- name is the symbolic name for this element. This is a mandatory
attribute of the tag. The name is used when building the formatted
fill-out form contents transmitted to the server.

- size is a specified integer. When its value is 1 (or if the attribute is
missing) then the form element will be represented as an options
menu. If size is greater than 1, the form element will be
represented as a scrollable list. The value of size determines how
many items are visible in the window.

- multiple specifies that the user can make multiple selections ("n
of many" behavior). This attribute forces the form element to be a
scrollable list regardless of the size attribute value.

• The textarea tag can be used to insert a multi-line text area in a
form.

• The attributes of a textarea are as follows:

- name is the symbolic name of the field

- rows is the number of rows in the text area

- cols is the number of columns in the text area.

<select name="my-menu">
 <option> first item
 <option> second item
 <option> third item
</select>
 O2Web User Manual 39

A World Wide Web Tour3
The following example shows a complete form:

<html>
<head>
<title> Form Example </title>
</head>
<body>
<h1><center> A Form Example </center></h1>
<form method="POST"
action="http://www.site.domain/cgi/getperson">

<hr>
Mr <input type ="radio" value="Mr" name="KIND" checked
>
Mrs <input type ="radio" value="Mrs" name="KIND">
<hr> <p>

<dl>
<dt>Enter your first name below:
<dd><input values="" size="40" name="FN">
<p>
<dt>Enter your last name below:
<dd><input values="" size="40" name="LN">
<p>
<dt>Enter your address below:
<dd><textarea rows=5 cols=40 name="ADDR"></textarea>
</dl>

<dl>
<dt> My hobbies are: <p>
<dd> <select name="HOBBIES" multiple size=3>
<option> skiing
<option> swimming
<option> playing golf
<option> playing tennis
<option> chess
</select> <p>
</dl>
<p> <hr> <p>
<p>
To submit the query, press this button:

<input type="submit" value="Submit">
<hr>
</form>
</body>
</html>
40 O2Web User Manual

Writing HTML documents
This document will have the following appearance when viewed by a
typical Web browser:

Figure 3.2: An HTML form example

In the above example, when the user clicks on the submit button, the
URL specified in the action attribute will be resolved and the specified
CGI script will be executed. As the method is a post method, a data
block containing the result of the form will be sent to the server. It is up to
the CGI script to read this data block. In this example, the following data
will be sent:

KIND=Mr&FN=John&LN=Smith&ADDR=this%20is%20an%20ad
dress&HOBBIES=skiing&HOBBIES=chess
 O2Web User Manual 41

A World Wide Web Tour3
In the data block above, some specificities of the format generated by a
fill-out form are as follows:

• Each value retrieved in the form is built as name=value where name
is the attribute name of the field and value is either the value entered
by the user or the default value. All the input field results are put
together, separated by the & character. For a multiple list input field,
each selected value is repeated name=value1&name=value2 ,

• Some characters are replaced by codes. This is discussed in the
following section.
42 O2Web User Manual

Special characters in HTML text
3.4 Special characters in HTML text

Some characters have special meaning within HTML and therefore
cannot be used "as is" in text. These characters are, for example, the
angle bracket or the quote characters.

As the Web is multiplatform, only a reduced set of characters can be
typed in a text. Namely, only lower ASCII characters (all the characters of
an English keyboard) can be used. Upper ASCII characters cannot be
used directly and must be "escaped".

An escape sequence can be either character references or entity
references.

A character reference has the format &#nnn, where nnn is a number that
references the character.

An entity reference has the format &nnn, where nnn is a text string that
references the character.

The following table summarizes the special characters in HTML text.

TABLE 3.1 Special characters in HTML text

Character Reference Entity

" " "

& & &

< < <

> > >

ª ª ª

« « «

¬ ¬ ¬

- ­ ­

® ® ®

¯ ¯ ¯

˚ ° °

± ±

² ²

³ ³

´ ´ ´
 O2Web User Manual 43

A World Wide Web Tour3
µ µ

¶ ¶ ¶

· · ·

¸ ¸ ¸

¹ ¹

º º º

» » »

¼ ¼

½ ½

¾ ¾

¿ ¿ ¿

À À À

Á Á &Aaute

Â Â Â

Ã Ã Ã

Ä Ä Ä

Å Å Å

Æ Æ Æ

Ç Ç Ç

È È È

É É É

Ê Ê Ê

Ë Ë Ë

Ì Ì Ì

Í Í Í

Î Î Î

Ï Ï Ï

Ð Ð

Ñ Ñ Ñ

ò Ò Ò

ó Ó Ó

ô Ô Ô

õ Õ Õ
44 O2Web User Manual

Special characters in HTML text
ö Ö Ö

×

Ø Ø Ø

Ù Ù Ù

Ú Ú Ú

Û Û Û

Ü Ü Ü

Ý Ý

Þ Þ

ß ß ß

à à à

á á á

â â â

ã ã ã

ä ä ä

å å å

æ æ æ

ç ç ç

è è è

é é é

ê ê ê

ë ë ë

ì ì ì

í í í

î î î

ï ï ï

ð ð

ñ ñ ñ

ò ò ò

ó ó ó

ô ô ô

õ õ õ

ö ö ö
 O2Web User Manual 45

A World Wide Web Tour3
÷

ø ø ø

ù ù ù

ú ú ú

û û û

ü ü ü

ý ý

þ þ

ˇ ÿ ÿ
46 O2Web User Manual

Special characters in URLs and form submissions
3.5 Special characters in URLs and form submissions

Section 3.4 was only concerned with characters inside HTML text.
Another kind of encoding must be used inside a URL or to decode a
string resulting from an HTML form submission.

In a URL, characters may be encoded by a triplet consisting of the
character " % " followed by the two hexadecimal digits which form the
hexadecimal value of the characters. A character must be encoded if it
has no corresponding graphic character in the US-ASCII coded
character set, if the use of the corresponding character is unsafe, or if
the corresponding character is reserved for a specific purpose.

No corresponding graphic in US-ASCII

The characters between 7F and FF hexadecimal and control characters
(between 00 and 1F) must be encoded.

Unsafe characters

The unsafe characters are:

Reserved characters

The reserved characters are:

space < > « # % { } | \ ^ ~ [] `

; / ? : @ = &
 O2Web User Manual 47

A World Wide Web Tour3
3.6 HTML tags summary

Previous sections introduced the main tags in the HTML 2.0
specification. Many others tags exist and many new ones may appear as
HTML evolves. For example, many recent browsers such as Netscape
Navigator© introduce tags that are part of the HTML 3.0 specification.
These tags relate to tables, text centering and font size.

The table below summarizes the main tags in the HTML 2.0
specification.

TABLE 3.2 The main tags in the HTML 2.0 specification

Tag name Description

HTML Defines the file as an HTML document

HEAD Defines the heading for the document

TITLE Defines the title of the document

BODY Defines the document body

H1...H6 Defines the six levels of headings

P Defines a paragraph

OL Defines an ordered list

UL Defines an unordered list

DIR Defines an unordered list with several
items per line

MENU Defines an unordered list, typically
with one line per item

LI Defines an individual item in a list

DL Defines a definition list

DT Defines an individual definition term of
a definition list

DD Defines individual definition data of a
definition list
48 O2Web User Manual

HTML tags summary
EM Emphasizes characters (usually italic)

STRONG Strongly emphasizes characters
(usually bold)

CODE Displays text in a fixed-width font
(usually courier)

B Displays text in bold

I Displays text in italics

TT Displays text in typewriter-like font

IMG Inserts an image in the document

HR Inserts a horizontal rule line

BR Breaks the current line

A Defines an anchor to another
document

PRE Inserts preformatted text

ADDRESS Inserts text in address-like formatting
(italic, smaller font)

BLOCKQUOTE Defines text quoted from another
source
 O2Web User Manual 49

A World Wide Web Tour3
50 O2Web User Manual

4 O2Web Overview4
This chapter focuses on the differences between using the Web with file
systems (introduced in the previous section) and using the Web with the
O2 system.

It contains the following sections:

• Principles

• O2Web Architecture

• Building your O2Web server
O2Web User Manual 51

O2Web Overview4

ited
4.1 Principles

A user connecting to a Web server built on top of O2Web will directly
access objects in an O2 database rather than files.

In order to specify an object to be retrieved in the database, a Web client
specifies an OQL query rather than a directory path to a file.

OQL is the standard object query language, defined by the ODMG
(Object Database Management Group) to query object databases. OQL
is an object extension of SQL, it allows complex object databases to be
queried and object methods to be invoked.

For example, the query:

returns the salary (or salaries) of all the employee(s) whose name
begins with Mac.

For further information about OQL, please refer to either the OQL User
Manual from O2 or the ODMG-93 standard1.

To make OQL queries enter in the framework of URLs, O2Web uses the
same kind of URL as the one used by HTML fill-out forms. These URLs
have the following form:

This is the more general form of URLs where:

• host is the internet host on which an HTTP server is running.

• port is the TCP port number on which the server is accessible.

• path is a logical path translated by the HTTP server into a physical path
on the file system.

1. The Object Database Standard: ODMG - 93. Atwood, Duhl, Ferran, Loomis and Wade. Ed
by R.G.G. Cattell. Copyright 1994 Morgan Kaufmann Publishers.

select distinct employee.salary
from employee in All_employees
where employee.name like "Mac*"

http://host[:port]/path/script/
[extrapath][?search]
52 O2Web User Manual

Principles
• script is the name of a program compliant with the CGI protocol.

• extrapath is a set of strings (separated by the / character) that can be
retrieved by the script.

• search is a string that can be retrieved by the script.

When a Web server is built on top of O2Web, a URL that accesses this
server must comply with the above URL form. The script component
is a program (o2web_gatewayO) provided with O2Web, the extrapath
component contains the name of an O2 system and the name of an O2
database. The search component contains an OQL query. The result of
this query is an HTML view of an object in the database.

A key feature of O2Web is that it can be used at different levels. Starting
from a completely automatic mode where HTML is generated for any
object of the database, the programmer can progressively improve the
Web service by overloading the generic mode for some classes of a
schema.
 O2Web User Manual 53

O2Web Overview4
4.2 O2Web Architecture

Three elements comprise O2Web. These elements are used with a
standard ful- featured WWW server (Netscape server, CERN HTTPD,
NCSA HTTPD, etc.):

• An O2Web gateway.

• An O2Web server, which you must build.

• An O2Web dispatcher.

An O2Web server may be accessed from any standard Web client (such
as Mosaic or Netscape).

Figure 4.2: O2Web Architecture

WWW client
e.g.: X Mosaic

WWW client
e.g.: Netscape

INTERNET

WWW client
e.g.: WinMosaic HTTP server

o2web_gateway

o2web_dispatcher

o2web_server

o2server

o2web_server o2web_server

o2web_gateway

RPC RPC
54 O2Web User Manual

O2Web Architecture
The O2Web system works in the following way:

• A Web client sends a URL in HTTP format. This URL contains an OQL
query.

• The HTTP server passes the query to the O2Web gateway.

• The O2Web gateway connects to an O2Web dispatcher running on your
local area network.

• The O2Web dispatcher tells the O2Web gateway which O2Web server to
connect to.

• The O2Web gateway connects to the appropriate O2Web server.

• The O2Web server runs the query specified in the URL and transforms
the result of the query into HTML (or other formats such as GIF and BIT-
MAP when required).

• The resulting data is sent back to the Web client.
 O2Web User Manual 55

O2Web Overview4
4.3 Building your O2Web server

The O2Web product allows you to use the O2 ODMG C++ binding to
develop your Web applications.

Figure 4.2: Components of an O2Web application

To implement your O2Web server you build a ODMG C++ application
using the following:

• user classes

• ODMG C++ libraries

• O2Web libraries

You must build an O2Web executable. This executable is the result of a
file which contains the main function and the application files. This main
function uses the o2_Web class. The O2Web server is linked with the
o2webassistant (if necessary), o2link , o2sql , and o2 libraries.

Some user classes must be imported into O2. For an object to be
published on the Web, it must belong to a persistent capable class.

users classes

ODMG C++
 libraries

O2Web
libraries

 users
imported classes

create base B;

create schema S;

name N: ...

O2

main.cc

O2Web server
 executable

o2import
56 O2Web User Manual

5 Programming an O2Web
Server5
This chapter describes how to program an O2Web server.

It is divided into the following sections:

• Introduction

• Summary

• Generic mode

• Global Personalizations

• Local Personalizations

• Summary
O2Web User Manual 57

Programming an O2Web Server5
5.1 Introduction

O2Web can be used at different levels.

The first (and simplest) level is to let O2Web generate HTML for the
result of the query contained in the URL. This is the generic mode of
O2Web.

The second level allows programmers to globally change parts of the
HTML generation. The data retains the same generic look, but HTML
text may be inserted at the top or at the bottom of pages. This level also
allows you to react to some events such as a connection or a
disconnection to the server (in order to maintain a log in the database),
or when an error occurs (in order to personalize the error message the
client will receive).

The last level allows total control of HTML generation for each class of
the working schema. This means that a programmer can specify HTML
text for the objects of each class. As this text is built by a member
function, it can be made to depend on the values of objects. The
programmer can also define, for each class, the HTML text that will be
inserted at the top and at the bottom of each page when an object of this
class is the entry point of an HTML report. To use this level you must use
the C++ library $O2HOME/lib/libo2webassistant.a , which is
delivered with the O2Web product.
58 O2Web User Manual

Summary
5.2 Summary

HTML code responding to URL queries is made of five parts:

• prolog (protocol-specific)

• header

• body

• footerr

• epilog (protocol-specific)

Default HTML code for producing these parts is predefined by the
O2Web server. You can accept the generic code, or you can redefine all
or part of it.
 O2Web User Manual 59

Programming an O2Web Server5
The following illustration describes the makeup of HTML production code

Figure 5.1: HTML production code makeup

A default MIME type
that can be redefined in the
prolog member function of the
O2WebInteractor class
and redefined again in the
html_prolog member function
of any class.

An empty default value
that can be redefined in the
header member function of the
O2WebInteractor class and
redefined again in the
html_header member function
of any class.

An empty default value that
can be redefined in the
footer member function of the
O2WebInteractor class and
redefined again in the
html_footer member function
of any class.

An empty default value that
can be redefined in the
epilog member function of the
O2WebInteractor class and
redefined again in the
html_epilog member function
of any class.

Generic HTML
text that can be
redefined in the
html_report
memberfunction
of any class.

PROLOG

HEADER

BODY

FOOTER

EPILOG
60 O2Web User Manual

Generic mode
5.3 Generic mode

Simple Browsing

The first step when one wants to provide a Web interface to an O2
database is very simple. Just install O2Web on your system (refer to
Chapter 1 for installation details). You are ready to browse your database
with a Web browser.

To begin browsing, you must provide your browser with a URL (or click
on an already existing link found somewhere on the internet). The kind of
URLs given to start a browsing session usually point to a persistent root
of the database. Such a URL could be:

This URL will return an HTML view of the specified root of persistence.
You can now click on the links on this page to continue browsing.

How does it work

Let us now explain how the generated HTML is built.

System-supplied member functions can generate HTML for any object in
the database, however complex it is. The generated HTML is based on
the structure type of the object being processed. The exact behavior of
the system-supplied member functions is as follows:

• atomic values: integers, chars, booleans, reals, strings, bytes. The value is
printed except for bytes which are not displayed.

