O,DBAccess
User Manual

C++ Interface

Release 5.0 - May 1998

Information in this document is subject to change without
notice and should not be construed as a commitment by
O, Technology.

The software described in this document is delivered under a
license or nondisclosure agreement.

The software can only be used or copied in accordance with the
terms of the agreement. It is against the law to copy this
software on magnetic tape, disk, or any other medium for any
purpose other than the purchaser’s own use.

Copyright 1992-1998 O, Technology.

All rights reserved. No part of this publication can be
reproduced, stored in a retrieval system or transmitted in any
form or by any means, electronic, mechanical, photocopy
without prior written permission of O Technology.

02, O2API, O2C, OoDBAccess, O2Engine, O>Graph, OsKit,
OsLook, O,Store, O2Tools, and O,Web are registered
trademarks of O, Technology.

SQL and AIX are registered trademarks of International
Business Machines Corporation.

Sun, SunOS, and SOLARIS are registered trademarks of Sun
Microsystems, Inc.

X Window System is a registered trademark of the
Massachusetts Institute of Technology.

Unix is a registered trademark of Unix System Laboratories, Inc.
HPUX is a registered trademark of Hewlett-Packard Company.
BOSX is a registered trademark of Bull S.A.

IRIX is a registered trademark of Siemens Nixdorf, A.G.
NeXTStep is a registered trademark of the NeXT Computer, Inc.
Purify, Quantify are registered trademarks of Pure Software Inc.
Windows is a registered trademark of Microsoft Corporation.

All other company or product names quoted are trademarks or
registered trademarks of their respective trademark holders.

Who should read this manual

This manual describes how to use O,DBAccess. This O, module
enables to connect O, applications to relational databases on remote
hosts, and to import and export data from and to such systems.
O->DBAccess provides class libraries (O,C and C++) for these tasks. The
manual also describes how to invoke SQL statements from O5. An
example program is presented.

Other documents available are outlined, click below.

See 02 Documentation set

TABLE OF CONTENTS

This manual is divided into the following chapters:
* 1 - Introduction

e 2 - Utilization

* 3 - Classes

* 4 - Appendices

O>DBAccess User Manual

QQ TABLE OF CONTENTS

Introduction 9
1.1 SYSEM OVEIVIEW....uiiiiiii ettt e e e e eeeeeeeeenaeees 10
O2 ENQINE ..ottt e e e e e e e e e e aeee e aennnes 12
O2 SHOTE . e 13
O2DB ACCESS ...ttt ettt e 14
1.2 ManUaAl OVEIVIEWuuuiiiiiieaaiee e eeee ettt e e e 16
Programming Guide 17
2.1 The 02dbaccess Libraryccccoiieiiiiiiiiiieiiie e 18
(O 1= 1T 18
2.2 GUIAEIINES .ot e e e 19
2.3 Accessing a Databaseeeeiiiiiiiii 21
Host connection and database 10g iN............c.iiiiiiins 21
OPEN STAtEMENT ... e 22
2.4 Preparing a Statementueeeeiiiiiiee e 23
Associating an SQL statement ... 23
Managing StatemMENTS.........cooiiiiiiiiiiiie e 23
StOring @ qUENY reSUIL SEL.......uuuiiiiiiiiiiiieie e 24
2.5 Running a Statementcccoovieviiiiiii e, 25
2.6 Commit and RollbackK...............ouuuuiiiiiiii e 28
2.7 ENAING @ SESSION ...uuiiiiiiiiiiiieeee ettt 28
Class Library 29
3.1 020D _O2ZDBACCESS ...uuuvtiuniiaaiaaeeeeeee e ettt 30
SEIVEI _BITON ittt ettt e et ettt e e et e et e e e et n e e ee e e eean e e e ananeeee 31
3.2 02db_CONNECHONcceiiiiiiiiiie e 32
(070] 0 [T o1 PSPPSR 33
(0 15T o 0] o 1T X S 34
[oTo o) 1 NPT PPRPRPRPP 35
[OQON. .. 36

Oo>DBAccess User Manual

TABLE OF CONTENTS

O,DBAccess User Manual 7

3.3 020D _SESSION ..ceiiiiiiiiiiiie e 38
(03 01 PR 39
(o0 101 101 1 U 40
010 ST 3 PP 41
FOIDACK ... e 43
3.4 02dDh_StateMENt.....coveiiiiiiiiee e 44
add_Cursor_Vvariablecccoeeeei e 45
add_input_variablecoooiiiiiiiiie 46
oS 1ST0 o] -1 = 48
(0] 01T = 10 g SEERURURR 50
(0] 01T = 10] SR URURURR 51
020dD_SOI_EXECULE ... 53
Appendices 55
4.1 Example APPlICAtIONccooeiiiiiiiiiie e 56
Defining a C++ schema..........oouviiiii e 57
CoNNECHING 10 O2... ..ttt 58
Connecting to the Relational database server..............ccccevvvvvennes 59
Creating @ table ... 61
Populating the table ... 62
Displaying the table contentccccvvveviii s 64
Querying the RDBMSuuiiiiiiiiiee e 66
Building the appliCation ... 68
4.2 Configuration Fileccooiiiiiiiiie e 69
4.3 POSSIDIE EITOIS ..o 71
INDEX 77

TABLE OF CONTENTS

Oo>DBAccess User Manual

1 Introduction

Congratulations! You are now a user of OoDBAccess!

O,DBAccess is the O module that enables you to communicate and
work with relational databases on remote hosts

This chapter introduces the O, system and O,DBAccess and outlines
its various features and advantages. An overview of this User Manual is
then given.

O>DBAccess User Manual 9

1 Introduction

1.1 System Overview

The system architecture of Oy is illustrated in Figure 1.1.

Development Tools

External

Interfaces
Standard
O, Dev. Tools Dev. Tools
OoQL
I C C++ 0,C I Java
O,Corba

Database Engine

O,DB
Access

OEngine

O,Store O,Web

81

Figure 1.1: O, System Architecture
The O, system can be viewed as consisting of three components. The
Database Engine provides all the features of a Database system and an
object-oriented system. This engine is accessed with Development Tools,
such as various programming languages, O, development tools and any
standard development tool. Numerous External Interfaces are provided.
All encompassing, O, is a versatile, portable, distributed, high-
performance dynamic object-oriented database system.

Database Engine:

e O,Store

« OzEngine

The database management system provides low level
facilities, through O,Store API, to access and manage a
database: disk volumes, files, records, indices and
transactions.

The object database engine provides direct control of
schemas, classes, objects and transactions, through
OsEngine API. It provides full text indexing and search
capabilities with O,Search and spatial indexing and
retrieval capabilities with OoSpatial. It includes a
Notification manager for informing other clients
connected to the same O, server that an event has
occurred, a Version manager for handling multiple
object versions and a Replication API for synchronizing
multiple copies of an O2 system.

10

Oo>DBAccess User Manual

System Overview

Programming Languages:

O» objects may be created and managed using the following
programming languages, utilizing all the features available with O
(persistence, collection management, transaction management, OQL

queries, etc.)
« C

o C++

e Java

¢ 0OoC

. OQL

O functions can be invoked by C programs.
ODMG compliant C++ binding.
ODMG compliant Java binding.

A powerful and elegant object-oriented fourth
generation language specialized for easy development
of object database applications.

ODMG standard, easy-to-use SQL-like object query
language with special features for dealing with com plex
O, objects and methods.

Oz Development Tools:

¢ O,Graph
¢ OjLook

e O2Kit

¢ OsTools

Create, modify and edit any type of object graph.

Design and develop graphical user interfaces, provides
interactive manipulation of complex and multimedia
objects.

Library of predefined classes and methods for faster
development of user applications.

Complete graphical programming environment to
design and develop O, database applications.

Standard Development Tools:

All standard programming languages can be used with standard
environments (e.g. Visual C++, Sun Sparcworks).

External Interfaces:

¢ OsCorba

¢ OoDBAccess

« 0,0DBC

¢ Oo>Web

Create an O2/ Orbix server to access an O database
with CORBA.

Connect O applications to relational databases on
remote hosts and invoke SQL statements.

Connect remote ODBC client applications to O
databases.

Create an O2 World Wide Web server to access an O,
database through the internet network.

O,DBAccess User Manual 11

1 Introduction

O, Engine

O2Engine has all the features of a database engine providing
transparent management of data persistence, data sharing and data
reliability, as well as all the features of an object-oriented system
including the manipulation of complex objects with identity, classes,
types, methods, multiple inheritance, overriding and late binding of
methods.

Figure 1.2: Client/server architecture

12 O>DBAccess User Manual

System Overview :

02 Store

O, Store

The O,Store physical storage management system offers you the

following features:

« Transactional management of persistent structures.

* Client/ server architecture.

* Rollbacks and crash recovery.

OoStore has the client/ server architecture shown in Figure 1.2. The
server process provides persistence, disk management, concurrency

control, data recovery, and database security.

The features offered by OEngine and O,Store are shown in Figure 1.3 .

