O,DBAccess
User Manual

O,C Interface

Release 5.0 - May 1998

Information in this document is subject to change without
notice and should not be construed as a commitment by
O, Technology.

The software described in this document is delivered under a
license or nondisclosure agreement.

The software can only be used or copied in accordance with the
terms of the agreement. It is against the law to copy this
software on magnetic tape, disk, or any other medium for any
purpose other than the purchaser’s own use.

Copyright 1992-1998 O, Technology.

All rights reserved. No part of this publication can be
reproduced, stored in a retrieval system or transmitted in any
form or by any means, electronic, mechanical, photocopy
without prior written permission of O Technology.

02, O2API, O2C, OoDBAccess, O2Engine, O>Graph, OsKit,
OsLook, O,Store, O2Tools, and O,Web are registered
trademarks of O, Technology.

SQL and AIX are registered trademarks of International
Business Machines Corporation.

Sun, SunOS, and SOLARIS are registered trademarks of Sun
Microsystems, Inc.

X Window System is a registered trademark of the
Massachusetts Institute of Technology.

Unix is a registered trademark of Unix System Laboratories, Inc.
HPUX is a registered trademark of Hewlett-Packard Company.
BOSX is a registered trademark of Bull S.A.

IRIX is a registered trademark of Siemens Nixdorf, A.G.
NeXTStep is a registered trademark of the NeXT Computer, Inc.
Purify, Quantify are registered trademarks of Pure Software Inc.
Windows is a registered trademark of Microsoft Corporation.

All other company or product names quoted are trademarks or
registered trademarks of their respective trademark holders.

Who should read this manual

This manual describes how to use O,DBAccess. This O, module
enables to connect O, applications to relational databases on remote
hosts, and to import and export data from and to such systems.
O->DBAccess provides class libraries (O,C and C++) for these tasks. The
manual also describes how to invoke SQL statements from O5. An
example program is presented.

Other documents available are outlined, click below.

See 02 Documentation set

TABLE OF CONTENTS

This manual is divided into the following chapters:
* 1 - Introduction

e 2 - Utilization

* 3 - Classes

* 4 - Appendices

O>DBAccess User Manual

QQ TABLE OF CONTENTS

Introduction 9
1.1 SYSEM OVEIVIEW....uiiiiiii ettt e e e e eeeeeeeeenaeees 10
(@ 124 =1 T | 1RSSR
(@ 2] (0] (<IN R
2D B AC CSS . neit et ettt
1.2 MaANUAI OVEIVIEW ... 16
Utilization 17
2.1 The 02dDacCeSS SCNEMAuiveeiiieeeeeee e 18
LA S S e ettt e -
Importing the SChema..........oooiiiiii
2.2 GUIEIINES ..o 20
2.3 AccessSiNg a database.........ccoovveeiiiiiiiiiiiiei e 22
Host connection and database [0g iN...........cccevvvvvieieiiiiiinennnn.
OPEN CONIEXL ... e s
2.4 Preparing a StatemMeNnt.........coooevie i 24
Linking statement and CONEXTouvvviiirieiiiriiiiiiee e
Managing CONEXISceeviiiieiieieeeieitiiire e s e e e e e e e e e e eeeeee e aeaenennnnn
Transferting data.........ooooovioiiiiiiiii e
2.5 Run statement and fetching data............c.ccoccovviiiiiiiiiiienee, 29
2.6 Commit and rollDACK.........oueeeeeeee e 30
2.7 ENAING @ SESSION ...cciiiiiiiiiiieeee ettt a e e 31
Classes 33
3.l O 2D B A CCESS ... 34
server_error methodooovvvvivieie e
V2N 10] 0] [<Te 1o] o FUUTRE TR 36
CONNECEMETNOMce e e e et iaeas
diSCONNECE METNOA.. .. e
[0gON METNOd.

Oo>DBAccess User Manual

TABLE OF CONTENTS

O,DBAccess User Manual 7

[0gOff MEthOd ... 40
3.3 S S S 0N ettt 41
ClOSE METNOA ... e e e e 42
COMMIE METNOM .. e e et e e e aaas 43
OPEN METNOA ... 44
FOIDACK MEINOA o e e 45
Slquery Methodeeeieiiiii e 46
I B O{0] 81 (=) AR 47
ASSOCIAtE METNOU ... e e e 48
define_bind method...........ccccooiiiiiiii e 49
define_projection Method ... 50
EXEC MEBINOA ... e e e e 51
FEICH MEINOA ... e e e 52
Appendices 53
4.1 Example APPlICAtIONooeeiiiiiiiiiiies e 54
DefiNe the SCREMIA . .ce e e 55
Host connection and database 10g ON ..., 56
OPEN @ CONEXL ...ttt 57
Prepare the statement...........ccuviiiiiiiiiiii e 58
RUN the StateMENT ...ee e e e ee e 59
FICh the data......conoe e 60
ClOSE the CONEXE . v et 6l
Close database session and end host connection..........c.ccoeveuee... 61
4.2 Configuration Fileccouiiiiiiiiiiii e 62
4.3 POSSIDIE EITOIS ..o 63
INDEX 69

TABLE OF CONTENTS

Oo>DBAccess User Manual

1 Introduction

Congratulations! You are now a user of OoDBAccess!

O,DBAccess is the O module that enables you to communicate and
work with relational databases on remote hosts

This chapter introduces the O, system and O,DBAccess and outlines
its various features and advantages. An overview of this User Manual is
then given.

O>DBAccess User Manual 9

1 Introduction

1.1 System Overview

The system architecture of Oy is illustrated in Figure 1.1.

Development Tools

External

Interfaces
Standard
O, Dev. Tools Dev. Tools
OoQL
I C C++ 0,C I Java
O,Corba

Database Engine

O,DB
Access

OEngine

O,Store O,Web

81

Figure 1.1: O, System Architecture
The O, system can be viewed as consisting of three components. The
Database Engine provides all the features of a Database system and an
object-oriented system. This engine is accessed with Development Tools,
such as various programming languages, O, development tools and any
standard development tool. Numerous External Interfaces are provided.
All encompassing, O, is a versatile, portable, distributed, high-
performance dynamic object-oriented database system.

Database Engine:

e O,Store

« OzEngine

The database management system provides low level
facilities, through O,Store API, to access and manage a
database: disk volumes, files, records, indices and
transactions.

The object database engine provides direct control of
schemas, classes, objects and transactions, through
OsEngine API. It provides full text indexing and search
capabilities with O,Search and spatial indexing and
retrieval capabilities with OoSpatial. It includes a
Notification manager for informing other clients
connected to the same O, server that an event has
occurred, a Version manager for handling multiple
object versions and a Replication API for synchronizing
multiple copies of an O2 system.

10

Oo>DBAccess User Manual

System Overview

Programming Languages:

O» objects may be created and managed using the following
programming languages, utilizing all the features available with O
(persistence, collection management, transaction management, OQL

queries, etc.)
« C

o C++

e Java

¢ 0OoC

. OQL

O functions can be invoked by C programs.
ODMG compliant C++ binding.
ODMG compliant Java binding.

A powerful and elegant object-oriented fourth
generation language specialized for easy development
of object database applications.

ODMG standard, easy-to-use SQL-like object query
language with special features for dealing with com plex
O, objects and methods.

Oz Development Tools:

¢ O,Graph
¢ OjLook

e O2Kit

¢ OsTools

Create, modify and edit any type of object graph.

Design and develop graphical user interfaces, provides
interactive manipulation of complex and multimedia
objects.

Library of predefined classes and methods for faster
development of user applications.