• tuple values: A HTML list is used, each attribute of the O2 tuple being an
item in the list. Each item is composed of an attribute name and the result of the
recursive call to an HTML production member function on an attribute value.

• collection values: lists, sets. A HTML list is used, each element in the O2
collection being printed as an item of the list. Each item is composed of the result
of the recursive call to an HTML production member function on a collection
element.

• objects: An object is printed by the recursive call to an HTML production member
function on the encapsulated value.

http://xx.xx.xx/cgi/o2web_gateway/sysname/basename?rootname
 O2Web User Manual 61

Programming an O2Web Server5
• sub-objects: An HTML anchor is generated with a reference to a URL that con-
tains an OQL query returning this sub-object.

You obtain the text of the anchor by calling the html_title member
function on the subject. If this member function does not exist, the name
of the class is used.

A Guided Example

Let us take an example. We define in the database the schema of a very
simple phone book. The aim of this example is to demonstrate how
bases of this schema can be made accessible from the Web. The
schema and the member function code of this simple application can be
found in the O2 installation in the
$O2HOME/samples/o2web/cplusplus/step1/ directory. The
implementation of some member functions, unnecessary for the
purposes of this example, will not be detailed in this manual. For further
information concerning these member functions, please refer to the
samples directory of O2.

First we create the Directories class. This is the container of all the
directories we will create in the database.

class Directories {
public

d_Set<d_Ref<Directory> > directories;

d_String html_title();
d_Ref<Directory> add_directory(char* name);

Directories(){};
~Directories(){};

};
62 O2Web User Manual

Generic mode
Figure 5.2: The Directories class

We now define the Directory class. This has a name and an attribute
called entries . This attribute refers to the Entries class whose type
is an enumeration of Entry .
 O2Web User Manual 63

Programming an O2Web Server5
class Directory {
public:

char* name;
d_Ref<Entries> entries;

d_String html_title();
void new_entry(char* name,

d_ref<Picture>,
char* address,
char* phone,
char* e_mail);

Directory();
Directory(char* name);
~Directory();
Directory & operator=(const Directory & dir);

}

class Entries {
public:

d_List<d_Ref<Entry> >Entries_value;

d_String html_title();
void insert(d_Ref<Directory> d,
d_Ref<Entry> entry);

Entries(){};
~Entries(){};

};
64 O2Web User Manual

Generic mode
Figure 5.3: The Entries class

The Entry class contains an entry in a directory. An entry has a name,
a photo, an address, a phone number, an e-mail address, and three
attributes (previous , next and up) which respectively refer to the
previous entry in the directory, the next entry in the directory and the
directory itself. These attributes will be used to browse through a
directory.
 O2Web User Manual 65

Programming an O2Web Server5
class Entry {
public:

char* name;
d_Ref<Picture> photo;
char* address;
char* phone;
char* e_mail;
d_Ref<Entry> previous;
d_Ref<Entry> next;
d_Ref<Directory> up;

d_String html_title();

Entry();
Entry(char* name,
d_ref<Image> & photo,
char* address,
char* phone,
char* e_mail);
~Entry();
Entry & operator = (const Entry & ent);

};
66 O2Web User Manual

Generic mode
Figure 5.4: The Entry class
 O2Web User Manual 67

Programming an O2Web Server5
The Picture class is a class that manages GIF images. It is defined as
follows:

Details of the member function bodies for this schema are not given
here. You can consult these member functions in the
opt/o2web/samples/cplusplus/step1 directory of the O2
distribution.

O2Web server main

The main function performs the following:

• Creates a o2_Web class object.

• Reads the default environment (set_default_env).

• Gets the command line parameters.

• Initializes o2_Web (begin).

• Starts o2_Web (init).

class Picture {
private:

d_Bits bits;
int width;
int height;
char *name;

public:

Picture();
Picture(char *s);
~Picture();
Picture & operator = (const Picture & p);

int get_width();
int get_height();
char *get_name();
int load(char* file, int w, int h);

d_String html_title ();
d_Bits html_prolog (char *query, char *userdata);
d_Bits html_header (char *query, char *userdata);
d_Bits html_footer (char *query, char *userdata);
d_Bits html_epilog (char *query, char *userdata);
d_Bits html_report (char *query, char *userdata);

};
68 O2Web User Manual

Generic mode
• Starts a main loop (loop).

• Finishes (end).

The main loop waits for requests sent by the web client. Each request is
analyzed. The OQL query is processed and an HTML page is
generated. The begin , loop , init , and end functions are in the
o2web_server library.

When started, the o2web_server establishes a connection with an O2
Web dispatcher (o2open_dispatcher), which must already be
running and establishes a connection with a named O2 database system
using o2server , which must already be running.

The main function can be found in
$O2HOME/samples/o2web/cplusplus/step1/main.cc .

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "o2web_CC.hxx"
int main(int argc, char** argv)
{
 short i, error=0;
 o2_Web *o2web = new o2_Web();

 o2web->set_default_env();
 error = o2web->begin(argc, argv);
 if (error) {
 return(1);
 }
 o2web->init();
 o2web->loop();
 o2web->end();

 delete o2web;
 return (0);
 O2Web User Manual 69

Programming an O2Web Server5
Building your O2Web Server

Now that the application is written, we have to perform the following six
steps:

1 Initialize a system and run o2server .

2 Create an O2 schema.

3 Import the C++ classes into O2 and create the Web server.

4 Create persistent roots.

5 Populate the database.

6 Test your server.

Initializing a system and running o2server

Creating an O 2 Schema

Importing classes and creating the o2web_server executable

After schema creation, you import the classes and member functions of
your application. Then, you build your o2web_server executable. The
configuration file of the sample application (step1_webserver.cf) can be
used to generate the appropriate makefile.

> $O2HOME/bin/o2dba_init -system your_system
> $O2HOME/bin/o2server -system your_system

> $O2HOME/bin/o2dsa -system your_system
Type your command with ^D
"load_schema.o2"
^D
Type your command with ^D

with load_schema.o2:
schema step1_schema;
base step1_base;
commit;

> $O2HOME/bin/o2makegen step1_webserver.cf
> make
70 O2Web User Manual

Generic mode
This imports the classes and creates an executable named
step1_webserver .

Creating persistent roots

Populating the database

You need to populate your new database before you can test the Web
server. A small ODMG C++ application has been written for this
purpose. This application is located at
$O2HOME/samples/o2web/cplusplus/step1/init_data.cc ,
with the corresponding configuration file at
$O2HOME/samples/o2web/cplusplus/step1/step1_init_data
.cf . To build this application:

To run this application, type:

Testing the server

You can now run your O2Web server by typing:

> $O2HOME/bin/o2dsa_shell -system your_system
Type your command with ^D
"load_names.o2"
^D
Type your command with ^D

> $O2HOME/bin/o2makegen
$O2HOME/samples/o2web/cplusplus/step1/step1_init_data.cf
> make

> step1_init_data -system your_system -server your_server

> step1_webserver -system your_system -server your_server
 O2Web User Manual 71

Programming an O2Web Server5
NoteNoteNoteNoteNoteNoteNoteNote
In order to run successfully, ensure that:

- An HTTP server is running.

- An o2open_dispatcher is running.

- The o2web_gateway is properly installed.

You are now ready to browse through the phone book. You can see that
the result is a good starting point to help you evaluate your final service.
72 O2Web User Manual

Global Personalizations
5.4 Global Personalizations

The generic mode of O2Web can be considered as a great prototyping
tool in the process of building a large scale Web service. However, there
is a need for more sophisticated mechanisms in order to build a
personalized Web service. This section explains how to globally
personalize parts of a generic service.

The global personalizations are handled by means of a named object
whose name is TheO2WebInteractor . This object must belong to the
O2WebInteractor class or one of its subclasses. Global
personalizations are achieved by defining member functions in the
O2WebInteractor class. O2Web, in the process of generating HTML,
will call these member functions on the TheO2WebInteractor root if
they are defined. In order to be actually used by O2Web, the class
O2WebInteractor and its member functions must be imported in O2.

Adding a header to the top of each page

To add a constant header to the top of each page, the programmer must
define a member function called header on TheO2WebInteractor
root. O2Web checks for this member function definition before calling the
generic HTML generation. If it is defined the result is inserted before the
standard HTML.

Adding a footer to the bottom of each page

To add a constant footer to the bottom of each page, the programmer
must define a member function called footer on
TheO2WebInteractor the root. O2Web checks for that member
function definition before calling the generic HTML generation. If this is
defined the results are inserted before the standard HTML.

Changing the default prolog and epilog

The default prolog and epilog can be modified. This is usually
unnecessary to do so because the default prolog contains the MIME
type for the returned document and should only be changed globally for
a class returning a specific MIME type (a class that handles postscript
documents for instance). However, this member function can be
overloaded just in case the HTML prolog format changes in future
versions of HTML.
 O2Web User Manual 73

Programming an O2Web Server5
React to a connection

When an O2Web server is contacted to answer a query, the existence of
the connect member function at the TheO2WebInteractor root is
verified. If it exists, connect is called to allow the programmer to
perform certain actions. The member function connect must be defined
as follows:

where

• query is the query given to the O2Web server and for which a HTML report has
to be built.

• userdata is a string a programmer can store in a URL to be returned when
certain member functions are called. It allows the programmer to store context
dependent information when a URL is created, and to enable specific processing
according to this information when the URL is resolved (for more information
about userdata , see the make_url member function in the o2webassistant
library).

If this member function returns true , the connection is accepted. A
return value of false will reject the connection.

React to a disconnection

After generating HTML text in response to a user query, O2Web checks
for the existence of the disconnect member function on the
TheO2WebInteractor root. If it exists, disconnect is called allowing
the programmer to perform certain logging actions. The member function
disconnect must be defined as follows:

where

• report_size is the number of bytes returned for that connection and

• report_kind is the MIME type of the returned text.

char connect(char* query, char* userdata);

void disconnect(int report_size, char* report_kind);
74 O2Web User Manual

Global Personalizations
Make your own error messages

When an error occurs, an error message is returned to the Web browser.
You may want to change these messages for your server or enhance
them by adding images to the error message text.

This can be done by defining the error member function on the
TheO2WebInteractor root. If defined, this member function must
return the complete HTML text, including the content type, to the client.
The signature of this member function is as follows:

The k parameter is one of the possible error codes returned by O2Web.
These codes are defined in the file o2web.h .

A Guided Example

We will now modify our previous example in order to add text to the top
and bottom of every page. We will also personalize the error messages.
The extra-code for this example can be found in the
opt/o2web/samples/cplusplus/step2 directory of the O2
distribution.

In all the next examples, we will use the o2_WebStream class which is
provided in the o2webassistant library and which implements a
number of character string manipulations.

We create the class O2WebInteractor . Three member functions are
defined in the O2WebInteractor class. These member functions are
automatically called by O2Web at the beginning of HTML generation
(header), at each ending of HTML generation (footer) and each time
an error will occur (error). This class and its methods must be imported
in O2.

We also define a persistent root called TheO2WebInteractor ; It is
mandatory to create this name for the member functions of the class to
be called.

Let us have a look at these three member functions.

The header member function returns the HTML text to be inserted
before each new HTML generation.

This is a simple header containing formatted HTML text.

d_Bits error(int k);
 O2Web User Manual 75

Programming an O2Web Server5
In the footer member function, we build a text containing an address
and insert an anchor pointing to an O2Technology Web server.

d_Bits O2WebInteractor::header()
{

o2_WebStream st;

st << "<html><header>\n";
st << "<title> O2Web directory demonstration

</title>\n";
st << "<body>\n";
st << "<HR>\n<CENTER>\n";
st << "<H2> O2Web directory demonstration </H2>\n";
st << "</CENTER>\n<HR>\n";

d_Bits str(st.data());
return(str);

}

d_Bits O2WebInteractor::footer()
{

o2_WebStream st;

st << "<HR>\n<ADDRESS>\n<CENTER>\n";
st << "This demo is built on top of O2Web - The O2 gateway

of ";
st << " O2Technology

</CENTER>\n";
st << "<HR>\n</body></html>";

d_Bits str(st.data());
return(str);

}

76 O2Web User Manual

Global Personalizations
Figure 5.5: The global header and footer
 O2Web User Manual 77

Programming an O2Web Server5
The error member function is defined below. Notice the CGI header,
containing the MIME type of the returned document, in the HTML text.

d_Bits O2WebInteractor::error(int k)
{

o2_WebAssistant toolbox;
o2_WebStream st;

st << toolbox.get_http_prolog("text/html");
st << "<HR>\n<CENTER>\n";
st << "<H2>Hypertext Documentation Error</H2>\n";
st << "</CENTER>\n<HR>\n";
st << "<H3>\n An error has occurred, please try again.\n";
st << "<p>If the error persists, contact Mr. Patch

(patch@rescue.com)</H3>";
st << "<HR>\n";

d_Bits str(st.data());
return(str);

}

78 O2Web User Manual

Local Personalizations
5.5 Local Personalizations

Local personalizations allow a programmer to control all aspects of the
HTML returned by a query. Local personalization involves the definition
of a member function in a class that will be in charge of producing a part
of the HTML.

With the exception of the events handling member functions (error ,
connect and disconnect), all the other member functions that can be
defined in the O2WebInteractor class can be overloaded locally in
any class of a schema.

In order to be useed by O2Web, all these methods must be imported in
O2.

Adding a header to the top of a page

The programmer can decide that all queries received by an O2Web
server returning an object of a particular class must have a specific
header that depends on the data contained in the object or that is well
adapted to the meaning of that class.

This is done by defining a member function called html_header in a
class of the schema. If there was a header member function defined in
the O2WebInteractor class, it is not used for classes in which a
specific html_header member function is defined.

Adding a footer to the bottom of a page

The programmer can decide that all queries received by an O2Web
server returning an object of a particular class must have a specific
footer that depends on the data contained in the object or that is well
adapted to the meaning of that class.

This is done by defining a member function called html_footer in a
class of the schema. If there was a footer member function defined in
the O2WebInteractor class, it is not used for classes in which a
specific html_footer member function is defined.

Changing the prolog and epilog

Suppose that you have created a class that encapsulates data of a
specific format (postscript document, JPEG image, MPEG movie, etc.).
 O2Web User Manual 79

Programming an O2Web Server5
You must inform the HTTP server that the data you send to it has a
specific format. The member function html_prolog can be defined in
this class and returns the MIME type corresponding to the format
handled by the class.

For instance, a class managing MPEG movies will define a member
function html_prolog returning the string:

Having a specific member function to handle CGI headers allows a
programmer to define a class managing any binary format and to create
a subclass for each format. Thus, the only member function defined in
subclasses is the html_prolog member function.

Building the body of a report

The body of a report can only be redefined locally in a class. The
programmer can define a member function called html_report in a
class and the result of this member function will be used instead of
calling the generic HTML production.

Optimizing the query generation
When the programmer lets O2Web generate queries for the sub-objects of an
object, these queries are built starting from the query leading to the current
object and adding to it a selection predicate or the selection of an attribute. In
certain classes, the programmer may decide to generate the queries leading to
the instances of the classes. This is achieved by defining a member function
called get_query .

A guided example

In this section, we will improve our example in two phases: in the first
phase, we optimize the generation of queries of the generic mode. In the
second phase, we completely customize the HTML generation.