-------- O,Store
Schema Manager Global Transaction
Manager
Object Manager
Global Log
Local Transaction <> Manager
Manager
Page Buffer Page Buffer
O,Store
Client Process
7D D
Log
Server Process

Figure 1.3: Global architecture showing O,Store layer

Oo,DBAccess User Manual

13

Introduction

O,DB Access

O-DBAccess is a set of C++ classes that enables O, applications to
communicate and work with relational databases on remote hosts.

These classes allow you to carry out the following actions from your
applications:

« Connect to a server and set up a session on a remote database.
« Run any SQL statement in the SQL syntax of that database.

« Fetch data as required from the database to the user application into
O» objects.

« Mirror the commit and rollback facilities of some databases.
¢ Close the database session and terminate the connection to the host.

You can also retrieve error message text corresponding to database error
codes.

O2DBAccess is based on the SequelLink protocol as shown in

Figure 1.4. This is a software package that enables a client application
to access simultaneously different relational databases residing on
different servers that are connected to one or more types of local
network.

SequeLink uniformly manages the different network protocols and the
heterogeneity between platformsl. With O,DBAccess you can link to any
platform currently supported by SequeLink.

1. For information about all possible network-host-database combinations, call O,Line.

14

Oo>DBAccess User Manual

System Overview :

0O2DB Access

CLIENT

O,DBAccess

SERVER

Relational
DBMS

Client
Kernel

Interface module
network protocol

- SequeLink

L Standard Network Protocol :J

Interface module
database

Server
Kernel

Interface module
network protocol

Figure 1.4: O,DBAccess and SequelLink

O,DBAccess User Manual

15

Introduction

1.2

Manual Overview

This manual is divided up into the following chapters:

Chapter 1 - Introduction

A short introduction to the O, system, O2Engine, O,Store, and
Oo,DBAccess.

Chapter 2- Programming Guide

This chapter describes how to use OoDBAccess. It covers accessing a
database, preparing a statement, fetching data, commit and rollback,
and running the statement.

Chapter 3 - Class Library

This chapter details the various classes of the O,DBAccess library:
02db_O2DBAccess, 02db_Connection , 02db_Session , and
02db_Statement

Chapter 4 - Appendices

This chapter includes an example program. It gives possible error codes
and the configuration file.

16

Oo>DBAccess User Manual

2 Programming
Guide

This chapter details how to use O,DBAccess.

It is divided into the following chapters:

The o2dbaccess Library
Guidelines

Accessing a Database
Preparing a Statement
Running a Statement
Commit and Rollback

Ending a Session

Oo>DBAccess User Manual

17

Programming Guide

2.1 The o2dbaccess Library

Classes

Oo,DBAccess is in fact a standard C++ library called o2dbaccess that
you can use in any of your C++ application.

The o2dbaccess library, shown in Figure 2.1, provides classes that
enable you to communicate and work with the remote database.

02db_Connection ‘

02db_O2DBAccess 02db_Session ‘

02db_Statement ‘

Figure 2.1: o2dbaccess library

The library classes are as follows:

02db_OZ2DBAccess

An o02db_O2DBAccess object defines the common resources of
OoDBAccess classes. It contains one function, server_error , which
you use to obtain the RDBMS-detected error codes.

o2db_Connection

02db_Connection is a subclass of 02db_O2DBAccess . An
02db_Connection object defines and maintains a connection to a
remote host.

o2db_Session

02db_Session is a subclass of 02db_0O2DBAccess . An 02db_Session
object defines and maintains a connection to a database server. It
manages the transactions of the session.

o2db_Statement

02db_Statement is a subclass of 02db_O2DBAccess . An
o2db_Statement object defines an access context to a database and
contains information that is required to run an SQL statement.

18

Oo>DBAccess User Manual

Guidelines

Table 2.1

2.2

1.

2.

Guidelines

To send an SQL statement for processing on remote database, you need

to carry out the following steps:
Set up a connection to the host server machine.
Set up a session on the database by logging on.

Open a statement on the remote database server.

Prepare the statement to be run. This means putting information

about the SQL query you want to execute in the statement and the

C++ objects that will store the SQL result.

Run the statement.

changes permanent, or undo them.
If you do not want to rerun the statement, close it.
Close the session by logging off the database.

End the connection by disconnecting from the host.

If information has been inserted, updated or deleted, make the

Each step corresponds to a particular function. Table 2.1 shows these
functions and its corresponding step.

The class of the function is given before the function name.

These functions constitute the basic set of functions that you need to

use.

Function set

Functions Step
02db_Connect::connection Set up a connection
02db_Connection::logon Set up a session
02db_Session::open Open an access context

Oo,DBAccess User Manual

19

Programming Guide

Function set

Table 2.1

Functions Step
02db_Statement::associate
o02db_Statement::add_cursor_variable Prepare a statement
02db_Statement::add_input_variable
02db_Statement::>>
02db_Statement::<<
02db_Statement::execute Run a statement
02db_Session::commit Make the changes permanent
02db_Session::rollback Undo a transaction
02db_Session::close Close the context
02db_Connection::logoff End the session
02db_Connection::disconnect End the connection

All these various steps are detailed below.

For a full description of each specific function refer to Chapter 3.

20 O,DBAccess User Manual

Accessing a Database

2.3 Accessing a Database

You must first connect to the remote host and log onto the database.

Host connection and database log in

With OoDBAccess, you do this by creating a 02db_Connection object.
You must call the connect function on this object to connect to the
remote host. You then call the logon function on this object to log onto
the database and begin a session. The logon function returns a pointer
to an o02db_Session object.

Once connected and logged on, you can run as many SQL statements as
you want.

For example:

#include "02db_o2db_access.h"
int create_session()

int code, status;

char *msg;

02db_Connection connection;
02db_Session *session;

status = connection.connect("oracle”, "user”, "pwd");

session = connection.logon("dbuser”, "dbpasswd", &status);

if (status == 02dbE_SERVER) {
msg = connection.server_error(&code);
cerr<<"Error:"<<code<<" msg:"<<msg<<endl;
} else if (status |= O2DB_OK)
cerr << "An error occurs: " << status << endl;

When your transactions with the database are finished, you use the
logoff and disconnect functions to respectively end the session and
remote host connection.

Refer to Section 3.2 for a full description of all these 02db_Connection
functions.

O,DBAccess User Manual 21

2 Programming Guide

Open Statement

Once connected to the remote host and logged on to the database, you
must now open a statement in which you can run an SQL statement.
You do this using the open function from your o2db_Session object
(result of the logon function). The statement contains the statement
itself and any additional information that may be needed to run the
statement. This function returns an object of class 02db_Statement

A 02db_Statement object remains open until you explicitly close it
using the close function (of your o2db_Session object), or until you
end the database session using the logoff function. However, you do
not need to close a statement if you want to use it for a different
statement. You simply re-use it.

For example:

#include "02db_o2db_access.h"
int open()

int code, status;
char *msg;
02db_Connection connection;
02db_Session *session;
02db_Statement *statement;
status = connection.connect("oracle", "user"”, "pwd");
session = connection.logon("dbuser", "dbpasswd",
&status);

statement = session->open(&status);
if (status == 02dbE_SERVER) {

msg = connection.server_error(&code);

cerr <<"Error: " << code <<" msg: " << msg << endl;
} else if (status != O2DB_OK)

cerr << "An error occurs: " << status << endl;

}
o02db_Statement and how to manage statements are fully explained in
Section 2.4 below; Section 3.3 gives a description of the open function.
Note

The statement is local to the logon session in which it is used and the
number of statements you can open at the same time is restricted to
100. However, you rarely need more than 15 and the external database
or yourself can impose a lower limit.

22

Oo>DBAccess User Manual

Preparing a Statement : Associating an SQL

2.4 Preparing a Statement

The next step after accessing the database is to prepare the SQL
statements you want to run.

Associating an SQL statement

You must firstly define the SQL statement you want to run using the
associate function of the 02db_Statement class.

The associate function also sends the statement to the RDBMS
database for validation. It is at this point that any SQL syntax errors are
trapped. If any are found, you can get the database error codes by
calling the server_error function on the o2db_Statement object (see
Section 3.1 for details of this function and Section 4.3 for a list of
possible errors).

If the SQL statement does not need a result object (i.e. it is not a select
statement) and it contains no parameter markers, O>DBAccess needs
no more information.

In this case, you can run your statement immediately using the
02db_sql_execute function. See Section 2.5 for more details.

In the other cases, i.e. if the statement is a select statement and/ or if it
contains parameter markers, you must provide OoDBAccess with more
information. This is explained in the remainder of this section.

Managing statements

When you want to run a select statement or a statement that contains
parameter markers or both, you need to provide more information
before the statement is run.