Complete graphical programming environment to
design and develop O, database applications.

Standard Development Tools:

All standard programming languages can be used with standard
environments (e.g. Visual C++, Sun Sparcworks).

External Interfaces:

¢ OsCorba

¢ OoDBAccess

« 0,0DBC

¢ Oo>Web

Create an O2/ Orbix server to access an O database
with CORBA.

Connect O applications to relational databases on
remote hosts and invoke SQL statements.

Connect remote ODBC client applications to O
databases.

Create an O2 World Wide Web server to access an O,
database through the internet network.

O,DBAccess User Manual 11

1 Introduction

O,Engine

O2Engine has all the features of a database engine providing
transparent management of data persistence, data sharing and data
reliability, as well as all the features of an object-oriented system
including the manipulation of complex objects with identity, classes,
types, methods, multiple inheritance, overriding and late binding of
methods.

SERVER

Figure 1.2: Client/server architecture

12 O>DBAccess User Manual

System Overview :

02 Store

O, Store

The O,Store physical storage management system offers you the

following features:

« Transactional management of persistent structures.

* Client/ server architecture.

* Rollbacks and crash recovery.

O,Store has the client/ server architecture shown in Figure 1.2. The
server process provides persistence, disk management, concurrency

control, data recovery and database security.

The features offered by OsEngine and O»Store are shown in Figure 1.3

below.

------- O,Store
Schema Manager Global Transaction
Manager
Object Manager
Global Log
Local Transaction A — Manager
Manager
Page Buffer Page Buffer
O,Store /.
Client Process
7D A
Log
Server Process

Figure 1.3: Global architecture showing O,Store layer

Oo,DBAccess User Manual

13

Introduction

O,DB Access

O-DBAccess is a set of O classes that enables O, applications to
communicate and work with relational databases on remote hosts.

These classes allow you to carry out the following actions from your
applications:

« Connect to a server and set up a session on a remote database.
« Run any SQL statement in the SQL syntax of that database.

« Fetch data as required from the database to the user application into
O» objects.

« Mirror the commit and rollback facilities of some databases.
¢ Close the database session and terminate the connection to the host.

You can also retrieve error message text corresponding to database error
codes.

O2DBAccess is based on the SequelLink protocol as shown in

Figure 1.4. This is a software package that enables a client application
to access simultaneously different relational databases residing on
different servers that are connected to one or more types of local
networks.

SequeLink uniformly manages the different network protocols and the
heterogeneity between platformsl. With O,DBAccess you can link to any
platform currently supported for SequeLink.

1. For information about all possible network-host-database combinations, call O,Line.

14

Oo>DBAccess User Manual

System Overview :

0O2DB Access

CLIENT

O,DBAccess

SERVER

Relational
DBMS

Client
Kernel

Interface module
network protocol

- SequeLink

L Standard Network Protocol :J

Interface module
database

Server
Kernel

Interface module
network protocol

Figure 1.4: O,DBAccess and SequelLink

O,DBAccess User Manual

15

Introduction

1.2

Manual Overview

This manual is divided up into the following chapters:

Chapter 1 - Introduction

A short introduction to the O, system, O2Engine, O,Store and
Oo,DBAccess.

Chapter 2- Utilization

This chapter describes how to use OoDBAccess: accessing a database,
preparing a statement, fetching data, commit and rollback and running
the statement.

Chapter 3 - Classes

This chapter details all the various classes and methods of the
O>DBAccess schema: 02DBAccess , Connection , Session , and
Context .

Chapter 4 - Appendices

This chapter includes an example program. It gives possible error codes
and the configuration file.

16

Oo>DBAccess User Manual

2 Utilization

This chapter details how to use O,DBAccess.

It is divided into the following chapters:

The o2dbaccess schema

Guidelines

Accessing a database

Preparing a statement

Run statement and fetching data
Commit and rollback

Ending a session

Oo>DBAccess User Manual

17

Utilization

2.1 The o2dbaccess schema

Oo,DBAccess is in fact a standard O, schema called o2dbaccess that
you can use in any of your user-defined schemas.

Classes

The o2dbaccess schema, shown in Figure 2.1, has classes that enable
you to communicate and work with the remote database.

Parameter
i Connection
Object
O2DBAccess Session
Context

Figure 2.1: o2dbaccess schema

The schema classes are as follows:

e 02DBAccess

An 02DBAccess object defines the common resources of OoDBAccess
classes. It contains one method, server_error , Which you useto
obtain the RDBMS-detected error codes.

» Connection

Connection is a subclass of o2dbaccess . A Connection object defines
and maintains a connection to a remote host.

* Session

Session is a subclass of o2dbaccess . A Session object defines and

maintains a connection to a database server. It manages the
transactions of the session.

e Context

Context is a subclass of o2dbaccess . A Context object defines an

access context to a database and contains information that is required
to run an SQL statement.

e Parameter

Any classes used for the result object and parameters must be a
subclass of the Parameter class.

Oo>DBAccess User Manual

The o2dbaccess schema

Importing the schema
Import the o2dbaccess schema using the O, import command:

import schema o2dbaccess class Parameter, Connection,
Session, Context;

This import command gives you access to any o2dbaccess classes.

If you are using O2 Tools, you see the class hierarchy shown in Figure
2.2.

Parameter

Connection

Object

Session

Context

Figure 2.2: Imported O,DBAccess classes

You can also import the O2DBAccess class if you are going to use
generic error messages.

Parameter

Connection

Object Session

Context

O2DBAccess

Figure 2.3: Import O2DBAccess class

Note

For fuller details of these classe and their methods, refer to Chapter 3.

O,DBAccess User Manual 19

Utilization

2.2 Guidelines

To send an SQL statement for processing on remote database, you need
to carry out the following steps:

1. Set up aconnection tothe host server machine.
2. Set up a session on the database by logging on.
3. Open an access context for the statement.

4. Preparethe statement to be run. This means putting information
about the statement in the context.

5. Run the statement.

6. Ifthestatementis aselect statement, fetch thedata from the database
to your application into an O» object.

7. Ifinformation has been inserted, updated or deleted, make the
changes permanent, or undo them.

8. If you do not want to rerun the statement, close the context.
9. Close the session by logging off the database.

10. End the connection by disconnecting from the host.

20

Oo>DBAccess User Manual

Guidelines

Each step corresponds to a particular method. Table 2.1 shows these
methods and its corresponding step.

The class of the method is given after the method name.

These methods constitute the basic set of methods that you need to use.

Table 2.1

Method set

Methods

Step

connect@Connection

Set up a connection

logon@Connection

Set up a session

open@Session

Open an access context

associate@Context
define_projection@Context
define_bind@Context

Prepare a statement

exec@Context

Run a statement

fetch@Context

Fetch data from the database

commit@Session

Make the changes permanent

rollback@Session

Undo a transaction

close@Session

Close the context

logoff@Connection

End the session

disconnect@Connection

End the connection

All these various steps are detailed below.

For a description of each specific method refer to Chapter 3.

Note

Steps 3 to 8 can bereduced using the method sqglquery of the class
Session. See Section 3.3 for more details.

Oo,DBAccess User Manual

2 Utilization

2.3 Accessing a database

You must first connect to the remote host and log onto the database.

Host connection and database log in

With O>DBAccess, you do this by creating a Connection object. You
must call the connect method on this object to connect to the remote
host. You then call the logon method on this object to log onto the
database and begin a session. The logon method returns a Session
object.

Once connected and logged on, you can run as many SQL statements as
you want.