Optimizing the query generation

In the two previous examples (generic mode and global personalization),
the query generated and inserted in the anchors grew in size each time a
user browsed. A query inserted in a link was built automatically by
O2Web, starting from the current query and adding a selection predicate
or an attribute name to it. This can lead O2Web to generate very large
queries.

Content-type: movie/mpeg\n\n
80 O2Web User Manual

Local Personalizations
This problem can be avoided if the programmer knows how to directly
reach objects of a class from the persistent roots of the schema. In this
case, we define get_query member functions in the classes
Directories , Directory and Entry . When get_query is applied to
an object, the text of an OQL query returning the object is returned.
O2Web uses this query instead of generating a query.

The code for these member functions can be found in the
$O2HOME/samples/o2web/cplusplus/step3 directory of the O2
distribution.

d_String Directories::get_query ()
{

d_String str("DIRECTORIES");
return(str);

};

d_String Directory::get_query ()
{

o2_WebStream st;

st << "element("
<< "select d"

<< "from d in DIRECTORIES.directories "
<< "where d->html_title = \""

<< html_title () << "\")";
d_String str(st.data()););
return(str);

};

d_String Entry::get_query ()
{

o2_WebStream st;

st << "first(select e "
<< "from e in " << up->get_query()

<< "->entries.Entries_value "
<< where e->html_title = \""

<< html_title + "\")";

d_String str(st.data()););
return(str);

};
 O2Web User Manual 81

Programming an O2Web Server5
After defining these three member functions, you can now browse a
document and see that the queries contained in the HTML anchors no
longer grow when you click on the links.

A complete customization

The code of the complete customization can be found in the
$O2HOME/samples/o2web/cplusplus/step3 directory of the O2
distribution.
82 O2Web User Manual

Local Personalizations
Class Directories

We define the html_header member function in the Directories
class in order to personalize the header when retrieving objects of this
class.

Class Directory

We now add two member functions to the Directory class. The first
one (html_header) is used to personalize the header of objects of the
Directory class.

d_Bits Directories::html_header(char * query, char *
userdata)
{

o2_WebStream st;

st << "<html> <header>\n<title>";
st << "directories\n";
st << "</title>\n</header>";

st << "<body>\n<CENTER><H2>\n";
st << "The Available Directories \n";
st << "</H2></CENTER>\n<HR>";

d_Bits str(st.data());
return(str);

}

 O2Web User Manual 83

Programming an O2Web Server5
The second one (html_report) is used to personalize HTML
generation. We change the standard HTML generation and give the user
the choice whether to browse the directory or search for an entry in the
directory.

The first choice is associated with a URL containing a query leading to
the entries field of the class. Notice that the URL is created using the
make_url member function in the o2_WebAssistant class. The
userdata parameter specifies the name of the directory. This is
returned to the html_header , html_footer and html_report
member functions which are called when a user clicks on the created
anchor. The userdata parameter is detailed in the make_url member
function of the o2webwassistant library. This is a means of storing a
context in the returned HTML and retrieving it when a user clicks on an
anchor. This could have been achieved using other techniques such as
hidden fields or cookies.

The second choice is associated with a URL leading to an object called
TheDirectorySearcher . This object belongs to a new class

d_Bits Directory::html_header(char * query, char *
userdata)
{

o2_WebStream st;

st << "<html> <header>\n<title>";
st << html_title();
st << "</title>\n</header>";

st << "<body>\n<CENTER><H2>\n";
st << html_title();
st << "</H2></CENTER>\n<HR>";

d_Bits str(st.data());
return(str);

}

84 O2Web User Manual

Local Personalizations
DirectorySearch . This class handles the creation of an HTML form
and the retrieval of user information. This class will be discussed below.

d_Bits Directory::html_report(char * query, char * userdata)
{

o2_WebAssistant toolbox;
o2_WebStream st, tmp;

tmp << get_query() << "->entries";

st << "<dl>\n";

st << "<dt> <h3>";
st <<

toolbox.make_anchor(toolbox.make_url(tmp.data(),"",(const
char*)html_title(), 0),
"Browse the Directory");

st << "</h3>\n";
st << "<dd>\n";
st << "Click above to consult the directory by navigating

inside
it\n";

st << "<dt> <h3>";
st <<

toolbox.make_anchor(toolbox.make_url("TheDirectorySearcher",
"",(const char*)html_title(), 0),
"Search the Directory");

st << "</h3>\n";
st << "<dd>\n";
st << "Click above to search a specify entry in the

directory\n";

st << "</dl>\n";

d_Bits str(st.data());
return(str);

}

 O2Web User Manual 85

Programming an O2Web Server5
Figure 5.6: The customized Directory class

Class Entries

We personalized the header for an object of the class Entries . You
may be wondering why we chose to define a class to manage the entries
in a directory rather than defining an attribute of the Directory class to
contain the list of entries. This choice was made to enable the
personalization of the pages containing the list of entries.

Notice that the userdata parameter is used in the member function
below. It contains a string, given by the programmer in the
html_report member function of the Directory class when the
anchor pointing to an object of the Entries class was created. This
string contains the name of the directory.
86 O2Web User Manual

Local Personalizations
Class Entry

We define two member functions in the Entry class. First, we add a
specific header. Previously, the previous , next and up attributes of
the class Entry were part of the report and appeared as anchors. We
now want to remove these attributes from the report and add a
navigation bar to the header defined in this class.

The navigation bar provides direct access to the previous and next
entries of the current phone book as well as access to the phone book
(up) and the list of phone books (top).

d_Bits Entries::html_header(char * query, char *
userdata)
{

o2_WebStream st;

st << "<html> <header>\n<title>";
st << userdata << " entries";
st << "</title>\n</header>";

st << "<body>\n<CENTER><H2>\n";
st << "Entries of the " << userdata << "

Directory\n";
st << "</H2></CENTER>\n<HR>";

d_Bits str(st.data());
return(str);

}

 O2Web User Manual 87

Programming an O2Web Server5
d_Bits Entry::html_header(char * query, char * userdata)
{

o2_WebStream st;
o2_WebAssistant toolbox;
d_Ref<Directories> dir("DIRECTORIES");

st << "<html> <header>\n<title>";
st << name << " Directory";
st << "</title>\n</header>";

st << "<body>\n<CENTER><H2>\n";
st << name << " Directory";
st << " </H2></CENTER>\n<HR>";

if(dir != NULL) {
st <<

toolbox.make_anchor(toolbox.make_url("DIRECTORIES",
"","", 0), "[top] ");

}
st << " ";
if(up != NULL) {

st << toolbox.make_anchor(toolbox.make_url
(up->get_query(), "","", 0), "[up] ");

}
st << " ";
if(previous != NULL) {

st << toolbox.make_anchor(toolbox.make_url
(previous->get_query(), "","", 0),

"[previous] ");
}
st << " ";
if(next != NULL) {

st << toolbox.make_anchor(toolbox.make_url
(next->get_query(),"","", 0), "[next] ");

}
st << "<hr>";

d_Bits str(st.data());
return(str);

}

88 O2Web User Manual

Local Personalizations
Now we define a specific report member function that formats an entry in
the directory. Note the use of the <table> tag in the code below. Tables
are part of the HTML 3.0 specification and are not recognized by all
browsers.

d_Bits Entry::html_report(char *, char *)
{

o2_WebStream st, tmp;
o2_WebAssistant toolbox;
o2_WebImageAttributes * format = new o2_WebImageAttributes;

tmp << get_query() << ".photo";

st << "<center>\n";
st << "<table border=5 cellpadding=5>\n";

st << "<tr align=center>\n";
st << "<td><h3>" << name << "</h3></td>";

st << "<tr align=center>\n";
st << "<td>";
st << toolbox.make_inline_image(tmp.data(),0, 0, format, 0,

"Entry Photo");
st << "</td></table>\n";
st << "</center><p>\n";
st << "<p>Address : " << address;
st << "<p>Phone : " << phone;
st << "<p>Email : <a href=\"mailto:" << e_mail << " \"> "

<< e_mail << "\n";

d_Bits str(st.data());
return(str);

}

 O2Web User Manual 89

Programming an O2Web Server5
Figure 5.7: The customized Entry class

Class DirectorySearch

We saw in the html_report member function of the Directory class
that the user has the choice of browsing the directory or searching for a
specific entry in the directory. The following class, called
DirectorySearch , will be used to display an HTML form that gives the
user an interface for searching a directory. The creation of the form is
handled in the html_report member function and the analysis of the
user answer is handled by the search member function. A named
object TheDirectorySearcher is created for this class.
90 O2Web User Manual

Local Personalizations
The html_header member function is used to personalize the header
for objects of this class.

The html_report member function creates an HTML form with two
fields: the first field is used by the user to enter a name to search for in
the directory; the second field is a hidden field (invisible on the screen)
that retains the name of the directory, which was searched, in the HTML
produced.

The action of the form is defined as:

TheDirectorySearcher->search($0)

class DirectorySearch{
public:

d_Bits html_header(char* query, char* userdata);
d_Bits html_report(char* query, char* userdata);
d_String search(char* params);

DirectorySearch(){};
~DirectorySearch(){};

};

d_Bits DirectorySearch::html_header(char * query, char * userdata)
{

o2_WebStream st;

st << "<html> <header>\n<title>";
st << userdata << " search";
st << "</title>\n</header>";

st << "<body>\n<CENTER><H2>\n";
st << "Search the " << userdata << " Directory";
st << "</H2></CENTER>\n<HR>";

d_Bits str(st.data());
return(str);

}

 O2Web User Manual 91

Programming an O2Web Server5
This means that when a form is submitted, the member function search
is triggered on the TheDirectorySearcher root. The values of the
form fields are given to the search member function by substituting the
string $0 with the result of the form.

d_Bits DirectorySearch::html_report(char * query, char * userdata)
{

o2_WebStream st;
o2_WebAssistant toolbox;

st << "<form method=post action=";
st << toolbox.make_url("TheDirectorySearcher->search($0)",

"", "", 0);
st << ">\n";
st << "Enter a name : <input name=\"pattern\" value=\"\">\n";
st << "<input type=hidden name=\"directory\" value=\"";
st << userdata << "\"></form>";

d_Bits str(st.data());
return(str);

}

92 O2Web User Manual

Local Personalizations
Figure 5.8: An interface for searching
 O2Web User Manual 93

Programming an O2Web Server5
The search member function retrieves the form result using the
o2_WebFormAnalyser class of the o2webassistant library. Then it
searches for the entry and displays the result. Notice, as with the error
member function of the class O2WebInteractor , a member function
called as an action of a form must return a complete HTML text,
including the CGI header. This is why the search member function
creates a return value containing a call to get_http_prolog when the
entry does not exist in the directory. When the entry is found, the result of
the member function is the result of the call to the make_report
member function of the o2_WebAssistant class. To insert the CGI
header, the make_report member function is called with the
RP_WITH_HEADER parameter.
94 O2Web User Manual

Local Personalizations
Continued on the following page.

d_Bits DirectorySearch::search(char * params)
{

int i;
unsigned long nb_entries;
d_Iterator< d_Ref<Directory> > iter;
char * name;
char * dir_name;
o2_WebAssistant toolbox;
o2_WebStream st;
o2_WebFormAnalyser formtool(params);
d_Array<o2_WebFormItem> formitems;
d_Array<o2_WebFormItem> dirformitems;
d_Ref<Directories> dir("DIRECTORIES");
d_Ref<Directory> directory;
d_Ref<Entry> entry;

formtool.get_values("pattern", formitems);
if((formitems[0].get_value()) != NULL) {

name = new char[strlen(formitems[0].get_value())+1];
strcpy(name, formitems[0].get_value());

}

formtool.get_values("directory", dirformitems);
if((dirformitems[0].get_value()) != NULL) {

dir_name = new
char[strlen(dirformitems[0].get_value())+1];

strcpy(dir_name, dirformitems[0].get_value());
}

iter = dir->directories.create_iterator();
while(iter.not_done()) {

if(strcmp(iter.get_element()->html_title(), dir_name) ==
0){

directory = iter.get_element();
break;

}
iter++;

}

 O2Web User Manual 95

Programming an O2Web Server5
if (directory != NULL) {
i = 0;
nb_entries = directory->entries->Entries_value.cardinality();
while(i<nb_entries) {
if(strcmp(

directory->entries->Entries_value[i]->html_title(),
 name) == 0) {

entry = directory->entries->Entries_value[i];
break;

}
i++;

}
}

if(entry == NULL) {
st << toolbox.get_http_prolog("text/html");
st << "<H3> There is no entry for ";
st << name << " in " << dir_name;
st << "</H3>";

} else {
st << toolbox.make_report(entry->o2_get_handle(),

 entry->get_query(),
 RP_DEFAULT,
 RP_WITH_HEADER,
 "");

}

d_Bits str(st.data());
return(str);

}

96 O2Web User Manual

Updating the database with O2Web
5.6 Updating the database with O2Web

There are many occasions where a programmer might wish to update
the database (log a connection in the database, store the result of an
HTML form, etc.).

As O2Web runs in program mode, a member function can update
persistent objects of the database or create new persistent objects only
if it starts a new transaction. It is the responsibility of the programmer to
end the transaction after the updates in order to leave O2Web in
read-only transaction mode.

In O2, a transaction is ended using either the validate or the commit
member functions of the d_Transaction class. In O2Web, a transaction
can only be ended using validate . If a member function called by
O2Web performs a commit , the current request is discarded and the
Web client receives an error message.

Suppose you want to log information concerning a connection in the
database; you can define the disconnect member function of the
O2WebInteractor class as follows:

It is up to the programmer to start a new transaction in order to update
the TheConnections persistent object. This must be done as follows:

void O2WebInteractor::disconnect(int report_size,
char * report_kind)

{
TheConnections->add(report_size, report_kind);

}

void Connections::add(int size, char * kind)
{

d_Transaction trans;
Connection conn = new Connection;

conn->size = size;
conn->kind = kind;

trans.begin();
this->insert_element_list(conn);
trans.validate();

}

 O2Web User Manual 97

Programming an O2Web Server5
Furthermore, as the member function above might produce a deadlock
when more than one O2Web server is accessed at the same time to
answer requests, an explicit lock must be set on the persistent object
before manipulating it in order to avoid deadlocks. Thus, the member
function should be written as follows:

For further information concerning transactions and deadlocks, please
refer to the O2 manuals.

void Connections::add(int size, char * kind)
{

d_Transaction trans;
Connection conn = new Connection;
conn->size = size;
conn->kind = kind;
locks[0] = conn; locks[1] = 0;
trans.begin(locks);
this->insert_element_list(conn);
trans.validate;

}

98 O2Web User Manual

Summary
5.7 Summary

In this section, we summarize the different techniques used to create an
HTML text for a query submitted to an O2Web server.

The HTML text produced for any query is made of five parts:

1 prolog - a protocol specific text

2 header - a constant page header

3 body - the body of a report

4 footer - a constant page footer

5 epilog - a protocol specific text

All these document parts have a generic implementation that can be
redefined by the programmer.

The prolog, header, footer and epilog sections can be overloaded
globally in the O2WebInteractor class by means of the prolog ,
header , footer and epilog member functions and overloaded locally
in any class using the html_prolog , html_header , html_footer
and html_epilog member functions.

The body of a report can only be overloaded locally by means of the
html_report member function.

The generic implementation can also be improved by locally defining the
get_query member functions in your classes.