Theinformation needed includes the result object and its projection list,
which you storein the statement using the add_cursor_variable
function or the '>>" operator of the class o2db_Statement

You also need to store the input parameters of the statement using the
add_input_variable function or the '<<’ operator of the class
02db_Statement

O,DBAccess User Manual 23

2 Programming Guide

You can manage your statements in the following three different ways:

1. Useonestatement for one specific SQL statement and close it as soon
as it has been run.

2. Open a statement, use it for one SQL statement, and then reuse it for
another SQL statement by simply associating it to a new SQL
statement.

You can to do this as many times as you want until you want to close
the statement.

3. Open astatement for a particular SQL statement that you wanttorun
several times. You keep the statement open and associated to the
same SQL statement until you no longer wish torerun the statement.

While the statement is open, you can rerun it with new values for any
of its parameters using the 02db_sql_execute function. The new
values of the parameters are given using the add_input_variable
function (or the '<<’ operator).

Note

Re-associating a statement resets the parameter list of the statement as
well as the result information.

Storing a query result set

Storing the result set of a query function involves the following steps:

1. You must firstly define the C++ classes where you want the retrieved
data to be stored.

2. You must then give the relevant transfer information. This means
associating a part of theresult set (i.e. thename of a column) to a part
of the C++ storage class (i.e. the name of a C++ attribute).

You do this by defining data buffers using the add_cursor_variable
function or the '>>" operator of the class o2db_Statement

You can then run the statement using the 02db_sql_execute function.

See the example in the next section.

Oo>DBAccess User Manual

Running a Statement : Storing a query result set

2.5

Running a Statement

If the SQL statement does not need a result object (i.e. it is not a select
statement), you can run it directly using the 02db_sql_execute
function with only your statement as a parameter.

If the statement is a select statement, you must provide the relevant
transfer information as detailed in Section 2.4, and then call the
02db_sql_execute function with the statement and the C++ object that
will store the result of the query as parameters.

For example, suppose you set up a single connection, a single session in
which you want to run three SQL statements: a CREATEstatement, an
INSERT statement with parameters that you want to run twice, and a
SELECTstatement; you call the following sequence of functions to
process each step.

{

int test()

d_Set<d_Ref<Person> > the_persons("ThePersons");
d_lterator<d_Ref<Person> > iter;
d_Ref<Person> person;

02db_Connection connection;
02db_Session *session;
02db_Statement *statement;
int status, code;
status = connection.connect("oracle", "user”, "
if (status '= O2DB_OK)
return status;

passwd");

session = connection.logon(“oracleuser”,
"oracleuserpasswd", &status);
if (status '= O2DB_OK)
return status;

statement = session->open(&status);
if (status != O2DB_OK) return status;

/I (1) A statement without parameters:
1
status = statement->associate("CREATE TABLE person \
(id_person SMALLINT null, \
name VARCHAR(16) null, \
firstname VARCHAR(16) null)");
if (status != O2DB_OK) return status;

O,DBAccess User Manual 25

Programming Guide

status = 02db_sql_execute(statement);
if (status != O2DB_OK)
return status;

/I (2) A statement with 3 input parameters:
1
status = statement->associate("INSERT INTO \
person(id_person, name,
firstname) \
VALUES (?, 2, ?)");

/I First execution
*statement << 1 << "Doe" << "John";
status = 02db_sql_execute(statement);
if (status = O2DB_OK)

return status;

/I Second execution with different parameters
*statement << 2 << "Smith" << "Paul";
status = 02db_sql_execute(statement);
if (status = O2DB_OK)
return status;

/I (3) A statement returning a result

1

status = statement->associate("SELECT name, firstname \
FROM person");

/I The class Person has at least 2 attributes:
/I pname and pfirstname
*statement >> "pname"” >> "pfirsthame";
status = 02db_sql_execute(statement, the_persons);
if (status = O2DB_OK)
return status;

/l Now the C++ set contains the selected information
iter = the_persons.create_iterator();
while (iter.next(person)) {
cout << "\tFFr [
<< person -> pname <<
<< person -> pfirstname << "]" << endl,

Oo>DBAccess User Manual

Running a Statement : Storing a query result set

/l Ending the session and disconnecting
status = session->close(statement);
if (status != O2DB_OK)

return status;

status = connection.logoff(session);
if (status != O2DB_OK)
return status;

connection.disconnect();

Oo,DBAccess User Manual

27

2 Programming Guide

2.6 Commit and Rollback

The commit and rollback functions mirror a feature of some databases
in allowing you to systematically and explicitly make permanent or
unroll a series of related database actions at strategic pointsin a
session.

2.7 Ending a Session

When all your transactions with the database have been carried out, the
functions close , logoff and disconnect close the statement and end
the session and connection respectively..

#include "02db_o2db_access.h"

int end_session()
{
int status;
02db_Connection connection;
02db_Session *session;
02db_Statement *statement;

statement = session->open(&status);

status = session->close(statement);
connection.logoff(session);
connection.disconnect();

return status;

28 O>DBAccess User Manual

3 Class Library

CLASS SET AND THEIR MEMBER
FUNCTIONS

Oo,DBAccess is a set of C++ classes that enables O, applications to
communicate and work with relational databases on remote hosts.

This chapter details all these classes and their respective member
functions.

It is divided into the following sections:

* 02db_O2DBAccess - This is the super class of all the other classes of
the package.

e 02db_Connection - This class manages the connection to a remote
host.

e 02db_Session - This class manages the connection to a database
server.

 02db_Statement - This class manages all the resources belonging to
to an SQL statement.

O>DBAccess User Manual 29

3 Class Library

3.1 o2db_O2DBAccess

02db_O2DBAccess is the super class of the classes 02db_Connection
02db_Session , and o2db_Statement . It manages common resources
and owns the following public member function:

* server_error

30

Oo>DBAccess User Manual

02db_O2DBAccess

server_error

Summary
Syntax

Arguments

Description

Returns

Example

Gets the last error code from the database server.
char* server_error(int *code);

code A pointer on an integer that in return will contain the
error code.

This member function is used by an O,DBAccess programmer to obtain
extra information about a database server related error. It can be
applied to an instance of the 02db_0O2DBAccess class or one of its
subclasses after an error of type 02dbE_SERVERoccured. The function
puts in the integer pointed by code the database server error code
raised by the failure. The string returned by this function contains a
textual description of the error, when applicable.

As this string is stored in a static area, it is only available until the next
call to server_error occurs. This string must not be freed by the user.

A string with the textual description of the error.

#include "02db_o2db_access.h"

int get_emp(o2db_Session *session)
{

int code, status;

char *msg;

02db_Statement statement = session->open(&status);

status = statement->associate("SELECT * from emp");

if (status == 02dbE_SERVER) {
msg = statement->server_error(&code);
cerr<<'"error: " <<code <<"msg: " <<msg <<endl;

}

O,DBAccess User Manual 31

Class Library

3.2 02db_Connection

An object of this class defines and maintains the connection to a remote
host. The information needed to set up a link between the O»
application and the host system is found in a configuration file. It is
made up of a set of network and host specific parameters. Refer to
Section 4.2 for a full description of the configuration file.

This section describes the following member functions of the
o2db_Connection class:

e connect

* disconnect
* logoff

* logon

32

Oo>DBAccess User Manual

02db_Connection : connect

connect

Summary
Syntax

Arguments

Connects to a remote host.
int connect(char *c_name,char *username,char *password);

C_name This is a string containing a valid entry in the
O2DBAccess configuration file (see Section 4.2).

username This is a string containing the user name on the remote
host.

password This is a string containing the password of the user on
the remote host.

Description This function sets up a link between the workstation and a remote

Returns

Example

Sequelink server.

0O2DB_OKif the connection succeeded, or one of the following error codes
if the connection failed:

« 02dbE_STILL_CONNECT
« 02dbE_RC_NOTFOUND
« 02dbE_FILE_NOTFOUND
« 02dbE_INVALID_RC

« 02dbE_UNKN_NETWORK
« 02dbE_OPEN_FILE

« 02dbE_SERVER

#include "02db_o2db_access.h"
int connect()

int code, status;
char *msg;
02db_Connection connection;
status = connection.connect("oracle", "user"”, "pwd");
if (status '= 02DB_OK) {

cerr << "Connection error: " << status << endl;
}

O,DBAccess User Manual 33

3 Class Library

disconnect

Summary Disconnects from a remote host.

Syntax void disconnect(void);

Arguments None.

Description The disconnect member function disconnects the link between the
application and the remote SequeLink server. All the current sessions
and statements are released by this function.