For example:

run body {
02 Connection host = new Connection; Create the object

02 Session session;
Connection to the host defined by where

host->connect ("where", "username", "password");

Log on the database defined by db name

session=host->logon("dbname”,"dbusername/password").session;

/* Some transactions */

host->logoff (session); End session

host->disconnect; Disconnect from the host

When your transactions with the database are finished, you use the
logoff and disconnect methods to respectively end the session and
remote host connection.

Refer to Section 3.2 for a full description of all these Connection
methods.

22

Oo>DBAccess User Manual

Accessing a database : Open Context

Open Context

Once connected to the remote host and logged on to the database, you
must now open a context for each SQL statement you want to run. You
do this using the open method from your Session object (result of the
logon method). The context contains the statement itself and any
additional information that may be needed to run the statement. This
method returns an object of class Context

A Context object remains open until you explicitly close it using the
close method (of your Session object), or until you end the database
session using the logoff method. However, you do not need to close a
context in order to use it for a different statement. You simply re-use it.

For example:

run body {

02 Connection host = new Connection;
02 Session session;
02 Context contextl, context2;

host->connect ("where", "username”, "password");
session=host->logon("dbname”,"dbusername/password").session;
contextl = session->open.context;

[* statements */

session->close(contextl);

context2 = session->open.context;

[* statements */

session->close(context2);

host->logoff(session);

host->disconnect;

Contexts and how to manage contexts are explained fully in Section 2.4

below and Section 3.3 gives a description of the open method.

Note

The context is local to the logon session in which it is used and the

number of contexts you can open at the same time is restricted to 100.

However, you rarely need more than 15 and the external database or
yourself can impose a lower limit.

Oo,DBAccess User Manual

2 Utilization

2.4 Preparing a statement

The next step after accessing the database is to prepare the SQL
statements you want to run.

Linking statement and context

You must firstly link the statement to its context using the associate
method of the Context class.

This method associates the statement to the opened context in order to
pass information about the statement to the database server.

The information in the context can be used for a type checking on the
client side.

The associate also sends the statement to the RDBMS database for
validation. It is at this point that any SQL syntax errors are trapped. If
any are found, you can get the database error codes by calling the
server_error method on the Context object (see Section 3.1 for details
of this method and Section 4.3 for a list of possible errors).

Finally, the associate method stores the statement in the context.

If the SQL statement does not need a result object (i.e. it is not a select
statement) and it contains no parameter markers, O>DBAccess needs
no more information.

You can therefore immediately run your statement using the exec
method. See Section 2.5 for more details.

However, if the statement a select statement and/ or it contains
parameter markers, you must provide OoDBAccess with more
information. This is explained in the remainder of this section.

Managing contexts

When you want to run a select statement or a statement that contains
parameter markers or both, you need to provide more information
before the statement is run.

The information needed includes the result object and its projection list
which you storein the context using the define_projection method of
the class Context

You also need to store any parameters in the context using the
define_bind method.

Oo>DBAccess User Manual

Preparing a statement : Transferring data

You can manage your contexts in three different ways:

Note

Use one context for one specific SQL statement and close the context
as soon as the statement has been run.

Open a context, use it for one statement, and then reuse for another
statement by simply associating it to the new statement.

You can to do this as many times as you want until you want to close
the context.

Open a context for a particular statement that you want torun several
times. You keep the context open and associated to the statement
until you no long wish to rerun the statement.

While the context is open, you can rerun the statement with new
values for any of its parameters using the exec and fetch methods.
However, you cannot redefine any objects using the
define_projection or define_bind methods.

Re-associating a context frees all defines.

Transferring data

The transfer of data between the application and the database involves
the following steps:

1.

You must firstly define the classes of objects where you want the data

to be buffered. These classes must be subclasses of the Parameter
class.

You must then give the relevant transfer information. This includes
the objects in which the data is to be buffered and whether these
objects define a parameter or the result object.

You do this by defining data buffers using the define_projection
and define_bind methods described above. These methods storethe
transfer information in the context.

You can then run the statement using the exec method If you are
transferring data from the database, you must fetch it from the
database to the designated result object using the fetch method.

This section now describes these steps in more detail.

O,DBAccess User Manual 25

Utilization

» Data buffers

The data buffers are O, objects, the classes of which are user-defined
and must be inherited from the Parameter class.

Define the class type as follows knowing that you can choose any
collection types:

+ For a parameter, the class type must be atomic and match the scalar
type of the associated parameter marker in the SQL statement.

* Theresult of a select statement is arelation. Arelation is a collection
of tuples whose attributes have scalar types. If the relation has only
one attribute, you can use a collection of atoms.

If you want to fetch data row by row or if the relation has only one row,

you can omit the collection and use a tuple (or an atom for a one
attribute relation).

Note

You can encapsulate collection elements and tuple attributes.

e Defining buffers

You give the necessary information about the result object and the
parameters using the define_projection and define_bind methods.

The define_projection method has a projection mechanism with
which you can define the result object.

You can declare a tuple type with more attributes, in a different order
and with different names than in the relation. To do this, you must give
a link between the tuple attributes and the relation attributes.

This link is called the projection list and is made up of a list of
attribute names where theith member of the list obtains the value of the
ith attribute of the relation.

The other tuple attributes get their default O, values.

For example, if you want to obtain data from the relation:
Relation [A: integer, B: char(1), C: float, D: char(30)]

Oo>DBAccess User Manual

Preparing a statement : Transferring data

Note

You then want to store the result in an object of the Employees class,
which is defined as follows:

class Employees inherit Parameter type
list (tuple (hame: string,
code: integer,
entry_date: Date, Imported from o2kit
dept_id: char,
salary: real))

end;

Once connected, logged on and a context is opened, you must create a
new Employees object:

02 Employees result_object = new Employees;

Associate your statement to the opened context.
context->associate("SELECT A, B, C, D FROM Relation");

Define the result object using the define_projection method (the
entry_date attribute is not be valued):

context->define_projection(result_object,
list("code", "dept_id",

"salary”, "name"));

The define_bind method declares an object that will contain the value
of avariable used in the SQL statement. A second parameter defines the
position of this variable in the SQL statement.

With ORACLE, the variable markers must be called: ":1" , 2" , etc.

For example, you want to update the Cattribute where the B attributeis
'C’ and 'T" in the following relation:

Relation[A: integer, B: char(1), C: float, D: char(30)]

For this, you define the Char class as follows.

class Char inherit Parameter public type char end;

Once connected, logged on and a context is opened, you must create a
new Char object.

02 Char parameter = new Char;

O,DBAccess User Manual 27

Utilization

Associate your statement to the opened context.

context->associate("UPDATE Relation SET C=C * 1.1 WHERE B=?");

Define the result object using the define_bind method.

context->define_bind(parameter, 1);

Fix the parameter value and run the statement.
*parameter = 'C’;

context->exec;

You can rerun the statement with another value.

*parameter = 'T’;
context->exec;

28

Oo>DBAccess User Manual

Run statement and fetching data

2.5 Run statement and fetching data

If the SQL statement does not need a result object (i.e. it is not a select
statement) and it contains no parameter markers, you can run your
statement using the exec method.

If the statement is a select and/ or it contains parameter markers, you
must provide the relevant transfer information as detailed above in
Section 2.4, and then transfer the data using the fetch method.