Besides HTML production personalization, the programmer can
personalize the reaction to certain events that might occur. These events
are a connection, a disconnection and an error. The handlers associated
with these events are member functions defined in the
O2WebInteractor class.
 O2Web User Manual 99

Programming an O2Web Server5
Figure 5.9: HTML production

A default MIME type
that can be redefined in the
prolog member function of the
O2WebInteractor class
and redefined again in the
html_prolog member function
of any class.

An empty default value
that can be redefined in the
header member function of the
O2WebInteractor class and
redefined again in the
html_header member function
of any class.

An empty default value that
can be redefined in the
footer member function of the
O2WebInteractor class and
redefined again in the
html_footer member function
of any class.

An empty default value that
can be redefined in the
epilog member function of the
O2WebInteractor class and
redefined again in the
html_epilog member function
of any class.

Generic HTML
text that can be
redefined in the
html_report
memberfunction
of any class.

PROLOG

HEADER

BODY

FOOTER

EPILOG
100 O2Web User Manual

6 O2Web Reference6
This chapter gives the full referential information for O2Web.

It is divided into the following sections:

• O2WebInteractor - Programmers can define some member
functions in this class in order to overload O2Web behavior for all
classes of a schema that do not have their own behavior. This class is
also used by programmers to provide O2Web with member functions
to call when some events occur (connection, disconnection, etc.).

• User-Defined member functions - Programmers can define
member functions for each class of a schema, to overload the default
behavior or the global redefinition of the O2WebInteractor class.

• The o2webassistant library - This is composed of several
classes and member functions whose aim is to help the programmer
in the process of redefining the generic HTML production.

• The o2webassistant library - This class is used by the
programmer in the main of the application to start an O2Web server
and begin the server loop.

• O2Web Commands - This section outlines the O2Web system
commands.
O2Web User Manual 101

O2WEB REFERENCE6
6.1 O2WebInteractor

O2WebInteractor is a class that can be created by the programmer.
Some member functions can be defined in this class to globally change
parts of the generic HTML production.

Other member functions can be defined to handle certain events such as
connection, disconnection and error.

Member functions of the O2WebInteractor class will be called only if a
persistent root called TheO2WebInteractor is defined in this class.

The rest of this section describes the following member functions:

• connect

• disconnect

• epilog

• error

• footer

• header

• prolog
102 O2Web User Manual

O2WebInteractor
connect

Summary A user defined member function called once for each connection.

Syntax char connect(char* query, char* userdata);

Arguments query The query to be submitted to the O2Web server.

userdata A string that the programmer might have inserted in the
anchor that produced the query. If this is the case, this string is returned
to the programmer (for more information about userdata , see the
make_url member function of the o2webassistant library).

Description This member function is called once for each connection if the
TheO2WebInteractor persistent root is defined. There is no default
implementation for this member function. It can be defined for desired
tasks such as authorization checking.

Returns A char.

A value of 0 causes O2Web to reject the connection. O2Web will try to
trigger the error member function on the TheO2WebInteractor root.
The argument for this member function will be O2WEB_PROTECTION.

A non-zero value authorizes the connection.
O2Web User Manual 103

O2WEB REFERENCE6
disconnect

Summary A user-defined member function called once after each connection.

Syntax void disconnect(int report_size, char* report_kind);

Arguments report_size The size of the generated document.

report_kind The MIME type of the returned document.

Description This member function is called once after each connection if the
TheO2WebInteractor persistent root is defined. There is no default
implementation for this member function. It can be defined for desired
tasks such as statistical analysis.

Returns Nothing.
104 O2Web User Manual

O2WebInteractor : epilog
epilog

Summary Changes the default epilog.

Syntax d_Bits epilog();

Arguments None.

Description This member function is called each time HTML is generated if the
TheO2WebInteractor persistent root is defined and if the
html_epilog member function has not been defined in the class to
which belongs the object computed by the URL query. There is no
default implementation for this member function.

Returns A d_Bits value.
O2Web User Manual 105

O2WEB REFERENCE6
error

Summary Redefines the error message.

Syntax d_Bits error(int k)

Arguments k An error code.

Description This allows the programmer to redefine the error message that will be
returned to the Web client. It is called when an error occurs if the
TheO2WebInteractor persistent root is defined. The possible values
of k are:

• O2WEB_WRONG_BASE_NAME

• O2WEB_EMPTY_QUERY

• O2WEB_RUNTIME_ERROR

• O2WEB_COMMIT

• O2WEB_ABORT

• O2WEB_BAD_FORM

• O2WEB_PROTECTION

Some of the above errors can occur due to a problem in the HTTP
configuration file.

Returns A d_Bits value that contains the HTML text, including the CGI header, to
be sent to a Web client when an error occurs.

Example When an error occurs during O2Web activity, default error messages are
sent to the Web client. The following example shows how a programmer
can define his own error messages.
106 O2Web User Manual

O2WebInteractor : error
d_Bits O2WebInteractor::error(int k)
{

o2_WebAssistant toolbox;
o2_WebStream st;

st << toolbox.get_http_prolog("text/html");
st << "<HR>\n<CENTER>\n";
st << "<H2>Hypertext Documentation Error</H2>\n";
st << "</CENTER>\n<HR>\n";
st << "<H3>\n An error has occured, please try again.\n";
st << "<p>If the error persists, contact Mr Patch

(patch@rescue.com)</H3>";
st << "<HR>\n";

d_Bits str(st.data());
return(str);

}

O2Web User Manual 107

O2WEB REFERENCE6
footer

Summary Adds a constant footer to the bottom of each page.

Syntax d_Bits footer();

Arguments None.

Description This member function adds a constant footer to the bottom of each page.
It is called after each time HTML is produced if the
TheO2WebInteractor persistent root is defined and if a member
function html_footer has not been defined in the class to which
belongs the object computed by the URL query.

There is no default implementation for this member function.

This member function is used to add constant elements to the bottom of
each page returned by O2Web.

Returns A d_Bits value containing a piece of HTML text to be inserted at the
bottom of each page.

Example A simple footer can be written as follows:

d_Bits O2WebInteractor::footer()
{

o2_WebStream st;

st << "<HR>\n<ADDRESS>\n<CENTER>\n";
st << "This demo is built on top of O2Web - The O2 gateway

of ";
st << "

O2Technology</CENTER>\n";
st << "<HR>\n</body></html>";

d_Bits str(st.data());
return(str);

}

108 O2Web User Manual

O2WebInteractor : header
header

Summary Adds a constant header to the top of each page.

Syntax d_Bits header();

Arguments None.

Description This member function adds a constant header to the top of each page. It
is called each time HTML is produced if the TheO2WebInteractor
persistent root is defined and if a member function html_header has
not been defined in the class to which belongs the object computed by
the URL query.

There is no default implementation for this member function.

This member function is used to add constant elements to the top of
each page returned by O2Web.

Returns A d_Bits value containing a piece of HTML text to be inserted at the top
of each page.

Example A simple header can be written as follows:

d_Bits O2WebInteractor::header()
{

o2_WebStream st;

st << "<html><header>\n";
st << "<title> O2Web directory demonstration

</title>\n";
st << "<body>\n";
st << "<HR>\n<CENTER>\n";
st << "<H2> O2Web directory demonstration

</H2>\n";
st << "</CENTER>\n<HR>\n";

d_Bits str(st.data());
return(str);

}

O2Web User Manual 109

O2WEB REFERENCE6
prolog

Summary Changes the default prolog.

Syntax d_Bits prolog();

Arguments None.

Description This member function is called each time HTML is generated if the
TheO2WebInteractor persistent root is defined and if the
html_prolog member function has not been defined in the class to
which belongs the object computed by the URL query. The default
implementation of this member function returns a CGI header describing
the type of the returned document.

Returns A d_Bits value that must contain a valid CGI header.
110 O2Web User Manual

User-Defined member functions : prolog
6.2 User-Defined member functions

The previous section described how to globally overload part of the
HTML production. This section explains how to locally redefine (for a
class) the HTML generation.

A local redefinition is performed by defining member functions in a class.
Each defined member function overloads a part of the HTML generation.

The member functions that a programmer can define are:

• get_query

• html_epilog

• html_footer

• html_header

• html_prolog

• html_report

• html_title
O2Web User Manual 111

O2WEB REFERENCE6
get_query

Summary A user-defined member function that must return a valid OQL query.

Syntax d_String get_query();

Arguments None.

Description When using the generic mode of O2Web, hypertext links are created to
allow a user to browse the sub-objects contained in an object. These
links are HTML anchors that encapsulate a URL containing a query
leading to a sub-object. Such a query is generated automatically by
O2Web starting from the current query and adding to it a selection
predicate or an attribute name. This can produce, after many clicks, very
large queries.

This problem can be avoided if the programmer knows how to directly
reach objects of a class from the persistent roots. In this case, the
programmer can define the get_query member function in this class.
The member function must return a valid OQL query, which when
executed will return its receiver.

Warning !
Even if the get_query member function is identical in a class and its
sub-class, it must be redefined in the sub-class and modified to contain a
cast to the sub-class.

Returns A d_String value.

Example In the following example, the string returned by the member function will
be used by the O2Web automatic generation as the query to be used to
create an anchor leading to an object of the Directory class.
112 O2Web User Manual

User-Defined member functions
d_String Directory::get_query ()
{

o2_WebStream st;

st << "element("
<< "select d "
<< "from d in DIRECTORIES.directories "
<< "where d->html_title = \"" << html_title() << "\")";

d_String str(st.data());
return(str);

}

O2Web User Manual 113

O2WEB REFERENCE6
html_epilog

Summary Specifies the epilog for a class.

Syntax d_Bits html_epilog(char* query, char* userdata);

Arguments query The query to be submitted to the O2Web server.

userdata A string that the programmer might have inserted in the
anchor that produced the query. If this is the case, this string is returned
to the programmer (for more information about userdata , see the
make_url member function of the o2webassistant library).

Description This member function is called at the end of each new HTML production
if it is defined on the class to which belongs the object computed by the
URL query. In that case, it overloads the eventually defined epilog
member function of the O2WebInteractor class. The result of this
member function is inserted after the text returned by an html_footer
member function defined in the same class or the footer member
function of the O2WebInteractor class.

This member function is rarely useful.

Returns A d_Bits value.
114 O2Web User Manual

User-Defined member functions : html_footer
html_footer

Summary Adds class-dependent elements to the bottom of each page.

Syntax d_Bits html_footer(char* query, char* userdata);

Arguments query The OQL query that returns the receiver of the member function.
This can be guaranteed by O2Web only if the html_report member
function is called directly by O2Web in response to a client query. If
called directly by a programmer, it is its responsibility to provide the
member function with a correct value for the query parameter.

userdata A string containing data stored in an anchor by the
programmer when using the make_url member function of the
o2_WebAssistant class. This parameter is only meaningful when
html_report is called by O2Web on the result of a client query.

Description This adds class-dependent elements to the bottom of each page
resulting from a query leading to the class in which this member function
is defined.

This member function can be defined in any class of an O2 schema. It is
called, at the end of each new HTML production, if it is defined in the
class to which the object computed by the URL query belongs. In this
case, it overloads the eventually defined footer member function of the
O2WebInteractor class.

Returns A d_Bits value containing valid HTML.
O2Web User Manual 115

O2WEB REFERENCE6
html_header

Summary Adds class-dependent elements to the top of each page.

Syntax d_Bits html_header(char* query, char* userdata);

Arguments query The OQL query that returns the receiver of the member function.
This can be guaranteed by O2Web only if the html_report member
function is called directly by O2Web in response to a client query. If called
directly by a programmer, it is its responsibility to provide the member
function with a correct value for the query parameter.

userdata A string containing data stored in an anchor by the
programmer when using the make_url member function of the
o2_WebAssistant class. This parameter is only meaningful when
html_report is called by O2Web on the result of a client query.

Description This member function is used to add class-dependent elements to the
top of each page resulting from a query leading to the class in which this
member function is defined.

This member function can be defined in any class of an O2 schema. It is
called, at the beginning of each new HTML production, if it is defined in
the class to which the object computed by the URL query belongs. In this
case, it overloads the eventually defined header member function of the
O2WebInteractor class.

Returns A d_Bits value containing valid HTML.

Example The following example defines a simple header in a class Directory .
116 O2Web User Manual

User-Defined member functions : html_header
d_Bits Directory::html_header(char * query,
char *

userdata)
{

o2_WebStream st;

st << "<html> <header>\n<title>";
st << html_title();
st << "</title>\n</header>";

st << "<body>\n<CENTER><H2>\n";
st << html_title();
st << "</H2></CENTER>\n<HR>";

d_Bits str(st.data());
return(str);

}

O2Web User Manual 117

O2WEB REFERENCE6
html_prolog

Summary Specifies the prolog for a class.

Syntax d_Bits html_prolog(char* query, char* userdata);

Arguments query The query to be submitted to the O2Web server.

userdata A string that the programmer might have inserted in the
anchor that produced the query. If this is the case, this string is returned
to the programmer (for more information about userdata , see the
make_url member function of the o2webassistant library).

Description This member function is called at the beginning of each new HTML
production if it is defined in the class to which belongs the object
computed by the URL query. When called, it replaces the default CGI
header or the one returned by the prolog member function in the
O2WebInteractor class (if this has been defined).

Returns A d_Bits value containing a valid CGI header string.
118 O2Web User Manual

User-Defined member functions : html_report
html_report

Summary Replaces the default HTML generation.

Syntax d_Bits html_report(char* query, char* userdata);

Arguments query The OQL query that returns the receiver of this member function.
This can be guaranteed by O2Web only if the html_report member
function is called directly by O2Web in response to a client query. If
called directly by a programmer, it is its responsibility to provide the
member function with a correct value for the query parameter.

userdata A string containing data stored in an anchor by the
programmer when using the make_url member function of the
o2_WebAssistant class. This parameter is only meaningful when
html_report is called by O2Web on the result of a client query.

Description This replaces the default HTML generation for the class in which this
member function is defined.

Returns A d_Bits value containing valid HTML.

Example The following example shows how the body of a report can be
customized by a programmer.
O2Web User Manual 119

O2WEB REFERENCE6
d_Bits Directory::html_report(char * query, char * userdata)
{

o2_WebAssistant toolbox;
o2_WebStream st, tmp;

tmp << get_query() << "->entries";

st << "<dl>\n";

st << "<dt> <h3>";
st << toolbox.make_anchor(toolbox.make_url(tmp.data(),

"",(const char*)html_title(), 0),
"Browse the Directory");

st << "</h3>\n";
st << "<dd>\n";
st << "Click above to consult the directory by navigating inside

it\n";

st << "<dt> <h3>";
st <<

toolbox.make_anchor(toolbox.make_url("TheDirectorySearcher",

"", (const char*)html_title(), 0),

"Search the Directory");
st << "</h3>\n";
st << "<dd>\n";
st << "Click above to search a specify entry in the directory\n";

st << "</dl>\n";

d_Bits str(st.data());
return(str);

}

120 O2Web User Manual

User-Defined member functions : html_title
html_title

Summary Returns the text that will appear as the anchor (in the generic mode)
when the receiver is a sub-object.

Syntax d_String html_title();

Arguments None.

Description When using the generic mode of Web or the make_report member
function of the o2_WebAssistant class, a sub-object is represented by
an anchors on which users must click to enter the sub-object.

This member function returns the text of the anchor. If this method has
not been defined, the name of the class is used as the anchor text.