Returns Nothing

Example

#include "02db_o2db_access.h"
int dbaccess()

int code, status;

char *msg;

02db_Connection connection;

status = connection.connect("oracle", "user"”, "pwd");
connection.disconnect();

return status;

Oo>DBAccess User Manual

02db_Connection : logoff

logoff
Summary Ends a database server session.
Syntax int logoff(o2db_Session *session);
Arguments session A pointer on the session to close.
Description The logoff member function ends an existing session on a database
server. All the statements created during the session are destroyed and
the database server resources are released. The pointers to
02db_Statement objects are no longer valid after this call.
Returns A status code whose value is O2DB_OKf the operation was successfull,
or one of the following error codes if the operation failed:
* 02dbE_NOT_CONNECT
e 02dbE_NOT_MEMBER
e 02dbE_SQLNK
e 02dbE_SERVER
Example
#include "02db_o2db_access.h"
int dbaccess()
{
int code, status;
char *msg;
02db_Connection connection;
02db_Session *session;
status = connection.connect("oracle”, "user"”, "pwd");
session = connection.logon("dbuser", "dbpasswd",
&status);
status = connection.logoff(session);
if (status == 02dbE_SERVER) {
msg = connection.server_error(&code);
cerr<<"error:"<<code <<" msg: " <<msg <<endl;
} else if (status '= O2DB_0OK)
cerr << "An error occurs: " << status << endl;
connection.disconnect();
return status;
}

Oo,DBAccess User Manual

35

Class Library

logon

Summary

Syntax

Arguments

Description

Returns

Logs onto a database server.

02db_Session *logon(char *logonl,char *logon2,
int *retcode);

logonl A parameter needed to log onto the database server.
logon2 A parameter needed to log onto the database server.

retcode A pointer on an integer that will contain an error code on
failure.

The logon member starts a new session on the database server. The
logonl and logon2 parameters are database dependent but usually
contains a database user and its password. For more information, refer
to the documentation Using SequelLink with your Database and Server.
The parameter length must be less than 256 characters.

retcode is a pointer to an integer that will be set to an error code in
case of failure. The possible error codes returned in retcode are as
follows:

+ 02dbE_NOT_CONNECT
« 02dbE_TOOLONG

« 02dbE_SQLNK
02dbE_SERVER

A pointer to an object of the class 02db_Session , or NULL if the login
failed.

36

Oo>DBAccess User Manual

02db_Connection : logon

Example

#include "02db_o2db_access.h"
int create_session()

int code, status;
char *msg;
02db_Connection connection;
02db_Session *session;
status = connection.connect("oracle", "user”, "pwd");
session = connection.logon("dbuser”, "dbpasswd", &status);
if (status == 02dbE_SERVER) {

msg = connection.server_error(&code);

cerr <<"Error:" << code <<" msg: " <<msg <<endl;
} else if (status |= O2DB_OK)

cerr << "An error occurs: " << status << endl;

connection.disconnect();
return status;

Oo,DBAccess User Manual

37

Class Library

3.3

02db_Session

An object of the 02db_Session class is created by the logon function of
the 02db_Connection class and manages the connection to a database
server.

This class has the following member functions:

* close

* commit

* open

rollback

Oo>DBAccess User Manual

02db_Session : close

close

Summary Closes a statement.

Syntax int close(o2db_Statement *statement);

Arguments statement A pointer on a statement returned by the member

function open.

Description This function closes an already opened statement and releases all
resources associated with this statement.

Returns A status code whose value is O2DB_OKif the operation was successful, or
one of the following error codes if the operation failed:
e 02dbE_NOT_LOGON
* 02dbE_NOT_MEMBER
* 02dbE_SQLNK
* 02dbE_SERVER

Example

#include "02db_o2db_access.h"

int dbaccess()
{
int code, status;
char *msg;
02db_Connection connection;
02db_Session *session;
02db_Statement *statement;
status = connection.connect("oracle", "user"”, "pwd");
session = connection.logon("dbuser”, "dbpasswd",
&status);

statement = session->open(&status);
status = session->close(statement);

connection.disconnect();
return status;

Oo,DBAccess User Manual

39

Class Library

commit

Summary
Syntax
Arguments

Description

Returns

Example

Performs a commit on the database server.
int commit(void);
None

This function performs a commit on the database server, thus validating
what has been donein the current session.

A status code whose value is O2DB_OKif the operation was successful, or
one of the following error codes if the operation failed:

« 02dbE_NOT_LOGON
« 02dbE_SQLNK
« 02dbE_SERVER

#include "02db_o2db_access.h"

int dbaccess()

int code, status;

char *msg;

02db_Connection connection;
02db_Session *session;
02db_Statement *statement;

status = connection.connect("oracle", "user"”, "pwd");

session = connection.logon("dbuser”, "dbpasswd",
&status);

statement = session->open(&status);
status = session->commit();
status = session->close(statement);

connection.disconnect();
return status

40

Oo>DBAccess User Manual

02db_Session : open

open

Summary Creates a new statement.

Syntax 02db_Statement *open(int *retcode);

Arguments retcode A pointer on an integer that will contain an error code on

failure.

Description This function opens a new statement that will allow a programmer to
execute SQL statements. A pointer on the created statement is
returned.
retcode is a pointer on an integer that will be set to an error code in
case of failure. The possible error codes returned in retcode are as
follows:

e 02dbE_NOT_LOGON
e 02dbE_NO_MORE_STATEMENTS
e 02dbE_SQLNK
¢ 02dbE_SERVER
Returns A pointer on an object of the class 02db_Statement or NULL if the

operation failed.

O,DBAccess User Manual 41

Class Library

Example

#include "02db_o2db_access.h"

int dbaccess()

{

int code, status;

char *msg;

02db_Connection connection;

02db_Session *session;

02db_Statement *statement;

status = connection.connect("oracle", "user"”, "pwd");

session = connection.logon("dbuser", "dbpasswd",
&status);

statement = session->open(&status);
status = session->commit();
status = session->close(statement);

connection.disconnect();
return status;

42

Oo>DBAccess User Manual

02db_Session : rollback

rollback

Summary Performs a rollback on the database server.

Syntax int rollback(void);

Arguments None.

Description This function performs a rollback on the database server, thus
invalidating what has been done in the current session.

Returns A status code whose valueis O2DB_OKf the operation was successful, or
one of the following error codes if the operation failed:
e 02dbE_NOT_LOGON
e 02dbE_SQLNK
e 02dbE_SERVER

Example

{

#include "02db_o2db_access.h"

int dbaccess()

int code, status;

char *msg;

02db_Connection connection;
02db_Session *session;
02db_Statement *statement;

status = connection.connect("oracle", "user"”, "pwd");

session = connection.logon("dbuser”, "dbpasswd", &status);
statement = session->open(&status);
status = session->rollback();

status = session->close(statement);

connection.disconnect();
return status;

O,DBAccess User Manual 43

Class Library

02db_Statement

An object of the 02db_Statement class is created by the open function
of the 02db_Session class and manages all the resources related to
SQL statements.

This class has the following member functions:

e add_cursor_variable

e add_input_variable

* associate

 operator >>

e operator <<

And the following function:

» 02db_sql_execute

Oo>DBAccess User Manual

02db_Statement : add_cursor_variable

add_cursor_variable

Summary
Syntax
Arguments

Description

Returns

Example

Specifies a C++ attribute name to store an SQL result set column.

int add_cursor_variable(char *s);

S A string representing a C++ attribute name.

When a select statement is performed, the result set has to be stored in
a C++ object or in a collection of C++ objects. This function must be
called once for each column of the result set returned by the SQL
statement, in order to specify in which attribute of a C++ object the

values of a column will be put.

The calls to this function must be donein the order the columns of the
result set occur in the SQL statement.

02DB_OK

#include "02db_o2db_access.h"

int get_persons()

{

int code, status;
02db_Connection connection;
02db_Session *session;
02db_Statement *statement;
d_Set<d_Ref<Person> > persons;

status = connection.connect("oracle", "user"”, "pwd");

session = connection.logon("dbuser”, "dbpasswd", &status);
statement = session->open(&status);

status = statement->associate("SELECT name,age FROM emp");
/I asuming class Person {

I char *name_att;
I int age_att;
1

statement->add_cursor_variable("name_att");
statement->add_cursor_variable("age_att");

status = session->close(statement);

connection.disconnect();
return status;

O,DBAccess User Manual 45

2]

Class Library

add_input_variable

Summary

Syntax

Arguments

Description

Returns

Evaluates an input variable of an SQL statement.

int add_input_variable(const char *s);

int add_input_variable(char c);

int add_input_variable(unsigned char uc);
int add_input_variable(short s);

int add_input_variable(unsigned short us);
int add_input_variable(int i);

int add_input_variable(unsigned int ui);
int add_input_variable(long I);

int add_input_variable(unsigned long ul);
int add_input_variable(float f);

int add_input_variable(double d);

int add_input_variable(const d_Bits &s);

XX A C++ valueto assign to theinput variable. xx can be any
kind of C++ type, according to the type expected by the
database server.

This function is used by a programmer who defined an SQL statement
containing input variables. These variables are written using '?" in the
SQL statement. It is necessary to give a value for these variables before
running the statement.

This function associates a value of any type with an input variable. The
type used must be consistent with the expected type in the database
server. This function must be called once for each input variable defined
in the statement, in the order of the '?’ markers appearing in the SQL
statement.