For example, suppose you set up a single connection, a single session in
which you want to run three SQL statements: a create statement, an
insert statement containing three parameters, which you want run
twice, and a select statement. You call the following sequence of
methods in order to process each step.

run body {
02 Connection host = new Connection;
02 Session session;
02 Context contextl, context2, context3;

host->connect ("where", "username”, "password");
session = host->logon ("db name”,

"db username/password").session;
contextl = session->open.context;
contextl->associate ("CREATE...");
contextl->exec;
session->close (contextl);
context2 = session->open.context;
context2->associate ("INSERT...?...?2...2...");
context2->define_bind (...);
context2->define_bind (...);
context2->define_bind (...);
context2->exec;

context2->exec;

session->commit;

session->close (context2);
context3->associate ("SELECT...");
context3->define_projection (...);
context3->exec;

context3->fetch (...);
session->close (context3);
host->logoff (session);
host->disconnect;

O,DBAccess User Manual 29

2 Utilization

2.6 Commit and rollback

The commit and rollback methods mirror a feature of some databases
in allowing you to systematically and explicitly make permanent or
unroll a series of related database actions at strategic pointsin a
session.

30

Oo>DBAccess User Manual

Ending a session : Transferring data

2.7

Ending a session

When all your transactions with the database are complete, the
methods logoff and disconnect end the session and connection
respectively, close the context, etc.

run body {

02 Connection host = new Connection;

02 Session session;

02 Context contextl, context2;

host->connect ("where", "username”, "

session = host->logon ("db name",
"db username/password").session;

contextl = session->open.context;

[* statements */

session->close(contextl);

context2 = session->open.context;

[* statements */

session->close(context2);

host->logoff(session);

host->disconnect;

password");

Oo,DBAccess User Manual

31

Utilization

32

Oo>DBAccess User Manual

3 Classes

CLASS SET AND THEIR METHODS

O,DBAccess is a set of O classes that enables O, applications to

communicate and work with relational databases on remote hosts.

This chapter details all these classes and their respective methods.

It is divided into the following sections:
* O2DBAccess

e Connection

e Session

e Context

Oo>DBAccess User Manual

33

Classes

3.1 O,DBAccess

An o2dbaccess object defines the common resources of O,DBAccess
classes.

It contains one method, the server_error method with which you can
obtain the RDBMS-detected error codes.

34

Oo>DBAccess User Manual

O2DBAccess

server_error method

Summary
Syntax
Arguments
Description

Returns

Example

Gives the RDBMS-detected error code.

receiver ->server_error

None.

You use this method to obtain RDBMS-detected error codes.

The code and its description. The type of the returned value is as
follows:
tuple (code: integer, msg: string)

The code attribute contains the RDBMS-detected error code and the
msg attribute contains its textual description.

#include "o2dbaccess.h"
02 Context context;
02 integer status;
02 tuple(code: integer, msg: string) error;

status = context->associate("SELECT * FROM emp");
if (status |= O2DB_OK) {

if (status == 02dbE_SERVER)) {

error = host->server_error;

printf("Server Error (%d): %s\n", error.code, error.msg);

Oo,DBAccess User Manual

35

Classes

3.2 Connection

A Connection object defines and maintains a connection to a remote
host.

The information needed to set up a link between the O, application and
the host system is found in a configuration file. It is made up of a set of
network and host-specific parameters.

Refer to Section 4.2 for a full description of the configuration file.
This section now describes the methods associated to the Connection
class:

e connect method

» disconnect method

* logon method

logoff method

36

Oo>DBAccess User Manual

Connection ;: connect method

connect method

Summary
Syntax

Arguments

Description

Returns

Example

Connects to a remote host.

receiver ->connect (c_name, username, password)

c_name is a string that defines the link parameters used in the

configuration file.
username is a string specifying the host user name.
password is a string specifying the host user password.

The connect method sets up a link between the workstation and a
remote SequeLink server.

0 if the connection is successful or an error code if not.

02 Connection host = new Connection;
02 integer status;

supra_server:TCP:salome:LSPSUPRAZ2:::15:false
This is the corresponding resource line in the configuration file.

status =ho st->connect("supra_server”, "scott”, "TIGER");
if (status '=0) {
printf("error in connection (%d)\n",status);

return;

}

Oo,DBAccess User Manual

37

3 Classes

disconnect method

Summary Disconnects the remote host.

Syntax receiver ->disconnect

Arguments None

Description The disconnect method disconnects the link between the workstation

and the remote SequelLink server. All the current sessions of this
connection are closed.

Returns Nothing

Example

02 Connection host = new Connection;

02 integer status;

supra_server:TCP:salome:LSPSUPRAZ2:::15:false
This is the corresponding resource line in the configuration file.

status = host->connect("supra_server", "scott", "TIGER");
if (status !'=0) {
printf("error in connection (%d)\n",status);

return;

}

host->disconnect;

38

Oo>DBAccess User Manual

Connection : logon method

logon method

Summary Logs onto the database.
Syntax receiver ->logon (logonl, logon2)
Arguments logon1,logon2 are strings that specify the parameters required in

order to log onto the database you are using.

Refer to the documentation "Using SequeLink with your Database and
Server" for the specific logon parameters needed for the database you
want to use. The parameter length must be less than 256 characters.

Description The logon method passes both the logon1 and logon2 parameters to
the database server. It then starts a new session by creating man object
of class Session .

Returns An object defining a link with the database, or an error code if
something goes wrong.

The type of returned value is:

tuple (retcode: integer, session: Session)

Example

02 Connection host = new Connection;
02 tuple (retcode : integer, session : Session) status;
02 Session session;

log on SUPRAServer

status = host->logon("O2SCDEMOQO",
"connect o2tech identified by beaut");
if (status.retcode = 0) {
printf("error in log on (%d)\n", status.retcode);
return;

}

session = status.session;

O,DBAccess User Manual 39

Classes

logoff method

Summary
Syntax
Arguments

Description

Returns

Example

Ends a logon session
receiver ->logoff (session)
session is a Session object that represents the session to close.

The logoff method ends a specified logon session and releases all its
resources. All contexts created during the session are closed.

Note that the receiver object of the logoff method must be the same as
the receiver object of the logon method that originally created the
Session object.

0 if successfully logged off or an error code if not.

02 Connection host = new Connection;
02 integer status;
02 Session session;

status = host->logoff(session);
if (status = 0) {
printf(“error in log off (%d)\n", status);

return;

}

40

Oo>DBAccess User Manual

Session : logoff method

3.3

Session

A Session object defines and maintains the connection to a database

server.

The Session class has the following methods:

close method
commit method
open method
rollback method
sqlquery method

Oo,DBAccess User Manual

41

Classes

close method

Summary
Syntax

Arguments

Description

Returns

Example

Closes a context.
receiver ->close (context)

context is a Context object that represents the context to close.
The context must have been created by the receiver.

The close method closes a context and releases all its resources.
Note that the receiver object of the close method must be the same as
the receiver object of the open method that originally created the

Context object.

0 if the method is successful or an error code if not.

02 Session session;
02 Context context;
02 integer status;

o2tuple (retcode : integer, context: Context) open_status;

open_status = session->open;

if (open_status.retcode = 0) {
printf(“error in open (%d)\n", open_status.retcode);
return;

}

context = open_status.context;

status = session->close(context);

42

Oo>DBAccess User Manual

Session : commit method

commit method

Summary
Syntax
Arguments

Description

Returns

Example

Commits modifications.

receiver- >commit

None

The commit method commits what has been done in the session since

last commit or start of the session.

0 ifthe method is successful or an error code if not.

02 Connection host = new Connection;

02 Session session;

02 integer status;

02 tuple (retcode : integer, session : Session) log_status;

log on SUPRAServer

log_status = host->logon("O2SCDEMOQ",
"connecto2techidentified by beaut");
if (log_status.retcode = 0) {
printf(“error in log on (%d)\n", log_status.retcode);
return,

}

session = log_status.session;

status = session->commit;

Oo,DBAccess User Manual

43

3 Classes

open method

Summary Creates a new context.