Returns A d_String.
O2Web User Manual 121

O2WEB REFERENCE6
6.3 The o2webassistant library

The o2webassistant library is a set of classes designed to help
programmers in the process of building a World Wide Web service on
top of O2.

The classes belonging to the o2webassistant library are:

• o2_WebAssistant

• o2_WebFormAnalyser

• o2_WebFormItem

• o2_WebImageAttributes

• o2_WebImageInliner

• o2_WebStream

These classes do not need to be imported in O2.
122 O2Web User Manual

The o2webassistant library : html_title
o2_WebAssistant

This class is a general purpose class that contains member functions
used by programmers to perform various actions (retrieving a CGI
variable value, creating an anchor, calling the generic O2Web HTML
generation, etc.).

This subsection presents the o2_WebAssistant class and the
following member functions:

• get_http_prolog

• get_http_variable

• make_anchor

• make_index

• make_inline_image

• make_report

• make_url
O2Web User Manual 123

O2WEB REFERENCE6
class o2_WebAssistant {
public:

o2_WebStream get_http_prolog(const char* MimeType);
o2_WebStream get_http_variable(const char* name);
o2_WebStream make_url(const char* index, const

char* user_data, int key);
o2_WebStream make_index(const char* name,

const char* content);
o2_WebStream make_inline_image(const char* query,

int width, int_height,
o2_WebImageAttributes* format,
int key, const char* alphalabel);

o2_WebStream make_anchor(const o2_WebStream &url, const char*
content);

o2_WebStream make_anchor(const char* url, const char* content);
o2_WebStream make_report(Handle obj, const char* query,

O2RpMode generic, O2RpStatus header,
const char* userdata);

o2_WebAssistant(){};
~o2_WebAssistant(){};

};
124 O2Web User Manual

The o2webassistant library
get_http_prolog

Summary Builds the proper CGI header for a MIME Type.

Syntax o2_WebStream get_http_prolog(const char* MimeType);

Arguments MimeType The MIME type.

Description This builds the proper CGI header for a MIME Type.

Returns An object of the o2_WebStream class.
O2Web User Manual 125

O2WEB REFERENCE6
get_http_variable

Summary Retrieves the environment variable values of a HTTP server.

Syntax o2_WebStream get_http_variable(const char* name);

Description This retrieves the values of the environment variables given by the HTTP
server to the CGI script. The possible variable names are:

• SERVER_NAME

• SERVER_PORT

• SERVER_PROTOCOLE

• SERVER_SOFTWARE

• REQUEST_METHOD

• PATH_INFO

• PATH_TRANSLATED

• QUERY_STRING

• SCRIPT_NAME

• CONTENT_TYPE

• CONTENT_LENGTH

• HTTP_ACCEPT

• HTTP_USER_AGENT

• AUTH_TYPE

• REMOTE_HOST

• REMOTE_ADDR

• REMOTE_USER

• REMOTE_IDENT

For further information concerning these variables, consult the
documentation for your HTTP server.

Returns An object of the o2_WebStream class.
126 O2Web User Manual

o2_WebAssistant
make_anchor

Summary Creates a bits value containing the definition of an HTML anchor.

Syntax o2_WebStream make_anchor(const o2_WebStream &url,
const char* content);

Arguments url The URL of the resource.

content A string that will appear in the generated anchor.

Description This creates a bits value containing the definition of an HTML anchor.

Returns An object of the o2_WebStream class.
O2Web User Manual 127

O2WEB REFERENCE6
make_index

Summary Creates a string that contains an HTML index.

Syntax o2_WebStream make_index(const char* name,
const char* content);

Arguments name The name of the created string.

content The content of the created string.

Description This creates a string that contains an HTML index. This index can be
referred to when creating a URL in order to scroll through the retrieved
document until the index becomes visible.

Returns An object of the o2_WebStream class.
128 O2Web User Manual

o2_WebAssistant : make_inline_image
make_inline_image

Summary Creates an inline image.

Syntax o2_WebStream make_inline_image(const char* query,
int width, int_height,
o2_WebImageAttributes* format,
int key, const char* alphalabel);

Arguments query A query leading to an image.

width The width of an image. If this is not equal to 0, the value is
used by some browsers to reserve space for the image in
order to continue displaying the text of the received
document before loading the inline image.

height The height of an image. If its value is not equal to 0, it is
used by some browsers to reserve space for the image in
order to continue displaying the text of the received
document before loading the inline image.

format An object of the o2_WebImageAttributes class
containing directives to change the attributes (borders,
alignments, clickable, etc.) of the image.

Giving nil for format indicates that the image is not
clickable, the borders are null and the alignment of the
image will be the default used by the browser.

key A short integer that encodes the query. It is inserted into
the bits result of this member function. A value of 0 means
no encoding.

alphalabel A string that is displayed instead of the inline image by
text-oriented browsers or when a browser is configured to
load images only on demand.

Description This creates an inline image.

Returns An object of the o2_WebStream class.
O2Web User Manual 129

O2WEB REFERENCE6
make_report

Summary Produces an HTML output of a complex O2 value.

Syntax o2_WebStream make_report(Handle obj,
const char* query,
O2RpMode generic,
O2RpStatus header,
const char* userdata);

Arguments obj The value to be printed. It can be an object, a tuple, a
collection, a string or a byte (but not an integer, a char, a
boolean or a real).

query A query leading to the value obj .

generic This indicates whether make_report uses user-defined
member functions (RP_DEFAULT) or generic member
functions (RP_GENERIC) to build the report.

header This indicates whether O2Web adds a CGI header
(RP_WITH_HEADER) or not (RP_NO_HEADER).

userdata A string to be returned to the programmer in the
html_header , html_footer , html_report member
functions when the user clicks on an anchor associated
with this URL

Description This produces an HTML output of a complex O2 value. It embeds a
generated report in a report.

Returns An object of the o2_WebStream class.
130 O2Web User Manual

o2_WebAssistant : make_url
make_url

Summary Creates a formatted URL.

Syntax o2_WebStream make_url(const char* query,
const char* index,
const char* user_data, int key);

Arguments query A query.

index A string referring to the index name of the returned
document.

user_data A string to be returned to the programmer in the
html_header , html_footer and html_report
member functions when the user clicks on an anchor
associated with the URL.

key A short integer used to encode the query inserted in the
URL. A value of 0 means no encoding.

Description This creates a formatted URL leading to the object result of query .

Returns An object of the o2_WebStream class.
O2Web User Manual 131

O2WEB REFERENCE6
o2_WebFormAnalyser

This class helps programmers to decode HTML form results. It provides
a set of member functions that retrieve the keywords in a form, the
number of keywords, the values retrieved for the keywords, etc.,. It is
used in conjunction with the o2_WebFormItem class.

This subsection presents the o2_WebFormAnalyser class and the
following member functions:

• get_all_values

• get_keywords

• get_nb_values

• get_nth_value

• get_raw_data

• get_unique_keywords

• get_values

• is_decoded

class o2_WebFormAnalyser {
protected:
 char * raw_data;
 char * type;
 char decoded;
 d_Array<o2_WebFormItem> elements;

public:
 char is_decoded ();
 d_Array<o2_WebFormItem> & get_all_values();
 int get_nb_values();

void get_values(char * name, d_Array<o2_WebFormItem> & values);
 int get_nth_value(int i, o2_WebFormItem & item);
 void get_keywords(d_Array<char *> & values);
 void get_unique_keywords(d_Array<char *> & values);
 o2_WebStream get_raw_data();

 o2_WebFormAnalyser();
 o2_WebFormAnalyser (char * params);
 ~o2_WebFormAnalyser();

} ;
132 O2Web User Manual

o2_WebFormAnalyser : get_all_values
get_all_values

Summary Retrieves an array of all the values in an HTML form.

Syntax d_Array<o2_WebFormItem> & get_all_values();

Arguments None.

Description This returns an array of all the values in an HTML form. When a multiple
selection list is used in a form, this member function returns the multiple
items as different elements in the list.

Each element in the list is an object of the o2_WebFormItem class that
contains detailed information about a single item in the form.

Returns An array of objects from the o2_WebFormItem class.
O2Web User Manual 133

O2WEB REFERENCE6
get_keywords

Summary Returns all the keywords retrieved by an HTML form.

Syntax void get_keywords(d_Array<char *> & values);

Arguments values An array of values.

Description This returns all the keywords retrieved by an HTML form. The same
keyword may appear more than once if multiple values have been
retrieved for a keyword.

Returns Nothing.
134 O2Web User Manual

o2_WebFormAnalyser
get_nb_values

Summary Returns the number of values.

Syntax int get_nb_values();

Arguments None.

Description This returns the number of values.

Returns An integer representing the number of values.
O2Web User Manual 135

O2WEB REFERENCE6
get_nth_value

Summary Retrieves the nth value in an HTML form concerning a specific attribute.

Syntax int get_nth_value(int i, o2_WebFormItem & item);

Arguments item An item in a form.

i An integer.

Description This returns the i th value in an HTML form concerning the item
attribute. This member function is only meaningful for forms containing
items with potential multiple values (multiple selection list).

The number of values for an item can be retrieved by counting the
number of elements of the d_Array set by the get_values function.

Returns The i th value.
136 O2Web User Manual

o2_WebFormAnalyser : get_raw_data
get_raw_data

Summary Returns the form content as a raw byte string.

Syntax o2_WebStream get_raw_data();

Arguments None.

Description This returns the initial data retrieved from a form. It is used when O2Web
failed to decode the form.

Returns The content of the form.
O2Web User Manual 137

O2WEB REFERENCE6
get_unique_keywords

Summary Gets the unique keywords retrieved by an HTML form.

Syntax void get_unique_keywords (d_Array<char *> & values);

Arguments values An array of keywords.

Description This gets all the unique keywords retrieved by an HTML form. Even if
multiple values have been retrieved for a keyword, a keyword only
appears once in the returned list.

Returns Nothing.
138 O2Web User Manual

o2_WebFormAnalyser : get_values
get_values

Summary Gets an array of values in an HTML form concerning a specific attribute.

Syntax void get_values(char * name,
d_Array<o2_WebFormItem> & values);

Arguments name A specific attribute

values The values in the form.

Description This gets a list of all the values in an HTML form concerning the name
attribute. When a multiple selection list is used in a form, this member
function returns the multiple items as different elements in the list.

Each element in the list is an object of the o2_WebFormItem class that
contains detailed information about a single item in the form.

Returns Nothing.
O2Web User Manual 139

O2WEB REFERENCE6
is_decoded

Summary Establishes whether the data retrieved from an HTML form is decoded.

Syntax char is_decoded ();

Arguments None.

Description This establishes whether the data retrieved from an HTML form has been
decoded by O2Web. O2Web can decode HTML forms that return two
kinds of data:

(1) application/x-www-form-urlencoded

(2) multipart/form-data

O2Web retrieves the MIME type of the form data using the
CONTENT_TYPE CGI variable.

(1) is usually used by all web browsers.

(2), recently introduced by Netscape, permits the retrieval of entire files
from a client. Its specification conforms to RFC 1867.

If O2Web is unable to decode data, you can get the data and decode it
yourself using the get_raw_data member function. This member
function returns the initially retrieved data.

Returns A boolean.

A value of true indicates the data has been decoded.

A value of false indicates the data has not been decoded.
140 O2Web User Manual

o2_WebFormItem : is_decoded
o2_WebFormItem

The objects of this class are returned by member functions of the
o2_WebFormAnalyser class.

This subsection presents the o2_WebFormItem class and the following
member functions:

• get_file

• get_name

• get_type

• set_align

class o2_WebFormItem {
protected:
 char * name;
 char * type;
 char * file;
 char * value;

public:
 char * get_name ();
 char * get_type ();
 char * get_file ();
 char * get_value ();

o2_WebFormItem & operator= (const o2_WebFormItem & item);

 o2_WebFormItem();
 ~o2_WebFormItem();
};
O2Web User Manual 141

O2WEB REFERENCE6
get_file

Summary Ascertains whether the value retrieved is the contents of a file.

Syntax char * get_file ();

Arguments None.

Description This ascertains whether the value retrieved is the contents of a file. It is
only meaningful when the form data was posted with
multipart/form-data encoding.

Returns The file name from which the value is obtained or an empty string if the
value does not come from a file.
142 O2Web User Manual

o2_WebFormItem : get_name
get_name

Summary Returns the keyword for an item retrieved from an HTML form.

Syntax char * get_name ();

Arguments None.

Description This returns the keyword for an item retrieved from an HTML form.

Returns The keyword of an item.
O2Web User Manual 143

O2WEB REFERENCE6
get_type

Summary Returns the type of an item retrieved from an HTML form.

Syntax char * get_type ();

Arguments None.

Description This returns the type of an item retrieved from an HTML form. It contains
the MIME type of the retrieved item (text/html etc.).

Returns The type of an item.
144 O2Web User Manual

o2_WebFormItem
get_value

Summary Returns the value of an item retrieved from an HTML form.

Syntax char * get_value ();

Arguments None.

Description This returns the value of an item retrieved from an HTML form.

Returns The value of an item.
O2Web User Manual 145

O2WEB REFERENCE6
o2_WebImageAttributes

This class is used to specify the attributes of an image. It must be used in
conjunction with the make_inline_image member function of the
o2_WebAssistant class or with the o2_WebImageInliner class.

This subsection presents the o2_WebImageAttributes class and the
following member functions:

• set_align

• set_border

• set_clickable

• set_hspace

• set_vspace

class o2_WebImageAttributes {
protected:
 int hspace;
 int vspace;
 int border;
 char * align;
 char clickable;

public:
 void set_hspace (int h);
 void set_vspace (int v);
 void set_border (int b);
 void set_align (char * s);
 void set_clickable (char v);
 char *get_report ();

 o2_WebImageAttributes ();
 ~o2_WebImageAttributes();
};
146 O2Web User Manual

o2_WebImageAttributes : set_align
set_align

Summary Specifies the way an image is aligned with text.

Syntax void set_align (char * s);

Arguments s A value specifying the type of alignment to be used.

Description This specifies the way an image is aligned with the current line of text.

Some values are always valid whatever the browser you are using.
These are bottom , top and middle . Other values can be used but are
only recognized by certain browsers such as Netscape Navigator©.
These values are left , right , texttop , absmiddle , baseline ,
absbottom . These relate to either floating images (left , right) or the
implementation of Netscape inline images.

Returns Nothing.
O2Web User Manual 147

O2WEB REFERENCE6
set_border

Summary Sets the thickness of the border around an image.

Syntax void set_border (int b);

Arguments b The thickness of the border.

Description This sets the thickness of the border around an image.

Returns Nothing.
148 O2Web User Manual

o2_WebImageAttributes : set_clickable
set_clickable

Summary Specifies that an inline image is an imagemap.

Syntax void set_clickable (char v);

Arguments v An inline image.

Description This specifies that an inline image is an imagemap.

Returns Nothing.
O2Web User Manual 149

O2WEB REFERENCE6
set_hspace

Summary Sets the space to be left to the left and right of a floating image.

Syntax void set_hspace (int h);

Arguments h The space to be left to the left and right of an image.

Description This sets the space to be left between the left and right of a floating
image and the text wrapped around it.

Returns Nothing.
150 O2Web User Manual

o2_WebImageAttributes
set_vspace

Summary Sets the space to be left at the top and bottom of a floating image.

Syntax void set_vspace (int v);

Arguments v The space to be left at the top and bottom of an image.