A status code whose value is O2DB_OKif the operation was successful, or
one of the following error codes if the operation failed:

« 02dbE_NOT_OPEN

+ 02dbE_NOSTMT

+ 02dbE_INTERNAL

+ 02dbE_NOT_SUPPORTED
« 02dbE_NILREF

+ 02dbE_RANGE

+ 02dbE_MISMATCH

« 02dbE_SQLNK

« 02dbE_SERVER

46

Oo>DBAccess User Manual

02db_Statement : add_input_variable

Example

{

#include "02db_o2db_access.h"

int get_persons()

int code, status;
02db_Connection connection;
02db_Session *session;
02db_Statement *statement;
d_Set<d_Ref<Person> > persons;

status = connection.connect("oracle", "user”, "pwd");

session = connection.logon("dbuser”, "dbpasswd", &status);
statement = session->open(&status);

status = statement->associate("SELECT name,age FROM emp
WHERE age<?");

statement->add_cursor_variable("name_att");
statement->add_cursor_variable("age_att");
statement->add_input_variable(20);

status = session->close(statement);
connection.disconnect();
return status;

Oo,DBAccess User Manual

47

Class Library

associate

Summary
Syntax
Arguments

Description

Returns

Defines an SQL statement.
int associate(char *stmt);
stmt The text of the SQL statement that will be executed.

This function is used to define an SQL statement. It can be any valid
SQL sentence in which input variables are replaced by question marks

(?).

The actual values for the input variables are given using the function
add_input_variable or the operator << . Calling associate on a
statement invalidates all previous variable definitions for this statement.

A status code whose value is O2DB_OKif the operation was successful, or
one of the following error codes if the operation failed:

« 02dbE_NOT_OPEN
+ 02dbE_NOSTMT

« 02dbE_TOOLONG
« 02dbE_SQLNK

« 02dbE_SERVER

48

Oo>DBAccess User Manual

02db_Statement : associate

Example

#include "02db_o2db_access.h"

int get_persons()

{

int code, status;
02db_Connection connection;
02db_Session *session;
02db_Statement *statement;
d_Set<d_Ref<Person> > persons;

status = connection.connect("oracle", "user”, "pwd");

session = connection.logon("dbuser”, "dbpasswd",
&status);

statement = session->open(&status);

status = statement->associate("SELECT name,age FROM emp
WHERE age<?");

status = session->close(statement);

connection.disconnect();
return status;

Oo,DBAccess User Manual

49

Class Library

operator >>

Summary

Syntax

Arguments

Description

Returns

Example

Adds a cursor variable.

02db_Statement & operator >>(02db_Statement &q ,
const char *s);

q A reference to an object of the class 02db_Statement
that manages the SQL statement for which the variable
is defined.

S A string representing a C++ attribute name.

This operator acts in exactly the same way as the member function
add_cursor_variable . It isamoredirect interface to it.

A reference to the statement.

int get_persons()

int code, status;

02db_Connection connection;

02db_Session *session;

02db_Statement *statement;
d_Set<d_Ref<Person> > persons;
d_lterator<d_Ref<Person> > iter;

status = connection.connect("oracle", "user"”, "pwd");
session = connection.logon("dbuser”, "dbpasswd", &status);
statement = session->open(&status);

status = statement->associate("SELECT name,age FROM emp
WHERE age<?");

*statement >> "name_att" >> "age_att";

statement->add_input_variable(20);

status = 02db_sql_execute(*statement, persons);

status = session->close(statement);

connection.disconnect();

iter = persons.create_iterator();

while (iter.next(p)) {
cout << "Name : " << p.name_att << endl;
cout << "Age :" << p.age_att <<endl;
cout << endl;

return status;

50

Oo>DBAccess User Manual

02db_Statement : operator <<

operator <<

Summary

Syntax

Arguments

Description

Returns

Adds an input variable.

02db_Statement &operator << (02db_Statement &q,

const char *s);
02db_Statement &operator << (02db_Statement &q, char c);
02db_Statement &operator << (02db_Statement &q,

unsigned char uc);
02db_Statement &operator << (02db_Statement &q, short s);
02db_Statement &operator << (02db_Statement &q,

unsigned short us);
02db_Statement &operator << (02db_Statement &q, int i);
02db_Statement &operator << (02db_Statement &q,

unsigned int ui);
o02db_Statement &operator << (02db_Statement &q, long |);
02db_Statement &operator << (02db_Statement &q,

unsigned long ul);
o2db_Statement &operator << (02db_Statement &q,

float f);
o02db_Statement &operator << (02db_Statement &q,

double d);
o02db_Statement &operator << (02db_Statement &q,

const d_Bits &s);

q A reference to an object of the class 02db_Statement
that manages the SQL statement for which the variable
is defined.

XX A C++ valueto associateto the input variable. xx can be

any kind of C++ type, according to the type expected by
the database server.

This operator acts in exactly the same way as the member function
add_input_variable . It is a more direct interface to it

A reference to the statement.

O,DBAccess User Manual 51

Class Library

Example

int get_persons()

int code, status;
02db_Connection connection;
02db_Session *session;
02db_Statement *statement;
d_Set<d_Ref<Person> > persons;
d_lterator<d_Ref<Person> > iter;

status = connection.connect("oracle", "user”, "pwd");

session = connection.logon("dbuser”, "dbpasswd", &status);
statement = session->open(&status);

statement->associate("SELECT name,age FROM emp
WHERE age<?");

*statement >> "name_att" >> "age_att";

*statement << 20;

status = 02db_sql_execute(*statement, persons);

status = session->close(statement);

connection.disconnect();

iter = persons.create_iterator();

while (iter.next(p)) {
cout << "Name : " << p.name_att << endl;
cout << "Age :" << p.age_att <<endl;
cout << endl;

return status;

52

Oo>DBAccess User Manual

o02db_Statement : 02db_sqgl execute

02db_sql_execute

Summary

Syntax

Arguments

Description

Returns

Executes an SQL statement.

int 02db_sql_execute(o2db_Statement & q);
int 02db_sql_execute(02db_Statement & q,
02_col_root & coll);
int 02db_sql_execute(o2db_Statement & q, d_Ref<T> & 0);

q A reference to an object of the class 02db_Statement that
manages the SQL statement to be executed.

coll A reference to any O» collection in which the result of
the statement must inserted.

o] A reference to an Oy object in which the result (for a
single line result set) must be put.

This function executes a previously defined SQL statement. The first
function returns immediatly after the statement has been run (used for
a statement without result) and the other two functions put theresult of
the statement into the target object. The target object can be a collection
of object when the programmer expects to have a result set with
multiple rows or can be an object when the programmer knows that the
statement will return a single row result set.

A status code whose value is O2DB_OKf the operation was successful, or
one of the following error codes if the operation failed:

« 02dbE_NOT_OPEN

« 02dbE_NOSTMT

+ 02dbE_NOT_SELECT

« 02dbE_DEFINED

+ 02dbE_MISMATCH

+ 02dbE_NOT_SUPPORTED
« 02dbE_NOT_UNIQUE

+ 02dbE_INVALID_NAME
« 02dbE_NOT_EXECUTED
« 02dbE_NILREF

« 02dbE_SQLNK

« 02dbE_SERVER

O,DBAccess User Manual 53

Class Library

Example

int get_persons()

{

int code, status;
02db_Connection connection;
02db_Session *session;
02db_Statement *statement;
d_Set<d_Ref<Person> > persons;
d_lterator<d_Ref<Person> > iter;

status = connection.connect("oracle", "user"”, "pwd");

session = connection.logon("dbuser”, "dbpasswd", &status);
statement = session->open(&status);

statement->associate("SELECT name,age FROM emp
WHERE age<?");

statement->add_cursor_variable("name_att");

statement->add_cursor_variable("age_att");

statement->add_input_variable(20);

status = 02db_sql_execute(*statement, persons);

status = session->close(statement);

connection.disconnect();

iter = persons.create_iterator();

while (iter.next(p)) {
cout << "Name : " << p.name_att << endl;
cout << "Age :" << p.age_att <<endl;
cout << endl;

return status;

54

Oo>DBAccess User Manual

4 Appendices

This chapter contains the following appendices:
« Example Application

e Configuration File

e Possible Errors

Oo>DBAccess User Manual

55

4 Appendices

4.1 Example Application

This exampleillustrates the various steps you must go through in order
to use O,DBAccess inside an ODMG C++ application.

This section is divided up into the following sections:
e Defining a C++ schema

Connecting to 02

e Connecting to the Relational database server

e Creating a table

e Populating the table

« Displaying the table content

* Queryingthe RDBMS

e Building the application

56

Oo>DBAccess User Manual

Example Application : Defining a C++ schema

Defining a C++ schema

You must first define the C++ classes that will be used to receive the
results of the SQL statements run in the application. In this example,
we define a class Person . The C++ classes defined here must be
imported in O, as persistence capable classes.

To be able to store an SQL result set, you will need to define collections

for these classes.

#include "o2util_CC.hxx"

class Person {

public:
d_Short id_person;
char *name,;
char *firstname;
int age;
d_Char employed,;
d_Long zip_code;

Note

You make a C++ class persistence capable using o2import or a directive

in the o02makegen configuration file (see the Section "Building the
application™).