Syntax receiver ->open

Arguments None.

Description The open method creates a new access context for the receiver by

creating an object of class Context

Returns An object defining the new context, or an error code if something went
wrong.

The type of returned value is:

tuple (retcode: integer, context: Context)

Example

02 Session session;

02 Context context;

02 integer status;

o2tuple (retcode: integer, context : Context) open_status;

open_status = session->open;

if (open_status.retcode = 0) {
printf("error in open (%d)\n", open_status.retcode);
return;

}

context = open_status.context;

Oo>DBAccess User Manual

Session : rollback method

rollback method

Summary Reverses all modifications since last commit.

Syntax receiver ->rollback

Arguments None.

Description The rollbback method rollbacks any modifications you have carried out
in this session since last commit.

Returns 0 if the method is successful or an error code if not.

Example

02 Connection host = new Connection;

02 Session session;

02 integer status;

02 tuple (retcode : integer, session : Session) log_status;

log on SUPRAServer

log_status = host->logon("O2SCDEMOQ",
"connect o2tech identified by beaut");
if (log_status.retcode = 0) {
printf(“error in log on (%d)\n", log_status.retcode);
return,

}

session = log_status.session;

status = session->rollback;

Oo,DBAccess User Manual

45

Classes

sqlquery method

Summary
Syntax

Arguments

Description

Returns

Example

Runs a statement and fetches the result if required.
receiver ->sqlquery (result, stmt, params, projection)

result is a Parameter object specifying where the query result
is stored, or nil if not required.

stmt is a string of less than 4096 characters representing the
SQL statement to berun.

params is a list of Parameter objects specifying the query
parameters.

projection is a list of string specifying the projection attributes. By
default (projection = list()), the query result fully

matches the O class type.

This method runs a statement and can fetch the result. Only projection
attributes are valued (others get their O, default values). By default
(projection = list()) , theresult totally matches the O; class type.

An integer of the number of fetched rows if successful: O if thereis no
more data to fetch or a negative number representing an error code.

class Employees inherit Parameter type

list(tuple(name: string, department: integer, salary: real)) end;
class Integer inherit Parameter public type integer end;
class String inherit Parameter public type string end;

run body {

02 Session session;
02 integer status;
02 string stmt = "SELECT ename, esalary FROM emp\

02 Employees res = new Employees;
02 Integer dept = new Integer;
02 String job = new String;

;dept = 80;

*job = "tailor";
status = session->sqlquery(res, stmt, list(dept,job),

.r.és—>display;

WHERE deptno = ? and job = ?*;

list("name”, "salary"));

46

Oo>DBAccess User Manual

Context : sqlquery method

3.4

Context

A Context

The Context

associate method
define_bind method
define_projection method
exec method

fetch method

class has the following methods:

object defines an access context to a database and contains
information that is required to execute an SQL statement.

Oo,DBAccess User Manual

47

Classes

associate method

Summary
Syntax

Arguments

Description

Returns

Example

Associates a statement with an opened context.

receiver ->associate (stmt)

stmt is a string of less than 4096 characters representing the

SQL statement to execute.
The associate method associates an SQL statement to the context
receiver. You can reuse a context for a new query but the previous
association is then lost.

0 if the method is successful or an error code if not.

02 Session session;
02 Context context;
02 integer status;
02 tuple (retcode : integer,
context : Context) open_status;
02 string stmt = "SELECT ename, esalary\
FROM emp WHERE deptno = 80";

open_status = session->open;

if (open_status.retcode !'=0) {
printf("error in open (%d)\n", open_status.retcode);
return;

}

context = open_status.context;

status = context->associate(stmt);

48

Oo>DBAccess User Manual

Context : define_bind method

define_bind method

Summary
Syntax

Arguments

Description

Returns

Example

Stores the parameters in the context.
receiver ->define_bind (param, order)

param is a Parameter object that will contain the value
corresponding to a variable used in the SQL statement.

order is an integer specifying the position of this variable in
the SQL statement. Numbering begins at 1.

The define_bind method declares a Parameter object that contains
the current value corresponding to a variable used in the SQL
statement. The second parameter defines the position of this variable in
the SQL statement. If you use ORACLE, you must call the marker

"n", wheren is the position of the variable in the statement.

0 ifthe method is successful or an error code if not.

class Employees inherit Parameter type

list(tuple(name: string, department: integer, salary: real)) end,;
class Integer inherit Parameter public type integer end,;
class String inherit Parameter public type string end;

run body {

02 Context context;
02 integer status;
02 string stmt = "SELECT ename, esalary FROM emp\

02 Employees res = new Employees;
02 Integer dept = new Integer;
02 String job = new String;

status = context->associate(stmt);
status =context->define_projection(res, list("name”,

status = context->define_bind(job, 2);
status = context->define_bind(dept, 1);

WHERE deptno = ? and job = ?";

salary"));

O,DBAccess User Manual 49

Classes

define_projection method

Summary
Syntax

Arguments

Description

Returns

Example

Stores the result object in the context.
receiver ->define_projection (result, projection)

result is a Parameter object specifying where the result of the
query will be stored. The parameter must be not nil.

projection is alist of strings specifying the projection attributes. By
default (projection=list()), the query result matches
the O2 class type.

The define_projection method stores the result object in the context.
The query result is assigned to the value of the result object. Only
projection attributes are valued (others get their O, default values). By
default (projection=list()), the query result matches the O class

type.

0 if the method is successful or an error code if not.

}

class Employees inherit Parameter type

list(tuple(name: string, department: integer, salary: real))
end;
run body {

02 Session session;

02 Context context;

02 integer status;

02 tuple (retcode : integer, context : Context) open_status;
02 string stmt = "SELECT ename, esalary\

02 Employees res = new Employees;

open_status = session->open;

if (open_status.retcode = 0) {
printf("error in open (%d)\n", open_status.retcode);
return;

context = open_status.context;
status = context->associate(stmt);

FROM emp WHERE deptno = 80";

50

Oo>DBAccess User Manual

Context : exec method

exec method

Summary Runs the query.

Syntax receiver ->exec

Arguments None

Description The exec method binds the current values defined as input to the SQL

Returns

statement and runs the query.

0 ifthe method is successful or an error code if not.

Example

class Employees type
list(tuple(name: string, department: integer, salary: real))
end;
class Integer public type integer end,;
class String public type string end;
run body {

02 Context context;

02 integer status;

02 string stmt = "SELECT ename, esalary FROM emp
WHERE deptno = ? and job = ?";

02 Employees res = new Employees;

02 Integer dept = new Integer;

02 String job = new String;

status = context->associate(stmt);
status = context->define_projection(res,

list("name", "salary"));

status = context->define_bind(job, 2);
status = context->define_bind(dept, 1);

/* now we can run the query */
*dept = 80;

*job = "tailor";

status = context->exec;

O,DBAccess User Manual 51

Classes

fetch method

Summary
Syntax

Arguments

Description

Returns

Example

Fetches the results.
receiver ->fetch (row_count)

row_count is an integer. The maximum number of rows to fetch.
You can specify 0 (O2DB_ALL in order to fetch as many
rows as possible.

The fetch method fetches the results into the result object.