Description This sets the space to be left between the top and bottom of a floating
image and the text wrapped around it.

Returns Nothing.
O2Web User Manual 151

O2WEB REFERENCE6
o2_WebImageInliner

This class is used by the make_inline_image member function of the
o2_WebAssistant class. It is used to generate inline images.

This subsection presents the o2_WebImageInliner class and the
following member functions:

• set_format

• set_height

• set_key

• set_label

• set_query

• get_report

• set_width

class o2_WebImageInliner {

protected:
 char * query;
 int width;
 int height;
 char * label;
 int key;
 o2_WebImageAttributes * format;

public:
 void set_query (const char * s);
 void set_width (int w);
 void set_height (int h);
 void set_label (const char * s);
 void set_key (int k);
 void set_format (o2_WebImageAttributes * f);
 o2_WebStream get_report ();

 o2_WebImageInliner();
 ~o2_WebImageInliner();
};
152 O2Web User Manual

o2_WebImageInliner : set_format
set_format

Summary Specifies the format of an inline image.

Syntax void set_format (o2_WebImageAttributes * f);

Arguments f An object of the o2_WebImageAttributes class.

Giving nil for f indicates that the image is not clickable, the borders are
null and the alignment of the image will be the default used by the
browser.

Description This specifies the format of an inline image.

Returns Nothing.
O2Web User Manual 153

O2WEB REFERENCE6
set_height

Summary Sets the height of an inline image.

Syntax void set_height (int h);

Arguments h The height of an inline image.

Description This sets the height of an inline image. It is used by some browsers to
reserve enough space for an image. It also allows browsers to continue
to display text before the entire image has been read.

Returns Nothing.
154 O2Web User Manual

o2_WebImageInliner : set_key
set_key

Summary Sets the key to be used to encode a query.

Syntax void set_key (int k);

Arguments k The value of the key. A value of 0 means no encoding.

Description This sets the key to be used to encode a query that will be inserted in the
bits result of this member function. A value of 0 means no encoding.

Returns Nothing.
O2Web User Manual 155

O2WEB REFERENCE6
set_label

Summary Specifies an alpha-numerical label to be used instead of an inline image.

Syntax void set_label (const char * s);

Arguments s The alpha-numerical label to be used instead of an inline
image.

Description This specifies an alpha-numerical label to be used instead of an inline
image for browsers which either do not support images or are configured
to load images only on demand.

Returns Nothing.
156 O2Web User Manual

o2_WebImageInliner
set_query

Summary Affects a query resulting in an image to the o2_WebImageInliner
class.

Syntax void set_query (const char * s);

Arguments s A string.

Description This affects a query resulting in an image to the o2_WebImageInliner
class.

Returns Nothing.
O2Web User Manual 157

O2WEB REFERENCE6
get_report

Summary Builds an inline image.

Syntax o2_WebStream get_report ();

Arguments None.

Description This builds an inline image according to the parameters given.

Returns An object of the o2_WebStream class.
158 O2Web User Manual

o2_WebImageInliner : set_width
set_width

Summary Sets the width of an inline image.

Syntax void set_width (int w);

Arguments w The width of an inline image.

Description This sets the width of an inline image. It is used by some browsers to
reserve enough space for an image. It also allows browsers to continue
to display text before the entire image has been read.

Returns Nothing.
O2Web User Manual 159

O2WEB REFERENCE6
o2_WebStream

This class describes a stream. It is used in the other classes in the
libo2webassistant.a library.

This subsection presents the following operations:

• append

• caseCompare

• char*

• compareTo

• contains

• data

• first

• index

• insert

• isAscii

• isNull

• last

• length

• mblength

• o2_WebStream

• operator=

• operator+=

• operator[]

• operator+

• operator==

• operator!=

• operator<

• operator<=

• operator>

• operator>=

• operator<<

• prepend

• remove

• replace

• toLower

• toUpper
160 O2Web User Manual

o2_WebStream : append
append

Summary Appends a stream.

Syntax o2_WebStream& append(const char *cs); (1)

o2_WebStream& append(const char *cs, size_t len); (2)

o2_WebStream& append(const o2_WebStream& str); (3)

o2_WebStream&append(consto2_WebStream&str,size_tlen);
(4)

o2_WebStream& append(char c, size_t rep); (5)

Arguments cs The value with which the stream is appended.

len The length of the value or stream with which the stream is
appended.

str The stream with which the stream is appended.

c The value with which the stream is appended.

rep The length of c .

Description (1) This appends the stream with the character string pointed
to by cs .

(2) This appends the stream with the first len characters
pointed to by cs .

(3) This appends the stream with the stream in str .

(4) This appends the stream with the first len characters from
the stream str .

(5) This appends the stream with the value in c , which is
repeated rep times.

Returns A reference to the appended stream.
O2Web User Manual 161

O2WEB REFERENCE6
caseCompare

Summary Specifies whether operations are case sensitive or not.

Syntax enum caseCompare {exact, ignoreCase } ;

Arguments exact Operation is case sensitive.

ignoreCase Operation is case insensitive.

Description This specifies whether operations are case sensitive or case insensitive.

Returns Nothing.
162 O2Web User Manual

o2_WebStream : char*
char*

Summary Converts a stream into a char*.

Syntax operator const char* () const { return data (); } ;

Arguments None.

Description This converts a stream into a char*.

Returns The converted data.
O2Web User Manual 163

O2WEB REFERENCE6
compareTo

Summary Compares two streams with each other.

Syntax int compareTo(const char* cs2, caseCompare cmp) const;
(1)

int compareTo(const o2_WebStream& str, caseCompare
cmp) const; (2)

Arguments cs2 The character string with which the current stream is
compared.

cmp The type of case comparison.

str The stream with which the current stream is compared.

Description (1) This compares cs2 with self.

(2) This compares str with self.

Returns (1) -1, 0, or 1 if cs2 is lexicographically less than, equal to, or
greater than self.

(2) -1, 0, or 1 if str is lexicographically less than, equal to, or
greater than self.
164 O2Web User Manual

o2_WebStream
contains

Summary Matches the pattern of a stream.

Syntax int contains(o2_WebStream& str, caseCompare = exact)const; (1)

int contains(const char* cs, caseCompare = exact)const; (2)

Arguments str A stream.

cs A character string.

Description (1) This ascertains whether the stream contains the character
string cs.

(2) This ascertains whether the stream contains the stream
str.

Returns 0 if the stream contains str, else 1.
O2Web User Manual 165

O2WEB REFERENCE6
data

Summary Returns the data in a stream.

Syntax char* data() const;

Arguments None.

Description This returns the character string contained in a stream.

Returns The data in a stream.
166 O2Web User Manual

o2_WebStream : first
first

Summary Returns the index of the first occurrence of a given character in a stream.

Syntax size_t first(char c) const;

Arguments c The character.

Description This returns the index of the first occurrence of the character c in a
stream.

Returns The index of the first occurrence of c in the stream or NPOS if c is not in
the stream.
O2Web User Manual 167

O2WEB REFERENCE6
index

Summary Returns the index that matches a specified pattern.

Syntax size_t index(const char* pat, size_t i=0,
caseCompare = exact) const; (1)

size_t index(o2_WebStream& pat, size_t i=0,
caseCompare = exact) const; (2)

size_t index(const char* pat, size_t patlen,
size_t i, caseCompare cmp); (3)

size_t index(o2_WebStream& pat, size_t patlen,
size_t i, caseCompare cmp) const; (4)

Arguments pat The pattern to search for.

i The starting index.

patlen The length of pat .

cmp The type of case comparison.

Description (1) This starts from i and returns the index of the match of the
first occurrence of the pattern pat .

(2) This starts from i and returns the index of the match of the
first occurrence of the pattern pat .

(3) This starts from i and returns the index of the match of the
first occurrence of the first patlen characters in the
pattern pat .

(4) This starts from i and returns the index of the match of the
first occurrence of the first patlen characters in the
pattern pat .

Returns The index that matches the specified pattern or NPOS if no match is
found.
168 O2Web User Manual

o2_WebStream : insert
insert

Summary Inserts characters in a stream.

Syntax o2_WebStream& insert(size_t pos, const char* str); (1)

o2_WebStream& insert(size_t pos, const char* str,
size_t len); (2)

o2_WebStream& insert(size_t pos, o2_WebStream& str);
(3)

o2_WebStream& insert(size_t pos, o2_WebStream& str,
size_t len); (4)

Arguments pos The position of the first character to be inserted.

str A stream of characters to be inserted.

len The number of characters to be inserted.

Description (1) This inserts the characters in the character string str at
the position pos .

(2) This inserts the first len characters of the character string
str , beginning at the position pos .

(3) This inserts the characters of the stream str at the
position pos .

(4) This inserts the first len characters of the stream str ,
beginning at the position pos .

Returns A reference to the updated stream.
O2Web User Manual 169

O2WEB REFERENCE6
isAscii

Summary Ascertains whether a stream consists of only ASCII characters.

Syntax int isAscii() const;

Arguments None.

Description This ascertains whether a stream consists of only ASCII characters.

Returns 0 if the stream contains only ASCII characters, else 1.
170 O2Web User Manual

o2_WebStream : isNull
isNull

Summary Ascertains whether a stream is null.

Syntax int isNull() const;

Arguments None.

Description This ascertains whether a stream is null.

Returns O if the stream is null, else 1.
O2Web User Manual 171

O2WEB REFERENCE6
last

Summary Returns the index of the last occurrence of a given character in a stream.

Syntax size_t last(char c) const;

Arguments c The character.

Description This returns the index of the last occurrence of the character c in a
stream.

Returns The index of the last occurrence of c in the stream or NPOS if c is not in
the stream.
172 O2Web User Manual

o2_WebStream : length
length

Summary Returns the length of a stream.

Syntax int length() const;

Arguments None.

Description This returns the number of bytes in a stream.

Returns The number of bytes in a stream.
O2Web User Manual 173

O2WEB REFERENCE6
mblength

Summary Returns the length of a stream.

Syntax size_t mblength() const;

Arguments None.

Description This returns the number of characters in a stream, taking into account the
possible multi-byte characters in the stream.

Returns The number of characters in a stream.
174 O2Web User Manual

o2_WebStream : o2_WebStream
o2_WebStream

Summary Constructs a stream.

Syntax o2_WebStream (); (1)

o2_WebStream (const char* cs); (2)

o2_WebStream (const char* a, size_t N); (3)

o2_WebStream (const o2_WebStream& str); (4)

o2_WebStream (char c); (5)

o2_WebStream (char c, size_t N); (6)

Arguments cs A pointer to the data to be copied.

a A pointer to the data to be copied.

N The number of characters to be copied.

str The stream to be copied.

c A single character.

Description (1) This constructs a null stream.

(2) This constructs a stream using the data pointed to by cs ,
up to the first terminating null.

(3) This constructs a stream by copying exactly N characters
from the data pointed to by cs .

(4) This constructs a stream by copying another stream str .

(5) This constructs a stream that will contain the single
character c .

(6) This constructs a stream that will contain the single
character c , which is repeated N times.

Returns Nothing.
O2Web User Manual 175

O2WEB REFERENCE6
operator=

Summary Assignment operator.

Syntax o2_WebStream& operator=(const o2_WebStream& str); (1)

o2_WebStream& operator=(const char* cs); (2)

Arguments str The stream to be copied.

cs A pointer to the data to be copied.

Description (1) This copies the data in str to the stream.

(2) This copies the characters pointed to by cs to the stream.

Returns A reference to the updated stream.
176 O2Web User Manual

o2_WebStream : operator+=
operator+=

Summary Append operator.

Syntax o2_WebStream& operator+=(const o2_WebStream& str); (1)

o2_WebStream& operator+=(const char* cs); (2)

Arguments str The stream to be copied.

cs A pointer to the data to be copied.

Description (1) This appends the data in str to the stream.

(2) This appends the characters pointed to by cs to the
stream.

Returns A reference to the updated stream.
O2Web User Manual 177

O2WEB REFERENCE6
operator[]

Summary Returns the character at a given position in a stream.

Syntax char& operator[] (size_t i);

char operator[] (size_t i) const;

Arguments i The position in the stream.

Description This returns the character at the position i in a stream.

Returns The character at a given position in a stream.
178 O2Web User Manual

o2_WebStream : operator+
operator+

Summary Concatenate operator.

Syntax o2_WebStream operator+(const o2_WebStream&,
const o2_WebStream&); (1)

o2_WebStream operator+(const o2_WebStream&, const
char*);

(2)

o2_WebStreamoperator+(constchar*,consto2_WebStream&);
(3)

Arguments The streams or strings to be added together.

Description (1) This concatenates two streams.

(2) This concatenates a stream with a string.

(3) This concatenates a string with a stream.

Returns The concatenated stream.
O2Web User Manual 179

O2WEB REFERENCE6
operator==

Summary Compares the identities of two streams.

Syntax inline int operator==(const o2_WebStream&,
const o2_WebStream&); (1)

int operator==(const o2_WebStream&, const char*); (2)

inline int operator==(const char*, const o2_WebStream&);
(3)

Arguments The streams or strings to be compared.

Description (1) This compares the identities of two streams.

(2) This compares the identities of a stream and a string.

(3) This compares the identities of a string and a stream.

Returns 0 if they are the same, else 1.
180 O2Web User Manual

o2_WebStream : operator!=
operator!=

Summary Compares the identities of two streams.

Syntax inline int operator!=(const o2_WebStream&,
const o2_WebStream&); (1)

inline int operator!=(const o2_WebStream&, const char*);
(2)

inline int operator!=(const char*, const o2_WebStream&);
(3)

Arguments The streams or strings to be compared.

Description (1) This compares the identities of two streams.

(2) This compares the identities of a stream and a string.

(3) This compares the identities of a string and a stream.

Returns 0 if they are not the same, else 1.
O2Web User Manual 181

O2WEB REFERENCE6
operator<

Summary Compares two streams.

Syntax inline int operator<(const o2_WebStream&,
const o2_WebStream&); (1)

inline int operator<(const o2_WebStream&, const char*);
(2)

inline int operator<(const char*, const o2_WebStream&);
(3)

Arguments The streams or strings to be compared.

Description (1) This compares two streams.

(2) This compares a stream and a string.

(3) This compares a string and a stream.

Returns (1) 0 if the first stream is less than the second stream, else 1.

(2) 0 if the stream is less than the string, else 1.

(3) 0 if the string is less than the stream, else 1.
182 O2Web User Manual

o2_WebStream : operator<=
operator<=

Summary Compares two streams.

Syntax inline int operator<=(const o2_WebStream&,
const o2_WebStream&); (1)

inline int operator<=(const o2_WebStream&, const char*);
(2)

inline int operator<=(const char*, const o2_WebStream&);
(3)

Arguments The streams or strings to be compared.

Description (1) This compares two streams.

(2) This compares a stream and a string.

(3) This compares a string and a stream.

Returns (1) 0 if the first stream is less than or equal to the second stream, else
1.

(2) 0 if the stream is less than or equal to the string, else 1.

(3) 0 if the string is less than or equal to the stream, else 1.
O2Web User Manual 183

O2WEB REFERENCE6
operator>

Summary Compares two streams.

Syntax inline int operator>(const o2_WebStream&,
const o2_WebStream&); (1)

inline int operator>(const o2_WebStream&, const char*);
(2)

inline int operator>(const char*, const o2_WebStream&);
(3)

Arguments The streams or strings to be compared.