Oo,DBAccess User Manual

57

4 Appendices

Connectingto O »,

The main function of the application is an ODMG C++ function that
opens a session with the O, server, opens a database, starts an O»
transaction and creates a persistent root. It then calls the function
manage_sql , which handles all the dbaccess part and finally commits
the O» transaction and disconnects from the O» server.

main(int argc , char *argv]])

{
char *02_home = getenv("O2HOME");
char *02_system = getenv("O2SYSTEM");
char *02_server = getenv("O2SERVER");

d_Session session;
d_Database database;
d_Transaction transaction;

if (! 02_home) {
cerr << "Cannot retrieve O2HOME" << end|;
exit(1);

}

if (! 02_system) {
cerr << "Cannot retrieve O2SYSTEM" << endl;
exit(1);

}

if (! 02_server) {
cerr << "Cannot retrieve O2SERVER" << endl;
exit(1);

}

if (session.begin(argc, argv, 02_system, 02_server,02_home))

cerr << "Cannot connect to 02" << endl;
exit(1);
}

database.open("o2dbaccess_b");

transaction.begin();

database.create_persistent_root("ThePersons",
"d_Set<d_Ref<Person> >");

manage_sql();
transaction.commit();

database.close();
session.end();

Oo>DBAccess User Manual

Example Application : Connecting to the Relational

Connecting to the Relational database server

This function is the entry point of the O,DBAccess related code. It
establishes a connection with the remote database server, opens a
database, and creates a statement.

At this point, the functions that issue the queries are called, and
finally, all the resources opened on the remote database server are
closed.

void manage_sql()

{
int retcode, svr_error;
char *msg;
02db_Connection connection;
02db_Session *session;
02db_Statement *statement;

/I connection with the Sequelink server.

, "user",
"userpasswd");

retcode = connection.connect(“"oracle

if (retcode = O2DB_OK)
cerr << "Cannot open a connection with the
Sequelink server” << endl,

/I open an session

session = connection.logon("oracleuser”,
"oracleuserpasswd”,
&retcode);
if (retcode != O2DB_OK) {
if (retcode == 02dbE_SERVER) {
msg = connection.server_error(&svr_error);
cerr <<'error: " << svr_error << " msg: " <<

msg << endl;
} else cerr << "dbaccess error: " << retcode;
return;
}

Oo,DBAccess User Manual

Appendices

/I create a statement

statement = session->open(&retcode);
if (retcode = O2DB_OK) {
if (retcode == 02dbE_SERVER) {
msg = connection.server_error(&svr_error);
cerr<<"error:" <<svr_error<<" msg:"
<< msg << endl;
} else cerr << "dbaccess error: " << retcode;
return;

/I call the queries

person_table_creation(statement);
person_table_initialization(statement);
person_table_display(statement);

retcode = connection.logoff(session);
if (retcode != O2DB_OK) {
if (retcode == 02dbE_SERVER) {
msg = connection.server_error(&svr_error);
cerr<<'error:" <<svr_error<<" msg:"
<< msg << endl;
} else cerr << "dbaccess error: " << retcode;
return;

}

retcode = connection.disconnect();
if (retcode != O2DB_OK) {
if (retcode == 02dbE_SERVER) {
msg = connection.server_error(&svr_error);
cerr<<'error:" <<svr_error<<" msg:"
<< msg << endl;
} else cerr << "dbaccess error: " << retcode;
return;

Oo>DBAccess User Manual

Example Application : Creating a table

Creating a table

This function creates a new table on the RDBMS. The SQL CREATE
statement is associated to the O,DBAccess statement and as thereis no
more information to give, the statement is executed.

void person_table_creation(o2db_Statement * statement)
{

int retcode, svr_error;

char *msg;

retcode = statement->associate("CREATE TABLE person \

(id_person SMALLINT null, \
name VARCHAR(16) null, \
firsthame VARCHAR(16) null, \
age INTEGER null, \
employed INTEGER default 0, \
zip_code NUMERIC null)");

if (retcode !'= O2DB_OK) {
if (retcode == 02dbE_SERVER) {
msg = statement->server_error(&svr_error);
cerr <<'error:" << svr_error <<" msg: " <<msg
<< endl;
} else cerr << "dbaccess error: " << retcode;
return;

}

retcode = 02db_sql_execute(*statement);
if (retcode = O2DB_OK) {
if (retcode == 02dbE_SERVER) {
msg = statement->server_error(&svr_error);
cerr<<'error:" << svr_error <<" msg: " <<msg
<< endl;
} else cerr << "dbaccess error: " << retcode;
return;

O,DBAccess User Manual 61

4 Appendices

Populating the table
The following function populates the previously created table.

The INSERT SQL statement is associated to the OoDBAccess statement.
It contains parameters markers (denoted with '?'), that must be bound
with the actual values of the parameters.

In this example, this is performed using the '<<' operator. It could also
have been performed using the add_input_variable member function.

The person_data tableused in the exampleis not detailed and could be
replaced by any input source.

After the parameters are bound, the statement is executed. In this
example, note that the same associated statement is used several times
toinsert several rows in the person table, each time with a new binding
of the actual parameters.

void person_table_initialisation(o2db_Statement *
statement)
{

int retcode, svr_error;

char *msg;

retcode = statement->associate("INSERT INTO \
person (id_person, \
name, \
firstname, \
age, \
employed, \
Zip_code) \
VALUES (?,?,7,?2,2,?7)");
if (retcode !'= O2DB_OK) {
if (retcode == 02dbE_SERVER) {
msg = statement->server_error(&svr_error);
cerr << "error: " << svr_error <<" msg: "
<< msg << endl;
} else cerr << "dbaccess error: " << retcode;
return;

Oo>DBAccess User Manual

Example Application : Populating the table

for (inti =0 ;i<NB_PERSON ; i++) {
*statement << person_datali].id_person;
*statement << person_datali].name;
*statement << person_datali].firstname;
*statement << person_datali].age;
*statement << person_datali].employed;
*statement << person_datali].zip_code;

retcode = 02db_sql_execute(*statement);
if (retcode = O2DB_OK) {
if (retcode == 02dbE_SERVER) {
msg = statement->server_error(&svr_error);
cerr << "error: " << svr_error
<<" msg: " << msg << endl;
} else cerr << "dbaccess error: " << retcode;
return,

}

Oo,DBAccess User Manual

63

Appendices

Displaying the table content

This function shows how to handle a SELECT SQLstatement. This kind
of statement returns a result set that needs to be stored in C++ objects.

A collection of C++ objects of the persistence capable class Person is
created and is given as parameter to the o2db_sql_execute function.
After the statement execution, this collection will contain the result set
of the SQL query. In this example, the collection "ThePersons" is
persistent, but results can be stored in temporary collections too.

Note that no cursor variables are defined in this function to specify to
which C++ attributes the table columns are associated. In this case, all
the C++ attributes of the class given to the 02db_sql_execute function
are implicitly associated to the result set in the order they appear in the
C++ class definition. You must check that the SQL query returns a valid
data set for the given C++ object.

After the statement is executed, an iterator is created on the collection
and is used to display each retrieved person

64

Oo>DBAccess User Manual

Example Application

void person_table_display(o2db_Statement * statement)
{
int retcode, svr_error;
char *msg;
d_Set<d_Ref<Person> > the persons("ThePersons");
d_lterator<d_Ref<Person> > iter;
d_Ref<Person> person;

retcode = statement->associate("SELECT *\
FROM person");
if (retcode = O2DB_OK) {
if (retcode == 02dbE_SERVER) {
msg = statement->server_error(&svr_error);
cerr <<'"error: " << svr_error<<" msg:"
<< msg << endl;
} else cerr << "dbaccess error: " << retcode;
return;

}

retcode = 02db_sqgl_execute(*statement, the_persons);
if (retcode = O2DB_OK) {
if (retcode == 02dbE_SERVER) {
msg = statement->server_error(&svr_error);
cerr << "error: " << svr_error
<<" msg: " << msg << endl;
} else cerr << "dbaccess error: " << retcode;
return;
}
iter = the_persons.create_iterator();
while (iter.next(person)) {
cout << "\prr* ["
<< person -> id_person <<
<< person -> name << " "
<< person -> firstname <<
<< person -> age <<""
<< person -> employed <<
<< person -> zip_code << "]" << endl;

Oo,DBAccess User Manual

65

4 Appendices

Querying the RDBMS

This query is quite similar to the previous one except that cursor
variables are explicitly defined (because the number and order of
appearance of the attributes of the given C++ class are not the same as
the columns of the result set.

This example also shows how to combine input variables and cursor
variables in the same statement. Moreover the result is now put in a
temporary list.

The function firstly associates the SQL statement to the Oo,DBAccess
statement, gives the value '35" as the actual parameter for the marker
used in the SQL statement, and defines the cursor variables.