An integer of the number of rows that were actually fetched. When no
more rows can be fetched, it returns 0. If the fetch is unsuccessful, it
returns an error code (a negative number). With 02dbW_NOT_UNIQUE
only the first row is stored in the result object.

class Employees inherit Parameter type

list(tuple(name: string, department: integer, salary: real)) end;
class Integer inherit Parameter public type integer end,;
class String inherit Parameter public type string end;

run body {
#include "o2dbaccess.h"

02 Context context;
02 integer status;
02 string stmt = "SELECT ename, esalary\

02 Employees res = new Employees;
02 Integer dept = new Integer;
02 String job = new String;

status = context->associate(stmt);
status = context->define_projection(res, list("name”, "salary"));

status = context->define_bind(dept, 1);
status = context->define_bind(job, 2);
... I* now you can run the query */
*dept = 80;

*job = "tailor";

status = context->exec;

status = context->fetch(O2DB_ALL);
res->display;

*job ="grocer";

status = context->exec;
status = context->fetch(10);
res->display;

FROM emp WHERE deptno = ? and job = ?";

52

Oo>DBAccess User Manual

4 Appendices

This chapter contains the following appendices:
« Example Application

e Configuration File

e Possible Errors

Oo>DBAccess User Manual

53

Appendices

4.1 Example Application

This exampleillustrates the various steps you must go through in order
touse O,DBAccess in order to send an SQL statement for processing on
a remote database.

This section enables you to follow all these various steps and is divided
up into the following sections:

e Define the schema

e Host connection and database log on
e Open a context

* Prepare the statement

* Run the statement

e Close the context

e Fetch the data

¢ Close database session and end host connection

Note

Commit or rollback any changes made - the commit and rollback
methods depend on the database you are using are therefore not
illustrated in this example.

54

Oo>DBAccess User Manual

Example Application : Define the schema

Define the schema

You begin by importing the o2dbaccess schema.

You then must define all the various classes (Employees , Integer and
String) in which the result of your SQL statement and the query
parameters are stored.
import schema o2dbaccess class Parameter, Connection,
Session, Context;
class Employees inherit Parameter type
list (tuple (name: string,

department: integer,

salary: real))
end;
class Integer inherit Parameter public type integer end,;
class String inherit Parameter public type string end,;

O,DBAccess User Manual 55

4 Appendices

Host connection and database log on

To connect to the host and log onto the database, you must create a
Connection object.

You must then call the connect and logon methods on this object.

run body {
02 Connection host = new Connection;
02 Session sess;
02 Context ctxt;
02 tuple (retcode: integer, sess: Session) log_status;
02 tuple (retcode: integer, ctxt: Context) open_status;
02 integer status;
02 string stmt = "SELECT ename, esalary\
FROM emp\
WHERE deptno = ? and job = ?";

02 Employees res = new Employees;
02 Integer dept = new Integer;
02 String job = new String;
status = host->connect("supra_server", "scott", "TIGER");
if (status = 0) {

printf("error in connection (%d)\n", status);

return;
} log on SUPRAServer
log_status = host->logon("O2SCDEMOQO",

"connect o2tech identified by beaut");

if (log_status.retcode = 0) {

printf("error in log on (%d)\n", log_status.retcode);

host->disconnect;

return;

}

Refer to Section 2.3 and Section 3.2 for more details.

56

Oo>DBAccess User Manual

Example Application : Open a context

Open a context

You open a context for each statement using the open method of the
Session object.

This object contains the statement and other information needed for
running the statement.

sess = log_status.sess;

open_status = sess->open;
if (open_status.retcode = 0) {
printf(“error in open (%d)\n", open_status.retcode);

host->disconnect;

Close all sessions and disconnect

return;

}

Refer to Section 2.3 and Section 3.3 for further details.

Oo,DBAccess User Manual

57

4 Appendices

Prepare the statement

You must associate a statement by firstly associating it with the opened
context using the associate method.

The statement is a select statement and has parameters. You must
therefore define and store in the context, the result object and its
projection list using the define_projection method in connection
with the class Employees . You define and store the parameters using
the define_bind method in connection with the classes Integer and
String

ctxt = open_status.ctxt;
status = ctxt->associate(stmt);
if (status !'=0) {
printf("error in associate (%d)\n", status);
host->disconnect;
return;
}
status = ctxt->define_projection(res, list('name”, "
if (status !'=0) {
printf("error in define_projection (%d)\n", status);

salary"));

host->disconnect;
return;
}
status = ctxt->define_bind(job, 2);
if (status !'=0) {
printf("error in define_bind(2) (%d)\n", status);
host->disconnect;
return;
}
status = ctxt->define_bind(dept, 1);
if (status !'=0) {
printf("error in define_bind(1) (%d)\n", status);
host->disconnect;
return;

}

Refer to Section 2.4 and Section 3.4 for full details.

58 O>DBAccess User Manual

Example Application : Run the statement

Run the statement
All the relevant information has been given.

You can now run the statement using the exec method.

*dept = 80;

*job = "tailor";

status = ctxt->exec;
if (status = 0) {
printf("error in exec(1) (%d)\n", status);

host->disconnect;

return;

}

Refer to Section 2.5 and Section 3.4 for further details of this method.

O,DBAccess User Manual 59

4 Appendices

Fetch the data

As the statement is a select statement, you can transfer data from
database to your application into an O, object using the fetch method.

status = ctxt->fetch(O2DB_ALL);
if (status < 0) {
printf("error in fetch(1) (%d)\n", status);
host->disconnect;
return;
}
else
printf("%d fetched rows\n", status);
res->display;
*job ="grocer";
status = ctxt->exec;
if (status = 0) {
printf("error in exec(2) (%d)\n", status);
host->disconnect;
return;
}
status = ctxt->fetch(10);
if (status < 0) {
printf("error in fetch(2) (%d)\n", status);
host->disconnect;
return;
}
else
printf("%d fetched rows\n", status);

res->display;

Refer to Section 2.5 and Section 3.4 for more details.

Oo>DBAccess User Manual

Example Application : Close the context

Close the context

As the statement is not re-run, you can now close the context using the
close method of the Session object.

status = sess->close(ctxt);

if (status = 0) {
printf("error in close (%d)\n", status);
host->disconnect;

return,

}

Refer to Section 2.7 and Section 3.3.

Close database session and end host connection

All the your transactions with database are finished. The method
logoff ends the session and the method disconnect ends the
connection wth the host.

status = host->logoff(sess);

if (status = 0) {
printf(“error in log off (%d)\n", status);
host->disconnect;
return;

}

host->disconnect;

Refer to Section 2.7 and Section 3.2 for more details.

O,DBAccess User Manual 61

Appendices

4.2 Configuration File

The configuration file o2dbaccess.cf contains theinformation needed
tolink up your Oz application and a remote host, in the form of a set of
network and host-specific parameters.

You can change the file name by specifying a new name and its path in
the environment variable O2DBACCESSThis variable must contain the
full path of the file.

In order of priority, thefileis first taken from the working directory,
then $SHOMEand then the O3 installation directory. It is an ASCII file
where each line corresponds to a named link description. It contains
one entry for each named link with comments beginning with #. Theline
format is:

¢_name:network:host:service:lu_name:mode:max_contexts:type _checking

Each field is described below.

c_name Link name. Specify a link name each time you invoke
the connect method.

network Type of network protocol used. Possible values: TCP
(MacTCP on Macintosh), ADSP, APPC, DECnet,
NetBIOS and AppleTalk.

host RDBMS remote host/ node/ zone name.

service SequelLink (database) service name that you want to
connect to. You can find this name in the servermap
file on the remote host. See SequelLink manual.

lu_name Physical LU Name in APPC network protocol (optional).
mode APPC mode in APPC network protocol (optional).
max_contexts Integer (from 0 to 100) specifying maximum number of

contexts that can be opened at the same time during a
session. If 0, the default value (15) is used.

type_checking Boolean specifying whether to enable (true) or disable
(false)type checking in the define_projection and
define_bind methods. Default value is false

Warning !
Thetype checkingis not supported for all RDBMS, call OsLine for more
details. An example configuration file is as follows:

supra on salome:TCP:salome:LSPSUPRAZ2:::15:false
db2 on sgphl1:DECnet:sgphl1:MVSDB2:::0:true
oracle:TCP:02tech:oracle_services::::

Oo>DBAccess User Manual

Possible Errors

4.3

Possible Errors

Each method returns an internal error code.