Description (1) This compares two streams.

(2) This compares a stream and a string.

(3) This compares a string and a stream.

Returns (1) 0 if the first stream is greater than the second stream, else
1.

(2) 0 if the stream is greater than the string, else 1.

(3) 0 if the string is greater than the stream, else 1.
184 O2Web User Manual

o2_WebStream : operator>=
operator>=

Summary Compares two streams.

Syntax inline int operator>=(const o2_WebStream&,
const o2_WebStream&); (1)

inline int operator>=(const o2_WebStream&, const char*);
(2)

inline int operator>=(const char*, const o2_WebStream&);
(3)

Arguments The streams or strings to be compared.

Description (1) This compares two streams.

(2) This compares a stream and a string.

(3) This compares a string and a stream.

Returns (1) 0 if the first stream is greater than or equal to the second
stream, else 1.

(2) 0 if the stream is greater than or equal to the string, else 1.

(3) 0 if the string is greater than or equal to the stream, else 1.
O2Web User Manual 185

O2WEB REFERENCE6
operator<<

Summary Output operator.

Syntax inlineostream&operator<<(ostream&,consto2_WebStream&);
(1)

inline o2_WebStream& operator<<(o2_WebStream&,
const o2_WebStream&); (2)

inline o2_WebStream& operator<<(o2_WebStream&,
const char*); (3)

inline o2_WebStream& operator<<(o2_WebStream&, int);
(4)

inline o2_WebStream& operator<<(o2_WebStream&,
unsigned char); (5)

Arguments The objects of the class o2_WebStream class in which the other
arguments will be input.

Description (1) Outputs an o2_WebStream on an ostream.

(2) Outputs an o2_WebStream on another o2_WebStream.

(3) Outputs a string of characters on an o2_WebStream.

(4) Outputs an integer on an o2_WebStream.

(5) Outputs an unsigned character on an o2_WebStream.

Returns A reference to the updated stream.
186 O2Web User Manual

o2_WebStream : prepend
prepend

Summary Prepends a stream.

Syntax o2_WebStream& prepend(const char *cs); (1)

o2_WebStream& prepend(const char *cs, size_t len); (2)

o2_WebStream& prepend(const o2_WebStream& str); (3)

o2_WebStream& prepend(const o2_WebStream& str, size_t
len); (4)

o2_WebStream& prepend(char c, size_t rep); (5)

Arguments cs A pointer to some characters.

len The length of cs or str .

str The stream with which the stream is prepended.

c A single character.

rep The number of times c will be repeated.

Description (1) This prepends a stream with the characters pointed to by
cs .

(2) This prepends a stream with the first len characters
pointed to by cs .

(3) This prepends a stream with the stream str .

(4) This prepends a stream with the first len characters of
str or the length of str , whichever is less.

(5) This prepends a stream with the character c , which is
repeated rep times.

Returns A reference to the prepended stream.
O2Web User Manual 187

O2WEB REFERENCE6
remove

Summary Removes characters from a stream.

Syntax o2_WebStream& remove(size_t pos); (1)

o2_WebStream& remove(size_t pos, size_t len); (2)

Arguments pos The position of the first character to be removed.

len The number of characters to be removed.

Description (1) This removes the characters from the position pos to the
end of the stream.

(2) This removes a maximum of len characters, beginning at
the position pos , from a stream.

Returns A reference to the updated stream.
188 O2Web User Manual

o2_WebStream : replace
replace

Summary Replaces characters in a stream.

Syntax o2_WebStream& replace(size_t pos, size_t n1,
const char* cs); (1)

o2_WebStream& replace(size_t pos, size_t n1,
const char* cs, size_t n2); (2)

o2_WebStream& replace(size_t pos, size_t n1,
const o2_WebStream& str); (3)

o2_WebStream& replace(size_t pos, size_t n1,
const o2_WebStream& str, size_t n2); (4)

Arguments pos The position of the first character to be replaced.

n1 The maximum number of characters to be replaced.

cs The character string containing the data to be inserted.

n2 The maximum number of characters to be inserted.

str The stream containing the data to be inserted.

Description (1) This replaces a maximum of n1 characters in a stream,
starting at the position pos , by the characters pointed to
by cs .

(2) This replaces a maximum of n1 characters in a stream,
starting at the position pos , by the first n2 characters
pointed to by cs .

(3) This replaces a maximum of n1 characters in a stream,
starting at the position pos , by the characters of the
stream str .

(4) This replaces a maximum of n1 characters in a stream,
starting at the position pos , by the first n2 characters of
the stream str .

Returns A reference to the updated stream.
O2Web User Manual 189

O2WEB REFERENCE6
toLower

Summary Returns a lower-case version of a stream.

Syntax o2_WebStream toLower();

Arguments None.

Description This returns a lower-case version of a stream

Returns A lower-case version of the stream.
190 O2Web User Manual

o2_WebStream : toUpper
toUpper

Summary Returns an upper-case version of a stream.

Syntax o2_WebStream toUpper();

Arguments None.

Description This returns an upper-case version of a stream

Returns An upper-case version of the stream.
O2Web User Manual 191

O2WEB REFERENCE6
6.4 o2_Web

This section presents the o2_Web class and describes the following
member functions:

• begin

• init

• end

• loop

• enroll

• enroll_path

• get_option

• set...

- set_default_env

- set_dispatchername

- set_libname

- set_libpath

- set_servername

- set_swapdir

- set_sysdir

- set _systemname

- set_verbose
192 O2Web User Manual

o2_WebStream : toUpper
class o2_Web {
public:
 o2_Web();
 ~o2_Web();

 int begin(int argc, register char *argv[]);
 int begin(int argc, register char *argv[], const char *sysdir,

 const char *systemname, const char *servername,
 const char *dispatchername, int verbose);

 int begin(int argc, register char *argv[], const char *sysdir,
 const char *systemname, const char *servername,
 const char *dispatchername, const char *swapdir,
 char * const *libpath, char * const *libname,
 int commitfrequency, int verbose);

 int init();
 int end();
 int loop();

 void set_systemname(const char *systemname);
 void set_servername(const char *servername);
 void set_sysdir(const char *sysdir);
 void set_swapdir(const char *swapdir);
 void set_dispatchername(const char *dispatchername);
 void set_commitfrequency(const char *commitfrequency);
 void set_commitfrequency(int commitfrequency);
 void set_verbose(int verbose);
 void set_libpath(char * const *libpath);
 void set_libname(char * const *libname);
 void set_default_env();
};
O2Web User Manual 193

O2WEB REFERENCE6
begin

Summary Starts up a connection to the database.

Syntax int begin (int argc, register char *argv[]);

int begin (int argc, register char *argv[], const char
*sysdir,
const char *systemname,
const char *servername,
const char *dispatchername,
int verbose);

int begin (int argc, register char *argv[], const char
*sysdir,
const char *systemname,
const char *servername,
const char *dispatchername,
const char *swapdir,
char * const *libpath,
char * const *libname,
int commitfrequency, int verbose);

Arguments argc Number of arguments of the C++ executable.

argv List of arguments of the C++ executable.

systemname Name of database system as defined in the systems file
of the O2 installation directory. This information is
mandatory. It can be given as a parameter or by calling
set_systemname(char *) before beginning the
session. It can also be set by set_default_env() in
which case it is found in the environment variable
O2SYSTEM.

servername Name of machine on which the O2 server is running. If it
is NULL, O2 will find this information in the systems file
of the O2 installation directory. It can also be given by
calling set_servername(char *) before beginning
the session. It can also be set using
set_default_env() in which case it is found in the
environment variable O2SERVER.

sysdir Path to the directory where O2 is installed. This
information is mandatory. It can be given as a parameter,
194 O2Web User Manual

o2_WebStream : begin
or by calling set_sysdir(char *) before beginning
the session. It can also be set by set_default_env()
in which case it is found in the environment variable
O2HOME.

swapdir Path to a directory where a swap file can be created if O2
needs it. It can be NULL, in which case the swap
directory in the O2 directory is used (See the System
Administration Guide).

libpath A NULL-terminated array of character strings, where
each string gives a directory path. O2 searches these
directories for libraries named in libname if dynamic
linking is needed. It may be NULL.

libname A NULL-terminated array of character strings, each
specifying a library name to use when linking and loading
functions dynamically. It may be NULL.

dispatchername The name of the machine on which
o2open_dispatcher is running.

commitfrequency The frequency with which a commit is carried out.

verbose An integer specifying the session as a verbose session.

Description Starts up the connection to the database and connects up to the server.

Returns 0 if the connection was carried out successfully. If not, an error code is
given.
O2Web User Manual 195

O2WEB REFERENCE6
Example

main (int argc, register char * [] argv){
o2_Web my_session;
if (my_session.begin (argc, argv, "smith",
"mick",

"/usr/bin/o2"))

 cerr <<"Error: cannot start the
connection"<<endl;
...
}
my_session.end();
my_session.set_systemname("my_system");
my_session.set_servername(0);
my_session.set_sysdir("/usr/bin/o2");
my_session.begin(argc, argv);
};
196 O2Web User Manual

o2_Web
end

Summary Ends an O2 session.

Syntax int end();

Arguments None.

Description Ends an O2 session and the connection to the O2 server. A commit is
carried out automatically.

Returns 0 if the session was successfully ended. Else a non-zero value.

Example

main (int argc, register char * [] argv){
o2_Web my_session;
if (my_session.begin (argc, argv, "smith",
"mick",

"/usr/bin/o2"))
 cerr <<"Error: cannot start the
connection"<<endl;
...
my_session.end();
}

O2Web User Manual 197

O2WEB REFERENCE6
init

Summary Starts an O2 session

Syntax int end();

Arguments None.

Description Starts and O2 session.

Returns 0 if init is successful. Else a non-zero value.
198 O2Web User Manual

o2_Web : loop
loop

Summary Creates a loop in the session.

Syntax int loop();

Arguments None.

Description This creates a loop in the session.

Returns 0 if the operation was successful. Else a non-zero value.
O2Web User Manual 199

O2WEB REFERENCE6
enroll

Summary Registers an option to be recognized by the O2 options manager.

Syntax static int o2_Web::enroll (const char * const name,
const char * const confname,
const char * const optname,
char *dflt,
const OptionType t,
const char * const desc,
const OptionMode
mode=Replace);

static int o2_Web::enroll (const char * const name,
const char * const confname,
const char * const optname,
long dflt,
const OptionType t,
const char * const desc,
const OptionMode
mode=Replace);

static int o2_Web::enroll (const char * const name,
const char * const confname,
const char * const optname,
char dflt,
const OptionType t,
const char * const desc,
const OptionMode
mode=Replace);

static int o2_Web::enroll (const char * const name,
const char * const confname,
const char * const optname,
double dflt,
const OptionType t,
const char * const desc,
const OptionMode
mode=Replace);

Arguments name A string that indicates the name of the option. This name is
used for retrieving the value of the option.

confname A string that indicates under which name the value of this
option can be given in a configuration file.
200 O2Web User Manual

o2_Web : enroll
optname A string that indicates under which name the value of this
option can be given in the environment variable or at the
command line.

dflt The default value of the option. This value is retrieved if the
end user does not provide a value for this option.
O2Web User Manual 201

O2WEB REFERENCE6
t A flag from the OptionType enumeration
NoValue The option represents a boolean

value. No value must follow this
option else this is an error and the
usage is dislayed.

OptionalValue The option can have an associated
value, but this is not mandatory.

MandatoryValue The option must have an associated
value. If none is given, the usage is
displayed.

desc A string describing the option. This string is displayed when
theo2_Web::usage function is called or when a parsing
error is detected.

mode A flag from the OptionMode enumeration.
Add If the option is repeated, the

associated values are stored in an
array that you can retrieve with
o2_Web::get_option() .

Append If the option is repeated, the
associated values are
concatenated to form a single
string that can be retrieved with
o2_Web::get_option() . This
flag is meaningful only if the
option values are considered as
strings.

Replace By default, only one value is
associated to this option. If the
option is repeated the last value is
used.

Description These member functions allow you to register new options on the O2 options
manager. See theODMG C++ Binding Guide for explanations on the option
mechanism and a complete example.

Each of these functions allow you to enroll one option. There is one function
for each type of option value: string, character, integer or real.

Returns 1 if successful.
0 if the option could not be enrolled.
-1 if there was an internal error in the option manager. if successful.

Example See theODMG C++ Binding Guide.
202 O2Web User Manual

o2_Web

d

enroll_path

Summary Allows you to register hierarchical options.

Syntax static int o2_Web::enroll_path (const char * path);

Description This member function allows you to register hierarchical options in your
configuration file (called.o2rc by default). Hierarchical options are describe
as a path, i.e., an ordered list of options such as:

system.base.loadname

The path passed toenroll_path is composed of the internal names of the
options (first parameter ofo2_Web::enrol()), separated by the "."
character.

Returns 0 if successful.
-1 if there was an internal error.

Example For option "-base" to be specific of a given system, write:

o2_Web::enroll_path("system_name.base_name");

wherebase_name is the internal name of option-base andsystem_name
is the internal name of option-system .

Then you can write in your configuration file:

my_system.base = CustomerBase

If you had not calledo2_Web::enroll_path() , you could only have
written:

base = CustomerBase

in your configuration file.
O2Web User Manual 203

O2WEB REFERENCE6

e

es.

ns.
get_option

Summary Retrieves the value of an option.

Syntax static int o2_Web::get_option (const char *name,
char *&value,
int ind = -1);

static int o2_Web::get_option (const char *name,
long &value,
int ind = -1);

static int o2_Web::get_option (const char *name,
double &value,
int ind = -1);

static int o2_Web::get_option (const char *name,
char &value,
int ind = -1);

Arguments name A string that indicates the internal name of the option as
defined in the correspondingo2_Web::enroll member
function.

value This argument points to the returned value. If no value can b
retrieved from the command line, the environment variable
(O2OPTIONS) or the configuration file (.o2rc), the default
value given ino2_Web::enroll() is used.

ind An index that is used if the user enters an option several tim
If you have registered the option with the replace or append
mode, you should set this argument to -1.

If the index is -1, the last value entered by the end-user is
returned. If the index is >= 0, theind -th value is returned. If
the index is too large, the returned value is NULL.

Description This member function allows you to retrieve the value of the registered optio
This function should only be called for options that are registered.

This function may be used in the check function, which can be registered by
theo2_Web::begin member function. See theODMG C++ Binding
Guide for information on the option mechanism.

Returns 0 if successful.
-1 if the option was notregistered witho2_Web::enroll() .
204 O2Web User Manual

o2_Web
set...

Summary Sets the various session arguments.

Syntax void set_systemname(const char *systemname);

void set_servername(const char *servername);

void set_sysdir(const char *sysdir);

void set_swapdir(const char *swapdir);

void set_dispatchername(const char *dispatchername);

void set_commitfrequency(const char
*commit_frequency);

void set_commitfrequency(const char
*commit_frequency);

void set_verbose(int verbose);

void set_libpath(char * const *libpath);

void set_libname(char * const *libname);

void set_default_env();

Description Explicitly sets various session parameters before beginning the session
with begin(argc, argv, mode); .

set_default_env(); sets:

system name to O2SYSTEM,

server name to O2SERVER and

O2 installation directory to O2HOME.

Returns Nothing.