In this case the column "name" of the result set is associated to the
attribute "name" of the C++ class (*statement >> "name") and the
column "firstname " of the result set is associated to the attribute
"firstname " of the C++ class (*statement >> ... >> "firstname”).

Note

Even if it is the case in this function, the C++ attribute associated to a
column of the SQL result set does not need to have the same name as
the column. For instance, we could have associated an attribute called
"person_name " to the column "name" of the result set

Oo>DBAccess User Manual

Example Application

void person_table_query(o2db_Statement * statement)
{
int retcode, svr_error;
char *msg;
d_List<d_Ref<Person> > young_people;
d_lterator<d_Ref<Person> > iter;
d_Ref<Person> person,;

retcode = statement->associate("SELECT name, firsthname\
FROM person \
WHERE age < ?\
ORDER BY age");
if (retcode != O2DB_OK) {
if (retcode == 02dbE_SERVER) {
msg = statement->server_error(&svr_error);
cerr << "error: " << svr_error
<<" msg: " << msg << endl;
} else cerr << "dbaccess error: " << retcode;
return,
}
// binds the input variable
*statement << 35;

// binds the cursor variables.
*statement >> "name" >> "firsthname";
retcode = 02db_sql_execute(*statement, young_people);
if (retcode != O2DB_OK) {
if (retcode == 02dbE_SERVER) {
msg = statement->server_error(&svr_error);
cerr << "error: " << svr_error
<<" msg: " << msg << endl;
} else cerr << "dbaccess error: " << retcode;
return;

}

iter = young_people.create_iterator();
while (iter.next(person)) {
cout << "\tF* [
<< person -> name <<
<< person -> firsthame << "]" << endl|;

Oo,DBAccess User Manual

67

4 Appendices

Building the application

You build the application in exactly the same way as you build a
classical ODMG C++ application.

To use OoDBAccess you just need to link-edit your application with the
OoDBAccess library and with the SequeLink client libraries and to add a
directive to look for SequeLink client include files.

The following code gives an 02makegen configuration file that can be
used to create an application (see the "C++ Binding Guide Manual").

Note

Before using a generated application, it is mandatory to create an O,
schema and base using the o2dsa program.

0O2System: $02SYSTEM
O2Server: $O02SERVER
0O2Schema: o2dbaccess_s

+UseConfirmClasses

O2Home: $02HOME

ImpFiles: Person.hxx
[Person.hxx]ImpClasses: Person
ImpSet: Person

Sources: example.cc

ProgramLib: o2dbaccess SqlnkCor SqlnkNet SqginkDef
ProgramLibDir: $02HOME/thirdparty/SequeLink/lib/IRIX
Include: $O2HOME/thirdparty/SequeLink/include
ProgramName: example

ProgramObjs: example.o

68 O>DBAccess User Manual

Configuration File

4.2 Configuration File

The configuration file o2dbaccess.cf contains the information needed
tolink up your Oz application and a remote host, in the form of a set of
network and host-specific parameters.

You can change the file name by specifying a new name and its path in
the environment variable O2DBACCESSThis variable must contain the
full path of the file.

In order of priority, the file is first taken from the working directory,
then $HOMEand then the O installation directory. It is an ASCII file
where each line corresponds to a named link description. It contains
one entry for each named link with comments beginning with #. Theline
format is:

¢_name:network:host:port:service:lu_name:mode:max_statements:type_checking

Each field is described below.

Cc_name Link name. Specify a link name each time you invoke
the 02db_Connection::connect member function.
network Type of network protocol used. Possible values: TCP

(MacTCP on Macintosh), ADSP, APPC, DECnet,
NetBIOS and AppleTalk.

host RDBMS remote host/ node/ zone name.

port Port on which the Sequelink server is listening. Default
is 2000. If you want to use the default port number,
usea '

service SequeLink (database) service name that you want to

connect to. You can find this name in the servermap
file on the remote host. See SequeLink manual.

lu_name Physical LU Name in APPC network protocol (optional).
If it is not applicable, use a *".

mode APPC mode in APPC network protocol (optional). If it is
not applicable, use a ™*’.

max_statements Integer (from 0 to 100) specifying maximum number of
statements that can be opened at the sametimeduring
a session. If 0, the default value (15) is used.

type_checking Boolean specifying whether to enable (true) or disable
(false)type checkingin the
o2db_Statement::add_cursor_variable and
02db_Statement::add_input_variable member

functions. Default value is false

O,DBAccess User Manual 69

Appendices

Warning !
The type checking is not supported for all RDBMS. An example
configuration file is as follows:

supra on salome:TCP:salome:LSPSUPRA2:*:*:15:false
db2 on sgphl1:DECnet:sgphl1:MVSDB2:*:*:0:true
oracle:TCP:o2tech:oracle_services:*:*:0:false

70

Oo>DBAccess User Manual

Possible Errors : Building the application

4.3

Possible Errors

Each member function returns an internal error code.

This section describes these error codes. You can obtain
RDBMS-detected error codes using the server_error member
function. See Section 3.1 for a description of this member function.

-1001
Code:
Call:

Cause:
Action:

-2001
Code:
Call:

Cause:

Action:

-3001
Code:
Call:

Cause:
Action:

-3002
Code:
Call:

Cause:
Action:

02dbE_SERVER (-1001)
All.
RDBMS-detected error has occurred.

Consult error code and message text calling the
02db_O2DBAccess::server_error member function.

02dbE_SQLNK (-2001)

All.

A SequeLink error has occurred. Should usually only be
issued on a 02db_Connection::connect member
function call.

Check the link parameters, user name and password. The
connect failure reason is in <network>srv.log file on the

remote host.

02dbE_STILL_CONNECT (-3001)
02db_Connection::connect
You are still connected to a host.

The 02db_Connection::connect member function was
called but not the 02db_Connection::disconnect
member function.

02dbE_NOT_CONNECT (-3002)
02db_Connection::logon , 02db_Connection::logoff
Not connected.

Check completion of the previous connect member
function call.

Oo,DBAccess User Manual

71

Appendices

-3003
Code:
Call:

Cause:

Action:

-3004
Code:
Call:

Cause:
Action:

-3005
Code:
Call:

Cause:
Action:

-3006
Code:
Call:

Cause:
Action:

-3008
Code:
Call:

Cause:
Action:

02dbE_NOT_MEMBER (-3003)
02db_Connection::logoff , 02db_Session::close

The Session/ Statement object has not been created by the
receiver.

Check the member function call syntax.

02dbE_NOT_LOGON (-3004)

02db_Session::open , 02db_Session::close ,
02db_Session::commit , 02db_Session::rollback

Not logged on.

Check completion of the previous
02db_Connection::logon member function call.

02dbE_TOOLONG (-3005)

02db_Connection::logon , 02db_Statement::associate
The parameters are too long.

Decrease parameter length.

02dbE_NOT_OPEN (-3006)

02db_Statement::associate ,
02db_Statement::add_input_variable ,
02db_sql_execute

The statement has not been opened.

Check the completion of the previous
02db_Session::open member function call.

02dbE_NOSTMT (-3008)

02db_Statement::associate ,
02db_Statement::add_input_variable ,
02db_sql_execute

The SQL statement is empty.
Check the member function call syntax.

72

Oo>DBAccess User Manual

Possible Errors : Building the application

-3009
Code:
Call:

Cause:

Action:

-3010
Code:
Call:

Cause:

Action:

-3011
Code:
Call:

Cause:

Action:

-3012
Code:
Call:

Cause:

Action:

-3013
Code:
Call:
Cause:

Action:

02dbE_FILE_NOTFOUND (-3009)
02db_Connection::connect

The configuration file was not found.
Check that the configuration file exists.

02dbE_RC_NOTFOUND (-3010)
02db_Connection::connect

No description of the link parameters for this link name.

Check configuration file contents and the member function

call syntax.

02dbE_INVALID_RC (-3011)
02db_Connection::connect
Invalid line in the configuration file.

Check the configuration file contents.

02dbE_UNKN_NETWORK (-3012)
02db_Connection::connect
Unknown network protocol.

Check configuration file contents.

02dbE_OPEN_FILE (-3013)
02db_Connection::connect
The configuration file cannot be opened.

Check that the configuration file exists and check its
access rights.

Oo,DBAccess User Manual

73

4 Appendices

-3014

Code: 02dbE_NOT_SELECT (-3014)

Call: o02db_sql_execute

Cause: The SQL statement is not a select statement.

Action: Check the syntax of the SQL statement.

-3015

Code: 02dbE_RANGE (-3015)

Call: 02db_Statement::add_input_variable

Cause: The order number is out of range.

Action: Check the order number.

-3016

Code: 02dbE_DEFINED (-3016)

Call: o02db_sql_execute

Cause: The parameter or the result object is yet defined.

Action: Check the order number.

-3017

Code: 02dbE_MISMATCH (-3017)

Call: 02db_Statement::add_input_variable ,
02db_sql_execute

Cause: Type checking failed.

Action: Check theresult or parameter type.