This section describes these error codes. You can obtain RDBMS-

detected error codes using the server_error method. See Section 3.1

for a description of this method.

-1001

Code: 02dbE_SERVER (-1001)

Call: All.

Cause: RDBMS-detected error has occurred.

Action: Consult error code and message text calling the
server_error method.

-2001

Code: 02dbE_SQLNK (-2001)

Call: All.

Cause: A SequeLink error has occurred. Should usually only be
issued on a connect method call.

Action: Check the link paramaters, user name and password. The
connect failure reason is in <network>srv.log file on the
remote host.

-3001

Code: 02dbE_STILL_CONNECT (-3001)

Call: Connection@connect

Cause: You are still connected to a host.

Action: The connect method was called but not the disconnect
method.

-3002

Code: 02dbE_NOT_CONNECT (-3002)

Call: Connection@logon , Connection@logoff

Cause: Not connected.

Action: Check completion of the previous connect method call.

O,DBAccess User Manual 63

Appendices

-3003
Code:
Call:

Cause:

Action:

-3004
Code:
Call:

Cause:

Action:

-3005
Code:
Call:

Cause:

Action:

-3006
Code:
Call:

Cause:

Action:

-3008
Code:
Call:
Cause:

Action:

02dbE_NOT_MEMBER (-3003)
Connection@logoff , Session@close

The Session/ Context object has not been created by the
receiver.

Check the method call syntax.

02dbE_NOT_LOGON (-3004)

Session@open , Session@close , Session@commit
Session@rollback , Session@sqlquery

Not logged on.

Check completion of the previous logon method call.

02dbE_TOOLONG (-3005)
Connection@logon , Context@associate
The parameters are too long.

Decrease parameter length.

02dbE_NOT_OPEN (-3006)

Context@associate , Context@define_projection ,
Context@define_bind , Context@exec , Context@fetch

The context has not been opened.

Check the completion of the previous open method call.

02dbE_NOSTMT (-3008)
Context@associate , Session@sqglquery
The SQL statement is empty.

Check the method call syntax.

64

Oo>DBAccess User Manual

Possible Errors

-3009
Code:
Call:

Cause:

Action:

-3010
Code:
Call:

Cause:

Action:

-3011
Code:
Call:

Cause:

Action:

-3012
Code:
Call:

Cause:

Action:

-3013
Code:
Call:
Cause:
Action:

02dbE_FILE_NOTFOUND (-3009)
Connection@connect
The configuration file was not found.

Check that the configuration file exists.

02dbE_RC_NOTFOUND (-3010)
Connection@connect
No description of the link parameters for this link name.

Check configuration file contents and the method call
syntax.

02dbE_INVALID_RC (-3011)
Connection@connect
Invalid line in the configuration file.

Check the configuration file contents.

02dbE_UNKN_NETWORK (-3012)
Connection@connect
Unknown network protocol.

Check configuration file contents.

02dbE_OPEN_FILE (-3013)
Connection@connect
The configuration file cannot be opened.

Check that the configuration file exists and check its
access rights.

O,DBAccess User Manual 65

4 Appendices

e -3014
Code:
Call:

Cause:
Action:

e -3015
Code:
Call:

Cause:
Action:

e -3016
Code:
Call:

Cause:
Action:

e -3017
Code:
Call:

Cause:
Action:

e -3018
Code:
Call:

Cause:

Action:

02dbE_NOT_SELECT (-3014)

Context@define_projection , Context@fetch
Session@sqlquery

The SQL statement is not a select statement.
Check the syntax of the SQL statement.

02dbE_RANGE (-3015)
Context@define_bind

The order number is out of range.
Check the order number.

02dbE_DEFINED (-3016)

Context@define_projection , Context@define_bind
The parameter or the result object is yet defined.
Check the order number.

02dbE_MISMATCH (-3017)

Context@define_projection , Context@define_bind
Session@sqlquery

Type checking failed.

Check the result or parameter type.

02dbE_NOT_SUPPORTED (-3018)

Context@define_projection , Context@define_bind
Session@sqlquery

One of the atomic types used is not supported in the
current version of OoDBAccess.

Check the type of result object.

66 O>DBAccess User Manual

Possible Errors

-3021
Code:
Call:

Cause:
Action:

-3022
Code:
Call:

Cause:
Action:

-3023
Code:
Call:

Cause:

Action:

-3024
Code:
Call:

Cause:
Action:

-3025
Code:
Call:
Cause:

Action:

02dbE_INVALID_NAME (-3021)
Context@define_projection , Session@sglquery
One of the names is not an attribute name.

Check the list of attribute names.

02dbE_NOT_EXECUTED (-3022)
Context@fetch
The statement hasn’t been executed.

Check the completion of the previous exec method call.

02dbE_NO_MORE_CONTEXTS (-3023)
Context@open , Session@sqlquery

An attempt was made to exceed the maximum number
open contexts allowed.

Close some contexts.

02dbE_NILREF (-3024)

Context@define_projection , Context@define_bind
Context@exec , Context@fetch , Session@sqglquery

The result object or a parameter is nil
Check the method call syntax.

02dbE_NOMEM (-3025)
All.
Not enough memory.

Close some contexts.

Oo,DBAccess User Manual

67

Appendices

-4001
Code:
Call:

Cause:
Action:

-5001
Code:
Call:

Cause:

Action:

02dbE_INTERNAL (-4001)
All.

Internal error. It should not normally be issued.
Contact OsoLine.

02dbW_NOT_UNIQUE (-5001)
Context@fetch , Session@sqlquery

This a warning. There is more than one row to fetch
whereas the result type is not a collection.

Nothing. Only the first row has been fetched.

68

Oo>DBAccess User Manual

INDEX

Oo>DBAccess User Manual

69

INDEX

commit
Method 30, 43,54
A Configuration
File 62
connect
Example 56
Application Method 22,37
Example 54-61 Connection
Information transfer 25 Class 18, 36
Architecture Creation 22,56
Client/ server 13 Import 55
O, 10 Methods 22, 3640
associate Context
Example 58 Class 18,23 47
Method 24, 48 Close 23,61
Import 55

Link to statement 24
Management 24

B Maximum number 23
Methods 47
Open 23 57
Buffers
Data 26
Definition 26 D

C Data

Access 22
Buffers 26
Fetching 29, 60
Transfer 25

cnu Database

C++ Access 22-23
Interface 11 Information transfer 25

C_name 62 Log off 22,61

Class 18 Log on 22,56
Connection 22,36 define_bind
Context 47 Example 58
O2DBAccess 34 Method 24-27, 49
Session 22,41 define_projection

Client/ server architecture 13 Example 58
Example 61

Method 23,42

O>DBAccess User Manual

INDEX

disconnect
Example 61
Method 22, 31, 38 I
E import schema 55

Internal error codes 63

Environment variable 62

Error codes 24, 63-68 J
Example application 54-61
exec

Example 59

Method 29, 51 Java 11

F L

fetch logoff
Example 60 Example 61
Method 29,52 Method 22, 31, 40
File logon
Configuration 62 Example 56
Method 22, 39
lu_name 62