NoteNoteNoteNoteNoteNoteNoteNote
Refer to begin() for additional information.
O2Web User Manual 205

O2WEB REFERENCE6
6.5 O2Web Commands

This section outlines the following O2Web system commands:

The programs called by these commands can be found in the bin
subdirectory of the O2 installation directory.

The commands are:

• o2open_dispatcher

• o2web_gateway
206 O2Web User Manual

O2Web Commands
o2open_dispatcher

Summary Starts an O2Web dispatcher.

Syntax o2open_dispatcher [-v]

Description This command starts a new O2Web dispatcher. An O2Web dispatcher
registers all the O2Web servers running on a LAN and is queried by the
O2Web gateway to get the address of a server able to answer an OQL
query.

When choosing an O2Web server to answer a gateway query, the
dispatcher uses heuristics. A score is computed for each server running
and the server with the best score is returned to the gateway. The
following elements enter into the computation of the score:

- a server is running on the same host as the
gateway.

- a server is already connected to the database to
which the query is asked.

- the current load of each server (the number of
queries treated).

Options -v display additional information on the o2open_dispatcher
activity.

Files /etc/services (UNIX) or
$WINDIR\system32\drivers\etc\services (Windows NT)
a file containing the port number and the protocol used by
other programs to access the o2open_dispatcher.

See Also o2server , o2web_gateway
O2Web User Manual 207

O2WEB REFERENCE6
o2web_gateway

Summary Starts an O2Web gateway.

Syntax o2web_gateway

Description This command starts a new O2Web gateway. A gateway is not launched
by a user but by an HTTP server in order to answer an OQL query. The
o2web_gateway program complies with the CGI protocol.

Once launched, the O2Web gateway has to find and query the O2Web
dispatcher to get the address of an O2Web server that can answer the
query. The gateway finds the dispatcher host name with the
O2OPEN_DISPATCHER environment variable or in a system-dependent
file (/etc/o2openaccess for UNIX and
$WINDIR\system32\driers\etc\o2openaccess for Windows NT).
The gateway connects to the dispatcher using the TCP port found by
querying the system for the port of the o2open_dispatcher service
(Refer to 2.3 for details of how you can specify this information).

This program is generally installed in a special directory of the HTTP
server containing the CGI scripts.

Environment
variables The O2Web gateway environment is built by the HTTP server,

particularly the CGI environment variables.

O2OPEN_DISPATCHERthe dispatcher host name (not with all HTTP
servers.

Files /etc/o2openaccess (UNIX) or
$WINDIR\system32\drivers\etc\o2web (Windows NT)
a file containing the dispatcher host name.

/etc/services (UNIX) or
$WINDIR\system32\drivers\etc\services (Windows NT) a file
containing a list of TCP and UDP services.
208 O2Web User Manual

Index
O2 Web User Guide 209

INDEX

210
A

Anchor tags 32

append 161

Architecture
O2 12

Atomic values 61

B

begin 194

Beginning tag 25

Body 26, 27

Bold type tags 25

C

C 13

C++
Interface 13

CGI header 78, 80, 94

CGI script 19, 37, 41

char* 163

circle URL 37
 O2 Web User Guide
Class
o2_Web 192
o2_WebAssistant 84, 94, 123
o2_WebFormAnalyser 94, 132
o2_WebFormItem 141
o2_WebImageAttributes 146
o2_WebImageInliner 152
o2_WebStream 160
O2WebInteractor 73, 75, 79, 94, 97, 102

Clickable images 33, 37

Collection values 61

commit 97

Common Gateway Interface script 37

compareCase 162

compareTo 164

connect 74, 103

Constructor
o2_WebStream 175

Container tags 25

contains 165

D

d_Session
enroll 200
enroll_path 203
get_option 204

data 166

Deadlock 98

Default epilog 73

Default prolog 73

default URL 37

Definition data tags 30

Definition list tags 30

Definition lists 30

Definition term tags 30

disconnect 74, 97, 104

Document title tags 27

INDEX
E

end 197

Ending tag 25

Enumeration Lists 29

Enumerations
compareCase 162

Epilog 79

epilog 105

error 75, 94, 106

Error message 75, 97

Explicit lock 98

F

first 167

Footer 73, 79

footer 73, 75, 79, 108

Forced linebreak tag 29

Form attributes 37
action 37
method 37

Form tags 37
Input tag 38
Select tag 38
Textarea tag 39

Forms 37, 47

Friend functions
operator!= 181
operator+ 179
operator< 182
operator<< 186
operator<= 183
operator== 180
operator> 184
operator>= 185

FTP 24
O2 Web User Guide
G

Generic mode 61

get_all_values 133

get_file 142

get_http_prolog 94, 125

get_http_variable 126

get_keywords 134

get_name 143

get_nb_values 135

get_nth_value 136

get_query 80, 112

get_raw_data 137

get_report 158

get_type 144

get_unique_keywords 138

get_value 145

get_values 139

GIF 33

Global Personalizations 73

Gopher 24

H

Header 26, 27, 73, 79, 83, 91

header 73, 75, 79, 109

Header tags 26

Heading level tags 27

Heading Levels 27

Horizontal rule tag 25

HTML 25

HTML 2.0 specification 48

HTML 3.0 specification 48, 89

HTML form 37, 85, 90, 91
211

INDEX

212
HTML tags 25, 48
 33
 25
</body > 26
</dl > 31
</form > 37
</h1 > 28
</h2 > 28
</h3 > 28
</head > 26
</html > 26
 30
</title > 27
 30
<a> 32
 25
<body > 26

 29
<dd> 30
<dl > 30
<dt > 30
<form > 37
<h1> 27
<h2> 27
<h3> 27
<head > 26
<hr > 25
<html > 26
 33
 29
 29
<p> 29
<table > 89
<title > 27
 29, 61

html_epilo g 114

html_foote r 79, 84, 115

html_heade r 79, 83, 84, 91, 116

html_prolo g 80, 118

html_repor t 80, 84, 86, 90, 119

html_titl e 121

HTTP 24, 31

HTTP server 18, 22, 37

Hypertext Markup Language 25

HyperText Transfer Protocol 31
 O2 Web User Guide
I

Imagemap 37

inde x 168

ini t 198

Inline image attributes 33
alig n 33
al t 33
botto m 33
isma p 33, 37
middl e 33
to p 33

Inline image tag 33

Inline Images 33

inser t 169

is_decode d 140

isAsci i 170

isNul l 171

J

Java 13

JPEG 33, 79

L

las t 172

lengt h 173

libo2webassistant. a 19

libo2webserver. a 19

Local Personalizations 79

loo p 199

INDEX
M

make_ancho r 127

make_inde x 128

make_inline_imag e 129

make_repor t 94, 130

make_ur l 84, 131

Map file 37
circle UR L 37
default UR L 37
point UR L 37
poly UR L 37
rect UR L 37

mblengt h 174
O2 Web User Guide
Member functions
appen d 161
begi n 194
char * 163
compareT o 164
connec t 74, 103
contain s 165
dat a 166
disconnec t 74, 97, 104
epilo g 105
erro r 75, 78, 94, 106
firs t 167
foote r 73, 75, 76, 79, 108
get_all_value s 133
get_fil e 142
get_http_prolo g 94, 125
get_http_variabl e 126
get_keyword s 134
get_nam e 143
get_nb_value s 135
get_nth_valu e 136
get_quer y 80, 112
get_raw_dat a 137
get_repor t 158
get_typ e 144
get_unique_keyword s 138
get_valu e 145
get_value s 139
heade r 73, 75, 79, 109
html_epilo g 114
html_foote r 79, 84, 115
html_heade r 79, 83, 84, 91, 116
html_prolo g 80, 118
html_repor t 80, 84, 86, 90, 91, 119
html_titl e 121
inde x 168
ini t 198
inser t 169
is_decode d 140
isAsci i 170
isNul l 171
las t 172
lengt h 173
loo p 199
make_ancho r 127
make_inde x 128
make_inline_imag e 129
make_repor t 94, 130
213

INDEX

214
make_url 84, 131
mblength 174
operator+= 177
operator= 176
operator[] 178
prepend 187
prolog 110
remove 188
replace 189
set_align 147
set_border 148
set_clickable 149
set_format 153
set_height 154
set_hspace 150
set_key 155
set_label 156
set_query 157
set_vspace 151
set_width 159
toLower 190
toUpper 191

MIME type 73, 78, 80

MPEG 79

N

Named object 90
TheO2WebInteractor 73

Navigation bar 87

NNTP 24

O

O2
Architecture 12
System overview 12

o2_Web 192
 O2 Web User Guide
o2_WebAssistant 84, 94, 123

o2_WebFormAnalyser 94, 132

o2_WebFormItem 141

o2_WebImageAttributes 146

o2_WebImageInliner 152

o2_WebStream 160, 175

O2C 13

O2Corba 13

O2DBAccess 13

O2Engine 12

O2Graph 13

O2Kit 13

O2Look 13

O2ODBC 13

o2open_dispatcher 19, 20, 21

O2Store 12

O2Tools 13

O2Web 13

O2Web Architecture54

O2Web dispatcher54

O2Web gateway54

O2Web server54

O2Web system commands206
o2open_dispatcher 19, 21
o2web_gateway 19, 20, 22, 53
o2web_server 19, 20, 21
o2webdispatcher 20, 207
o2webgateway 53

o2web.h 75

o2web_gateway 19, 20, 22, 53, 208

o2web_server 19, 20, 21

o2webassistant library 122

o2webdispatcher 19, 20, 21, 207

o2webgateway 208

O2WebInteractor 73, 75, 79, 94, 97, 102

o2webserver 19, 20, 21

Objects 61

operator!= 181

operator+ 179

operator+= 177

operator< 182

operator<< 186

INDEX
operator<= 183

operator= 176

operator== 180

operator> 184

operator>= 185

operator[] 178

OQL 13, 52

Ordered list tags 29

Ordered lists 29

P

Paragraph 29

Paragraph tags 29

point URL 37

poly URL 37

prepend 187

Program mode 97

Prolog 79

prolog 110

Q

Query generation 80

R

rect URL 37

remove 188

replace 189

Report body 80
O2 Web User Guide
Reserved characters 47

Root
TheO2WebInteractor 73, 74, 75, 102

RP_WITH_HEADER94

S

Separator tags 25, 29

set_align 147

set_border 148

set_clickable 149

set_commitfrequency 205

set_default_env 205

set_dispatchername 205

set_format 153

set_height 154

set_hspace 150

set_key 155

set_label 156

set_libname 205

set_libpath 205

set_query 157

set_servername 205

set_swapdir 205

set_sysdir 205

set_systemname 205

set_verbose 205

set_vspace 151

set_width 159

SGML 25

Special characters in HTML text 43

Standard Generalized Markup Language 25

Sub-objects 62

System
Architecture 12
215

INDEX

216
T

Text body tags 26

TheO2WebInteractor 73, 75, 102

toLower 190

toUpper 191

Transaction 97

Transaction instructions
commit 97
validate 97

Transaction mode
read-only 97

Tuple values 61

U

Uniform Resource Locator 32, 47

Universal Resource Location 24

Unordered list tags 29

Unordered lists 29

Unsafe characters 47

URL 24, 32, 47, 52, 61, 84

User-defined member functions 111

V

validate 97
 O2 Web User Guide
W

WAIS 24

World Wide Web 24

WWW 24

WWW server 54
CERN HTTPD 54
NCSA HTTPD 54
Netscape server 54

INDEX

217
 O2 Web User Guide

INDEX

218
 O2 Web User Guide

INDEX

219
 O2 Web User Guide

INDEX

220
 O2 Web User Guide

INDEX

221
 O2 Web User Guide

INDEX

222
 O2 Web User Guide

INDEX

223
 O2 Web User Guide

INDEX

224
 O2 Web User Guide

INDEX

225
 O2 Web User Guide

INDEX

226
 O2 Web User Guide

INDEX

227
 O2 Web User Guide

INDEX

228
 O2 Web User Guide

INDEX

229
 O2 Web User Guide

INDEX

230
 O2 Web User Guide

INDEX

231
 O2 Web User Guide

	MAIN MENU TO O2 DOCUMENTATION
	O2Web User Manual (C++)
	Who should read this manual
	Table of Contents
	1 Introduction 11
	2 O2Web Installation 17
	3 A World Wide Web Tour 23
	4 O2Web Overview 51
	5 Programming an O2Web Server 57
	6 O2Web Reference 101
	Index 209

	1 Introduction
	1.1 System overview
	1.2 The World Wide Web
	1.3 Features and advantages
	1.4 Manual overview

	2 O2Web Installation
	2.1 Requirements
	2.2 O2Web distribution
	2.3 Installation
	Specifying a port number to access o2open_dispatcher
	Retrieving the dispatcher host name

	2.4 Launching O2Web
	Running o2open_dispatcher
	Running o2server
	Running o2web_server
	Running an HTTP server

	3 A World Wide Web Tour
	3.1 The World Wide Web
	3.2 The HTML language
	3.3 Writing HTML documents
	An HTML document
	The header
	The body

	3.4 Special characters in HTML text
	3.5 Special characters in URLs and form submissions
	3.6 HTML tags summary

	4 O2Web Overview
	4.1 Principles
	4.2 O2Web Architecture
	4.3 Building your O2Web server

	5 Programming an O2Web Server
	5.1 Introduction
	5.2 Summary
	5.3 Generic mode
	Simple Browsing
	How does it work
	A Guided Example
	O2Web server main
	Building your O2Web Server

	5.4 Global Personalizations
	Adding a header to the top of each page
	Adding a footer to the bottom of each page
	Changing the default prolog and epilog
	React to a connection
	React to a disconnection
	Make your own error messages
	A Guided Example

	5.5 Local Personalizations
	Adding a header to the top of a page
	Adding a footer to the bottom of a page
	Changing the prolog and epilog
	Building the body of a report
	Optimizing the query generation
	A guided example

	5.6 Updating the database with O2Web
	5.7 Summary

	6 O2Web Reference
	6.1 O2WebInteractor
	connect
	disconnect
	epilog
	error
	footer
	header
	prolog

	6.2 User-Defined member functions
	get_query
	html_epilog
	html_footer
	html_header
	html_prolog
	html_report
	html_title

	6.3 The o2webassistant library
	o2_WebAssistant
	get_http_prolog
	get_http_variable
	make_anchor
	make_index
	make_inline_image
	make_report
	make_url
	o2_WebFormAnalyser
	get_all_values
	get_keywords
	get_nb_values
	get_nth_value
	get_raw_data
	get_unique_keywords
	get_values
	is_decoded
	o2_WebFormItem
	get_file
	get_name
	get_type
	get_value
	o2_WebImageAttributes
	set_align
	set_border
	set_clickable
	set_hspace
	set_vspace
	o2_WebImageInliner
	set_format
	set_height
	set_key
	set_label
	set_query
	get_report
	set_width
	o2_WebStream
	append
	caseCompare
	char*
	compareTo
	contains
	data
	first
	index
	insert
	isAscii
	isNull
	last
	length
	mblength
	o2_WebStream
	operator=
	operator+=
	operator[]
	operator+
	operator==
	operator!=
	operator<
	operator<=
	operator>
	operator>=
	operator<<
	prepend
	remove
	replace
	toLower
	toUpper

	6.4 o2_Web
	begin
	end
	init
	loop
	enroll
	enroll_path
	get_option
	set...

	6.5 O2Web Commands
	o2open_dispatcher
	o2web_gateway

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