-3018

Code: 02dbE_NOT_SUPPORTED (-3018)

Call: 02db_Statement::add_input_variable ,

02db_sql_execute

Cause: One of the atomic types used is not supported in the
current version of OoDBAccess.

Action: Check the type of result object.

74

Oo>DBAccess User Manual

Possible Errors : Building the application

-3021
Code:
Call:

Cause:
Action:

-3022
Code:
Call:

Cause:

Action:

-3023
Code:
Call:

Cause:

Action:

-3024
Code:
Call:

Cause:

Action:

-3025
Code:
Call:

Cause:

Action:

02dbE_INVALID _NAME (-3021)
02db_sql_execute
One of the names is not an attribute name.

Check the list of attribute names.

02dbE_NOT_EXECUTED (-3022)
o02db_sql_execute
The statement has not been executed.

Check the completion of the previous 02db_sql_execute
member function call.

02dbE_NO_MORE_STATEMENTS (-3023)
02db_Statement::open

An attempt was made to exceed the maximum number
open statements allowed.

Close some statements.

02dbE_NILREF (-3024)

02db_Statement::add_input_variable
02db_sql_execute

The result object or a parameter is nil
Check the member function call syntax.

02dbE_NOMEM (-3025)
All.
Not enough memory.

Close some statements.

Oo,DBAccess User Manual

75

Appendices

-4001
Code:
Call:

Cause:
Action:

-5001
Code:
Call:

Cause:

Action:

02dbE_INTERNAL (-4001)

All.

Internal error. It should not normally be issued.
Contact your local technical support.

02dbW_NOT_UNIQUE (-5001)
o02db_sql_execute

This a warning. There is more than one row to fetch
whereas the result type is not a collection.

Nothing. Only the first row has been fetched.

76

Oo>DBAccess User Manual

INDEX

Oo>DBAccess User Manual

77

INDEX

A D

add_cursor_variable Data
Function 23-24, 45 Access 21
add_input_variable Database
Function 23-24, 46 Access 21-22
Application Log off 21
Building 68 Logon 21
Example 56-68 disconnect
Client/ server 13
0O, 10
associate
Function 23,48 E
C Environment variable 69

Error codes 23,71-76
Example application 56-68

C1
C++
Interface 11 F
C++ Schema
Definition 57
C_hame 69
Class 18 File
02db_Connection 21,32 Configuration 69
02db_O2DBAccess 30
02db_Session 21,38
o2db_Statement 44
Client/ server architecture 13
close
Function 22,39

commit
Function 28,40

Configuration
File 68,69

connect
Function 21,33

O>DBAccess User Manual

INDEX

Function 19
add_cursor_variable 23-24,45
add_input_variable 23-24, 46
associate 23,48
close 2239

commit 28,40
connect 21,33
disconnect 21,28 34
logoff 21,28 35
logon 21,36
02db_sql_execute 25,53
open 22 41

operator << 51
operator >> 50
rollback 28,43
server_error 31

H

Host
Connection 21,58
Disconnect 21, 28

host 69

Internal error codes 71

Java 11

Library
Definition 18

logoff
Function 21,28 35

logon
Function 21

lu_name 69

M

Managing statements 23
max_statements 69
mode 69

N

network 69

O

O,
Architecture 10

0O.C 11
O,Corba 11

Oo,DBAccess User Manual

79

INDEX

02db_Connection
Class 18 32
Creation 21
Functions 21,3237

02db_O2DBAccess
Class 18 30
Functions 31

02db_Session
Class 18 21-22 38
Functions 38-43

02db_sql_execute
Function 25,53

02db_Statement
Class 18,22 44
Functions 4454

O2DBACCES%9

O,DBAccess 11

o2dbaccess
Schema 18

o2dbaccess.cf 69
O2Engine 10
O,Graph 11

O-Kit 11

OsLook 11
0O,0DBC 11

O,Store 10
Overview 13

O,>Tools 11
O,Web 11

open
Function 22 41

operator <<
Function 51

operator >>
Function 50

oQL 11

P

port 69

R

RDBMS

Querying 66

rollback

Function 28 43

server_error

Error codes 71
Function 23 31

service 69
Session

Close 22,28
Open 22

Statement

Close 22
Management 23
Maximum number 22
Open 22

Preparation 23
Running 25

System

Architecture 10

Table

Creating 61
Displaying content 64
Populating 62

type_checking 69

80

O>DBAccess User Manual

	MAIN MENU TO O2 DOCUMENTATION
	O2DBAccess User Manual
	Who should read this manual
	TABLE OF CONTENTS
	1 Introduction 9
	2 Programming Guide 17
	3 Class Library 29
	4 Appendices 55
	INDEX 77

	1 Introduction
	1.1 System Overview
	Figure 1.1: O2 System Architecture
	O2 Engine
	Figure 1.2: Client/server architecture

	O2 Store
	Figure 1.3: Global architecture showing O2Store layer

	O2DB Access
	Figure 1.4: O2DBAccess and SequeLink

	1.2 Manual Overview

	2 Programming Guide
	2.1 The o2dbaccess Library
	Classes
	Figure 2.1: o2dbaccess library

	2.2 Guidelines
	Table 2.1 Function set

	2.3 Accessing a Database
	Host connection and database log in
	Open Statement

	2.4 Preparing a Statement
	Associating an SQL statement
	Managing statements
	Storing a query result set

	2.5 Running a Statement
	2.6 Commit and Rollback
	2.7 Ending a Session

	3 Class Library
	3.1 o2db_O2DBAccess
	server_error

	3.2 o2db_Connection
	connect
	disconnect
	logoff
	logon

	3.3 o2db_Session
	close
	commit
	open
	rollback

	3.4 o2db_Statement
	add_cursor_variable
	add_input_variable
	associate
	operator >>
	operator <<
	o2db_sql_execute

	4 Appendices
	4.1 Example Application
	Defining a C++ schema
	Connecting to O2
	Connecting to the Relational database server
	Creating a table
	Populating the table
	Displaying the table content
	Querying the RDBMS
	Building the application

	4.2 Configuration File
	4.3 Possible Errors

	INDEX
	A
	add_cursor_variable
	Function�23–24, 45

	add_input_variable
	Function�23–24, 46

	Application
	Building�68
	Example�56–68

	Architecture
	Client/server�13
	O2�10

	associate
	Function�23, 48

	C
	C�11
	C++
	Interface�11

	C++ Schema
	Definition�57

	c_name�69
	Class�18
	o2db_Connection�21, 32
	o2db_O2DBAccess�30
	o2db_Session�21, 38
	o2db_Statement�44

	Client/server architecture�13
	close
	Function�22, 39

	commit
	Function�28, 40

	Configuration
	File�68, 69

	connect
	Function�21, 33

	D
	Data
	Access�21

	Database
	Access�21–22
	Log off�21
	Log on�21

	disconnect
	Function�21, 28, 34

	E
	Environment variable�69
	Error codes�23, 71–76
	Example application�56–68

	F
	File
	Configuration�69

	Function�19
	add_cursor_variable�23–24, 45
	add_input_variable�23–24, 46
	associate�23, 48
	close�22, 39
	commit�28, 40
	connect�21, 33
	disconnect�21, 28, 34
	logoff�21, 28, 35
	logon�21, 36
	o2db_sql_execute�25, 53
	open�22, 41
	operator <<�51
	operator >>�50
	rollback�28, 43
	server_error�31

	H
	Host
	Connection�21, 58
	Disconnect�21, 28

	host�69

	I
	Internal error codes�71

	J
	Java�11

	L
	Library
	Definition�18

	logoff
	Function�21, 28, 35

	logon
	Function�21

	lu_name�69

	M
	Managing statements�23
	max_statements�69
	mode�69

	N
	network�69

	O
	O2
	Architecture�10

	O2C�11
	O2Corba�11
	o2db_Connection
	Class�18, 32
	Creation�21
	Functions�21, 32–37

	o2db_O2DBAccess
	Class�18, 30
	Functions�31

	o2db_Session
	Class�18, 21–22, 38
	Functions�38–43

	o2db_sql_execute
	Function�25, 53

	o2db_Statement
	Class�18, 22, 44
	Functions�44–54

	O2DBACCESS�69
	O2DBAccess�11
	o2dbaccess
	Schema�18

	o2dbaccess.cf�69
	O2Engine�10
	O2Graph�11
	O2Kit�11
	O2Look�11
	O2ODBC�11
	O2Store�10
	Overview�13

	O2Tools�11
	O2Web�11
	open
	Function�22, 41

	operator <<
	Function�51

	operator >>
	Function�50

	OQL�11

	P
	port�69

	R
	RDBMS
	Querying�66

	rollback
	Function�28, 43

	S
	server_error
	Error codes�71
	Function�23, 31

	service�69
	Session
	Close�22, 28
	Open�22

	Statement
	Close�22
	Management�23
	Maximum number�22
	Open�22
	Preparation�23
	Running�25

	System
	Architecture�10

	T
	Table
	Creating�61
	Displaying content�64
	Populating�62

	type_checking�69