H

M

Host

Connection 22,56

Disconnect 22,31, 61 Managing contexts 24
host 62 max_contexts 62

Oo,DBAccess User Manual

71

INDEX

Method 21 O,Graph 11
associate 24,48 O,Kit 11
connect 22,37 ©-0DBC 11
define_bind 24-27,49 OzStore 10
define_projection 24-26, 50 Overview 13
disconnect 22,31, 38 OzTools 11
exec 2951 O,Web 11
fetch 29,52 open
logoff 22 31,40 Example 57
logon 2239 Method 23,44
open 23 44
rollback 30,45 oQL 1
server_error 35
sqlquery 46

mode 62

P

N

Parameter

network 62

Buffers 26
Class 18,26
Import 55
Subclass 55

O

R

O,

rollback

Architecture 10

0,C 11
O,Corba 11
O2DBACCES%2

O2DBAccess
Class 18 34
Methods 35

O>,DBAccess 11
o2dbaccess

Schema 18,55

o2dbaccess.cf
O2Engine 10,12

Method 30, 45,54

S

Schema

62

Definition 18,55

72

O>DBAccess User Manual

INDEX

server_error
Error codes 63
Method 24, 35
service 62
Session
Class 18 22-23 41
Close 23 31,61
Example 57,61
Import 55
Methods 41
Open 2357
sqglquery
Method 46
Statement
Link to context 24
Preparation 24,58
Running 29,59
System
Architecture 10

Transferring data 25
type_checking 62

Oo,DBAccess User Manual

INDEX

74

O>DBAccess User Manual

	MAIN MENU TO O2 DOCUMENTATION
	O2DBAccess User Manual
	Who should read this manual
	TABLE OF CONTENTS
	1 Introduction 9
	2 Utilization 17
	3 Classes 33
	4 Appendices 53
	INDEX 69

	1 Introduction
	1.1 System Overview
	Figure 1.1: O2 System Architecture
	O2Engine
	Figure 1.2: Client/server architecture

	O2 Store
	Figure 1.3: Global architecture showing O2Store layer

	O2DB Access
	Figure 1.4: O2DBAccess and SequeLink

	1.2 Manual Overview

	2 Utilization
	2.1 The o2dbaccess schema
	Classes
	Figure 2.1: o2dbaccess schema

	Importing the schema
	Figure 2.2: Imported O2DBAccess classes
	Figure 2.3: Import O2DBAccess class

	2.2 Guidelines
	2. Set up a session on the database by logging on.
	3. Open an access context for the statement.
	4. Prepare the statement to be run. This means putting information about the statement in the con...
	5. Run the statement.
	6. If the statement is a select statement, fetch the data from the database to your application i...
	7. If information has been inserted, updated or deleted, make the changes permanent, or undo them.
	8. If you do not want to rerun the statement, close the context.
	9. Close the session by logging off the database.
	10. End the connection by disconnecting from the host.
	Table 2.1 Method set

	2.3 Accessing a database
	Host connection and database log in
	Open Context

	2.4 Preparing a statement
	Linking statement and context
	Managing contexts
	2. Open a context, use it for one statement, and then reuse for another statement by simply assoc...
	3. Open a context for a particular statement that you want to run several times. You keep the con...

	Transferring data
	2. You must then give the relevant transfer information. This includes the objects in which the d...

	2.5 Run statement and fetching data
	2.6 Commit and rollback
	2.7 Ending a session

	3 Classes
	3.1 O2DBAccess
	server_error method

	3.2 Connection
	connect method
	disconnect method
	logon method
	logoff method

	3.3 Session
	close method
	commit method
	open method
	rollback method
	sqlquery method

	3.4 Context
	associate method
	define_bind method
	define_projection method
	exec method
	fetch method

	4 Appendices
	4.1 Example Application
	Define the schema
	Host connection and database log on
	Open a context
	Prepare the statement
	Run the statement
	Fetch the data
	Close the context
	Close database session and end host connection

	4.2 Configuration File
	4.3 Possible Errors

	INDEX
	A
	Application
	Example�54–61
	Information transfer�25

	Architecture
	Client/server�13
	O2�10

	associate
	Example�58
	Method�24, 48

	B
	Buffers
	Data�26
	Definition�26

	C
	C�11
	C++
	Interface�11

	c_name�62
	Class�18
	Connection�22, 36
	Context�47
	O2DBAccess�34
	Session�22, 41

	Client/server architecture�13
	close
	Example�61
	Method�23, 42

	commit
	Method�30, 43, 54

	Configuration
	File�62

	connect
	Example�56
	Method�22, 37

	Connection
	Class�18, 36
	Creation�22, 56
	Import�55
	Methods�22, 36–40

	Context
	Class�18, 23, 47
	Close�23, 61
	Import�55
	Link to statement�24
	Management�24
	Maximum number�23
	Methods�47
	Open�23, 57

	D
	Data
	Access�22
	Buffers�26
	Fetching�29, 60
	Transfer�25

	Database
	Access�22–23
	Information transfer�25
	Log off�22, 61
	Log on�22, 56

	define_bind
	Example�58
	Method�24–27, 49

	define_projection
	Example�58
	Method�24–26, 50

	disconnect
	Example�61
	Method�22, 31, 38

	E
	Environment variable�62
	Error codes�24, 63–68
	Example application�54–61
	exec
	Example�59
	Method�29, 51

	F
	fetch
	Example�60
	Method�29, 52

	File
	Configuration�62

	H
	Host
	Connection�22, 56
	Disconnect�22, 31, 61

	host�62

	I
	import schema�55
	Internal error codes�63

	J
	Java�11

	L
	logoff
	Example�61
	Method�22, 31, 40

	logon
	Example�56
	Method�22, 39

	lu_name�62

	M
	Managing contexts�24
	max_contexts�62
	Method�21
	associate�24, 48
	close�23, 42
	commit�30, 43
	connect�22, 37
	define_bind�24–27, 49
	define_projection�24–26, 50
	disconnect�22, 31, 38
	exec�29, 51
	fetch�29, 52
	logoff�22, 31, 40
	logon�22, 39
	open�23, 44
	rollback�30, 45
	server_error�35
	sqlquery�46

	mode�62

	N
	network�62

	O
	O2
	Architecture�10

	O2C�11
	O2Corba�11
	O2DBACCESS�62
	O2DBAccess
	Class�18, 34
	Methods�35

	O2DBAccess�11
	o2dbaccess
	Schema�18, 55

	o2dbaccess.cf�62
	O2Engine�10, 12
	O2Graph�11
	O2Kit�11
	O2Look�11
	O2ODBC�11
	O2Store�10
	Overview�13

	O2Tools�11
	O2Web�11
	open
	Example�57
	Method�23, 44

	OQL�11

	P
	Parameter
	Buffers�26
	Class�18, 26
	Import�55
	Subclass�55

	R
	rollback
	Method�30, 45, 54

	S
	Schema
	Definition�18, 55

	server_error
	Error codes�63
	Method�24, 35

	service�62
	Session
	Class�18, 22–23, 41
	Close�23, 31, 61
	Example�57, 61
	Import�55
	Methods�41
	Open�23, 57

	sqlquery
	Method�46

	Statement
	Link to context�24
	Preparation�24, 58
	Running�29, 59

	System
	Architecture�10

	T
	Transferring data�25
	type_checking�62

